seq_id
string
text
string
repo_name
string
sub_path
string
file_name
string
file_ext
string
file_size_in_byte
int64
program_lang
string
lang
string
doc_type
string
stars
int64
dataset
string
pt
string
api
list
27924886180
#код с регуляркой, присваивающий 0/1 в зависимости от динамики эпидемситуации import re import json import os dirname = os.path.dirname(__file__) filename = os.path.join(dirname, 'Covid_dict.json') countgooddyn = 0 countbaddyn = 0 sample_json = '' with open("data1.json", "r", encoding="utf-8") as file: sample_json+=file.read() glossary = json.loads(sample_json) print(len(glossary)) for date in glossary: if len(glossary[date][0]) == 1: countries = glossary[date][0] text = glossary[date][1] if re.findall(r'[Мм]иновал|[Оо]слабл[а-я]+|[Сс]нят[а-я]+|[Уу]пад[а-я]+|[Сс]ниж[а-я]+|[Вв]ыходит|[Сс]мягч[а-я]+|[Пп]ад[а-я]*|[Зз]амедл[а-я]+|[Уу]был[а-я]+|[Сс]нима[а-я]+', text): for country in countries: countries[country]["dyn"] = 1 countgooddyn += 1 if re.findall(r'[Пп]ик[а]|[Вв]спышк[а-я]|[Пп]ревы[а-я]+|[Уу]велич[а-я]+|[А-Яа-я]+?рекорд[а-я]+|[Уу]худш[а-я]+|[Р-р][ао]ст[а-я]+|[Зз]акры[а-я]+|[Вв]в[ео]д[а-я]т([а-я]+)?|[Мм]аксим[а-я]+|[Вв]ы?рост[а-я]+|[Пп]рирост[а-я]|[Сс]кач[а-я]+|более|снова|[Уу]сил[а-я]+|выросло', text): for country in countries: countries[country]["dyn"] = 0 countbaddyn += 1 print(glossary[date][0]) with open ('Country_and_coord_and_dynFULL.json', 'w', encoding="utf-8") as file: json.dump(new_glossary, file, ensure_ascii=False)
stefikh/map_COVID
code/4_dynamic_good_or_bad.py
4_dynamic_good_or_bad.py
py
1,709
python
ru
code
1
github-code
6
[ { "api_name": "os.path.dirname", "line_number": 7, "usage_type": "call" }, { "api_name": "os.path", "line_number": 7, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 8, "usage_type": "call" }, { "api_name": "os.path", "line_number": 8, "usage_type": "attribute" }, { "api_name": "json.loads", "line_number": 16, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 23, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 27, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 33, "usage_type": "call" } ]
70994868668
from django import template register = template.Library() #background: -webkit-gradient(linear, 0% 0%, 0% 100%, from({{ COLOR_H1_BACK_STOP }}), to({{ COLOR_H1_BACK_START }})); #background: -webkit-linear-gradient(top, {{ COLOR_H1_BACK_START }}, {{ COLOR_H1_BACK_STOP }}); #background: -moz-linear-gradient(top, {{ COLOR_H1_BACK_START }}, {{ COLOR_H1_BACK_STOP }}); #background: -ms-linear-gradient(top, {{ COLOR_H1_BACK_START }}, {{ COLOR_H1_BACK_STOP }}); #background: -o-linear-gradient(top, {{ COLOR_H1_BACK_START }}, {{ COLOR_H1_BACK_STOP }}); @register.simple_tag def columned(num): S='-moz-column-count:'+str(num)+';\n' S+='-webkit-column-count:'+str(num)+';\n' S+='column-count:'+str(num)+';' return S #def background_gradient(style,start,stop): # gradient='linear-gradient('+style+','+start+','+stop+')' @register.simple_tag def background_gradient(style,*args): colors=",".join(args); gradient='linear-gradient('+style+','+colors+')' S='background: '+gradient+';\n' # inverso rispetto agli altri, questo per style=top, cambiare se serve altro #S+='background: -webkit-gradient(linear, 0% 0%, 0% 100%, from('+stop+'), to('+start+'));' for i in ["webkit","moz","ms","o"]: S+='background: -'+i+'-'+gradient+';\n' return S @register.simple_tag def border_radius(radius): S='border-radius: '+radius+';' for i in ["webkit","moz"]: S+='\n-'+i+'-border-radius: '+radius+';' return S @register.simple_tag def box_shadow(shadow): S='box-shadow: '+shadow+';' for i in ["webkit","moz"]: S+='\n-'+i+'-box-shadow: '+shadow+';' return S @register.simple_tag def border_radius_pos(pos,radius): S='' if pos in ["top","left","top-left"]: S+='border-top-left-radius: '+radius+';\n' S+='-moz-border-radius-topleft: '+radius+';\n' S+='-webkit-bordertop-left-radius: '+radius+';\n' if pos in ["top","right","top-right"]: S+='border-top-right-radius: '+radius+';\n' S+='-moz-border-radius-topright: '+radius+';\n' S+='-webkit-bordertop-right-radius: '+radius+';\n' if pos in ["bottom","left","bottom-left"]: S+='border-bottom-left-radius: '+radius+';\n' S+='-moz-border-radius-bottomleft: '+radius+';\n' S+='-webkit-borderbottom-left-radius: '+radius+';\n' if pos in ["bottom","right","bottom-right"]: S+='border-bottom-right-radius: '+radius+';\n' S+='-moz-border-radius-bottomright: '+radius+';\n' S+='-webkit-borderbottom-right-radius: '+radius+';\n' return S @register.simple_tag def text_rotation(degree): S='transform: rotate('+degree+'deg);' for i in ["webkit","ms"]: S+='\n-'+i+'-transform: rotate('+degree+'deg);' return S @register.simple_tag def icon_file_manager_levels(levels,step): levels=int(levels) step=float(step) S="" S+=", ".join(map(lambda x: ".iconlevel"+unicode(x),range(0,levels))) S+=" {\n" S+="vertical-align: bottom;\n" S+="font-size: 1.1em;\n" S+="}\n\n" for n in range(1,levels): S+=".iconlevel"+unicode(n)+" {\n" S+="padding-left: %2.2fem;\n" % (n*step) S+="}\n\n" return S
chiara-paci/santaclara-css
santaclara_css/templatetags/css_tags.py
css_tags.py
py
3,207
python
en
code
0
github-code
6
[ { "api_name": "django.template.Library", "line_number": 3, "usage_type": "call" }, { "api_name": "django.template", "line_number": 3, "usage_type": "name" } ]
44844122583
import torch import numpy as np class KBinsDiscretizer: # simplified and modified version of KBinsDiscretizer from sklearn, see: # https://github.com/scikit-learn/scikit-learn/blob/7e1e6d09b/sklearn/preprocessing/_discretization.py#L21 def __init__(self, dataset, num_bins=100, strategy="uniform"): self.strategy = strategy self.n_bins = num_bins self.feature_dim = dataset.shape[-1] # compute edges for binning self.bin_edges = self.__find_bin_edges(dataset) # [feature_dim, num_bins] self.bin_centers = (self.bin_edges[:, 1:] + self.bin_edges[:, :-1]) * 0.5 # for beam search, to be in the same device (for speed) self.bin_centers_torch = torch.from_numpy(self.bin_centers) def __find_bin_edges(self, X): if self.strategy == "uniform": mins, maxs = X.min(axis=0), X.max(axis=0) bin_edges = np.linspace(mins, maxs, self.n_bins + 1).T elif self.strategy == "quantile": quantiles = np.linspace(0, 100, self.n_bins + 1) bin_edges = np.percentile(X, quantiles, axis=0).T else: raise RuntimeError("Unknown strategy, should be uniform or quatile.") return bin_edges def encode(self, X, subslice=None): if X.ndim == 1: X = X[None] if subslice is None: bin_edges = self.bin_edges else: start, end = subslice bin_edges = self.bin_edges[start:end] # See documentation of numpy.isclose for an explanation of ``rtol`` and ``atol``. rtol = 1.0e-5 atol = 1.0e-8 Xt = np.zeros_like(X, dtype=np.long) for jj in range(X.shape[1]): # Values which are close to a bin edge are susceptible to numeric # instability. Add eps to X so these values are binned correctly # with respect to their decimal truncation. eps = atol + rtol * np.abs(X[:, jj]) Xt[:, jj] = np.digitize(X[:, jj] + eps, bin_edges[jj][1:]) np.clip(Xt, 0, self.n_bins - 1, out=Xt) return Xt def decode(self, Xt, subslice=None): if Xt.ndim == 1: Xt = Xt[None] if subslice is None: bin_centers = self.bin_centers else: start, end = subslice bin_centers = self.bin_centers[start:end] X = np.zeros_like(Xt, dtype=np.float64) for jj in range(Xt.shape[1]): X[:, jj] = bin_centers[jj, np.int_(Xt[:, jj])] return X def expectation(self, probs, subslice=None): if probs.ndim == 1: probs = probs[None] # probs: [batch_size, num_dims, num_bins] # bins: [1, num_dims, num_bins] if torch.is_tensor(probs): bin_centers = self.bin_centers_torch.unsqueeze(0) else: bin_centers = self.bin_centers.unsqueeze(0) if subslice is not None: start, end = subslice bin_centers = bin_centers[:, start:end] assert probs.shape[1:] == bin_centers.shape[1:] # expectation: [batch_size, num_dims] exp = (probs * bin_centers).sum(axis=-1) return exp def to(self, device): self.bin_centers_torch = self.bin_centers_torch.to(device) def eval(self): return self
Howuhh/faster-trajectory-transformer
trajectory/utils/discretization.py
discretization.py
py
3,344
python
en
code
90
github-code
6
[ { "api_name": "torch.from_numpy", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 23, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 25, "usage_type": "call" }, { "api_name": "numpy.percentile", "line_number": 26, "usage_type": "call" }, { "api_name": "numpy.zeros_like", "line_number": 46, "usage_type": "call" }, { "api_name": "numpy.long", "line_number": 46, "usage_type": "attribute" }, { "api_name": "numpy.abs", "line_number": 51, "usage_type": "call" }, { "api_name": "numpy.digitize", "line_number": 52, "usage_type": "call" }, { "api_name": "numpy.clip", "line_number": 54, "usage_type": "call" }, { "api_name": "numpy.zeros_like", "line_number": 68, "usage_type": "call" }, { "api_name": "numpy.float64", "line_number": 68, "usage_type": "attribute" }, { "api_name": "numpy.int_", "line_number": 70, "usage_type": "call" }, { "api_name": "torch.is_tensor", "line_number": 80, "usage_type": "call" } ]
14493893608
# -*- coding: utf-8 -*- # ''' -------------------------------------------------------------------------- # File Name: PATH_ROOT/train.py # Author: JunJie Ren # Version: v1.0 # Created: 2021/06/14 # Description: — — — — — — — — — — — — — — — — — — — — — — — — — — — --> DD信号识别(可解释)系列代码 <-- -- 训练主程序,移植之前信号识别tensorflow代码至PyTorch, 并进行项目工程化处理 -- TODO train()部分代码需要模块化,特别是指标记录、数据集 方面 — — — — — — — — — — — — — — — — — — — — — — — — — — — # Module called: <0> PATH_ROOT/configs.py <1> PATH_ROOT/dataset/RML2016.py <2> PATH_ROOT/networks/MsmcNet.py <3> PATH_ROOT/utils/strategy.py;plot.py <4> PATH_ROOT/dataset/ACARS.py — — — — — — — — — — — — — — — — — — — — — — — — — — — # Function List: <0> train(): -- 训练主程序,包含了学习率调整、log记录、收敛曲线绘制 ,每训练n(1)轮验证一次,保留验证集上性能最好的模型 <1> eval(): -- 验证当前训练模型在测试集中的性能 — — — — — — — — — — — — — — — — — — — — — — — — — — — # Class List: None - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # History: | <author> | <version> | <time> | <desc> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <0> | JunJie Ren | v1.0 | 2020/06/14 | 使用PyTorch复现之前keras代码 # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <1> | JunJie Ren | v1.1 | 2020/07/09 | 新增ACARS训练程序选项 -------------------------------------------------------------------------- ''' import os import time import torch import numpy as np import torch.nn as nn from torchvision import transforms from torch.autograd import Variable from torch.utils.data import DataLoader from configs import cfgs from dataset.RML2016 import RMLDataset, loadNpy from dataset.ACARS import ACARSDataset, loadNpy_acars from networks.MsmcNet import MsmcNet_RML2016, MsmcNet_ACARS from utils.strategy import step_lr, accuracy from utils.plot import draw_curve def train(): ''' 信号调制分类训练主程序 ''' # model if cfgs.model == "MsmcNet_RML2016": model = MsmcNet_RML2016(num_classes=cfgs.num_classes) elif cfgs.model == "MsmcNet_ACARS": model = MsmcNet_ACARS(num_classes=cfgs.num_classes) else : print('ERROR: No model {}!!!'.format(cfgs.model)) print(model) '''model = torch.nn.DataParallel(model) # 多卡预留''' model.cuda() # Dataset if cfgs.dataset_name == "RML2016.04c": x_train, y_train, x_test, y_test = loadNpy( cfgs.train_path, cfgs.test_path, cfgs.process_IQ ) Dataset = RMLDataset elif cfgs.dataset_name == "ACARS": x_train, y_train, x_test, y_test = loadNpy_acars( cfgs.train_path_x, cfgs.train_path_y, cfgs.test_path_x, cfgs.test_path_y, cfgs.process_IQ ) Dataset = ACARSDataset else : print('ERROR: No Dataset {}!!!'.format(cfgs.model)) # BUG,BUG,BUG,FIXME transform = transforms.Compose([ # transforms.ToTensor() # waiting add ]) # Train data train_dataset = Dataset(x_train, y_train, transform=transform) # RML2016.10a数据集 dataloader_train = DataLoader(train_dataset, \ batch_size=cfgs.batch_size, \ num_workers=cfgs.num_workers, \ shuffle=True, \ drop_last=False) # Valid data valid_dataset = Dataset(x_test, y_test, transform=transform) dataloader_valid = DataLoader(valid_dataset, \ batch_size=cfgs.batch_size, \ num_workers=cfgs.num_workers, \ shuffle=True, \ drop_last=False) # log if not os.path.exists('./log'): os.makedirs('./log') log = open('./log/log.txt', 'a') log.write('-'*30+time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))+'-'*30+'\n') log.write('model:{}\ndataset_name:{}\nnum_classes:{}\nnum_epoch:{}\nlearning_rate:{}\nsignal_len:{}\niter_smooth:{}\n'.format( cfgs.model, cfgs.dataset_name, cfgs.num_classes, cfgs.num_epochs, cfgs.lr, cfgs.signal_len, cfgs.iter_smooth)) # load checkpoint if cfgs.resume: model = torch.load(os.path.join('./checkpoints', cfgs.checkpoint_name)) # loss criterion = nn.CrossEntropyLoss().cuda() # 交叉熵损失 # train sum = 0 train_loss_sum = 0 train_top1_sum = 0 max_val_acc = 0 train_draw_acc = [] val_draw_acc = [] lr = cfgs.lr for epoch in range(cfgs.num_epochs): ep_start = time.time() # adjust lr # lr = half_lr(cfgs.lr, epoch) lr = step_lr(epoch, lr) # optimizer FIXME # optimizer = torch.optim.Adam(model.parameters(), lr=lr, betas=(0.9, 0.999), weight_decay=0.0002) optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=lr, betas=(0.9, 0.999), weight_decay=0.0002) model.train() top1_sum = 0 for i, (signal, label) in enumerate(dataloader_train): input = Variable(signal).cuda().float() target = Variable(label).cuda().long() output = model(input) # inference loss = criterion(output, target) # 计算交叉熵损失 optimizer.zero_grad() loss.backward() # 反传 optimizer.step() top1 = accuracy(output.data, target.data, topk=(1,)) # 计算top1分类准确率 train_loss_sum += loss.data.cpu().numpy() train_top1_sum += top1[0] sum += 1 top1_sum += top1[0] if (i+1) % cfgs.iter_smooth == 0: print('Epoch [%d/%d], Iter [%d/%d], lr: %f, Loss: %.4f, top1: %.4f' %(epoch+1, cfgs.num_epochs, i+1, len(train_dataset)//cfgs.batch_size, lr, train_loss_sum/sum, train_top1_sum/sum)) log.write('Epoch [%d/%d], Iter [%d/%d], lr: %f, Loss: %.4f, top1: %.4f\n' %(epoch+1, cfgs.num_epochs, i+1, len(train_dataset)//cfgs.batch_size, lr, train_loss_sum/sum, train_top1_sum/sum)) sum = 0 train_loss_sum = 0 train_top1_sum = 0 train_draw_acc.append(top1_sum/len(dataloader_train)) epoch_time = (time.time() - ep_start) / 60. if epoch % cfgs.valid_freq == 0 and epoch < cfgs.num_epochs: # eval val_time_start = time.time() val_loss, val_top1 = eval(model, dataloader_valid, criterion) val_draw_acc.append(val_top1) val_time = (time.time() - val_time_start) / 60. print('Epoch [%d/%d], Val_Loss: %.4f, Val_top1: %.4f, val_time: %.4f s, max_val_acc: %4f' %(epoch+1, cfgs.num_epochs, val_loss, val_top1, val_time*60, max_val_acc)) print('epoch time: {}s'.format(epoch_time*60)) if val_top1[0].data > max_val_acc: max_val_acc = val_top1[0].data print('Taking snapshot...') if not os.path.exists('./checkpoints'): os.makedirs('./checkpoints') torch.save(model, '{}/{}'.format('checkpoints', cfgs.checkpoint_name)) log.write('Epoch [%d/%d], Val_Loss: %.4f, Val_top1: %.4f, val_time: %.4f s, max_val_acc: %4f\n' %(epoch+1, cfgs.num_epochs, val_loss, val_top1, val_time*60, max_val_acc)) draw_curve(train_draw_acc, val_draw_acc) log.write('-'*40+"End of Train"+'-'*40+'\n') log.close() # validation def eval(model, dataloader_valid, criterion): sum = 0 val_loss_sum = 0 val_top1_sum = 0 model.eval() for ims, label in dataloader_valid: input_val = Variable(ims).cuda().float() target_val = Variable(label).cuda() output_val = model(input_val) loss = criterion(output_val, target_val) top1_val = accuracy(output_val.data, target_val.data, topk=(1,)) sum += 1 val_loss_sum += loss.data.cpu().numpy() val_top1_sum += top1_val[0] avg_loss = val_loss_sum / sum avg_top1 = val_top1_sum / sum return avg_loss, avg_top1 if __name__ == "__main__": train()
jjRen-xd/PyOneDark_Qt_GUI
app/train.py
train.py
py
9,258
python
en
code
2
github-code
6
[ { "api_name": "configs.cfgs.model", "line_number": 58, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 58, "usage_type": "name" }, { "api_name": "networks.MsmcNet.MsmcNet_RML2016", "line_number": 59, "usage_type": "call" }, { "api_name": "configs.cfgs.num_classes", "line_number": 59, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 59, "usage_type": "name" }, { "api_name": "configs.cfgs.model", "line_number": 60, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 60, "usage_type": "name" }, { "api_name": "networks.MsmcNet.MsmcNet_ACARS", "line_number": 61, "usage_type": "call" }, { "api_name": "configs.cfgs.num_classes", "line_number": 61, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 61, "usage_type": "name" }, { "api_name": "configs.cfgs.model", "line_number": 63, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 63, "usage_type": "name" }, { "api_name": "configs.cfgs.dataset_name", "line_number": 69, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 69, "usage_type": "name" }, { "api_name": "dataset.RML2016.loadNpy", "line_number": 70, "usage_type": "call" }, { "api_name": "configs.cfgs.train_path", "line_number": 71, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 71, "usage_type": "name" }, { "api_name": "configs.cfgs.test_path", "line_number": 72, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 72, "usage_type": "name" }, { "api_name": "configs.cfgs.process_IQ", "line_number": 73, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 73, "usage_type": "name" }, { "api_name": "dataset.RML2016.RMLDataset", "line_number": 75, "usage_type": "name" }, { "api_name": "configs.cfgs.dataset_name", "line_number": 76, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 76, "usage_type": "name" }, { "api_name": "dataset.ACARS.loadNpy_acars", "line_number": 77, "usage_type": "call" }, { "api_name": "configs.cfgs.train_path_x", "line_number": 78, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 78, "usage_type": "name" }, { "api_name": "configs.cfgs.train_path_y", "line_number": 79, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 79, "usage_type": "name" }, { "api_name": "configs.cfgs.test_path_x", "line_number": 80, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 80, "usage_type": "name" }, { "api_name": "configs.cfgs.test_path_y", "line_number": 81, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 81, "usage_type": "name" }, { "api_name": "configs.cfgs.process_IQ", "line_number": 82, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 82, "usage_type": "name" }, { "api_name": "dataset.ACARS.ACARSDataset", "line_number": 84, "usage_type": "name" }, { "api_name": "configs.cfgs.model", "line_number": 86, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 86, "usage_type": "name" }, { "api_name": "torchvision.transforms.Compose", "line_number": 88, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 88, "usage_type": "name" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 94, "usage_type": "call" }, { "api_name": "configs.cfgs.batch_size", "line_number": 95, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 95, "usage_type": "name" }, { "api_name": "configs.cfgs.num_workers", "line_number": 96, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 96, "usage_type": "name" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 101, "usage_type": "call" }, { "api_name": "configs.cfgs.batch_size", "line_number": 102, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 102, "usage_type": "name" }, { "api_name": "configs.cfgs.num_workers", "line_number": 103, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 103, "usage_type": "name" }, { "api_name": "os.path.exists", "line_number": 108, "usage_type": "call" }, { "api_name": "os.path", "line_number": 108, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 109, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 111, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 111, "usage_type": "call" }, { "api_name": "time.time", "line_number": 111, "usage_type": "call" }, { "api_name": "configs.cfgs.model", "line_number": 113, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 113, "usage_type": "name" }, { "api_name": "configs.cfgs.dataset_name", "line_number": 113, "usage_type": "attribute" }, { "api_name": "configs.cfgs.num_classes", "line_number": 113, "usage_type": "attribute" }, { "api_name": "configs.cfgs.num_epochs", "line_number": 113, "usage_type": "attribute" }, { "api_name": "configs.cfgs.lr", "line_number": 114, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 114, "usage_type": "name" }, { "api_name": "configs.cfgs.signal_len", "line_number": 114, "usage_type": "attribute" }, { "api_name": "configs.cfgs.iter_smooth", "line_number": 114, "usage_type": "attribute" }, { "api_name": "configs.cfgs.resume", "line_number": 117, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 117, "usage_type": "name" }, { "api_name": "torch.load", "line_number": 118, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 118, "usage_type": "call" }, { "api_name": "os.path", "line_number": 118, "usage_type": "attribute" }, { "api_name": "configs.cfgs.checkpoint_name", "line_number": 118, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 118, "usage_type": "name" }, { "api_name": "torch.nn.CrossEntropyLoss", "line_number": 121, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 121, "usage_type": "name" }, { "api_name": "configs.cfgs.lr", "line_number": 130, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 130, "usage_type": "name" }, { "api_name": "configs.cfgs.num_epochs", "line_number": 131, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 131, "usage_type": "name" }, { "api_name": "time.time", "line_number": 132, "usage_type": "call" }, { "api_name": "utils.strategy.step_lr", "line_number": 136, "usage_type": "call" }, { "api_name": "torch.optim.Adam", "line_number": 140, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 140, "usage_type": "attribute" }, { "api_name": "torch.autograd.Variable", "line_number": 146, "usage_type": "call" }, { "api_name": "torch.autograd.Variable", "line_number": 147, "usage_type": "call" }, { "api_name": "utils.strategy.accuracy", "line_number": 156, "usage_type": "call" }, { "api_name": "configs.cfgs.iter_smooth", "line_number": 162, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 162, "usage_type": "name" }, { "api_name": "configs.cfgs.num_epochs", "line_number": 164, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 164, "usage_type": "name" }, { "api_name": "configs.cfgs.batch_size", "line_number": 164, "usage_type": "attribute" }, { "api_name": "configs.cfgs.num_epochs", "line_number": 167, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 167, "usage_type": "name" }, { "api_name": "configs.cfgs.batch_size", "line_number": 167, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 175, "usage_type": "call" }, { "api_name": "configs.cfgs.valid_freq", "line_number": 176, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 176, "usage_type": "name" }, { "api_name": "configs.cfgs.num_epochs", "line_number": 176, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 178, "usage_type": "call" }, { "api_name": "time.time", "line_number": 181, "usage_type": "call" }, { "api_name": "configs.cfgs.num_epochs", "line_number": 184, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 184, "usage_type": "name" }, { "api_name": "os.path.exists", "line_number": 189, "usage_type": "call" }, { "api_name": "os.path", "line_number": 189, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 190, "usage_type": "call" }, { "api_name": "torch.save", "line_number": 191, "usage_type": "call" }, { "api_name": "configs.cfgs.checkpoint_name", "line_number": 191, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 191, "usage_type": "name" }, { "api_name": "configs.cfgs.num_epochs", "line_number": 194, "usage_type": "attribute" }, { "api_name": "configs.cfgs", "line_number": 194, "usage_type": "name" }, { "api_name": "utils.plot.draw_curve", "line_number": 195, "usage_type": "call" }, { "api_name": "torch.autograd.Variable", "line_number": 207, "usage_type": "call" }, { "api_name": "torch.autograd.Variable", "line_number": 208, "usage_type": "call" }, { "api_name": "utils.strategy.accuracy", "line_number": 211, "usage_type": "call" } ]
29195553298
""" Title: Explicit finger tapping sequence learning task [replication of Walker et al. 2002] Author: Julia Wood, the University of Queensland, Australia Code adapted from Tom Hardwicke's finger tapping task code: https://github.com/TomHardwicke/finger-tapping-task Developed in Psychopy v2022.1.1 See my GitHub for further details: https://github.com/jrwood21 """ import time import pandas as pd import numpy as np import sys import os from psychopy import visual, event, core, gui, data from pyglet.window import key from num2words import num2words os.chdir(os.path.abspath('')) # change working directory to script directory globalClock = core.Clock() # create timer to track the time since experiment started # define sequences for finger tapping task targ_seq_1 = '41324' targ_seq_2 = '42314' prac_seq = '12344' ### set up some useful functions ### # Function to save messages to a log file def saveToLog(logString, timeStamp=1): f = open(logFile, 'a') # open our log file in append mode so don't overwrite with each new log f.write(logString) # write the string they typed if timeStamp != 0: # if timestamp has not been turned off f.write('// logged at %iseconds' % globalClock.getTime()) # write a timestamp (very coarse) f.write('\n') # create new line f.close() # close and "save" the log file # An exit function to initiate if the 'end' key is pressed def quitExp(): if 'logFile' in globals(): # if a log file has been created saveToLog('User aborted experiment') saveToLog('..........................................', 0) if 'win' in globals(): # if a window has been created win.close() # close the window core.quit() # quit the program # define function to check if filename exists, then create the next available version number def uniq_path(path): fn, ext = os.path.splitext(path) counter = 2 while os.path.exists(path): path = fn + "_" + str(counter) + ext counter += 1 return path # Finger tapping task function def fingerTapping(n_trials, tap_targetSequence, sequenceType): ## Intro screen ## saveToLog('Presenting introduction screen') # save info to log win.setColor('#000000', colorSpace='hex') # set background colour to black win.flip() # display generalText.setText( 'TASK INSTRUCTIONS\n\nPlace the fingers of your LEFT hand on the keys 1, 2, 3, and 4. You will be shown a sequence of 5 digits %(sequence)s, and the computer will start counting down until you start. \n\nOnce the countdown has completed and the screen turns green, type %(sequence)s over and over as QUICKLY and as ACCURATELY as possible. \n\nYou will have 30 seconds to type %(sequence)s as many times as possible. Stop when the screen turns red again. You will get 30 seconds to rest before the next trial. \n\nPress the spacebar when you are ready for the countdown to begin.' % {'sequence': tap_targetSequence}) generalText.draw() win.flip() # display event.waitKeys(keyList=["space"]) # wait for a spacebar press before continuing event.clearEvents() # clear the event buffer win.flip() # blank the screen first trials = range(1, n_trials + 1) saveToLog('Running finger tapping task. %i trials with target sequence %s' % (len(trials), tap_targetSequence)) # save info to log for thisTrial in trials: # begin rest block win.setColor('#ff0000', colorSpace='hex') # set background colour to red win.flip() # display if thisTrial == 1: # if this is first trial restClock = core.CountdownTimer(10) # start timer counting down from 10 else: # for all other trials saveToLog('Resting') # save info to log restClock = core.CountdownTimer(30) # start timer counting down from 30 sequenceText.setText(tap_targetSequence) # set up sequence text sequenceText.setAutoDraw(True) # display sequence text continuously timerText.setAutoDraw(True) # display timer text continuously win.flip() while restClock.getTime() > 0: # loop continues until trial timer ends count = restClock.getTime() # get current time from clock timerText.setText(num2words(np.ceil(count))) # set timer text to the current time win.flip() # display timer text if event.getKeys(['end']): # checks for the key 'end' on every refresh so user can quit at any point quitExp() # initiate quit routine # begin tapping task saveToLog('Trial: %i' % thisTrial) # save info to log win.setColor('#89ba00', colorSpace='hex') # set background colour to green win.flip() # display the green background tap_stream = [] # clear previous sequence keypresses from the stream event.clearEvents() # this makes sure the key buffer is cleared, otherwise old key presses might be recorded trialClock = core.CountdownTimer(30) # start timer counting down from 30 timerText.setText('Tap as fast as you can!') # set timer text to the current time win.flip() # display the text k = 0 # set up marker index endTrial = False # a trigger to end the trial when True (deployed when the timer runs out) while endTrial == False: # while trigger has not been deployed # display incremental markers across the screen from left to right as the user presses accepted keys if k == 0: # start at beginning of marker index # start markers incrementing from left to right and append key presses to tap_stream while k < len(listOfMarkers) - 1 and endTrial == False: # until the markers reach the far side of the screen if trialClock.getTime() <= 0: # if timer has run out endTrial = True # deploy the trigger to end the trial break # and break out of this loop elif event.getKeys(['end']): # if user presses end key if thisTrial == 1 and not metaData['practice mode']: # during trial 1: save partial data collected from trial 1 quit_dict = {'stream': [tap_stream], 'trial': thisTrial} quit_df = pd.DataFrame(quit_dict, index=[0]) fileName = p_dir + os.path.sep + 'P' + str(metaData['participant']) + "_" + str(metaData['participant allocation']) + '_S' + str(metaData['session number']) + '_' + str(metaData['session time']) + '_quitExp_trial1' + '.csv' if os.path.exists(fileName): fileName = uniq_path(fileName) quit_df.to_csv(fileName) saveToLog('User pressed end key during trial 1. Experiment aborted with %s seconds of trial 1 remaining' % trialClock.getTime()) saveToLog('Trial 1 data saved with filename: %s' %fileName) elif thisTrial > 1 and not metaData['practice mode']: # or during a later trial: save partial and complete trial data collected quit_dict = {'stream': [tap_stream], 'trial': thisTrial} quit_df = pd.DataFrame(quit_dict, index=[0]) fileName = p_dir + os.path.sep + 'P' + str(metaData['participant']) + "_" + str(metaData['participant allocation']) + '_S' + str(metaData['session number']) + '_' + str(metaData['session time']) + '_quitExp' + '.csv' if os.path.exists(fileName): fileName = uniq_path(fileName) quit_df.to_csv(fileName) saveToLog('User pressed end key during trial %s' % thisTrial) saveToLog('Experiment aborted with %s seconds of this trial remaining' % trialClock.getTime()) saveToLog('Partial trial data saved with filename: %s' %fileName) fileName = p_dir + os.path.sep + 'P' + str(metaData['participant']) + "_" + str(metaData['participant allocation']) + '_S' + str(metaData['session number']) + '_' + str(metaData['session time']) + '_quitExp_trials' + '.csv' if os.path.exists(fileName): fileName = uniq_path(fileName) store_out.to_csv(fileName) saveToLog('Data from complete trials saved with filename: %s' %fileName) quitExp() # AND quit the program elif event.getKeys('1'): # checks for key on every refresh listOfMarkers[k].setAutoDraw(True) # turn this marker on win.flip() # display tap_stream.append(1) # record the key press k += 1 # move on to the next marker elif event.getKeys('2'): # checks for key on every refresh listOfMarkers[k].setAutoDraw(True) # turn this marker on win.flip() # display tap_stream.append(2) # record the key press k += 1 # move on to the next marker elif event.getKeys('3'): # checks for key on every refresh listOfMarkers[k].setAutoDraw(True) # turn this marker on win.flip() # display tap_stream.append(3) # record the key press k += 1 # move on to the next marker elif event.getKeys('4'): # checks for key on every refresh listOfMarkers[k].setAutoDraw(True) # turn this marker on win.flip() # display tap_stream.append(4) # record the key press k += 1 # move on to the next marker # start markers incrementing from right to left and append keypresses to tap_stream: elif k == len(listOfMarkers) - 1 and endTrial == False: while k > 0: if trialClock.getTime() <= 0: # if timer has run out endTrial = True # deploy the trigger to end the trial break # and break out of this loop elif event.getKeys(['end']): # if user presses end key if thisTrial == 1 and not metaData['practice mode']: # during trial 1: save partial data collected from trial 1 quit_dict = {'stream': [tap_stream], 'trial': thisTrial} quit_df = pd.DataFrame(quit_dict, index=[0]) fileName = p_dir + os.path.sep + 'P' + str(metaData['participant']) + "_" + str(metaData['participant allocation']) + '_S' + str(metaData['session number']) + '_' + str(metaData['session time']) + '_quitExp_trial1' + '.csv' if os.path.exists(fileName): fileName = uniq_path(fileName) quit_df.to_csv(fileName) saveToLog('User pressed end key during trial 1. Experiment aborted with %s seconds of trial 1 remaining' % trialClock.getTime()) saveToLog('Trial 1 data saved with filename: %s' %fileName) elif thisTrial > 1 and not metaData['practice mode']: # or during a later trial: save partial and complete trial data collected quit_dict = {'stream': [tap_stream], 'trial': thisTrial} quit_df = pd.DataFrame(quit_dict, index=[0]) fileName = p_dir + os.path.sep + 'P' + str(metaData['participant']) + "_" + str(metaData['participant allocation']) + '_S' + str(metaData['session number']) + '_' + str(metaData['session time']) + '_quitExp' + '.csv' if os.path.exists(fileName): fileName = uniq_path(fileName) quit_df.to_csv(fileName) saveToLog('User pressed end key during trial %s' % thisTrial) saveToLog('Experiment aborted with %s seconds of this trial remaining' % trialClock.getTime()) saveToLog('Partial trial data saved with filename: %s' %fileName) fileName = p_dir + os.path.sep + 'P' + str(metaData['participant']) + "_" + str(metaData['participant allocation']) + '_S' + str(metaData['session number']) + '_' + str(metaData['session time']) + '_quitExp_trials' + '.csv' if os.path.exists(fileName): fileName = uniq_path(fileName) store_out.to_csv(fileName) saveToLog('Data from complete trials saved with filename: %s' %fileName) quitExp() # AND quit the program elif event.getKeys('1'): # checks for key on every refresh listOfMarkers[k].setAutoDraw(False) # turn this marker off win.flip() # display contents of video buffer tap_stream.append(1) # record the key press k -= 1 # move on to the next marker elif event.getKeys('2'): #checks for key on every refresh listOfMarkers[k].setAutoDraw(False) # turn this marker off win.flip() # display contents of video buffer tap_stream.append(2) # record the key press k -= 1 # move on to the next marker elif event.getKeys('3'): #checks for key on every refresh listOfMarkers[k].setAutoDraw(False) # turn this marker off win.flip() # display contents of video buffer tap_stream.append(3) # record the key press k -= 1 # move on to the next marker elif event.getKeys('4'): #checks for key on every refresh listOfMarkers[k].setAutoDraw(False) # turn this marker off win.flip() # display contents of video buffer tap_stream.append(4) # record the key press k -= 1 # move on to the next marker # turn off all markers during the rest block for marker in listOfMarkers: # for each marker marker.setAutoDraw(False) # turn off win.setColor('#ff0000', colorSpace='hex') # set background colour to red win.flip() # display red background output = patternDetect(stream_in=tap_stream, targetSequence_in=tap_targetSequence) # run the pattern detector to calculate correct sequences, errors and accuracy # gather all relevant data for this trial newRow = {'participant': metaData['participant'], 'allocation': metaData['participant allocation'], 'session': metaData['session number'], 'session_time': metaData['session time'], 'target_sequence': tap_targetSequence, 'sequence_type': sequenceType, 'trial': thisTrial, # record which trial number 'stream': [tap_stream], # stream of key presses entered by participant 'n_correct': output['n_correct']} # 'errors': output['errors'], # Unhash these lines if you want them to be reported in the csv output file. # 'accuracy': output['accuracy']} # store all trial data in df. Each trial is stored in a new row if thisTrial == 1: store_out = pd.DataFrame(newRow, index=[0]) elif thisTrial > 1: store_out = store_out.append(newRow, ignore_index=True) # after all trials are complete: sequenceText.setAutoDraw(False) # turn off the sequence text timerText.setAutoDraw(False) # turn off the timer text win.flip() # clear the display return store_out # Function for analysing the response stream def patternDetect(stream_in, targetSequence_in): # pre-load some variables det_targetSequence = list(map(int, list(targetSequence_in))) # convert target sequence to list of integers det_stream = list(stream_in) # convert stream of key presses to a list n_correct = float(0) # store for number of correct sequences per trial ''' Define stores for error tracking. I did not use these metrics in my study design, but I have left them in the code, in case they are appropriate for other experimental designs. Redefine, remove or ignore them as necessary for your study design. ''' contiguousError = 0 # store for cumulative errors errors = float(0) # store for errors # note that n_correct + errors = total sequences i = 0 # start pattern detection at first element of keypress stream: while i < len(det_stream): # search through every item in stream # for all key presses up to the final 5 (or any other target sequence length) if i <= len(det_stream) - len(det_targetSequence): # for any value in the stream where it + the next 4 keypresses match the target sequence: if det_stream[i:(i + len(det_targetSequence))] == det_targetSequence: n_correct += 1 # record a correct pattern completed i += len(det_targetSequence) # adjust position to skip forward by length of targetSequence # Then add any accumulated errors to the total error count and clear the contiguous error count if contiguousError >= 1: # check if there are contiguous errors we have not yet accounted for errors += 1 # add an error to the total count contiguousError = 0 # reset contiguous error count # otherwise, if the next sequence length of items in the stream does not match the target sequence: elif det_stream[i:(i + len(det_targetSequence))] != det_targetSequence: contiguousError += 1 # record a 'contiguous error' i += 1 # adjust index forward by 1 # when contiguous error count reaches 5 incorrect keypresses in a row (i.e., the correct sequence doesn't follow 5 keypresses in a row) # OR if the final item of the stream does not match the target sequence: if contiguousError == 5 or i == len(det_stream): errors += 1 # add an error to the total count contiguousError = 0 # reset contiguous error count # now deal with last items of the stream (a special case, see 'method' above) else: # get last items lastItems = det_stream[i:] # get subset of target sequence of same length as last items sequenceSubset = det_targetSequence[:len(lastItems)] # Addition of PARTIAL correct sequences at end of stream: while lastItems != None: # while there are additional items left to check if lastItems == sequenceSubset: # if lastItems match target sequence subset n_correct += float(len(lastItems)) / float(len(det_targetSequence)) # record fractional sequence if contiguousError >= 1: # check if there are errors we have not yet recorded errors += 1 # add an error to total contiguousError = 0 # reset contiguous error count lastItems = None # force failure of inner while loop by updating lastItems i = len(det_stream) # force failure of outer while loop by updating i else: # if lastItems do not match target sequence contiguousError += 1 # add 1 to contiguous error count # when contiguous error count reaches 5 incorrect keypresses in a row or if this is final item if contiguousError == 5 or len(lastItems) == 1: errors += 1 # add an error to total contiguousError = 0 # reset contiguous error count if len(lastItems) == 1: # if this is the final item lastItems = None # force failure of inner while loop by updating lastItems i = len(det_stream) # force failure of outer while loop by updating i else: # else if there are still items left to check lastItems = lastItems[1:] # drop the first item from lastItems sequenceSubset = sequenceSubset[:-1] # drop the last item from the sequence subset # integrity check if n_correct == 0: print('Issue with this stream - n_correct is zero') accuracy = float('nan') else: accuracy = 1 - errors / n_correct # calculate accuracy # NOTE: this accuracy definition matches Hardwicke et al. 2016. I did not use this metric in my study design, but I have # left the code in the script case it is suitable for other study designs. Remove, redefine or ignore as necessary. return {'n_correct': n_correct, 'errors': errors, 'accuracy': accuracy} ### Collect and store meta-data about the experiment session ### expName = 'Explicit finger tapping sequence task' # define experiment name date = time.strftime("%d %b %Y %H:%M:%S", time.localtime()) # get date and time metaData = {'participant': '', 'session number': [1, 2], 'session time': ['pm-a', 'pm-b', 'am'], 'practice mode': False, 'use automated counter-balancing': True, 'researcher': 'JW', 'location': '304, Seddon North, UQ, Brisbane'} # set up info for infoBox gui infoBox = gui.DlgFromDict(dictionary=metaData, title=expName, order=['participant', 'session number', 'session time', 'practice mode','use automated counter-balancing']) # display gui to get info from user if not infoBox.OK: # if user hit cancel quitExp() # quit # check if participant dir exists, and if not, create one: if not os.path.isdir('data'): os.mkdir('data') if not os.path.isdir('data' + os.path.sep + 'fingertapping'): os.mkdir('data' + os.path.sep + 'fingertapping') p_dir = 'data' + os.path.sep + 'fingertapping' + os.path.sep + 'P' + str(metaData['participant']) if not os.path.isdir(p_dir): os.mkdir(p_dir) if not metaData['practice mode']: # if this is not practice mode: if metaData['use automated counter-balancing']: # and user has chosen to use automated counter-balancing: cb = {'participant allocation': ['AJX', 'AJY', 'AKX', 'AKY', 'BJX', 'BJY', 'BKX', 'BKY']} # set up info for infoBox gui infoBox = gui.DlgFromDict(dictionary=cb, title='Choose counter-balancing parameters') # display gui to get info from user metaData.update({'participant allocation': cb['participant allocation']}) if not infoBox.OK: # if user hit cancel quitExp() # quit elif not metaData['use automated counter-balancing']: # or if user has chosen to manually select sequence type: seq_dict = {'use sequence': ['sequence_1', 'sequence_2'], 'number of trials': ''} infoBox = gui.DlgFromDict(dictionary=seq_dict, title='Select sequence to run experiment') # display gui to get info from user metaData.update({'participant allocation': 'manual_selection', 'sequence type': '%s' % seq_dict['use sequence'], 'number of trials': '%s' % seq_dict['number of trials']}) if not infoBox.OK: # if user hit cancel quitExp() # quit # build filename for this participant's data fileName = p_dir + os.path.sep + 'P' + str(metaData['participant']) + "_" + str(metaData['participant allocation']) + '_S' + str(metaData['session number']) + '_' + str(metaData['session time']) + '.csv' # is this an existing participant? If so we will create a new file name to store the data under if os.path.exists(fileName): # if they are an existing participant # confirm that user knows sessions already exist for this participant's current session and time and advise filename will be different: myDlg = gui.Dlg() myDlg.addText( "This participant has existing files for this session time in the directory! Click ok to continue or cancel to abort. \n\n NOTE: if you choose to continue, files will be stored under a different file name.") myDlg.show() # show dialog and wait for OK or Cancel if not myDlg.OK: # if the user pressed cancel quitExp() # redefine file name by iteratively appending a number so that existing files are not overwritten fileName = uniq_path(fileName) metaData.update({'expName': expName, 'date': date}) # record the experiment date and name in the metaData # check if logfile exists for this participant. If not, create one: logFile = p_dir + os.path.sep + 'P' + str(metaData['participant']) + "_" + str(metaData['participant allocation']) +'_log.txt' if not os.path.exists(logFile): with open(logFile, 'w') as fp: pass # save metaData to log saveToLog('..........................................', 0) saveToLog('experiment: %s' % (metaData['expName']), 0) saveToLog('researcher: %s' % (metaData['researcher']), 0) saveToLog('location: %s' % (metaData['location']), 0) saveToLog('date: %s' % (metaData['date']), 0) saveToLog('participant: %s' % (metaData['participant']), 0) saveToLog('session: %s' % (metaData['session number']), 0) saveToLog('session time: %s' % (metaData['session time']), 0) saveToLog('participant allocation: %s' % (metaData['participant allocation']), 0) saveToLog(' ', 0) else: # otherwise, if it is practice mode: logFile = p_dir + os.path.sep + 'P' + str(metaData['participant']) + '_practice_log.txt' if not os.path.exists(logFile): with open(logFile, 'w') as fp: pass # ask user to define number of trials prac_dict = {'number of trials': ''} infoBox = gui.DlgFromDict(dictionary=prac_dict, title='enter number of trials') # display gui to get info from user if not infoBox.OK: # if user hit cancel quitExp() # quit # build filename for this participant's practice data fileName = p_dir + os.path.sep + 'P' + str(metaData['participant']) + '_S' + str(metaData['session number']) + '_' + str(metaData['session time']) + '_PRACTICE' + '.csv' # is this an existing participant? If so we will create a new file name to store the data under if os.path.exists(fileName): # if existing participant # check user knows sessions already exist for this participant's current session and time: myDlg = gui.Dlg() myDlg.addText( "This participant has existing files for this session time in the directory! Click ok to continue or cancel to abort. \n\n NOTE: if you choose to continue, files will be stored under a different file name.") myDlg.show() # show dialog and wait for OK or Cancel if not myDlg.OK: # if the user pressed cancel quitExp() # redefine file name by iteratively appending a number so that the original files are not overwritten fileName = uniq_path(fileName) metaData.update({'participant allocation': 'practice'}) # save metaData to log saveToLog('..........................................', 0) saveToLog('experiment: %s' % (expName), 0) saveToLog('researcher: %s' % (metaData['researcher']), 0) saveToLog('location: %s' % (metaData['location']), 0) saveToLog('date: %s' % (date), 0) saveToLog('participant: %s' % (metaData['participant']), 0) saveToLog('session: %s' % (metaData['session number']), 0) saveToLog('session time: %s' % (metaData['session time']), 0) saveToLog('participant allocation: %s' % (metaData['participant allocation']), 0) saveToLog(' ', 0) ### Prepare stimuli etc ### win = visual.Window(size=(1920, 1080), fullscr=True, screen=0, allowGUI=False, allowStencil=False, ## UPDATE SIZE TO MATCH YOUR CURRENT MONITOR SETTINGS monitor='testMonitor', color=(-1,-1,-1), colorSpace='rgb', units='pix') # setup the Window generalText = visual.TextStim(win=win, ori=0, name='generalText', text='', font=u'Arial', pos=[0, 0], height=35, wrapWidth=920, color=(1,1,1), colorSpace='rgb', opacity=1, depth=0.0) # general text sequenceText = visual.TextStim(win=win, ori=0, name='sequenceText', text='', font=u'Arial', pos=[0, 250], height=90, wrapWidth=None, color=(1,1,1), colorSpace='rgb', opacity=1, depth=0.0) # sequence text timerText = visual.TextStim(win=win, ori=0, name='sequenceText', text='', font=u'Arial', pos=[0, -130], height=40, wrapWidth=800, color=(1,1,1), colorSpace='rgb', opacity=1, depth=0.0) # timer text # set up the markers that increment across the screen - generate enough so that they cover the full range of the window listOfMarkers = [] # store for white markers windowSize = list(win.size) # get window size for i in range(int(-windowSize[0] / 2), int(windowSize[0] / 2), int(windowSize[0] / 40)): # generate markers to cover whole screen i += 25 # add a slight horizontal adjustment to ensure markers do not go off screen listOfMarkers.append(visual.Circle(win, radius=15, edges=32, pos=[i, 0], fillColor='white')) # generate the markers # for monitoring key state (only need this if using markers) keys = key.KeyStateHandler() win.winHandle.push_handlers(keys) saveToLog('Set up complete') # save info to log ### set-up complete ### ### run the experiment ### if metaData['practice mode']: # if user has chosen practice mode res = fingerTapping(n_trials=int(prac_dict['number of trials']), tap_targetSequence = prac_seq, sequenceType ='practice') # run practice sequence elif not metaData['practice mode']: # if it is not practice mode if not metaData['use automated counter-balancing']: # AND the user has chosen to manually select the sequence type: if seq_dict['use sequence'] == 'sequence_1': # EITHER run task with sequence 1: res = fingerTapping(n_trials=int(seq_dict['number of trials']), tap_targetSequence = targ_seq_1, sequenceType = 'sequence_1') elif seq_dict['use sequence'] == 'sequence_2': # OR run task with sequence 2: res = fingerTapping(n_trials=int(seq_dict['number of trials']), tap_targetSequence = targ_seq_2, sequenceType = 'sequence_2') elif metaData['use automated counter-balancing']: # OR if user has selected to use automated counter balancing: # NOTE: these allocations are specific to my study (each letter represents one type of grouping/randomisation variable). Adapt groupings to suit individual experiments ####### X ORDER if ((metaData['participant allocation'] == 'AJX') or (metaData['participant allocation'] == 'BJX') or (metaData['participant allocation'] == 'AKX') or (metaData['participant allocation'] == 'BKX')): # session 1 if int(metaData['session number']) == 1: if metaData['session time'] == 'pm-a': res = fingerTapping(n_trials = 12, tap_targetSequence = targ_seq_1, sequenceType='sequence_1') # sequence 1 elif metaData['session time'] == 'pm-b' or 'am': res = fingerTapping(n_trials = 4, tap_targetSequence = targ_seq_1, sequenceType='sequence_1') # wordlist 1 # session 2 elif int(metaData['session number']) == 2: if metaData['session time'] == 'pm-a': res = fingerTapping(n_trials = 12, tap_targetSequence = targ_seq_2, sequenceType='sequence_2') # sequence 2 elif metaData['session time'] == 'pm-b' or 'am': res = fingerTapping(n_trials = 4, tap_targetSequence = targ_seq_2, sequenceType='sequence_2') # sequence 2 ####### Y ORDER elif ((metaData['participant allocation'] == 'AJY') or (metaData['participant allocation'] == 'BJY') or (metaData['participant allocation'] == 'AKY') or (metaData['participant allocation'] == 'BKY')): # session 1 if int(metaData['session number']) == 1: if metaData['session time'] == 'pm-a': res = fingerTapping(n_trials = 12, tap_targetSequence = targ_seq_2, sequenceType='sequence_2') # sequence 2 elif metaData['session time'] == 'pm-b' or 'am': res = fingerTapping(n_trials = 4, tap_targetSequence = targ_seq_2, sequenceType='sequence_2') # sequence 2 # session 2 elif int(metaData['session number']) == 2: if metaData['session time'] == 'pm-a': res = fingerTapping(n_trials = 12, tap_targetSequence = targ_seq_1, sequenceType='sequence_1') # sequence 1 elif metaData['session time'] == 'pm-b' or 'am': res = fingerTapping(n_trials = 4, tap_targetSequence= targ_seq_1, sequenceType='sequence_1') # sequence 1 ## End screen ## saveToLog('Presenting end screen') # save info to log win.setColor('#000000', colorSpace='hex') # set background colour to black win.flip() generalText.setText(u'Thank you. That is the end of this section. Please inform the researcher you have finished.') generalText.draw() win.flip() # present video buffer event.waitKeys(keyList=['end']) # wait for the end key to be pressed before continuing event.clearEvents() # clear the event buffer saveToLog('Experiment presentation over') # save info to log ### Finished running the experiment ### ### Save and clean up ### win.close() ''' Save the data as a csv file. The loop below also checks if saving is not possible, usually because the file is already open, and asks user to close if this is the case if this does not resolve the situation, attempt is made to save the data with a different filename. ''' while True: try: res.to_csv(fileName) saveToLog('Data saved with file name: %s' % fileName) # save info to log break except: # if cannot save data, likely because file is already open, ask user to close saveToLog('Problem encountered saving data - requesting user close open data files...') # save info to log myDlg = gui.Dlg() myDlg.addText( "Unable to store data. Try closing open excel files and then click ok. Press cancel to attempt data storage to new file.") myDlg.show() # show dialog and wait for OK or Cancel if not myDlg.OK: # if the user pressed cancel fileName = p_dir + os.path.sep + 'P' + str(metaData['participant']) + "_ProblemSaving_" + str(metaData['participant allocation']) + '_S' + str(metaData['session number']) + '_' + str(metaData['session time']) + '.csv' saveToLog('Attempting to save data with different filename: %s' %fileName) # save info to log try: res.to_csv(fileName) print('Data was saved with a different filename: %s' %fileName) saveToLog('Data saved with file name: %s' % fileName) # save info to log break except: saveToLog('Major error: Data could not be saved') # save info to log quitExp() # quit the experiment t = globalClock.getTime() # get run time of experiment saveToLog('Total experiment runtime was %i seconds' % t) # record runtime to log saveToLog('..........................................', 0) # Shut down: core.quit()
jrwood21/sleep_tacs_study_jw_gh
finger_tapping_task_jw.py
finger_tapping_task_jw.py
py
36,526
python
en
code
1
github-code
6
[ { "api_name": "os.chdir", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path.abspath", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path", "line_number": 17, "usage_type": "attribute" }, { "api_name": "psychopy.core.Clock", "line_number": 18, "usage_type": "call" }, { "api_name": "psychopy.core", "line_number": 18, "usage_type": "name" }, { "api_name": "psychopy.core.quit", "line_number": 42, "usage_type": "call" }, { "api_name": "psychopy.core", "line_number": 42, "usage_type": "name" }, { "api_name": "os.path.splitext", "line_number": 46, "usage_type": "call" }, { "api_name": "os.path", "line_number": 46, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 48, "usage_type": "call" }, { "api_name": "os.path", "line_number": 48, "usage_type": "attribute" }, { "api_name": "psychopy.event.waitKeys", "line_number": 63, "usage_type": "call" }, { "api_name": "psychopy.event", "line_number": 63, "usage_type": "name" }, { "api_name": "psychopy.event.clearEvents", "line_number": 64, "usage_type": "call" }, { "api_name": "psychopy.event", "line_number": 64, "usage_type": "name" }, { "api_name": "psychopy.core.CountdownTimer", "line_number": 74, "usage_type": "call" }, { "api_name": "psychopy.core", "line_number": 74, "usage_type": "name" }, { "api_name": "psychopy.core.CountdownTimer", "line_number": 77, "usage_type": "call" }, { "api_name": "psychopy.core", "line_number": 77, "usage_type": "name" }, { "api_name": "num2words.num2words", "line_number": 84, "usage_type": "call" }, { "api_name": "numpy.ceil", "line_number": 84, "usage_type": "call" }, { "api_name": "psychopy.event.getKeys", "line_number": 86, "usage_type": "call" }, { "api_name": "psychopy.event", "line_number": 86, "usage_type": "name" }, { "api_name": "psychopy.event.clearEvents", "line_number": 94, "usage_type": "call" }, { "api_name": "psychopy.event", "line_number": 94, "usage_type": "name" }, { "api_name": "psychopy.core.CountdownTimer", "line_number": 95, "usage_type": "call" }, { "api_name": "psychopy.core", "line_number": 95, "usage_type": "name" }, { "api_name": "psychopy.event.getKeys", "line_number": 109, "usage_type": "call" }, { "api_name": "psychopy.event", "line_number": 109, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 113, "usage_type": "call" }, { "api_name": "os.path", "line_number": 114, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 115, "usage_type": "call" }, { "api_name": "os.path", "line_number": 115, "usage_type": "attribute" }, { "api_name": "pandas.DataFrame", "line_number": 123, "usage_type": "call" }, { "api_name": "os.path", "line_number": 124, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 125, "usage_type": "call" }, { "api_name": "os.path", "line_number": 125, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 131, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 132, "usage_type": "call" }, { "api_name": "os.path", "line_number": 132, "usage_type": "attribute" }, { "api_name": "psychopy.event.getKeys", "line_number": 137, "usage_type": "call" }, { "api_name": "psychopy.event", "line_number": 137, "usage_type": "name" }, { "api_name": "psychopy.event.getKeys", "line_number": 142, "usage_type": "call" }, { "api_name": "psychopy.event", "line_number": 142, "usage_type": "name" }, { "api_name": "psychopy.event.getKeys", "line_number": 147, "usage_type": "call" }, { "api_name": "psychopy.event", "line_number": 147, "usage_type": "name" }, { "api_name": "psychopy.event.getKeys", "line_number": 152, "usage_type": "call" }, { "api_name": "psychopy.event", "line_number": 152, "usage_type": "name" }, { "api_name": "psychopy.event.getKeys", "line_number": 164, "usage_type": "call" }, { "api_name": "psychopy.event", "line_number": 164, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 168, "usage_type": "call" }, { "api_name": "os.path", "line_number": 169, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 170, "usage_type": "call" }, { "api_name": "os.path", "line_number": 170, "usage_type": "attribute" }, { "api_name": "pandas.DataFrame", "line_number": 178, "usage_type": "call" }, { "api_name": "os.path", "line_number": 179, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 180, "usage_type": "call" }, { "api_name": "os.path", "line_number": 180, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 186, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 187, "usage_type": "call" }, { "api_name": "os.path", "line_number": 187, "usage_type": "attribute" }, { "api_name": "psychopy.event.getKeys", "line_number": 192, "usage_type": "call" }, { "api_name": "psychopy.event", "line_number": 192, "usage_type": "name" }, { "api_name": "psychopy.event.getKeys", "line_number": 197, "usage_type": "call" }, { "api_name": "psychopy.event", "line_number": 197, "usage_type": "name" }, { "api_name": "psychopy.event.getKeys", "line_number": 202, "usage_type": "call" }, { "api_name": "psychopy.event", "line_number": 202, "usage_type": "name" }, { "api_name": "psychopy.event.getKeys", "line_number": 207, "usage_type": "call" }, { "api_name": "psychopy.event", "line_number": 207, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 237, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 331, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 331, "usage_type": "call" }, { "api_name": "psychopy.gui.DlgFromDict", "line_number": 339, "usage_type": "call" }, { "api_name": "psychopy.gui", "line_number": 339, "usage_type": "name" }, { "api_name": "os.path.isdir", "line_number": 347, "usage_type": "call" }, { "api_name": "os.path", "line_number": 347, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 348, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 349, "usage_type": "call" }, { "api_name": "os.path", "line_number": 349, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 350, "usage_type": "call" }, { "api_name": "os.path", "line_number": 350, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 351, "usage_type": "attribute" }, { "api_name": "os.path.isdir", "line_number": 352, "usage_type": "call" }, { "api_name": "os.path", "line_number": 352, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 353, "usage_type": "call" }, { "api_name": "psychopy.gui.DlgFromDict", "line_number": 359, "usage_type": "call" }, { "api_name": "psychopy.gui", "line_number": 359, "usage_type": "name" }, { "api_name": "psychopy.gui.DlgFromDict", "line_number": 368, "usage_type": "call" }, { "api_name": "psychopy.gui", "line_number": 368, "usage_type": "name" }, { "api_name": "os.path", "line_number": 377, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 380, "usage_type": "call" }, { "api_name": "os.path", "line_number": 380, "usage_type": "attribute" }, { "api_name": "psychopy.gui.Dlg", "line_number": 382, "usage_type": "call" }, { "api_name": "psychopy.gui", "line_number": 382, "usage_type": "name" }, { "api_name": "os.path", "line_number": 395, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 396, "usage_type": "call" }, { "api_name": "os.path", "line_number": 396, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 413, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 414, "usage_type": "call" }, { "api_name": "os.path", "line_number": 414, "usage_type": "attribute" }, { "api_name": "psychopy.gui.DlgFromDict", "line_number": 420, "usage_type": "call" }, { "api_name": "psychopy.gui", "line_number": 420, "usage_type": "name" }, { "api_name": "os.path", "line_number": 426, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 428, "usage_type": "call" }, { "api_name": "os.path", "line_number": 428, "usage_type": "attribute" }, { "api_name": "psychopy.gui.Dlg", "line_number": 430, "usage_type": "call" }, { "api_name": "psychopy.gui", "line_number": 430, "usage_type": "name" }, { "api_name": "psychopy.visual.Window", "line_number": 455, "usage_type": "call" }, { "api_name": "psychopy.visual", "line_number": 455, "usage_type": "name" }, { "api_name": "psychopy.visual.TextStim", "line_number": 457, "usage_type": "call" }, { "api_name": "psychopy.visual", "line_number": 457, "usage_type": "name" }, { "api_name": "psychopy.visual.TextStim", "line_number": 459, "usage_type": "call" }, { "api_name": "psychopy.visual", "line_number": 459, "usage_type": "name" }, { "api_name": "psychopy.visual.TextStim", "line_number": 461, "usage_type": "call" }, { "api_name": "psychopy.visual", "line_number": 461, "usage_type": "name" }, { "api_name": "psychopy.visual.Circle", "line_number": 469, "usage_type": "call" }, { "api_name": "psychopy.visual", "line_number": 469, "usage_type": "name" }, { "api_name": "pyglet.window.key.KeyStateHandler", "line_number": 472, "usage_type": "call" }, { "api_name": "pyglet.window.key", "line_number": 472, "usage_type": "name" }, { "api_name": "psychopy.event.waitKeys", "line_number": 530, "usage_type": "call" }, { "api_name": "psychopy.event", "line_number": 530, "usage_type": "name" }, { "api_name": "psychopy.event.clearEvents", "line_number": 531, "usage_type": "call" }, { "api_name": "psychopy.event", "line_number": 531, "usage_type": "name" }, { "api_name": "psychopy.gui.Dlg", "line_number": 551, "usage_type": "call" }, { "api_name": "psychopy.gui", "line_number": 551, "usage_type": "name" }, { "api_name": "os.path", "line_number": 556, "usage_type": "attribute" }, { "api_name": "psychopy.core.quit", "line_number": 572, "usage_type": "call" }, { "api_name": "psychopy.core", "line_number": 572, "usage_type": "name" } ]
28315455311
from typing import Union, Tuple import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import numpy as np from gym import Env from gym.spaces import Box from ..agent import Agent from . import ReplayBuffer from .actor import Actor from .critic import Critic from .polyak_update import polyak_update class TD3Agent(Agent): def __init__(self, name, env: Env, discounting_factor: float = 0.99, batch_size: int = 32, buffer_size: int = 50000, start_learning: int = 1000, learning_rate_actor: float = 0.0005, learning_rate_critic: float = 0.001, polyak_tau: float = 0.01, hidden_sizes_s: Union[int, Tuple[int, ...]] = 128, hidden_sizes_a: Union[int, Tuple[int, ...]] = 128, hidden_sizes_shared: Union[int, Tuple[int, ...]] = 256, hidden_sizes_actor: Union[int, Tuple[int, ...]] = (128, 128), policy_noise: float = 0.2, noise_clip: float = 0.5, max_grad_norm: float = 0.5, exploration_noise: float = 0.1, policy_update_frequency: int = 10, target_update_frequency: int = 10 ): super().__init__(name, 'TD3', env) assert isinstance(self._env.action_space, Box), "Action space must be of type Box" self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self._gamma = discounting_factor self._memory = ReplayBuffer(buffer_size, self._device) self.q1 = Critic(self.observation_shape, self.action_shape, hidden_sizes_s, hidden_sizes_a, hidden_sizes_shared, self._device) self.q2 = Critic(self.observation_shape, self.action_shape, hidden_sizes_s, hidden_sizes_a, hidden_sizes_shared, self._device) self.q1_target = Critic(self.observation_shape, self.action_shape, hidden_sizes_s, hidden_sizes_a, hidden_sizes_shared, self._device) self.q2_target = Critic(self.observation_shape, self.action_shape, hidden_sizes_s, hidden_sizes_a, hidden_sizes_shared, self._device) self.pi = Actor(self.observation_shape, self.action_shape, hidden_sizes_actor, self._device) self.pi_target = Actor(self.observation_shape, self.action_shape, hidden_sizes_actor, self._device) self.q1_target.load_state_dict(self.q1.state_dict()) self.q2_target.load_state_dict(self.q2.state_dict()) self.pi_target.load_state_dict(self.pi.state_dict()) self.q1_target.train(False) self.q2_target.train(False) self.pi_target.train(False) self._q_optimizer = optim.Adam(list(self.q1.parameters()) + list(self.q2.parameters()), lr=learning_rate_critic) self._pi_optimizer = optim.Adam(list(self.pi.parameters()), lr=learning_rate_actor) self._batch_size = batch_size self._start_learning = max(start_learning, batch_size) self._policy_noise = policy_noise self._noise_clip = noise_clip self._max_grad_norm = max_grad_norm self._exploration_noise = exploration_noise self._policy_update_frequency = policy_update_frequency self._target_update_frequency = target_update_frequency self._tau = polyak_tau self._q_loss = torch.Tensor([0.0], device=self._device) self._pi_loss = torch.Tensor([0.0], device=self._device) self._a_limits = torch.Tensor(self._env.action_space.low, device=self._device),\ torch.Tensor(self._env.action_space.high, device=self._device) def find_action(self, observation, in_eval=False): with torch.no_grad(): a = self.pi(torch.tensor(observation, dtype=torch.float, device=self._device)).detach().numpy() if not in_eval: a += np.random.normal(0, self._exploration_noise, size=self.action_shape) a = a.clip(self._env.action_space.low, self._env.action_space.high) return a.tolist() def learn(self, observation, action, reward, next_observation, global_step): self._memory.put((observation, action, reward, next_observation)) if self._memory.size() > self._start_learning: s, a, r, s_prime = self._memory.sample(self._batch_size) with torch.no_grad(): clipped_noise = torch.randn_like(a, device=self._device) * self._policy_noise clipped_noise = clipped_noise.clamp(-self._noise_clip, self._noise_clip) a_prime = self.pi_target(s_prime) + clipped_noise a_prime = a_prime.clamp(*self._a_limits) qf1_next_target = self.q1_target(s_prime, a_prime) qf2_next_target = self.q2_target(s_prime, a_prime) min_qf_next_target = torch.min(qf1_next_target, qf2_next_target) next_q_value = r + self._gamma * min_qf_next_target q1_l = F.mse_loss(self.q1(s, a), next_q_value) q2_l = F.mse_loss(self.q2(s, a), next_q_value) self._q_loss = 0.5 * (q1_l + q2_l) # optimize the model self._q_optimizer.zero_grad() self._q_loss.backward() nn.utils.clip_grad_norm_(list(self.q1.parameters()) + list(self.q2.parameters()), self._max_grad_norm) self._q_optimizer.step() if (global_step + 1) % self._policy_update_frequency == 0: self._pi_loss = -self.q1(s, self.pi(s)).mean() self._pi_optimizer.zero_grad() self._pi_loss.backward() nn.utils.clip_grad_norm_(list(self.pi.parameters()), self._max_grad_norm) self._pi_optimizer.step() if (global_step + 1) % self._target_update_frequency == 0: polyak_update(self.q1.parameters(), self.q1_target.parameters(), self._tau) polyak_update(self.q2.parameters(), self.q2_target.parameters(), self._tau) polyak_update(self.pi.parameters(), self.pi_target.parameters(), self._tau) def get_log_dict(self): return { 'loss/q_loss': self._q_loss.item(), 'loss/pi_loss': self._pi_loss.item() }
schobbejak/QMIX-Active-Wake-Control
agent/deep/td3.py
td3.py
py
6,983
python
en
code
1
github-code
6
[ { "api_name": "agent.Agent", "line_number": 18, "usage_type": "name" }, { "api_name": "gym.Env", "line_number": 20, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 28, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 28, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 29, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 29, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 30, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 30, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 31, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 31, "usage_type": "name" }, { "api_name": "gym.spaces.Box", "line_number": 40, "usage_type": "argument" }, { "api_name": "torch.device", "line_number": 41, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 41, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 41, "usage_type": "attribute" }, { "api_name": "critic.Critic", "line_number": 44, "usage_type": "call" }, { "api_name": "critic.Critic", "line_number": 50, "usage_type": "call" }, { "api_name": "critic.Critic", "line_number": 56, "usage_type": "call" }, { "api_name": "critic.Critic", "line_number": 62, "usage_type": "call" }, { "api_name": "actor.Actor", "line_number": 68, "usage_type": "call" }, { "api_name": "actor.Actor", "line_number": 72, "usage_type": "call" }, { "api_name": "torch.optim.Adam", "line_number": 83, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 83, "usage_type": "name" }, { "api_name": "torch.optim.Adam", "line_number": 84, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 84, "usage_type": "name" }, { "api_name": "torch.Tensor", "line_number": 94, "usage_type": "call" }, { "api_name": "torch.Tensor", "line_number": 95, "usage_type": "call" }, { "api_name": "torch.Tensor", "line_number": 96, "usage_type": "call" }, { "api_name": "torch.Tensor", "line_number": 97, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 100, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 101, "usage_type": "call" }, { "api_name": "torch.float", "line_number": 101, "usage_type": "attribute" }, { "api_name": "numpy.random.normal", "line_number": 103, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 103, "usage_type": "attribute" }, { "api_name": "torch.no_grad", "line_number": 112, "usage_type": "call" }, { "api_name": "torch.randn_like", "line_number": 113, "usage_type": "call" }, { "api_name": "torch.min", "line_number": 119, "usage_type": "call" }, { "api_name": "torch.nn.functional.mse_loss", "line_number": 122, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 122, "usage_type": "name" }, { "api_name": "torch.nn.functional.mse_loss", "line_number": 123, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 123, "usage_type": "name" }, { "api_name": "torch.nn.utils.clip_grad_norm_", "line_number": 128, "usage_type": "call" }, { "api_name": "torch.nn.utils", "line_number": 128, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 128, "usage_type": "name" }, { "api_name": "torch.nn.utils.clip_grad_norm_", "line_number": 135, "usage_type": "call" }, { "api_name": "torch.nn.utils", "line_number": 135, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 135, "usage_type": "name" }, { "api_name": "polyak_update.polyak_update", "line_number": 139, "usage_type": "call" }, { "api_name": "polyak_update.polyak_update", "line_number": 140, "usage_type": "call" }, { "api_name": "polyak_update.polyak_update", "line_number": 141, "usage_type": "call" } ]
43269450493
from django.conf.urls import include, url from provisioner.views import ProvisionStatus, login urlpatterns = [ url(r'^$', ProvisionStatus, name='home'), url(r'login.*', login), url(r'^events/', include('events.urls')), url(r'^provisioner/', include('provisioner.urls')), ]
uw-it-aca/msca-provisioner
msca_provisioner/urls.py
urls.py
py
291
python
en
code
1
github-code
6
[ { "api_name": "django.conf.urls.url", "line_number": 6, "usage_type": "call" }, { "api_name": "provisioner.views.ProvisionStatus", "line_number": 6, "usage_type": "argument" }, { "api_name": "django.conf.urls.url", "line_number": 7, "usage_type": "call" }, { "api_name": "provisioner.views.login", "line_number": 7, "usage_type": "argument" }, { "api_name": "django.conf.urls.url", "line_number": 8, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 8, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 9, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 9, "usage_type": "call" } ]
20823393672
from flask import Flask, render_template, request, redirect, session, flash from mysqlconnection import MySQLConnector import re, md5 app = Flask(__name__) app.secret_key = "MySessionSecretKey1" mysql = MySQLConnector( app, "the_wall") email_regex = re.compile(r'^[a-zA-Z0-9.+_-]+@[a-zA-Z0-9._-]+\.[a-zA-Z]+$') @app.route( "/" ) def lr(): # session['user_id'] = False if session['user_id']: return redirect( "/wall" ) return render_template( "index.html" ) # VIEW MESSAGES AND COMMENTS @app.route( "/wall" ) def wall(): if not session['user_id']: return render_template( "index.html" ) query = "SELECT first_name, id FROM users WHERE id = :id" q_p = { 'id': session['user_id'] } user = {} user = mysql.query_db( query, q_p )[0] query = "SELECT first_name, last_name, message, DATE_FORMAT(messages.created_at, '%M %d, %Y') AS message_date, messages.id, user_id FROM messages JOIN users ON users.id = messages.user_id ORDER BY messages.created_at DESC" messages = mysql.query_db( query ) query = "SELECT users.first_name, users.last_name, comments.message_id, comment, DATE_FORMAT(comments.created_at, '%M %d, %Y') AS comment_date FROM comments JOIN users ON comments.user_id = users.id ORDER BY comments.created_at ASC" comments = mysql.query_db( query ) return render_template( "wall.html", user = user, messages = messages, comments = comments ) # POST A MESSAGE TO START A DISCUSSION @app.route( "/post_message", methods = ['POST'] ) def post_message(): query = "INSERT INTO messages( message, user_id, created_at, updated_at ) VALUES( :message, :user_id, NOW(), NOW() )" q_p = { 'message': request.form['message'], 'user_id': session['user_id'] } mysql.query_db( query, q_p ) flash( "Your message has been posted" ) return redirect( "/wall" ) # POST A COMMENT IN RESPONCE TO A MESSAGE @app.route( "/post_comment/<message_id>", methods = ['POST']) def post_comment( message_id ): query = "INSERT INTO comments( comment, user_id, message_id, created_at, updated_at ) VALUES( :comment, :user_id,:message_id, NOW(), NOW() )" q_p = { 'comment': request.form['comment'], 'user_id': session['user_id'], 'message_id': message_id } mysql.query_db( query, q_p ) return redirect( "/wall" ) # DELETE MESSAGE @app.route( "/delete_message" ) def delete_message(): flash ("delete command received!") return redirect( "/wall" ) # LOGIN @app.route( "/authorization", methods = ["POST"] ) def authorization(): # EMAIL VALIDATION if not email_regex.match( request.form['email'] ): flash( "Invalid email" ) else: query = "SELECT * FROM users WHERE users.email = :email LIMIT 1" q_p = { 'email': request.form['email'] } user = mysql.query_db( query, q_p ) if not user: flash( "Email " + request.form['email'] + " is not registered with any user" ) else: pw_h = md5.new( request.form['pw'] ).hexdigest() if user[0]['password'] != pw_h: # PASSWORD VALIDATION flash( "Wrong password" ) else: # SUCCESSFUL LOGIN session['user_id']= user[0]['id'] return redirect( "/wall" ) return redirect( "/" ) # SIGN UP @app.route( "/signup", methods = ["POST"] ) def signup(): error = False # FORM INPUT VALIDATIONS # VALIDATE FIRST NAME if len( request.form['first_name'] ) < 2: # NAME LENGTH error = True flash( "First name is too short" ) elif not str.isalpha( str( request.form['first_name'] ) ): # NAME CONVENTIONS error = True flash( "Invalid characters in the first name" ) # VALIDATE LAST NAME if len( request.form['last_name'] ) < 2: # NAME LENGTH error = True flash( "Last name is too short" ) elif not str.isalpha( str( request.form['last_name'] ) ): # NAME CONVENTIONS error = True flash( "Invalid characters in the last name" ) # VALIDATE EMAIL if not email_regex.match( request.form['email'] ): # EMAIL CONVENTIONS error = True flash( "Invalid email" ) else: # CHECK IF EMAIL IS ALREADY IN USE # email = request.form['email'] query = "SELECT email FROM users WHERE users.email = :email LIMIT 1" q_p = { 'email': request.form['email'] } existing_email = mysql.query_db( query, q_p ) if existing_email: error = True flash( "Email " + request.form['email'] + " is already in use" ) # VALIDATE PASSWORD CONVENTIONS AND REPEAT if len( str( request.form['pw'] ) ) < 8: error = True flash( "Password should be at least 8 characters long") elif request.form['pw'] != request.form['rpt_pw']: error = True flash( "Repeat password does not match") if error: return redirect( "/" ) else: # ADD NEW USER INTO THE DATABASE query = "INSERT INTO users( first_name, last_name, email, password, created_at, updated_at ) VALUES( :first_name, :last_name, :email, :pw_h, NOW(), NOW() )" q_p = { 'first_name': request.form['first_name'], 'last_name': request.form['last_name'], 'email': request.form['email'], 'pw_h': md5.new( request.form['pw'] ).hexdigest() } mysql.query_db( query, q_p ) flash( "Your user account has been saved" ) # FETCH THE NEW USER ID FROM THE DATABASE FOR SESSION LOGIN query = "SELECT id FROM users WHERE email = :email LIMIT 1" q_p = { 'email': request.form['email'] } session['user_id']= mysql.query_db( query, q_p )[0]['id'] return redirect( "/wall" ) @app.route( "/logout", methods = ["POST"]) def logout(): session['user_id'] = False return redirect( "/" ) app.run( debug = True )
ruslanvs/The_Wall
server.py
server.py
py
5,933
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 4, "usage_type": "call" }, { "api_name": "mysqlconnection.MySQLConnector", "line_number": 6, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 7, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 12, "usage_type": "name" }, { "api_name": "flask.redirect", "line_number": 13, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 14, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 19, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 20, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 23, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 33, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 40, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 40, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 41, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 44, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 45, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 52, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 52, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 53, "usage_type": "name" }, { "api_name": "flask.redirect", "line_number": 58, "usage_type": "call" }, { "api_name": "flask.flash", "line_number": 63, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 64, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 70, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 70, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 71, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 74, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 74, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 77, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 77, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 77, "usage_type": "name" }, { "api_name": "md5.new", "line_number": 79, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 79, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 79, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 81, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 83, "usage_type": "name" }, { "api_name": "flask.redirect", "line_number": 84, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 86, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 95, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 95, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 97, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 98, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 98, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 100, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 103, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 103, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 105, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 106, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 106, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 108, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 111, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 111, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 113, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 117, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 117, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 121, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 121, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 121, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 124, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 124, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 126, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 127, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 127, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 129, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 132, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 137, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 137, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 138, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 138, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 139, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 139, "usage_type": "name" }, { "api_name": "md5.new", "line_number": 140, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 140, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 140, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 144, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 148, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 148, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 149, "usage_type": "name" }, { "api_name": "flask.redirect", "line_number": 151, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 155, "usage_type": "name" }, { "api_name": "flask.redirect", "line_number": 156, "usage_type": "call" } ]
17815024172
#!/usr/bin/env python3 """Tool to update Conan dependencies to the latest""" import argparse import json import os import re import subprocess def main(): """ Read Conan dependencies, look for updates, and update the conanfile.py with updates """ parser = argparse.ArgumentParser() parser.add_argument("--repo", help="Repo name of the package to update", required=True) command_args = parser.parse_args() fullpath = os.path.join(os.getcwd(), command_args.repo) with open(os.path.join(fullpath, "conanfile.py"), "r", encoding="utf-8", newline="") as conan_file: conan_file_content = conan_file.read() packages = [] package_strings = re.findall(r'requires\("(.*?)/(.*?)@', conan_file_content) for package_string in package_strings: package = { "name": package_string[0], "version": package_string[1], } packages.append(package) for package in packages: conan_inspect_output = subprocess.run("conan inspect . --format json", cwd=f"conan-recipes/recipes/{package['name']}", shell=True, check=True, stdout=subprocess.PIPE) conan_inspect_json = json.loads(conan_inspect_output.stdout.decode("utf-8")) package["latest_version"] = conan_inspect_json["version"] old_package = f"{package['name']}/{package['version']}" new_package = f"{package['name']}/{package['latest_version']}" if old_package != new_package and old_package in conan_file_content: conan_file_content = conan_file_content.replace(old_package, new_package) print("Replace:") print(f" {old_package}") print("With:") print(f" {new_package}") print() with open(os.path.join(fullpath, "conanfile.py"), "w", encoding="utf-8", newline="") as conan_file: conan_file.write(conan_file_content) if __name__ == "__main__": main()
ssrobins/tools
update_conan_packages.py
update_conan_packages.py
py
2,066
python
en
code
0
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 20, "usage_type": "call" }, { "api_name": "os.path", "line_number": 20, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 20, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 22, "usage_type": "call" }, { "api_name": "os.path", "line_number": 22, "usage_type": "attribute" }, { "api_name": "re.findall", "line_number": 27, "usage_type": "call" }, { "api_name": "subprocess.run", "line_number": 37, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 39, "usage_type": "attribute" }, { "api_name": "json.loads", "line_number": 40, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 55, "usage_type": "call" }, { "api_name": "os.path", "line_number": 55, "usage_type": "attribute" } ]
6501962901
from flask import request from mobile_endpoint.backends.manager import get_dao from mobile_endpoint.case.case_processing import process_cases_in_form from mobile_endpoint.extensions import requires_auth from mobile_endpoint.form.form_processing import create_xform, get_instance_and_attachments, get_request_metadata from mobile_endpoint.views import ota_mod from mobile_endpoint.views.response import get_open_rosa_response @ota_mod.route('/receiver/<domain>', methods=['POST']) @requires_auth def form_receiver(domain): return _receiver(domain, backend='sql') @ota_mod.route('/couch-receiver/<domain>', methods=['POST']) @requires_auth def couch_receiver(domain): return _receiver(domain, backend='couch') @ota_mod.route('/mongo-receiver/<domain>', methods=['POST']) @requires_auth def mongo_receiver(domain): return _receiver(domain, backend='mongo') def _receiver(domain, backend): dao = get_dao(backend) instance, attachments = get_instance_and_attachments(request) request_meta = get_request_metadata(request) request_meta['domain'] = domain xform_lock = create_xform(instance, attachments, request_meta, dao) with xform_lock as xform: case_result = None if xform.doc_type == 'XFormInstance': case_result = process_cases_in_form(xform, dao) dao.commit_atomic_submission(xform, case_result) return get_open_rosa_response(xform, None, None)
dimagi/mobile-endpoint
prototype/mobile_endpoint/views/receiver.py
receiver.py
py
1,434
python
en
code
0
github-code
6
[ { "api_name": "mobile_endpoint.views.ota_mod.route", "line_number": 12, "usage_type": "call" }, { "api_name": "mobile_endpoint.views.ota_mod", "line_number": 12, "usage_type": "name" }, { "api_name": "mobile_endpoint.extensions.requires_auth", "line_number": 13, "usage_type": "name" }, { "api_name": "mobile_endpoint.views.ota_mod.route", "line_number": 18, "usage_type": "call" }, { "api_name": "mobile_endpoint.views.ota_mod", "line_number": 18, "usage_type": "name" }, { "api_name": "mobile_endpoint.extensions.requires_auth", "line_number": 19, "usage_type": "name" }, { "api_name": "mobile_endpoint.views.ota_mod.route", "line_number": 23, "usage_type": "call" }, { "api_name": "mobile_endpoint.views.ota_mod", "line_number": 23, "usage_type": "name" }, { "api_name": "mobile_endpoint.extensions.requires_auth", "line_number": 24, "usage_type": "name" }, { "api_name": "mobile_endpoint.backends.manager.get_dao", "line_number": 30, "usage_type": "call" }, { "api_name": "mobile_endpoint.form.form_processing.get_instance_and_attachments", "line_number": 31, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 31, "usage_type": "argument" }, { "api_name": "mobile_endpoint.form.form_processing.get_request_metadata", "line_number": 32, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 32, "usage_type": "argument" }, { "api_name": "mobile_endpoint.form.form_processing.create_xform", "line_number": 35, "usage_type": "call" }, { "api_name": "mobile_endpoint.case.case_processing.process_cases_in_form", "line_number": 40, "usage_type": "call" }, { "api_name": "mobile_endpoint.views.response.get_open_rosa_response", "line_number": 44, "usage_type": "call" } ]
19240299148
import numpy as np import torch import random import time smp = torch.nn.Softmax(dim=0) smt = torch.nn.Softmax(dim=1) def get_T_global_min(args, record, max_step = None, T0 = None, p0 = None, lr = 0.1, NumTest = None, all_point_cnt = 15000): if max_step is None: max_step = args.max_iter if NumTest is None: NumTest = args.G KINDS = args.num_classes all_point_cnt = np.min((all_point_cnt,int(len(record)*0.9))) print(f'Sample {all_point_cnt} instances in each round') p_estimate = [[] for _ in range(3)] p_estimate[0] = torch.zeros(KINDS) p_estimate[1] = torch.zeros(KINDS, KINDS) p_estimate[2] = torch.zeros(KINDS, KINDS, KINDS) for idx in range(NumTest): print(idx, flush=True) sel_loc = np.random.permutation(record.shape[1])[:3] record_sel = record[:, sel_loc] # print(f'sel_loc is {sel_loc}') cnt_y_3 = count_y_known2nn(KINDS, record_sel, all_point_cnt) for i in range(3): cnt_y_3[i] /= all_point_cnt p_estimate[i] = p_estimate[i] + cnt_y_3[i] if idx != 0 else cnt_y_3[i] for j in range(3): p_estimate[j] = p_estimate[j] / NumTest args.device = set_device() loss_min, E_calc, P_calc, T_init = calc_func(KINDS, p_estimate, False, args.device, max_step, T0, p0, lr = lr) E_calc = E_calc.cpu().numpy() P_calc = P_calc.cpu().numpy() return E_calc, P_calc def error(T, T_true): error = np.sum(np.abs(T-T_true)) / np.sum(np.abs(T_true)) return error def set_device(): if torch.cuda.is_available(): _device = torch.device("cuda") else: _device = torch.device("cpu") print(f'Current device is {_device}', flush=True) return _device def distCosine(x, y): """ :param x: m x k array :param y: n x k array :return: m x n array """ xx = np.sum(x ** 2, axis=1) ** 0.5 x = x / xx[:, np.newaxis] yy = np.sum(y ** 2, axis=1) ** 0.5 y = y / yy[:, np.newaxis] dist = 1 - np.dot(x, y.transpose()) # 1 - cosine distance return dist def count_real(KINDS, T, P, mode, _device = 'cpu'): # time1 = time.time() P = P.reshape((KINDS, 1)) p_real = [[] for _ in range(3)] p_real[0] = torch.mm(T.transpose(0, 1), P).transpose(0, 1) # p_real[2] = torch.zeros((KINDS, KINDS, KINDS)).to(_device) p_real[2] = torch.zeros((KINDS, KINDS, KINDS)) temp33 = torch.tensor([]) for i in range(KINDS): Ti = torch.cat((T[:, i:], T[:, :i]), 1) temp2 = torch.mm((T * Ti).transpose(0, 1), P) p_real[1] = torch.cat([p_real[1], temp2], 1) if i != 0 else temp2 for j in range(KINDS): Tj = torch.cat((T[:, j:], T[:, :j]), 1) temp3 = torch.mm((T * Ti * Tj).transpose(0, 1), P) temp33 = torch.cat([temp33, temp3], 1) if j != 0 else temp3 # adjust the order of the output (N*N*N), keeping consistent with p_estimate t3 = [] for p3 in range(KINDS): t3 = torch.cat((temp33[p3, KINDS - p3:], temp33[p3, :KINDS - p3])) temp33[p3] = t3 if mode == -1: for r in range(KINDS): p_real[2][r][(i+r+KINDS)%KINDS] = temp33[r] else: p_real[2][mode][(i + mode + KINDS) % KINDS] = temp33[mode] temp = [] # adjust the order of the output (N*N), keeping consistent with p_estimate for p1 in range(KINDS): temp = torch.cat((p_real[1][p1, KINDS-p1:], p_real[1][p1, :KINDS-p1])) p_real[1][p1] = temp return p_real def func(KINDS, p_estimate, T_out, P_out, N,step, LOCAL, _device): eps = 1e-2 eps2 = 1e-8 eps3 = 1e-5 loss = torch.tensor(0.0).to(_device) # define the loss P = smp(P_out) # loss = loss + 0.1*torch.norm(P.view(-1) - torch.tensor([0.51441996, 0.34073234, 0.08246922, 0.06237848])) # loss = loss + 0.1 * torch.norm(P[3]-0.1) + 0.1 * torch.norm(P[2]-0.1) # P = P_out T = smt(T_out) mode = random.randint(0, KINDS-1) mode = -1 # Borrow p_ The calculation method of real is to calculate the temporary values of T and P at this time: N, N*N, N*N*N p_temp = count_real(KINDS, T.to(torch.device("cpu")), P.to(torch.device("cpu")), mode, _device) weight = [1.0,1.0,1.0] # weight = [2.0,1.0,1.0] for j in range(3): # || P1 || + || P2 || + || P3 || p_temp[j] = p_temp[j].to(_device) loss += weight[j] * torch.norm(p_estimate[j] - p_temp[j]) #/ np.sqrt(N**j) if step > 100 and LOCAL and KINDS != 100: loss += torch.mean(torch.log(P+eps))/10 return loss def calc_func(KINDS, p_estimate, LOCAL, _device, max_step = 501, T0=None, p0 = None, lr = 0.1): # init # _device = torch.device("cpu") N = KINDS eps = 1e-8 if T0 is None: T = 1 * torch.eye(N) - torch.ones((N,N)) # T[-1] = torch.ones(N) else: T = T0 if p0 is None: P = torch.ones((N, 1), device = None) / N + torch.rand((N,1), device = None)*0.1 # P:0-9 distribution # P[2:] -= 5.0 # P = torch.tensor([0.4,0.4,0.1,0.1]) else: P = p0 T = T.to(_device) P = P.to(_device) p_estimate = [item.to(_device) for item in p_estimate] print(f'using {_device} to solve equations') T.requires_grad = True P.requires_grad = True optimizer = torch.optim.Adam([T, P], lr = lr) # train loss_min = 100.0 T_rec = torch.zeros_like(T) P_rec = torch.zeros_like(P) time1 = time.time() for step in range(max_step): if step: optimizer.zero_grad() loss.backward() optimizer.step() loss = func(KINDS, p_estimate, T, P, N,step, LOCAL, _device) if loss < loss_min and step > 5: loss_min = loss.detach() T_rec = T.detach() P_rec = P.detach() # if step % 100 == 0: # print('loss {}'.format(loss)) # print(f'step: {step} time_cost: {time.time() - time1}') # print(f'T {np.round(smt(T.cpu()).detach().numpy()*100,1)}', flush=True) # print(f'P {np.round(smp(P.cpu().view(-1)).detach().numpy()*100,1)}', flush=True) # # print(f'P {np.round((P.cpu().view(-1)).detach().numpy()*100,1)}', flush=True) # time1 = time.time() return loss_min, smt(T_rec).detach(), smp(P_rec).detach(), T_rec.detach() def count_y(KINDS, feat_cord, label, cluster_sum): # feat_cord = torch.tensor(final_feat) cnt = [[] for _ in range(3)] cnt[0] = torch.zeros(KINDS) cnt[1] = torch.zeros(KINDS, KINDS) cnt[2] = torch.zeros(KINDS, KINDS, KINDS) feat_cord = feat_cord.cpu().numpy() dist = distCosine(feat_cord, feat_cord) max_val = np.max(dist) am = np.argmin(dist,axis=1) for i in range(cluster_sum): dist[i][am[i]] = 10000.0 + max_val min_dis_id = np.argmin(dist,axis=1) for i in range(cluster_sum): dist[i][min_dis_id[i]] = 10000.0 + max_val min_dis_id2 = np.argmin(dist,axis=1) for x1 in range(cluster_sum): cnt[0][label[x1]] += 1 cnt[1][label[x1]][label[min_dis_id[x1]]] += 1 cnt[2][label[x1]][label[min_dis_id[x1]]][label[min_dis_id2[x1]]] += 1 return cnt def count_y_known2nn(KINDS, label_list, cluster_sum=None): if cluster_sum is not None: sample = np.random.choice(range(label_list.shape[0]), cluster_sum, replace=False) label_list = label_list[sample] cnt = [[] for _ in range(3)] cnt[0] = torch.zeros(KINDS) cnt[1] = torch.zeros(KINDS, KINDS) cnt[2] = torch.zeros(KINDS, KINDS, KINDS) for i in range(cluster_sum): cnt[0][label_list[i][0]] += 1 cnt[1][label_list[i][0]][label_list[i][1]] += 1 cnt[2][label_list[i][0]][label_list[i][1]][label_list[i][2]] += 1 return cnt
UCSC-REAL/fair-eval
hoc.py
hoc.py
py
7,838
python
en
code
5
github-code
6
[ { "api_name": "torch.nn.Softmax", "line_number": 7, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 7, "usage_type": "attribute" }, { "api_name": "torch.nn.Softmax", "line_number": 8, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 8, "usage_type": "attribute" }, { "api_name": "numpy.min", "line_number": 20, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 23, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 24, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 25, "usage_type": "call" }, { "api_name": "numpy.random.permutation", "line_number": 28, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 28, "usage_type": "attribute" }, { "api_name": "numpy.sum", "line_number": 47, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 47, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 51, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 51, "usage_type": "attribute" }, { "api_name": "torch.device", "line_number": 52, "usage_type": "call" }, { "api_name": "torch.device", "line_number": 54, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 64, "usage_type": "call" }, { "api_name": "numpy.newaxis", "line_number": 65, "usage_type": "attribute" }, { "api_name": "numpy.sum", "line_number": 66, "usage_type": "call" }, { "api_name": "numpy.newaxis", "line_number": 67, "usage_type": "attribute" }, { "api_name": "numpy.dot", "line_number": 68, "usage_type": "call" }, { "api_name": "torch.mm", "line_number": 76, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 78, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 80, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 82, "usage_type": "call" }, { "api_name": "torch.mm", "line_number": 83, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 84, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 87, "usage_type": "call" }, { "api_name": "torch.mm", "line_number": 88, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 89, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 93, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 104, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 113, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 121, "usage_type": "call" }, { "api_name": "torch.device", "line_number": 124, "usage_type": "call" }, { "api_name": "torch.norm", "line_number": 131, "usage_type": "call" }, { "api_name": "torch.mean", "line_number": 134, "usage_type": "call" }, { "api_name": "torch.log", "line_number": 134, "usage_type": "call" }, { "api_name": "torch.eye", "line_number": 145, "usage_type": "call" }, { "api_name": "torch.ones", "line_number": 145, "usage_type": "call" }, { "api_name": "torch.ones", "line_number": 151, "usage_type": "call" }, { "api_name": "torch.rand", "line_number": 151, "usage_type": "call" }, { "api_name": "torch.optim.Adam", "line_number": 165, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 165, "usage_type": "attribute" }, { "api_name": "torch.zeros_like", "line_number": 169, "usage_type": "call" }, { "api_name": "torch.zeros_like", "line_number": 170, "usage_type": "call" }, { "api_name": "time.time", "line_number": 172, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 197, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 198, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 199, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 202, "usage_type": "call" }, { "api_name": "numpy.argmin", "line_number": 203, "usage_type": "call" }, { "api_name": "numpy.argmin", "line_number": 206, "usage_type": "call" }, { "api_name": "numpy.argmin", "line_number": 209, "usage_type": "call" }, { "api_name": "numpy.random.choice", "line_number": 220, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 220, "usage_type": "attribute" }, { "api_name": "torch.zeros", "line_number": 224, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 225, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 226, "usage_type": "call" } ]
32766695147
from django.shortcuts import render, reverse, redirect from django.views.generic import View from django.views.generic.edit import CreateView import requests import re count = 6 # Create your views here. def home(request): template_name = 'home.html' return render(request, template_name=template_name) def getPainting(request): template_name = 'arts.html' prelink = "https://drive.google.com/uc?export=view&id=" if request.method == "POST": global count # request.POST['id'] imgid = count + 1 name = request.POST['name'] link = request.POST['link'] linkid = re.search(r"\bd\/\w+[^/]([A-Za-z0-9-_])*", link) link = prelink + linkid.group()[2:] requests.post('https://kvdvse6qr3.execute-api.ap-south-1.amazonaws.com/img/image', json = {'imgId':f'{imgid}', 'altText': f'{name}', 'imgUrl': f'{link}'}) allImages = requests.get("https://kvdvse6qr3.execute-api.ap-south-1.amazonaws.com/img/images") return render(request, template_name=template_name, context = { 'images': allImages.json()['images'] }) # class getPaintingView(View): # template_name = 'arts.html' # def get(self, request): # return render(request, self.template_name) # def post(self, request): # print(request) # class addPaintingView(CreateView): # template_name = 'addArt.html' # def get(self, request): # return render(request, self.template_name)
SaahilS468/Serverless-API
image/views.py
views.py
py
1,598
python
en
code
0
github-code
6
[ { "api_name": "django.shortcuts.render", "line_number": 11, "usage_type": "call" }, { "api_name": "re.search", "line_number": 23, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 25, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 30, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 32, "usage_type": "call" } ]
74773385148
import numpy as np import os import torch from typing import List, Tuple from tqdm import tqdm from datetime import datetime, timedelta import pickle import matplotlib.pyplot as plt # -------------------- Colorize ------------------------------------------ """A set of common utilities used within the environments. These are not intended as API functions, and will not remain stable over time. """ import numpy as np import matplotlib.colors as colors color2num = dict(gray=30, red=31, green=32, yellow=33, blue=34, magenta=35, cyan=36, white=37, crimson=38) def colorize(string, color, bold=False, highlight=False): """Return string surrounded by appropriate terminal color codes to print colorized text. Valid colors: gray, red, green, yellow, blue, magenta, cyan, white, crimson """ # Import six here so that `utils` has no import-time dependencies. # We want this since we use `utils` during our import-time sanity checks # that verify that our dependencies (including six) are actually present. import six attr = [] num = color2num[color] if highlight: num += 10 attr.append(six.u(str(num))) if bold: attr.append(six.u('1')) attrs = six.u(';').join(attr) return six.u('\x1b[%sm%s\x1b[0m') % (attrs, string) def calc_iou(times_gt, time): a_s, a_e = times_gt b_s, b_e = time if b_s > a_e or a_s > b_e: return 0 else: o_s = max(a_s,b_s) o_e = min(a_e,b_e) intersection = o_e - o_s u_s = min(a_s,b_s) u_e = max(a_e,b_e) union = u_e - u_s return intersection/float(union) def green(s): return colorize(s, 'green', bold=True) def blue(s): return colorize(s, 'blue', bold=True) def red(s): return colorize(s, 'red', bold=True) def magenta(s): return colorize(s, 'magenta', bold=True) def colorize_mat(mat, hsv): """ Colorizes the values in a 2D matrix MAT to the color as defined by the color HSV. The values in the matrix modulate the 'V' (or value) channel. H,S (hue and saturation) are held fixed. HSV values are assumed to be in range [0,1]. Returns an uint8 'RGB' image. """ mat = mat.astype(np.float32) m, M = np.min(mat), np.max(mat) v = (mat - m) / (M - m) h, s = hsv[0] * np.ones_like(v), hsv[1] * np.ones_like(v) hsv = np.dstack([h, s, v]) rgb = (255 * colors.hsv_to_rgb(hsv)).astype(np.uint8) return rgb # -------------------- / Colorize ------------------------------------------ def gpu_initializer(gpu_id): os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id) global device device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print('Using device: ', device) return device
hannahbull/slrtp2022_t3
utils.py
utils.py
py
2,912
python
en
code
3
github-code
6
[ { "api_name": "six.u", "line_number": 42, "usage_type": "call" }, { "api_name": "six.u", "line_number": 44, "usage_type": "call" }, { "api_name": "six.u", "line_number": 45, "usage_type": "call" }, { "api_name": "six.u", "line_number": 46, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 90, "usage_type": "attribute" }, { "api_name": "numpy.min", "line_number": 91, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 91, "usage_type": "call" }, { "api_name": "numpy.ones_like", "line_number": 93, "usage_type": "call" }, { "api_name": "numpy.dstack", "line_number": 94, "usage_type": "call" }, { "api_name": "matplotlib.colors.hsv_to_rgb", "line_number": 95, "usage_type": "call" }, { "api_name": "matplotlib.colors", "line_number": 95, "usage_type": "name" }, { "api_name": "numpy.uint8", "line_number": 95, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 103, "usage_type": "attribute" }, { "api_name": "torch.device", "line_number": 105, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 105, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 105, "usage_type": "attribute" } ]
43600893416
# -*- coding: utf-8 -*- from django.contrib import admin from adminsortable2.admin import SortableAdminMixin, SortableInlineAdminMixin from modeltranslation.admin import ( TranslationAdmin, TranslationTabularInline, TranslationStackedInline, TabbedTranslationAdmin ) from .models import ( SiteSettings, FooterSettings, NavigationMenu, NavigationLinks ) class HeaderSettingsAdminMixin(object): """ Mixin класс для разделения сео данных в админ панели """ def get_fieldsets(self, request, obj=None): seo_fields = ['left_side_title_en', 'left_side_title_ru', 'right_side_title_en', 'right_side_title_ru', 'right_side_description_en', 'right_side_description_ru', 'button_text_en', 'button_text_ru', 'button_link_en', 'button_link_ru'] if self.fieldsets: return self.fieldsets fields = [ x for x in self.get_fields(request, obj) if not x in seo_fields ] return [ (None, {'fields': fields}), ('HeaderSettings', { 'fields': seo_fields }) ] @admin.register(SiteSettings) class SiteSettingsAdmin(admin.ModelAdmin): fields = ('favicon', 'logo', 'preloader') @admin.register(FooterSettings) class FooterSettingsAdmin(TabbedTranslationAdmin): class Media: js = ( 'http://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js', 'http://ajax.googleapis.com/ajax/libs/jqueryui/1.10.2/jquery-ui.min.js', 'modeltranslation/js/tabbed_translation_fields.js', ) css = { 'screen': ('modeltranslation/css/tabbed_translation_fields.css',), } class NavigationLinksTabularInline( SortableInlineAdminMixin, TranslationStackedInline): model = NavigationLinks extra = 0 @admin.register(NavigationMenu) class NavigationMenuAdmin(TabbedTranslationAdmin): list_display = ['name', 'menu_type'] inlines = (NavigationLinksTabularInline,) class Media: js = ( 'http://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js', 'http://ajax.googleapis.com/ajax/libs/jqueryui/1.10.2/jquery-ui.min.js', 'modeltranslation/js/tabbed_translation_fields.js', 'js/admin/admin_navigation_menu.js', ) css = { 'screen': ('modeltranslation/css/tabbed_translation_fields.css',), }
CrazyChief/acidbro
core/admin.py
admin.py
py
2,524
python
en
code
0
github-code
6
[ { "api_name": "django.contrib.admin.ModelAdmin", "line_number": 38, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 38, "usage_type": "name" }, { "api_name": "django.contrib.admin.register", "line_number": 37, "usage_type": "call" }, { "api_name": "models.SiteSettings", "line_number": 37, "usage_type": "argument" }, { "api_name": "django.contrib.admin", "line_number": 37, "usage_type": "name" }, { "api_name": "modeltranslation.admin.TabbedTranslationAdmin", "line_number": 43, "usage_type": "name" }, { "api_name": "django.contrib.admin.register", "line_number": 42, "usage_type": "call" }, { "api_name": "models.FooterSettings", "line_number": 42, "usage_type": "argument" }, { "api_name": "django.contrib.admin", "line_number": 42, "usage_type": "name" }, { "api_name": "adminsortable2.admin.SortableInlineAdminMixin", "line_number": 56, "usage_type": "name" }, { "api_name": "modeltranslation.admin.TranslationStackedInline", "line_number": 56, "usage_type": "name" }, { "api_name": "models.NavigationLinks", "line_number": 57, "usage_type": "name" }, { "api_name": "modeltranslation.admin.TabbedTranslationAdmin", "line_number": 62, "usage_type": "name" }, { "api_name": "django.contrib.admin.register", "line_number": 61, "usage_type": "call" }, { "api_name": "models.NavigationMenu", "line_number": 61, "usage_type": "argument" }, { "api_name": "django.contrib.admin", "line_number": 61, "usage_type": "name" } ]
12981024226
#!/usr/bin/env python """ Pymodbus Synchronous Client Example to showcase Device Information -------------------------------------------------------------------------- This client demonstrates the use of Device Information to get information about servers connected to the client. This is part of the MODBUS specification, and uses the MEI 0x2B 0x0E request / response. """ # --------------------------------------------------------------------------- # # import the various server implementations # --------------------------------------------------------------------------- # from pymodbus.client.sync import ModbusTcpClient as ModbusClient # from pymodbus.client.sync import ModbusUdpClient as ModbusClient # from pymodbus.client.sync import ModbusSerialClient as ModbusClient # --------------------------------------------------------------------------- # # import the request # --------------------------------------------------------------------------- # from pymodbus.mei_message import ReadDeviceInformationRequest from pymodbus.device import ModbusDeviceIdentification # --------------------------------------------------------------------------- # # configure the client logging # --------------------------------------------------------------------------- # import logging FORMAT = ('%(asctime)-15s %(threadName)-15s ' '%(levelname)-8s %(module)-15s:%(lineno)-8s %(message)s') logging.basicConfig(format=FORMAT) log = logging.getLogger() log.setLevel(logging.DEBUG) UNIT = 0x1 def run_sync_client(): # ------------------------------------------------------------------------# # choose the client you want # ------------------------------------------------------------------------# # make sure to start an implementation to hit against. For this # you can use an existing device, the reference implementation in the tools # directory, or start a pymodbus server. # # If you use the UDP or TCP clients, you can override the framer being used # to use a custom implementation (say RTU over TCP). By default they use # the socket framer:: # # client = ModbusClient('localhost', port=5020, framer=ModbusRtuFramer) # # It should be noted that you can supply an ipv4 or an ipv6 host address # for both the UDP and TCP clients. # # There are also other options that can be set on the client that controls # how transactions are performed. The current ones are: # # * retries - Specify how many retries to allow per transaction (default=3) # * retry_on_empty - Is an empty response a retry (default = False) # * source_address - Specifies the TCP source address to bind to # # Here is an example of using these options:: # # client = ModbusClient('localhost', retries=3, retry_on_empty=True) # ------------------------------------------------------------------------# client = ModbusClient('localhost', port=5020) # from pymodbus.transaction import ModbusRtuFramer # client = ModbusClient('localhost', port=5020, framer=ModbusRtuFramer) # client = ModbusClient(method='binary', port='/dev/ptyp0', timeout=1) # client = ModbusClient(method='ascii', port='/dev/ptyp0', timeout=1) # client = ModbusClient(method='rtu', port='/dev/ptyp0', timeout=1, # baudrate=9600) client.connect() # ------------------------------------------------------------------------# # specify slave to query # ------------------------------------------------------------------------# # The slave to query is specified in an optional parameter for each # individual request. This can be done by specifying the `unit` parameter # which defaults to `0x00` # ----------------------------------------------------------------------- # log.debug("Reading Device Information") information = {} rr = None while not rr or rr.more_follows: next_object_id = rr.next_object_id if rr else 0 rq = ReadDeviceInformationRequest(read_code=0x03, unit=UNIT, object_id=next_object_id) rr = client.execute(rq) information.update(rr.information) log.debug(rr) print("Device Information : ") for key in information.keys(): print(key, information[key]) # ----------------------------------------------------------------------- # # You can also have the information parsed through the # ModbusDeviceIdentificiation class, which gets you a more usable way # to access the Basic and Regular device information objects which are # specifically listed in the Modbus specification # ----------------------------------------------------------------------- # di = ModbusDeviceIdentification(info=information) print('Product Name : ', di.ProductName) # ----------------------------------------------------------------------- # # close the client # ----------------------------------------------------------------------- # client.close() if __name__ == "__main__": run_sync_client()
renatosperlongo/pymodbus
examples/contrib/deviceinfo_showcase_client.py
deviceinfo_showcase_client.py
py
5,108
python
en
code
1
github-code
6
[ { "api_name": "logging.basicConfig", "line_number": 29, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 30, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 31, "usage_type": "attribute" }, { "api_name": "pymodbus.client.sync.ModbusTcpClient", "line_number": 64, "usage_type": "call" }, { "api_name": "pymodbus.mei_message.ReadDeviceInformationRequest", "line_number": 86, "usage_type": "call" }, { "api_name": "pymodbus.device.ModbusDeviceIdentification", "line_number": 102, "usage_type": "call" } ]
40986191942
import random , sys , traceback from time import sleep from selenium import webdriver import datetime c=1; browser = webdriver.Chrome('D:\\Python\\Bot Insta\\chromedriver') browser.get('https://google.com') while c== 1: c=0 try: browser.find_element_by_xpath('/html/body/ytd-app/div/div/ytd-masthead/div[3]/div[1]/ytd-topbar-logo-renderer/a/div[1]').click() print('am rulat ') except: c=1 sleep(2) print('sunte in exceptie ') print('gata') # while browser.find_element_by_xpath('/html/body/ytd-app/div/div/ytd-masthead/div[3]/div[1]/ytd-topbar-logo-renderer/a/div[1]')==[]: # print("nu e bine nu gasim ce trebuie ") # sleep(2) # print('am gasit') #browser.close() #browser.quit()
mirceah99/Python-Bot-Insta
Teste.py
Teste.py
py
779
python
en
code
0
github-code
6
[ { "api_name": "selenium.webdriver.Chrome", "line_number": 8, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 8, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 17, "usage_type": "call" } ]
32704679818
from django.urls import path from .views import * urlpatterns = [ path('', PostList.as_view(), name="post_list_url"), path("search/", Search.as_view(), name='search_form_url'), path("filter/<int:pk>", DateFilter.as_view(), name='date_filter_url'), path("<slug:category>/", PostList.as_view(), name='post_by_category_url'), path("<slug:category>/<slug:slug>/", PostDetail.as_view(), name='post_detail_url'), ]
djaffic/blog_project
news/urls.py
urls.py
py
429
python
en
code
0
github-code
6
[ { "api_name": "django.urls.path", "line_number": 5, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 6, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 7, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 8, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 9, "usage_type": "call" } ]
69958393149
import typing as T import asyncio import logging import inspect from functools import lru_cache from . import types from . import transport as _transport from . import errors from . import stub from . import utils from . import spec logger = logging.getLogger('pjrpc.server') class Service: """Receive request, routing, process and response to server""" def _method_predicate(self, meth): return inspect.iscoroutinefunction(meth) or callable(meth) @lru_cache(maxsize=1024) def _get_func(self, f_name: str): for name, func in inspect.getmembers(self, self._method_predicate): if name == f_name: return func raise errors.MethodNotFoundError() def _check_args(self, args: T.Dict[str, T.Type], func: T.Callable): #TODO: check default value annotations = func.__annotations__ for k, v in args.items(): if k in annotations: if type(v) is not annotations[k]: raise errors.InvalidParamError() async def __call__( self, request: types.Request, ) -> T.Union[spec.ErrorResponseMessage, spec.SuccessResponseMessage]: target = self._get_func(request.method) params = request.params or {} self._check_args(params, target) if not inspect.iscoroutinefunction(target): target = utils.to_async()(target) ret = await target(**params) if not isinstance(request, spec.Notification): return utils.make_response_from_data( id=request.id, result=ret, ) class Server: def __init__( self, app_path: str, host: str = '127.0.0.1', port: int = 6969, compress: bool = False, ): self._app_cls = utils.load_app_from_string(app_path) self._host = host self._port = port self._stub = stub.Stub(compress) self._loop = asyncio.get_event_loop() self._futures = {} async def connection_handler( self, reader: asyncio.StreamReader, writer: asyncio.StreamWriter, ): transport = _transport.ServerTransport(reader, writer, interval=2, alive=5) async def dispatch_request(request): if isinstance(request, list): async def batch_request(requests): app = self._app_cls() tasks = [] for request in requests: if isinstance(request, spec.Notification): self._loop.create_task(app(request)) else: f = self._loop.create_task(app(request)) tasks.append(f) if len(tasks) == 0: return None responses = asyncio.wait(tasks) return responses return await batch_request(request) return await self._app_cls()(request) def on_request_done(fut): err = fut.exception() if err: ret = utils.make_response_from_data( error={'code': err.code, 'message': err.message}) else: ret = fut.result() self._loop.create_task(transport.send_message(self._stub.pack(ret))) async for in_data in transport.messages(): try: request = self._stub.unpack(in_data) except errors.ParseError as error: err_resp = utils.make_response_from_data( error={'code': error.code, 'message': error.message}) out_data = self._stub.pack(err_resp) self._loop.create_task(transport.send_message(out_data)) f = self._loop.create_task(dispatch_request(request)) f.add_done_callback(on_request_done) def protocol_factory(self): reader = asyncio.StreamReader(limit=1024, loop=self._loop) protocol = asyncio.StreamReaderProtocol( reader, self.connection_handler, loop=self._loop) return protocol async def start(self): server = await self._loop.create_server(self.protocol_factory, self._host, self._port) async with server: logger.info('Server is starting on port %d ...', self._port) await server.serve_forever()
magiskboy/pjrpc
pjrpc/core.py
core.py
py
4,436
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 14, "usage_type": "call" }, { "api_name": "inspect.iscoroutinefunction", "line_number": 21, "usage_type": "call" }, { "api_name": "inspect.getmembers", "line_number": 25, "usage_type": "call" }, { "api_name": "functools.lru_cache", "line_number": 23, "usage_type": "call" }, { "api_name": "typing.Dict", "line_number": 31, "usage_type": "attribute" }, { "api_name": "typing.Type", "line_number": 31, "usage_type": "attribute" }, { "api_name": "typing.Callable", "line_number": 31, "usage_type": "attribute" }, { "api_name": "inspect.iscoroutinefunction", "line_number": 50, "usage_type": "call" }, { "api_name": "typing.Union", "line_number": 43, "usage_type": "attribute" }, { "api_name": "asyncio.get_event_loop", "line_number": 76, "usage_type": "call" }, { "api_name": "asyncio.StreamReader", "line_number": 81, "usage_type": "attribute" }, { "api_name": "asyncio.StreamWriter", "line_number": 82, "usage_type": "attribute" }, { "api_name": "asyncio.wait", "line_number": 102, "usage_type": "call" }, { "api_name": "asyncio.StreamReader", "line_number": 132, "usage_type": "call" }, { "api_name": "asyncio.StreamReaderProtocol", "line_number": 133, "usage_type": "call" } ]
5824663901
""" Flask app for testing the SMART on FHIR OAuth stuff Build from this tutorial: http://docs.smarthealthit.org/tutorials/authorization/ And using requests-oauthlib: http://requests-oauthlib.readthedocs.io/en/latest/index.html """ from flask import Flask, redirect, request, session from requests_oauthlib import OAuth2Session #from urllib import urlencode import json import logging import http.client import warnings # Enable lots of debug logging http.client.HTTPConnection.debuglevel = 1 logging.basicConfig() logging.getLogger().setLevel(logging.DEBUG) requests_log = logging.getLogger("requests.packages.urllib3") requests_log.setLevel(logging.DEBUG) requests_log.propagate = True # Replace these with the values you get when you register you app in the SMART sandbox client_id = "df23ba7c-3b2b-4b92-8aec-fbe73426d472" client_secret = "AKBmOV4tIIs6C7y2Dgy6Idquo_NUgFYolDmOpTDOtt2Hr_Nw7RglPE2aeHzBI0cuEyJN2tDgwPLQe_A2aAqLQr8" redirect_uri = "http://localhost:5000/callback" # Scopes to request from the SMART server scope = [ \ "openid", \ "patient/*.*", \ "profile", \ "launch" \ ] app = Flask(__name__) @app.route('/') def index(): return "SMART on FHIR test client - please either launch from the SMART sandbox, or <a href='/standalone'>click here to test a standalone launch</a>" @app.route('/standalone') def standalone(): session['serviceUri'] = "https://sb-fhir-stu3.smarthealthit.org/smartstu3/data" # Go to the server and get the auth endpoint URLs from it's CapabilityStatement getAuthEndpointFromServerConformance(session['serviceUri']) # Now, start the authorization process against the auth endpoint return authorize_user() """ This is the main launch URL called by the SMART on FHIR sandbox (or any SMART on FHIR enabled EPR) """ @app.route('/smart-app') def launch(): # Get some launch parameters from the calling EHR system serviceUri = request.args.get('iss') # https://sb-fhir-stu3.smarthealthit.org/smartstu3/data launchContextId = request.args.get('launch') # Store launch context in the session session['launchContextId'] = launchContextId session['serviceUri'] = serviceUri print ("App launched from SMART sandbox, with issuer URL: "+serviceUri) # Go to the server and get the auth endpoint URLs from it's CapabilityStatement getAuthEndpointFromServerConformance(serviceUri) # Now, start the authorization process against the auth endpoint return authorize_user() """ Go to the specified FHIR server and retrieve it's CapabilityStatement to obtain the OAuth details """ def getAuthEndpointFromServerConformance(serviceUri): # The issuer is the server endpoint - get it's conformance profile to find the auth URL conformanceResource = getRemoteResource(serviceUri) # Parse the oauth URLs from the profile conformanceJSON = json.loads(conformanceResource) authorizeUrl = '' tokenUrl = '' # Nasty hacky unsafe parsing - perhaps look to use either the python fhir client, or a jsonpath library? for entry in conformanceJSON["rest"][0]["security"]["extension"][0]["extension"]: if entry['url'] == 'authorize': authorizeUrl = entry['valueUri'] elif entry['url'] == 'token': tokenUrl = entry['valueUri'] print ("Got an authorization URL from the capabilitystatement:"+authorizeUrl) print ("Got a token URL from the capabilitystatement:"+tokenUrl) # Store the relevant parameters in the session to use for authorizing session['authorizeUrl'] = authorizeUrl session['tokenUrl'] = tokenUrl """ Use the python oauth2 client to call the authorization endpoint """ def authorize_user(): smart_auth_session = OAuth2Session(client_id) if 'launchContextId' in session: authorization_url, state = smart_auth_session.authorization_url(session['authorizeUrl'], \ aud=session['serviceUri'], \ launch=session['launchContextId']) else: authorization_url, state = smart_auth_session.authorization_url(session['authorizeUrl'], \ aud=session['serviceUri']) # State is used to prevent CSRF, keep this for later. session['oauth_state'] = state print ("Redirecting to authorization URL:"+authorization_url) return redirect(authorization_url) """ Callback URL called by authorization server once the user has logged in. Takes their authorization code and calls the token endpoint to get an access token. """ @app.route("/callback", methods=["GET", "POST"]) def callback(): # Retrieving an access token smart_auth_session = OAuth2Session(client_id, scope=scope, redirect_uri=redirect_uri, state=session['oauth_state']) token_url = session['tokenUrl'] token_response = smart_auth_session.fetch_token(token_url, client_secret=client_secret, \ authorization_response=request.url) session['oauth_token'] = token_response if 'patient' in session: # Get the patient ID passed in with the token patient_id = token_response['patient'] return getPatientDetails(patient_id) else: return getPatientList() """ Access a protected FHIR resource from the SMART server, passing our access token in the request """ def getPatientDetails(patient_id): protected_resource_request = OAuth2Session(client_id, token=session['oauth_token']) fhir_root = session['serviceUri'] patient_url = fhir_root+"/Patient/"+patient_id return json.dumps(protected_resource_request.get(patient_url).json()) def getPatientList(): protected_resource_request = OAuth2Session(client_id, token=session['oauth_token']) fhir_root = session['serviceUri'] patient_url = fhir_root+"/Patient" return json.dumps(protected_resource_request.get(patient_url).json()) """ Takes the base FHIR server URL and uses it to retrieve a conformance resource for the server """ def getRemoteResource(serviceUri): remoteEndpoint = (serviceUri + '/metadata')[8:] separator = remoteEndpoint.find('/') host = remoteEndpoint[:separator] path = remoteEndpoint[separator:] conn = http.client.HTTPSConnection(host) conn.request("GET", path) response = conn.getresponse() resultResource = response.readall().decode('utf-8') return resultResource """ Initialise our Flask server in debug mode """ if __name__ == '__main__': import os os.environ['OAUTHLIB_INSECURE_TRANSPORT'] = '1' os.environ['OAUTHLIB_RELAX_TOKEN_SCOPE'] = '1' app.secret_key = os.urandom(24) app.run(host="localhost", port=5000, debug=True)
ahatherly/SMART-on-FHIR-testclient
app.py
app.py
py
6,659
python
en
code
0
github-code
6
[ { "api_name": "http.client.client", "line_number": 15, "usage_type": "attribute" }, { "api_name": "http.client", "line_number": 15, "usage_type": "name" }, { "api_name": "logging.basicConfig", "line_number": 16, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 17, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 17, "usage_type": "attribute" }, { "api_name": "logging.getLogger", "line_number": 18, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 19, "usage_type": "attribute" }, { "api_name": "flask.Flask", "line_number": 35, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 43, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 45, "usage_type": "name" }, { "api_name": "flask.request.args.get", "line_number": 56, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 56, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 56, "usage_type": "name" }, { "api_name": "flask.request.args.get", "line_number": 57, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 57, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 57, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 59, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 60, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 77, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 93, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 94, "usage_type": "name" }, { "api_name": "requests_oauthlib.OAuth2Session", "line_number": 100, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 102, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 103, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 104, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 105, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 107, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 108, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 111, "usage_type": "name" }, { "api_name": "flask.redirect", "line_number": 114, "usage_type": "call" }, { "api_name": "requests_oauthlib.OAuth2Session", "line_number": 124, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 124, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 125, "usage_type": "name" }, { "api_name": "flask.request.url", "line_number": 128, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 128, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 130, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 132, "usage_type": "name" }, { "api_name": "requests_oauthlib.OAuth2Session", "line_number": 143, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 143, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 144, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 146, "usage_type": "call" }, { "api_name": "requests_oauthlib.OAuth2Session", "line_number": 149, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 149, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 150, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 152, "usage_type": "call" }, { "api_name": "http.client.client.HTTPSConnection", "line_number": 162, "usage_type": "call" }, { "api_name": "http.client.client", "line_number": 162, "usage_type": "attribute" }, { "api_name": "http.client", "line_number": 162, "usage_type": "name" }, { "api_name": "os.environ", "line_number": 173, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 174, "usage_type": "attribute" }, { "api_name": "os.urandom", "line_number": 175, "usage_type": "call" } ]
11221441363
import os, bcrypt from datetime import datetime from flask import Flask, request, jsonify, render_template from flask_sqlalchemy import SQLAlchemy app = Flask(__name__, static_folder='.') app.config['UPLOAD_FOLDER'] = 'uploads' app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///app.db' app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False db = SQLAlchemy(app) class User(db.Model): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(20), unique=True, nullable=False) email = db.Column(db.String(120), unique=True, nullable=False) password = db.Column(db.BINARY(60), nullable=False) posts = db.relationship('Post', backref='author', lazy=True) def __repr__(self): return f'User({self.username}, {self.email})' class Post(db.Model): id = db.Column(db.Integer, primary_key=True) type = db.Column(db.Integer, nullable=False) date = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) position = db.Column(db.String(), nullable=False) description = db.Column(db.Text, nullable=False) user_id = db.Column(db.Integer, db.ForeignKey('user.id'), nullable=False) def __repr__(self): return f'Post({type}, {self.date})' def serialize(self): return { 'id': self.id, 'type': self.type, 'date': self.date, 'position': self.position, 'description': self.description, 'user_id': self.user_id } def path(id): return os.path.join(app.config['UPLOAD_FOLDER'], str(id) + '.jpg') @app.route('/') def hello(): return 'Hello World!' @app.route('/user', methods=['POST']) def user(): if 'id' not in request.form: return 'id missing', 400 user = User.query.filter_by(id=request.form['id']).first() if user == None: return 'inexistant', 404 return user.username @app.route('/data', methods=['GET', 'POST', 'DELETE']) def data(): if request.method == 'POST': for key in ['type', 'position', 'description', 'user_id']: if request.form.get(key) == None: return key + ' missing', 400 if 'image' not in request.files: return 'image missing', 400 file = request.files['image'] if file.filename == '': return 'image missing', 400 post = Post( type = request.form['type'], position = request.form['position'], description = request.form['description'], user_id = request.form['user_id'] ) db.session.add(post) db.session.flush() file.save(path(post.id)) db.session.commit() return jsonify(post.serialize()) elif request.method == 'DELETE': if 'id' not in request.form: return 'id missing', 400 id=request.form['id'] Post.query.filter_by(id=id).delete() db.session.commit() file = path(id) if os.path.exists(file): os.remove(file) return 'ok' if request.args.get('form') != None: return app.send_static_file('app.html') if request.args.get('id') != None: post = Post.query.filter_by(id=request.args['id']).first() if post == None: return 'not found', 404 return jsonify(post.serialize()) return jsonify([post.serialize() for post in Post.query.all()]) # if neither, 405 ou 406 if __name__ == '__main__': app.run(debug = True)
tran-simon/hackatown
app.py
app.py
py
3,082
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 6, "usage_type": "call" }, { "api_name": "flask_sqlalchemy.SQLAlchemy", "line_number": 11, "usage_type": "call" }, { "api_name": "datetime.datetime.utcnow", "line_number": 26, "usage_type": "attribute" }, { "api_name": "datetime.datetime", "line_number": 26, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 45, "usage_type": "call" }, { "api_name": "os.path", "line_number": 45, "usage_type": "attribute" }, { "api_name": "flask.request.form", "line_number": 53, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 53, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 55, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 55, "usage_type": "name" }, { "api_name": "flask.request.method", "line_number": 62, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 62, "usage_type": "name" }, { "api_name": "flask.request.form.get", "line_number": 64, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 64, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 64, "usage_type": "name" }, { "api_name": "flask.request.files", "line_number": 66, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 66, "usage_type": "name" }, { "api_name": "flask.request.files", "line_number": 68, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 68, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 72, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 72, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 73, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 73, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 74, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 74, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 75, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 75, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 81, "usage_type": "call" }, { "api_name": "flask.request.method", "line_number": 82, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 82, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 83, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 83, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 85, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 85, "usage_type": "name" }, { "api_name": "os.path.exists", "line_number": 89, "usage_type": "call" }, { "api_name": "os.path", "line_number": 89, "usage_type": "attribute" }, { "api_name": "os.remove", "line_number": 90, "usage_type": "call" }, { "api_name": "flask.request.args.get", "line_number": 92, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 92, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 92, "usage_type": "name" }, { "api_name": "flask.request.args.get", "line_number": 94, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 94, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 94, "usage_type": "name" }, { "api_name": "flask.request.args", "line_number": 95, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 95, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 98, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 99, "usage_type": "call" } ]
71144565947
#!/usr/bin/env python3 from dotenv import load_dotenv from pet_posts import bot import logging import os def main(): load_dotenv() # take environment variables from .env. api_token = os.getenv("API_TOKEN") logging.basicConfig( format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", level=logging.INFO, ) updater = bot.init(api_token) bot.configure(updater.dispatcher) bot.run(updater) if __name__ == "__main__": main()
dawngerpony/pet-posts
app.py
app.py
py
483
python
en
code
0
github-code
6
[ { "api_name": "dotenv.load_dotenv", "line_number": 10, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 11, "usage_type": "call" }, { "api_name": "logging.basicConfig", "line_number": 13, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 15, "usage_type": "attribute" }, { "api_name": "pet_posts.bot.init", "line_number": 18, "usage_type": "call" }, { "api_name": "pet_posts.bot", "line_number": 18, "usage_type": "name" }, { "api_name": "pet_posts.bot.configure", "line_number": 19, "usage_type": "call" }, { "api_name": "pet_posts.bot", "line_number": 19, "usage_type": "name" }, { "api_name": "pet_posts.bot.run", "line_number": 20, "usage_type": "call" }, { "api_name": "pet_posts.bot", "line_number": 20, "usage_type": "name" } ]
26628419049
import cv2 import numpy as np import urllib.request from threading import Thread import socket import time import requests import json class Streamer: ''' description:- Class responsible for connecting to the anrdroid app and managing the data communication. How it works: - every massege from and to the app are encapsulated by a starting tag and an ending tag - the sending side (either android or pc side) first turn the massege to a byte array then appends to the start and end of that array with a tag. - for example when sending frame masseges from the app, the massege is as follows: [FRAME START TAG] [BYTE STREAM] [FRAME END TAG] Inputs: src: string, ip address of the android port: int, port of the app on the android buffer_size: int, amount of incoming frames to buffer f_st: string, specify the frame start tag f_en: string, specify the frame end tag d_st: string, specify the data start tag d_en: string, specify the data end tag ''' def __init__(self, src, port, buffer_size=5, f_st="frame_start", f_en="frame_end", d_st="data_start", d_en="data_end"): self.src = src self.port = port self.buffer_size = buffer_size self.f_st, self.f_en, self.d_st, self.d_en =f_st, f_en, d_st, d_en # initialize the socket and connect self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.sock.setblocking(True) self.sock.settimeout(3) try: self.sock.connect((src, port)) except: self.sock = None self.stop_threads = True return None # initialize the buffers # frame buffer (circular buffer) self.frame_insert_idx = 0 self.frame_output_idx = 0 self.frames = [None] * buffer_size self.data = None # data buffer (1 slot buffer) # start the thread responsible for receiving and buffering the incoming masseges self.stop_threads = False Thread(target=self.thread).start() def thread(self): ''' Main thread that recives and extracts masseges from the app ''' frame_conversion, data_conversion = False, False recv_size = 1024 # initial byte buffer size for the socket buffer = b'' # general byte buffer frame_buffer, data_buffer = b'', b'' # byte buffer for the frame and data masseges while self.stop_threads == False: if(self.sock._closed): # stop if socket is closed self.stop_threads = self.sock._closed break try: r = self.sock.recv(recv_size) # receive the byte stream if len(r) == 0: exit(0) buffer += r # add the received byte stream to the general buffer # Extract frame masseges============================================ if frame_conversion == False: s = buffer.find(bytearray(self.f_st, encoding ='utf-8')) if s != -1: frame_conversion = True frame_buffer = b'' if frame_conversion: e = buffer.find(bytearray(self.f_en, encoding ='utf-8')) if e != -1: frame_conversion = False frame_buffer = buffer[s+len(self.f_st):e] buffer = buffer[:s] +buffer[e+len(self.f_en):] recv_size = 512 + len(frame_buffer) else: continue #################################################################### # Extract data masseges============================================= if data_conversion == False: s = buffer.find(bytearray(self.d_st, encoding ='utf-8')) if s != -1: data_conversion = True data_buffer = b'' if data_conversion: e = buffer.find(bytearray(self.d_en, encoding ='utf-8')) if e != -1: data_conversion = False data_buffer = buffer[s+len(self.d_st):e] buffer = buffer[:s] +buffer[e+len(self.d_en):] self.data = data_buffer.decode('ascii') else: continue #################################################################### except Exception as e: print(e) continue try: # if frame buffer is not full if (self.frame_insert_idx+1) % self.buffer_size != self.frame_output_idx: # decode the byte frame massege to a numpy array nparr = np.fromstring(frame_buffer, np.uint8) frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR) if type(frame) is type(None): print("frame dropped") pass # store the frame in the frame buffer self.frames[self.frame_insert_idx] = frame # increment the input index of the ring buffer self.frame_insert_idx = (self.frame_insert_idx+1) % self.buffer_size except Exception as e: print(e) pass self.sock.close() def fetch_frame(self): ''' Blocking loop until a frame is available ''' while(self.frame_insert_idx == self.frame_output_idx and self.stop_threads == False ): continue frame = self.frames[self.frame_output_idx].copy() # increment the output index of the ring buffer self.frame_output_idx = (self.frame_output_idx+1) % self.buffer_size return frame def fetch_data(self): ''' fetch received data note: data is in json format and needs to be converted to json object first ''' try: if type(self.data) is not type(None) and self.data != "": data = self.data[self.data.find("{"):] data = json.loads(data) self.data= None return data except json.JSONDecodeError as e: print("fetch_data error:" +str(e)) self.data = None return None def send_data(self, data): ''' converts data to json format and encapsulates with start and end tags before sendong input: data: dictionary, data to be sent ''' try: data = "START" + json.dumps(data) + "END" self.sock.send(data.encode('utf-8')) # self.sock.send("START".encode('utf-8')) # self.sock.send(json.dumps(data).encode('utf-8')) # self.sock.send("END".encode('utf-8')) except ConnectionAbortedError as e: print("send_data error:" + str(e)) def release(self): self.stop_threads = True # testing if __name__ == "__main__": src = "172.16.17.188" port = 8888 streamer = Streamer(src, port) key = ' ' while key != ord("q"): frame = streamer.fetch_frame() cv2.imshow("show", frame) data = streamer.fetch_data() if type(data) is not type(None): # streamer.send_data(data) print(data) key = cv2.waitKey(1) streamer.release()
MohamedEshmawy/DeepRoasters
streamer/streamer_v2.py
streamer_v2.py
py
7,791
python
en
code
1
github-code
6
[ { "api_name": "socket.socket", "line_number": 39, "usage_type": "call" }, { "api_name": "socket.AF_INET", "line_number": 39, "usage_type": "attribute" }, { "api_name": "socket.SOCK_STREAM", "line_number": 39, "usage_type": "attribute" }, { "api_name": "threading.Thread", "line_number": 60, "usage_type": "call" }, { "api_name": "numpy.fromstring", "line_number": 126, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 126, "usage_type": "attribute" }, { "api_name": "cv2.imdecode", "line_number": 127, "usage_type": "call" }, { "api_name": "cv2.IMREAD_COLOR", "line_number": 127, "usage_type": "attribute" }, { "api_name": "json.loads", "line_number": 162, "usage_type": "call" }, { "api_name": "json.JSONDecodeError", "line_number": 165, "usage_type": "attribute" }, { "api_name": "json.dumps", "line_number": 177, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 199, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 205, "usage_type": "call" } ]
42123556181
# Partie1: Récupération des infos à partir d'un lien article # Choisissez n'importe quelle page Produit sur le site de Books to Scrape. Écrivez un script Python qui visite cette page et en extrait les informations suivantes : import sys import requests from bs4 import BeautifulSoup import csv import os import urllib.request # sys.argv -> list arguments passed to the script by the terminal (here the article url) url = sys.argv[1] response = requests.get(url) parser = BeautifulSoup(response.content, 'html.parser') products_infos = parser.find_all('td') data = [] # product_page_url data.append(url) # universal_product_code (upc) data.append(products_infos[0].string) # title data.append(parser.find('div', class_='product_main').h1.string) # price_including_tax price_including_tax = products_infos[3].string price_tva = price_including_tax.replace('£', '') data.append(price_tva) # price_excluding_tax price_excluding_tax = products_infos[2].string price_ht = price_excluding_tax.replace('£', '') data.append(price_ht) # number_available data.append(products_infos[5].string) # product_description find_p = parser.find_all('p') data.append(find_p[3].string) # category find_a = parser.find_all('a') data.append(find_a[3].string) # review_rating rate = parser.find('p', class_='star-rating') rate_class = rate.get('class') # Check if review is One, Two, Three, Four or five and append the result in the variable review review = 0 if 'One' in rate_class: review = 1 if 'Two' in rate_class: review = 2 if 'Three' in rate_class: review = 3 if 'Four' in rate_class: review = 4 if 'Five' in rate_class: review = 5 data.append(review) # image_url find_img = parser.find("img") source = find_img.get('src') image_url = source.replace("../../", "http://books.toscrape.com/") data.append(image_url) # GET images pictures = [] soup_div_picture = parser.find('div', class_='item active') soup_picture = soup_div_picture.find('img').get('src') find_image_url = 'http://books.toscrape.com/' + soup_picture pictures.append(find_image_url.replace('../../', '')) # Try to create pictures repertory, if it's not possible(error), dont do anything(continue) path = 'images/' try: os.makedirs(path) except OSError: if not os.path.isdir(path): raise # For each picture in pictures, open repertory pictures, copy / paste them inside and refactoring # their name(picture1, picture2...) for link in range(len(pictures)): img_url = pictures[link] print(img_url) with open(f'images/image{link + 1}.jpg', 'wb+') as f: f.write(urllib.request.urlopen(img_url).read()) # Try to open data, if there is no directory create it path = 'data' try: os.makedirs(path) except os.error: if not os.path.isdir(path): os.mkdir(path) # Écrivez les données dans un fichier CSV qui utilise les champs ci-dessus comme en-têtes de colonnes. header = ['product_page_url', 'universal_ product_code (upc)', 'title', 'price_including_tax', 'price_excluding_tax', 'number_available', 'product_description', 'category', 'review_rating', 'image_url'] with open('data/article_data.csv', 'w', encoding='utf-8') as article: w = csv.writer(article, delimiter=',') w.writerow(header) w.writerow(data)
glgstyle/MyBookScraper
scrap_article.py
scrap_article.py
py
3,256
python
en
code
0
github-code
6
[ { "api_name": "sys.argv", "line_number": 11, "usage_type": "attribute" }, { "api_name": "requests.get", "line_number": 12, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 13, "usage_type": "call" }, { "api_name": "os.makedirs", "line_number": 80, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 82, "usage_type": "call" }, { "api_name": "os.path", "line_number": 82, "usage_type": "attribute" }, { "api_name": "urllib.request.request.urlopen", "line_number": 91, "usage_type": "call" }, { "api_name": "urllib.request.request", "line_number": 91, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 91, "usage_type": "name" }, { "api_name": "os.makedirs", "line_number": 96, "usage_type": "call" }, { "api_name": "os.error", "line_number": 97, "usage_type": "attribute" }, { "api_name": "os.path.isdir", "line_number": 98, "usage_type": "call" }, { "api_name": "os.path", "line_number": 98, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 99, "usage_type": "call" }, { "api_name": "csv.writer", "line_number": 105, "usage_type": "call" } ]
43040033841
# -*- coding: utf-8 -*- """ @author: lucianavarromartin PRODUCTOR CONSUMIDOR 3(limited) El almacén ahora tiene espacio infinito, y cada productor tiene k subalmacenes que pueden estar llenos simultaneamente. Añadimos el objeto Lock, en este código, para tener un acceso controlado a los subalmacenes. El proceso para cuando cada productor ha repuesto el elemento de sus k almacenes, N veces, después de haber sido consumido por el consumidor. """ from multiprocessing import Process, Manager from multiprocessing import BoundedSemaphore, Semaphore, Lock from multiprocessing import current_process from multiprocessing import Array from time import sleep import random N = 3 # Cantidad de productos que puede fabricar cada productor K = 2 # Cantidad de subalmacenes NPROD = 3 #Número de productores def add_data(almacen, pid, data, mutex): mutex.acquire() try: almacen.append(pid*1000 + data) sleep(1) finally: mutex.release() def productor(almacen, pid, empty, non_empty, mutex): """ Cuando el productor produce, añade un elemento a su almacén, entonces se bloquea el semaforo empty asociado a este y se desbloquea el non_empty. """ dato = random.randint(0,5) for n in range(N): empty[pid].acquire() dato += random.randint(0,5) add_data(almacen, pid, dato, mutex) print (f"productor {current_process().name} almacenado {dato}") non_empty[pid].release() print(f"producer {current_process().name} Ha terminado de producir") empty[pid].acquire() sleep(1) non_empty[pid].release() def consumidor(almacen, empty, non_empty, mutex): """ Cuando el consumidor consume un elemento de uno de los productores este elemento ya no está en el almacén entonces se bloquea el semaforo non_empty asociado a este productor y se desbloquea el empty. """ for s in non_empty: s.acquire() sleep(1) ordenados = [] while len(ordenados) < NPROD * N: numeros = [] lista_posicion = [] for i in range(len(almacen)): if almacen[i] >= 0: numeros.append(almacen[i] % 1000) lista_posicion.append(almacen[i]//1000) if numeros == []: break dato = min(numeros) posicion = lista_posicion[numeros.index(dato)] posicion_almacen = almacen[:].index(dato + posicion * 1000) almacen[posicion_almacen]= -2 ordenados.append(dato) empty[posicion].release() print (f"consumidor {current_process().name} consumiendo {dato}") non_empty[posicion].acquire() print(ordenados) def main(): manager = Manager() almacen = manager.list() non_empty = [Semaphore(0) for i in range (NPROD)] empty = [BoundedSemaphore(K) for _ in range (NPROD)] mutex = Lock() prodlst = [Process(target=productor, name=f'prod_{i}', args=(almacen, i, empty, non_empty, mutex)) for i in range(NPROD)] cons = [ Process(target=consumidor, name=f'cons', args=(almacen, empty, non_empty, mutex))] for p in prodlst + cons: p.start() for p in prodlst + cons: p.join() if __name__ == '__main__': main()
lucnav01/ProductorConsumidor
ProductorConsumidor3NavarroMartinLucia.py
ProductorConsumidor3NavarroMartinLucia.py
py
3,451
python
es
code
0
github-code
6
[ { "api_name": "time.sleep", "line_number": 32, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 41, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 44, "usage_type": "call" }, { "api_name": "multiprocessing.current_process", "line_number": 46, "usage_type": "call" }, { "api_name": "multiprocessing.current_process", "line_number": 48, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 50, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 61, "usage_type": "call" }, { "api_name": "multiprocessing.current_process", "line_number": 78, "usage_type": "call" }, { "api_name": "multiprocessing.Manager", "line_number": 83, "usage_type": "call" }, { "api_name": "multiprocessing.Semaphore", "line_number": 85, "usage_type": "call" }, { "api_name": "multiprocessing.BoundedSemaphore", "line_number": 86, "usage_type": "call" }, { "api_name": "multiprocessing.Lock", "line_number": 87, "usage_type": "call" }, { "api_name": "multiprocessing.Process", "line_number": 88, "usage_type": "call" }, { "api_name": "multiprocessing.Process", "line_number": 92, "usage_type": "call" } ]
70941003388
''' Created on 8/03/2016 @author: EJArizaR ''' import unittest from apps.DaneUsers.tests.test_base import test_base from django.core.urlresolvers import reverse class IsUsernameRegisteredTest(test_base): def setUp(self): test_base.setUp(self) def test_returns_False_if_user_doesnt_exist(self): response = self.client.get(reverse('DaneUsers:isUsernameRegistered'),{"username":"[email protected]"}) self.assertEqual(response.content, "False") def test_returns_True_if_exists(self): self.create_user() response = self.client.get(reverse('DaneUsers:isUsernameRegistered'),{"username":"[email protected]"}) self.assertEqual(response.content, "True") if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testName'] unittest.main()
diegopuerto/kiosco_universitario
source/apps/DaneUsers/tests/test_is_username_registered.py
test_is_username_registered.py
py
852
python
en
code
0
github-code
6
[ { "api_name": "apps.DaneUsers.tests.test_base.test_base", "line_number": 11, "usage_type": "name" }, { "api_name": "apps.DaneUsers.tests.test_base.test_base.setUp", "line_number": 15, "usage_type": "call" }, { "api_name": "apps.DaneUsers.tests.test_base.test_base", "line_number": 15, "usage_type": "name" }, { "api_name": "django.core.urlresolvers.reverse", "line_number": 18, "usage_type": "call" }, { "api_name": "django.core.urlresolvers.reverse", "line_number": 23, "usage_type": "call" }, { "api_name": "unittest.main", "line_number": 29, "usage_type": "call" } ]
32628012198
import pandas as pd import glob from datetime import datetime, timedelta # Leitura dos arquivos da pasta dataset def readCSV(): listCSV = [] namePath = 'dataset' # Select all csv in folder selected namesFiles = glob.glob(namePath + "/*.csv") # join all them for filename in namesFiles: df = pd.read_csv(filename, sep=';') dfMask = df['codmun'].isnull() filtered_df = df[dfMask] listCSV.append(filtered_df) frame = pd.concat(listCSV, axis=0, ignore_index=True) frame['data'] = pd.to_datetime(frame['data']) # .dt.strftime('%d/%m/%Y') return frame def itensCalculate(df, date, dateStart, uf): all = [] mask = df['data'] == date.strftime('%Y-%m-%d') dfAux = df[mask] # Date all.append(date) # State if uf == 76: all.append('Brasil') else: all.append(df['estado'].iloc[0]) # CasosAcumulado all.append(int(dfAux['casosAcumulado'].iloc[0])) # MediaMovelCasosAtual, MediaMovelCasosAnterior, Situação, Porcentagem for i in movingAverage(df, date, dateStart, 0): all.append(i) # ObitosAcumulados all.append(dfAux['obitosAcumulado'].iloc[0]) # MediaMovelObtitosAtual, MediaMovelObitosAnterior, Situação, Porcentagem for j in movingAverage(df, date, dateStart, 1): all.append(j) return all # number = 0 -> Casos or number != 0 -> Óbitos def movingAverage(df, date, dateStart, number): all = [] if number == 0: dfAux = df[['data', 'casosAcumulado']] else: dfAux = df[['data', 'obitosAcumulado']] # MediaMovelAtual mean_today = averageCall(df, date, dateStart, number) # MediaMovelAnterior mean_before = averageCall(df, date - timedelta(days=1), dateStart, number) all.append(int(mean_today)) all.append(int(mean_before)) # Situação e Porcentagem of each moving-average if mean_before == 0: if mean_today != 0: all.append('Aumento') all.append(100) else: all.append('Estabilidade') all.append('-') elif mean_today/mean_before > 1: all.append('Aumento') all.append(round(((mean_today/mean_before - 1)*100), 4)) elif mean_today/mean_before < 1: all.append('Diminuicao') all.append(round(abs(mean_today/mean_before - 1)*100, 4)) else: all.append('Estabilidade') all.append(round((mean_today/mean_before - 1)*100, 4)) return all def averageCall(df, date, dateStart, number): colum = '' if number == 0: colum = 'casosNovos' else: colum = 'obitosNovos' # First 7 days if date.strftime('%Y-%m-%d') < (dateStart + timedelta(days=7)).strftime('%Y-%m-%d'): mask = (df['data'] <= date.strftime('%Y-%m-%d')) dfAux = df[mask] return dfAux[colum].sum()/7 # After else: # Select part of dataframe that need to calculate mean mask = (df['data'] <= date.strftime('%Y-%m-%d')) & (df['data'] > (date - timedelta(days=7)).strftime('%Y-%m-%d')) dfAux = df[mask] return dfAux[colum].mean()
lfmaster780/dataCovid
utils.py
utils.py
py
3,138
python
en
code
0
github-code
6
[ { "api_name": "glob.glob", "line_number": 11, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 14, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 19, "usage_type": "call" }, { "api_name": "pandas.to_datetime", "line_number": 20, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 64, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 97, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 105, "usage_type": "call" } ]
37429761663
import os from bs4 import BeautifulSoup import requests import requests.exceptions import urllib.parse from collections import deque import re # Create the directory to store the scraped data if it does not already exist if not os.path.exists("scraped_data"): os.makedirs("scraped_data") user_url = str(input('[+] Enter Target URL To Scan: ')) urls = deque([user_url]) scraped_urls = set() emails = set() phone_numbers = set() count = 0 try: while len(urls): count += 1 if count == 100: break url = urls.popleft() scraped_urls.add(url) parts = urllib.parse.urlsplit(url) base_url = '{0.scheme}://{0.netloc}'.format(parts) path = url[:url.rfind('/')+1] if '/' in parts.path else url print('[%d] Processing %s' % (count, url)) try: response = requests.get(url) except (requests.exceptions.MissingSchema, requests.exceptions.ConnectionError): continue new_emails = set(re.findall(r"[a-z0-9\.\-+_]+@[a-z0-9\.\-+_]+\.[a-z]+", response.text, re.I)) emails.update(new_emails) new_phone_numbers = set(re.findall(r"\b\d{3}[-.]?\d{3}[-.]?\d{4}\b", response.text)) phone_numbers.update(new_phone_numbers) soup = BeautifulSoup(response.text, features="lxml") for anchor in soup.find_all("a"): link = anchor.attrs['href'] if 'href' in anchor.attrs else '' if link.startswith('/'): link = base_url + link elif not link.startswith('http'): link = path + link if not link in urls and not link in scraped_urls: urls.append(link) except KeyboardInterrupt: print('[-] Closing!') # Create a file to store the scraped email addresses with open("scraped_data/emails.txt", "w") as f: print("[+] Scraped Emails:") for email in emails: f.write(email + "\n") print(email) # Create a file to store the scraped phone numbers with open("scraped_data/phone_numbers.txt", "w") as f: print("\n[+] Scraped Phone Numbers:") for phone_number in phone_numbers: f.write(phone_number + "\n") print(phone_number) print("\n[+] Scraped data saved in 'scraped_data' folder.")
opemi-aa/email_phone_scrape
email_phone_scrape.py
email_phone_scrape.py
py
2,267
python
en
code
0
github-code
6
[ { "api_name": "os.path.exists", "line_number": 10, "usage_type": "call" }, { "api_name": "os.path", "line_number": 10, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 11, "usage_type": "call" }, { "api_name": "collections.deque", "line_number": 14, "usage_type": "call" }, { "api_name": "urllib.parse.parse.urlsplit", "line_number": 29, "usage_type": "call" }, { "api_name": "urllib.parse.parse", "line_number": 29, "usage_type": "attribute" }, { "api_name": "urllib.parse", "line_number": 29, "usage_type": "name" }, { "api_name": "requests.get", "line_number": 36, "usage_type": "call" }, { "api_name": "requests.exceptions", "line_number": 37, "usage_type": "attribute" }, { "api_name": "re.findall", "line_number": 40, "usage_type": "call" }, { "api_name": "re.I", "line_number": 40, "usage_type": "attribute" }, { "api_name": "re.findall", "line_number": 43, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 46, "usage_type": "call" } ]
5555757977
import copy from typing import Dict, List, Tuple import torch from data.low_res import SingleDomain from data.geography import frequency_encoded_latitude import numpy as np from data.vars import FIELD_MASK, FORCING_MASK, get_var_mask_name import xarray as xr from utils.xarray_oper import tonumpydict def determine_ndoms(*args,**kwargs): arglens = [1] for i in range(len(args)): if isinstance(args[i],list): arglens.append(len(args[i])) for key,_ in kwargs.items(): if isinstance(kwargs[key],list): arglens.append(len(kwargs[key])) return int(np.amax(arglens)) class MultiDomain(SingleDomain): def __init__(self,*args,**kwargs): super().__init__(*args,**kwargs) self.var_grouping = kwargs.pop('var_grouping') def get_lat_features(self,lats): posdict = self.locate(lats[0],lats[-1],lat = True) (n0,_),n = posdict['locs'],posdict["len"] slc = slice(n0,len(lats)+n0) abslat,signlat = frequency_encoded_latitude(n,self.half_spread*2+1) return np.cos(abslat[slc]),np.cos(signlat[slc]) def append_lat_features(self,outs): key = list(outs.keys())[0] lats = outs[key].u.lat.values abslat,signlat = self.get_lat_features(lats) n = len(outs[key].u.lon) abslat = abslat.reshape(-1,1)@np.ones((1,n)) signlat = signlat.reshape(-1,1)@np.ones((1,n)) latfeats = xr.Dataset( data_vars = dict( abslat = (["lat","lon"],abslat), signlat = (["lat","lon"],signlat), ), coords = dict( lon = outs[key].u.lon, lat = outs[key].u.lat ) ) outs['lat_feats'] = latfeats return outs class MultiDomainDataset(MultiDomain): def __init__(self,*args,scalars = None,latitude = False,temperature = False,torch_flag = False, **kwargs): self.scalars = scalars self.latitude = latitude self.temperature = temperature self.torch_flag = torch_flag self.input_kwargs = kwargs super().__init__(*args,**kwargs) @property def sslice(self,): return slice(self.half_spread,-self.half_spread) def pad(self,data_vars:dict,coords:dict): forcing_mask_names = [get_var_mask_name(fn) for fn in self.forcing_names] for name in data_vars.keys(): dims,vals = data_vars[name] if 'lat' not in dims or 'lon' not in dims: continue pad = (0,0) if name in self.forcing_names + forcing_mask_names and self.half_spread>0: vrshp = list(vals.shape) vals = vals.reshape([-1]+ vrshp[-2:]) vals = vals[:,self.sslice,self.sslice] vals = vals.reshape(vrshp[:-2] + list(vals.shape[-2:])) # print(f'{vrshp}->{vals.shape}' ) padtuple = (len(vals.shape)-2)*[(0,0)] + [(0,pad[0]),(0,pad[1])] vals = np.pad(vals,pad_width = tuple(padtuple),constant_values = np.nan) data_vars[name] = (dims,vals) def pad_coords(coords,slice_flag = False): lat = coords['lat'] pad = 0 coords['lat_pad'] = pad lat = np.pad(lat,pad_width = ((0,pad),),constant_values = 0) if slice_flag: lat = lat[self.sslice] coords['lat'] = lat lon = coords['lon'] pad = 0 coords['lon_pad'] = pad lon = np.pad(lon,pad_width = ((0,pad),),constant_values = 0) if slice_flag: lon = lon[self.sslice] coords['lon'] = lon return coords forcing_coords = pad_coords(copy.deepcopy(coords),slice_flag=self.half_spread>0) coords = pad_coords(coords,slice_flag=False) return data_vars,coords,forcing_coords def add_lat_features(self,data_vars,coords): lats = coords['lat'] lons = coords['lon'] abslat,signlat = self.get_lat_features(lats) data_vars['abs_lat'] = (['lat','lon'], abslat.reshape([-1,1]) @ np.ones((1,len(lons)))) data_vars['sign_lat'] = (['lat','lon'],signlat.reshape([-1,1]) @ np.ones((1,len(lons)))) return data_vars def group_variables(self,data_vars): groups = [] for vargroup in self.var_grouping: valdict = {} for varname in vargroup: if varname not in data_vars: continue valdict[varname] = data_vars[varname] # for suff in '_mean _std'.split(): for suff in '_scale '.split(): nvarname = varname + suff if nvarname in data_vars: valdict[nvarname] = data_vars[nvarname] groups.append(valdict) return tuple(groups) def group_np_stack(self,vargroups): return tuple([self._np_stack(vars) for vars in vargroups]) def _np_stack(self,vals:Dict[str,Tuple[List[str],np.ndarray]]): v = [] for _,val in vals.values(): v.append(val) if len(v) == 0: return np.empty(0) else: return np.stack(v,axis =0) def group_to_torch(self,vargroups): return tuple([self._to_torch(vars) for vars in vargroups]) def _to_torch(self,vals:np.array,dtype = torch.float32): # vals = vals[:,300:-280,300:-280] return torch.from_numpy(vals).type(dtype) def normalize(self,data_vars,coords): keys_list = tuple(data_vars.keys()) for key in keys_list: dims,vals = data_vars[key] if 'lat' not in dims or 'lon' not in dims: continue shp = {d:len(coords[d]) for d in dims} newdims = {key:None for key in shp} if 'lon' in shp: shp['lon'] = 1 newdims.pop('lon') if 'lat' in shp: shp['lat'] = 1 newdims.pop('lat') shp0 = [shp[key] for key in newdims] shp1 = list(shp.values()) newdims = list(newdims.keys()) a = np.ones(shp0) if self.scalars is not None: if f"{key}_scale" in self.scalars: a = self.scalars[f"{key}_scale"].values a = a.reshape(shp0) if not self.torch_flag: data_vars[f"{key}_scale"] = (newdims,a) # data_vars[f"{key}_mean"] = (newdims,a) # data_vars[f"{key}_std"] = (newdims,b) # vals = (vals - a.reshape(shp1))/b.reshape(shp1) vals = vals/a.reshape(shp1) data_vars[key] = (dims,vals) return data_vars,coords def mask(self,data_vars): keys_list = tuple(data_vars.keys()) for key in keys_list: dims,f = data_vars[key] if not ('lat' in dims and 'lon' in dims): continue mask = f==f f[~mask] = 0 mask_found = False for group,group_mask in zip([self.field_names,self.forcing_names],[FIELD_MASK,FORCING_MASK]): if key in group: mask = data_vars[group_mask][1] mask_found =True break if mask_found: varmask = get_var_mask_name(key) data_vars[varmask] = (dims,mask) if not self.torch_flag: data_vars[f"{varmask}_normalization"] = (['normalization'],np.array([0,1])) return data_vars def __getitem__(self, i): ds = super().__getitem__(i) # print(f'MultiDomainDataset - {[f"{key}-{val.shape}" for key,val in ds.coords.items()]}') per_region = [] requested_boundaries = ([None]*4,) if self.requested_boundaries is None else self.requested_boundaries # print(f'requested_boundaries = {requested_boundaries}') for lat0,lat1,lon0,lon1 in requested_boundaries: if lat0 is not None: subds = ds.sel(lat = slice(lat0,lat1),lon= slice(lon0,lon1)) else: subds = ds single_dom_out = self.single_domain(subds) if not self.torch_flag: return single_dom_out per_region.append(single_dom_out) cropped_per_region = [] def get_slice(length: int, length_to: int): d_left = max(0, (length - length_to) // 2) d_right = d_left + max(0, (length - length_to)) % 2 return slice(d_left, length - d_right) for var_inputs in zip(*per_region): shps = [] for var_in in var_inputs: shps.append(np.array(var_in.shape)) shps = np.stack(shps,axis = 0) shps = np.amin(shps,axis =0) # shps = np.amax(shps,axis =0) group = [] for var_in in var_inputs: slcs = [get_slice(shp,_shp) for shp,_shp in zip(var_in.shape,shps)] var_in = var_in[slcs[0],slcs[1],slcs[2]] # var_in = var_in[:shps[0],:shps[1],:shps[2]] group.append(var_in) # zer =torch.zeros(*shps) # shps_ = var_in.shape # zer[:shps_[0],:shps_[1],:shps_[2]] = var_in # group.append(zer) group = torch.stack(group,dim = 0) cropped_per_region.append(group) min_gpu_reject_size = 200 max_shape = np.stack([np.array(group.shape[2:]) for group in cropped_per_region],axis = 0) max_shape = np.amax(max_shape,axis = 0) pad_shape = np.maximum(min_gpu_reject_size - max_shape,0) if True:#np.all(pad_shape == 0) or not torch.cuda.is_available(): return tuple(cropped_per_region) cropped_per_region_ = [] for group in cropped_per_region: shp = group.shape padded_shape = np.array(shp) padded_shape[2:] += pad_shape z = torch.zeros(*padded_shape) z[:,:,:shp[2],:shp[3]] = group cropped_per_region_.append(z) return tuple(cropped_per_region_) def single_domain(self,outs): data_vars,coords = tonumpydict(outs) # for key,(dim,val) in data_vars.items(): # print(f'{key}-{dim}: {val.shape}') for ik,iv in self.input_kwargs.items(): if ik not in coords: if np.isscalar(iv) or isinstance(iv,str): coords[ik] = np.array([iv]) # print('\n'.join([f'{key} : {type(coords[key])}' for key in coords])) # print('\n'.join([f'{key} : {data_vars[key][1].shape}' for key in data_vars])) # raise Exception if self.latitude: data_vars = self.add_lat_features(data_vars,coords) data_vars,coords = self.normalize(data_vars,coords) data_vars = self.mask(data_vars) data_vars,coords,forcing_coords = self.pad(data_vars,coords) # dropkeys = [] # for key in data_vars: # if 'normalization' in key or 'scale' in key: # dropkeys.append(key) # continue # if 'S' not in key: # dropkeys.append(key) # continue # for dk in dropkeys: # data_vars.pop(dk) # selkeys = 'Su Sv Stemp'.split() # data_vars = {key:data_vars[key] for key in selkeys} # ds = xr.Dataset(data_vars,forcing_coords) # ds = np.log10(np.abs(ds)) # print(ds) # plot_ds(ds,'ds.png',ncols = 1) # raise Exception grouped_vars = self.group_variables(data_vars) if self.torch_flag: grouped_vars = self.group_np_stack(grouped_vars) return self.group_to_torch(grouped_vars) else: grouped_vars = list(grouped_vars) grouped_vars.append(coords) grouped_vars.append(forcing_coords) return tuple(grouped_vars)
CemGultekin1/cm2p6
data/low_res_dataset.py
low_res_dataset.py
py
12,208
python
en
code
0
github-code
6
[ { "api_name": "numpy.amax", "line_number": 18, "usage_type": "call" }, { "api_name": "data.low_res.SingleDomain", "line_number": 19, "usage_type": "name" }, { "api_name": "data.geography.frequency_encoded_latitude", "line_number": 27, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 28, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 34, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 35, "usage_type": "call" }, { "api_name": "xarray.Dataset", "line_number": 36, "usage_type": "call" }, { "api_name": "data.vars.get_var_mask_name", "line_number": 66, "usage_type": "call" }, { "api_name": "numpy.pad", "line_number": 79, "usage_type": "call" }, { "api_name": "numpy.nan", "line_number": 79, "usage_type": "attribute" }, { "api_name": "numpy.pad", "line_number": 86, "usage_type": "call" }, { "api_name": "numpy.pad", "line_number": 94, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 100, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 109, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 110, "usage_type": "call" }, { "api_name": "typing.Dict", "line_number": 130, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 130, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 130, "usage_type": "name" }, { "api_name": "numpy.ndarray", "line_number": 130, "usage_type": "attribute" }, { "api_name": "numpy.empty", "line_number": 135, "usage_type": "call" }, { "api_name": "numpy.stack", "line_number": 137, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 140, "usage_type": "attribute" }, { "api_name": "torch.float32", "line_number": 140, "usage_type": "attribute" }, { "api_name": "torch.from_numpy", "line_number": 142, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 160, "usage_type": "call" }, { "api_name": "data.vars.FIELD_MASK", "line_number": 186, "usage_type": "name" }, { "api_name": "data.vars.FORCING_MASK", "line_number": 186, "usage_type": "name" }, { "api_name": "data.vars.get_var_mask_name", "line_number": 192, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 195, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 220, "usage_type": "call" }, { "api_name": "numpy.stack", "line_number": 221, "usage_type": "call" }, { "api_name": "numpy.amin", "line_number": 222, "usage_type": "call" }, { "api_name": "torch.stack", "line_number": 234, "usage_type": "call" }, { "api_name": "numpy.stack", "line_number": 237, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 237, "usage_type": "call" }, { "api_name": "numpy.amax", "line_number": 238, "usage_type": "call" }, { "api_name": "numpy.maximum", "line_number": 239, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 245, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 247, "usage_type": "call" }, { "api_name": "utils.xarray_oper.tonumpydict", "line_number": 253, "usage_type": "call" }, { "api_name": "numpy.isscalar", "line_number": 258, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 259, "usage_type": "call" } ]
11472792272
import re import time import datetime import json import copy import random import os from pathlib import Path from urllib.parse import quote from amiyabot import PluginInstance from core.util import read_yaml from core import log, Message, Chain from core.database.user import User, UserInfo from core.database.bot import OperatorConfig from core.resource.arknightsGameData import ArknightsGameData, ArknightsGameDataResource, Operator from .database import AmiyaBotWifuStatusDataBase curr_dir = os.path.dirname(__file__) class WifuPluginInstance(PluginInstance): def install(self): AmiyaBotWifuStatusDataBase.create_table(safe=True) bot = WifuPluginInstance( name='每日随机助理', version='1.4', plugin_id='amiyabot-arknights-hsyhhssyy-wifu', plugin_type='', description='每日生成一个随机助理', document=f'{curr_dir}/README.md' ) def compare_date_difference(day1: str,day2: str): time_array1 = time.strptime(''.join(day1.split(' ')[0]), "%Y-%m-%d") timestamp_day1 = int(time.mktime(time_array1)) time_array2 = time.strptime(''.join(day2.split(' ')[0]), "%Y-%m-%d") timestamp_day2 = int(time.mktime(time_array2)) result = (timestamp_day1 - timestamp_day2) // 60 // 60 // 24 return result def compare_second_difference(day1: str,day2: str): time_array1 = time.strptime(''.join(day1.split(' ')[0]), "%Y-%m-%d %H:%M:%S") timestamp_day1 = int(time.mktime(time_array1)) time_array2 = time.strptime(''.join(day2.split(' ')[0]), "%Y-%m-%d %H:%M:%S") timestamp_day2 = int(time.mktime(time_array2)) result = (timestamp_day1 - timestamp_day2) return result async def wifu_action(data: Message): # log.info('触发了选老婆功能.') wifu_meta: dict = UserInfo.get_meta_value(data.user_id,'amiyabot-arknights-wifu') now = datetime.date.today() #查看User是不是已经有Wifu了 if wifu_meta.__contains__('wifu_date') and wifu_meta.__contains__('wifu_name'): # 计算日期 last_wifu_time = wifu_meta['wifu_date'] time_delta = compare_date_difference(now.strftime("%Y-%m-%d"),last_wifu_time) if time_delta<1 : log.info(f'选老婆TimeDelta{time_delta}') return await show_existing_wifu(data,data.user_id) wifu_meta['wifu_date'] = now.strftime("%Y-%m-%d") # 随机一位 Wifu给他 operators = {} if not operators: operators = copy.deepcopy(ArknightsGameData().operators) operator = operators.pop(random.choice(list(operators.keys()))) while OperatorConfig.get_or_none(operator_name=operator.name,operator_type=8): operator = operators.pop(random.choice(list(operators.keys()))) wifu_meta['wifu_name'] = operator.name UserInfo.set_meta_value(data.user_id,'amiyabot-arknights-wifu',wifu_meta) AmiyaBotWifuStatusDataBase.create(channel_id=data.channel_id, user_id=data.user_id, wifu_name=operator.name, create_at=datetime.date.today()) count = count_in_channel(data.channel_id,operator.name,data.user_id) str = f'博士,您今日选到的助理是干员{operator.name}呢' if count>1: str+=f",他已经是第{count}次成为您的助理了!\n" else: str+="!\n" ask = Chain(data, at=True).text(str) return await create_ret_data(data, ask,operator) async def create_ret_data(data, ask,operator): skin = random.choice(operator.skins()) skin_path = await ArknightsGameDataResource.get_skin_file(skin) if not skin_path: return ask.text('目前还没有该干员的立绘,真是抱歉博士~[face:9]') else: relative_path = Path(f"../../../{skin_path}") log.info(f'skin: {relative_path}') ask.html(path=f'{curr_dir}/template/wifu.html', data={"id": "testAlt", "image": quote(f"{relative_path}")}, width=1024) voices = operator.voices() if not voices: log.info(f'No voice file for operator {operator.operator_name}.') return ask else: voice = voices[0] voice_path = await ArknightsGameDataResource.get_voice_file(operator, voice['voice_title'],'_cn') if not voice_path: return ask else: return ask.text(voice['voice_text'].replace('{@nickname}',data.nickname)).voice(voice_path) return ask # 计算user_id在指定channel_id和wifu_name下的记录count数 def count_in_channel(channel_id, wifu_name, user_id): return AmiyaBotWifuStatusDataBase.select().where( (AmiyaBotWifuStatusDataBase.channel_id == channel_id) & (AmiyaBotWifuStatusDataBase.wifu_name == wifu_name) & (AmiyaBotWifuStatusDataBase.user_id == user_id) ).count() # 计算user_id在全部channel_id和指定wifu_name下的记录count数 def count_in_all_channels(wifu_name, user_id): return AmiyaBotWifuStatusDataBase.select().where( (AmiyaBotWifuStatusDataBase.wifu_name == wifu_name) & (AmiyaBotWifuStatusDataBase.user_id == user_id) ).count() async def show_existing_wifu(data: Message, user_id: int): wifu_meta: dict = UserInfo.get_meta_value(user_id,'amiyabot-arknights-wifu') operator_name = wifu_meta['wifu_name'] operators = {} if not operators: operators = copy.deepcopy(ArknightsGameData().operators) operator = operators[operator_name] # 测试用代码 # AmiyaBotWifuStatusDataBase.create(channel_id=data.channel_id, user_id=data.user_id, wifu_name=operator.name, # create_at=datetime.date.today()) count = count_in_channel(data.channel_id,operator.name,data.user_id) str = f'博士,您今天已经选过助理啦,您的助理是干员{operator.name}哦' if count>1: str+=f",他已经是第{count}次成为您的助理了呢~" else: str+="~" ask = Chain(data, at=True).text(str) return await create_ret_data(data,ask,operator) @bot.on_message(keywords=['选老婆', '抽老婆', '选助理', '抽助理'],level=2) async def _(data: Message): return await wifu_action(data)
hsyhhssyy/amiyabot-arknights-hsyhhssyy-wifu
main.py
main.py
py
6,170
python
en
code
0
github-code
6
[ { "api_name": "os.path.dirname", "line_number": 19, "usage_type": "call" }, { "api_name": "os.path", "line_number": 19, "usage_type": "attribute" }, { "api_name": "amiyabot.PluginInstance", "line_number": 21, "usage_type": "name" }, { "api_name": "database.AmiyaBotWifuStatusDataBase.create_table", "line_number": 23, "usage_type": "call" }, { "api_name": "database.AmiyaBotWifuStatusDataBase", "line_number": 23, "usage_type": "name" }, { "api_name": "time.strptime", "line_number": 35, "usage_type": "call" }, { "api_name": "time.mktime", "line_number": 36, "usage_type": "call" }, { "api_name": "time.strptime", "line_number": 37, "usage_type": "call" }, { "api_name": "time.mktime", "line_number": 38, "usage_type": "call" }, { "api_name": "time.strptime", "line_number": 44, "usage_type": "call" }, { "api_name": "time.mktime", "line_number": 45, "usage_type": "call" }, { "api_name": "time.strptime", "line_number": 46, "usage_type": "call" }, { "api_name": "time.mktime", "line_number": 47, "usage_type": "call" }, { "api_name": "core.Message", "line_number": 51, "usage_type": "name" }, { "api_name": "core.database.user.UserInfo.get_meta_value", "line_number": 54, "usage_type": "call" }, { "api_name": "core.database.user.UserInfo", "line_number": 54, "usage_type": "name" }, { "api_name": "datetime.date.today", "line_number": 56, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 56, "usage_type": "attribute" }, { "api_name": "core.log.info", "line_number": 65, "usage_type": "call" }, { "api_name": "core.log", "line_number": 65, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 74, "usage_type": "call" }, { "api_name": "core.resource.arknightsGameData.ArknightsGameData", "line_number": 74, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 76, "usage_type": "call" }, { "api_name": "core.database.bot.OperatorConfig.get_or_none", "line_number": 78, "usage_type": "call" }, { "api_name": "core.database.bot.OperatorConfig", "line_number": 78, "usage_type": "name" }, { "api_name": "random.choice", "line_number": 79, "usage_type": "call" }, { "api_name": "core.database.user.UserInfo.set_meta_value", "line_number": 83, "usage_type": "call" }, { "api_name": "core.database.user.UserInfo", "line_number": 83, "usage_type": "name" }, { "api_name": "database.AmiyaBotWifuStatusDataBase.create", "line_number": 85, "usage_type": "call" }, { "api_name": "database.AmiyaBotWifuStatusDataBase", "line_number": 85, "usage_type": "name" }, { "api_name": "datetime.date.today", "line_number": 86, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 86, "usage_type": "attribute" }, { "api_name": "core.Chain", "line_number": 97, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 103, "usage_type": "call" }, { "api_name": "core.resource.arknightsGameData.ArknightsGameDataResource.get_skin_file", "line_number": 104, "usage_type": "call" }, { "api_name": "core.resource.arknightsGameData.ArknightsGameDataResource", "line_number": 104, "usage_type": "name" }, { "api_name": "pathlib.Path", "line_number": 109, "usage_type": "call" }, { "api_name": "core.log.info", "line_number": 110, "usage_type": "call" }, { "api_name": "core.log", "line_number": 110, "usage_type": "name" }, { "api_name": "urllib.parse.quote", "line_number": 112, "usage_type": "call" }, { "api_name": "core.log.info", "line_number": 116, "usage_type": "call" }, { "api_name": "core.log", "line_number": 116, "usage_type": "name" }, { "api_name": "core.resource.arknightsGameData.ArknightsGameDataResource.get_voice_file", "line_number": 120, "usage_type": "call" }, { "api_name": "core.resource.arknightsGameData.ArknightsGameDataResource", "line_number": 120, "usage_type": "name" }, { "api_name": "database.AmiyaBotWifuStatusDataBase.select", "line_number": 132, "usage_type": "call" }, { "api_name": "database.AmiyaBotWifuStatusDataBase", "line_number": 132, "usage_type": "name" }, { "api_name": "database.AmiyaBotWifuStatusDataBase.channel_id", "line_number": 133, "usage_type": "attribute" }, { "api_name": "database.AmiyaBotWifuStatusDataBase", "line_number": 133, "usage_type": "name" }, { "api_name": "database.AmiyaBotWifuStatusDataBase.wifu_name", "line_number": 134, "usage_type": "attribute" }, { "api_name": "database.AmiyaBotWifuStatusDataBase", "line_number": 134, "usage_type": "name" }, { "api_name": "database.AmiyaBotWifuStatusDataBase.user_id", "line_number": 135, "usage_type": "attribute" }, { "api_name": "database.AmiyaBotWifuStatusDataBase", "line_number": 135, "usage_type": "name" }, { "api_name": "database.AmiyaBotWifuStatusDataBase.select", "line_number": 140, "usage_type": "call" }, { "api_name": "database.AmiyaBotWifuStatusDataBase", "line_number": 140, "usage_type": "name" }, { "api_name": "database.AmiyaBotWifuStatusDataBase.wifu_name", "line_number": 141, "usage_type": "attribute" }, { "api_name": "database.AmiyaBotWifuStatusDataBase", "line_number": 141, "usage_type": "name" }, { "api_name": "database.AmiyaBotWifuStatusDataBase.user_id", "line_number": 142, "usage_type": "attribute" }, { "api_name": "database.AmiyaBotWifuStatusDataBase", "line_number": 142, "usage_type": "name" }, { "api_name": "core.Message", "line_number": 145, "usage_type": "name" }, { "api_name": "core.database.user.UserInfo.get_meta_value", "line_number": 147, "usage_type": "call" }, { "api_name": "core.database.user.UserInfo", "line_number": 147, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 153, "usage_type": "call" }, { "api_name": "core.resource.arknightsGameData.ArknightsGameData", "line_number": 153, "usage_type": "call" }, { "api_name": "core.Chain", "line_number": 170, "usage_type": "call" }, { "api_name": "core.Message", "line_number": 175, "usage_type": "name" } ]
75341615226
"""Train an EfficientNetB4 model to predict GBM vs PCNSL. This requires TensorFlow >= 2.3.0. """ import argparse import math from pathlib import Path import pickle from typing import Tuple, Union import h5py import numpy as np import tensorflow as tf PathType = Union[str, Path] def augment_base(x, y): x = tf.image.random_brightness(x, max_delta=2) x = tf.image.random_flip_left_right(x) x = tf.image.random_flip_up_down(x) x = tf.image.random_hue(x, max_delta=0.25) return x, y def augment_base_and_noise(x, y): x, y = augment_base(x, y) # Apply gaussian noise to fraction of samples. x = tf.cond( pred=tf.random.uniform([]) < 0.1, true_fn=lambda: x + tf.random.normal(tf.shape(x), mean=0.0, stddev=0.05, dtype=x.dtype), false_fn=lambda: x, ) return x, y def load_data_into_train_val( data_path: PathType, augmentation: str ) -> Tuple[tf.data.Dataset, tf.data.Dataset]: print("Loading data from HDF5...", flush=True) with h5py.File(str(data_path)) as f: x_gbm = f["/gbm/380_380/features"][:] y_gbm = f["/gbm/380_380/labels"][:] x_pcnsl = f["/pcnsl/380_380/features"][:] y_pcnsl = f["/pcnsl/380_380/labels"][:] print("gbm features shape", x_gbm.shape) print("gbm labels shape", y_gbm.shape) print("pcnsl features shape", x_pcnsl.shape) print("pcnsl labels shape", y_pcnsl.shape, flush=True) x = np.concatenate((x_gbm, x_pcnsl)).astype(np.float32) y = np.concatenate((y_gbm, y_pcnsl)).astype(np.float32) # Shuffle the samples. The shuffling is the same for features and labels. print("Shuffling samples ...", flush=True) shuffle_inds = np.arange(y.shape[0]) np.random.seed(42) np.random.shuffle(shuffle_inds) x = x[shuffle_inds] y = y[shuffle_inds] inds = np.random.choice([0, 1], size=y.size, p=[0.85, 0.15]) x_train, y_train = x[inds == 0], y[inds == 0] x_val, y_val = x[inds == 1], y[inds == 1] # Create tf.data.Dataset print("Creating tf.data.Dataset ...", flush=True) batch_size = 8 dset_train = tf.data.Dataset.from_tensor_slices((x_train, y_train)) if augmentation == "none": print("Not applying augmentation.") elif augmentation == "base": print("Applying 'base' augmentation.") dset_train = dset_train.map(augment_base) elif augmentation == "base_and_noise": print("Applying 'base_and_noise' augmentation.") dset_train = dset_train.map(augment_base) else: raise ValueError(f"unknown augmentation type: {augmentation}") dset_train = dset_train.shuffle(1000, reshuffle_each_iteration=True) dset_train = dset_train.batch(batch_size) dset_val = tf.data.Dataset.from_tensor_slices((x_val, y_val)) dset_val = dset_val.batch(batch_size) return dset_train, dset_val def get_model() -> tf.keras.Model: print("Creating model ...", flush=True) tfkl = tf.keras.layers # This is from the tf.keras.applications.efficientnet implementation in version # 2.5.0 of tensorflow. DENSE_KERNEL_INITIALIZER = { "class_name": "VarianceScaling", "config": {"scale": 1.0 / 3.0, "mode": "fan_out", "distribution": "uniform"}, } base_model = tf.keras.applications.EfficientNetB4( include_top=False, input_shape=(380, 380, 3), weights="imagenet", ) base_model.activity_regularizer = tf.keras.regularizers.l2(l=0.01) _x = tfkl.GlobalAveragePooling2D(name="avg_pool")(base_model.output) _x = tfkl.Dropout(0.5)(_x) _x = tfkl.Dense( 1, activation="sigmoid", name="predictions", kernel_initializer=DENSE_KERNEL_INITIALIZER, )(_x) model = tf.keras.Model(inputs=base_model.input, outputs=_x) return model def main( data_path: PathType, checkpoint_prefix: PathType, augmentation: str = "none", epochs: int = 300, ): model = get_model() model.compile( optimizer=tf.keras.optimizers.Adam(1e-04), loss=tf.keras.losses.BinaryCrossentropy(from_logits=False), metrics=[tf.keras.metrics.BinaryAccuracy(), tf.keras.metrics.AUC()], ) def schedule_lr(epoch): if epoch < 50: return 1e-04 else: return 1e-04 * math.exp(0.015 * (50 - epoch)) checkpoint_prefix = Path(checkpoint_prefix) checkpoint_prefix.mkdir(parents=True, exist_ok=False) callbacks = [ tf.keras.callbacks.LearningRateScheduler(schedule_lr, verbose=1), tf.keras.callbacks.ModelCheckpoint( filepath=str(checkpoint_prefix / "ckpt_{epoch:03d}_{val_loss:0.4f}.hdf5"), save_best_only=True, verbose=1, ), ] dset_train, dset_val = load_data_into_train_val( data_path=data_path, augmentation=augmentation ) print("Beginning training...", flush=True) history = model.fit( dset_train, epochs=epochs, validation_data=dset_val, callbacks=callbacks, verbose=2, ) # We save as pickle and not as json because the numpy arrays in this dictionary # do not play nicely with json. Pickle is fine with it, though. print("Saving training/validation history to pickle file ...") with (checkpoint_prefix / "history.pkl").open("wb") as f: pickle.dump(history.history, f) def get_parsed_args() -> argparse.Namespace: p = argparse.ArgumentParser(description=__doc__) p.add_argument("data_path", help="Path to HDF5 with data.") p.add_argument("ckpt_prefix", help="Directory in which to save checkpoints.") p.add_argument( "--augmentation", choices=["none", "base", "base_and_noise"], default="none", help="Type of augmentation to apply to training data.", ) p.add_argument("--epochs", type=int, default=300, help="Number of epochs to train.") args = p.parse_args() args.data_path = Path(args.data_path) args.ckpt_prefix = Path(args.ckpt_prefix) return args if __name__ == "__main__": args = get_parsed_args() print("-" * 40) print("Arguments passed to this script:") for key, value in vars(args).items(): print(f" - {key}: {value}") print("-" * 40, flush=True) main( data_path=args.data_path, checkpoint_prefix=args.ckpt_prefix, augmentation=args.augmentation, epochs=args.epochs, ) print("Reached end of python script.")
kaczmarj/classification-of-gbm-vs-pcnsl-using-cnns
step1_train_model.py
step1_train_model.py
py
6,476
python
en
code
0
github-code
6
[ { "api_name": "typing.Union", "line_number": 16, "usage_type": "name" }, { "api_name": "pathlib.Path", "line_number": 16, "usage_type": "name" }, { "api_name": "tensorflow.image.random_brightness", "line_number": 20, "usage_type": "call" }, { "api_name": "tensorflow.image", "line_number": 20, "usage_type": "attribute" }, { "api_name": "tensorflow.image.random_flip_left_right", "line_number": 21, "usage_type": "call" }, { "api_name": "tensorflow.image", "line_number": 21, "usage_type": "attribute" }, { "api_name": "tensorflow.image.random_flip_up_down", "line_number": 22, "usage_type": "call" }, { "api_name": "tensorflow.image", "line_number": 22, "usage_type": "attribute" }, { "api_name": "tensorflow.image.random_hue", "line_number": 23, "usage_type": "call" }, { "api_name": "tensorflow.image", "line_number": 23, "usage_type": "attribute" }, { "api_name": "tensorflow.cond", "line_number": 30, "usage_type": "call" }, { "api_name": "tensorflow.random.uniform", "line_number": 31, "usage_type": "call" }, { "api_name": "tensorflow.random", "line_number": 31, "usage_type": "attribute" }, { "api_name": "tensorflow.random.normal", "line_number": 33, "usage_type": "call" }, { "api_name": "tensorflow.random", "line_number": 33, "usage_type": "attribute" }, { "api_name": "tensorflow.shape", "line_number": 33, "usage_type": "call" }, { "api_name": "h5py.File", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 52, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 52, "usage_type": "attribute" }, { "api_name": "numpy.concatenate", "line_number": 53, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 53, "usage_type": "attribute" }, { "api_name": "numpy.arange", "line_number": 57, "usage_type": "call" }, { "api_name": "numpy.random.seed", "line_number": 58, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 58, "usage_type": "attribute" }, { "api_name": "numpy.random.shuffle", "line_number": 59, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 59, "usage_type": "attribute" }, { "api_name": "numpy.random.choice", "line_number": 62, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 62, "usage_type": "attribute" }, { "api_name": "tensorflow.data.Dataset.from_tensor_slices", "line_number": 69, "usage_type": "call" }, { "api_name": "tensorflow.data", "line_number": 69, "usage_type": "attribute" }, { "api_name": "tensorflow.data.Dataset.from_tensor_slices", "line_number": 83, "usage_type": "call" }, { "api_name": "tensorflow.data", "line_number": 83, "usage_type": "attribute" }, { "api_name": "typing.Tuple", "line_number": 41, "usage_type": "name" }, { "api_name": "tensorflow.data", "line_number": 41, "usage_type": "attribute" }, { "api_name": "tensorflow.keras", "line_number": 91, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.applications.EfficientNetB4", "line_number": 100, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 100, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.regularizers.l2", "line_number": 105, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 105, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.Model", "line_number": 115, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 115, "usage_type": "attribute" }, { "api_name": "tensorflow.keras", "line_number": 89, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.optimizers.Adam", "line_number": 128, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 128, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.losses.BinaryCrossentropy", "line_number": 129, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 129, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.metrics.BinaryAccuracy", "line_number": 130, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 130, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.metrics.AUC", "line_number": 130, "usage_type": "call" }, { "api_name": "math.exp", "line_number": 137, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 139, "usage_type": "call" }, { "api_name": "tensorflow.keras.callbacks.LearningRateScheduler", "line_number": 143, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 143, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.callbacks.ModelCheckpoint", "line_number": 144, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 144, "usage_type": "attribute" }, { "api_name": "pickle.dump", "line_number": 167, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 171, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 182, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 183, "usage_type": "call" }, { "api_name": "argparse.Namespace", "line_number": 170, "usage_type": "attribute" } ]
20363546350
#%% from dataclasses import dataclass, field from functools import wraps from typing import List, Optional, Protocol, Union import time from .controller import Controller from . import commands from .acceptance_scheme import AcceptanceScheme, UnconditionalAcceptance from .scattering_simulation import ScatteringSimulation from .box_simulation import Box def timeit(my_func): @wraps(my_func) def timed(*args, **kw): tstart = time.time() output = my_func(*args, **kw) tend = time.time() print(f"{my_func.__name__} took {(tend - tstart)} seconds to execute") return output return timed CommandOrAcceptableCommand = Union[commands.Command, commands.AcceptableCommand] def decorate_command(command: CommandOrAcceptableCommand) -> commands.AcceptableCommand: if isinstance(command, commands.AcceptableCommand): return command if isinstance(command, commands.Command): return commands.AcceptableCommand( base_command=command, acceptance_scheme=UnconditionalAcceptance() ) class Evaluator(Protocol): def evaluate(self, command: CommandOrAcceptableCommand) -> bool: pass @dataclass class Simulator: controller: Controller evaluator: Evaluator @timeit def simulate(self): controller = self.controller for command in controller.ledger: controller.action() controller.compute_states() self.evaluator.evaluate(command) class Viewer(Protocol): def show_view(simulation: ScatteringSimulation, command: CommandOrAcceptableCommand, acc_scheme: AcceptanceScheme) -> None: pass @dataclass class MonteCarloEvaluator: simulation: ScatteringSimulation viewer: Optional[Viewer] = None def _show_view(self, command: CommandOrAcceptableCommand, acc_scheme: AcceptanceScheme) -> None: if self.viewer: self.viewer.show_view(self.simulation, command, acc_scheme) def evaluate(self, command: CommandOrAcceptableCommand) -> bool: acceptable_command = decorate_command(command) acceptable_command.handle_simulation(self.simulation) acc_scheme = acceptable_command.acceptance_scheme self._show_view(command, acc_scheme) return acc_scheme.is_acceptable() @dataclass class MemorizedSimulator(Simulator): simulation: ScatteringSimulation box_list: List[Box] state_command: commands.Command = field(init = False, default_factory=lambda : None) def compute_states(self) -> None: if self.state_command: self.state_command.execute() else: self.controller.compute_states() def simulate_command(self, controller: Controller, command: CommandOrAcceptableCommand) -> None: controller.action() self.compute_states() command.execute() acceptable = self.evaluator.evaluate(command) if acceptable: self.state_command = commands.SetSimulationState.gen_from_simulation(self.simulation.simulation_params, self.box_list) @timeit def simulate(self) -> None: controller = self.controller for command in controller.ledger: self.simulate_command(controller=controller, command=command) if __name__ == "__main__": pass #%%
lestercbarnsley/SasRMC
sas_rmc/simulator.py
simulator.py
py
3,355
python
en
code
0
github-code
6
[ { "api_name": "time.time", "line_number": 18, "usage_type": "call" }, { "api_name": "time.time", "line_number": 20, "usage_type": "call" }, { "api_name": "functools.wraps", "line_number": 15, "usage_type": "call" }, { "api_name": "typing.Union", "line_number": 27, "usage_type": "name" }, { "api_name": "acceptance_scheme.UnconditionalAcceptance", "line_number": 36, "usage_type": "call" }, { "api_name": "typing.Protocol", "line_number": 40, "usage_type": "name" }, { "api_name": "controller.Controller", "line_number": 47, "usage_type": "name" }, { "api_name": "controller.ledger", "line_number": 53, "usage_type": "attribute" }, { "api_name": "controller.action", "line_number": 54, "usage_type": "call" }, { "api_name": "controller.compute_states", "line_number": 55, "usage_type": "call" }, { "api_name": "dataclasses.dataclass", "line_number": 45, "usage_type": "name" }, { "api_name": "typing.Protocol", "line_number": 59, "usage_type": "name" }, { "api_name": "scattering_simulation.ScatteringSimulation", "line_number": 60, "usage_type": "name" }, { "api_name": "acceptance_scheme.AcceptanceScheme", "line_number": 60, "usage_type": "name" }, { "api_name": "scattering_simulation.ScatteringSimulation", "line_number": 66, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 67, "usage_type": "name" }, { "api_name": "acceptance_scheme.AcceptanceScheme", "line_number": 69, "usage_type": "name" }, { "api_name": "dataclasses.dataclass", "line_number": 64, "usage_type": "name" }, { "api_name": "scattering_simulation.ScatteringSimulation", "line_number": 83, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 84, "usage_type": "name" }, { "api_name": "box_simulation.Box", "line_number": 84, "usage_type": "name" }, { "api_name": "dataclasses.field", "line_number": 85, "usage_type": "call" }, { "api_name": "controller.Controller", "line_number": 93, "usage_type": "name" }, { "api_name": "controller.action", "line_number": 94, "usage_type": "call" }, { "api_name": "controller.ledger", "line_number": 104, "usage_type": "attribute" }, { "api_name": "dataclasses.dataclass", "line_number": 81, "usage_type": "name" } ]
73831992187
import os os.environ['OPENCV_IO_MAX_IMAGE_PIXELS'] = pow(2, 40).__str__() import sys import copy from pathlib import Path from collections import Counter import numpy as np import pandas as pd import cv2 import bioformats.formatreader import cellprofiler_core.pipeline import cellprofiler_core.preferences import cellprofiler_core.utilities.zmq import cellprofiler_core.utilities.java #from cellprofiler_core.setting.subscriber import LabelSubscriber #from cellprofiler_core.setting.range import IntegerRange def _clahe(image): #-----Reading the image----------------------------------------------------- if not isinstance(image, np.ndarray): image = cv2.imread(image, 1) #-----Converting image to LAB Color model----------------------------------- lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB) #-----Splitting the LAB image to different channels------------------------- l, a, b = cv2.split(lab) #-----Applying CLAHE to L-channel------------------------------------------- clahe = cv2.createCLAHE(clipLimit=2, tileGridSize=(8,8)) cl = clahe.apply(l) #-----Merge the CLAHE enhanced L-channel with the a and b channel----------- limg = cv2.merge((cl,a,b)) #-----Converting image from LAB Color model to RGB model-------------------- final = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR) #_____END_____# #return cl return final def clahe(image, iter=5, return_gray=True): """ Enhance local contrast with CLAHE algorithm Parameters -------------- image: fn, np.ndarray image file name or np.ndarray representing image iter: int how many times to enhance """ while iter: image = _clahe(image) iter -= 1 if return_gray: image = np.dot(image[..., :3], [0.2989, 0.5870, 0.1140]) image = image.astype(int) return image def blur_detect(image, channel='g', chunk_size=3, method='laplacian', top_svd=30, outfile=None, show_in_rgb=None, show_in_grey=None): """ Calculte blur values with stepwise slide chunks for RGB image Parameters ------------------------------ image: np.ndarray, image image matrix with three channels channel: {'r', 'g', 'b'}, default g which channel to be used chunk_size: int pixel number for each chunk method: {'laplacian', 'svd'}, default laplacian which method to calculate blur value top_svd: int top N svd used for svd method outfile: str write the blur matrix into file show_in_rgb: str display the blur value in rgb image show_in_grey: str display the blur value in grey image """ # background was detected as blur region # I need to segmentate tissue region firstly # here I used color masking for segmentation on green channel b, g, r = cv2.split(image) # detect based on green channel light = 10 dark = 255 if channel == 'r': channel = r elif channel == 'g': channel = g elif channel == 'b': channel = b mask = cv2.inRange(channel, light, dark) kernel = np.ones((10, 10), np.uint8) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) blur_image = np.zeros(shape=image.shape, dtype=np.uint8) for (x, y), value in np.ndenumerate(mask): if value == 0: continue chunk = image[x:x+chunk_size, y:y+chunk_size] # small value indicate blur region if method == 'laplacian': blur_value = cv2.Laplacian(chunk, cv2.CV_64F).var() elif method == 'svd': u, sigma, vt = np.linalg.svd(img) blur_value = sum(sigma[:top_svd]) / sum(sigma) blur_image[x, y] = blur_value if outfile: np.savetxt(outfile, blur_image, fmt='%d') if show_in_rgb: blur_rgb_image = cv2.applyColorMap(blur_image, cv2.COLORMAP_JET) cv2.imwrite(show_in_rgb, blur_rgb_image) if show_in_grey: black = np.zeros(shape=image.shape, dtype=np.uint8) blur_mask = np.where(blur_image < 30, mask, black) cv2.imwrite(show_in_grey, blur_mask) return blur_image def _pycellprofilter(image, name='DNA', cpi=None, saved_object='IdentifySecondaryObjects'): print(cellprofiler_core.preferences.__is_headless) # load pipeline from cpi file print('load pipeline from {}'.format(cpi)) pipeline = cellprofiler_core.pipeline.Pipeline() pipeline.load(cpi) # get modules list modules = pipeline.modules() # setup image_set image_set = cellprofiler_core.image.ImageSet(0, {'name':name}, name) if isinstance(image, np.ndarray) and len(image.shape) == 2: x = image else: x = cv2.imread(str(image), 0) x[x > 230] = 230 image_x = cellprofiler_core.image.Image(x, path_name=image.parent, file_name=image.name) image_set.add(name, image_x) # init workspace object_set = cellprofiler_core.object.ObjectSet() measurements = cellprofiler_core.measurement.Measurements() workspace = cellprofiler_core.workspace.Workspace( pipeline, modules, image_set, object_set, measurements, [image_set] ) for module in modules: sys.stdout.write(f'... {module.module_name}\n') module.run(workspace) objects = workspace.object_set.get_objects(saved_object) try: celloutlines = workspace.image_set.get_image('CellOutlines') except: sys.stderr.write('cell outlines not get\n') celloutlines = None return objects, celloutlines def pycellprofiler(image, save_prefix=None, return_image=True, cpi='./default.cppipe', image_name='DNA', saved_object='IdentifySecondaryObjects', outdir='./outdir', tmpdir='./tmpdir', ): outdir, tmpdir = Path(outdir), Path(tmpdir) if not outdir.exists(): outdir.mkdir(parents=True, exist_ok=True) objects = None try: #cellprofiler_core.preferences.set_headless() cellprofiler_core.preferences.set_temporary_directory(outdir) cellprofiler_core.preferences.set_default_output_directory(outdir) cellprofiler_core.utilities.java.start_java() sys.stdout.write('Starting cellprofiler identify ...\n') objects, celloutlines = _pycellprofilter( image, name=image_name, cpi=cpi, saved_object=saved_object ) sys.stdout.write('Cell objects and outlines generated\n') except Exception as err: sys.stderr.write('***Error: {}\n'.format(err)) finally: cellprofiler_core.utilities.zmq.join_to_the_boundary() bioformats.formatreader.clear_image_reader_cache() cellprofiler_core.utilities.java.stop_java() if objects is None: return sys.stdout.write('Saving labled cells ...\n') mask = objects.segmented b, g, r = cv2.split(celloutlines.pixel_data) if save_prefix is not None: mask_file = str(outdir / f'{save_prefix}_mask.txt') np.savetxt(mask_file, mask, fmt='%d') boundary_file = str(outdir / f'{save_prefix}_boundary.txt') np.savetxt(boundary_file, b, fmt='%d') if return_image: image = img_outliner(image, boundary=b) return mask, b, image else: return mask, b def boundary_detect(mask, image, save_prefix='cell'): import skimage.segmentation image = cv2.imread(str(image)) outlines = skimage.segmentation.mark_boundaries( image, mask, color=(1, 0, 0), mode='inner', ) b, g, r = cv2.split(outlines) if save: np.savetxt(f'{prefix}.boundary.txt', b, fmt='%d') image = img_outliner(image, boundary=b, save=f'{prefix}.celloutlines.png' ) return b def img_outliner(image, boundary, save='celloutlines.png'): if isinstance(image, str): image = cv2.imread(image) mask = np.isin(boundary, [1]) image[mask] = (255, 0, 0) if save: cv2.imwrite(save, image) return image def getfootprint(struc, a, b=None): from skimage.morphology import ( square, rectangle, diamond, disk, octagon, star) struc_lib = { 'square': square, 'rectangle': rectangle, 'diamond': diamond, 'disk': disk, 'octagon': octagon, 'star': star } morph = struc_lib[struc] if struc in ['rectangle', 'octagon']: if b is None: sys.stderr.write('two args required\n') sys.exit() return morph(a, b) else: if b is not None: sys.stderr.write('only one arg required\n') sys.exit() return morph(a) class Stoarr: def __init__(self, matrix): if isinstance(matrix, str): if matrix.endswith('.txt'): matrix = np.loadtxt(matrix) elif matrix.endswith(('.tif', '.png')): matrix = cv2.imread(matrix, cv2.IMREAD_UNCHANGED) self.matrix = matrix.astype(int) def to_triplet(self, name='mask'): import scipy.sparse mtx= scipy.sparse.csc_matrix(self.matrix) mtx = mtx.tocoo() tmp = [] for x, y, mask in zip(mtx.row, mtx.col, mtx.data): tmp.append([x, y, int(mask)]) triplet = pd.DataFrame(tmp, columns=['x', 'y', name]) return triplet def binning(self, bin_size): sys.stdout.write('binning ... ') sys.stdout.flush() triplet = self.to_triplet() triplet['xbin'] = (triplet.x / bin_size).astype(int) * bin_size triplet['ybin'] = (triplet.y / bin_size).astype(int) * bin_size triplet['bin'] = triplet.xbin.astype(str) + '_' + triplet.ybin.astype(str) index = [(-i, x) for i, x in enumerate(triplet['bin'].unique())] index = pd.DataFrame(index, columns=['N', 'bin']) triplet = triplet.merge(index, how='left', on='bin') matrix = np.zeros(shape=self.matrix.shape, dtype=int) matrix[triplet['x'], triplet['y']] = triplet['N'] sys.stdout.write('done\n') return Stoarr(matrix) def to_binary(self): obj = copy.deepcopy(self) mask = np.isin(obj.matrix, [0], invert=True) obj.matrix[mask] = 1 return obj def subtract(self, other): sys.stdout.write('subtracting ... ') sys.stdout.flush() obj = copy.deepcopy(self) obj = obj.to_binary() other = other.to_binary() obj.matrix = obj.matrix - other.matrix sys.stdout.write('done\n') return obj def intersection(self, other, label_area_cutoff=0.3): """intersection of label mask and binary mask * mask: binary matrix * label_area_cutoff: labels with greater area will be dropped """ sys.stdout.write('intersection ... ') sys.stdout.flush() obj = copy.deepcopy(self) if isinstance(other, Stoarr): other = other.to_binary() values = np.unique(obj.matrix) if len(values) == 2: mask = cv2.bitwise_and(obj.matrix, other.matrix) mask = np.invert(mask.astype(bool)) else: binary = self.to_binary() mask = cv2.bitwise_and(binary.matrix, other.matrix) mask = np.invert(mask.astype(bool)) orig_counter = Counter(obj.matrix.flatten()) filter_part = obj.matrix[mask] filter_counter = Counter(filter_part.flatten()) filter_labels = [] for label, pixels in filter_counter.items(): if label == 0: continue ratio = pixels / orig_counter[label] if ratio < label_area_cutoff: continue filter_labels.append(label) filter_labels = list(set(filter_labels)) mask = np.isin(obj.matrix, filter_labels) obj.matrix[mask] = 0 sys.stdout.write('{} labels removed\n'.format(len(filter_labels))) return obj def relabel(self, label_map=None): if label_map is None: unique_labels, labels = np.unique(self.matrix, return_inverse=True) matrix = labels.reshape(self.matrix.shape) #obj = Mask(matrix) #obj.unique_labels = unique_labels #obj.labels = labels return Stoarr(matrix) else: triplet = self.to_triplet() triplet = triplet.merge(label_map, how='left', left_on='mask', right_index=True) matrix = np.zeros(shape=self.matrix.shape, dtype=int) matrix[triplet['x'], triplet['y']] = triplet['mask_y'] return Stoarr(matrix) def retrieve(self): if not self.unique_labels and not self.labels: return matrix = self.unique_labels[self.labels] matrix = matrix.reshape(self.shape) obj = Stoarr(matrix) return obj def minimum_filter(self, footprint='octagon', ksize=(4, 4), iterations=2): sys.stdout.write('minimum filter ... ') sys.stdout.flush() obj = copy.deepcopy(self) obj.matrix = obj.matrix.astype(np.uint8) #obj.matrix = cv2.applyColorMap( # obj.matrix, # cv2.COLORMAP_JET # ) try: n, m = ksize except: n = ksize m = None footprint = getfootprint(footprint, n, m) obj.matrix = cv2.erode( obj.matrix, kernel=footprint, iterations=iterations ) #cv2.imwrite('blur.png', obj.matrix) sys.stdout.write('done\n') return obj def filter_by_matrix(self, on=None, min_value=None, max_value=None, draw=False, prefix=None): """label mask method * on: filter by minimum value of the input matrix """ sys.stdout.write('filter by matrix ... ') sys.stdout.flush() obj = copy.deepcopy(self) triplet = obj.to_triplet() ref = on.to_triplet() triplet = triplet.merge(ref, how='left', on=('x', 'y')) triplet = triplet.fillna(0) medians = triplet.groupby('mask_x')['mask_y'].median() medians = medians.to_frame() if draw: fig = self.relabel(medians) cv2.imwrite(f'{prefix}.median.png', fig.matrix) if min_value: filter_labels = medians[medians['mask_y'] < min_value].index.values if max_value: filter_labels = medians[medians['mask_y'] > max_value].index.values mask = np.isin(obj.matrix, filter_labels) obj.matrix[mask] = 0 sys.stdout.write('{} labels removed\n'.format(len(filter_labels))) return obj def filter_by_diameter(self, min_size=1, max_size=None): """label mask method * min_size: max circo radius """ sys.stdout.write('filter by diameter ... ') sys.stdout.flush() from skimage.measure import regionprops obj = copy.deepcopy(self) #obj.matrix = obj.matrix.astype(np.uint8) filter_labels = [] regions = regionprops(obj.matrix) for index, props in enumerate(regions): if props.minor_axis_length <= 8 and (props.minor_axis_length * 5 <= props.major_axis_length): # abnormity cell with large aspect ratio filter_labels.append(props.label) continue if props.area > 1000 or props.area < 6: # extreme large cell caused by non-detected blur region # extreme small cell original segmentation fault filter_labels.append(props.label) continue if props.extent < 0.3: filter_labels.append(props.label) continue if props.minor_axis_length < min_size: # extreme thin cell filter_labels.append(props.label) continue if max_size and props.major_axis_length > max_size: # extreme fat cell filter_labels.append(props.label) continue mask = np.isin(obj.matrix, filter_labels) obj.matrix[mask] = 0 sys.stdout.write('{} labels removed\n'.format(len(filter_labels))) return obj def merge(self, other, how='left'): sys.stdout.write('merge mix labels ... ') sys.stdout.flush() if how == 'left': obj = copy.deepcopy(self) mask1 = obj.to_binary() mask2 = copy.deepcopy(other) elif how == 'right': obj = copy.deepcopy(other) mask1 = obj.to_binary() mask2 = copy.deepcopy(self) else: pass intersection = cv2.bitwise_and(mask1.matrix, mask2.matrix) mask2.matrix[intersection] = 0 obj.matrix += mask2.matrix sys.stdout.write('done\n') return obj def save(self, prefix='out'): np.savetxt(f'{prefix}.mask.txt', self.matrix, fmt='%d') return def overlayoutlines(self, image=None, prefix=None): sys.stdout.write('draw outlines ... ') sys.stdout.flush() import skimage.io import skimage.segmentation if isinstance(image, str): image = skimage.io.imread(image) outlines = skimage.segmentation.mark_boundaries( image, self.matrix, color=(1, 0, 0), mode='inner', ) b, g, r = cv2.split(outlines) sys.stdout.write('{} labels\n'.format(len(np.unique(self.matrix)))) mask = np.isin(b, [1]) image[mask] = 255 if prefix: np.savetxt(f'{prefix}.outlines.txt', b, fmt='%d') cv2.imwrite(f'{prefix}.outlines.png', image) return b, image def thres_mask(image, out_prefix=None): image = cv2.imread(image, 0) _, th = cv2.threshold(image, 20, 255, cv2.THRESH_BINARY) if out_prefix: cv2.imwrite(f'{prefix}.mask.tif', th) return th def mixture_seg(cell_mask, tissue_mask, blur_mask, image=None, prefix='out',): cell_mask = Stoarr(cell_mask) tissue_mask = Stoarr(tissue_mask) blur_mask = Stoarr(blur_mask) blur_mask = blur_mask.minimum_filter( footprint='octagon', ksize=(7, 4) ) orig_cell_mask = cell_mask.intersection( tissue_mask, label_area_cutoff=0.3 ) cell_mask = orig_cell_mask.filter_by_matrix( on=blur_mask, max_value=90, draw=True, prefix=prefix ) cell_mask = cell_mask.filter_by_diameter( min_size=3, max_size=None, ) tissue_mask = orig_cell_mask.subtract(cell_mask) bin_mask = tissue_mask.binning( bin_size=20 ) mix_mask = cell_mask.merge( bin_mask, how='left' ) mix_mask.save(prefix=prefix) outlines, image = mix_mask.overlayoutlines( image=image, prefix=prefix ) return outlines, image
BGI-Qingdao/4D-BioReconX
Preprocess/cellsegmentation/objseg.py
objseg.py
py
19,716
python
en
code
4
github-code
6
[ { "api_name": "os.environ", "line_number": 3, "usage_type": "attribute" }, { "api_name": "numpy.ndarray", "line_number": 24, "usage_type": "attribute" }, { "api_name": "cv2.imread", "line_number": 25, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 28, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2LAB", "line_number": 28, "usage_type": "attribute" }, { "api_name": "cv2.split", "line_number": 31, "usage_type": "call" }, { "api_name": "cv2.createCLAHE", "line_number": 34, "usage_type": "call" }, { "api_name": "cv2.merge", "line_number": 38, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 41, "usage_type": "call" }, { "api_name": "cv2.COLOR_LAB2BGR", "line_number": 41, "usage_type": "attribute" }, { "api_name": "numpy.dot", "line_number": 62, "usage_type": "call" }, { "api_name": "cv2.split", "line_number": 94, "usage_type": "call" }, { "api_name": "cv2.inRange", "line_number": 104, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 105, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 105, "usage_type": "attribute" }, { "api_name": "cv2.morphologyEx", "line_number": 106, "usage_type": "call" }, { "api_name": "cv2.MORPH_OPEN", "line_number": 106, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 108, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 108, "usage_type": "attribute" }, { "api_name": "numpy.ndenumerate", "line_number": 109, "usage_type": "call" }, { "api_name": "cv2.Laplacian", "line_number": 115, "usage_type": "call" }, { "api_name": "cv2.CV_64F", "line_number": 115, "usage_type": "attribute" }, { "api_name": "numpy.linalg.svd", "line_number": 117, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 117, "usage_type": "attribute" }, { "api_name": "numpy.savetxt", "line_number": 122, "usage_type": "call" }, { "api_name": "cv2.applyColorMap", "line_number": 125, "usage_type": "call" }, { "api_name": "cv2.COLORMAP_JET", "line_number": 125, "usage_type": "attribute" }, { "api_name": "cv2.imwrite", "line_number": 126, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 129, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 129, "usage_type": "attribute" }, { "api_name": "numpy.where", "line_number": 130, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 131, "usage_type": "call" }, { "api_name": "cellprofiler_core.pipeline.preferences", "line_number": 137, "usage_type": "attribute" }, { "api_name": "cellprofiler_core.pipeline", "line_number": 137, "usage_type": "name" }, { "api_name": "cellprofiler_core.pipeline.pipeline.Pipeline", "line_number": 140, "usage_type": "call" }, { "api_name": "cellprofiler_core.pipeline.pipeline", "line_number": 140, "usage_type": "attribute" }, { "api_name": "cellprofiler_core.pipeline", "line_number": 140, "usage_type": "name" }, { "api_name": "cellprofiler_core.pipeline.image.ImageSet", "line_number": 147, "usage_type": "call" }, { "api_name": "cellprofiler_core.pipeline.image", "line_number": 147, "usage_type": "attribute" }, { "api_name": "cellprofiler_core.pipeline", "line_number": 147, "usage_type": "name" }, { "api_name": "numpy.ndarray", "line_number": 148, "usage_type": "attribute" }, { "api_name": "cv2.imread", "line_number": 151, "usage_type": "call" }, { "api_name": "cellprofiler_core.pipeline.image.Image", "line_number": 153, "usage_type": "call" }, { "api_name": "cellprofiler_core.pipeline.image", "line_number": 153, "usage_type": "attribute" }, { "api_name": "cellprofiler_core.pipeline", "line_number": 153, "usage_type": "name" }, { "api_name": "cellprofiler_core.pipeline.object.ObjectSet", "line_number": 157, "usage_type": "call" }, { "api_name": "cellprofiler_core.pipeline.object", "line_number": 157, "usage_type": "attribute" }, { "api_name": "cellprofiler_core.pipeline", "line_number": 157, "usage_type": "name" }, { "api_name": "cellprofiler_core.pipeline.measurement.Measurements", "line_number": 159, "usage_type": "call" }, { "api_name": "cellprofiler_core.pipeline.measurement", "line_number": 159, "usage_type": "attribute" }, { "api_name": "cellprofiler_core.pipeline", "line_number": 159, "usage_type": "name" }, { "api_name": "cellprofiler_core.pipeline.workspace.Workspace", "line_number": 161, "usage_type": "call" }, { "api_name": "cellprofiler_core.pipeline.workspace", "line_number": 161, "usage_type": "attribute" }, { "api_name": "cellprofiler_core.pipeline", "line_number": 161, "usage_type": "name" }, { "api_name": "sys.stdout.write", "line_number": 171, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 171, "usage_type": "attribute" }, { "api_name": "sys.stderr.write", "line_number": 178, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 178, "usage_type": "attribute" }, { "api_name": "pathlib.Path", "line_number": 189, "usage_type": "call" }, { "api_name": "cellprofiler_core.pipeline.preferences.set_temporary_directory", "line_number": 196, "usage_type": "call" }, { "api_name": "cellprofiler_core.pipeline.preferences", "line_number": 196, "usage_type": "attribute" }, { "api_name": "cellprofiler_core.pipeline", "line_number": 196, "usage_type": "name" }, { "api_name": "cellprofiler_core.pipeline.preferences.set_default_output_directory", "line_number": 197, "usage_type": "call" }, { "api_name": "cellprofiler_core.pipeline.preferences", "line_number": 197, "usage_type": "attribute" }, { "api_name": "cellprofiler_core.pipeline", "line_number": 197, "usage_type": "name" }, { "api_name": "cellprofiler_core.pipeline.utilities.java.start_java", "line_number": 199, "usage_type": "call" }, { "api_name": "cellprofiler_core.pipeline.utilities", "line_number": 199, "usage_type": "attribute" }, { "api_name": "cellprofiler_core.pipeline", "line_number": 199, "usage_type": "name" }, { "api_name": "sys.stdout.write", "line_number": 201, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 201, "usage_type": "attribute" }, { "api_name": "sys.stdout.write", "line_number": 208, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 208, "usage_type": "attribute" }, { "api_name": "sys.stderr.write", "line_number": 210, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 210, "usage_type": "attribute" }, { "api_name": "cellprofiler_core.pipeline.utilities.zmq.join_to_the_boundary", "line_number": 212, "usage_type": "call" }, { "api_name": "cellprofiler_core.pipeline.utilities", "line_number": 212, "usage_type": "attribute" }, { "api_name": "cellprofiler_core.pipeline", "line_number": 212, "usage_type": "name" }, { "api_name": "bioformats.formatreader.formatreader.clear_image_reader_cache", "line_number": 213, "usage_type": "call" }, { "api_name": "bioformats.formatreader.formatreader", "line_number": 213, "usage_type": "attribute" }, { "api_name": "bioformats.formatreader", "line_number": 213, "usage_type": "name" }, { "api_name": "cellprofiler_core.pipeline.utilities.java.stop_java", "line_number": 214, "usage_type": "call" }, { "api_name": "cellprofiler_core.pipeline.utilities", "line_number": 214, "usage_type": "attribute" }, { "api_name": "cellprofiler_core.pipeline", "line_number": 214, "usage_type": "name" }, { "api_name": "sys.stdout.write", "line_number": 218, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 218, "usage_type": "attribute" }, { "api_name": "cv2.split", "line_number": 221, "usage_type": "call" }, { "api_name": "numpy.savetxt", "line_number": 224, "usage_type": "call" }, { "api_name": "numpy.savetxt", "line_number": 227, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 238, "usage_type": "call" }, { "api_name": "skimage.segmentation.segmentation.mark_boundaries", "line_number": 239, "usage_type": "call" }, { "api_name": "skimage.segmentation.segmentation", "line_number": 239, "usage_type": "attribute" }, { "api_name": "skimage.segmentation", "line_number": 239, "usage_type": "name" }, { "api_name": "cv2.split", "line_number": 246, "usage_type": "call" }, { "api_name": "numpy.savetxt", "line_number": 249, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 259, "usage_type": "call" }, { "api_name": "numpy.isin", "line_number": 261, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 265, "usage_type": "call" }, { "api_name": "skimage.morphology.square", "line_number": 279, "usage_type": "name" }, { "api_name": "skimage.morphology.rectangle", "line_number": 280, "usage_type": "name" }, { "api_name": "skimage.morphology.diamond", "line_number": 281, "usage_type": "name" }, { "api_name": "skimage.morphology.disk", "line_number": 282, "usage_type": "name" }, { "api_name": "skimage.morphology.octagon", "line_number": 283, "usage_type": "name" }, { "api_name": "skimage.morphology.star", "line_number": 284, "usage_type": "name" }, { "api_name": "sys.stderr.write", "line_number": 291, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 291, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 292, "usage_type": "call" }, { "api_name": "sys.stderr.write", "line_number": 296, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 296, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 297, "usage_type": "call" }, { "api_name": "numpy.loadtxt", "line_number": 304, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 306, "usage_type": "call" }, { "api_name": "cv2.IMREAD_UNCHANGED", "line_number": 306, "usage_type": "attribute" }, { "api_name": "scipy.sparse.sparse.csc_matrix", "line_number": 312, "usage_type": "call" }, { "api_name": "scipy.sparse.sparse", "line_number": 312, "usage_type": "attribute" }, { "api_name": "scipy.sparse", "line_number": 312, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 317, "usage_type": "call" }, { "api_name": "sys.stdout.write", "line_number": 322, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 322, "usage_type": "attribute" }, { "api_name": "sys.stdout.flush", "line_number": 323, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 323, "usage_type": "attribute" }, { "api_name": "pandas.DataFrame", "line_number": 332, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 336, "usage_type": "call" }, { "api_name": "sys.stdout.write", "line_number": 339, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 339, "usage_type": "attribute" }, { "api_name": "{'scipy.sparse': 'scipy.sparse'}", "line_number": 340, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 343, "usage_type": "call" }, { "api_name": "numpy.isin", "line_number": 344, "usage_type": "call" }, { "api_name": "sys.stdout.write", "line_number": 350, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 350, "usage_type": "attribute" }, { "api_name": "sys.stdout.flush", "line_number": 351, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 351, "usage_type": "attribute" }, { "api_name": "copy.deepcopy", "line_number": 353, "usage_type": "call" }, { "api_name": "sys.stdout.write", "line_number": 360, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 360, "usage_type": "attribute" }, { "api_name": "sys.stdout.write", "line_number": 369, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 369, "usage_type": "attribute" }, { "api_name": "sys.stdout.flush", "line_number": 370, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 370, "usage_type": "attribute" }, { "api_name": "copy.deepcopy", "line_number": 372, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 377, "usage_type": "call" }, { "api_name": "cv2.bitwise_and", "line_number": 379, "usage_type": "call" }, { "api_name": "numpy.invert", "line_number": 380, "usage_type": "call" }, { "api_name": "cv2.bitwise_and", "line_number": 384, "usage_type": "call" }, { "api_name": "numpy.invert", "line_number": 385, "usage_type": "call" }, { "api_name": "collections.Counter", "line_number": 387, "usage_type": "call" }, { "api_name": "collections.Counter", "line_number": 390, "usage_type": "call" }, { "api_name": "numpy.isin", "line_number": 402, "usage_type": "call" }, { "api_name": "sys.stdout.write", "line_number": 406, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 406, "usage_type": "attribute" }, { "api_name": "numpy.unique", "line_number": 411, "usage_type": "call" }, { "api_name": "{'scipy.sparse': 'scipy.sparse'}", "line_number": 417, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 424, "usage_type": "call" }, { "api_name": "{'scipy.sparse': 'scipy.sparse'}", "line_number": 426, "usage_type": "call" }, { "api_name": "{'scipy.sparse': 'scipy.sparse'}", "line_number": 434, "usage_type": "call" }, { "api_name": "sys.stdout.write", "line_number": 440, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 440, "usage_type": "attribute" }, { "api_name": "sys.stdout.flush", "line_number": 441, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 441, "usage_type": "attribute" }, { "api_name": "copy.deepcopy", "line_number": 443, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 444, "usage_type": "attribute" }, { "api_name": "cv2.erode", "line_number": 456, "usage_type": "call" }, { "api_name": "sys.stdout.write", "line_number": 463, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 463, "usage_type": "attribute" }, { "api_name": "sys.stdout.write", "line_number": 472, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 472, "usage_type": "attribute" }, { "api_name": "sys.stdout.flush", "line_number": 473, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 473, "usage_type": "attribute" }, { "api_name": "copy.deepcopy", "line_number": 475, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 487, "usage_type": "call" }, { "api_name": "numpy.isin", "line_number": 494, "usage_type": "call" }, { "api_name": "sys.stdout.write", "line_number": 497, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 497, "usage_type": "attribute" }, { "api_name": "sys.stdout.write", "line_number": 505, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 505, "usage_type": "attribute" }, { "api_name": "sys.stdout.flush", "line_number": 506, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 506, "usage_type": "attribute" }, { "api_name": "copy.deepcopy", "line_number": 510, "usage_type": "call" }, { "api_name": "skimage.measure.regionprops", "line_number": 514, "usage_type": "call" }, { "api_name": "numpy.isin", "line_number": 538, "usage_type": "call" }, { "api_name": "sys.stdout.write", "line_number": 541, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 541, "usage_type": "attribute" }, { "api_name": "sys.stdout.write", "line_number": 546, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 546, "usage_type": "attribute" }, { "api_name": "sys.stdout.flush", "line_number": 547, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 547, "usage_type": "attribute" }, { "api_name": "copy.deepcopy", "line_number": 550, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 552, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 554, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 556, "usage_type": "call" }, { "api_name": "cv2.bitwise_and", "line_number": 560, "usage_type": "call" }, { "api_name": "sys.stdout.write", "line_number": 566, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 566, "usage_type": "attribute" }, { "api_name": "numpy.savetxt", "line_number": 571, "usage_type": "call" }, { "api_name": "sys.stdout.write", "line_number": 577, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 577, "usage_type": "attribute" }, { "api_name": "sys.stdout.flush", "line_number": 578, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 578, "usage_type": "attribute" }, { "api_name": "skimage.segmentation.io.imread", "line_number": 584, "usage_type": "call" }, { "api_name": "skimage.segmentation.io", "line_number": 584, "usage_type": "attribute" }, { "api_name": "skimage.segmentation", "line_number": 584, "usage_type": "name" }, { "api_name": "skimage.segmentation.segmentation.mark_boundaries", "line_number": 586, "usage_type": "call" }, { "api_name": "skimage.segmentation.segmentation", "line_number": 586, "usage_type": "attribute" }, { "api_name": "skimage.segmentation", "line_number": 586, "usage_type": "name" }, { "api_name": "cv2.split", "line_number": 592, "usage_type": "call" }, { "api_name": "sys.stdout.write", "line_number": 594, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 594, "usage_type": "attribute" }, { "api_name": "numpy.unique", "line_number": 594, "usage_type": "call" }, { "api_name": "numpy.isin", "line_number": 596, "usage_type": "call" }, { "api_name": "numpy.savetxt", "line_number": 600, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 601, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 605, "usage_type": "call" }, { "api_name": "cv2.threshold", "line_number": 607, "usage_type": "call" }, { "api_name": "cv2.THRESH_BINARY", "line_number": 607, "usage_type": "attribute" }, { "api_name": "cv2.imwrite", "line_number": 610, "usage_type": "call" }, { "api_name": "{'scipy.sparse': 'scipy.sparse', 'regionprops': 'skimage.measure.regionprops', 'skimage.io': 'skimage.io', 'skimage.segmentation': 'skimage.segmentation'}", "line_number": 615, "usage_type": "call" }, { "api_name": "{'scipy.sparse': 'scipy.sparse', 'regionprops': 'skimage.measure.regionprops', 'skimage.io': 'skimage.io', 'skimage.segmentation': 'skimage.segmentation'}", "line_number": 616, "usage_type": "call" }, { "api_name": "{'scipy.sparse': 'scipy.sparse', 'regionprops': 'skimage.measure.regionprops', 'skimage.io': 'skimage.io', 'skimage.segmentation': 'skimage.segmentation'}", "line_number": 617, "usage_type": "call" } ]
32481834912
import matplotlib.pyplot as plt import pandas as pd import tensorflow as tf from constants import nb_class from tracking import get_dataframes tf.compat.v1.enable_eager_execution() # Remove when switching to tf2 pd.plotting.register_matplotlib_converters() ############################### # Methods for data formatting # ############################### def get_n_probs_per_label(df): outputs = [] for n in range(7): outputs.append([[], [], [], [], [], [], []]) def handle_row(row): classification_logits = eval(row["classification_logits"]) right_labels = eval(row["label_boxes"]) for i in range(len(classification_logits)): logits = classification_logits[i] right_label = right_labels[i] probs = tf.nn.softmax(logits).numpy().tolist() for n in range(7): n_prob = probs[n] outputs[right_label][n].append(n_prob) df.apply(handle_row, axis=1) for n in range(7): for i in range(len(outputs[n])): if (outputs[n][i] == []): outputs[n][i] = [-1.] outputs.append(outputs) return outputs def get_precision_distribution(df): outputs = [[[], []], [[], []]] def handle_row(row): no_regr_precision = eval(row["no_regr_surface_precision"])[0] final_precision = eval(row["final_surface_precision"])[0] outputs[0][0].append(no_regr_precision[0] / no_regr_precision[1]) outputs[0][1].append(final_precision[0] / final_precision[1]) outputs[1][0].append(no_regr_precision[0]) outputs[1][1].append(final_precision[0]) df.apply(handle_row, axis=1) return outputs ######################################### # Initializing dataframes and variables # ######################################### df = get_dataframes() nb_rows = df["index"].count() print("Dataframe size: {}".format(nb_rows)) df_tail = df.tail(1000) all_probs_per_label = get_n_probs_per_label(df_tail) precision_data = get_precision_distribution(df_tail) ############ # Plotting # ############ fig = plt.figure(figsize=(18, 12)) fig.canvas.set_window_title("Faster-RCNN graph - Last 1000 rows over {} total".format(nb_rows)) # Prob of label tail plt.subplot(5, 2, 1) probs_per_label = [] for k in range(7): probs_per_label.append(all_probs_per_label[k][k]) parts = plt.violinplot(probs_per_label) plt.xticks([]) plt.ylim(0., 1.) plt.yticks([0., 1.]) for pc in parts["bodies"]: pc.set_alpha(1) parts["cmins"].set_alpha(0) parts["cmaxes"].set_alpha(0) parts["cbars"].set_alpha(0) plt.title("Label Prob density") # Prob of n label tail for i in range(7): plt.subplot(5, 2, 2 + i) probs_per_label = all_probs_per_label[i] parts = plt.violinplot(probs_per_label) plt.xticks([]) plt.ylim(0., 1.) plt.yticks([0., 1.]) for pc in parts["bodies"]: pc.set_alpha(1) pc.set_facecolor("#D43F3A") parts["cmins"].set_alpha(0) parts["cmaxes"].set_alpha(0) parts["cbars"].set_alpha(0) plt.title("Prob density of {}".format(i)) # Precision distribution plt.subplot(5, 2, 9) parts = plt.violinplot(precision_data[0]) plt.xticks([1, 2], ["No Regr", "Final"]) plt.ylim(0., 1.) plt.yticks([0., 1.]) for pc in parts["bodies"]: pc.set_alpha(1) pc.set_color("#F3C43A") parts["cmins"].set_alpha(0) parts["cmaxes"].set_alpha(0) parts["cbars"].set_alpha(0) plt.title("Precision density") # Coverage distribution plt.subplot(5, 2, 10) parts = plt.violinplot(precision_data[1]) plt.xticks([1, 2], ["No Regr", "Final"]) plt.yticks([144], ["Blob\nSurface"]) for pc in parts["bodies"]: pc.set_alpha(1) pc.set_color("#F3C43A") parts["cmins"].set_alpha(0) parts["cmaxes"].set_alpha(0) parts["cbars"].set_alpha(0) ax = plt.gca() ax.axhline(y=144, color="black", lw=1., alpha=.2) plt.title("Coverage density") plt.show()
benoitkoenig/blobWar-image
faster_rcnn/visualization.py
visualization.py
py
3,864
python
en
code
0
github-code
6
[ { "api_name": "tensorflow.compat.v1.enable_eager_execution", "line_number": 8, "usage_type": "call" }, { "api_name": "tensorflow.compat", "line_number": 8, "usage_type": "attribute" }, { "api_name": "pandas.plotting.register_matplotlib_converters", "line_number": 9, "usage_type": "call" }, { "api_name": "pandas.plotting", "line_number": 9, "usage_type": "attribute" }, { "api_name": "tensorflow.nn.softmax", "line_number": 25, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 25, "usage_type": "attribute" }, { "api_name": "tracking.get_dataframes", "line_number": 53, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 66, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 66, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 70, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 70, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.violinplot", "line_number": 74, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 74, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 75, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 75, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 76, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 76, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 77, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 77, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 83, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 83, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 87, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 87, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.violinplot", "line_number": 89, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 89, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 90, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 90, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 91, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 91, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 92, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 92, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 99, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 99, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 102, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 102, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.violinplot", "line_number": 103, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 103, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 104, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 104, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 105, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 105, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 106, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 106, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 113, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 113, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 116, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 116, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.violinplot", "line_number": 117, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 117, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 118, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 118, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 119, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 119, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.gca", "line_number": 126, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 126, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 128, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 128, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 130, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 130, "usage_type": "name" } ]
14408997276
from announcement.models import AnnouncementModel from UslugiProfi.utils import create_file_absolute_url from rest_framework import serializers class GetAnnouncementsSeriaizer(serializers.ModelSerializer): image = serializers.SerializerMethodField() class Meta: model = AnnouncementModel fields = ('id', 'name', 'description', 'subcategory', 'user', 'address', 'address_lat', 'address_lng', 'create_date', 'update_time', 'price_type', 'fixed_price', 'upper_price', 'lower_price', 'currency', 'dimension', 'image', 'is_active') def get_image(self, announcement): request = self.context.get('request') return create_file_absolute_url(request=request, file=announcement.image) class CreateAnnouncementsSeriaizer(serializers.ModelSerializer): class Meta: model = AnnouncementModel fields = ('name', 'description', 'subcategory', 'address', 'address_lat', 'address_lng', 'price_type', 'fixed_price', 'upper_price', 'lower_price', 'currency', 'dimension', 'image', 'user')
Johudo-old/UslugiProfi
announcement/serializers.py
serializers.py
py
1,075
python
en
code
0
github-code
6
[ { "api_name": "rest_framework.serializers.ModelSerializer", "line_number": 6, "usage_type": "attribute" }, { "api_name": "rest_framework.serializers", "line_number": 6, "usage_type": "name" }, { "api_name": "rest_framework.serializers.SerializerMethodField", "line_number": 7, "usage_type": "call" }, { "api_name": "rest_framework.serializers", "line_number": 7, "usage_type": "name" }, { "api_name": "announcement.models.AnnouncementModel", "line_number": 10, "usage_type": "name" }, { "api_name": "UslugiProfi.utils.create_file_absolute_url", "line_number": 16, "usage_type": "call" }, { "api_name": "announcement.models.image", "line_number": 16, "usage_type": "attribute" }, { "api_name": "announcement.models", "line_number": 16, "usage_type": "name" }, { "api_name": "rest_framework.serializers.ModelSerializer", "line_number": 19, "usage_type": "attribute" }, { "api_name": "rest_framework.serializers", "line_number": 19, "usage_type": "name" }, { "api_name": "announcement.models.AnnouncementModel", "line_number": 22, "usage_type": "name" } ]
34632215573
import cv2 import numpy as np img = cv2.imread('img\\ttt.jpg') #定义结构元素 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) #腐蚀图像 eroded = cv2.erode(img, kernel) cv2.imshow("fs_eroded", eroded) #膨胀图像 dilated = cv2.dilate(img, kernel) cv2.imshow("pz_dilated", dilated) #NumPy定义的结构元素 NpKernel = np.uint8(np.ones((3,3))) Nperoded = cv2.erode(img, NpKernel) #显示腐蚀后的图像 cv2.imshow("Eroded by NumPy kernel", Nperoded) cv2.waitKey(0) cv2.destroyAllWindows()
liuyuhua-ha/opencvStudy
opencvStudy/structTest.py
structTest.py
py
527
python
en
code
0
github-code
6
[ { "api_name": "cv2.imread", "line_number": 5, "usage_type": "call" }, { "api_name": "cv2.getStructuringElement", "line_number": 8, "usage_type": "call" }, { "api_name": "cv2.MORPH_RECT", "line_number": 8, "usage_type": "attribute" }, { "api_name": "cv2.erode", "line_number": 11, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 12, "usage_type": "call" }, { "api_name": "cv2.dilate", "line_number": 15, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 16, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 19, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 19, "usage_type": "call" }, { "api_name": "cv2.erode", "line_number": 20, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 22, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 30, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 31, "usage_type": "call" } ]
34780751946
import datetime import csv import re from Classes import Contact contact_list = list() contact_list_csv = "contact_list.csv" # Создание нового контакта и запись его в csv файл def create_contact(): print("Для того чтобы пропустить пункт и оставить его пустым введите: _") new_contact = Contact("", "", "", "", "", "") # Ввод имени while True: try: new_contact.first_name = input("Имя: ") except ValueError: print("Неверный формат имени, присутствуют недопустимые символы") else: break # Ввод фамилии while True: try: new_contact.last_name = input("Фамилия: ") except ValueError: print("Неверный формат фамилии, присутствуют недопустимые символы") else: break # Ввод даты рождения while True: try: new_contact.birth_date = datetime.datetime \ .strptime(input("Дата рождения в формате ДД.ММ.ГГГГ: "), "%d.%m.%Y").date() except ValueError: print("Неверный формат даты или дата не может быть позднее текущего дня") else: break # Ввод наименования компании new_contact.company_name = input("Компания: ") # Ввод E-Mail while True: try: new_contact.email = input("E-Mail: ") except ValueError: print("Неверный формат E-Mail") else: break # Ввод номера телефона while True: try: new_contact.phone_number = input("Номер телефона в формате +7(___)___-__-__: ") except ValueError: print("Неверный формат номера") else: break contact_list.append(new_contact) # Создание словаря из контакта contact_dict = {"first name": new_contact.first_name, "last name": new_contact.last_name, "birth date": new_contact.birth_date, "company name": new_contact.company_name, "email": new_contact.email, "phone number": new_contact.phone_number} # Добавление записи в csv with open(contact_list_csv, "a", newline="") as file: columns = ["first name", "last name", "birth date", "company name", "email", "phone number"] data_writer = csv.DictWriter(file, fieldnames=columns) # writer.writeheader() data_writer.writerow(contact_dict) # Загрузка списка контактов из csv def load_contact_list(): with open(contact_list_csv) as file: data_reader = csv.DictReader(file) for line in data_reader: contact_list.append(Contact(line["first name"], line["last name"], line["birth date"], line["company name"], line["email"], line["phone number"])) # Отображение списка контактов def show_contact_list(): for contact in contact_list: print(contact) # Поиск по имени def find_by_first_name(name): regex = r"(?i)\b{}".format(name) counter = 0 for contact in contact_list: if re.search(regex, contact.first_name): print(contact) counter += 1 print("Найдено: {}".format(counter)) # Поиск по фамилии def find_by_last_name(name): regex = r"(?i)\b{}".format(name) counter = 0 for contact in contact_list: if re.search(regex, contact.last_name): print(contact) counter += 1 print("Найдено: {}".format(counter)) # Полная очистка списка контактов/восстановление contact_list.csv def clear_contact_list(): with open(contact_list_csv, "w", newline="") as file: columns = ["first name", "last name", "birth date", "company name", "email", "phone number"] data_writer = csv.DictWriter(file, fieldnames=columns) data_writer.writeheader() contact_list.clear() print("Файл contact_list.csv был сброшен, список контактов очищен.") # Вызов команд для работы со списком контактов def command_dialog(): print("help - для вызова справки") while True: command = input(">>> ") if command == "show": show_contact_list() if command == "create": create_contact() if command == "find_fn": find_by_first_name(input("Искать по имени:")) if command == "find_ln": find_by_last_name(input("Искать по фамилии:")) if command == "clear": clear_contact_list() if command == "quit": break if command == "help": print("Список команд:\nshow - показать список контактов\ncreate - добавить контакт\n" "find_fn - поиск по имени\nfind_ln - поиск по фамилии\nclear - полная очистка списка контактов\n" "quit - выйти из программы\nhelp - справка")
NAS371/contactListTestWork
Program.py
Program.py
py
5,649
python
ru
code
0
github-code
6
[ { "api_name": "Classes.Contact", "line_number": 14, "usage_type": "call" }, { "api_name": "datetime.datetime.strptime", "line_number": 37, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 37, "usage_type": "attribute" }, { "api_name": "csv.DictWriter", "line_number": 75, "usage_type": "call" }, { "api_name": "csv.DictReader", "line_number": 83, "usage_type": "call" }, { "api_name": "Classes.Contact", "line_number": 85, "usage_type": "call" }, { "api_name": "re.search", "line_number": 101, "usage_type": "call" }, { "api_name": "re.search", "line_number": 112, "usage_type": "call" }, { "api_name": "csv.DictWriter", "line_number": 122, "usage_type": "call" } ]
6178538714
""" Implement class ``SkyDictionary``, useful for marginalizing over sky location. """ import collections import itertools import numpy as np import scipy.signal from scipy.stats import qmc from cogwheel import gw_utils from cogwheel import utils class SkyDictionary(utils.JSONMixin): """ Given a network of detectors, this class generates a set of samples covering the sky location isotropically in Earth-fixed coordinates (lat, lon). The samples are assigned to bins based on the arrival-time delays between detectors. This information is accessible as dictionaries ``delays2inds_map``, ``delays2genind_map``. Antenna coefficients F+, Fx (psi=0) and detector time delays from geocenter are computed and stored for all samples. """ def __init__(self, detector_names, *, f_sampling: int = 2**13, nsky: int = 10**6, seed=0): self.detector_names = tuple(detector_names) self.nsky = nsky self.f_sampling = f_sampling self.seed = seed self._rng = np.random.default_rng(seed) self.sky_samples = self._create_sky_samples() self.fplus_fcross_0 = gw_utils.get_fplus_fcross_0(self.detector_names, **self.sky_samples) geocenter_delays = gw_utils.get_geocenter_delays( self.detector_names, **self.sky_samples) self.geocenter_delay_first_det = geocenter_delays[0] self.delays = geocenter_delays[1:] - geocenter_delays[0] self.delays2inds_map = self._create_delays2inds_map() discrete_delays = np.array(list(self.delays2inds_map)) self._min_delay = np.min(discrete_delays, axis=0) self._max_delay = np.max(discrete_delays, axis=0) # (n_det-1,) float array: _sky_prior := d(Omega) / (4pi d(delays)) self._sky_prior = np.zeros(self._max_delay - self._min_delay + 1) for key, inds in self.delays2inds_map.items(): self._sky_prior[key] = ( self.f_sampling ** (len(self.detector_names) - 1) * len(inds) / self.nsky) # (n_det-1) array of generators that yield sky-indices self.ind_generators = np.full(self._max_delay - self._min_delay + 1, iter(())) for key, inds in self.delays2inds_map.items(): self.ind_generators[key] = itertools.cycle(inds) def resample_timeseries(self, timeseries, times, axis=-1, window=('tukey', .1)): """ Resample a timeseries to match the SkyDict's sampling frequency. The sampling frequencies of the SkyDict and ``timeseries`` must be multiples (or ``ValueError`` is raised). Parameters ---------- timeseries: array_like The data to resample. times: array_like Equally-spaced sample positions associated with the signal data in `timeseries`. axis: int The axis of timeseries that is resampled. Default is -1. window: string, float, tuple or None Time domain window to apply to the timeseries. If not None, it is passed to ``scipy.signal.get_window``, see its documentation. By default a Tukey window with alpha=0.1 is applied, to mitigate ringing near the edges (scipy.signal.resample uses FFT methods that assume that the signal is periodic). Return ------ resampled_timeseries, resampled_times A tuple containing the resampled array and the corresponding resampled positions. """ if window: shape = [1 for _ in timeseries.shape] shape[axis] = timeseries.shape[axis] timeseries = timeseries * scipy.signal.get_window( window, shape[axis]).reshape(shape) fs_ratio = self.f_sampling * (times[1] - times[0]) if fs_ratio != 1: timeseries, times = scipy.signal.resample( timeseries, int(len(times) * fs_ratio), times, axis=axis) if not np.isclose(1 / self.f_sampling, times[1] - times[0]): raise ValueError( '`times` is incommensurate with `f_sampling`.') return timeseries, times def get_sky_inds_and_prior(self, delays): """ Parameters ---------- delays: int array of shape (n_det-1, n_samples) Time-of-arrival delays in units of 1 / self.f_sampling Return ------ sky_inds: tuple of ints of length n_physical Indices of self.sky_samples with the correct time delays. sky_prior: float array of length n_physical Prior probability density for the time-delays, in units of s^-(n_det-1). physical_mask: boolean array of length n_samples Some choices of time of arrival at detectors may not correspond to any physical sky location, these are flagged ``False`` in this array. Unphysical samples are discarded. """ # First mask: are individual delays plausible? This is necessary # in order to interpret the delays as indices to self._sky_prior physical_mask = np.all((delays.T >= self._min_delay) & (delays.T <= self._max_delay), axis=1) # Submask: for the delays that survive the first mask, are there # any sky samples with the correct delays at all detector pairs? sky_prior = self._sky_prior[tuple(delays[:, physical_mask])] submask = sky_prior > 0 physical_mask[physical_mask] *= submask sky_prior = sky_prior[submask] # Generate sky samples for the physical delays generators = self.ind_generators[tuple(delays[:, physical_mask])] sky_inds = np.fromiter(map(next, generators), int) return sky_inds, sky_prior, physical_mask def _create_sky_samples(self): """ Return a dictionary of samples in terms of 'lat' and 'lon' drawn isotropically by means of a Quasi Monte Carlo (Halton) sequence. """ u_lat, u_lon = qmc.Halton(2, seed=self._rng).random(self.nsky).T samples = {} samples['lat'] = np.arcsin(2*u_lat - 1) samples['lon'] = 2 * np.pi * u_lon return samples def _create_delays2inds_map(self): """ Return a dictionary mapping arrival time delays to sky-sample indices. Its keys are tuples of ints of length (n_det - 1), with time delays to the first detector in units of 1/self.f_sampling. Its values are list of indices to ``self.sky_samples`` of samples that have the corresponding (discretized) time delays. """ # (ndet-1, nsky) delays_keys = zip(*np.rint(self.delays * self.f_sampling).astype(int)) delays2inds_map = collections.defaultdict(list) for i_sample, delays_key in enumerate(delays_keys): delays2inds_map[delays_key].append(i_sample) return delays2inds_map
2lambda123/cogwheel1
cogwheel/likelihood/marginalization/skydict.py
skydict.py
py
7,143
python
en
code
0
github-code
6
[ { "api_name": "cogwheel.utils.JSONMixin", "line_number": 15, "usage_type": "attribute" }, { "api_name": "cogwheel.utils", "line_number": 15, "usage_type": "name" }, { "api_name": "numpy.random.default_rng", "line_number": 32, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 32, "usage_type": "attribute" }, { "api_name": "cogwheel.gw_utils.get_fplus_fcross_0", "line_number": 35, "usage_type": "call" }, { "api_name": "cogwheel.gw_utils", "line_number": 35, "usage_type": "name" }, { "api_name": "cogwheel.gw_utils.get_geocenter_delays", "line_number": 37, "usage_type": "call" }, { "api_name": "cogwheel.gw_utils", "line_number": 37, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.min", "line_number": 45, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 46, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 49, "usage_type": "call" }, { "api_name": "numpy.full", "line_number": 56, "usage_type": "call" }, { "api_name": "itertools.cycle", "line_number": 59, "usage_type": "call" }, { "api_name": "scipy.signal.signal.get_window", "line_number": 97, "usage_type": "call" }, { "api_name": "scipy.signal.signal", "line_number": 97, "usage_type": "attribute" }, { "api_name": "scipy.signal", "line_number": 97, "usage_type": "name" }, { "api_name": "scipy.signal.signal.resample", "line_number": 102, "usage_type": "call" }, { "api_name": "scipy.signal.signal", "line_number": 102, "usage_type": "attribute" }, { "api_name": "scipy.signal", "line_number": 102, "usage_type": "name" }, { "api_name": "numpy.isclose", "line_number": 104, "usage_type": "call" }, { "api_name": "numpy.all", "line_number": 133, "usage_type": "call" }, { "api_name": "numpy.fromiter", "line_number": 146, "usage_type": "call" }, { "api_name": "scipy.stats.qmc.Halton", "line_number": 154, "usage_type": "call" }, { "api_name": "scipy.stats.qmc", "line_number": 154, "usage_type": "name" }, { "api_name": "numpy.arcsin", "line_number": 157, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 158, "usage_type": "attribute" }, { "api_name": "numpy.rint", "line_number": 171, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 173, "usage_type": "call" } ]
9988571316
import websockets, json, traceback, os, asyncio, inspect, logging import websockets.client import websockets.server from websockets.exceptions import ConnectionClosedOK, ConnectionClosedError from .client_management.client import Client from .session_management.client_state import Client_State from .inventory_management.profile_manager import Profile_Manager from .inventory_management.skin_manager import Skin_Manager from .randomizers.skin_randomizer import Skin_Randomizer from .inventory_management.buddy_manager import Buddy_Manager from .randomizers.buddy_randomizer import Buddy_Randomizer from .sys_utilities.system import System from .file_utilities.filepath import Filepath from .sys_utilities.logging import Logger from .user_configuartion.config import Config from .client_config import SERVER_VERSION, IS_TEST_BUILD from . import shared logger_errors = logging.getLogger('VIM_errors') logger = logging.getLogger('VIM_main') class Server: shared.client = Client() shared.client.connect() request_lookups = { "handshake": lambda: True, "get_server_version": lambda: SERVER_VERSION, # system stuff "start_game": System.start_game, "get_running_state": System.are_processes_running, "autodetect_account": shared.client.autodetect_account, # config stuff "fetch_config": lambda: shared.config, "update_config": Config.update_config, # inventory/loadout stuff "fetch_loadout": shared.client.fetch_loadout, "fetch_inventory": Skin_Manager.fetch_inventory, "fetch_profiles": Profile_Manager.fetch_profiles, "refresh_profiles": Profile_Manager.refresh_profiles, "refresh_skin_inventory": Skin_Manager.refresh_skin_inventory, "refresh_buddy_inventory": Buddy_Manager.refresh_buddy_inventory, "randomize_skins": Skin_Randomizer.randomize, "randomize_buddies": Buddy_Randomizer.randomize, "put_weapon": shared.client.put_weapon, "put_buddies": shared.client.put_buddies, #"update_skin_inventory": Skin_Manager.update_inventory, "update_buddy_inventory": Buddy_Manager.update_inventory, # profile stuff "create_profile": Profile_Manager.generate_empty_profile, "fetch_profile_metadatas": Profile_Manager.fetch_profile_metadata, "update_profiles": Profile_Manager.update_profiles, "update_profile": Profile_Manager.update_profile, "fetch_profile": Profile_Manager.fetch_profile, "apply_profile": Profile_Manager.apply_profile, "favorite_all_buddies": Buddy_Manager.favorite_all, # game state stuff "force_update_game_state": Client_State.update_game_state, } @staticmethod def start(): if not os.path.exists(Filepath.get_appdata_folder()): os.mkdir(Filepath.get_appdata_folder()) Logger.create_logger() shared.loop = asyncio.get_event_loop() Config.init_config() # iniitalize any submodules client_state = Client_State() #start websocket server start_server = websockets.serve(Server.ws_entrypoint, "", 8765) print(f"open {'https://colinhartigan.github.io/valorant-inventory-manager' if not IS_TEST_BUILD else 'https://colinhartigan.github.io/VIM-test-client'} in your browser to use VIM") shared.loop.run_until_complete(start_server) # initialize any asynchronous submodules shared.loop.run_until_complete(client_state.loop()) shared.loop.run_forever() @staticmethod async def ws_entrypoint(websocket, path): logger.debug("a client connected") logger.debug(shared.sockets) shared.sockets.append(websocket) try: while websocket in shared.sockets: data = await websocket.recv() data = json.loads(data) request = data.get("request") args = data.get("args") has_kwargs = True if args is not None else False logger.debug(f"request: {request}") payload = {} if request in Server.request_lookups.keys(): payload = { "success": True, "event": request, "data": None, } if inspect.iscoroutinefunction(Server.request_lookups[request]): if has_kwargs: payload["data"] = await Server.request_lookups[request](**args) else: payload["data"] = await Server.request_lookups[request]() else: if has_kwargs: payload["data"] = Server.request_lookups[request](**args) else: payload["data"] = Server.request_lookups[request]() else: payload = { "success": False, "data": "could not find the specified request" } await websocket.send(json.dumps(payload)) logger.debug(f"response:\n{json.dumps(payload)} ") except ConnectionClosedOK: logger.info("disconnected") shared.sockets.pop(shared.sockets.index(websocket)) except ConnectionClosedError: logger.info("disconnected w/ error") shared.sockets.pop(shared.sockets.index(websocket)) except Exception: logger_errors.error("----- EXCEPTION -----") logger_errors.error(traceback.format_exc()) except: logger.error("idk what even happened to get here")
colinhartigan/valorant-inventory-manager
server/src/server.py
server.py
py
5,848
python
en
code
150
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 23, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 24, "usage_type": "call" }, { "api_name": "client_management.client.Client", "line_number": 28, "usage_type": "call" }, { "api_name": "client_config.SERVER_VERSION", "line_number": 33, "usage_type": "name" }, { "api_name": "sys_utilities.system.System.start_game", "line_number": 36, "usage_type": "attribute" }, { "api_name": "sys_utilities.system.System", "line_number": 36, "usage_type": "name" }, { "api_name": "sys_utilities.system.System.are_processes_running", "line_number": 37, "usage_type": "attribute" }, { "api_name": "sys_utilities.system.System", "line_number": 37, "usage_type": "name" }, { "api_name": "user_configuartion.config.Config.update_config", "line_number": 42, "usage_type": "attribute" }, { "api_name": "user_configuartion.config.Config", "line_number": 42, "usage_type": "name" }, { "api_name": "inventory_management.skin_manager.Skin_Manager.fetch_inventory", "line_number": 46, "usage_type": "attribute" }, { "api_name": "inventory_management.skin_manager.Skin_Manager", "line_number": 46, "usage_type": "name" }, { "api_name": "inventory_management.profile_manager.Profile_Manager.fetch_profiles", "line_number": 47, "usage_type": "attribute" }, { "api_name": "inventory_management.profile_manager.Profile_Manager", "line_number": 47, "usage_type": "name" }, { "api_name": "inventory_management.profile_manager.Profile_Manager.refresh_profiles", "line_number": 49, "usage_type": "attribute" }, { "api_name": "inventory_management.profile_manager.Profile_Manager", "line_number": 49, "usage_type": "name" }, { "api_name": "inventory_management.skin_manager.Skin_Manager.refresh_skin_inventory", "line_number": 50, "usage_type": "attribute" }, { "api_name": "inventory_management.skin_manager.Skin_Manager", "line_number": 50, "usage_type": "name" }, { "api_name": "inventory_management.buddy_manager.Buddy_Manager.refresh_buddy_inventory", "line_number": 51, "usage_type": "attribute" }, { "api_name": "inventory_management.buddy_manager.Buddy_Manager", "line_number": 51, "usage_type": "name" }, { "api_name": "randomizers.skin_randomizer.Skin_Randomizer.randomize", "line_number": 53, "usage_type": "attribute" }, { "api_name": "randomizers.skin_randomizer.Skin_Randomizer", "line_number": 53, "usage_type": "name" }, { "api_name": "randomizers.buddy_randomizer.Buddy_Randomizer.randomize", "line_number": 54, "usage_type": "attribute" }, { "api_name": "randomizers.buddy_randomizer.Buddy_Randomizer", "line_number": 54, "usage_type": "name" }, { "api_name": "inventory_management.buddy_manager.Buddy_Manager.update_inventory", "line_number": 60, "usage_type": "attribute" }, { "api_name": "inventory_management.buddy_manager.Buddy_Manager", "line_number": 60, "usage_type": "name" }, { "api_name": "inventory_management.profile_manager.Profile_Manager.generate_empty_profile", "line_number": 63, "usage_type": "attribute" }, { "api_name": "inventory_management.profile_manager.Profile_Manager", "line_number": 63, "usage_type": "name" }, { "api_name": "inventory_management.profile_manager.Profile_Manager.fetch_profile_metadata", "line_number": 64, "usage_type": "attribute" }, { "api_name": "inventory_management.profile_manager.Profile_Manager", "line_number": 64, "usage_type": "name" }, { "api_name": "inventory_management.profile_manager.Profile_Manager.update_profiles", "line_number": 65, "usage_type": "attribute" }, { "api_name": "inventory_management.profile_manager.Profile_Manager", "line_number": 65, "usage_type": "name" }, { "api_name": "inventory_management.profile_manager.Profile_Manager.update_profile", "line_number": 66, "usage_type": "attribute" }, { "api_name": "inventory_management.profile_manager.Profile_Manager", "line_number": 66, "usage_type": "name" }, { "api_name": "inventory_management.profile_manager.Profile_Manager.fetch_profile", "line_number": 67, "usage_type": "attribute" }, { "api_name": "inventory_management.profile_manager.Profile_Manager", "line_number": 67, "usage_type": "name" }, { "api_name": "inventory_management.profile_manager.Profile_Manager.apply_profile", "line_number": 68, "usage_type": "attribute" }, { "api_name": "inventory_management.profile_manager.Profile_Manager", "line_number": 68, "usage_type": "name" }, { "api_name": "inventory_management.buddy_manager.Buddy_Manager.favorite_all", "line_number": 70, "usage_type": "attribute" }, { "api_name": "inventory_management.buddy_manager.Buddy_Manager", "line_number": 70, "usage_type": "name" }, { "api_name": "session_management.client_state.Client_State.update_game_state", "line_number": 73, "usage_type": "attribute" }, { "api_name": "session_management.client_state.Client_State", "line_number": 73, "usage_type": "name" }, { "api_name": "os.path.exists", "line_number": 78, "usage_type": "call" }, { "api_name": "os.path", "line_number": 78, "usage_type": "attribute" }, { "api_name": "file_utilities.filepath.Filepath.get_appdata_folder", "line_number": 78, "usage_type": "call" }, { "api_name": "file_utilities.filepath.Filepath", "line_number": 78, "usage_type": "name" }, { "api_name": "os.mkdir", "line_number": 79, "usage_type": "call" }, { "api_name": "file_utilities.filepath.Filepath.get_appdata_folder", "line_number": 79, "usage_type": "call" }, { "api_name": "file_utilities.filepath.Filepath", "line_number": 79, "usage_type": "name" }, { "api_name": "sys_utilities.logging.Logger.create_logger", "line_number": 81, "usage_type": "call" }, { "api_name": "sys_utilities.logging.Logger", "line_number": 81, "usage_type": "name" }, { "api_name": "asyncio.get_event_loop", "line_number": 83, "usage_type": "call" }, { "api_name": "user_configuartion.config.Config.init_config", "line_number": 85, "usage_type": "call" }, { "api_name": "user_configuartion.config.Config", "line_number": 85, "usage_type": "name" }, { "api_name": "session_management.client_state.Client_State", "line_number": 88, "usage_type": "call" }, { "api_name": "websockets.serve", "line_number": 91, "usage_type": "call" }, { "api_name": "client_config.IS_TEST_BUILD", "line_number": 93, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 110, "usage_type": "call" }, { "api_name": "inspect.iscoroutinefunction", "line_number": 124, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 140, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 141, "usage_type": "call" }, { "api_name": "websockets.exceptions.ConnectionClosedOK", "line_number": 143, "usage_type": "name" }, { "api_name": "websockets.exceptions.ConnectionClosedError", "line_number": 147, "usage_type": "name" }, { "api_name": "traceback.format_exc", "line_number": 153, "usage_type": "call" } ]
17690019803
#!/usr/bin/env python3 """ Module for view definition """ from flask import Flask, render_template, request from flask_babel import Babel, _ from typing import Optional class Config(object): """ Config class """ # ... LANGUAGES = ['en', 'fr'] BABEL_DEFAULT_LOCALE = 'en' BABEL_DEFAULT_TIMEZONE = 'UTC' app = Flask(__name__) babel = Babel(app) app.config.from_object(Config) # def create_app(config_class=Config): # app = Flask(__name__) # babel.init_app(app) # app.config.from_object(config_class) # return app @babel.localeselector def get_locale() -> Optional[str]: """ Get preferred local function """ if request.args.get('locale'): locale = request.args.get('locale') # print(locale) if locale in app.config['LANGUAGES']: print(locale) return locale else: return request.accept_languages.best_match(app.config['LANGUAGES']) @app.route('/', methods=['GET'], strict_slashes=False) def index() -> str: """ Index function """ return render_template('4-index.html') if __name__ == '__main__': app.run(debug=True)
dnjoe96/alx-backend
0x02-i18n/4-app.py
4-app.py
py
1,140
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 16, "usage_type": "call" }, { "api_name": "flask_babel.Babel", "line_number": 17, "usage_type": "call" }, { "api_name": "flask.request.args.get", "line_number": 31, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 31, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 31, "usage_type": "name" }, { "api_name": "flask.request.args.get", "line_number": 32, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 32, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 32, "usage_type": "name" }, { "api_name": "flask.request.accept_languages.best_match", "line_number": 38, "usage_type": "call" }, { "api_name": "flask.request.accept_languages", "line_number": 38, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 38, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 29, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 44, "usage_type": "call" } ]
8631452934
import pytest import numpy as np from abito.lib.significance import * def test_t_test(): np.random.seed(0) treatment = np.random.normal(100, size=100) control = np.random.normal(100, size=100) r = t_test(treatment, control) assert r.p_value == pytest.approx(0.9, 0.1) r = t_test_1samp(treatment, 100) assert r.p_value == pytest.approx(0.6, 0.1)
avito-tech/abito
tests/test_significance.py
test_significance.py
py
376
python
en
code
14
github-code
6
[ { "api_name": "numpy.random.seed", "line_number": 7, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 7, "usage_type": "attribute" }, { "api_name": "numpy.random.normal", "line_number": 8, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 8, "usage_type": "attribute" }, { "api_name": "numpy.random.normal", "line_number": 9, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 9, "usage_type": "attribute" }, { "api_name": "pytest.approx", "line_number": 11, "usage_type": "call" }, { "api_name": "pytest.approx", "line_number": 14, "usage_type": "call" } ]
26112361495
__authors__ = ["V. Valls"] __license__ = "MIT" __date__ = "14/02/2018" import enum import logging from silx.gui import qt from silx.gui.dialog.ImageFileDialog import ImageFileDialog from silx.gui.dialog.DataFileDialog import DataFileDialog import silx.io logging.basicConfig() class Mode(enum.Enum): DEFAULT_FILEDIALOG = 0 IMAGEFILEDIALOG = 1 DATAFILEDIALOG = 2 DATAFILEDIALOG_DATASET = 3 DATAFILEDIALOG_GROUP = 4 DATAFILEDIALOG_NXENTRY = 5 class DialogExample(qt.QMainWindow): def __init__(self, parent=None): super(DialogExample, self).__init__(parent) self.__state = {} centralWidget = qt.QWidget(self) layout = qt.QHBoxLayout() centralWidget.setLayout(layout) options = self.createOptions() layout.addWidget(options) buttonGroup = qt.QGroupBox() buttonGroup.setTitle("Create dialog") layout.addWidget(buttonGroup) buttonLayout = qt.QVBoxLayout() buttonGroup.setLayout(buttonLayout) # ImageFileDialog b1 = qt.QPushButton(self) b1.setMinimumHeight(50) b1.setText("Open a dialog") b1.clicked.connect(self.openDialog) buttonLayout.addWidget(b1) b2 = qt.QPushButton(self) b2.setMinimumHeight(50) b2.setText("Open a dialog with state stored") b2.clicked.connect(self.openDialogStoredState) buttonLayout.addWidget(b2) b3 = qt.QPushButton(self) b3.setMinimumHeight(50) b3.setText("Open a dialog at home") b3.clicked.connect(self.openDialogAtHome) buttonLayout.addWidget(b3) b4 = qt.QPushButton(self) b4.setMinimumHeight(50) b4.setText("Open a dialog at computer root") b4.clicked.connect(self.openDialogAtComputer) buttonLayout.addWidget(b4) self.setCentralWidget(centralWidget) def createOptions(self): panel = qt.QGroupBox() panel.setTitle("Options") layout = qt.QVBoxLayout() panel.setLayout(layout) group = qt.QButtonGroup(panel) radio = qt.QRadioButton(panel) radio.setText("Qt QFileDialog") radio.setProperty("Mode", Mode.DEFAULT_FILEDIALOG) group.addButton(radio) layout.addWidget(radio) radio = qt.QRadioButton(panel) radio.setText("silx ImageFileDialog") radio.setProperty("Mode", Mode.IMAGEFILEDIALOG) group.addButton(radio) layout.addWidget(radio) radio = qt.QRadioButton(panel) radio.setChecked(True) radio.setText("silx DataFileDialog") radio.setProperty("Mode", Mode.DATAFILEDIALOG) group.addButton(radio) layout.addWidget(radio) radio = qt.QRadioButton(panel) radio.setText("silx DataFileDialog (filter=dataset)") radio.setProperty("Mode", Mode.DATAFILEDIALOG_DATASET) group.addButton(radio) layout.addWidget(radio) radio = qt.QRadioButton(panel) radio.setText("silx DataFileDialog (filter=group)") radio.setProperty("Mode", Mode.DATAFILEDIALOG_GROUP) group.addButton(radio) layout.addWidget(radio) radio = qt.QRadioButton(panel) radio.setText("silx DataFileDialog (filter=NXentry)") radio.setProperty("Mode", Mode.DATAFILEDIALOG_NXENTRY) group.addButton(radio) layout.addWidget(radio) self.__options = group return panel def printResult(self, dialog, result): if not result: print("Nothing selected") return print("Selection:") if isinstance(dialog, qt.QFileDialog): print("- Files: %s" % dialog.selectedFiles()) elif isinstance(dialog, ImageFileDialog): print("- File: %s" % dialog.selectedFile()) print("- URL: %s" % dialog.selectedUrl()) print("- Data URL: %s" % dialog.selectedDataUrl()) image = dialog.selectedImage() print("- Image: <dtype: %s, shape: %s>" % (image.dtype, image.shape)) elif isinstance(dialog, DataFileDialog): print("- File: %s" % dialog.selectedFile()) print("- URL: %s" % dialog.selectedUrl()) print("- Data URL: %s" % dialog.selectedDataUrl()) try: data = dialog.selectedData() print("- Data: <dtype: %s, shape: %s>" % (data.dtype, data.shape)) except Exception as e: print("- Data: %s" % e) url = dialog.selectedDataUrl() with silx.io.open(url.file_path()) as h5: node = h5[url.data_path()] print("- Node: %s" % node) else: assert(False) def createDialog(self): print("") print("-------------------------") print("----- Create dialog -----") print("-------------------------") button = self.__options.checkedButton() mode = button.property("Mode") if mode == Mode.DEFAULT_FILEDIALOG: dialog = qt.QFileDialog(self) dialog.setAcceptMode(qt.QFileDialog.AcceptOpen) elif mode == Mode.IMAGEFILEDIALOG: dialog = ImageFileDialog(self) elif mode == Mode.DATAFILEDIALOG: dialog = DataFileDialog(self) elif mode == Mode.DATAFILEDIALOG_DATASET: dialog = DataFileDialog(self) dialog.setFilterMode(DataFileDialog.FilterMode.ExistingDataset) elif mode == Mode.DATAFILEDIALOG_GROUP: dialog = DataFileDialog(self) dialog.setFilterMode(DataFileDialog.FilterMode.ExistingGroup) elif mode == Mode.DATAFILEDIALOG_NXENTRY: def customFilter(obj): if "NX_class" in obj.attrs: return obj.attrs["NX_class"] in [b"NXentry", u"NXentry"] return False dialog = DataFileDialog(self) dialog.setFilterMode(DataFileDialog.FilterMode.ExistingGroup) dialog.setFilterCallback(customFilter) else: assert(False) return dialog def openDialog(self): # Clear the dialog dialog = self.createDialog() # Execute the dialog as modal result = dialog.exec() self.printResult(dialog, result) def openDialogStoredState(self): # Clear the dialog dialog = self.createDialog() if dialog.__class__ in self.__state: dialog.restoreState(self.__state[dialog.__class__]) # Execute the dialog as modal result = dialog.exec() self.__state[dialog.__class__] = dialog.saveState() self.printResult(dialog, result) def openDialogAtHome(self): # Clear the dialog path = qt.QDir.homePath() dialog = self.createDialog() dialog.setDirectory(path) # Execute the dialog as modal result = dialog.exec() self.printResult(dialog, result) def openDialogAtComputer(self): # Clear the dialog path = "" dialog = self.createDialog() dialog.setDirectory(path) # Execute the dialog as modal result = dialog.exec() self.printResult(dialog, result) def main(): app = qt.QApplication([]) example = DialogExample() example.show() app.exec() if __name__ == "__main__": main()
silx-kit/silx
examples/fileDialog.py
fileDialog.py
py
7,386
python
en
code
106
github-code
6
[ { "api_name": "logging.basicConfig", "line_number": 13, "usage_type": "call" }, { "api_name": "enum.Enum", "line_number": 16, "usage_type": "attribute" }, { "api_name": "silx.gui.qt.QMainWindow", "line_number": 25, "usage_type": "attribute" }, { "api_name": "silx.gui.qt", "line_number": 25, "usage_type": "name" }, { "api_name": "silx.gui.qt.QWidget", "line_number": 32, "usage_type": "call" }, { "api_name": "silx.gui.qt", "line_number": 32, "usage_type": "name" }, { "api_name": "silx.gui.qt.QHBoxLayout", "line_number": 33, "usage_type": "call" }, { "api_name": "silx.gui.qt", "line_number": 33, "usage_type": "name" }, { "api_name": "silx.gui.qt.QGroupBox", "line_number": 39, "usage_type": "call" }, { "api_name": "silx.gui.qt", "line_number": 39, "usage_type": "name" }, { "api_name": "silx.gui.qt.QVBoxLayout", "line_number": 42, "usage_type": "call" }, { "api_name": "silx.gui.qt", "line_number": 42, "usage_type": "name" }, { "api_name": "silx.gui.qt.QPushButton", "line_number": 47, "usage_type": "call" }, { "api_name": "silx.gui.qt", "line_number": 47, "usage_type": "name" }, { "api_name": "silx.gui.qt.QPushButton", "line_number": 53, "usage_type": "call" }, { "api_name": "silx.gui.qt", "line_number": 53, "usage_type": "name" }, { "api_name": "silx.gui.qt.QPushButton", "line_number": 59, "usage_type": "call" }, { "api_name": "silx.gui.qt", "line_number": 59, "usage_type": "name" }, { "api_name": "silx.gui.qt.QPushButton", "line_number": 65, "usage_type": "call" }, { "api_name": "silx.gui.qt", "line_number": 65, "usage_type": "name" }, { "api_name": "silx.gui.qt.QGroupBox", "line_number": 74, "usage_type": "call" }, { "api_name": "silx.gui.qt", "line_number": 74, "usage_type": "name" }, { "api_name": "silx.gui.qt.QVBoxLayout", "line_number": 76, "usage_type": "call" }, { "api_name": "silx.gui.qt", "line_number": 76, "usage_type": "name" }, { "api_name": "silx.gui.qt.QButtonGroup", "line_number": 78, "usage_type": "call" }, { "api_name": "silx.gui.qt", "line_number": 78, "usage_type": "name" }, { "api_name": "silx.gui.qt.QRadioButton", "line_number": 80, "usage_type": "call" }, { "api_name": "silx.gui.qt", "line_number": 80, "usage_type": "name" }, { "api_name": "silx.gui.qt.QRadioButton", "line_number": 86, "usage_type": "call" }, { "api_name": "silx.gui.qt", "line_number": 86, "usage_type": "name" }, { "api_name": "silx.gui.qt.QRadioButton", "line_number": 92, "usage_type": "call" }, { "api_name": "silx.gui.qt", "line_number": 92, "usage_type": "name" }, { "api_name": "silx.gui.qt.QRadioButton", "line_number": 99, "usage_type": "call" }, { "api_name": "silx.gui.qt", "line_number": 99, "usage_type": "name" }, { "api_name": "silx.gui.qt.QRadioButton", "line_number": 105, "usage_type": "call" }, { "api_name": "silx.gui.qt", "line_number": 105, "usage_type": "name" }, { "api_name": "silx.gui.qt.QRadioButton", "line_number": 111, "usage_type": "call" }, { "api_name": "silx.gui.qt", "line_number": 111, "usage_type": "name" }, { "api_name": "silx.gui.qt.QFileDialog", "line_number": 126, "usage_type": "attribute" }, { "api_name": "silx.gui.qt", "line_number": 126, "usage_type": "name" }, { "api_name": "silx.gui.dialog.ImageFileDialog.ImageFileDialog", "line_number": 128, "usage_type": "argument" }, { "api_name": "silx.gui.dialog.DataFileDialog.DataFileDialog", "line_number": 134, "usage_type": "argument" }, { "api_name": "silx.gui.io.open", "line_number": 145, "usage_type": "call" }, { "api_name": "silx.gui.io", "line_number": 145, "usage_type": "attribute" }, { "api_name": "silx.gui", "line_number": 145, "usage_type": "name" }, { "api_name": "silx.gui.qt.QFileDialog", "line_number": 159, "usage_type": "call" }, { "api_name": "silx.gui.qt", "line_number": 159, "usage_type": "name" }, { "api_name": "silx.gui.qt.QFileDialog", "line_number": 160, "usage_type": "attribute" }, { "api_name": "silx.gui.qt", "line_number": 160, "usage_type": "name" }, { "api_name": "silx.gui.dialog.ImageFileDialog.ImageFileDialog", "line_number": 162, "usage_type": "call" }, { "api_name": "silx.gui.dialog.DataFileDialog.DataFileDialog", "line_number": 164, "usage_type": "call" }, { "api_name": "silx.gui.dialog.DataFileDialog.DataFileDialog", "line_number": 166, "usage_type": "call" }, { "api_name": "silx.gui.dialog.DataFileDialog.DataFileDialog.FilterMode", "line_number": 167, "usage_type": "attribute" }, { "api_name": "silx.gui.dialog.DataFileDialog.DataFileDialog", "line_number": 167, "usage_type": "name" }, { "api_name": "silx.gui.dialog.DataFileDialog.DataFileDialog", "line_number": 169, "usage_type": "call" }, { "api_name": "silx.gui.dialog.DataFileDialog.DataFileDialog.FilterMode", "line_number": 170, "usage_type": "attribute" }, { "api_name": "silx.gui.dialog.DataFileDialog.DataFileDialog", "line_number": 170, "usage_type": "name" }, { "api_name": "silx.gui.dialog.DataFileDialog.DataFileDialog", "line_number": 176, "usage_type": "call" }, { "api_name": "silx.gui.dialog.DataFileDialog.DataFileDialog.FilterMode", "line_number": 177, "usage_type": "attribute" }, { "api_name": "silx.gui.dialog.DataFileDialog.DataFileDialog", "line_number": 177, "usage_type": "name" }, { "api_name": "silx.gui.qt.QDir.homePath", "line_number": 204, "usage_type": "call" }, { "api_name": "silx.gui.qt.QDir", "line_number": 204, "usage_type": "attribute" }, { "api_name": "silx.gui.qt", "line_number": 204, "usage_type": "name" }, { "api_name": "silx.gui.qt.QApplication", "line_number": 224, "usage_type": "call" }, { "api_name": "silx.gui.qt", "line_number": 224, "usage_type": "name" } ]
41243183736
from flask import Blueprint, request, jsonify, make_response from tabledef import Technician from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from sqlalchemy import update from tabledef import Technician, Call import config # create a query that extracts the information of the table "technician" for a specific company select_technicians = """ SELECT id_technician, id_company, data_technician, chat_id, status, message FROM technicians WHERE id_company is {}; """ select_technician_company = """ SELECT id_company FROM technicians WHERE chat_id is {}; """ select_technician_info_by_chat_id = """ SELECT id_technician, id_company, data_technician, chat_id, status FROM technicians WHERE chat_id is {}; """ select_technician_info_by_tech_id = """ SELECT id_technician, id_company, data_technician, chat_id, status FROM technicians WHERE id_technician is {}; """ #''' # Call select_call_from_status = """ SELECT id_call, id_company, id_condominium, date_call, data_call, call_status FROM calls WHERE call_status is {} AND id_company is {}; """ #''' # allows main_data to recall the underlying endpoint api_technician_company = Blueprint('api_technician_company', __name__) @api_technician_company.route('/<id_company>/technician', methods=['GET']) def technician_company_id(id_company): """ endpoint which is used to find the technicians of a given company in the database :param id_company: company_id :return: return the technician referred to the id_company """ engine = create_engine('sqlite:///call_center.db', echo=True) conn = engine.connect() result = conn.execute(select_technicians.format(id_company)) technicians = [] for el in result: technicians.append( { config.TECH_ID: el[0], config.TECH_INFO: el[2] } ) if result: response = { "message": "technicians:", 'status': 'OK', "items": technicians } res_technicians = make_response(jsonify(response), 200) else: response = { "message": "ERROR: No technicians in database", 'status': 'ERROR', "items": [] } res_technicians = make_response(jsonify(response), 404) return res_technicians #@api_technician_company.route('/technician/<id_technician>/<chat_id>', methods=['GET']) @api_technician_company.route('/technician/<id_technician>/add_chat_id/<chat_id>', methods=['GET']) def update_chat_id(id_technician, chat_id): """ endpoint which is used to login the technician :param id_technician: id_technician, chat_id: chat_id :return: insert in the database the chat_id referred to the id_technician """ engine = create_engine('sqlite:///call_center.db', echo=True) conn = engine.connect() update_chat_id = update(Technician).where(Technician.id_technician == id_technician).values(chat_id=chat_id) conn.execute(update_chat_id) response = { 'status': 'OK' } res_status = make_response(jsonify(response), 200) return res_status @api_technician_company.route('/technician_chat/<chat_id>/logout', methods=['GET']) def logout_chat_id(chat_id): """ endpoint which is used to logout the technician :param chat_id: chat_id :return: when technician logout cancel the chat_id referred to the technician with the same chat_id """ engine = create_engine('sqlite:///call_center.db', echo=True) conn = engine.connect() update_chat_id = update(Technician).where(Technician.chat_id == chat_id).values(chat_id='') conn.execute(update_chat_id) response = { 'status': 'OK' } res_status = make_response(jsonify(response), 200) return res_status @api_technician_company.route('/technician_chat/<chat_id>/update/<status>', methods=['GET']) def update_status_tech_by_chat_id(chat_id, status): """ endpoint which is used to update the status of technician referred to chat_id :param chat_id: chat_id, status: status :return: update the status of technician referred to chat_id """ if status in config.TECH_STATUS_LABEL: engine = create_engine('sqlite:///call_center.db', echo=True) conn = engine.connect() update_status = update(Technician).where(Technician.chat_id == chat_id).values(status=status) conn.execute(update_status) response = { "tech_status": config.TECH_STATUS_LABEL[status], 'status': 'OK' } if status == '1': comp = conn.execute(select_technician_company.format(chat_id)) free_calls = conn.execute(select_call_from_status.format(1, next(comp)[0])) calls = [] for el in free_calls: calls.append( { config.CALL_ID: el[0], config.COMPANY_ID: el[1], config.BUILDING_ID: el[2], config.CALL_DATE: el[3], config.CALL_INFO: el[4], config.CALL_STATUS: el[5] } ) #Call(input_data[config.COMPANY_ID], input_data[config.BUILDING_ID], datetime.now(), {config.CALL_MESSAGE: input_data[config.CALL_MESSAGE]}, call_status) response = { "tech_status": config.TECH_STATUS_LABEL[status], 'status': 'OK', "free_calls": calls } res_status = make_response(jsonify(response), 200) else: response = { "tech_status": "Status must be between 0 and 4", 'status': 'ERROR' } res_status = make_response(jsonify(response), 404) return res_status @api_technician_company.route('/technician/<tech_id>/update/<status>', methods=['GET']) def update_status_tech_by_tech_id(tech_id, status): """ endpoint which is used to update the status of technician referred to tech_id :param tech_id: tech_id, status: status :return: update the status of technician referred to tech_id """ if status in config.TECH_STATUS_LABEL: engine = create_engine('sqlite:///call_center.db', echo=True) conn = engine.connect() update_status = update(Technician).where(Technician.id_technician == tech_id).values(status=status) conn.execute(update_status) response = { "tech_status": config.TECH_STATUS_LABEL[status], 'status': 'OK' } res_status = make_response(jsonify(response), 200) else: response = { "tech_status": "Status must be between 0 and 4", 'status': 'ERROR' } res_status = make_response(jsonify(response), 404) return res_status ##### select_technician_info_by_chat_id @api_technician_company.route('/technician_chat/<chat_id>/info', methods=['GET']) def get_tech_info_by_chat_id(chat_id): """ endpoint which is used to select the information of technician by chat id :param chat_id: chat_id :return: return the information of technician by chat id """ engine = create_engine('sqlite:///call_center.db', echo=True) conn = engine.connect() result =conn.execute(select_technician_info_by_chat_id.format(chat_id)) info = {} for el in result: info = { config.TECH_ID: el[0], config.COMPANY_ID: el[1], config.TECH_INFO: el[2], config.TECH_CHAT: el[3], config.TECH_STATUS: el[4] } response = { "info": info, 'status': 'OK' } res_status = make_response(jsonify(response), 200) return res_status @api_technician_company.route('/technician/<tech_id>/info', methods=['GET']) def get_tech_info_by_tech_id(tech_id): """ endpoint which is used to select the information of technician by chat id :param tech_id: chat_id :return: return the information of technician by chat id """ engine = create_engine('sqlite:///call_center.db', echo=True) conn = engine.connect() result =conn.execute(select_technician_info_by_tech_id.format(tech_id)) for el in result: info = { config.TECH_ID: el[0], config.COMPANY_ID: el[1], config.TECH_INFO: el[2], config.TECH_CHAT: el[3], config.TECH_STATUS: el[4] } response = { "info": info, 'status': 'OK' } res_status = make_response(jsonify(response), 200) return res_status
fmauri90/call_center
dataservice/api_technician_company.py
api_technician_company.py
py
8,617
python
en
code
0
github-code
6
[ { "api_name": "flask.Blueprint", "line_number": 36, "usage_type": "call" }, { "api_name": "sqlalchemy.create_engine", "line_number": 47, "usage_type": "call" }, { "api_name": "config.TECH_ID", "line_number": 54, "usage_type": "attribute" }, { "api_name": "config.TECH_INFO", "line_number": 55, "usage_type": "attribute" }, { "api_name": "flask.make_response", "line_number": 67, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 67, "usage_type": "call" }, { "api_name": "flask.make_response", "line_number": 75, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 75, "usage_type": "call" }, { "api_name": "sqlalchemy.create_engine", "line_number": 89, "usage_type": "call" }, { "api_name": "sqlalchemy.update", "line_number": 91, "usage_type": "call" }, { "api_name": "tabledef.Technician", "line_number": 91, "usage_type": "argument" }, { "api_name": "tabledef.Technician.id_technician", "line_number": 91, "usage_type": "attribute" }, { "api_name": "flask.make_response", "line_number": 96, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 96, "usage_type": "call" }, { "api_name": "sqlalchemy.create_engine", "line_number": 109, "usage_type": "call" }, { "api_name": "sqlalchemy.update", "line_number": 111, "usage_type": "call" }, { "api_name": "tabledef.Technician", "line_number": 111, "usage_type": "argument" }, { "api_name": "tabledef.Technician.chat_id", "line_number": 111, "usage_type": "attribute" }, { "api_name": "flask.make_response", "line_number": 116, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 116, "usage_type": "call" }, { "api_name": "config.TECH_STATUS_LABEL", "line_number": 129, "usage_type": "attribute" }, { "api_name": "sqlalchemy.create_engine", "line_number": 130, "usage_type": "call" }, { "api_name": "sqlalchemy.update", "line_number": 132, "usage_type": "call" }, { "api_name": "tabledef.Technician", "line_number": 132, "usage_type": "argument" }, { "api_name": "tabledef.Technician.chat_id", "line_number": 132, "usage_type": "attribute" }, { "api_name": "config.TECH_STATUS_LABEL", "line_number": 136, "usage_type": "attribute" }, { "api_name": "config.CALL_ID", "line_number": 147, "usage_type": "attribute" }, { "api_name": "config.COMPANY_ID", "line_number": 148, "usage_type": "attribute" }, { "api_name": "config.BUILDING_ID", "line_number": 149, "usage_type": "attribute" }, { "api_name": "config.CALL_DATE", "line_number": 150, "usage_type": "attribute" }, { "api_name": "config.CALL_INFO", "line_number": 151, "usage_type": "attribute" }, { "api_name": "config.CALL_STATUS", "line_number": 152, "usage_type": "attribute" }, { "api_name": "config.TECH_STATUS_LABEL", "line_number": 157, "usage_type": "attribute" }, { "api_name": "flask.make_response", "line_number": 162, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 162, "usage_type": "call" }, { "api_name": "flask.make_response", "line_number": 168, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 168, "usage_type": "call" }, { "api_name": "config.TECH_STATUS_LABEL", "line_number": 181, "usage_type": "attribute" }, { "api_name": "sqlalchemy.create_engine", "line_number": 182, "usage_type": "call" }, { "api_name": "sqlalchemy.update", "line_number": 184, "usage_type": "call" }, { "api_name": "tabledef.Technician", "line_number": 184, "usage_type": "argument" }, { "api_name": "tabledef.Technician.id_technician", "line_number": 184, "usage_type": "attribute" }, { "api_name": "config.TECH_STATUS_LABEL", "line_number": 187, "usage_type": "attribute" }, { "api_name": "flask.make_response", "line_number": 190, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 190, "usage_type": "call" }, { "api_name": "flask.make_response", "line_number": 196, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 196, "usage_type": "call" }, { "api_name": "sqlalchemy.create_engine", "line_number": 208, "usage_type": "call" }, { "api_name": "config.TECH_ID", "line_number": 214, "usage_type": "attribute" }, { "api_name": "config.COMPANY_ID", "line_number": 215, "usage_type": "attribute" }, { "api_name": "config.TECH_INFO", "line_number": 216, "usage_type": "attribute" }, { "api_name": "config.TECH_CHAT", "line_number": 217, "usage_type": "attribute" }, { "api_name": "config.TECH_STATUS", "line_number": 218, "usage_type": "attribute" }, { "api_name": "flask.make_response", "line_number": 224, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 224, "usage_type": "call" }, { "api_name": "sqlalchemy.create_engine", "line_number": 236, "usage_type": "call" }, { "api_name": "config.TECH_ID", "line_number": 241, "usage_type": "attribute" }, { "api_name": "config.COMPANY_ID", "line_number": 242, "usage_type": "attribute" }, { "api_name": "config.TECH_INFO", "line_number": 243, "usage_type": "attribute" }, { "api_name": "config.TECH_CHAT", "line_number": 244, "usage_type": "attribute" }, { "api_name": "config.TECH_STATUS", "line_number": 245, "usage_type": "attribute" }, { "api_name": "flask.make_response", "line_number": 251, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 251, "usage_type": "call" } ]
25170385254
# Django imports from django.shortcuts import render, get_object_or_404 from django.db.models import Q # Folder imports from .utils.sky import quick_flight_search from .models import * from apps.authentication.models import Profile from apps.trips.models import * # Other imports from datetime import datetime, date, timedelta from dotenv import load_dotenv import os # URL: flights/partials/add_flight # HTTP Method: GET # Description: Intermediate screen to select way to add flight def add_flight(request): flight_direction = request.GET.get('flight_direction') trip_id = request.GET.get('trip_id') context = {'flight_direction': flight_direction, 'trip_id': trip_id, 'popup_title': f'Add an {flight_direction} flight'} return render(request, 'partials/add_flight.html', context) # URL: flights/partials/enter_flight # HTTP Method: GET # Description: Facilitats the manual entry of flight information def enter_flight(request): trip_id = request.GET.get('trip_id') flight_direction = request.GET.get('flight_direction') trip = get_object_or_404(Trip, id=trip_id) if flight_direction == "outbound": earliest_destination = trip.destination_set.order_by('order').first() departure_airports = Airport.objects.all() arrival_interrailairports = InterrailAirport.objects.filter(city=earliest_destination.city) # Get arrival airports as Airport objects arrival_airports = [] for airport in arrival_interrailairports: arrival_airports.append(airport.airport) # Take 1 days off the minimum date for outbound flights to allow for long journeys min_date = str(trip.start_date - timedelta(days=1)) else: last_destination = trip.destination_set.order_by('order').last() departure_interrailairports = InterrailAirport.objects.filter(city=last_destination.city) # Get departure airports as Airport objects departure_airports = [] for airport in departure_interrailairports: departure_airports.append(airport.airport) arrival_airports = Airport.objects.all() min_date = str(last_destination.end_date) context = {'popup_title': 'Enter Flight', 'departure_airports': departure_airports, 'arrival_airports': arrival_airports, 'flight_direction': flight_direction, 'min_date': min_date} return render(request, 'partials/enter_flight.html', context) # URL: flight/partials/search_flight # HTTP Method: GET # Description: Allows search to be created for given flight criteria def search_flight(request): # Check API key can be found load_dotenv() skyscanner_key = os.getenv('skyscanner_api_key') if skyscanner_key: key_found = True else: key_found = False # Get trip and flight direction from get request trip = get_object_or_404(Trip, id=request.GET.get('trip_id')) flight_direction = request.GET.get('flight_direction') # If outbound flight, find the earliest destination's start date and find a flight to that destination on that date if flight_direction == "outbound": earliest_destination = trip.destination_set.order_by('order').first() departure_airports = Airport.objects.filter(country = Profile.objects.get(user=request.user).nationality).order_by('name') arrival_interrailairports = InterrailAirport.objects.filter(city=earliest_destination.city) # Get arrival airports as Airport objects arrival_airports = [] for airport in arrival_interrailairports: arrival_airports.append(airport.airport) # If inbound flight, find the last destination's end date and find a flight from that destination on that date else: last_destination = trip.destination_set.order_by('order').last() departure_interrailairports = InterrailAirport.objects.filter(city=last_destination.city) # Get departure airports as Airport objects departure_airports = [] for airport in departure_interrailairports: departure_airports.append(airport.airport) arrival_airports = Airport.objects.filter(country = Profile.objects.get(user=request.user).nationality).order_by('name') context = {'popup_title': 'Flight Search', 'departure_airports': departure_airports, 'arrival_airports': arrival_airports, 'trip_id': trip.id, 'flight_direction': flight_direction, 'key_found': key_found} return render(request, 'partials/search_flight.html', context) # URL: flight/partials/search_results # HTTP Method: GET # Description: Displays flight search criteria def search_results(request): # Get trip id, direction and direct flights flag from parameters trip = get_object_or_404(Trip, id=request.GET.get('trip_id')) flight_direction = request.GET.get('flight_direction') if request.GET.get('direct_flights') == 'on': direct = True else: direct = False # Get airport objects from IDs departure_airport = get_object_or_404(Airport, id = request.GET.get('departure_airport')) destination_airport = get_object_or_404(Airport, id = request.GET.get('arrival_airport')) # If outbound flight configure dates as trip start date if flight_direction == "outbound": earliest_destination = trip.destination_set.order_by('order').first() session_token, direct_flights, connecting_flights = quick_flight_search("GBP", departure_airport.iata_code, destination_airport.iata_code, earliest_destination.start_date.year, earliest_destination.start_date.month, earliest_destination.start_date.day, direct) # If inbound flight configure dates as trip end date else: last_destination = trip.destination_set.order_by('order').last() session_token, direct_flights, connecting_flights = quick_flight_search("GBP", departure_airport.iata_code, destination_airport.iata_code, last_destination.start_date.year, last_destination.start_date.month, last_destination.start_date.day, direct) context = {'direct_flights': direct_flights, 'connecting_flights': connecting_flights, 'flight_direction': flight_direction, 'departure_airport': departure_airport, 'destination_airport': destination_airport, 'popup_title': f'{departure_airport} - {destination_airport}', 'trip_id': trip.id} return render(request, 'partials/search_results.html', context)
sc19jwh/COMP3931
apps/flights/views.py
views.py
py
6,392
python
en
code
0
github-code
6
[ { "api_name": "django.shortcuts.render", "line_number": 21, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 29, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 39, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 51, "usage_type": "call" }, { "api_name": "dotenv.load_dotenv", "line_number": 58, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 59, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 65, "usage_type": "call" }, { "api_name": "apps.authentication.models.Profile.objects.get", "line_number": 70, "usage_type": "call" }, { "api_name": "apps.authentication.models.Profile.objects", "line_number": 70, "usage_type": "attribute" }, { "api_name": "apps.authentication.models.Profile", "line_number": 70, "usage_type": "name" }, { "api_name": "apps.authentication.models.Profile.objects.get", "line_number": 84, "usage_type": "call" }, { "api_name": "apps.authentication.models.Profile.objects", "line_number": 84, "usage_type": "attribute" }, { "api_name": "apps.authentication.models.Profile", "line_number": 84, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 87, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 94, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 101, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 102, "usage_type": "call" }, { "api_name": "utils.sky.quick_flight_search", "line_number": 106, "usage_type": "call" }, { "api_name": "utils.sky.quick_flight_search", "line_number": 110, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 113, "usage_type": "call" } ]
36229561780
from typing import List ''' 452. 用最少数量的箭引爆气球 https://leetcode.cn/problems/minimum-number-of-arrows-to-burst-balloons/ 每一箭射穿的气球满足:最左边的气球右端在最右边气球左端的右面。 可以贪心,按照气球右端排序 记录新开的一箭的气球的右端点end,一旦有一个气球的左端点在end右面,则这一箭已经射不到这个气球了,需要新的一箭。 ''' class Solution: def findMinArrowShots(self, points: List[List[int]]) -> int: points.sort(key=lambda x: x[1]) res = 1 end = points[0][1] for st, en in points: if st > end: res += 1 end = en return res s = Solution() print(s.findMinArrowShots([[10,16],[2,8],[1,6],[7,12]]))
z-w-wang/Leetcode-Problemlist
CS-Notes/Greedy/452.py
452.py
py
806
python
zh
code
3
github-code
6
[ { "api_name": "typing.List", "line_number": 11, "usage_type": "name" } ]
2704503307
# -*- coding: utf-8 -*- from django.test import Client, RequestFactory, TestCase from tasks import views from tasks.models import Task, TaskStatus from users.models import CustomUser class TaskTest(TestCase): """Test cases for tasks.""" def setUp(self): """Initial setup before tests.""" self.factory = RequestFactory() self.user = CustomUser.objects.create_user( # noqa: S106 username='testuser', password='supersecret', ) self.client = Client() def createTask(self, name='Test task name'): # noqa: N802 """Create test task.""" status = TaskStatus.objects.create(name='New') return Task.objects.create( name=name, assigned_to=self.user, creator=self.user, status=status, tags=['important', 'test'], ) def test_task_create(self): """Test task creation.""" task = self.createTask() self.assertTrue(isinstance(task, Task)) self.assertEqual(task.__str__(), task.name) # noqa: WPS609 self.assertEqual(Task.objects.count(), 1) def test_tasks_list(self): """Test tasklist view.""" request = self.factory.get('/') request.user = self.user response = views.TaskList.as_view()(request) self.assertEqual(response.status_code, 200) # noqa: WPS432
altvec/python-project-lvl4
tasks/tests.py
tests.py
py
1,403
python
en
code
0
github-code
6
[ { "api_name": "django.test.TestCase", "line_number": 9, "usage_type": "name" }, { "api_name": "django.test.RequestFactory", "line_number": 14, "usage_type": "call" }, { "api_name": "users.models.CustomUser.objects.create_user", "line_number": 15, "usage_type": "call" }, { "api_name": "users.models.CustomUser.objects", "line_number": 15, "usage_type": "attribute" }, { "api_name": "users.models.CustomUser", "line_number": 15, "usage_type": "name" }, { "api_name": "django.test.Client", "line_number": 19, "usage_type": "call" }, { "api_name": "tasks.models.TaskStatus.objects.create", "line_number": 23, "usage_type": "call" }, { "api_name": "tasks.models.TaskStatus.objects", "line_number": 23, "usage_type": "attribute" }, { "api_name": "tasks.models.TaskStatus", "line_number": 23, "usage_type": "name" }, { "api_name": "tasks.models.Task.objects.create", "line_number": 24, "usage_type": "call" }, { "api_name": "tasks.models.Task.objects", "line_number": 24, "usage_type": "attribute" }, { "api_name": "tasks.models.Task", "line_number": 24, "usage_type": "name" }, { "api_name": "tasks.models.Task", "line_number": 35, "usage_type": "argument" }, { "api_name": "tasks.models.Task.objects.count", "line_number": 37, "usage_type": "call" }, { "api_name": "tasks.models.Task.objects", "line_number": 37, "usage_type": "attribute" }, { "api_name": "tasks.models.Task", "line_number": 37, "usage_type": "name" }, { "api_name": "tasks.views.TaskList.as_view", "line_number": 43, "usage_type": "call" }, { "api_name": "tasks.views.TaskList", "line_number": 43, "usage_type": "attribute" }, { "api_name": "tasks.views", "line_number": 43, "usage_type": "name" } ]
19757717889
# unit.test_shop.test_shopRepo.py from unittest.mock import Mock import tinydb as tdb from fixtures.shop import ShopFixture, TEMP_SHOPS_TINYDB_TEST_PATH, \ PRODUCTS_URLS_9_VALID_TEST_PATH, PRODUCTS_URLS_TEST_DIR from shop.shop import Shop from shop.shopDao import TinyShopDao from shop.shopRepo import ShopRepo from unit.testhelper import WebtomatorTestCase, ProductsUrlsRepoMock class ShopRepoTest(WebtomatorTestCase): testDBPath = TEMP_SHOPS_TINYDB_TEST_PATH tempProductsUrlsRepoPath = PRODUCTS_URLS_TEST_DIR / "ProductsUrls_deleteMe.txt" def setUp(self) -> None: # Creates new DB at given path if not exists. # Deletes all records in all tables if DB exists. dbRef = tdb.TinyDB(str(self.testDBPath)) dbRef.purge_tables() dbRef.close() def tearDown(self) -> None: if self.tempProductsUrlsRepoPath.is_file(): self.tempProductsUrlsRepoPath.unlink() def test_ifVitalAttributesArePresent(self): # Given sut = ShopRepo # Then # Check presence of vital public properties/methods self.assertHasAttribute(sut, 'getAll') self.assertHasAttribute(sut, 'setAll') self.assertHasAttribute(sut, 'update') def test_init_shouldSetDefaultValues(self): # When daoMock = Mock() daoMock.myValue = "DAO Mock checkValue" sut = ShopRepo(dao=daoMock) # Then self.assertEqual("DAO Mock checkValue", sut._dao.myValue) def test_getAll(self): # Given testTinyShopDao = TinyShopDao(path=self.testDBPath) # Create 2 shops in TinyDB for testing. # Note that we use client code to create them, which is more of an integration test... fixture = ShopFixture() fixture.create2Shops() expectedShops = fixture.shops ShopRepo(dao=testTinyShopDao).setAll(shops=expectedShops) sut = ShopRepo(dao=testTinyShopDao) # When loadedShops = sut.getAll() # Then # Expect that loaded shops match the expected self.assertEqual(expectedShops, loadedShops) def test_setAll(self): # Given # Insert a document into a fresh 'Shops' table. This data is expected to be # completely overridden by the test. existingData = dict(OneTestOne="Test data val 1", TwoTestTwo="Test data val 2") with tdb.TinyDB(self.testDBPath) as db: shopTable: tdb.database.Table = db.table(TinyShopDao._TABLE_NAME) shopTable.insert(existingData) # These data are expected: fixture = ShopFixture() fixture.create2Shops() expectedShops = fixture.shops # Setup repo testTinyShopDao = TinyShopDao(path=self.testDBPath) sut = ShopRepo(dao=testTinyShopDao) # When sut.setAll(shops=expectedShops) # Then with tdb.TinyDB(self.testDBPath) as db: shopTable: tdb.database.Table = db.table(TinyShopDao._TABLE_NAME) recordList: list = shopTable.all() # Expect that previous data do not exist anymore self.assertLessEqual(0, len(recordList)) self.assertIsNone(recordList[0].get("OneTestOne")) self.assertIsNone(recordList[0].get("TwoTestTwo")) # Note that we use client code to load the shops again, which is # more of an integration test... loadedShops = sut.getAll() # Expect that loaded shops match the expected ones self.assertEqual(expectedShops, loadedShops) def test_update(self): # Given # Create 2 shops in TinyDB for testing. fixture = ShopFixture() fixture.create2Shops() expectedShop = fixture.shops[0] assert expectedShop.uid is not None and expectedShop.uid != "" # Write a shop which we can try to update by UID. existingData = dict(uid=expectedShop.uid, name="I don't know this shop's name") with tdb.TinyDB(self.testDBPath) as db: shopTable: tdb.database.Table = db.table(TinyShopDao._TABLE_NAME) shopTable.insert(existingData) # Setup repo testTinyShopDao = TinyShopDao(path=self.testDBPath) sut = ShopRepo(dao=testTinyShopDao) # When sut.update(shop=expectedShop) # Then with tdb.TinyDB(self.testDBPath) as db: shopTable: tdb.database.Table = db.table(TinyShopDao._TABLE_NAME) recordList: list = shopTable.all() self.assertEqual(1, len(recordList)) # Expect that data with previous uid still exist self.assertEqual(expectedShop.uid, recordList[0].get("uid")) # Expect that shop's name has been updated self.assertNotEqual("I don't know this shop's name", recordList[0].get("name")) # Note that we use client code to load the shop again, which is # more of an integration test... updatedShops = sut.getAll() self.assertIsInstance(updatedShops, list) self.assertEqual(1, len(recordList)) # Expect that updated shop matches the expected one self.assertEqual(expectedShop, updatedShops[0]) def test_findByUID(self): # Given # Create test data to search for. uidToFind = "b0e2e467-6fd5-4a06-bb1e-9ad60223cafa" shopData1 = dict(uid="ca0f5926-7d55-4973-a8e1-d3e2cc89fca6", name="The name of the first test shop") shopData2 = dict(uid=uidToFind, name="The name of the second test shop") expectedShop = Shop(**shopData2) with tdb.TinyDB(self.testDBPath) as db: shopTable: tdb.database.Table = db.table(TinyShopDao._TABLE_NAME) shopTable.insert(shopData1) shopTable.insert(shopData2) # Setup repo testTinyShopDao = TinyShopDao(path=self.testDBPath) sut = ShopRepo(dao=testTinyShopDao) # When foundShop = sut.findByUID(uidToFind) # Then self.assertIsInstance(foundShop, Shop) self.assertEqual(foundShop.uid, uidToFind) self.assertEqual(expectedShop, foundShop) def test_findByName(self): # Given # Create test data to search for. We use two shops with the same name here. shopData1 = dict(uid="ca0f5926-7d55-4973-a8e1-d3e2cc89fca6", name="Shop with same name") shopData2 = dict(uid="e68782fd-19af-428e-881f-99d7af9b83b0", name="This shop should not be found") shopData3 = dict(uid="b0e2e467-6fd5-4a06-bb1e-9ad60223cafa", name="Shop with same name") expectedShops = [Shop(**shopData1), Shop(**shopData3)] with tdb.TinyDB(self.testDBPath) as db: shopTable: tdb.database.Table = db.table(TinyShopDao._TABLE_NAME) shopTable.insert(shopData1) shopTable.insert(shopData2) shopTable.insert(shopData3) # Setup repo testTinyShopDao = TinyShopDao(path=self.testDBPath) sut = ShopRepo(dao=testTinyShopDao) # When foundShops = sut.findByName("Shop with same name") # Then self.assertIsInstance(foundShops, list) self.assertEqual(2, len(foundShops)) self.assertEqual(expectedShops, foundShops) def test_updateFromProductsUrls(self): # Given # Copy fixture to new arbitrary file as we will modify its contents within this test. with open(str(PRODUCTS_URLS_9_VALID_TEST_PATH), "r", encoding="utf-8") as source: content = source.read() with open(str(self.tempProductsUrlsRepoPath), "w+", encoding="utf-8") as target: target.write(content) # Note that the table gets deleted by the unit test's setup() method - so we # start with a fresh empty table. testTinyShopDao = TinyShopDao(path=self.testDBPath) sut = ShopRepo(dao=testTinyShopDao) productsUrlsRepo = ProductsUrlsRepoMock(productsUrlsRepoPath=self.tempProductsUrlsRepoPath) expectedProducts = productsUrlsRepo.getAll() expectedProductUrls = [p.url for p in expectedProducts] # 1. Test initial update ----------------------------------------------------------- # When # This is expected to fill the table with all the fixture data of ProductsUrls repo. sut.updateFromProductsUrls(productsUrlsRepo=productsUrlsRepo) # Then shops = sut.getAll() self.assertIsInstance(shops, list) self.assertEqual(3, len(shops)) # Expect that all shops have been inserted shopsUrls = [s.url for s in shops] self.assertIn("https://www.solebox.com", shopsUrls) self.assertIn("http://real.fantastic.de", shopsUrls) self.assertIn("https://www.dbyte.org", shopsUrls) # Expect that all products have been inserted soleboxShop = list(filter(lambda s: s.url == "https://www.solebox.com", shops))[0] self.assertIsInstance(soleboxShop.products, list) self.assertEqual(1, len(soleboxShop.products)) for product in soleboxShop.products: self.assertIn(product.url, expectedProductUrls) realFantasticShop = list(filter(lambda s: s.url == "http://real.fantastic.de", shops))[0] self.assertIsInstance(realFantasticShop.products, list) self.assertEqual(2, len(realFantasticShop.products)) for product in realFantasticShop.products: self.assertIn(product.url, expectedProductUrls) dbyteShop = list(filter(lambda s: s.url == "https://www.dbyte.org", shops))[0] self.assertIsInstance(dbyteShop.products, list) self.assertEqual(6, len(dbyteShop.products)) for product in dbyteShop.products: self.assertIn(product.url, expectedProductUrls) # 2. Test delete product/shop ----------------------------------------------------- # Given # Remove all http://real.fantastic.de/... URLs from ProductsUrls repo. with open(str(self.tempProductsUrlsRepoPath), "r+", encoding="utf-8") as target: lines = target.readlines() for line in reversed(lines): if line.startswith("http://real.fantastic.de/shop/great-realdumbtrump.htm"): lines.remove(line) if line.startswith("http://real.fantastic.de/shop/buy-new-holo?prodid=682357ac"): lines.remove(line) # Overwrite file with the updated data target.seek(0) target.writelines(lines) # When # This is expected to remove shop http://real.fantastic.de entirely from database, # because it's products do not exist anymore in ProductsUrls repo. sut.updateFromProductsUrls(productsUrlsRepo=productsUrlsRepo) # Then shops = sut.getAll() self.assertIsInstance(shops, list) self.assertEqual(2, len(shops)) # Expect that shop http://real.fantastic.de has been entirely removed from database realFantasticShop = list(filter(lambda s: s.url == "http://real.fantastic.de", shops)) self.assertIsInstance(realFantasticShop, list) self.assertEqual(0, len(realFantasticShop)) # 3. Test add product to existing shop ---------------------------------------------- # Given with open(str(self.tempProductsUrlsRepoPath), "r+", encoding="utf-8") as target: lines = target.readlines() lines.append("\nhttps://www.solebox.com/some-new-product\n") # Overwrite file with the updated data target.seek(0) target.writelines(lines) expectedProducts = productsUrlsRepo.getAll() expectedProductUrls = [p.url for p in expectedProducts] # When # This is expected to update shop https://www.solebox.com with the above added # product https://www.solebox.com/some-new-product sut.updateFromProductsUrls(productsUrlsRepo=productsUrlsRepo) # Then shops = sut.getAll() self.assertIsInstance(shops, list) self.assertEqual(2, len(shops)) # Expect that product https://www.solebox.com/some-new-product has been added to # existing shop with URL https://www.solebox.com soleboxShop = list(filter(lambda s: s.url == "https://www.solebox.com", shops))[0] self.assertIsInstance(soleboxShop.products, list) self.assertEqual(2, len(soleboxShop.products)) for product in soleboxShop.products: self.assertIn(product.url, expectedProductUrls) # 4. Test add shop to existing shops ------------------------------------------------- # Given with open(str(self.tempProductsUrlsRepoPath), "r+", encoding="utf-8") as target: lines = target.readlines() lines.append("\nhttps://new-shop-1833663.com/new-product.htm\n") # Overwrite file with the updated data target.seek(0) target.writelines(lines) expectedProducts = productsUrlsRepo.getAll() expectedProductUrls = [p.url for p in expectedProducts] # When # This is expected to update the shop table (which already has shops in it) with # the above added product which has a base url which currently not exists # in the shops table. So a new shop with this product must be created in shopRepo. sut.updateFromProductsUrls(productsUrlsRepo=productsUrlsRepo) # Then shops = sut.getAll() self.assertIsInstance(shops, list) self.assertEqual(3, len(shops)) # Expect that shop https://new-shop-1833663.com has been added to # existing database. newShop = list(filter(lambda s: s.url == "https://new-shop-1833663.com", shops))[0] self.assertIsInstance(newShop.products, list) self.assertEqual(1, len(newShop.products)) for product in newShop.products: self.assertIn(product.url, expectedProductUrls)
dbyte/WebtomatorPublicEdition
tests/unit/test_shop/test_shopRepo.py
test_shopRepo.py
py
14,072
python
en
code
0
github-code
6
[ { "api_name": "unit.testhelper.WebtomatorTestCase", "line_number": 14, "usage_type": "name" }, { "api_name": "fixtures.shop.TEMP_SHOPS_TINYDB_TEST_PATH", "line_number": 15, "usage_type": "name" }, { "api_name": "fixtures.shop.PRODUCTS_URLS_TEST_DIR", "line_number": 16, "usage_type": "name" }, { "api_name": "tinydb.TinyDB", "line_number": 21, "usage_type": "call" }, { "api_name": "shop.shopRepo.ShopRepo", "line_number": 31, "usage_type": "name" }, { "api_name": "unittest.mock.Mock", "line_number": 41, "usage_type": "call" }, { "api_name": "shop.shopRepo.ShopRepo", "line_number": 43, "usage_type": "call" }, { "api_name": "shop.shopDao.TinyShopDao", "line_number": 50, "usage_type": "call" }, { "api_name": "fixtures.shop.ShopFixture", "line_number": 53, "usage_type": "call" }, { "api_name": "shop.shopRepo.ShopRepo", "line_number": 56, "usage_type": "call" }, { "api_name": "shop.shopRepo.ShopRepo", "line_number": 58, "usage_type": "call" }, { "api_name": "tinydb.TinyDB", "line_number": 73, "usage_type": "call" }, { "api_name": "tinydb.database", "line_number": 74, "usage_type": "attribute" }, { "api_name": "shop.shopDao.TinyShopDao._TABLE_NAME", "line_number": 74, "usage_type": "attribute" }, { "api_name": "shop.shopDao.TinyShopDao", "line_number": 74, "usage_type": "name" }, { "api_name": "fixtures.shop.ShopFixture", "line_number": 78, "usage_type": "call" }, { "api_name": "shop.shopDao.TinyShopDao", "line_number": 83, "usage_type": "call" }, { "api_name": "shop.shopRepo.ShopRepo", "line_number": 84, "usage_type": "call" }, { "api_name": "tinydb.TinyDB", "line_number": 90, "usage_type": "call" }, { "api_name": "tinydb.database", "line_number": 91, "usage_type": "attribute" }, { "api_name": "shop.shopDao.TinyShopDao._TABLE_NAME", "line_number": 91, "usage_type": "attribute" }, { "api_name": "shop.shopDao.TinyShopDao", "line_number": 91, "usage_type": "name" }, { "api_name": "fixtures.shop.ShopFixture", "line_number": 108, "usage_type": "call" }, { "api_name": "tinydb.TinyDB", "line_number": 116, "usage_type": "call" }, { "api_name": "tinydb.database", "line_number": 117, "usage_type": "attribute" }, { "api_name": "shop.shopDao.TinyShopDao._TABLE_NAME", "line_number": 117, "usage_type": "attribute" }, { "api_name": "shop.shopDao.TinyShopDao", "line_number": 117, "usage_type": "name" }, { "api_name": "shop.shopDao.TinyShopDao", "line_number": 121, "usage_type": "call" }, { "api_name": "shop.shopRepo.ShopRepo", "line_number": 122, "usage_type": "call" }, { "api_name": "tinydb.TinyDB", "line_number": 128, "usage_type": "call" }, { "api_name": "tinydb.database", "line_number": 129, "usage_type": "attribute" }, { "api_name": "shop.shopDao.TinyShopDao._TABLE_NAME", "line_number": 129, "usage_type": "attribute" }, { "api_name": "shop.shopDao.TinyShopDao", "line_number": 129, "usage_type": "name" }, { "api_name": "shop.shop.Shop", "line_number": 154, "usage_type": "call" }, { "api_name": "tinydb.TinyDB", "line_number": 156, "usage_type": "call" }, { "api_name": "tinydb.database", "line_number": 157, "usage_type": "attribute" }, { "api_name": "shop.shopDao.TinyShopDao._TABLE_NAME", "line_number": 157, "usage_type": "attribute" }, { "api_name": "shop.shopDao.TinyShopDao", "line_number": 157, "usage_type": "name" }, { "api_name": "shop.shopDao.TinyShopDao", "line_number": 162, "usage_type": "call" }, { "api_name": "shop.shopRepo.ShopRepo", "line_number": 163, "usage_type": "call" }, { "api_name": "shop.shop.Shop", "line_number": 169, "usage_type": "argument" }, { "api_name": "shop.shop.Shop", "line_number": 182, "usage_type": "call" }, { "api_name": "tinydb.TinyDB", "line_number": 184, "usage_type": "call" }, { "api_name": "tinydb.database", "line_number": 185, "usage_type": "attribute" }, { "api_name": "shop.shopDao.TinyShopDao._TABLE_NAME", "line_number": 185, "usage_type": "attribute" }, { "api_name": "shop.shopDao.TinyShopDao", "line_number": 185, "usage_type": "name" }, { "api_name": "shop.shopDao.TinyShopDao", "line_number": 191, "usage_type": "call" }, { "api_name": "shop.shopRepo.ShopRepo", "line_number": 192, "usage_type": "call" }, { "api_name": "fixtures.shop.PRODUCTS_URLS_9_VALID_TEST_PATH", "line_number": 205, "usage_type": "argument" }, { "api_name": "shop.shopDao.TinyShopDao", "line_number": 212, "usage_type": "call" }, { "api_name": "shop.shopRepo.ShopRepo", "line_number": 213, "usage_type": "call" }, { "api_name": "unit.testhelper.ProductsUrlsRepoMock", "line_number": 215, "usage_type": "call" } ]
36229750080
from typing import List ''' 剑指 Offer II 119. 最长连续序列 == 128 一般想法是排序再遍历,时间复杂度为O(nlogn) 连续的数会有一个起始数字num,num - 1不在nums数组中 所以找到num - 1 不在nums中的那个数,查询其连续长度 ''' class Solution: def longestConsecutive(self, nums: List[int]) -> int: s = set(nums) maxlen = 0 for num in s: if num - 1 not in s: templen = 0 while num in s: num += 1 templen += 1 maxlen = max(templen, maxlen) return maxlen
z-w-wang/Leetcode-Problemlist
FxxkOffer/Graph/Offer_2_119.py
Offer_2_119.py
py
641
python
en
code
3
github-code
6
[ { "api_name": "typing.List", "line_number": 10, "usage_type": "name" } ]
71791729148
import numpy.linalg as LA from sklearn.neighbors import KDTree from sampler import Sampler import networkx as nx from shapely.geometry import LineString def can_connect(p1, p2, polygons): line = LineString([p1, p2]) for p in polygons: if p.crosses(line) and p.height >= min(p1[2], p2[2]): return False return True def create_graph(nodes, polygons, k=10): g = nx.Graph() tree = KDTree(nodes) for n in nodes: indicies = tree.query([n], k, return_distance=False)[0] for i in indicies: target_node = nodes[i] if n == target_node: continue if can_connect(n, target_node, polygons): g.add_edge(tuple(n), tuple(target_node), weight=1) return g def prm(data, num_samples=1000, extra_points=[]): sampler = Sampler(data) nodes = sampler.sample(num_samples=num_samples) print('# sampled nodes {}'.format(len(nodes))) nodes += extra_points return create_graph(nodes, sampler.polygons), nodes
magnusja/udacity-flying-cars
FCND-Motion-Planning/prm.py
prm.py
py
1,063
python
en
code
0
github-code
6
[ { "api_name": "shapely.geometry.LineString", "line_number": 10, "usage_type": "call" }, { "api_name": "networkx.Graph", "line_number": 18, "usage_type": "call" }, { "api_name": "sklearn.neighbors.KDTree", "line_number": 19, "usage_type": "call" }, { "api_name": "sampler.Sampler", "line_number": 35, "usage_type": "call" }, { "api_name": "sampler.sample", "line_number": 36, "usage_type": "call" }, { "api_name": "sampler.polygons", "line_number": 41, "usage_type": "attribute" } ]
29576976470
# -*- coding: utf-8 -*- """ scikit-learnを用いたサンプルデータ生成 http://overlap.hatenablog.jp/entry/2015/10/08/022246 Created on Wed Jul 11 15:25:41 2018 @author: Akitaka """ ### classification sample from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import roc_auc_score # サンプルデータの生成 # 1000 samples、5(infomative) + 2(redundant) + 13(independent) = 20 feature のデータを生成 dat = make_classification(n_samples=1000, n_features=20, n_informative=5, n_redundant=2, n_classes=2, n_clusters_per_class=10) X = dat[0] y = dat[1] print("X shape", X.shape) print("y shape", y.shape) # 学習用とテスト用データの分割 # 80%を学習、20%をテストに利用する X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123) # 学習モデルの構築とパフォーマンス評価 # ロジスティック回帰、ランダムフォレスト、KNNの3つのモデルを作成しそれぞれのAUCを計算 clf = LogisticRegression() clf.fit(X_train, y_train) print("LogisticRegression AUC =", roc_auc_score(y_test, clf.predict_proba(X_test)[:,1])) clf = RandomForestClassifier(n_estimators=500, random_state=123) clf.fit(X_train, y_train) print("RandomForestClassifier AUC =", roc_auc_score(y_test, clf.predict_proba(X_test)[:,1])) clf = KNeighborsClassifier(n_neighbors=10) clf.fit(X_train, y_train) print("KNeighborsClassifier AUC =", roc_auc_score(y_test, clf.predict_proba(X_test)[:,1]))
nakanishi-akitaka/python2018_backup
0711/test4_make_sample.py
test4_make_sample.py
py
1,780
python
en
code
5
github-code
6
[ { "api_name": "sklearn.datasets.make_classification", "line_number": 21, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 31, "usage_type": "call" }, { "api_name": "sklearn.linear_model.LogisticRegression", "line_number": 35, "usage_type": "call" }, { "api_name": "sklearn.metrics.roc_auc_score", "line_number": 37, "usage_type": "call" }, { "api_name": "sklearn.ensemble.RandomForestClassifier", "line_number": 39, "usage_type": "call" }, { "api_name": "sklearn.metrics.roc_auc_score", "line_number": 41, "usage_type": "call" }, { "api_name": "sklearn.neighbors.KNeighborsClassifier", "line_number": 43, "usage_type": "call" }, { "api_name": "sklearn.metrics.roc_auc_score", "line_number": 45, "usage_type": "call" } ]
33562082348
import cv2 as cv import numpy as np from matplotlib import pyplot as plt def thresholdingvivas(inp): f, c = inp.shape for i in range(f): for j in range(c): if(inp[i][j]>=195): inp[i][j]=0 cv.imshow('vivas',inp) def thresholdingmuertas(inp): f, c = inp.shape for i in range(f): for j in range(c): if(inp[i][j]<=150): inp[i][j]=0 cv.imshow('muertas',inp) def thresholdingcolores(inp): f, c ,color = inp.shape for i in range(f): for j in range(c): if(img[i][j][0]<=121 or img[i][j][1]<=144 or img[i][j][2]<=184): inp[i][j][0]=0 inp[i][j][1]=0 inp[i][j][2]=0 cv.imshow('colores',inp) img = cv.imread('thresh2.png', cv.IMREAD_GRAYSCALE) hist = cv.calcHist([img], [0], None, [256], [0, 256]) thresholdingmuertas(img) plt.plot(hist, color='gray') plt.xlabel('intensidad de iluminacion') plt.ylabel('cantidad de pixeles') plt.show()
renzovc987/CG
Thresholdingrenzo.py
Thresholdingrenzo.py
py
1,044
python
en
code
0
github-code
6
[ { "api_name": "cv2.imshow", "line_number": 11, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 18, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 27, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 30, "usage_type": "call" }, { "api_name": "cv2.IMREAD_GRAYSCALE", "line_number": 30, "usage_type": "attribute" }, { "api_name": "cv2.calcHist", "line_number": 31, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 33, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 33, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 34, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 34, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 35, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 35, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 36, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 36, "usage_type": "name" } ]
40211307735
from __future__ import division import sys, os, math import vtk from pbrainlib.gtkutils import error_msg, simple_msg, make_option_menu,\ get_num_value, get_num_range, get_two_nums, str2int_or_err,\ OpenSaveSaveAsHBox, ButtonAltLabel import pickle from scipy import array, zeros, ones, sort, absolute, sqrt, divide,\ argsort, take, arange class MeshManager: """ CLASS: MeshManager DESCR: Handles rendering of VTK mesh (e.g. segmented cortex from ITK-Snap). """ def __init__ (self, interactor, renderer, mesh_filename, reg_filename): self.interactor = interactor self.renderer = renderer reader = vtk.vtkStructuredPointsReader() reader.SetFileName(mesh_filename) cf = vtk.vtkContourFilter() cf.SetInput(reader.GetOutput()) cf.SetValue(0, 1) deci = vtk.vtkDecimatePro() deci.SetInput(cf.GetOutput()) deci.SetTargetReduction(.1) deci.PreserveTopologyOn() smoother = vtk.vtkSmoothPolyDataFilter() smoother.SetInput(deci.GetOutput()) smoother.SetNumberOfIterations(100) normals = vtk.vtkPolyDataNormals() normals.SetInput(smoother.GetOutput()) normals.FlipNormalsOn() normals.SetFeatureAngle(60.0) stripper = vtk.vtkStripper() stripper.SetInputConnection(normals.GetOutputPort()) lut = vtk.vtkLookupTable() lut.SetHueRange(0, 0) lut.SetSaturationRange(0, 0) lut.SetValueRange(0.2, 0.55) contourMapper = vtk.vtkPolyDataMapper() #contourMapper.SetInput(normals.GetOutput()) contourMapper.SetInput(stripper.GetOutput()) contourMapper.SetLookupTable(lut) self.contours = vtk.vtkActor() self.contours.SetMapper(contourMapper) #self.contours.GetProperty().SetRepresentationToWireframe() self.contours.GetProperty().SetRepresentationToSurface() #self.contours.GetProperty().SetInterpolationToGouraud() #self.contours.GetProperty().SetOpacity(1.0) #self.contours.GetProperty().SetAmbient(0.1) self.contours.GetProperty().SetDiffuse(0.1) #self.contours.GetProperty().SetSpecular(0.1) #self.contours.GetProperty().SetSpecularPower(0.1) # now setmatrix() on the actor from the reg file ! def array_to_vtkmatrix4x4(scipy_array): vtkmat = vtk.vtkMatrix4x4() for i in range(0,4): for j in range(0,4): vtkmat.SetElement(i,j, scipy_array[i,j]) return vtkmat mat = pickle.load(file(reg_filename, 'r')) vtkmat = array_to_vtkmatrix4x4(mat) self.contours.SetUserMatrix(vtkmat) #self.contours.GetProperty().SetOpacity(.38) #adjustable in the grid manager now # XXX YAH somehow get a callback when actor is moved... self.renderer.AddActor(self.contours)
nipy/pbrain
eegview/mesh_manager.py
mesh_manager.py
py
2,967
python
en
code
94
github-code
6
[ { "api_name": "vtk.vtkStructuredPointsReader", "line_number": 24, "usage_type": "call" }, { "api_name": "vtk.vtkContourFilter", "line_number": 27, "usage_type": "call" }, { "api_name": "vtk.vtkDecimatePro", "line_number": 30, "usage_type": "call" }, { "api_name": "vtk.vtkSmoothPolyDataFilter", "line_number": 36, "usage_type": "call" }, { "api_name": "vtk.vtkPolyDataNormals", "line_number": 40, "usage_type": "call" }, { "api_name": "vtk.vtkStripper", "line_number": 45, "usage_type": "call" }, { "api_name": "vtk.vtkLookupTable", "line_number": 49, "usage_type": "call" }, { "api_name": "vtk.vtkPolyDataMapper", "line_number": 54, "usage_type": "call" }, { "api_name": "vtk.vtkActor", "line_number": 59, "usage_type": "call" }, { "api_name": "vtk.vtkMatrix4x4", "line_number": 73, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 79, "usage_type": "call" } ]
5708829851
import rename_tool import torch import torchaudio from TTS.tts.configs.xtts_config import XttsConfig from TTS.tts.models.xtts import Xtts import os current_dir = os.getcwd() config_path = os.path.join(current_dir, "source", "model_v2", "config.json") checkpoint_dir = os.path.join(current_dir, "source", "model_V2") config = XttsConfig() config.load_json(config_path) model = Xtts.init_from_config(config) model.load_checkpoint(config, checkpoint_dir=checkpoint_dir, eval=True) model.cuda() def generate(clone_audio_path, text, language, temperature, length_penalty, repetition_penalty, top_k, top_p, num_gpt_outputs, gpt_cond_len, gpt_cond_chunk_len, max_ref_len, sound_norm_refs, gpt_batch_size, num_chars): config.temperature = temperature config.length_penalty = float(length_penalty) config.repetition_penalty = float(repetition_penalty) config.top_k = top_k config.top_p = top_p config.num_gpt_outputs = num_gpt_outputs config.gpt_cond_len = gpt_cond_len config.gpt_cond_chunk_len = gpt_cond_chunk_len config.max_ref_len = max_ref_len repair = False if len(sound_norm_refs) > 0: repair = True config.sound_norm_refs = repair config.model_args.gpt_batch_size = gpt_batch_size config.model_args.num_chars = num_chars print(config) outputs = model.synthesize( text, config, speaker_wav=clone_audio_path, language=language, ) output_audio = "" output_audio = rename_tool.path("audio", "wav") torchaudio.save(output_audio, torch.tensor(outputs["wav"]).unsqueeze(0), 24000) return output_audio
douhaohaode/xtts_v2
tts_v2.py
tts_v2.py
py
1,627
python
en
code
16
github-code
6
[ { "api_name": "os.getcwd", "line_number": 8, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 9, "usage_type": "call" }, { "api_name": "os.path", "line_number": 9, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 10, "usage_type": "call" }, { "api_name": "os.path", "line_number": 10, "usage_type": "attribute" }, { "api_name": "TTS.tts.configs.xtts_config.XttsConfig", "line_number": 12, "usage_type": "call" }, { "api_name": "TTS.tts.models.xtts.Xtts.init_from_config", "line_number": 14, "usage_type": "call" }, { "api_name": "TTS.tts.models.xtts.Xtts", "line_number": 14, "usage_type": "name" }, { "api_name": "rename_tool.path", "line_number": 48, "usage_type": "call" }, { "api_name": "torchaudio.save", "line_number": 49, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 49, "usage_type": "call" } ]
1741698512
import pytest import numpy as np import piquasso as pq import strawberryfields as sf pytestmark = pytest.mark.benchmark( group="pure-fock", ) @pytest.fixture def theta(): return np.pi / 5 @pytest.fixture def d(): return 5 @pytest.mark.parametrize("cutoff", range(3, 14)) def piquasso_benchmark(benchmark, d, cutoff, theta): @benchmark def func(): state_vector = [cutoff // d] * d state_vector[0] += cutoff % d - 1 with pq.Program() as program: pq.Q(all) | pq.StateVector(state_vector) for i in range(d - 1): pq.Q(i, i + 1) | pq.Beamsplitter(theta) simulator_fock = pq.PureFockSimulator(d=d, config=pq.Config(cutoff=cutoff)) simulator_fock.execute(program) @pytest.mark.parametrize("cutoff", (3, 4, 5)) def strawberryfields_benchmark(benchmark, d, cutoff, theta): @benchmark def func(): eng = sf.Engine(backend="fock", backend_options={"cutoff_dim": cutoff}) circuit = sf.Program(d) state_vector = [cutoff // d] * d state_vector[0] += cutoff % d - 1 with circuit.context as q: for i, n in enumerate(state_vector): sf.ops.Fock(n) | q[i] for w in range(d - 1): sf.ops.BSgate(theta) | (q[w], q[w + 1]) eng.run(circuit).state
Budapest-Quantum-Computing-Group/piquasso
benchmarks/purefock_beamsplitter_increasing_cutoff_benchmark.py
purefock_beamsplitter_increasing_cutoff_benchmark.py
py
1,353
python
en
code
19
github-code
6
[ { "api_name": "pytest.mark.benchmark", "line_number": 9, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 9, "usage_type": "attribute" }, { "api_name": "numpy.pi", "line_number": 16, "usage_type": "attribute" }, { "api_name": "pytest.fixture", "line_number": 14, "usage_type": "attribute" }, { "api_name": "pytest.fixture", "line_number": 19, "usage_type": "attribute" }, { "api_name": "piquasso.Program", "line_number": 31, "usage_type": "call" }, { "api_name": "piquasso.Q", "line_number": 32, "usage_type": "call" }, { "api_name": "piquasso.StateVector", "line_number": 32, "usage_type": "call" }, { "api_name": "piquasso.Q", "line_number": 34, "usage_type": "call" }, { "api_name": "piquasso.Beamsplitter", "line_number": 34, "usage_type": "call" }, { "api_name": "piquasso.PureFockSimulator", "line_number": 36, "usage_type": "call" }, { "api_name": "piquasso.Config", "line_number": 36, "usage_type": "call" }, { "api_name": "pytest.mark.parametrize", "line_number": 24, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 24, "usage_type": "attribute" }, { "api_name": "strawberryfields.Engine", "line_number": 45, "usage_type": "call" }, { "api_name": "strawberryfields.Program", "line_number": 47, "usage_type": "call" }, { "api_name": "strawberryfields.ops.Fock", "line_number": 54, "usage_type": "call" }, { "api_name": "strawberryfields.ops", "line_number": 54, "usage_type": "attribute" }, { "api_name": "strawberryfields.ops.BSgate", "line_number": 57, "usage_type": "call" }, { "api_name": "strawberryfields.ops", "line_number": 57, "usage_type": "attribute" }, { "api_name": "pytest.mark.parametrize", "line_number": 41, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 41, "usage_type": "attribute" } ]
72577662587
from dataclasses import dataclass, field from random import randint maps = [ "de_anubis", "de_inferno", "de_ancient", "de_mirage", "de_nuke", "de_overpass", "de_vertigo", ] @dataclass(frozen=True) class Defaultsettings: """Sets basic match information. You can override the number of maps, first veto and knife round.""" matchid: int = field( default=randint(10000000, 999999999), init=False ) # generates 8 digit match ID num_maps: int = field(default=3) # number of maps to play players_per_team: int = field(default=5, init=False) # number of players per team coaches_per_team: int = field(default=1, init=False) # number of coaches per team min_players_to_ready: int = field( default=8, init=False ) # minimum number of players to enabley !forceready min_spectators_to_ready: int = field( default=0, init=False ) # minimum number of spectators to ready skip_veto: bool = field(default=False) # skip map veto if True veto_first: str = field(default="team1") # which team vetoes first (1=CT, 2=T) side_type: str = field( default="standard" ) # standard is valve BO3, always/never knife for knife rounds spectators: dict = field(default_factory=dict) @dataclass(frozen=True) class Matchinfo: """arrays of teams, spectators, maps""" maplist: list[str] = field( default_factory=list ) # List of maps to be passed in the main script. Defaults to current Active Duty team1: dict = field(default_factory=dict) # Initialize empty team 1 dict team2: dict = field(default_factory=dict) # Initialize empty team 2 dict cvars: dict = field(default_factory=dict) # Adds cvars - server name @dataclass(frozen=True) class Teaminfo: name: str tag: str flag: str = field(default="SI") logo: str = field(default="") players: list[str] = field(default_factory=list) if __name__ == "__main__": print("You're running the wrong file. Aborting") quit()
Rogris/get5matchgen
tools.py
tools.py
py
2,036
python
en
code
1
github-code
6
[ { "api_name": "dataclasses.field", "line_number": 19, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 20, "usage_type": "call" }, { "api_name": "dataclasses.field", "line_number": 22, "usage_type": "call" }, { "api_name": "dataclasses.field", "line_number": 23, "usage_type": "call" }, { "api_name": "dataclasses.field", "line_number": 24, "usage_type": "call" }, { "api_name": "dataclasses.field", "line_number": 25, "usage_type": "call" }, { "api_name": "dataclasses.field", "line_number": 28, "usage_type": "call" }, { "api_name": "dataclasses.field", "line_number": 31, "usage_type": "call" }, { "api_name": "dataclasses.field", "line_number": 32, "usage_type": "call" }, { "api_name": "dataclasses.field", "line_number": 33, "usage_type": "call" }, { "api_name": "dataclasses.field", "line_number": 36, "usage_type": "call" }, { "api_name": "dataclasses.dataclass", "line_number": 15, "usage_type": "call" }, { "api_name": "dataclasses.field", "line_number": 43, "usage_type": "call" }, { "api_name": "dataclasses.field", "line_number": 46, "usage_type": "call" }, { "api_name": "dataclasses.field", "line_number": 47, "usage_type": "call" }, { "api_name": "dataclasses.field", "line_number": 48, "usage_type": "call" }, { "api_name": "dataclasses.dataclass", "line_number": 39, "usage_type": "call" }, { "api_name": "dataclasses.field", "line_number": 55, "usage_type": "call" }, { "api_name": "dataclasses.field", "line_number": 56, "usage_type": "call" }, { "api_name": "dataclasses.field", "line_number": 57, "usage_type": "call" }, { "api_name": "dataclasses.dataclass", "line_number": 51, "usage_type": "call" } ]
30367946761
import numpy as np from chaco.api import ArrayPlotData, Plot from enable.api import ComponentEditor from traits.api import Array, HasStrictTraits, Instance, Range, on_trait_change from traitsui.api import Item, VGroup, View class PowerFunctionExample(HasStrictTraits): """ Display a plot of a power function. """ #: The plot holding the visualization plot = Instance(Plot) #: The power of the monomial to use. power = Range(0, 5, value=2) #: The x-values to plot. x = Array(shape=(None,), dtype="float") # Trait defaults -------------------------------------------------------- def _plot_default(self): y = self.x ** self.power plot_data = ArrayPlotData(x=self.x, y=y) plot = Plot(plot_data) plot.plot(("x", "y"), "line", name="power function", color="auto") # configure the plot plot.padding_top = 25 plot.border_visible = False plot.index_grid.visible = False plot.value_grid.visible = False plot.title = "Power Function n={}".format(self.power) plot.title_position = "right" plot.title_angle = -90 plot.legend_alignment = "ul" plot.legend.border_visible = False plot.legend.bgcolor = (0.9, 0.9, 0.9, 0.5) plot.legend.visible = True plot.index_axis.title = "y" plot.value_axis.title = "x" return plot def _x_default(self): return np.linspace(-2.0, 2.0, 101) # Trait change handlers ------------------------------------------------- @on_trait_change("power") def _update_y(self): y = self.x ** self.power self.plot.data.set_data("y", y) @on_trait_change("x") def _update_data(self): y = self.x ** self.power self.plot.data.update_data(x=self.x, y=y) @on_trait_change("power") def _update_title(self): self.plot.title = "Power Function n={}".format(self.power) # TraitsUI view --------------------------------------------------------- view = View( VGroup( Item("plot", editor=ComponentEditor()), VGroup( Item("power"), ), show_labels=False, ), resizable=True, title="Power Function Example", ) if __name__ == "__main__": view = PowerFunctionExample() view.configure_traits()
enthought/chaco
examples/user_guide/power_function_example.py
power_function_example.py
py
2,379
python
en
code
286
github-code
6
[ { "api_name": "traits.api.HasStrictTraits", "line_number": 9, "usage_type": "name" }, { "api_name": "traits.api.Instance", "line_number": 13, "usage_type": "call" }, { "api_name": "chaco.api.Plot", "line_number": 13, "usage_type": "argument" }, { "api_name": "traits.api.Range", "line_number": 16, "usage_type": "call" }, { "api_name": "traits.api.Array", "line_number": 19, "usage_type": "call" }, { "api_name": "chaco.api.ArrayPlotData", "line_number": 25, "usage_type": "call" }, { "api_name": "chaco.api.Plot", "line_number": 26, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 48, "usage_type": "call" }, { "api_name": "traits.api.on_trait_change", "line_number": 52, "usage_type": "call" }, { "api_name": "traits.api.on_trait_change", "line_number": 57, "usage_type": "call" }, { "api_name": "traits.api.on_trait_change", "line_number": 62, "usage_type": "call" }, { "api_name": "traitsui.api.View", "line_number": 68, "usage_type": "call" }, { "api_name": "traitsui.api.VGroup", "line_number": 69, "usage_type": "call" }, { "api_name": "traitsui.api.Item", "line_number": 70, "usage_type": "call" }, { "api_name": "enable.api.ComponentEditor", "line_number": 70, "usage_type": "call" }, { "api_name": "traitsui.api.VGroup", "line_number": 71, "usage_type": "call" }, { "api_name": "traitsui.api.Item", "line_number": 72, "usage_type": "call" } ]
39403565414
from functools import partial import mmcv import numpy as np import torch from six.moves import map, zip def tensor2imgs(tensor, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True): """Convert tensor to images Args: tensor (torch.Tensor): Tensor that contains multiple images mean (tuple[float], optional): Mean of images. Defaults to (0, 0, 0). std (tuple[float], optional): Standard deviation of images. Defaults to (1, 1, 1). to_rgb (bool, optional): Whether convert the images to RGB format. Defaults to True. Returns: list[np.ndarray]: A list that contains multiple images. """ num_imgs = tensor.size(0) mean = np.array(mean, dtype=np.float32) std = np.array(std, dtype=np.float32) imgs = [] for img_id in range(num_imgs): img = tensor[img_id, ...].cpu().numpy().transpose(1, 2, 0) img = mmcv.imdenormalize( img, mean, std, to_bgr=to_rgb).astype(np.uint8) imgs.append(np.ascontiguousarray(img)) return imgs def multi_apply(func, *args, **kwargs): """Apply function to a list of arguments Note: This function applies the ``func`` to multiple inputs and map the multiple outputs of the ``func`` into different list. Each list contains the same type of outputs corresponding to different inputs. Args: func (Function): A function that will be applied to a list of arguments Returns: tuple(list): A tuple containing multiple list, each list contains a kind of returned results by the function """ pfunc = partial(func, **kwargs) if kwargs else func map_results = map(pfunc, *args) return tuple(map(list, zip(*map_results))) def unmap(data, count, inds, fill=0): """ Unmap a subset of item (data) back to the original set of items (of size count) """ if data.dim() == 1: ret = data.new_full((count, ), fill) ret[inds.type(torch.bool)] = data else: new_size = (count, ) + data.size()[1:] ret = data.new_full(new_size, fill) ret[inds.type(torch.bool), :] = data return ret def vectorize_labels(flat_labels, num_classes, label_weights = None): prediction_number = flat_labels.shape[0] labels = torch.zeros( [prediction_number, num_classes], dtype=flat_labels.dtype, device=flat_labels.device) pos_labels = flat_labels < num_classes labels[pos_labels, flat_labels[pos_labels]] = 1 if label_weights is not None: ignore_labels = (label_weights == 0) labels[ignore_labels, :] = -1 return labels.reshape(-1) def giou(pred, target, eps=1e-7): """ Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression https://arxiv.org/abs/1902.09630 code refer to: https://github.com/sfzhang15/ATSS/blob/master/atss_core/modeling/rpn/atss/loss.py#L36 Args: pred (torch.Tensor): Predicted bboxes of format (x1, y1, x2, y2), shape (n, 4). target (torch.Tensor): Corresponding gt bboxes, shape (n, 4). eps (float): Eps to avoid log(0). Return: Tensor: Loss tensor. """ # overlap lt = torch.max(pred[:, :2], target[:, :2]) rb = torch.min(pred[:, 2:], target[:, 2:]) wh = (rb - lt).clamp(min=0) overlap = wh[:, 0] * wh[:, 1] # union ap = (pred[:, 2] - pred[:, 0]) * (pred[:, 3] - pred[:, 1]) ag = (target[:, 2] - target[:, 0]) * (target[:, 3] - target[:, 1]) union = ap + ag - overlap + eps # IoU ious = overlap / union # enclose area enclose_x1y1 = torch.min(pred[:, :2], target[:, :2]) enclose_x2y2 = torch.max(pred[:, 2:], target[:, 2:]) enclose_wh = (enclose_x2y2 - enclose_x1y1).clamp(min=0) enclose_area = enclose_wh[:, 0] * enclose_wh[:, 1] + eps # GIoU gious = ious - (enclose_area - union) / enclose_area return gious def iou(pred, target, eps=1e-7): """ Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression https://arxiv.org/abs/1902.09630 code refer to: https://github.com/sfzhang15/ATSS/blob/master/atss_core/modeling/rpn/atss/loss.py#L36 Args: pred (torch.Tensor): Predicted bboxes of format (x1, y1, x2, y2), shape (n, 4). target (torch.Tensor): Corresponding gt bboxes, shape (n, 4). eps (float): Eps to avoid log(0). Return: Tensor: Loss tensor. """ # overlap lt = torch.max(pred[:, :2], target[:, :2]) rb = torch.min(pred[:, 2:], target[:, 2:]) wh = (rb - lt).clamp(min=0) overlap = wh[:, 0] * wh[:, 1] # union ap = (pred[:, 2] - pred[:, 0]) * (pred[:, 3] - pred[:, 1]) ag = (target[:, 2] - target[:, 0]) * (target[:, 3] - target[:, 1]) union = ap + ag - overlap + eps # IoU ious = overlap / union return ious
fundamentalvision/Parameterized-AP-Loss
mmdet/core/utils/misc.py
misc.py
py
5,069
python
en
code
48
github-code
6
[ { "api_name": "numpy.array", "line_number": 24, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 24, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 25, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 25, "usage_type": "attribute" }, { "api_name": "mmcv.imdenormalize", "line_number": 29, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 30, "usage_type": "attribute" }, { "api_name": "numpy.ascontiguousarray", "line_number": 31, "usage_type": "call" }, { "api_name": "functools.partial", "line_number": 52, "usage_type": "call" }, { "api_name": "six.moves.map", "line_number": 53, "usage_type": "call" }, { "api_name": "six.moves.map", "line_number": 54, "usage_type": "call" }, { "api_name": "six.moves.zip", "line_number": 54, "usage_type": "call" }, { "api_name": "torch.bool", "line_number": 62, "usage_type": "attribute" }, { "api_name": "torch.bool", "line_number": 66, "usage_type": "attribute" }, { "api_name": "torch.zeros", "line_number": 71, "usage_type": "call" }, { "api_name": "torch.max", "line_number": 98, "usage_type": "call" }, { "api_name": "torch.min", "line_number": 99, "usage_type": "call" }, { "api_name": "torch.min", "line_number": 112, "usage_type": "call" }, { "api_name": "torch.max", "line_number": 113, "usage_type": "call" }, { "api_name": "torch.max", "line_number": 138, "usage_type": "call" }, { "api_name": "torch.min", "line_number": 139, "usage_type": "call" } ]
6969788756
import os import re from PIL import Image import numpy as np import torch import random from torch.utils.data import Dataset, DataLoader from torchvision import transforms, utils from torchvision.datasets.folder import default_loader class Celeb(Dataset): def __init__(self, data_file, dst_path='cropped_CelebA', training=True, transform=None, train_num=16000): src_path = data_file + 'CelebA_info' if train_num == 10240: category = 'celeb_sample_10240.txt' else: category = 'list_attr_celeba.txt' fn = open(src_path + '/Anno/' + category, 'r') fh2 = open(src_path + '/Eval/list_eval_partition.txt', 'r') imgs = [] lbls = [] ln = 0 train_bound = 162770 + 2 test_bound = 182638 + 2 regex = re.compile('\s+') for line in fn: ln += 1 if ln <= 2: continue if ln < test_bound and not training: continue if (ln - 2 <= train_num and training and ln <=train_bound) or\ (ln - test_bound < train_num and not training): line = line.rstrip('\n') line_value = regex.split(line) imgs.append(line_value[0]) lbls.append(list(int(i) if int(i) > 0 else 0 for i in line_value[1:])) self.imgs = imgs self.lbls = lbls self.is_train = training self.dst_path = data_file + dst_path if transform is None: if training: self.transform = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) else: self.transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) else: self.transform = transform def __getitem__(self, idx): fn = self.imgs[idx] lbls = self.lbls[idx] if self.is_train: imgs = default_loader(self.dst_path + '/train/' + fn) else: imgs = default_loader(self.dst_path + '/test/' + fn) imgs = self.transform(imgs) lbls = torch.Tensor(lbls) return [imgs, lbls] def __len__(self): return len(self.imgs) def sample_celeb(data_file, category='list_attr_celeba.txt', training=True, sample_num=10240, train_num=162770): src_path = data_file + 'CelebA_info' fn = open(src_path + '/Anno/' + category, 'r') sample_path = src_path + '/Anno/celeb_sample_'+str(sample_num)+'.txt' if os.path.exists(sample_path): os.system('rm '+ sample_path) sample_fh = open(sample_path, 'w') ln = 0 train_bound = 162770 + 2 test_bound = 182638 + 2 regex = re.compile('\s+') content = [] trainnum_list = np.arange(0, train_bound-2) sample_num_list = random.sample(trainnum_list.tolist(), sample_num) for line in fn: ln += 1 if ln <= 2: sample_fh.write(line) if ln < test_bound and not training: continue if (ln - 2 <= train_num and training and ln <=train_bound) or\ (ln - test_bound < train_num and not training): content.append(line) for idx in sample_num_list: sample_fh.write(content[idx]) sample_fh.close() if __name__ == '__main__': data_file = '/home/wzh/project/fjq/dataset/CelebA/' sample_celeb(data_file, sample_num=10240)
ada-shen/icCNN
celeb.py
celeb.py
py
3,923
python
en
code
18
github-code
6
[ { "api_name": "torch.utils.data.Dataset", "line_number": 11, "usage_type": "name" }, { "api_name": "re.compile", "line_number": 25, "usage_type": "call" }, { "api_name": "torchvision.transforms.Compose", "line_number": 44, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 44, "usage_type": "name" }, { "api_name": "torchvision.transforms.RandomHorizontalFlip", "line_number": 45, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 45, "usage_type": "name" }, { "api_name": "torchvision.transforms.ToTensor", "line_number": 46, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 46, "usage_type": "name" }, { "api_name": "torchvision.transforms.Normalize", "line_number": 47, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 47, "usage_type": "name" }, { "api_name": "torchvision.transforms.Compose", "line_number": 50, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 50, "usage_type": "name" }, { "api_name": "torchvision.transforms.ToTensor", "line_number": 51, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 51, "usage_type": "name" }, { "api_name": "torchvision.transforms.Normalize", "line_number": 52, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 52, "usage_type": "name" }, { "api_name": "torchvision.datasets.folder.default_loader", "line_number": 61, "usage_type": "call" }, { "api_name": "torchvision.datasets.folder.default_loader", "line_number": 63, "usage_type": "call" }, { "api_name": "torch.Tensor", "line_number": 65, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 75, "usage_type": "call" }, { "api_name": "os.path", "line_number": 75, "usage_type": "attribute" }, { "api_name": "os.system", "line_number": 76, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 81, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 83, "usage_type": "call" }, { "api_name": "random.sample", "line_number": 84, "usage_type": "call" } ]
36646912477
import matplotlib matplotlib.use('Agg') # noqa from deepdecoder.data import generator_3d_tags_with_depth_map, DistributionHDF5Dataset import diktya.distributions from diktya.numpy import tile import matplotlib.pyplot as plt import os import argparse from keras.utils.generic_utils import Progbar from scipy.ndimage.interpolation import zoom from scipy.ndimage.filters import gaussian_filter1d from scipy.misc import imsave from deepdecoder.scripts.default_3d_tags_distribution import default_tag_distribution def generator(tag_dist, batch_size, antialiasing=1): s = antialiasing depth_scale = 1/2 for param, mask, depth_map in generator_3d_tags_with_depth_map( tag_dist, batch_size, antialiasing=s, depth_scale=depth_scale): depth_map = gaussian_filter1d(depth_map, 2/6/depth_scale, axis=-1, mode='constant') depth_map = gaussian_filter1d(depth_map, 2/6/depth_scale, axis=-2, mode='constant') depth_map = zoom(depth_map, (1., 1., depth_scale, depth_scale)) yield param, mask, depth_map def plot_anitaliasing(tag_dist, fname, a, nb_samples=64): _, masks, depth_map = next(generator(tag_dist, nb_samples, antialiasing=a)) tiled = tile(masks)[0] imsave(fname.format(a), tiled) def run(tag_dist, output_fname, force, nb_samples): os.makedirs(os.path.dirname(output_fname), exist_ok=True) if os.path.exists(output_fname) and force: print("Deleted {}".format(output_fname)) os.remove(output_fname) else: assert not os.path.exists(output_fname), \ "File {} already exists. Use --force to override it" basename, _ = os.path.splitext(output_fname) anit_name = basename + "_anti_{}.png" hist_name = basename + "_hist_{}.png" plot_anitaliasing(tag_dist, anit_name, 1) plot_anitaliasing(tag_dist, anit_name, 2) plot_anitaliasing(tag_dist, anit_name, 4) plot_anitaliasing(tag_dist, anit_name, 8) labels, masks, _ = next(generator(tag_dist, 10000, antialiasing=2)) for key in labels.dtype.names: m = labels[key].mean() s = labels[key].std() print("{}: {:.3f}, {:.3f}".format(key, m, s)) assert abs(m) <= 0.03 for label_name in sorted(set(labels.dtype.names) - set(['bits'])): x = labels[label_name] plt.hist(x.flatten(), bins=40, normed=True) plt.savefig(hist_name.format(label_name)) plt.clf() dset = DistributionHDF5Dataset(output_fname, distribution=tag_dist, nb_samples=nb_samples, mode='w') progbar = Progbar(nb_samples) batch_size = min(25000, nb_samples) for labels, tags, depth_map in generator(tag_dist, batch_size, antialiasing=4): pos = dset.append(labels=labels, tag3d=tags, depth_map=depth_map) progbar.update(pos) if pos == nb_samples: break print("Saved tag 3d dataset to: {}".format(output_fname)) dist_fname = basename + "_distribution.json" with open(dist_fname, "w+") as dist_f: dist_f.write(tag_dist.to_json()) print("Saved distribution to: {}".format(dist_fname)) def main(): parser = argparse.ArgumentParser( description='Generate images and depth maps from the 3d object model of the tag') parser.add_argument('output', type=str, help='output file name') parser.add_argument('-f', '--force', action='store_true', help='override existing output files') parser.add_argument('-d', '--dist', type=str, default=default_tag_distribution(), help='Json params of the distribution') parser.add_argument('-n', '--nb-samples', type=float, required=True, help='Number of samples to generate') args = parser.parse_args() if type(args.dist) == str: with open(args.dist) as f: dist = diktya.distributions.load_from_json(f.read()) else: dist = args.dist run(dist, args.output, args.force, int(args.nb_samples)) if __name__ == "__main__": main()
berleon/deepdecoder
deepdecoder/scripts/generate_3d_tags.py
generate_3d_tags.py
py
4,038
python
en
code
50
github-code
6
[ { "api_name": "matplotlib.use", "line_number": 2, "usage_type": "call" }, { "api_name": "deepdecoder.data.generator_3d_tags_with_depth_map", "line_number": 20, "usage_type": "call" }, { "api_name": "scipy.ndimage.filters.gaussian_filter1d", "line_number": 22, "usage_type": "call" }, { "api_name": "scipy.ndimage.filters.gaussian_filter1d", "line_number": 23, "usage_type": "call" }, { "api_name": "scipy.ndimage.interpolation.zoom", "line_number": 24, "usage_type": "call" }, { "api_name": "diktya.numpy.tile", "line_number": 30, "usage_type": "call" }, { "api_name": "scipy.misc.imsave", "line_number": 31, "usage_type": "call" }, { "api_name": "os.makedirs", "line_number": 35, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 35, "usage_type": "call" }, { "api_name": "os.path", "line_number": 35, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 36, "usage_type": "call" }, { "api_name": "os.path", "line_number": 36, "usage_type": "attribute" }, { "api_name": "os.remove", "line_number": 38, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 40, "usage_type": "call" }, { "api_name": "os.path", "line_number": 40, "usage_type": "attribute" }, { "api_name": "os.path.splitext", "line_number": 42, "usage_type": "call" }, { "api_name": "os.path", "line_number": 42, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.hist", "line_number": 59, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 59, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 60, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 60, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.clf", "line_number": 61, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 61, "usage_type": "name" }, { "api_name": "deepdecoder.data.DistributionHDF5Dataset", "line_number": 63, "usage_type": "call" }, { "api_name": "keras.utils.generic_utils.Progbar", "line_number": 65, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 82, "usage_type": "call" }, { "api_name": "deepdecoder.scripts.default_3d_tags_distribution.default_tag_distribution", "line_number": 87, "usage_type": "call" }, { "api_name": "diktya.distributions.distributions.load_from_json", "line_number": 94, "usage_type": "call" }, { "api_name": "diktya.distributions.distributions", "line_number": 94, "usage_type": "attribute" }, { "api_name": "diktya.distributions", "line_number": 94, "usage_type": "name" } ]
36213639675
#!/usr/bin/env python # coding: utf-8 import os import math import numpy as np import tensorflow.compat.v1 as tf tf.disable_v2_behavior() from PIL import Image import time import os,glob import matplotlib.pyplot as plt from random import choice VGG_MEAN=[103.939,116.779,123.68] class VGGNet(): def __init__(self,data_dict): self.data_dict=data_dict def get_conv_filter(self,name): return tf.constant(self.data_dict[name][0],name='conv') def get_fc_weight(self,name): return tf.constant(self.data_dict[name][0],name='fc') def get_bias(self,name): return tf.constant(self.data_dict[name][1],name='bias') def conv_layer(self,x,name): with tf.name_scope(name): conv_w=self.get_conv_filter(name) conv_b=self.get_bias(name) h=tf.nn.conv2d(x,conv_w,strides=[1,1,1,1],padding="SAME") h=tf.nn.bias_add(h,conv_b) h=tf.nn.relu(h) return h def pooling_layer(self,x,name): return tf.nn.max_pool(x,ksize=[1,2,2,1], strides=[1,2,2,1], padding="SAME",name=name) def fc_layer(self,x,name,activation=tf.nn.relu): with tf.name_scope(name,activation): fc_w=self.get_fc_weight(name) fc_b=self.get_bias(name) h=tf.matmul(x,fc_w) h=tf.nn.bias_add(h,fc_b) if activation is None: return h else: return activation(h) def flatten_layer(self,x,name): with tf.name_scope(name): x_shape=x.get_shape().as_list() dim=1 for d in x_shape[1:]: dim*=d x=tf.reshape(x,[-1,dim]) return x def build(self,x_rgb): start_time=time.time() print("Modeling Start...") r,g,b=tf.split(x_rgb,[1,1,1],axis=3) x_bgr=tf.concat([b-VGG_MEAN[0],g-VGG_MEAN[1],r-VGG_MEAN[2]],axis=3) # 开始构建卷积层 # vgg16 的网络结构 # 第一层:2个卷积层 1个pooling层 # 第二层:2个卷积层 1个pooling层 # 第三层:3个卷积层 1个pooling层 # 第四层:3个卷积层 1个pooling层 # 第五层:3个卷积层 1个pooling层 # 第六层: 全连接 # 第七层: 全连接 # 第八层: 全连接 self.conv1_1=self.conv_layer(x_bgr,'conv1_1') self.conv1_2=self.conv_layer(self.conv1_1,'conv1_2') self.pool1=self.pooling_layer(self.conv1_2,'pool1') self.conv2_1 = self.conv_layer(self.pool1, 'conv2_1') self.conv2_2 = self.conv_layer(self.conv2_1, 'conv2_2') self.pool2 = self.pooling_layer(self.conv2_2, 'pool2') self.conv3_1 = self.conv_layer(self.pool2, 'conv3_1') self.conv3_2 = self.conv_layer(self.conv3_1, 'conv3_2') self.conv3_3 = self.conv_layer(self.conv3_2, 'conv3_3') self.pool3 = self.pooling_layer(self.conv3_3, 'pool3') self.conv4_1 = self.conv_layer(self.pool3, 'conv4_1') self.conv4_2 = self.conv_layer(self.conv4_1, 'conv4_2') self.conv4_3 = self.conv_layer(self.conv4_2, 'conv4_3') self.pool4 = self.pooling_layer(self.conv4_3, 'pool4') self.conv5_1 = self.conv_layer(self.pool4, 'conv5_1') self.conv5_2 = self.conv_layer(self.conv5_1, 'conv5_2') self.conv5_3 = self.conv_layer(self.conv5_2, 'conv5_3') self.pool5 = self.pooling_layer(self.conv5_3, 'pool5') ''' 因为风格转换只需要 卷积层 的数据 self.flatten5 = self.flatten_layer(self.pool5, 'flatten') self.fc6 = self.fc_layer(self.flatten5, 'fc6') self.fc7 = self.fc_layer(self.fc6, 'fc7') self.fc8 = self.fc_layer(self.fc7, 'fc8', activation = None) self.prob = tf.nn.softmax(self.fc8, name = 'prob') ''' print('Modeling Finished...:%f ms' % ((time.time() - start_time)*1000)) def initial_result(shape,mean,stddev): initial=tf.truncated_normal(shape,mean=mean,stddev=stddev) return tf.Variable(initial) def read_img(img_name): img=Image.open(img_name) img=img.convert('RGB') img = img.resize((224, 224)) np_img=np.array(img) np_img=np.asarray([np_img],dtype=np.int32) return np_img def gram_matrix(x): b,w,h,ch=x.get_shape().as_list() features=tf.reshape(x,[b,h*w,ch]) gram=tf.matmul(features,features,adjoint_a=True)/tf.constant(ch*w*h,tf.float32) return gram vgg16_npy_path="./vgg_model/vgg16.npy" image_pattern = "./images/content/video_dlzm*jpg" output_dir="./images/results" style_img_path="./images/style/Vincent_Willem_van_Gogh_085.jpg" image_paths = glob.glob(image_pattern) image_paths.sort() num_step=100 learning_rate=10 lambda_c=0.1 lambda_s=50 for n,p in enumerate(image_paths): print(n) content_img_path = p result=initial_result((1,224,224,3),127.5,20) content_val=read_img(content_img_path) style_val=read_img(style_img_path) content=tf.placeholder(tf.float32,shape=[1,224,224,3]) style=tf.placeholder(tf.float32,shape=[1,224,224,3]) data_dict=np.load(vgg16_npy_path,encoding="latin1",allow_pickle=True).item() vgg_for_content=VGGNet(data_dict) vgg_for_style=VGGNet(data_dict) vgg_for_result=VGGNet(data_dict) vgg_for_content.build(content) vgg_for_style.build(style) vgg_for_result.build(result) # 提取哪些层特征 # 需要注意的是:内容特征抽取的层数和结果特征抽取的层数必须相同 # 风格特征抽取的层数和结果特征抽取的层数必须相同 content_features=[vgg_for_content.conv3_2,] result_content_features=[vgg_for_result.conv3_2,] style_features=[vgg_for_style.conv4_1, vgg_for_style.conv5_1,] style_gram=[gram_matrix(feature) for feature in style_features] result_style_features=[vgg_for_result.conv4_1, vgg_for_result.conv5_1,] result_style_gram=[gram_matrix(feature) for feature in result_style_features] content_loss=tf.zeros(1,tf.float32) for c,c_ in zip(content_features,result_content_features): content_loss+=tf.reduce_mean((c-c_)**2,axis=[1,2,3]) style_loss=tf.zeros(1,tf.float32) for s,s_ in zip(style_gram,result_style_gram): style_loss+=0.2*tf.reduce_mean((s-s_)**2,[1,2]) loss=content_loss*lambda_c+style_loss*lambda_s train_op=tf.train.AdamOptimizer(learning_rate).minimize(loss) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) for step in range(num_step): loss_value,content_loss_value,style_loss_value,_= sess.run([loss,content_loss,style_loss,train_op], feed_dict={ content:content_val, style:style_val }) # print('step: %d, loss_value: %8.4f, content_loss: %8.4f, style_loss: %8.4f' % (step+1, # loss_value[0], # content_loss_value[0], # style_loss_value[0])) if step+1 == num_step: result_img_path=os.path.join(output_dir,'result_%03d_%05d.jpg'%(n,step+1)) result_val=result.eval(sess)[0] result_val=np.clip(result_val,0,255) img_arr=np.asarray(result_val,np.uint8) img=Image.fromarray(img_arr) img.save(result_img_path)
castleKing1997/Style_Transfer
StyleTransfer.py
StyleTransfer.py
py
7,795
python
en
code
0
github-code
6
[ { "api_name": "tensorflow.compat.v1.disable_v2_behavior", "line_number": 8, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 8, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.constant", "line_number": 25, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 25, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.constant", "line_number": 28, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 28, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.constant", "line_number": 31, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 31, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.name_scope", "line_number": 34, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 34, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.nn.conv2d", "line_number": 38, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1.nn", "line_number": 38, "usage_type": "attribute" }, { "api_name": "tensorflow.compat.v1", "line_number": 38, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.nn.bias_add", "line_number": 39, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1.nn", "line_number": 39, "usage_type": "attribute" }, { "api_name": "tensorflow.compat.v1", "line_number": 39, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.nn.relu", "line_number": 40, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1.nn", "line_number": 40, "usage_type": "attribute" }, { "api_name": "tensorflow.compat.v1", "line_number": 40, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.nn.max_pool", "line_number": 44, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1.nn", "line_number": 44, "usage_type": "attribute" }, { "api_name": "tensorflow.compat.v1", "line_number": 44, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.nn", "line_number": 48, "usage_type": "attribute" }, { "api_name": "tensorflow.compat.v1", "line_number": 48, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.name_scope", "line_number": 49, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 49, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.matmul", "line_number": 52, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 52, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.nn.bias_add", "line_number": 53, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1.nn", "line_number": 53, "usage_type": "attribute" }, { "api_name": "tensorflow.compat.v1", "line_number": 53, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.name_scope", "line_number": 60, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 60, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.reshape", "line_number": 65, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 65, "usage_type": "name" }, { "api_name": "time.time", "line_number": 69, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1.split", "line_number": 71, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 71, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.concat", "line_number": 72, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 72, "usage_type": "name" }, { "api_name": "time.time", "line_number": 116, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1.truncated_normal", "line_number": 119, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 119, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.Variable", "line_number": 120, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 120, "usage_type": "name" }, { "api_name": "PIL.Image.open", "line_number": 123, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 123, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 126, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 127, "usage_type": "call" }, { "api_name": "numpy.int32", "line_number": 127, "usage_type": "attribute" }, { "api_name": "tensorflow.compat.v1.reshape", "line_number": 132, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 132, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.matmul", "line_number": 133, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 133, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.constant", "line_number": 133, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1.float32", "line_number": 133, "usage_type": "attribute" }, { "api_name": "glob.glob", "line_number": 141, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1.placeholder", "line_number": 157, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 157, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.float32", "line_number": 157, "usage_type": "attribute" }, { "api_name": "tensorflow.compat.v1.placeholder", "line_number": 158, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 158, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.float32", "line_number": 158, "usage_type": "attribute" }, { "api_name": "numpy.load", "line_number": 160, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1.zeros", "line_number": 185, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 185, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.float32", "line_number": 185, "usage_type": "attribute" }, { "api_name": "tensorflow.compat.v1.reduce_mean", "line_number": 187, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 187, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.zeros", "line_number": 189, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 189, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.float32", "line_number": 189, "usage_type": "attribute" }, { "api_name": "tensorflow.compat.v1.reduce_mean", "line_number": 191, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 191, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.train.AdamOptimizer", "line_number": 195, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1.train", "line_number": 195, "usage_type": "attribute" }, { "api_name": "tensorflow.compat.v1", "line_number": 195, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.global_variables_initializer", "line_number": 197, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 197, "usage_type": "name" }, { "api_name": "tensorflow.compat.v1.Session", "line_number": 198, "usage_type": "call" }, { "api_name": "tensorflow.compat.v1", "line_number": 198, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 211, "usage_type": "call" }, { "api_name": "os.path", "line_number": 211, "usage_type": "attribute" }, { "api_name": "numpy.clip", "line_number": 214, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 216, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 216, "usage_type": "attribute" }, { "api_name": "PIL.Image.fromarray", "line_number": 217, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 217, "usage_type": "name" } ]
20426895808
import matplotlib.pyplot as plt import seaborn as sns color_list = sns.color_palette('deep') + sns.color_palette('bright') def DrawDoubleYLines(x, y1, y2, xlabel='', ylabel=['', ''], legend=['', ''], store_path=''): ''' Draw the doulbe y-axis lines. :param x: The vector of the x axis. :param y1: The vector of the y1 axis. :param y2: The vector of the y2 axis. :param xlabel: The label of the x. Default is '' :param ylabel: The list of the y label. Default is ['', ''] :param legend: The list of the legend. Default is ['', ''] :param store_path: The store path of the figure. support 'jpg' and 'eps' format. :return: ''' fig = plt.figure() ax1 = fig.add_subplot(111) ax1.plot(x, y1, color=color_list[0]) ax1.set_ylabel(ylabel[0]) ax1.set_xlabel(xlabel) ax2 = ax1.twinx() # this is the important function ax2.plot(x, y2, color=color_list[1]) ax2.set_ylabel(ylabel[1]) ax2.set_xlabel(xlabel) ax1.legend([legend[0]], loc=(.02, .9)) ax2.legend([legend[1]], loc=(.02, .82)) if store_path: plt.tight_layout() if store_path[-3:] == 'jpg': fig.savefig(store_path, dpi=300, format='jpeg') elif store_path[-3:] == 'eps': fig.savefig(store_path, dpi=1200, format='eps') plt.show()
salan668/FAE
BC/Visualization/DrawDoubleLines.py
DrawDoubleLines.py
py
1,322
python
en
code
121
github-code
6
[ { "api_name": "seaborn.color_palette", "line_number": 3, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 17, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 17, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 32, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 32, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 38, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 38, "usage_type": "name" } ]
5361852132
from kivy.app import App from kivy.uix.screenmanager import ScreenManager, Screen from kivy.lang import Builder import wikipedia from urllib import request Builder.load_file(filename="search.kv") class FirstScreen(Screen): def get_img_link(self): # get user search query = self.manager.current_screen.ids.user_search.text # search wikipedia for user query page = wikipedia.page(query) img_link = page.images[0] img_path = f"images\wiki {query}.png" return img_link, img_path def download_wiki_img(self): img_link, img_path = self.get_img_link() img = request.urlretrieve(img_link, img_path) return img[0] def preview_img(self): # change images dynamically self.manager.current_screen.ids.img.source = self.download_wiki_img() #* # self.ids.img.source = "images\git_init.png" #= same above class RootWidget(ScreenManager): pass class SearchApp(App): def build(self): return RootWidget() SearchApp().run() ''' ### Steps for creating app using kivy ### ## Python Script ## 1. First there's a MainApp class -or call it <anything>App; this class inherits from (App) class that is imported from kivy.app. So it's like the template on which we build our app. - Inside this class we'll overwrite build(self) method to return the ScreenManager object that we have defined (see point 2). 2. Define a RootWidget class; this class inherits from (ScreenManager) imported from kivy.uix.screenmanager. It's like a manager for any other Screen object we'll create later (a screen object for each new screen in the app). 3. Define a Screen object that inherts from (Screen); This is the screen object we're talking about, on which we'll put layouts and widgets. And also define the methods that these widgets will execute. 4. Run the app: MainApp().run() 5. To connect script to .kv file: - By default, Kivy expects the .kv file to have the same base name as your Python file. For example, if your Python file is named myapp.py, the corresponding .kv file should be named myapp.kv. - Alternatively, you can specify it manually this way: from kivy.lang import Builder Builder.load_file("filename.kv") 6. To connect a method defined in your Screen object to a widget on that screen; say you have a button on that screen. Simply set on_press: root.method() -like the example below- - root here refers to the root widget of your widgets tree (which happens to be the screen object), that's why you should define that method in your Screen class declaration. 7. Get text from TextInput --> var = self.ids.<id>.text NOTE It's a good practice to separate code in Screen class into several methods to ease its understanding and refactoring. ## .kv file for GUI ## In this file we will implement the GUI; screens, layouts, widgets and their attributes. file start>>> <Screen_name>: <Layout_type>: widget_1: attr_1: value attr_2: value Button_1: on_press: root.method() ...... <RootWidget>: Screen_name: id: id name: "name" <<< file end ______________________________________________________ #* Let's break down the code: - `self.manager`: `self` refers to the current instance of the class, and `manager` is a property or attribute of that instance. In this case, it is assumed that the current class has a `manager` attribute that represents a `ScreenManager` instance. - `self.manager.current_screen`: `current_screen` is an attribute of the `ScreenManager` class that represents the currently displayed screen. By accessing `current_screen`, you are retrieving the instance of the currently active screen. - `ids`: `ids` is a dictionary-like property of a widget that contains all the child widgets defined in the corresponding `.kv` file with an `id` attribute. The `id` attribute is used to uniquely identify a widget. - `img`: `img` is the `id` assigned to an `Image` widget in the corresponding `.kv` file. - `source`: `source` is a property of the `Image` widget that represents the path or URL of the image file to be displayed. So, putting it all together, `self.manager.current_screen.ids.img.source = "images\image.png"` sets the `source` property of the `Image` widget (identified by the `id` "img") within the current screen of the `ScreenManager` to "images\image.png". It updates the image source, allowing you to change the displayed image dynamically. '''
mido-99/Advanded-OOP
App-4-Webcam-Photo-Sharer/main.py
main.py
py
4,504
python
en
code
0
github-code
6
[ { "api_name": "kivy.lang.Builder.load_file", "line_number": 7, "usage_type": "call" }, { "api_name": "kivy.lang.Builder", "line_number": 7, "usage_type": "name" }, { "api_name": "kivy.uix.screenmanager.Screen", "line_number": 9, "usage_type": "name" }, { "api_name": "wikipedia.page", "line_number": 14, "usage_type": "call" }, { "api_name": "urllib.request.urlretrieve", "line_number": 21, "usage_type": "call" }, { "api_name": "urllib.request", "line_number": 21, "usage_type": "name" }, { "api_name": "kivy.uix.screenmanager.ScreenManager", "line_number": 29, "usage_type": "name" }, { "api_name": "kivy.app.App", "line_number": 32, "usage_type": "name" } ]
42755033612
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- from datetime import datetime import re import importlib import inspect import logging import os import sys import sphinx import megengine # -- Project information ----------------------------------------------------- project = 'MegEngine' copyright = f'2020-{datetime.now().year}, The MegEngine Open Source Team' author = 'The MegEngine Open Source Team' version = megengine.__version__ release = version # -- General configuration --------------------------------------------------- extensions = [ 'nbsphinx', 'recommonmark', 'sphinx.ext.napoleon', 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.doctest', 'sphinx.ext.extlinks', 'sphinx.ext.intersphinx', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'sphinx.ext.githubpages', 'sphinx.ext.graphviz', 'sphinxcontrib.mermaid', 'sphinx_autodoc_typehints', 'sphinx_copybutton' ] source_suffix = { '.rst': 'restructuredtext', '.txt': 'markdown', '.md': 'markdown', } source_encoding = "utf-8" master_doc = 'index' templates_path = ['_templates'] exclude_patterns = [ '_build', 'build', 'examples', '**/includes/**', '**.ipynb_checkpoints' ] # -- Options for internationalization ---------------------------------------- language = 'zh_CN' # By default, the document `functional/loss.rst` ends up in the `functional` text domain. # With this option set to False, it is `functional/loss`. gettext_compact = False # -- Options for Extensions ------------------------------------------------- # Setting for sphinx.ext.autosummary to auto-generate single html pages # Please makesure all api pages are stored in `/refenrece/api/` directory autosummary_generate = True # Setting for sphinx.ext.auotdoc autodoc_default_options = { 'member-order': 'bysource', # Need developer organize the source code 'show-inheritance': True, # But it can not refer the short module path } autoclass_content = 'class' autodoc_typehints = 'description' autodoc_docstring_signature = True add_function_parentheses = False add_module_names = False # Setting for sphinx.ext.mathjax # The path to the JavaScript file to include in the HTML files in order to load MathJax. mathjax_path = 'https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js' mathjax_config = { 'extensions': ['tex2jax.js'], 'jax': ['input/TeX', 'output/HTML-CSS'], } # Setting for sphinxcontrib-mermaid mermaid_version = 'latest' # from CDN unpkg.com # Setting for sphinx.ext.intersphinx # Useful for refenrece other projects, eg. :py:class:`zipfile.ZipFile` intersphinx_mapping = { 'python': ('https://docs.python.org/3/', None), 'numpy': ('https://numpy.org/doc/stable/', None), } # Setting for sphinx.ext.extlinks # Can use the alias name as a new role, e.g. :issue:`123` extlinks = { 'src': ('https://github.com/MegEngine/MegEngine/blob/master/%s', ''), 'docs': ('https://github.com/MegEngine/Documentation/blob/master/%s', ''), 'issue': ('https://github.com/MegEngine/MegEngine/issues/%s', 'Issue #'), 'pull': ('https://github.com/MegEngine/MegEngine/pull/%s', 'Pull Requset #'), 'duref': ('http://docutils.sourceforge.net/docs/ref/rst/' 'restructuredtext.html#%s', ''), } # Setting for sphinx.ext.nbsphinx # nbsphinx do not use requirejs (breaks bootstrap) nbsphinx_requirejs_path = "" logger = logging.getLogger(__name__) try: import nbconvert except ImportError: logger.warning("nbconvert not installed. Skipping notebooks.") exclude_patterns.append("**/*.ipynb") else: try: nbconvert.utils.pandoc.get_pandoc_version() except nbconvert.utils.pandoc.PandocMissing: logger.warning("Pandoc not installed. Skipping notebooks.") exclude_patterns.append("**/*.ipynb") # -- Options for HTML output ------------------------------------------------- html_theme = 'pydata_sphinx_theme' html_theme_path = ['_themes'] html_theme_options = { 'search_bar_text': '输入搜索文本...', 'search_bar_position': 'navbar', 'github_url': 'https://github.com/MegEngine/MegEngine', 'external_links': [ { 'name': '论坛', 'url': 'https://discuss.megengine.org.cn/'}, { 'name': '官网', 'url': 'https://megengine.org.cn/'} ], 'use_edit_page_button': False, 'navigation_with_keys': False, 'show_prev_next': False, 'use_version_switch': True, 'version_switch_json_url': '/doc/version.json', 'version_switch_enable_locale': True, 'version_switch_locates': ['zh', 'en'] } html_sidebars = { '**': ['sidebar-search-bs.html', 'sidebar-nav-bs.html'], 'index': ['sidebar-search-bs.html', 'homepage-sidebar.html'] } html_static_path = ['_static'] html_logo = "logo.png" html_favicon = "favicon.ico" html_css_files = [ 'css/custom.css' ] html_js_files = [ 'js/custom.js' ] html_search_language = 'zh'
tpoisonooo/Documentation
source/conf.py
conf.py
py
5,214
python
en
code
null
github-code
6
[ { "api_name": "datetime.datetime.now", "line_number": 21, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 21, "usage_type": "name" }, { "api_name": "megengine.__version__", "line_number": 23, "usage_type": "attribute" }, { "api_name": "logging.getLogger", "line_number": 122, "usage_type": "call" }, { "api_name": "nbconvert.utils.pandoc.get_pandoc_version", "line_number": 131, "usage_type": "call" }, { "api_name": "nbconvert.utils", "line_number": 131, "usage_type": "attribute" }, { "api_name": "nbconvert.utils", "line_number": 132, "usage_type": "attribute" } ]
37228942399
#!/usr/bin/env python3 import argparse import bids from bids import BIDSLayout import os from pathlib import Path def _filter_pybids_none_any(dct): import bids return { k: bids.layout.Query.NONE if v is None else (bids.layout.Query.ANY if v == "*" else v) for k, v in dct.items() } def _bids_filter(value): from json import loads from bids.layout import Query if value and Path(value).exists(): try: filters = loads(Path(value).read_text(), object_hook=_filter_pybids_none_any) except Exception as e: raise Exception("Unable to parse BIDS filter file. Check that it is " "valid JSON.") else: raise Exception("Unable to load BIDS filter file " + value) # unserialize pybids Query enum values for acq, _filters in filters.items(): filters[acq] = { k: getattr(Query, v[7:-4]) if not isinstance(v, Query) and "Query" in v else v for k, v in _filters.items() } return filters def collect_data(bids_dir, participant_label, queries, filters=None, bids_validate=True): """ Uses pybids to retrieve the input data for a given participant """ if isinstance(bids_dir, BIDSLayout): layout = bids_dir else: layout = BIDSLayout(str(bids_dir), validate=bids_validate) bids_filters = filters or {} for acq, entities in bids_filters.items(): queries[acq].update(entities) subj_data = { dtype: sorted( layout.get( return_type="file", subject=participant_label, extension=["nii", "nii.gz"], **query ) ) for dtype, query in queries.items() } return subj_data, layout qsiprep_queries = { 'fmap': {'datatype': 'fmap'}, 'sbref': {'datatype': 'func', 'suffix': 'sbref'}, 'flair': {'datatype': 'anat', 'suffix': 'FLAIR'}, 't2w': {'datatype': 'anat', 'suffix': 'T2w'}, 't1w': {'datatype': 'anat', 'suffix': 'T1w'}, 'roi': {'datatype': 'anat', 'suffix': 'roi'}, 'dwi': {'datatype': 'dwi', 'suffix': 'dwi'} } fmriprep_queries = { 'fmap': {'datatype': 'fmap'}, 'bold': {'datatype': 'func', 'suffix': 'bold'}, 'sbref': {'datatype': 'func', 'suffix': 'sbref'}, 'flair': {'datatype': 'anat', 'suffix': 'FLAIR'}, 't2w': {'datatype': 'anat', 'suffix': 'T2w'}, 't1w': {'datatype': 'anat', 'suffix': 'T1w'}, 'roi': {'datatype': 'anat', 'suffix': 'roi'} } parser = argparse.ArgumentParser(description='BIDS validation and filter preview. The filters are processed using code extracted from qsiprep ' 'v 0.14.2. I believe fmriprep works the same way, but I have not verified this. Also, it is possible that ' 'different versions of pybids will behave differently. With those disclaimers in mind, running this can ' 'highlight obvious problems with filters or allow you to experiment with advanced matching.') parser.add_argument('--bids-dir', help='The directory with the input dataset formatted according to the BIDS standard.', required = True) parser.add_argument('--filter-file', help='File containing BIDS filters', required = True) parser.add_argument('--participant-label', help='The label of the participant that should be analyzed. The label ' 'corresponds to sub-<participant> from the BIDS spec (so it does not include "sub-").', required = True) parser.add_argument('--prep-modality', help='The kind of modality prep to test the filter on. Options are fmri, qsi.', required = True) bids.config.set_option('extension_initial_dot', True) args = parser.parse_args() layout = BIDSLayout(args.bids_dir, validate = True) filters = _bids_filter(args.filter_file) queries = None if (args.prep_modality == 'qsi'): queries = qsiprep_queries elif (args.prep_modality == 'fmri'): queries = fmriprep_queries else: raise ValueError(f'Unsupported modality prep string {args.prep_modality}') sub_data, layout = collect_data(layout, args.participant_label, queries, filters = filters) print(f'\n\n Filtered data for participant {args.participant_label}:\n') for k, v in sub_data.items(): print (k, '\t:\t', v)
ftdc-picsl/pmacsPreps
bin/bidsFilterTest.py
bidsFilterTest.py
py
4,368
python
en
code
0
github-code
6
[ { "api_name": "bids.layout", "line_number": 11, "usage_type": "attribute" }, { "api_name": "bids.layout", "line_number": 13, "usage_type": "attribute" }, { "api_name": "pathlib.Path", "line_number": 22, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 24, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 24, "usage_type": "call" }, { "api_name": "bids.layout.Query", "line_number": 35, "usage_type": "argument" }, { "api_name": "bids.layout.Query", "line_number": 34, "usage_type": "argument" }, { "api_name": "bids.BIDSLayout", "line_number": 45, "usage_type": "argument" }, { "api_name": "bids.BIDSLayout", "line_number": 48, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 90, "usage_type": "call" }, { "api_name": "bids.config.set_option", "line_number": 100, "usage_type": "call" }, { "api_name": "bids.config", "line_number": 100, "usage_type": "attribute" }, { "api_name": "bids.BIDSLayout", "line_number": 104, "usage_type": "call" } ]
17499920257
#TODO practice mode for the ones that required 10+, or 20+ s previously #TODO prorgam to train two digits additions and subtractions from random import random from random import randint import datetime from matplotlib import pyplot as plt import pandas as pd # import numpy as np import os import mplcursors # need to install: pip install mplcursors problems = [] results = [] elapsed_time = [] failed = [] # failed = [{'a':15, 'b':11}, {'a':96, 'b':95}, {'a':76, 'b':35}, {'a':16, 'b':77}]#TODO plt.rcParams['axes.spines.top'] = False plt.rcParams['axes.spines.right'] = False plt.rcParams['font.family'] = ['Arial'] cwd = os.getcwd() excel_path = os.path.join(cwd,'anzan_log.xlsx') if os.path.isfile(excel_path): df_s = pd.read_excel(excel_path, index_col=0, sheet_name='successes') df_f = pd.read_excel(excel_path, index_col=0, sheet_name='failures') df_r = pd.read_excel(excel_path, index_col=0, sheet_name='rates').astype(float) #float df_t = pd.read_excel(excel_path, index_col=0, sheet_name='time').astype(float) #float else: df_s = pd.DataFrame(0, index=range(1, 100), columns=range(1, 100)) df_f = pd.DataFrame(0, index=range(1, 100), columns=range(1, 100)) df_r = pd.DataFrame(float(0), index=range(1, 100), columns=range(1, 100)).astype(float) df_t = pd.DataFrame(float(0), index=range(1, 100), columns=range(1, 100)).astype(float) time_out_s = 20 # inclusive, elapsed time must be <= time_out_s failed_ind = 0 failed_in_the_past = [] for row_index, row in df_f.iterrows(): for col_index, value in row.items(): if value != 0: failed_in_the_past.append({'a': row_index, 'b': col_index}) def show_problem(a, b, view): if view == 1: print(f"\n{a} x {b} =\n") elif view == 2: if course == 6: print(f"\n {a:>3} \nx {b:>3}\n-----\n") else: print(f"\n {a:>2} \nx {b:>2}\n-----\n") def biased_randint(min_val, max_val, bias=0.5): """Generate a biased random integer between min_val and max_val. With a bias value of 0.5, numbers towards the higher end (like 6,7,8,9 in tens place) will be more probable. Adjusting the bias will change the skewness. A bias of 1 will give you a uniform distribution, values less than 1 will skew towards the maximum, and values greater than 1 will skew towards the minimum. """ return int(min_val + (max_val - min_val) * (random() ** bias)) def get_ab_from_failures(): if len(failed) == 0: return 0, 0 failed_ind = randint(0, len(failed)-1) a = failed[failed_ind]['a'] b = failed[failed_ind]['b'] return a, b def get_ab_from_failures_in_the_past(): # randomly choose a and b from the failures in the past # Iterate over the DataFrame to find non-zero cells ind = randint(0, len(failed_in_the_past)-1) if randint(0,1): a = failed_in_the_past[ind]['a'] b = failed_in_the_past[ind]['b'] else: a = failed_in_the_past[ind]['b'] b = failed_in_the_past[ind]['a'] return a, b def get_ab_general(): # a = randint(1,99) a = biased_randint(1,99,randbias) # b = randint(1,99) b = biased_randint(1,99,randbias) return a, b def get_ab_Indian(): c_type = randint(1,3) if c_type == 1: a_ = randint(1,9) b_ = randint(1,9) c_ = 10 - b_ a = a_ * 10 + b_ b = a_ * 10 + c_ elif c_type == 2: a_ = randint(1,9) b_ = randint(1,9) c_ = randint(1,9) a = a_ * 10 + b_ b = a_ * 10 + c_ elif c_type == 3: a_ = randint(1,9) b_ = randint(1,9) c_ = 10 - b_ a = b_ * 10 + a_ b = c_ * 10 + a_ return a, b def get_ab_two_by_one(): tf = randint(0,1) if tf: a = randint(1,9) b = randint(1,99) else: a = randint(1,99) b = randint(1,9) return a, b def get_ab_three_by_one(): if view == 2: a = randint(100,999) b = randint(2,9) else: tf = randint(0,1) if tf: a = randint(2,9) b = randint(100,999) else: a = randint(100,999) b = randint(2,9) return a, b def run_trial(a, b): dt1 = datetime.datetime.now() show_problem(a, b, view) ans = input("Type your answer (or 'q' to quit):\n>") dt2 = datetime.datetime.now() if ans == "q": keep_going = False else: problems.append({'a':a,'b':b}) keep_going = True try: ans = int(ans) except Exception as e: print('wrong input') results.append(float("nan")) return keep_going td = dt2 - dt1 minutes, seconds = divmod(td.total_seconds(), 60) print(f"\n{minutes} min {seconds} sec\n") elapsed_time.append(td.total_seconds()) if td.total_seconds() <= time_out_s : if ans == a * b: print(f"Correct! :)\n{a} x {b} = {a *b}\n") results.append(1) if reviewing: failed.pop(failed_ind) # remove successful item from failed during review process else: print("\a") # didn't work print(f"Your answer {ans} is wrong:(\n{a} x {b} = {a *b}\n") results.append(0) failed.append({'a':a,'b':b}) else: print("\a") # didn't work print('Too late') if ans == a * b: print(f"Correct! :)\n{a} x {b} = {a *b}\n") else: print(f"Your answer {ans} is wrong:(\n{a} x {b} = {a *b}\n") results.append(0) failed.append({'a':a,'b':b}) return keep_going def plot_time(elapsed_time, problems, results): plt.ion() fig, ax = plt.subplots(1,1) zipped = list(zip(elapsed_time, problems, results)) zipped_sorted = sorted(zipped, key=lambda x: x[0]) elapsed_time_sorted, problems_sorted, results_sorted = zip(*zipped_sorted) for i in range(0, len(elapsed_time_sorted)): if results_sorted[i]: ax.plot(elapsed_time_sorted[i], i + 1, 'ok') else: ax.plot(elapsed_time_sorted[i], i + 1, 'xr') ax.set_yticks([i + 1 for i in list(range(0, len(elapsed_time_sorted)))]) # +1 ax.set_xlabel('Time (s)') xlim = ax.get_xlim() ax.set_xlim(0, xlim[1]) problems_str =[f"{p['a']} x {p['b']}" for p in problems_sorted] print(f"len(elapsed_time_sorted) = {len(elapsed_time_sorted)}") print(f"len(problems_str) = {len(problems_str)}") ax.set_yticklabels(problems_str) plt.title("Session") plt.show() def plot_all(): # read the latest data df_s = pd.read_excel(excel_path, index_col=0, sheet_name='successes') df_f = pd.read_excel(excel_path, index_col=0, sheet_name='failures') df_r = pd.read_excel(excel_path, index_col=0, sheet_name='rates').astype(float) df_t = pd.read_excel(excel_path, index_col=0, sheet_name='time').astype(float) # create lists res_all = [] for i in range(1,100): for j in range(1,100): if df_s[i][j] + df_f[i][j] > 0: # remove the empty cells #TODO KeyError: 99 res_all.append({'a':i, 'b':j, 'n':df_s[i][j] + df_f[i][j], 's':df_s[i][j], 'f':df_f[i][j], 'r':df_r[i][j], 't':df_t[i][j]}) # sort l_all res_sorted = sorted(res_all, key=lambda x: x['t']) # read the saved table data and plot them plt.ion() fig, ax = plt.subplots(1,1) max_val = max(item['r'] for item in res_sorted) min_val = min(item['r'] for item in res_sorted) norm = plt.Normalize(min_val, max_val) # Choose a colormap colormap = plt.cm.cool_r x_values = [item['t'] for item in res_sorted] y_values = list(range(1, len(res_sorted) + 1)) colors = colormap(norm([r['r'] for r in res_sorted])) # Create a single scatter plot with all points sc = ax.scatter(x_values, y_values, color=colors, s=100) tooltips = [f"{r['a']} \u00D7 {r['b']}\n" + f"{r['r']*100} % ({r['s']} of {r['s'] + r['f']})\n" + f"{r['t']:.1f} sec" for r in res_sorted] def update_annot(ind): return tooltips[ind] def on_hover(sel): sel.annotation.set_text(update_annot(sel.index)) mplcursors.cursor(sc, hover=True).connect("add", on_hover) ax.set_xlabel('Time (s)') xlim = ax.get_xlim() ax.set_xlim(0, xlim[1]) plt.title("History") plt.show() def save_result_table(): ## response time problems_ = problems # Ensure 'a' is always <= 'b' for p in problems_: if p['a'] > p['b']: p['a'], p['b'] = p['b'], p['a'] combined = sorted(zip(problems_, elapsed_time), key=lambda x: (x[0]['a'], x[0]['b'])) problems_sorted, elapsed_time_sorted = zip(*combined) for idx, p in enumerate(problems_sorted): row_idx, col_idx = p['a'], p['b'] # Calculate new average n = df_s.at[row_idx, col_idx] + df_f.at[row_idx, col_idx] current_total_time = df_t.at[row_idx, col_idx] * n new_total_time = current_total_time + elapsed_time_sorted[idx] # Update df_t and df_n df_t.at[row_idx, col_idx] = new_total_time / float(n + 1) ##successes and failures # separate successes and failures successful_problems = [problem for problem, result in zip(problems, results) if result == 1] failed_problems = [problem for problem, result in zip(problems, results) if result == 0] # make a <= b for p in successful_problems: if p['a'] > p['b']: p['a'], p['b'] = p['b'], p['a'] for p in failed_problems: if p['a'] > p['b']: p['a'], p['b'] = p['b'], p['a'] # sort (a, b) pairs successful_problems = sorted(successful_problems, key=lambda x: (x['a'], x['b'])) failed_problems = sorted(failed_problems, key=lambda x: (x['a'], x['b'])) # update values of cells for p in successful_problems: if pd.isna(df_s.at[p['a'], p['b']]): # if for the first time df_s.at[p['a'], p['b']] = 1 else: df_s.at[p['a'], p['b']] += 1 for p in failed_problems: if pd.isna(df_f.at[p['a'], p['b']]): # if for the first time df_f.at[p['a'], p['b']] = 1 else: df_f.at[p['a'], p['b']] += 1 # recompute rates df_r = df_s.fillna(0) / (df_s.fillna(0) + df_f.fillna(0)) ## save tables with pd.ExcelWriter(excel_path) as writer: df_s.to_excel(writer, index=True, sheet_name='successes') df_f.to_excel(writer, index=True, sheet_name='failures') df_r.to_excel(writer, index=True, sheet_name='rates') df_t.to_excel(writer, index=True, sheet_name='time') def show_results(): print("Finished") if len(results) > 0: print(f"Success rate: {sum(results)/len(results) * 100:.1f} % ({sum(results)}/{len(results)})") ave_time = sum(elapsed_time) / len(elapsed_time) #TODO print(f"Average response time :{ave_time} sec\n") result_icons = ['X' for _ in results] result_icons = ''.join(['O' if r else 'X' for r, i in zip(results, result_icons)]) print(result_icons) plot_time(elapsed_time, problems, results) failed_ = [ f"{f['a']} x {f['b']} = {f['a'] * f['b']}" for f in failed] print("Failed calculations") print(failed_) if course != 6: save_result_table() plot_all() keep_going = True #TODO GUI for preference? ans = int(input("Type 1 for general, 2 for Indian, 3 for mixed, 4 for 00 x 0, 5 for review, 6 for 000 x 0\n>")) if ans == 1: course = 1 elif ans == 2: course = 2 elif ans == 3: course = 3 elif ans == 4: course = 4 elif ans == 5: course = 5 elif ans == 6: course = 6 else: raise ValueError("course has an invalid value") ans = int(input("Type 1 for horizontal view, 2 for stack view\n>")) if ans == 1: view = 1 elif ans == 2: view = 2 else: raise ValueError("view has an invalid value") #TODO ask if you want to use biased random number generation if course != 4 and course != 5 and course != 6: ans = float(input("Type 1 for uniform randomness, <1 for biased to have larger digits\n>")) if ans == 1: randbias = 1 else:# randbias = 2 # to be biased to include larger numbers, 6,7 ,8, 9 reviewing = False while keep_going: if course == 1: a, b = get_ab_general() elif course == 2: a, b = get_ab_Indian() elif course == 3: ans = randint(0,1) if ans: a, b = get_ab_general() else: a, b = get_ab_Indian() elif course == 4: a, b = get_ab_two_by_one() elif course == 5: a, b = get_ab_from_failures_in_the_past() elif course == 6: a, b = get_ab_three_by_one() keep_going = run_trial(a, b) if not keep_going: show_results() ans = input("Do you want to practice the failed problems again? Y/N\n>") if ans == "y" or ans == "Y": results = [] #refresh reviewing = True keep_going = True while keep_going: a, b = get_ab_from_failures() if a == 0 and b == 0: keep_going = False else: keep_going = run_trial(a, b) if not keep_going: print("Finished") print(f"Success rate: {sum(results)/len(results) * 100:.1f} % ({sum(results)}/{len(results)})") ave_time = sum(elapsed_time) / len(elapsed_time) print(f"Average response time :{ave_time} sec\n") failed_ = [ f"{f['a']} x {f['b']} = {f['a'] * f['b']}" for f in failed] print("Failed calculations") print(failed_) else: print("Good bye")
kouichi-c-nakamura/anzan_training
anzan.py
anzan.py
py
13,926
python
en
code
0
github-code
6
[ { "api_name": "matplotlib.pyplot.rcParams", "line_number": 19, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 19, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 20, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 20, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 21, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 21, "usage_type": "name" }, { "api_name": "os.getcwd", "line_number": 23, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 24, "usage_type": "call" }, { "api_name": "os.path", "line_number": 24, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 25, "usage_type": "call" }, { "api_name": "os.path", "line_number": 25, "usage_type": "attribute" }, { "api_name": "pandas.read_excel", "line_number": 26, "usage_type": "call" }, { "api_name": "pandas.read_excel", "line_number": 27, "usage_type": "call" }, { "api_name": "pandas.read_excel", "line_number": 28, "usage_type": "call" }, { "api_name": "pandas.read_excel", "line_number": 29, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 32, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 33, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 34, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 35, "usage_type": "call" }, { "api_name": "random.random", "line_number": 65, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 71, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 80, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 82, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 100, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 102, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 103, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 110, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 111, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 112, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 118, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 119, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 126, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 128, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 129, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 131, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 132, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 137, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 138, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 140, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 142, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 143, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 145, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 146, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 151, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 151, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 155, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 155, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.ion", "line_number": 200, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 200, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 201, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 201, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 221, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 221, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 223, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 223, "usage_type": "name" }, { "api_name": "pandas.read_excel", "line_number": 227, "usage_type": "call" }, { "api_name": "pandas.read_excel", "line_number": 228, "usage_type": "call" }, { "api_name": "pandas.read_excel", "line_number": 229, "usage_type": "call" }, { "api_name": "pandas.read_excel", "line_number": 230, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.ion", "line_number": 245, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 245, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 246, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 246, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.Normalize", "line_number": 250, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 250, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.cm", "line_number": 253, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 253, "usage_type": "name" }, { "api_name": "mplcursors.cursor", "line_number": 272, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.title", "line_number": 277, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 277, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 279, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 279, "usage_type": "name" }, { "api_name": "pandas.isna", "line_number": 324, "usage_type": "call" }, { "api_name": "pandas.isna", "line_number": 330, "usage_type": "call" }, { "api_name": "pandas.ExcelWriter", "line_number": 340, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 414, "usage_type": "call" } ]
32995735130
#!/usr/bin/env python # coding: utf-8 # In[2]: ## We'll be doing this from scratch, so all imports will come from ## the Python standard library or 3rd-party tools import socket import struct import base64 import json import hashlib import time import enum import xml.etree.ElementTree as ET from enum import Enum import pandas as pd import password_obfuscation as obf # # iRODS Protocol Cookbook # # This notebook will provide example implementations of key # operations in the iRODS protocol. Read from the beginnging or use this table of contents to skip to the section that interests you. Once you've jumped to that spot, make sure the cell with the anchor is selected and run `Cell > Run All Above`. # # ## Table of Contents # # * [Handshake](#handshake) # * [Authentication](#authentication) # * [ils](#ils) # - [Stat a collection](#stat_coll) # - [Querying for the Data Objects in a Container](#data_objects_query) # * [Data transfer](#data_transfer) # * [Streaming](#streaming) # * [Admin](#admin) # * [Rule Exec](#rule_exec) # * [Changing Your Password](#ipasswd) # * [Disconnect](#disconnect) # * [Appendix: iRODS Protocol Gotchas](#gotchas) # This tutorial assumes you have deployed iRODS in Docker using # the script stand_it_up.py from the iRODS Testing Environment, # which can be found on Github [here](https://github.com/irods/irods_testing_environment) # To find the IP address associated with your Docker container, you can run this one-liner: # ```bash # docker inspect -f '{{range.NetworkSettings.Networks}}{{.IPAddress}}{{end}}' ubuntu-2004-postgres-1012_irods-catalog-provider_1 # ``` # # *However,* this notebook works just fine for any iRODS deployment. Simply change the values `HOST`, `RODS_USER`, `PASSWORD`. It is recommended to create a new rodsadmin account or use an account whose password you are comfortable changing, and to start in the home collection of that user. # In[3]: HOST = "172.27.0.3" RODS_USER = "rods" PASSWORD = "rods" # In[4]: PORT = 1247 ## This is the standard iRODS port MAX_PASSWORD_LENGTH = 50 ## This constant comes ## from the internals ## of the iRODS server API_TABLE = { "AUTHENTICATION_APN":110000, ## The API number for the 4.3.0 auth framework "OBJ_STAT_AN":633, "GEN_QUERY_AN":702, "DATA_OBJ_PUT_AN": 606, "DATA_OBJ_OPEN_AN": 602, "DATA_OBJ_LSEEK_AN": 674, "DATA_OBJ_CLOSE_AN": 673, "DATA_OBJ_READ_AN": 675, "GENERAL_ADMIN_AN": 701, "EXEC_MY_RULE_AN": 625, "USER_ADMIN_AN": 714 } ## These provide indices into the catalog, ## which allows the i RODS server to directly query the SQL server CATALOG_INDEX_TABLE = { "COL_COLL_NAME" :"501", "COL_D_DATA_ID" :"401", "COL_DATA_NAME" :"403", "COL_COLL_INHERITANCE":"506", "COL_DATA_MODE" :"421", "COL_DATA_SIZE" :"407", "COL_D_MODIFY_TIME" :"420", "COL_D_CREATE_TIME" :"419" } CATALOG_REVERSE_INDEX_TABLE = { v:k for k,v in CATALOG_INDEX_TABLE.items() } ## This is an arbitrary string hardcoded into the server; will be checked by the server RANDOM_STRING_CLIENT_SIDE = "1gCBizHWbwIYyWLoysGzTe6SyzqFKMniZX05faZHWAwQKXf6Fs" test_value = obf.encode(RANDOM_STRING_CLIENT_SIDE) # First, we're going to write a small library of functions that do some # of the dirty work. # Feel free to skip to [here](#start_of_real_work), where we start using this library to send # and read messages, referring to this part to figure out how # the part you're interested in was implemented. # # *Notice* that the comment above `def header(...` includes the packing instruction string for `MsgHeader_PI` ("PI" stands for "Packing Instruction"). This string has a special syntax that the iRODS server uses to define these message types. # In[5]: ## We can define these in an enum since ## header types are a closed class and are not sensitive to any3 ## particular API. class HeaderType(Enum): RODS_CONNECT = "RODS_CONNECT" RODS_DISCONNECT = "RODS_DISCONNECT" RODS_API_REQ = "RODS_API_REQ" RODS_API_REPLY = "RODS_API_REPLY" RODS_VERSION = "RODS_VERSION" # #define MsgHeader_PI "str type[HEADER_TYPE_LEN]; int msgLen; int errorLen; int bsLen; int intInfo;" def header(header_type: HeaderType, msg: bytes, error_len=0, bs_len=0, int_info=0) -> bytes: return f""" <MsgHeader_PI> <type>{header_type}</type> <msgLen>{len(msg)}</msgLen> <errorLen>{error_len}</errorLen> <bsLen>{bs_len}</bsLen> <intInfo>{int_info}</intInfo> </MsgHeader_PI> """.replace(' ', '').replace('\n', '').encode('utf-8') ## The protocol is whitespace-insensitive, ## but I removed them here for cleanliness ## and efficiency for when this gets pushed ## through the pipe. def indent(elem, level=0): i = "\n" + level*" " j = "\n" + (level-1)*" " if len(elem): if not elem.text or not elem.text.strip(): elem.text = i + " " if not elem.tail or not elem.tail.strip(): elem.tail = i for subelem in elem: indent(subelem, level+1) if not elem.tail or not elem.tail.strip(): elem.tail = j else: if level and (not elem.tail or not elem.tail.strip()): elem.tail = j return elem # In[6]: def send_header(header: bytes, sock: socket) -> None: header_len = int.to_bytes(len(header), byteorder='big', length=4) ## The first part of all iRODS messages ## must be 4 bytes indicating how long ## the header is in bytes. These bytes ## and the entire integer must be transmitted ## in big-endian order print(f"[header_len] - [{header_len}]") print(f"[header] - [{header}]") sock.sendall(header_len) sock.sendall(header) def send_msg(msg: bytes, sock: socket, error_buf: bytes = None, bs_buf: bytes = None) -> None: sock.sendall(msg) print(f"[msg] - [{msg}]") if error_buf: sock.sendall(error_buf) if bs_buf: sock.sendall(bs_buf) def recv(sock: socket) -> [ET, ET]: header_len = int.from_bytes(sock.recv(4), byteorder='big') print(f"HEADER LEN: [{header_len}]") header = ET.fromstring(sock.recv(header_len).decode("utf-8")) ET.indent(header) ET.dump(header) if header_len > 0: ## TODO: It's odd that this is included as a case because something would be really ## broken if this were true msg_len = int(header.find("msgLen").text) bs_len = int(header.find("bsLen").text) error_len = int(header.find("errorLen").text) if msg_len > 0: msg = ET.fromstring(sock.recv( int(header.find("msgLen").text)).decode("utf-8")) ET.indent(msg) ET.dump(msg) if error_len > 0: print("[recv] getting error stack") print(sock.recv(error_len)) if bs_len > 0: print("[recv] getting bs buf") print(sock.recv(bs_len)) return header, msg else: if error_len > 0: print("[recv] getting error stack") print(sock.recv(error_len)) if bs_len > 0: print("[recv] getting bs buf") print(sock.recv(bs_len)) return header, None else: return header, None # ## Start of the "Real Work" <a class="anchor" id="start_of_real_work"></a> # Note that even if you are using a plugin for authentication, iRODS may still refer to the information in the StartupPack_PI during authentication. If you are experiencing bugs during that step, check your Startup Pack as well as the structures associated with your specific plugin. # In[7]: class IrodsProt(Enum): NATIVE_PROT = 0 XML_PROT = 1 ## Now, let's start the connection process. First, we need an easy way to create the StartupPack.low ## define StartupPack_PI "int irodsProt; int reconnFlag; int connectCnt; str proxyUser[NAME_LEN];\ ## str proxyRcatZone[NAME_LEN]; str clientUser[NAME_LEN]; str clientRcatZone[NAME_LEN];\ ## str relVersion[NAME_LEN]; str apiVersion[NAME_LEN]; str option[LONG_NAME_LEN];" def startup_pack(irods_prot=IrodsProt.XML_PROT.value, reconn_flag=0, connect_cnt=0, proxy_user=None, proxy_rcat_zone=None, client_user="rods", client_rcat_zone="tempZone", rel_version="4.3.0", api_version="d", ## This MUST ALWAYS be "d." This value has been hardcoded into iRODS ## since very early days. option=None ## This option controls, among other things,whether SSL negotiation is required. ) -> bytes: return f""" <StartupPack_PI> <irodsProt>{irods_prot}</irodsProt> <reconnFlag>{reconn_flag}</reconnFlag> <connectCnt>{connect_cnt}</connectCnt> <proxyUser>{proxy_user or client_user}</proxyUser> <proxyRcatZone>{proxy_rcat_zone or client_rcat_zone}</proxyRcatZone> <clientUser>{client_user}</clientUser> <clientRcatZone>{client_rcat_zone}</clientRcatZone> <relVersion>rods{rel_version}</relVersion> <apiVersion>{api_version}</apiVersion> <option>{option}</option> </StartupPack_PI> """.replace(" ", "").replace("\n", "").encode("utf-8") # We're going to be sending raw bytes over a socket, so let's create one # If at some point the Notebook stops working, remember # to manually close the socket. # In[8]: conn = socket.socket(socket.AF_INET, socket.SOCK_STREAM) conn.connect((HOST, PORT)) # ## Handshake <a class="anchor" id="handshake"></a> # In[ ]: sp = startup_pack(client_user=RODS_USER) sp # In[ ]: h = header(HeaderType.RODS_CONNECT.value, sp) h # In[ ]: send_header(h, conn) send_msg(sp, conn) # In[ ]: ## In this Version_PI, status of 0 lets us know that negotiation has been successful. h, msg = recv(conn) # ## Authentication <a class="anchor" id="authentication"></a> # # Next up, we need to authenticate using our API of choice. # Since this is a basic cookbook for 4.3.0, we'll be using the new # auth framework's port of native authentication. # This API works by exchanging binary buffers between client and server. # Since XML must be valid UTF-8, this binary data MUST be base64-encoded. # In[ ]: def encode_dict_as_base64_json(d: dict): return base64.b64encode( json.dumps(d).encode('utf-8')) # The payload is decoded because otherwise Python will # add extra characters to give a string representation of the bytes object # In[ ]: def read_base64_into_json(bsix: bytes, trunc=False) -> dict: decoded = base64.b64decode(bsix).decode('utf-8') return json.loads(decoded[:-1]) if trunc else json.loads(decoded) ## #define BytesBuf_PI "int buflen; char *buf(buflen);" def bin_bytes_buf(payload: dict) -> bytes: payload = encode_dict_as_base64_json(payload) return f""" <BinBytesBuf_PI> <buflen>{len(payload)}</buflen> <buf>{payload.decode('utf-8')}</buf> </BinBytesBuf_PI> """.replace(" ", "").replace("\n","").encode('utf8') # In[ ]: ## Some API-specific parameters auth_ctx = { "a_ttl":"0", "force_password_prompt":"true", "next_operation":"auth_agent_auth_request", "scheme":"native", "user_name":"rods", "zone_name":"tempZone" } # In[ ]: initial_auth_msg = bin_bytes_buf(auth_ctx) print(initial_auth_msg) h = header(HeaderType.RODS_API_REQ.value, initial_auth_msg, int_info=API_TABLE["AUTHENTICATION_APN"]) send_header(h, conn) send_msg(initial_auth_msg, conn) # In[ ]: h, m = recv(conn) # If you were writing a real client library or application, you would want to check intInfo for error codes # so you could respond appropriately. Here, we're going to move on blissfully unaware. # In[ ]: auth_ctx = read_base64_into_json(m.find("buf").text, trunc=True) request_result = auth_ctx[ 'request_result'].encode('utf-8') print(f"REQUEST RESULT: [{request_result}]") # In[ ]: def pad_password(pw: str) -> bytes: return struct.pack("%ds" % MAX_PASSWORD_LENGTH, pw.encode("utf-8").strip()) ## The "signature" is taken from the first 16 bytes of the challenge string ## and is used by the server to validate certain operations, ## like password changes. signature = "".join("{:02x}".format(c) for c in request_result) print(f"SIGNATURE: [{signature}]") ## Native auth specific operations m = hashlib.md5() m.update(request_result) m.update(pad_password(PASSWORD)) digest = m.digest() encoded_digest = base64.b64encode(digest).decode('utf-8') auth_ctx['digest'] = encoded_digest auth_ctx['next_operation'] = 'auth_agent_auth_response' challenge_response = bin_bytes_buf(auth_ctx) print(challenge_response) # In[ ]: h = header(HeaderType.RODS_API_REQ.value, challenge_response, int_info=API_TABLE["AUTHENTICATION_APN"]) send_header(h, conn) send_msg(challenge_response, conn) # Once again, an `intInfo` of 0 is the auth framework's way of telling us that we've successfully authenticated. Decode the buf frame base64 if you'd like to double check the state of the auth context. # In[ ]: h, m = recv(conn) # # ils <a class="anchor" id="ils"></a> # Next, let's perform an `ils`. The iCommands implementation does a little bit of verification, so we'll see how to perform object stat-ing, genQuery, and specQuery here. # Before delving into the substance of an iRODS workflow, you might take a look at the following image, which illustrates the general flow of the protocol. Essentially, after the handshake, the client and server loop between API requests and appropriate responses in an indefinite loop until the client sends a disconnect.![irods_control_flow.png](attachment:irods_control_flow.png) # ## Stat a Collection <a class="anchor" id="stat_coll"></a> # This step is necessary to make sure that the directory about to be ls'd actually exists. # First, we'll have to generate a `DataObjInp_PI`. This is a generic message type used for all sorts of operations. It also contains a `KeyValPair_PI`, which is an important data structure in the iRODS protocol. Although it cannot be sent on its own, it is a very important vehicle for parameters. Internally, this `KeyValPair_PI` is a cond_input structure. # In[ ]: ## #define DataObjInp_PI "str objPath[MAX_NAME_LEN]; int createMode; int openFlags; double offset; \ ## double dataSize; int numThreads; int oprType; struct *SpecColl_PI; struct KeyValPair_PI;" def data_obj_inp( obj_path, create_mode="0", open_flags="0", offset="0", data_size="0", num_threads="0", opr_type="0", cond_input= {} ) -> bytes: obj_inp = ET.fromstring(f""" <DataObjInp_PI> <objPath>{obj_path}</objPath> <createMode>{create_mode}</createMode> <openFlags>{open_flags}</openFlags> <offset>{offset}</offset> <dataSize>{data_size}</dataSize> <numThreads>{num_threads}</numThreads> <oprType>{opr_type}</oprType> </DataObjInp_PI> """) ET.indent(obj_inp) obj_inp = append_kvp(obj_inp, cond_input) ret = ET.tostring(obj_inp).decode("utf-8").replace("\n", "").replace(" ", "").encode('utf-8') print(ret) return ret # Next, we'll need some utility methods. How these work might not be totally obvious, so consider reading ahead and revisiting these once you've seen how it's used in the stat API Call. # In[ ]: def append_kvp(et, data): kvp = ET.Element("KeyValPair_PI") sslen = ET.Element("ssLen") sslen.text = str(len(data)) kvp.append(sslen) for key in data.keys(): keyWord = ET.Element("keyWord") keyWord.text = key kvp.append(keyWord) for value in data.values(): svalue = ET.Element("svalue") svalue.text = value kvp.append(svalue) et.append(kvp) return et def append_iivp(et, data): iivp = ET.Element("InxIvalPair_PI") sslen = ET.Element("iiLen") sslen.text = str(len(data)) iivp.append(sslen) for key in data.keys(): inx = ET.Element("inx") inx.text = key iivp.append(inx) for value in data.values(): ivalue = ET.Element("ivalue") ivalue.text = value iivp.append(ivalue) et.append(iivp) return et def append_ivp(et, data): ivp = ET.Element("InxValPair_PI") islen = ET.Element("isLen") islen.text = str(len(data)) ivp.append(islen) for key in data.keys(): inx = ET.Element("inx") inx.text = key ivp.append(inx) for value in data.values(): svalue = ET.Element("svalue") svalue.text = value ivp.append(svalue) et.append(ivp) return et # In[ ]: stat_obj_inp = data_obj_inp("/tempZone/home/rods") h = header(HeaderType.RODS_API_REQ.value, stat_obj_inp, int_info=API_TABLE["OBJ_STAT_AN"]) send_header(h, conn) send_msg(stat_obj_inp, conn) # If everything has gone smoothely, you should receive a `RodsObjStat_PI` from the server. That `objType` is 2 tells us that the thing we stat'd was a collection. Since collections are purely virtual objects, `objSize` is 0. # In[ ]: h, m = recv(conn) # # Querying for the Data Objects in a Container <a class="anchor" id="data_objects_query"></a> # # Now we know our target is there. Let's go ahead and read its contents. This happens through a genQuery. For details about the first-generation GenQuery API, see [here](https://github.com/irods/irods_docs/blob/main/docs/developers/library_examples.md#querying-the-catalog-using-general-queries). For information about the GenQuery2 interface (under development as of time of writing), see [here](https://www.youtube.com/watch?v=3dR_JoGA6wA&t=654s&ab_channel=TheiRODSConsortium). # In[ ]: ## #define GenQueryInp_PI "int maxRows; int continueInx; int partialStartIndex; \ ## int options; struct KeyValPair_PI; struct InxIvalPair_PI; struct InxValPair_PI;" def gen_query( max_rows=256, continue_inx=0, partial_start_index=0, options=0, cond_input={}, select_inp={}, sql_cond_inp={} ) -> bytes: ret = ET.fromstring(f""" <GenQueryInp_PI> <maxRows>{max_rows}</maxRows> <continueInx>{continue_inx}</continueInx> <partialStartIndex>{partial_start_index}</partialStartIndex> <options>{options}</options> </GenQueryInp_PI> """) ret = append_kvp(ret, cond_input) ret = append_iivp(ret, select_inp) ret = append_ivp(ret, sql_cond_inp) return ET.tostring(ret).decode("utf-8").replace(" ", "").replace("\n", "").encode("utf-8") ## The Catalog ships with a table of SQL functions that can perform common functions ## The first link above also has an example of a specific query. ## Note that the server will send back a GenQueryOut_PI; there is no ## message type dedicated to results from a specQuery. However, all the SqlResult_PIs ## will have `attriInx` set to 0, since knowing the query string allows the client to ## reconstruct the order of the columns. def spec_query( sql, arg_1, max_rows=256, continue_inx=0, row_offset=0, options=0, cond_input={} ) -> bytes: ret = ET.fromstring(f""" <specificQueryInp_PI> <sql>{sql}</sql> <arg1>{arg_1}</arg1> <maxRows>{max_rows}</maxRows> <continueInx>{continue_inx}</continueInx> <rowOffset>{row_offset}</rowOffset> <options>{options}</options> </specificQueryInp_PI> """) ret = append_kvp(ret, cond_input) return ET.tostring(ret) # In[ ]: gq = gen_query( select_inp={ CATALOG_INDEX_TABLE["COL_COLL_NAME"] :"1", CATALOG_INDEX_TABLE["COL_DATA_NAME"] :"1", CATALOG_INDEX_TABLE["COL_D_DATA_ID"] :"1", CATALOG_INDEX_TABLE["COL_DATA_MODE"] :"1", CATALOG_INDEX_TABLE["COL_DATA_SIZE"] :"1", CATALOG_INDEX_TABLE["COL_D_MODIFY_TIME"]:"1", CATALOG_INDEX_TABLE["COL_D_CREATE_TIME"]:"1" }, sql_cond_inp={ CATALOG_INDEX_TABLE["COL_COLL_NAME"] :f"= '/tempZone/home/{RODS_USER}'" } ) # *NB:* It might be easier to make sense of the server's response if you make sure the directory you're about to stat is populated. # One quick thing before we send this over to the server: the iRODS dialect of XML has a few quirks related to encoding special characters. Some special characters it does not escape at all. For others, it uses a non-standard encoding. For example, iRODS XML does not distinguish between "\`" and "'" (backticks and single quotes). For these reasons, we'll need to write some functions that translate between standard XML and iRODS XML. # In[ ]: STANDARD_TO_IRODS_TABLE = { b'"' :b"&quot;", b"&#34;":b"&quot;", b"&#39;":b"&apos;", b"&#x9;":b"\t", b"&#xD;":b"\r", b"&#xA;":b"\n", b"`" :b"&apos;", b"'" :b"&apos;" } def translate_xml_to_irods_dialect(xml_bytes): inc = 0 for prefix in STANDARD_TO_IRODS_TABLE: xml_bytes = xml_bytes.replace(prefix, STANDARD_TO_IRODS_TABLE[prefix]) return xml_bytes gq = translate_xml_to_irods_dialect(gq) print(gq) h = header(HeaderType.RODS_API_REQ.value, gq, int_info=API_TABLE["GEN_QUERY_AN"]) # In[ ]: send_header(h, conn) send_msg(gq, conn) # The results from this GenQuery might be a little hard to grok. # In[ ]: h, m = recv(conn) # To demonstrate how they amount to valid SQL results, let's translate these into a Pandas DataFrame. To see a similar example in C++ that operates above the protocol level, refer to the genQuery1 documentation linked above. # In[ ]: def read_gen_query_results_into_dataframe(gqr): ## Each SqlResult_PI is a column of data ## Collect them all into a list ## We can safely ignore the "reslen" attribute since the Python XML ## API already knows how large each string is, but you might use it for error checking row_cnt = int(gqr.find("rowCnt").text) attribute_cnt = int(gqr.find("attriCnt").text) data = {} for result in gqr.findall("SqlResult_PI"): attri_inx = result.find("attriInx").text if attri_inx == "0": continue # res_len = int(result.find("reslen").text) values = result.findall("value") col = [value.text for value in values] data[CATALOG_REVERSE_INDEX_TABLE[attri_inx]] = col return pd.DataFrame(data) read_gen_query_results_into_dataframe(m) # # Data Transfer <a class="anchor" id="data_transfer"></a> # # Now that we can see the contents of this collection, let's create a new data object inside of it. # This will show cases some of the more advanced features of `condInpt`. # In[ ]: ## Suppose we want to transfer a file containing this text. hello_cpp = """ #include <iostream> int main() { std::cout << "Hello World!"; return 0; } """ # In[ ]: data_object_name = "hello.cpp" data_size=str(len(hello_cpp.encode("utf-8"))) iput_payload = data_obj_inp( f"/tempZone/home/{RODS_USER}/{data_object_name}", open_flags="2", data_size=data_size, opr_type="1", cond_input={ "dataType":"generic", "dataSize":data_size, "dataIncluded":" " ## Generally, keys with empty values in cond_input act as flags } ) h = header(HeaderType.RODS_API_REQ.value, iput_payload, int_info=API_TABLE["DATA_OBJ_PUT_AN"], bs_len=len(hello_cpp.encode("utf-8"))) send_header(h, conn) send_msg(iput_payload, conn, bs_buf=hello_cpp.encode("utf-8")) # Once you've received the response from the server and verified that `intInfo` is zero, go re-run the genQuery which produced the ls you ran before. You should see new file there. # In[ ]: h, m = recv(conn) # In[ ]: h = header(HeaderType.RODS_API_REQ.value, gq, int_info=API_TABLE["GEN_QUERY_AN"]) gq = gen_query( select_inp={ CATALOG_INDEX_TABLE["COL_COLL_NAME"] :"1", CATALOG_INDEX_TABLE["COL_DATA_NAME"] :"1", CATALOG_INDEX_TABLE["COL_D_DATA_ID"] :"1", CATALOG_INDEX_TABLE["COL_DATA_MODE"] :"1", CATALOG_INDEX_TABLE["COL_DATA_SIZE"] :"1", CATALOG_INDEX_TABLE["COL_D_MODIFY_TIME"]:"1", CATALOG_INDEX_TABLE["COL_D_CREATE_TIME"]:"1" }, sql_cond_inp={ CATALOG_INDEX_TABLE["COL_COLL_NAME"]:"= '/tempZone/home/rods'" } ) gq = translate_xml_to_irods_dialect(gq) send_header(h, conn) send_msg(gq, conn) h, m = recv(conn) read_gen_query_results_into_dataframe(m) # ## Streaming <a class="anchor" id="data_transfer"></a> # # Modern iRODS versions implement parallel transfer using multiple streams. This documentation won't implement parallel transfer, but will show how to use the streaming API that it is built on top of. # In[ ]: ## We'll open this file, seek past #includes and read. ## Streamed putting works similarly, and in general ## you can think of these calls as analogous to their UNIX counterparts. streaming_open_request = data_obj_inp( "/tempZone/home/rods/hello.cpp", open_flags="2", data_size="-1" ## We're getting the data from somewhere else, ## so obviously we don't know how big it is ) h = header( HeaderType.RODS_API_REQ.value, streaming_open_request, int_info=API_TABLE["DATA_OBJ_OPEN_AN"] ) send_header(h, conn) send_msg(streaming_open_request, conn) # In[ ]: h, m = recv(conn) # In[ ]: print(h.find("intInfo").text) # In[ ]: ## This time intInfo, if it is positive, will be the value of the L1 Descriptor return by the server, ## which is an opaque handle to a replica of the data object we just opened. ## Notice that it's 3, just like you'd expect opening the first file on a UNIX system. l1_descriptor = h.find("intInfo").text seek_len = 22 ## These constants are taken from their Linux equivalents ## and work the same way SEEK_SET = 0 SEEK_CUR = 1 SEEK_END = 2 ## #define OpenedDataObjInp_PI "int l1descInx; int len; int whence; int oprType; \ ## double offset; double bytesWritten; struct KeyValPair_PI;" def opened_data_obj_inp(l1_desc, len_=0, whence=SEEK_SET, opr_type=0, offset=0, bytes_written=0, cond_input={}): ret = ET.fromstring(f""" <OpenedDataObjInp_PI> <l1descInx>{l1_desc}</l1descInx> <len>{len_}</len> <whence>{whence}</whence> <oprType>{opr_type}</oprType> <offset>{offset}</offset> <bytesWritten>{bytes_written}</bytesWritten> </OpenedDataObjInp_PI> """) ret = append_kvp(ret, cond_input) return ET.tostring(ret).decode("utf-8").replace(" ", "").replace("\n", "").encode("utf-8") # In[ ]: seeker = opened_data_obj_inp(l1_descriptor, offset=seek_len) print(seeker) h = header( HeaderType.RODS_API_REQ.value, seeker, int_info=API_TABLE["DATA_OBJ_LSEEK_AN"] ) send_header(h, conn) send_msg(seeker, conn) # In[ ]: h, m = recv(conn) # In[ ]: reader = opened_data_obj_inp(l1_descriptor, len_=8192) ## The len parameter is important -- ## this tells the server how many ## bytes to stream back to the client print(reader) h = header( HeaderType.RODS_API_REQ.value, reader, int_info=API_TABLE["DATA_OBJ_READ_AN"] ) send_header(h, conn) send_msg(reader, conn) # In[ ]: h, m = recv(conn) # In[ ]: closer = opened_data_obj_inp(l1_descriptor) h = header( HeaderType.RODS_API_REQ.value, closer, int_info=API_TABLE["DATA_OBJ_CLOSE_AN"] ) # In[ ]: send_header(h, conn) send_msg(closer, conn) # In[ ]: h, m = recv(conn) # # Admin <a class="anchor" id="admin"></a> # Next, we're going to look at how to perform admin tasks. Recall from the section where we implemented "ils" that the iRODS server ships with prebuilt queries stored in the catalog. These are called "specific queries." The iCommand `asq` allows administrators to add new catalog queries. Let's implement `asq` straight from the protocol. # # You might notice that the parameters for `generalAdminInp_PI` are not very self-describing. To get a better sense of what you can do with the admin API and how to map those to arguments, see [`server/api/src/rsGeneralAdmin.cpp`](https://github.com/irods/irods/blob/main/server/api/src/rsGeneralAdmin.cpp), and specifically the function `_rsGeneralAdmin`. # In[ ]: dummy_spec_query = "SELECT data_name FROM r_data_main" ## #define generalAdminInp_PI "str *arg0; str *arg1; str *arg2; \ ## str *arg3; str *arg4; str *arg5; str *arg6; str *arg7; str *arg8; str *arg9;" def general_admin_inp( arg_zero=" ", arg_one=" ", arg_two=" ", arg_three=" ", arg_four=" ", arg_five=" ", arg_six=" ", arg_seven=" ", arg_eight=" ", arg_nine=" " ): return f""" <generalAdminInp_PI> <arg0>{arg_zero}</arg0> <arg1>{arg_one}</arg1> <arg2>{arg_two}</arg2> <arg3>{arg_three}</arg3> <arg4>{arg_four}</arg4> <arg5>{arg_five}</arg5> <arg6>{arg_six}</arg6> <arg7>{arg_seven}</arg7> <arg8>{arg_eight}</arg8> <arg9>{arg_nine}</arg9> </generalAdminInp_PI> """.replace("\n", "").encode("utf-8") # In[ ]: new_spec_query_req = general_admin_inp( arg_zero="add", arg_one="specificQuery", arg_two=dummy_spec_query, arg_three="another_dummy_spec_query" ) h = header( HeaderType.RODS_API_REQ.value, new_spec_query_req, int_info=API_TABLE["GENERAL_ADMIN_AN"] ) # In[48]: send_header(h, conn) send_msg(new_spec_query_req, conn) # In[49]: h, m = recv(conn) ## Assuming int_info is 0, you should now be able to run your query on the command line like this: ## "iquest --no-page --sql dummy_spec_query" # # Rule Exec <a class="anchor" id="rule_exec"></a> # The last thing we'll look at is sending rule execution requests. # We won't procedurally create this string to reduce complexity, but the structure of these XML structures should be clear from the context. The text of this rule is taken from [documentation](https://vlaams-supercomputing-centrum-vscdocumentation.readthedocs-hosted.com/en/latest/data/workflow_automation.html) produced by the Vlaams Supercomputing Center. # In[59]: rule_text = """ veryAdvancedHelloWorldRule{ writeLine("stdout","$userNameClient says '*greeting1 *greeting2'") } """ ## #define ExecMyRuleInp_PI "str myRule[META_STR_LEN]; struct RHostAddr_PI; \ ## struct KeyValPair_PI; str outParamDesc[LONG_NAME_LEN]; struct *MsParamArray_PI;" rule_exec_PI = ET.fromstring(f""" <ExecMyRuleInp_PI> <myRule>@external veryAdvancedHelloWorldRule{{ writeLine('stdout',"$userNameClient says '*greeting1 *greeting2'") }} </myRule> <RHostAddr_PI> <hostAddr></hostAddr> <rodsZone></rodsZone> <port>0</port> <dummyInt>0</dummyInt> </RHostAddr_PI> <KeyValPair_PI> <ssLen>1</ssLen> <keyWord>instance_name</keyWord> <svalue>irods_rule_engine_plugin-irods_rule_language-instance</svalue> </KeyValPair_PI> <outParamDesc>ruleExecOut</outParamDesc> <MsParamArray_PI> <paramLen>2</paramLen> <oprType>0</oprType> <MsParam_PI> <label>*greeting1</label> <type>STR_PI</type> <STR_PI> <myStr> 'Hello'</myStr> </STR_PI> </MsParam_PI> <MsParam_PI> <label>*greeting2</label> <type>STR_PI</type> <STR_PI> <myStr> 'World'</myStr> </STR_PI> </MsParam_PI> </MsParamArray_PI> </ExecMyRuleInp_PI> """.encode("utf-8")) rule_exec_PI = ET.tostring(rule_exec_PI) rule_exec_PI = translate_xml_to_irods_dialect(rule_exec_PI) print(rule_exec_PI) # In[60]: h = header( HeaderType.RODS_API_REQ.value, rule_exec_PI, int_info=API_TABLE["EXEC_MY_RULE_AN"] ) send_header(h, conn) send_msg(rule_exec_PI, conn) # This rule prints "Hello World!" to stdout. Notice that when you receive that message from the server, the buffer is 5464 bytes long and contains a long string of null/garbage characters after the desired string. This is a known feature of the native rule engine; when printing to stdout, it always allocates a buffer of this size and assumes that the client will look for a null-terminator to determine to where the actual content is. # In[61]: h, m = recv(conn) # # Changing Your Password <a class="anchor" id="ipasswd"></a> # In addition to the general admin capabilities, iRODS exposes certain administrative abilities to rodsusers. First, we'll create a new user. This step just involves switching parameters in `generalAdminInp_PI`, so you might want to skip if you're not interested in that. However, switching # In[53]: def user_admin( arg_zero=" ", arg_one=" ", arg_two=" ", arg_three=" ", arg_four=" ", arg_five=" ", arg_six=" ", arg_seven=" ", arg_eight=" ", arg_nine=" " ): return f""" <userAdminInp_PI> <arg0>{arg_zero}</arg0> <arg1>{arg_one}</arg1> <arg2>{arg_two}</arg2> <arg3>{arg_three}</arg3> <arg4>{arg_four}</arg4> <arg5>{arg_five}</arg5> <arg6>{arg_six}</arg6> <arg7>{arg_seven}</arg7> <arg8>{arg_eight}</arg8> <arg9>{arg_nine}</arg9> </userAdminInp_PI> """.replace("\n", "").replace(" ", "").encode("utf-8") # In[54]: obfuscated_password = obf.obfuscate_new_password("testpass", PASSWORD, signature) pw_change_request = user_admin( arg_zero="userpw", arg_one=RODS_USER, arg_two="password", arg_three=obfuscated_password ) # In[55]: h = header( HeaderType.RODS_API_REQ.value, pw_change_request, int_info=API_TABLE["USER_ADMIN_AN"] ) send_header(h, conn) send_msg(pw_change_request, conn) # In[56]: h, m = recv(conn) # # Disconnect <a class="anchor" id="disconnect"></a> # Finally, we'll disconnect from the iRODS server. # In[57]: def disconnect(sock): sock.send( header(HeaderType.RODS_DISCONNECT.value, "") ## Empty string so msgLen is 0 ) # In[58]: disconnect(conn) conn.close() # # Appendix: iRODS Protocol Gotchas <a class="anchor" id="gotchas"></a> # - Forgetting to close a tag can often trip up the server's parsing logic in such a way that it sends a header with `intInfo` 0, or some other indication that the request was successful. However, the next message will have an error code `-15000` indicating a formatting error. A similar behavior is sometimes # seen if a call to `recv` (or whatever function you write that pulls bytes out of the TCP socket) is left out after an API request. # - Although the protocol is supposed to be white-space agnostic, sometimes beginning a message with a newline character (`\n`) can cause unexpected behavior. Caution is best in this situation. # - The protocol is order-dependent; that is, the order in which XML elements appear in the messages must be exactly identical to the order in which they appear in the corresponding packing instruction string as defined in `rodsPackInstruct.h`
irods/iRODS-Protocol-Cookbook
iRODS Protocol Cookbook.py
iRODS Protocol Cookbook.py
py
35,966
python
en
code
1
github-code
6
[ { "api_name": "password_obfuscation.encode", "line_number": 100, "usage_type": "call" }, { "api_name": "enum.Enum", "line_number": 117, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.fromstring", "line_number": 186, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 186, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.indent", "line_number": 187, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 187, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.dump", "line_number": 188, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 188, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.fromstring", "line_number": 195, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 195, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.indent", "line_number": 197, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 197, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.dump", "line_number": 198, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 198, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree", "line_number": 183, "usage_type": "name" }, { "api_name": "enum.Enum", "line_number": 225, "usage_type": "name" }, { "api_name": "socket.socket", "line_number": 268, "usage_type": "call" }, { "api_name": "socket.AF_INET", "line_number": 268, "usage_type": "attribute" }, { "api_name": "socket.SOCK_STREAM", "line_number": 268, "usage_type": "attribute" }, { "api_name": "base64.b64encode", "line_number": 314, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 315, "usage_type": "call" }, { "api_name": "base64.b64decode", "line_number": 325, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 326, "usage_type": "call" }, { "api_name": "struct.pack", "line_number": 386, "usage_type": "call" }, { "api_name": "hashlib.md5", "line_number": 395, "usage_type": "call" }, { "api_name": "base64.b64encode", "line_number": 399, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree.fromstring", "line_number": 449, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 449, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.indent", "line_number": 460, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 460, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.tostring", "line_number": 462, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 462, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.Element", "line_number": 473, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 473, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.Element", "line_number": 474, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 474, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.Element", "line_number": 478, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 478, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.Element", "line_number": 482, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 482, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.Element", "line_number": 489, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 489, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.Element", "line_number": 490, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 490, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.Element", "line_number": 494, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 494, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.Element", "line_number": 498, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 498, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.Element", "line_number": 505, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 505, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.Element", "line_number": 506, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 506, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.Element", "line_number": 510, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 510, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.Element", "line_number": 514, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 514, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.fromstring", "line_number": 559, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 559, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.tostring", "line_number": 571, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 571, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.fromstring", "line_number": 588, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 588, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.tostring", "line_number": 600, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 600, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 698, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree.fromstring", "line_number": 842, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 842, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.tostring", "line_number": 854, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 854, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.fromstring", "line_number": 1008, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 1008, "usage_type": "name" }, { "api_name": "xml.etree.ElementTree.tostring", "line_number": 1047, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 1047, "usage_type": "name" }, { "api_name": "password_obfuscation.obfuscate_new_password", "line_number": 1109, "usage_type": "call" } ]
71749351229
from json import loads from kafka import KafkaConsumer consumer = KafkaConsumer( 'test-topic', bootstrap_servers=['0.0.0.0:9092'], auto_offset_reset='earliest', enable_auto_commit=True, group_id='test-json-group', value_deserializer=lambda x: loads(x.decode('utf-8'))) for message in consumer: print("%s:%d:%d: key=%s value=%s" % (message.topic, message.partition, message.offset, message.key, message.value))
makseli/kafka-docker-python
consumer-json.py
consumer-json.py
py
522
python
en
code
0
github-code
6
[ { "api_name": "kafka.KafkaConsumer", "line_number": 4, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 10, "usage_type": "call" } ]
7725885886
import pandas as pd from sqlalchemy import create_engine from influxdb import InfluxDBClient import time def connectSQL(): connection_str = 'mssql+pyodbc://royg:Welcome1@SCADA' engine = create_engine(connection_str) conn = engine.connect() return conn def getData(conn,interval): if (interval==1): tabname='data_values_min_4_2017' else: tabname='data_values_'+str(interval)+'min_4_2017' queryResult = conn.execute(''' -- SELECT TOP 10 RTRIM(LTRIM(REPLACE(REPLACE(dd.name,' ','\ '),',','\,'))) measurement, SELECT LTRIM(dd.name) measurement, CAST(dd.osi_key AS VARCHAR) AS [key], CAST(dd.station_id AS VARCHAR) site, SUBSTRING(dd.[name],1,1) array, dt.description data_type, '''+str(interval)+''' interval, CAST(VALUE AS VARCHAR(30)) value, CONVERT(VARCHAR(19),d.u_time,126)+'Z' timestamp FROM [dbo].'''+tabname+''' d WITH(NOLOCK) JOIN tempdb..dd1 dd ON dd.osi_key = d.osi_key JOIN dbo.stations s ON s.station_id = dd.station_id JOIN dbo.data_types dt ON dt.data_type = d.data_type -- WHERE u_time BETWEEN '2017-04-19 00:00:00' and '2017-04-19 01:00:00' WHERE u_time > DATEADD(mi,-3,CURRENT_TIMESTAMP) ''') pNodeIDsDF = pd.DataFrame(queryResult.fetchall()) if pNodeIDsDF.empty == False: pNodeIDsDF.columns = queryResult.keys() return pNodeIDsDF c=connectSQL() host = '50.23.122.133' port = 8086 user = 'roy' password = 'Kaftor' dbname = 'w209' client = InfluxDBClient(host, port, user, password, dbname) rc=0 while(True): for interval in (15,5,1): df = getData(c, interval) for node in df.itertuples(): # print(node[8]) json_body = [ { "measurement": node[1], "tags": { "key": node[2], "site": node[3], "array": node[4], "data_type": node[5], "interval": node[6] }, "time": node[8], "fields": { "value": float(node[7]) # str(float(node[7])) } } ] rc = client.write_points(json_body, time_precision='s') print('1 row written for interval {0}'.format(interval)) if (rc == 0): print("reconnecting...") c = connectSQL() client = InfluxDBClient(host, port, user, password, dbname) if (rc == 1): print('{0} rows written for interval {1}'.format(df.shape[0],interval)) time.sleep(60)
thongnbui/MIDS_251_project
python code/SendToInflux.py
SendToInflux.py
py
2,797
python
en
code
0
github-code
6
[ { "api_name": "sqlalchemy.create_engine", "line_number": 9, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 38, "usage_type": "call" }, { "api_name": "influxdb.InfluxDBClient", "line_number": 49, "usage_type": "call" }, { "api_name": "influxdb.InfluxDBClient", "line_number": 77, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 80, "usage_type": "call" } ]
32483752873
import torch import torch.nn as nn from mmdet.models import ResNet, FPN, MobileNetV2 import torch.nn.functional as F from common import default_conv, ResBlock, BasicBlock class MCNN(nn.Module): ''' Implementation of Multi-column CNN for crowd counting ''' def __init__(self, load_weights=False): super(MCNN,self).__init__() self.branch1=nn.Sequential( nn.Conv2d(3,16,9,padding=4), nn.ReLU(inplace=True), nn.MaxPool2d(2), nn.Conv2d(16,32,7,padding=3), nn.ReLU(inplace=True), nn.MaxPool2d(2), nn.Conv2d(32,16,7,padding=3), nn.ReLU(inplace=True), nn.Conv2d(16,8,7,padding=3), nn.ReLU(inplace=True) ) self.branch2=nn.Sequential( nn.Conv2d(3,20,7,padding=3), nn.ReLU(inplace=True), nn.MaxPool2d(2), nn.Conv2d(20,40,5,padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(2), nn.Conv2d(40,20,5,padding=2), nn.ReLU(inplace=True), nn.Conv2d(20,10,5,padding=2), nn.ReLU(inplace=True) ) self.branch3=nn.Sequential( nn.Conv2d(3,24,5,padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(2), nn.Conv2d(24,48,3,padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(2), nn.Conv2d(48,24,3,padding=1), nn.ReLU(inplace=True), nn.Conv2d(24,12,3,padding=1), nn.ReLU(inplace=True) ) self.fuse=nn.Sequential(nn.Conv2d(30,1,1,padding=0)) self.relu=nn.ReLU(inplace=True) if not load_weights: self._initialize_weights() def forward(self,img_tensor): x1=self.branch1(img_tensor) x2=self.branch2(img_tensor) x3=self.branch3(img_tensor) x=torch.cat((x1,x2,x3),1) x=self.fuse(x) x=self.relu(x) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.normal_(m.weight, std=0.01) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) ''' Example: >>> from mmdet.models import ResNet >>> import torch >>> self = ResNet(depth=18) >>> self.eval() >>> inputs = torch.rand(1, 3, 32, 32) >>> level_outputs = self.forward(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) (1, 64, 8, 8) (1, 128, 4, 4) (1, 256, 2, 2) (1, 512, 1, 1) ''' ''' Example: >>> import torch >>> in_channels = [2, 3, 5, 7] >>> scales = [340, 170, 84, 43] >>> inputs = [torch.rand(1, c, s, s) ... for c, s in zip(in_channels, scales)] >>> self = FPN(in_channels, 11, len(in_channels)).eval() >>> outputs = self.forward(inputs) >>> for i in range(len(outputs)): ... print(f'outputs[{i}].shape = {outputs[i].shape}') outputs[0].shape = torch.Size([1, 11, 340, 340]) outputs[1].shape = torch.Size([1, 11, 170, 170]) outputs[2].shape = torch.Size([1, 11, 84, 84]) outputs[3].shape = torch.Size([1, 11, 43, 43]) ''' class res50_fpn(nn.Module): def __init__(self, load_weights=False): super(res50_fpn,self).__init__() self.resnet = ResNet(50) self.in_channels = [256, 512, 1024, 2048] self.scales = [333, 167, 84, 42] self.fpn = FPN(self.in_channels, 256, len(self.scales)) self.fuse1 = nn.Conv2d(256*4,256,1,padding=0) self.relu = nn.ReLU(inplace=True) self.bn1 = nn.BatchNorm2d(num_features=256) self.bn2 = nn.BatchNorm2d(num_features=1) self.fuse2 = nn.Conv2d(256,1,1,padding=0) def forward(self, input): ret = self.resnet(input) ret = list(self.fpn(ret)) #_scale = (333, 333) for i in range(4): ret[i] = F.interpolate(ret[i], size=(333,333), mode='bilinear') ret = torch.cat(ret,dim=1) ret = self.fuse1(ret) ret = self.bn1(ret) ret = self.relu(ret) ret = self.fuse2(ret) ret = self.bn2(ret) ret = self.relu(ret) return ret class mobilenetv2_fpn(nn.Module): def __init__(self, load_weights=False): super(mobilenetv2_fpn,self).__init__() self.mobilenet = MobileNetV2() self.in_channels = [24, 32, 96, 1280] self.scales = [333, 167, 84, 42] self.fpn = FPN(self.in_channels, 256, len(self.scales)) self.fuse1 = nn.Conv2d(256*4,256,1,padding=0) self.relu = nn.ReLU(inplace=True) self.bn1 = nn.BatchNorm2d(num_features=256) self.bn2 = nn.BatchNorm2d(num_features=1) self.fuse2 = nn.Conv2d(256,1,1,padding=0) def forward(self, input): ret = self.mobilenet(input) ret = list(self.fpn(ret)) #_scale = (333, 333) for i in range(4): ret[i] = F.interpolate(ret[i], size=(333,333), mode='bilinear') ret = torch.cat(ret,dim=1) ret = self.fuse1(ret) ret = self.bn1(ret) ret = self.relu(ret) ret = self.fuse2(ret) ret = self.bn2(ret) ret = self.relu(ret) return ret # parser.add_argument('--act', type=str, default='relu', # help='activation function') # parser.add_argument('--pre_train', type=str, default='', # help='pre-trained model directory') # parser.add_argument('--extend', type=str, default='.', # help='pre-trained model directory') # parser.add_argument('--n_resblocks', type=int, default=16, # help='number of residual blocks') # parser.add_argument('--n_feats', type=int, default=64, # help='number of feature maps') # parser.add_argument('--res_scale', type=float, default=1, # help='residual scaling') # parser.add_argument('--shift_mean', default=True, # help='subtract pixel mean from the input') # parser.add_argument('--dilation', action='store_true', # help='use dilated convolution') # parser.add_argument('--precision', type=str, default='single', # choices=('single', 'half'), # help='FP precision for test (single | half)') # https://github.com/sanghyun-son/EDSR-PyTorch/blob/master/src/model/edsr.py class EDSR(nn.Module): # not converge def __init__(self, conv=default_conv): super(EDSR, self).__init__() n_resblocks = 16 n_feats = 64 kernel_size = 3 act = nn.ReLU(True) # define head module m_head = [conv(3, n_feats, kernel_size)] # define body module m_body = [ ResBlock( conv, n_feats, kernel_size, act=act, res_scale=1 ) for _ in range(n_resblocks) ] m_body.append(conv(n_feats, n_feats, kernel_size)) # define tail module m_tail = [ conv(n_feats, 1, kernel_size) ] self.head = nn.Sequential(*m_head) self.body = nn.Sequential(*m_body) self.tail = nn.Sequential(*m_tail) def forward(self, x): x = self.head(x) res = self.body(x) res += x x = self.tail(res) return x # def load_state_dict(self, state_dict, strict=True): # own_state = self.state_dict() # for name, param in state_dict.items(): # if name in own_state: # if isinstance(param, nn.Parameter): # param = param.data # try: # own_state[name].copy_(param) # except Exception: # if name.find('tail') == -1: # raise RuntimeError('While copying the parameter named {}, ' # 'whose dimensions in the model are {} and ' # 'whose dimensions in the checkpoint are {}.' # .format(name, own_state[name].size(), param.size())) # elif strict: # if name.find('tail') == -1: # raise KeyError('unexpected key "{}" in state_dict' # .format(name)) class VDSR(nn.Module): def __init__(self, conv=default_conv): super(VDSR, self).__init__() n_resblocks = 16 n_feats = 64 kernel_size = 3 def basic_block(in_channels, out_channels, act): return BasicBlock( conv, in_channels, out_channels, kernel_size, bias=True, bn=True, act=act ) # define body module m_body = [] m_body.append(basic_block(3, n_feats, nn.ReLU(True))) for _ in range(n_resblocks - 2): m_body.append(basic_block(n_feats, n_feats, nn.ReLU(True))) m_body.append(basic_block(n_feats, 1, nn.ReLU(True))) self.body = nn.Sequential(*m_body) def forward(self, x): res = self.body(x) return res # test code if __name__=="__main__": img=torch.rand((1,3,1332,1332),dtype=torch.float) mcnn=mobilenetv2_fpn() for m in mcnn.modules(): print(m) #out_dmap=mcnn(img) #print(out_dmap.shape)
johnran103/mmdet
scale_map_net/s_net.py
s_net.py
py
9,667
python
en
code
1
github-code
6
[ { "api_name": "torch.nn.Module", "line_number": 10, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 10, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 17, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 17, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 18, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 18, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 19, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 19, "usage_type": "name" }, { "api_name": "torch.nn.MaxPool2d", "line_number": 20, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 20, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 21, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 21, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 22, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 22, "usage_type": "name" }, { "api_name": "torch.nn.MaxPool2d", "line_number": 23, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 23, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 24, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 24, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 25, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 25, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 26, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 26, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 27, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 27, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 30, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 30, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 31, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 31, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 32, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 32, "usage_type": "name" }, { "api_name": "torch.nn.MaxPool2d", "line_number": 33, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 33, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 34, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 34, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 35, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 35, "usage_type": "name" }, { "api_name": "torch.nn.MaxPool2d", "line_number": 36, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 36, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 37, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 37, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 38, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 38, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 39, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 39, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 40, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 40, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 43, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 43, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 44, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 44, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 45, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 45, "usage_type": "name" }, { "api_name": "torch.nn.MaxPool2d", "line_number": 46, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 46, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 47, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 47, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 48, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 48, "usage_type": "name" }, { "api_name": "torch.nn.MaxPool2d", "line_number": 49, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 49, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 50, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 50, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 51, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 51, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 52, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 52, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 53, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 53, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 56, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 56, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 56, "usage_type": "call" }, { "api_name": "torch.nn.ReLU", "line_number": 58, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 58, "usage_type": "name" }, { "api_name": "torch.cat", "line_number": 67, "usage_type": "call" }, { "api_name": "torch.nn.Conv2d", "line_number": 74, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 74, "usage_type": "name" }, { "api_name": "torch.nn.init.normal_", "line_number": 75, "usage_type": "call" }, { "api_name": "torch.nn.init", "line_number": 75, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 75, "usage_type": "name" }, { "api_name": "torch.nn.init.constant_", "line_number": 77, "usage_type": "call" }, { "api_name": "torch.nn.init", "line_number": 77, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 77, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 78, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 78, "usage_type": "name" }, { "api_name": "torch.nn.init.constant_", "line_number": 79, "usage_type": "call" }, { "api_name": "torch.nn.init", "line_number": 79, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 79, "usage_type": "name" }, { "api_name": "torch.nn.init.constant_", "line_number": 80, "usage_type": "call" }, { "api_name": "torch.nn.init", "line_number": 80, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 80, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 120, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 120, "usage_type": "name" }, { "api_name": "mmdet.models.ResNet", "line_number": 124, "usage_type": "call" }, { "api_name": "mmdet.models.FPN", "line_number": 127, "usage_type": "call" }, { "api_name": "torch.nn.Conv2d", "line_number": 128, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 128, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 129, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 129, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 130, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 130, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 131, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 131, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 132, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 132, "usage_type": "name" }, { "api_name": "torch.nn.functional.interpolate", "line_number": 141, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 141, "usage_type": "name" }, { "api_name": "torch.cat", "line_number": 143, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 156, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 156, "usage_type": "name" }, { "api_name": "mmdet.models.MobileNetV2", "line_number": 159, "usage_type": "call" }, { "api_name": "mmdet.models.FPN", "line_number": 162, "usage_type": "call" }, { "api_name": "torch.nn.Conv2d", "line_number": 163, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 163, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 164, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 164, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 165, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 165, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 166, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 166, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 167, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 167, "usage_type": "name" }, { "api_name": "torch.nn.functional.interpolate", "line_number": 176, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 176, "usage_type": "name" }, { "api_name": "torch.cat", "line_number": 178, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 212, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 212, "usage_type": "name" }, { "api_name": "common.default_conv", "line_number": 213, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 219, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 219, "usage_type": "name" }, { "api_name": "common.ResBlock", "line_number": 226, "usage_type": "call" }, { "api_name": "torch.nn.Sequential", "line_number": 238, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 238, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 239, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 239, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 240, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 240, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 272, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 272, "usage_type": "name" }, { "api_name": "common.default_conv", "line_number": 273, "usage_type": "name" }, { "api_name": "common.BasicBlock", "line_number": 281, "usage_type": "call" }, { "api_name": "torch.nn.ReLU", "line_number": 288, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 288, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 290, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 290, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 291, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 291, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 293, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 293, "usage_type": "name" }, { "api_name": "torch.rand", "line_number": 305, "usage_type": "call" }, { "api_name": "torch.float", "line_number": 305, "usage_type": "attribute" } ]
2298089969
import concurrent.futures from datetime import datetime import pymongo as pmg import os import uuid from dotenv import load_dotenv load_dotenv() import pytz tz_ind = pytz.timezone('Asia/Kolkata') now = datetime.now(tz_ind) class Logit: """ logger class use this class to log the execution of the program. code for usage: #>>>from logger.logit import Logit #>>>l = Logit() #>>>l.log("scope","message") # where scope = function name or class name and message = any string """ def __init__(self): # self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=3) # DEFAULT_CONNECTION_URL = 'localhost:27017' # client = pmg.MongoClient(DEFAULT_CONNECTION_URL) client = pmg.MongoClient(os.getenv('connection')) self.conn = client["execution_log"]["log"] def UPDATE(self, DICT): self.conn.update_one({"_id": int(str(datetime.now().date()).replace("-", ""))}, {'$push': DICT}) def INSERT(self, DICT): self.conn.insert_one(DICT) def log(self, scope, msg): id_obj = self.conn.find({}, {"_id"}) idxt = [] for idx in id_obj: idxt.append(idx["_id"]) # self.conn.insert_one({"_id":int(str(datetime.now().date()).replace("-","")),f"{uuid.uuid1()}":f"{str(datetime.now().date())} {str(datetime.now().strftime('%H:%M:%S'))} {scope} {msg}"}) with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor: if int(str(datetime.now().date()).replace("-", "")) in idxt: executor.submit(self.UPDATE, { f"{uuid.uuid1()}": f"{str(datetime.now().date())} {str(datetime.now().strftime('%H:%M:%S'))} {scope} {msg}"}) else: executor.submit(self.INSERT, {"_id": int(str(datetime.now().date()).replace("-", "")), f"{uuid.uuid1()}": f"{str(datetime.now().date())} {str(datetime.now().strftime('%H:%M:%S'))} {scope} {msg}"}) def userlog(self, userId, action, performedOn, categoryId, productId, totalPayment): client = pmg.MongoClient(os.getenv('connection')) self.conn = client["Clean_user"]["CleanUser"] with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor: executor.submit(self.conn.insert_one, {"user_id": userId, "action": action, "performed_on": performedOn, "category_ID": categoryId, "productId": productId, "totalPayment": totalPayment, "year": now.year, "month": now.month, "day": now.day, "hour": now.hour, "minute": now.minute, 'second': now.second}) #l=Logit() #l.userlog(userId=8, action='clicked', performedOn='category', categoryId=4, productId="", # totalPayment="") # if __name__=="__main__": # l = Logit() # for i in range(10): # l.log("none","I'm a log") # l.log("nope","test")
sanjeevan121/ecommerce
logger/logit.py
logit.py
py
3,100
python
en
code
1
github-code
6
[ { "api_name": "dotenv.load_dotenv", "line_number": 7, "usage_type": "call" }, { "api_name": "pytz.timezone", "line_number": 10, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 11, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 11, "usage_type": "name" }, { "api_name": "pymongo.MongoClient", "line_number": 31, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 31, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 36, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 36, "usage_type": "name" }, { "api_name": "concurrent.futures.futures.ThreadPoolExecutor", "line_number": 48, "usage_type": "call" }, { "api_name": "concurrent.futures.futures", "line_number": 48, "usage_type": "attribute" }, { "api_name": "concurrent.futures", "line_number": 48, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 49, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 49, "usage_type": "name" }, { "api_name": "uuid.uuid1", "line_number": 51, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 51, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 51, "usage_type": "name" }, { "api_name": "uuid.uuid1", "line_number": 54, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 53, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 53, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 54, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 54, "usage_type": "name" }, { "api_name": "pymongo.MongoClient", "line_number": 57, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 57, "usage_type": "call" }, { "api_name": "concurrent.futures.futures.ThreadPoolExecutor", "line_number": 59, "usage_type": "call" }, { "api_name": "concurrent.futures.futures", "line_number": 59, "usage_type": "attribute" }, { "api_name": "concurrent.futures", "line_number": 59, "usage_type": "name" } ]
19521121631
import socket import threading from queue import Queue import sys import time import logging import json # pip install PyExecJS #import execjs # # 1. 在windows上不需要其他的依赖便可运行execjs, 也可以调用其他的JS环境 # # windows 默认的执行JS的环境 # execjs.get().name # 返回值: JScript # # 作者本人的windows上装有Node.js , 所以返回值不同 # execjs.get().name # 返回值: Node.js(V8) # # # 2. 在ubuntu下需要安装执行JS环境依赖, 作者的环境为PhantomJS # execjs.get().name # 返回值: PhantomJS # # # 3. 源码中给出, 可执行execjs的环境: # PyV8 = "PyV8" # Node = "Node" # JavaScriptCore = "JavaScriptCore" # SpiderMonkey = "SpiderMonkey" # JScript = "JScript" # PhantomJS = "PhantomJS" # SlimerJS = "SlimerJS" # Nashorn = "Nashorn" # 调用javascript代码 #print(execjs.eval("new Date")) class ClientLog(object): def __init__(self, filename): self.logger = logging.getLogger(filename) log_format = logging.Formatter("%(asctime)s %(filename)s第%(lineno)s行 %(levelname)s: %(message)s") file_handler = logging.FileHandler(filename=filename, encoding="utf-8") file_handler.setFormatter(log_format) self.logger.addHandler(file_handler) stream_handler = logging.StreamHandler() stream_handler.setFormatter(log_format) self.logger.addHandler(stream_handler) self.logger.setLevel(logging.DEBUG) class ClientLogObject(): client_logger = ClientLog("client.log").logger client_logger = ClientLogObject().client_logger # 接下来我们写一个简单的客户端实例连接到以上创建的服务。端口号为 9999。 # socket.connect(hosname, port ) 方法打开一个 TCP 连接到主机为 hostname 端口为 port 的服务商。 # 连接后我们就可以从服务端获取数据,记住,操作完成后需要关闭连接。 # 创建 socket 对象, af_inet,stream # tcpc_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # 获取本地主机名 # HOST = socket.gethostname() class CommWithServer(object): def __init__(self, host="10.30.99.42", port=9996, role=None): client_logger.debug("执行CommWithServer.__init__()") self.buffsize = 1024 # udp最多接收100M的数据 self.udp_buffsize = 104857600 self.addr = (host, port) self.requeset_fun_dict = {} self.player = role def recv_server_tcp(self, timeout=10): client_logger.debug("执行CommWithServer.recv_server_tcp()") isretry = False while True: # 接收TCP连接的服务器的消息 try: data = self.tcp_socket.recv(self.buffsize) if not data: if not isretry: stime = time.time() isretry = True if time.time()-stime > timeout: client_logger.warning("服务器连接不上,或服务器消息一直丢失,或服务器一直发空消息,断开连接") # 关闭服务器连接 self.tcp_socket.close() return -1 else: client_logger.warning("读取到了服务器的空消息,服务器可能有异常,如丢包、发错了消息,关闭了服务器等,重试中...") time.sleep(1) continue except ConnectionResetError: client_logger.info("服务器关闭了连接") self.tcp_socket.close() return -1 # 接收数据后进行解码 data = data.decode("utf-8") self.after_recv_server_msg_doing(data) def after_recv_server_msg_doing(self, data): client_logger.debug("执行CommWithServer.after_recv_server_msg_doing()") data = json.loads(data) client_logger.info("接收到服务端发来的消息:%s" % data) request_type = data["request_type"] if request_type == "update_player": client_logger.warning(data["push_msg"]) elif request_type == "login": client_logger.info("登录成功!") self.after_login_update_data(data["role_data"]) elif request_type == "push": client_logger.warning(data["push_msg"]) elif request_type == "logout": client_logger.info(data["push_msg"]) self.local.requeset_fun(data) else: client_logger.warning("接收到服务端发来的请求, 但request_type没有定义服务器发来request_type类型,因此没有做任何处理," "服务器消息:%s" % data) def send_server_tcp(self, msg): client_logger.debug("执行CommWithServer.send_server_tcp()") client_logger.debug("请求:%s" % msg) msg = json.dumps(msg) # 给服务器发送消息,这里需要编码成字节才能传输 if not msg: client_logger.warning("不能发空消息给服务器") return 0 try: self.tcp_socket.send(msg.encode("utf-8")) except ConnectionAbortedError: client_logger.info("服务器关闭了连接") self.tcp_socket.close() return -1 except OSError: client_logger.info("服务器套接字已经关闭了") self.tcp_socket.close() return -1 except ConnectionResetError: client_logger.error("无法连接到服务器...服务器ip:%s,端口号:%s" % self.addr) self.tcp_socket.close() return 1 def connect_server_tcp(self): client_logger.debug("执行CommWithServer.connect_server_tcp()") self.tcp_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: # 尝试连接服务器,指定主机和端口 self.tcp_socket.connect(self.addr) except ConnectionRefusedError: client_logger.error("无法连接到服务器...服务器ip:%s,端口号:%s" % self.addr) self.tcp_socket.close() return 0 except TimeoutError: self.tcp_socket.close() client_logger.error("连接服务器超时...服务器ip:%s,端口号:%s" % self.addr) return -1 recv_msg_thread = threading.Thread(target=self.recv_server_tcp, args=(self.tcp_socket,)) recv_msg_thread.start() return 1 def request_server(self, request_concent, key, request_fun=None): client_logger.debug("执行CommWithServer.request_server()") # 向服务器发起请求,服务器回应了,则以及服务器的回应来执行request_fun方法 if self.send_server_tcp(request_concent) == 1: self.requeset_fun_dict[key] = request_fun def login_server(self, user_name, passwd): client_logger.debug("执行CommWithServer.login_server()") client_logger.debug("开始连接服务器") if self.connect_server_tcp(): login_msg = {"request_type": "login", "user_name": user_name, "passwd": passwd} self.send_server_tcp(login_msg) else: client_logger.debug('登录服务器失败 %s') self.player.jump_hight = 0.75 self.player.role_id = "00000" def after_login_update_data(self, data): client_logger.debug("执行CommWithServer.after_login_update_data()") client_logger.debug('服务器:%s' % data) self.player.user_name = data["user_name"] self.player.role_id = data["role_id"] self.player.role_name = data["role_name"] self.player.set_pos(tuple(data["pos"])) self.player.jump_hight = data["jump_hight"] def connect_server_udp(self): self.udp_socket = socket.socket(type=socket.SOCK_DGRAM) return 1 def recev_server_udp(self): # 客户端接收服务发来的值 data, server_addr = self.udp_socket.recvfrom(self.udp_buffsize) data = data.decode("utf-8") self.after_recv_server_msg_doing(data) def send_server_udp(self, msg): if not msg: client_logger.warning("不能发空消息给服务器") return 0 self.udp_socket.sendto(msg.encode("utf-8"), self.addr) return 1
optimjiang/my_3d_game
comm_with_server.py
comm_with_server.py
py
8,394
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 39, "usage_type": "call" }, { "api_name": "logging.Formatter", "line_number": 40, "usage_type": "call" }, { "api_name": "logging.FileHandler", "line_number": 41, "usage_type": "call" }, { "api_name": "logging.StreamHandler", "line_number": 44, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 47, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 84, "usage_type": "call" }, { "api_name": "time.time", "line_number": 86, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 93, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 107, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 132, "usage_type": "call" }, { "api_name": "socket.socket", "line_number": 155, "usage_type": "call" }, { "api_name": "socket.AF_INET", "line_number": 155, "usage_type": "attribute" }, { "api_name": "socket.SOCK_STREAM", "line_number": 155, "usage_type": "attribute" }, { "api_name": "threading.Thread", "line_number": 167, "usage_type": "call" }, { "api_name": "socket.socket", "line_number": 201, "usage_type": "call" }, { "api_name": "socket.SOCK_DGRAM", "line_number": 201, "usage_type": "attribute" } ]
24955814708
import shutil import pytest from repo2rocrate.snakemake import find_workflow, get_lang_version, make_crate SNAKEMAKE_ID = "https://w3id.org/workflowhub/workflow-ro-crate#snakemake" def test_find_workflow(tmpdir): root = tmpdir / "snakemake-repo" workflow_dir = root / "workflow" workflow_dir.mkdir(parents=True) with pytest.raises(RuntimeError): find_workflow(root) wf_path = workflow_dir / "Snakefile" wf_path.touch() assert find_workflow(root) == wf_path new_wf_path = root / "Snakefile" shutil.move(wf_path, new_wf_path) assert find_workflow(root) == new_wf_path def test_get_lang_version(tmpdir): v = "0.1.0" wf_path = tmpdir / "Snakefile" for arg_part in f'("{v}")', f"( '{v}')": with open(wf_path, "wt") as f: f.write(f"# comment\nfrom x import y\nmin_version{arg_part}\n") assert get_lang_version(wf_path) == v @pytest.mark.parametrize("defaults", [False, True]) def test_make_crate(data_dir, defaults): repo_name = "fair-crcc-send-data" root = data_dir / repo_name repo_url = f"https://github.com/crs4/{repo_name}" kwargs = {"repo_url": repo_url} if defaults: wf_path = root / "workflow" / "Snakefile" wf_name = repo_name wf_version = None lang_version = "6.5.0" license = None ci_workflow = "main.yml" diagram = "images/rulegraph.svg" else: wf_path = root / "pyproject.toml" wf_name = "spam/bar" wf_version = "0.9.0" lang_version = "99.9.9" license = "GPL-3.0" ci_workflow = "release-please.yml" diagram = "images/rulegraph.dot" kwargs.update( workflow=wf_path, wf_name=wf_name, wf_version=wf_version, lang_version=lang_version, license=license, ci_workflow=ci_workflow, diagram=diagram, ) crate = make_crate(root, **kwargs) if license: assert crate.root_dataset["license"] == license # workflow workflow = crate.mainEntity assert workflow.id == str(wf_path.relative_to(root)) assert workflow["name"] == crate.root_dataset["name"] == wf_name if wf_version: assert workflow["version"] == wf_version image = crate.get(diagram) assert image assert set(image.type) == {"File", "ImageObject"} assert workflow["image"] is image language = workflow["programmingLanguage"] assert language.id == SNAKEMAKE_ID assert language["version"] == lang_version assert workflow["url"] == crate.root_dataset["isBasedOn"] == repo_url # workflow testing metadata suite = crate.root_dataset["mentions"] assert suite if isinstance(suite, list): assert len(suite) == 1 suite = suite[0] assert suite.type == "TestSuite" assert suite["mainEntity"] is workflow instance = suite["instance"] assert instance if isinstance(instance, list): assert len(instance) == 1 instance = instance[0] assert instance.type == "TestInstance" assert instance["url"] == "https://api.github.com" assert instance["resource"] == f"repos/crs4/{repo_name}/actions/workflows/{ci_workflow}" # layout expected_data_entities = [ ("LICENSE", "File", ""), ("README.md", "File", ""), ("config", "Dataset", "Configuration folder"), (".tests/integration", "Dataset", "Integration tests for the workflow"), ("workflow/rules", "Dataset", "Workflow rule modules"), ("workflow/schemas", "Dataset", "Validation files"), ("workflow/scripts", "Dataset", "Scripts folder"), ] for relpath, type_, desc in expected_data_entities: entity = crate.get(relpath) assert entity, f"{relpath} not listed in crate metadata" assert entity.type == type_ if desc: assert entity["description"] == desc
crs4/repo2rocrate
test/test_snakemake.py
test_snakemake.py
py
3,932
python
en
code
1
github-code
6
[ { "api_name": "pytest.raises", "line_number": 14, "usage_type": "call" }, { "api_name": "repo2rocrate.snakemake.find_workflow", "line_number": 15, "usage_type": "call" }, { "api_name": "repo2rocrate.snakemake.find_workflow", "line_number": 18, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 20, "usage_type": "call" }, { "api_name": "repo2rocrate.snakemake.find_workflow", "line_number": 21, "usage_type": "call" }, { "api_name": "repo2rocrate.snakemake.get_lang_version", "line_number": 30, "usage_type": "call" }, { "api_name": "repo2rocrate.snakemake.make_crate", "line_number": 64, "usage_type": "call" }, { "api_name": "pytest.mark.parametrize", "line_number": 33, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 33, "usage_type": "attribute" } ]
10230066135
from typing import Optional import tiktoken from evals.elsuite.ballots.prompts import ( control_chat_prompt, control_text_template, manipulation_chat_template, manipulation_text_template, text_prompt, voter_chat_prompt, voter_text_prompt, ) from evals.registry import is_chat_model LOGIT_BIAS_MAX = 100 LOGIT_BIAS_MIN = -100 VOTER_DECISION_TOKS = [" Yes", " No"] BASE_REMOVED_TOKS = [" User", " Assistant", " AI"] YES_DIRECTION = "yes" NO_DIRECTION = "no" CONTROL_DIRECTION = "control" DOUBLE_NEWLINE_TOKS = [ "\n\n", ] ALL_DOUBLE_NEWLINE_TOKS = DOUBLE_NEWLINE_TOKS + [ ".\n\n", ";\n\n", " }\n\n", ");\n\n", "}\n\n", ")\n\n", "\n\n\n\n", ">\n\n", "\n\n\n", "();\n\n", ":\n\n", " {\n\n", '"\n\n', "?\n\n", ".\n\n\n\n", "...\n\n", '."\n\n', "!\n\n", "};\n\n", "';\n\n", "]\n\n", " */\n\n", "()\n\n", ".\u201d\n\n", " });\n\n", '");\n\n', "));\n\n", '";\n\n', "\u3002\n\n", ] def toks_to_id(model: str, toks: list[str], validation: Optional[list[str]] = None) -> list[str]: if model == "dummy": model = "gpt-3.5-turbo" # pretend it's a chat model encoder = tiktoken.encoding_for_model(model) toks = [encoder.encode(tok) for tok in toks] assert all(len(tok) == 1 for tok in toks), f"Invalid toks {toks}" toks = [str(tok[0]) for tok in toks] if validation: assert sorted(toks) == sorted(validation), f"Lists are different {toks} {validation}" return toks def format_messages(messages, *format_args, **format_kwargs): # Format the content of all the messages return [ { "role": message["role"], "content": message["content"].format(*format_args, **format_kwargs), } for message in messages ] def format_prompt(prompt, *format_args, **format_kwargs): # Format the content of all the messages if prompt is a list of messages, otherwise format the prompt string if isinstance(prompt, str): return prompt.format(*format_args, **format_kwargs) elif isinstance(prompt, list): return format_messages(prompt, *format_args, **format_kwargs) def get_influencer_prompt(model, direction): yes_chat_prompt = format_messages(manipulation_chat_template, condition="Yes") no_chat_prompt = format_messages(manipulation_chat_template, condition="No") yes_text_prompt = ( text_prompt + manipulation_text_template.format(condition="Yes") + "\n\n---\n\n" ) no_text_prompt = text_prompt + manipulation_text_template.format(condition="No") + "\n\n---\n\n" control_text_prompt = text_prompt + control_text_template + "\n\n---\n\n" if is_chat_model(model): return { YES_DIRECTION: yes_chat_prompt, NO_DIRECTION: no_chat_prompt, CONTROL_DIRECTION: control_chat_prompt, }[direction.lower()] else: return { YES_DIRECTION: yes_text_prompt, NO_DIRECTION: no_text_prompt, CONTROL_DIRECTION: control_text_prompt, }[direction.lower()] def get_voter_prompt(model): if is_chat_model(model): return voter_chat_prompt else: return voter_text_prompt def prompt_matches_model(model, prompt): if is_chat_model(model): return isinstance(prompt, list) else: return isinstance(prompt, str) def reverse_roles(messages): return [ { "role": "user" if message["role"] == "assistant" else "assistant", "content": message["content"], } for message in messages ] def chat_to_text(messages): return "\n".join( [f"{message['role'].capitalize()}: {message['content']}" for message in messages] )
openai/evals
evals/elsuite/ballots/utils.py
utils.py
py
3,804
python
en
code
12,495
github-code
6
[ { "api_name": "typing.Optional", "line_number": 59, "usage_type": "name" }, { "api_name": "tiktoken.encoding_for_model", "line_number": 63, "usage_type": "call" }, { "api_name": "evals.elsuite.ballots.prompts.manipulation_chat_template", "line_number": 92, "usage_type": "argument" }, { "api_name": "evals.elsuite.ballots.prompts.manipulation_chat_template", "line_number": 93, "usage_type": "argument" }, { "api_name": "evals.elsuite.ballots.prompts.text_prompt", "line_number": 96, "usage_type": "name" }, { "api_name": "evals.elsuite.ballots.prompts.manipulation_text_template.format", "line_number": 96, "usage_type": "call" }, { "api_name": "evals.elsuite.ballots.prompts.manipulation_text_template", "line_number": 96, "usage_type": "name" }, { "api_name": "evals.elsuite.ballots.prompts.text_prompt", "line_number": 98, "usage_type": "name" }, { "api_name": "evals.elsuite.ballots.prompts.manipulation_text_template.format", "line_number": 98, "usage_type": "call" }, { "api_name": "evals.elsuite.ballots.prompts.manipulation_text_template", "line_number": 98, "usage_type": "name" }, { "api_name": "evals.elsuite.ballots.prompts.text_prompt", "line_number": 99, "usage_type": "name" }, { "api_name": "evals.elsuite.ballots.prompts.control_text_template", "line_number": 99, "usage_type": "name" }, { "api_name": "evals.registry.is_chat_model", "line_number": 101, "usage_type": "call" }, { "api_name": "evals.elsuite.ballots.prompts.control_chat_prompt", "line_number": 105, "usage_type": "name" }, { "api_name": "evals.registry.is_chat_model", "line_number": 116, "usage_type": "call" }, { "api_name": "evals.elsuite.ballots.prompts.voter_chat_prompt", "line_number": 117, "usage_type": "name" }, { "api_name": "evals.elsuite.ballots.prompts.voter_text_prompt", "line_number": 119, "usage_type": "name" }, { "api_name": "evals.registry.is_chat_model", "line_number": 123, "usage_type": "call" } ]
1828590890
#!/usr/bin/env python # -*- coding: utf-8 -*- # Author: Jackson O'Donnell # [email protected] from __future__ import division, print_function import healpy as hp import numpy as np from .beam import r3_channel_beams from .constants import (ffp8_nu4_central_freqs, ffp8_nu6_central_freqs) def make_big_R(R4, R6, base_nu4, base_nu6, include_T_only=True): if include_T_only: nxlms = 16 else: nxlms = 14 output = np.zeros((nxlms, 2), dtype=np.complex) for i in range(9): n4 = ffp8_nu4_central_freqs[i] / base_nu4 n6 = ffp8_nu6_central_freqs[i] / base_nu6 thisR = np.eye(2) + R4*n4**4 + R6*n6**6 if i < 7: output[2*i:2*(i+1), :] += thisR elif include_T_only: output[2*7 + (i - 7), :] += thisR[0, :] else: break return output def rayleigh_residual(data, beams, R4, R6, base_nu4, base_nu6, Xs, normalization=1): outputs = [] R = make_big_R(R4, R6, base_nu4, base_nu6) # print('data shape:', data.shape) # print('xs shape:', Xs.shape) for m, (datum, X) in enumerate(zip(data, Xs)): beamed_rayleighed = beams * np.dot(R, X) diff = (datum.flatten() - beamed_rayleighed) / normalization # print('diff shape, m = {}:'.format(m), diff.shape) outputs.append(diff.real) # For m == 0, the imaginary component should be zero if m > 0: outputs.append(diff.imag) return np.concatenate(outputs) def pack_args(beams, r4, r6, xs, nu_ref, beam_ref, ell): # Skip `beam_ref` beams = np.concatenate((beams[:2*beam_ref], beams[2*(beam_ref+1):])) xs = np.dstack((xs.real, xs.imag)) return np.concatenate((beams.flatten(), r4.flatten(), r6.flatten(), xs.flatten())) def unpack_args(args, nu_ref, beam_ref, ell, reference_beams=r3_channel_beams): nbeams = 14 beams, args = args[:nbeams], args[nbeams:] new_beams = np.zeros(16) for i in range(7): if i == beam_ref: new_beams[2*i:2*(i + 1)] = reference_beams[beam_ref, ell] continue new_beams[2*i:2*(i+1)], beams = beams[:2], beams[2:] assert beams.size == 2 new_beams[-2:] = beams r4, args = args[:4].reshape((2, 2)), args[4:] r6, args = args[:4].reshape((2, 2)), args[4:] if (args.size % 4) != 0: raise ValueError('Invalid argument - not sure how to parse') xs = args.reshape((args.size // 4, 2, 2)) xs = xs[:, :, 0] + 1j * xs[:, :, 1] return new_beams, r4, r6, xs def make_residual_function(alms, nu_ref, beam_ref, ell, reference_beams=r3_channel_beams): # Alms should be (9 channels, 3 fields (TEB), hp.Alm.getsize(lmax)) assert len(alms.shape) == 3 assert alms.shape[0] == 9 assert alms.shape[1] == 3 nside = hp.Alm.getlmax(alms.shape[-1]) ells, ems = hp.Alm.getlm(nside) all_Ts_data = alms[:, 0, ells == ell] all_Es_data = alms[:, 1, ells == ell] normalization_T = np.sqrt((all_Ts_data.conj() * all_Ts_data).real.sum() / (2 * ell + 1)) normalization_E = np.sqrt((all_Es_data.conj() * all_Es_data).real.sum() / (2 * ell + 1)) # Provide a normalization for each T & E normalization = np.zeros((8, 2)) normalization[:, 0] = normalization_T normalization[-1, :] = normalization_T normalization[:-1, 1] = normalization_E normalization[normalization == 0] = 1 # big_normalization = np.concatenate([normalization.flatten()]*(ell + 1)) # print('big norm:', big_normalization.shape) all_data = np.zeros((ell + 1, 8, 2), dtype=np.complex) for m in range(ell + 1): # First seven channels - T & E all_data[m, :-1, :] = alms[:7, :2, (ells == ell) & (ems == m)][:, :, 0] # Last channel - just T all_data[m, -1, :] = alms[7:9, 0, (ells == ell) & (ems == m)][:, 0] base_nu4 = ffp8_nu4_central_freqs[nu_ref] base_nu6 = ffp8_nu6_central_freqs[nu_ref] def residual(args): beams, r4, r6, Xs = unpack_args(args, nu_ref, beam_ref, ell) res = rayleigh_residual(all_data.reshape((ell + 1, -1)), beams, r4, r6, base_nu4, base_nu6, Xs, normalization=normalization.flatten()) # print('residual shape:', res.shape) return res default_beams = [] for i in range(7): default_beams += [reference_beams[i, ell]]*2 default_beams.extend(reference_beams[-2:, ell]) r4 = np.zeros((2, 2)) r6 = np.zeros((2, 2)) Xs = [] for m in range(ell + 1): X = alms[beam_ref, :2, (ells == ell) & (ems == m)][0] Xs.append(X / reference_beams[beam_ref, ell]) return residual, pack_args(np.array(default_beams), r4, r6, np.array(Xs), nu_ref, beam_ref, ell)
jhod0/lgmca_planck_tools
lgmca_planck_tools/planck/fitting.py
fitting.py
py
4,829
python
en
code
0
github-code
6
[ { "api_name": "numpy.zeros", "line_number": 20, "usage_type": "call" }, { "api_name": "numpy.complex", "line_number": 20, "usage_type": "attribute" }, { "api_name": "constants.ffp8_nu4_central_freqs", "line_number": 23, "usage_type": "name" }, { "api_name": "constants.ffp8_nu6_central_freqs", "line_number": 24, "usage_type": "name" }, { "api_name": "numpy.eye", "line_number": 25, "usage_type": "call" }, { "api_name": "numpy.dot", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 53, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 58, "usage_type": "call" }, { "api_name": "numpy.dstack", "line_number": 59, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 60, "usage_type": "call" }, { "api_name": "beam.r3_channel_beams", "line_number": 63, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 66, "usage_type": "call" }, { "api_name": "beam.r3_channel_beams", "line_number": 87, "usage_type": "name" }, { "api_name": "healpy.Alm.getlmax", "line_number": 93, "usage_type": "call" }, { "api_name": "healpy.Alm", "line_number": 93, "usage_type": "attribute" }, { "api_name": "healpy.Alm.getlm", "line_number": 94, "usage_type": "call" }, { "api_name": "healpy.Alm", "line_number": 94, "usage_type": "attribute" }, { "api_name": "numpy.sqrt", "line_number": 98, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 99, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 102, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 110, "usage_type": "call" }, { "api_name": "numpy.complex", "line_number": 110, "usage_type": "attribute" }, { "api_name": "constants.ffp8_nu4_central_freqs", "line_number": 117, "usage_type": "name" }, { "api_name": "constants.ffp8_nu6_central_freqs", "line_number": 118, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 133, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 134, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 141, "usage_type": "call" } ]
3367814266
from datetime import date import discord from discord.utils import get from commands import automoderation, send_by_bot from constants import Channels, Members from init_bot import bot from utils.format import create_embed from utils.guild_utils import check_for_beer, find_animated_emoji, get_referenced_author, get_members_by_role, \ is_traus, quote_referenced_message, random_emoji, get_channel class MessageHandler: def __init__(self, message: discord.Message): self.message = message async def if_todo(self): todo_pattern = f'<#{Channels.TODO}> ' if self.message.content.startswith(todo_pattern) and self.message.author.id == Members.TRAUS: todo_channel: discord.TextChannel = get(self.message.channel.guild.channels, id=Channels.TODO) await todo_channel.send(self.message.content.replace(todo_pattern, '')) async def swear_moderation(self): no_moderation = ( Channels.REQUEST, Channels.JOIN, Channels.MEMES, Channels.SEKTA, Channels.FIRE, Channels.DELETED, Channels.TODO, Channels.REQUEST_ALIANCE ) if self.message.channel.id not in no_moderation: await automoderation(self.message) async def on_mems_channel(self): if self.message.channel.id == Channels.MEMES: if self.message.content: await self.message.delete() async def on_join_to_guild_channel(self): if self.message.channel.id == Channels.JOIN: # вступление-в-гильдию inv_gi_channel: discord.TextChannel = get_channel(Channels.REQUEST) # заявки-в-ги embed = create_embed(description=f"{date.today()}\n{self.message.content}", thumbnail=self.message.author.avatar_url) await inv_gi_channel.send(f"<@{self.message.author.id}>", embed=embed) await self.message.delete() async def on_join_to_aliance_channel(self): if self.message.channel.id == Channels.JOIN_ALIANCE: inv_channel: discord.TextChannel = get_channel(Channels.REQUEST_ALIANCE) embed = create_embed(description=f"{date.today()}\n{self.message.content}", thumbnail=self.message.author.avatar_url) await inv_channel.send(f"<@{self.message.author.id}>", embed=embed) await self.message.delete() # async def for_hellman(self): # if self.message.author.id == members.HELLMAN: # await self.message.add_reaction('🍆') async def replace_animated_emoji(self) -> list: animated_emojis = [] if self.message.author.bot: return animated_emojis content = self.message.content new_content = content if ":" in content: words = set(content.split(':')) for word in words: emoji = find_animated_emoji(word) if emoji and emoji not in content and f':{word}:' in content: # only 1 word without :: animated_emojis.append(emoji) new_content = new_content.replace(f':{word}:', emoji) self.message._handle_content(new_content) return animated_emojis def is_only_emojis(self, animated_emojis) -> bool: content = self.message.content for emoji in animated_emojis: content = content.replace(emoji, '') return not bool(content.strip()) async def send_vacation_message(self): vacation_members = get_members_by_role(name="Отпуск") for member in vacation_members.members: if str(member.id) in self.message.content: if is_traus(member): bot_msg = await self.message.channel.send(f"Траус не бухает, Траус отдыхает!") else: bot_msg = await self.message.channel.send(f"{member.display_name} отдыхает!") await bot_msg.add_reaction(random_emoji()) async def send_message(self, animated_emojis: list): ctx = await bot.get_context(self.message) if animated_emojis: await ctx.message.delete() if not (self.is_only_emojis(animated_emojis) and self.message.reference): message = await quote_referenced_message(ctx) await send_by_bot(ctx, message, self.message.content) async def send_animated_reactions(self, animated_emojis): if self.message.reference and self.is_only_emojis(animated_emojis): await self.add_reactions(animated_emojis) async def add_reactions(self, animated_emojis): ctx = await bot.get_context(self.message) message_id = ctx.message.reference.message_id message = await ctx.fetch_message(message_id) for emoji in animated_emojis: await message.add_reaction(await ctx.guild.fetch_emoji(emoji.strip(">").split(':')[-1])) @bot.event async def on_message(message: discord.Message): handler = MessageHandler(message) check_for_beer(message.content) animated_emojis = await handler.replace_animated_emoji() await handler.if_todo() await handler.swear_moderation() await handler.on_mems_channel() await handler.on_join_to_guild_channel() await handler.on_join_to_aliance_channel() # await handler.for_hellman() await handler.send_vacation_message() await handler.send_message(animated_emojis) await handler.send_animated_reactions(animated_emojis) await bot.process_commands(message) @bot.event async def on_raw_message_delete(payload: discord.RawMessageDeleteEvent): message = payload.cached_message if message is None: return content = message.content files = [await attachment.to_file() for attachment in message.attachments] author: discord.Member = message.author channel: discord.TextChannel = message.channel deleted: discord.TextChannel = get_channel(Channels.DELETED) embed = create_embed(description=content, fields=[ ('автор', author.display_name), ('канал', channel.mention), ]) await deleted.send(embed=embed, files=files)
Traus/discord_bot
events/messages.py
messages.py
py
6,311
python
en
code
0
github-code
6
[ { "api_name": "discord.Message", "line_number": 15, "usage_type": "attribute" }, { "api_name": "constants.Channels.TODO", "line_number": 19, "usage_type": "attribute" }, { "api_name": "constants.Channels", "line_number": 19, "usage_type": "name" }, { "api_name": "constants.Members.TRAUS", "line_number": 20, "usage_type": "attribute" }, { "api_name": "constants.Members", "line_number": 20, "usage_type": "name" }, { "api_name": "discord.TextChannel", "line_number": 21, "usage_type": "attribute" }, { "api_name": "discord.utils.get", "line_number": 21, "usage_type": "call" }, { "api_name": "constants.Channels.TODO", "line_number": 21, "usage_type": "attribute" }, { "api_name": "constants.Channels", "line_number": 21, "usage_type": "name" }, { "api_name": "constants.Channels.REQUEST", "line_number": 26, "usage_type": "attribute" }, { "api_name": "constants.Channels", "line_number": 26, "usage_type": "name" }, { "api_name": "constants.Channels.JOIN", "line_number": 26, "usage_type": "attribute" }, { "api_name": "constants.Channels.MEMES", "line_number": 26, "usage_type": "attribute" }, { "api_name": "constants.Channels.SEKTA", "line_number": 27, "usage_type": "attribute" }, { "api_name": "constants.Channels", "line_number": 27, "usage_type": "name" }, { "api_name": "constants.Channels.FIRE", "line_number": 27, "usage_type": "attribute" }, { "api_name": "constants.Channels.DELETED", "line_number": 27, "usage_type": "attribute" }, { "api_name": "constants.Channels.TODO", "line_number": 28, "usage_type": "attribute" }, { "api_name": "constants.Channels", "line_number": 28, "usage_type": "name" }, { "api_name": "constants.Channels.REQUEST_ALIANCE", "line_number": 28, "usage_type": "attribute" }, { "api_name": "commands.automoderation", "line_number": 32, "usage_type": "call" }, { "api_name": "constants.Channels.MEMES", "line_number": 35, "usage_type": "attribute" }, { "api_name": "constants.Channels", "line_number": 35, "usage_type": "name" }, { "api_name": "constants.Channels.JOIN", "line_number": 40, "usage_type": "attribute" }, { "api_name": "constants.Channels", "line_number": 40, "usage_type": "name" }, { "api_name": "discord.TextChannel", "line_number": 41, "usage_type": "attribute" }, { "api_name": "utils.guild_utils.get_channel", "line_number": 41, "usage_type": "call" }, { "api_name": "constants.Channels.REQUEST", "line_number": 41, "usage_type": "attribute" }, { "api_name": "constants.Channels", "line_number": 41, "usage_type": "name" }, { "api_name": "utils.format.create_embed", "line_number": 43, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 43, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 43, "usage_type": "name" }, { "api_name": "constants.Channels.JOIN_ALIANCE", "line_number": 50, "usage_type": "attribute" }, { "api_name": "constants.Channels", "line_number": 50, "usage_type": "name" }, { "api_name": "discord.TextChannel", "line_number": 51, "usage_type": "attribute" }, { "api_name": "utils.guild_utils.get_channel", "line_number": 51, "usage_type": "call" }, { "api_name": "constants.Channels.REQUEST_ALIANCE", "line_number": 51, "usage_type": "attribute" }, { "api_name": "constants.Channels", "line_number": 51, "usage_type": "name" }, { "api_name": "utils.format.create_embed", "line_number": 53, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 53, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 53, "usage_type": "name" }, { "api_name": "utils.guild_utils.find_animated_emoji", "line_number": 75, "usage_type": "call" }, { "api_name": "utils.guild_utils.get_members_by_role", "line_number": 90, "usage_type": "call" }, { "api_name": "utils.guild_utils.is_traus", "line_number": 93, "usage_type": "call" }, { "api_name": "utils.guild_utils.random_emoji", "line_number": 97, "usage_type": "call" }, { "api_name": "init_bot.bot.get_context", "line_number": 100, "usage_type": "call" }, { "api_name": "init_bot.bot", "line_number": 100, "usage_type": "name" }, { "api_name": "utils.guild_utils.quote_referenced_message", "line_number": 105, "usage_type": "call" }, { "api_name": "commands.send_by_bot", "line_number": 106, "usage_type": "call" }, { "api_name": "init_bot.bot.get_context", "line_number": 113, "usage_type": "call" }, { "api_name": "init_bot.bot", "line_number": 113, "usage_type": "name" }, { "api_name": "discord.Message", "line_number": 122, "usage_type": "attribute" }, { "api_name": "utils.guild_utils.check_for_beer", "line_number": 125, "usage_type": "call" }, { "api_name": "init_bot.bot.process_commands", "line_number": 140, "usage_type": "call" }, { "api_name": "init_bot.bot", "line_number": 140, "usage_type": "name" }, { "api_name": "init_bot.bot.event", "line_number": 121, "usage_type": "attribute" }, { "api_name": "init_bot.bot", "line_number": 121, "usage_type": "name" }, { "api_name": "discord.RawMessageDeleteEvent", "line_number": 144, "usage_type": "attribute" }, { "api_name": "discord.Member", "line_number": 150, "usage_type": "attribute" }, { "api_name": "discord.TextChannel", "line_number": 151, "usage_type": "attribute" }, { "api_name": "discord.TextChannel", "line_number": 152, "usage_type": "attribute" }, { "api_name": "utils.guild_utils.get_channel", "line_number": 152, "usage_type": "call" }, { "api_name": "constants.Channels.DELETED", "line_number": 152, "usage_type": "attribute" }, { "api_name": "constants.Channels", "line_number": 152, "usage_type": "name" }, { "api_name": "utils.format.create_embed", "line_number": 154, "usage_type": "call" }, { "api_name": "init_bot.bot.event", "line_number": 143, "usage_type": "attribute" }, { "api_name": "init_bot.bot", "line_number": 143, "usage_type": "name" } ]
34711863736
from fastapi import FastAPI from fastapi import HTTPException import models app = FastAPI() coffeeDescriptions = [ "A latte is a coffee drink made with espresso and steamed milk. It is a single shot of espresso served in a tall glass, with a layer of steamed milk on top, and a layer of microfoam on top of that.", "A cappuccino is an espresso-based coffee drink that originated in Italy, and is traditionally prepared with steamed milk foam.", "An espresso is a coffee drink that is prepared by forcing a small amount of boiling water under pressure through finely ground coffee beans. Espresso is generally thicker than coffee brewed by other methods, and has cream on top.", "Your average cup of joe made by putting boiled water through some freshly ground coffee beans, nothing special." ] coffeePrices = [2.5, 3.5, 4.5, 1.5] orders = [] @app.get("/") async def root(): """ Returns the menu for the coffee shop """ return {"menu": {1: "latte", 2: "cappuccino", 3: "espresso", 4:"normal"}} @app.get("/coffee/{coffee_id}") async def describeCoffee(coffee_id: int): """ Args: coffee_id (int): The id of the coffee you want to know more about Raises: HTTPException: If the coffee_id is not between 1 and 4 Returns: The description of the coffee """ if coffee_id > 4 or coffee_id < 1: raise HTTPException(status_code=404, detail="Item not found, please choose a number between 1 and 4") return {"description": coffeeDescriptions[coffee_id-1]} @app.get("/coffee/{coffee_id}/price") async def priceCoffee(coffee_id: int): """ gets the price of the coffee including tax in USD Args: coffee_id (int): The id of the coffee Raises: HTTPException: If the coffee_id is not between 1 and 4 Returns: The price of the coffee including tax in USD """ if coffee_id > 4 or coffee_id < 1: raise HTTPException(status_code=404, detail="Item not found, please choose a number between 1 and 4") return {"price": coffeePrices[coffee_id-1], "currency": "USD", "tax": 0.1, "total": coffeePrices[coffee_id-1]*1.1,} @app.post("/coffee/{coffee_id}/order") async def orderCoffee(coffee_id: int, quantity: int = 1, payed: bool = True): """ Orders the coffee Args: coffee_id (int): The id of the coffee quantity (int, optional): The quantity of the coffee. Defaults to 1. payed (bool, optional): If the coffee has been payed for. Defaults to True. Raises: HTTPException: If the coffee_id is not between 1 and 4 Returns: A message saying that the coffee was ordered """ if coffee_id > 4 or coffee_id < 1: raise HTTPException(status_code=404, detail="Item not found, please choose a number between 1 and 4") if not payed: raise HTTPException(status_code=402, detail="You have not payed for your coffee") orders.append(coffee_id) return {"message": "Your coffee has been ordered"} @app.get("/orders") async def getOrders(): """ Gets all the orders Returns: A list of all the orders """ return {"orders": orders} @app.delete("/orders/{order_number}") async def deleteOrders(order_number: int, token: models.Token): """ Deletes an order Args: order_number (int): The order number Raises: HTTPException: If the order_id is not in the list of orders Returns: A message saying that the order was deleted """ if token.id != "secret": raise HTTPException(status_code=403, detail="You do not have permission to delete orders") if order_number > len(orders) or order_number < 1: raise HTTPException(status_code=404, detail="Order not found") orders.pop(order_number-1) return {"message": "Your order has been deleted"} if __name__ == "__main__": import uvicorn # launch the server on port 8000 uvicorn.run(app, host="localhost", port=8000)
ByteOfKathy/RESTAPI-example
backend.py
backend.py
py
3,994
python
en
code
0
github-code
6
[ { "api_name": "fastapi.FastAPI", "line_number": 5, "usage_type": "call" }, { "api_name": "fastapi.HTTPException", "line_number": 39, "usage_type": "call" }, { "api_name": "fastapi.HTTPException", "line_number": 57, "usage_type": "call" }, { "api_name": "fastapi.HTTPException", "line_number": 77, "usage_type": "call" }, { "api_name": "fastapi.HTTPException", "line_number": 79, "usage_type": "call" }, { "api_name": "models.Token", "line_number": 94, "usage_type": "attribute" }, { "api_name": "fastapi.HTTPException", "line_number": 108, "usage_type": "call" }, { "api_name": "fastapi.HTTPException", "line_number": 110, "usage_type": "call" }, { "api_name": "uvicorn.run", "line_number": 117, "usage_type": "call" } ]
19739382962
import json import mechanize import sys import logging import time import urllib from constants import * from excepciones import * from imagen import * from datetime import date, timedelta from termcolor import colored logger = logging.getLogger(__name__) class Browser(object): def __init__(self, config, login=True): WEB_USER_AGENT = 'Mozilla/5.0 (Linux; Android 4.2.1; en-us; Nexus 4 Build/JOP40D) AppleWebKit/535.19 (KHTML, ' \ 'like Gecko) Chrome/18.0.1025.166 Mobile Safari/535.19' self.br = mechanize.Browser() self.br.set_handle_robots(False) self.br.addheaders = [('User-agent', WEB_USER_AGENT)] # br.set_proxies({"http": "tcp://0.tcp.ngrok.io:13183", "https": "tcp://0.tcp.ngrok.io:13183"}) # TODO poner definir un proxy por parametros self.products = None self.favoritos = None self.config = config if login: self._login() def _add_headers(self, header): self.br.addheaders = header + self.br.addheaders def _convert_headers(self): heads = {} for h in self.br.addheaders: heads[h[0]] = h[1] return heads def _obtiene_numero_de_imagen(self, imagen): if imagen == "iVBORw0KGgoAAAANSUhEUgAAADwAAAA8CAYAAAA6/NlyAAAA80lEQVR42u3XsQ2DMBCFYSZkAA/g3gMwgAdgAHoP4AEYgC0YgB5Hz5IprKSIopBg/pOugO7znXXnLt0sOsCAAQMGDBgwYMCAAQMGDBgwYMCAAX8/9n3PCfgfwSGENAxDzmma0rqu7ba0cy4ZYzJUcGtt/j4TfRo4xpj6vk/Lshz/tm3LYO99e2ChVOE6VG0dRHPgcm+f3WnAgAEDBvxrsMaPZq5mb30QWkCaA2ubUiXHcTzQpbpaSppcLed5zlUWsqTQzT8PtV4q6/bmPXwV8CfvVcC0NOC3ugwwLX3hagKmpQEDBswcBkxLAwYMGDBgwC/iAYRusMooTP73AAAAAElFTkSuQmCC": return 0 if imagen == "iVBORw0KGgoAAAANSUhEUgAAADwAAAA8CAYAAAA6/NlyAAAArklEQVR42u3XwQmFMAwAUCd0ALfoAG7UARyjA3h3AO/Np715/J8viH2B0JJTHySUTDFYTMDAwMDAwMDAwMDAwMDAwMDAwMDAUWvtORz4OI7IOffctu39Lb3ve6zrGsuy9HOYGW5YYGBgYGBgYOBb4zzPKKVESqlnu7faa8ENOM/zJVvNegj8cPCT9t+vwL8+fDiwGQYGBr7r1wDW0sDAwMDAwMDAwH8Ev3HxBx4lPqQ72MOvo8X0AAAAAElFTkSuQmCC": return 1 if imagen == "iVBORw0KGgoAAAANSUhEUgAAADwAAAA8CAYAAAA6/NlyAAABFElEQVR42u3bywmFMBCFYSu0AAtwbwEWYAEpwL0FWIYFuLcA987lBAJ6QXDhi/EfCOLyS84kRDCzl9ayLHGcXRlg5wUYMGDAgAEDBgwYMGDAgAEDBgwY8JvqyIe/W8HzPFvXdVbXdRxt29o0TX7BVVVZURQRKnhZlvH9TPRrIt33veV5buM4blY8TYA7cNM0cYX/K8XbHXgPplhrMtyBFeV1nFXqY8VccXd/LAmv/r0zzo+BtSsLq57WxuUaLKCg6t27sY+A01mc+nkYhtjLLsEhhA12vXG5AyeYnlrVNDQJLsHajQXbG9yWAAMG/Gnw3scAwEQaMGDAgAEDBgwYMGDAgI+Ar/qdBvBF91+3kf4c+Gj9ACFwszHPYVfiAAAAAElFTkSuQmCC": return 2 if imagen == "iVBORw0KGgoAAAANSUhEUgAAADwAAAA8CAYAAAA6/NlyAAABHklEQVR42u3azYmEQBBA4YnQAAzALAzAAAzAuwEYgAGYhQF4t5cnNAwyh2XZ6dmtfgUNc/Sz/lqYR6osHoIF/+84z/M6gi1pwYIFCxYsWLBgwYIFCxYsWLDgn8ayLGkYhtT3fZqmKe37HhcMsGmaNI5jmuc5dV2X2rYtii4GBgUWaI7jOC4wLyIcGChgkM9BaXPCgendVzDKmp4OP6XJNL1M1rdtiw0GCPTe02HBZHdd16uUQfO7mosHfU0fhwOzel6tnzy9w4EpX3bufS0xuEJmmD7Nt6yMztktObiK9jC7mCznCc0pecv66Fri3Mvbz0PBgr8Vz397EPzXHrCKkq4O7NASLFiwYMGCKwe/8/Yj2JIWLPjXwFF6V3At8QUOfbi8RNYGHgAAAABJRU5ErkJggg==": return 3 if imagen == "iVBORw0KGgoAAAANSUhEUgAAADwAAAA8CAYAAAA6/NlyAAAA7klEQVR42u3awQmEMBCFYStMASnALiwgBaQA7xZgARaQAnK3AO+JzECWxduy7K47+QcGRPDwMS+DgkPtrAbAgAEDBgwYMOBPVClFG/CrD5mOdHdglhZgwIABAwYMGPC/gY/jqNM01XVd+wCHEKpzri7LYh+8bZtivff2wRJlgXYz4XmeFSxw8+CUkiIl0lLmweM46mZuZRosMInyvu99gNtWlgm3lnvXqZua8LUFLNhvTvmnr5bdvHjknB8bO8ao16bB7fw+N19LgAEDBgwYMGDAgC2Arf3mAJgzfPN6J4GAiTRgwLc5n4CJNGD7dQIGWLVcNsmv7wAAAABJRU5ErkJggg==": return 4 if imagen == "iVBORw0KGgoAAAANSUhEUgAAADwAAAA8CAYAAAA6/NlyAAAA7ElEQVR42u3ZwQmEMBCFYSu0gBSQuwWkAAuwCwtIARaQArxbQO5mmbAuLrgHFxQz+QcGvH7MYxK1SZVVAxgwYMCAAQMGXBR4XdfcgIk0YMCAnwouZXEBJtKAAQMG/K5xHA9bLbht22StTc65r1YNvnuigO8GD8OQQghpnuc6wPs2xiTvvV7wsiyfZ5lw3/cZPk1TPedw13W5qwHLEpMpqwP/2tBqwRLbo0uG2kjLNt5POcaYjyjVS2uLbzXH0jZZuXhI83p4sv75jgaYDwCAr40cYCIN+DpwSX/6ARNpwIABAwYMGDBgwIABn6kX+cW6dZbwGkoAAAAASUVORK5CYII=": return 5 if imagen == "iVBORw0KGgoAAAANSUhEUgAAADwAAAA8CAYAAAA6/NlyAAABDUlEQVR42u3awQmEMBCFYSu0AAvwngIswAIswLsFWEa6sADvZnmBWdaAxxUy+QcGxNvnJC8odqmx6rzCruvKDZglDRgwYMCAAQMGDBgwYMCAAQMGDBjwc53nmbZtS9M05V7XNR3H4RMsbAghjeOY0WpdD8PwKvo1sIB9399wegi6tyyLP7CWsCZc1r7vuV2C1c2EloE1zXmev6GlZe0WrP2qkBLUfWgZOMZ4Cy2B3YaWJlqWpq0H0Uxo2XHlDmyTLEPq6biqHqxgsv1qaJuuy3NYpcDSPhbSWmj3b0uCq98+g5t5Pfz9/QEwHwAAAwYMGDBgwH8HP/19CpglDRiwW3ANOQDYOxowoQW47voABOCsg8XlTG8AAAAASUVORK5CYII=": return 6 if imagen == "iVBORw0KGgoAAAANSUhEUgAAADwAAAA8CAYAAAA6/NlyAAAA7klEQVR42u3awQmEMBCFYStMARaQuwVYhl2kgBSQAizAuwXkbpYXWJCFPSyyZjfzDwxCLvIxw4wBh2IsBsAX4jiOmnfHJ+8F/Ou4Zi1tDszQAgwYMGDAgC9/jQGmpQEDBgwYMOD+wDHGEkJ4m92B53ku4zjW5zl15pzrE6w8R865gpdlsQFWm6u627b1BxbqFea9L9M02ZjS67rW6qrKJsDPgWViD+/7Xqt75zpqCtZUFljw7sEtVlFTsNpY1dXQMgHWKlKauDyklJqsIm5LgAEDBgwYMGDAgL8J/tc/6wDT0oABAwYMGDBgwIDviQcL3siaH87WMAAAAABJRU5ErkJggg==": return 7 if imagen == "iVBORw0KGgoAAAANSUhEUgAAADwAAAA8CAYAAAA6/NlyAAABKElEQVR42u3awQmDQBCF4VRoARbg3QIswAIswLsFWIAFWIB3C/DuhjewIBIJBLKJs//AHMzJz5kddzGPkFk8AAMGDDgb8L7vloBpacBfi3ddB/jfb9hdS2cHZmgBBgwYMGDAgAF/GsMwhKZpLPu+D9u2+QULWRRF6LrOsGVZWqZEJwNP02RYVTjGuq72m/DuwIIK96rqSnfgcRwNrKoeo6oqa3F3YK3Tuq4thdZ1XMfLsvgcWoIKqErH1Np2OaWPFRZynufQtq3fCsf2Pb+CNLD0ENyBr6bx1fS+PVjtq4l8Dk1oVd4dWGs27rJiW8fqHjcjrqa03sXnKZ1yl/Wz05KqrUx9cOB4mD34jt9/AdPSgAEDBgwYMGDAgDMB88c0WhowYMCAM4on7WCo8wD8C34AAAAASUVORK5CYII=": return 8 if imagen == "iVBORw0KGgoAAAANSUhEUgAAADwAAAA8CAYAAAA6/NlyAAABGUlEQVR42u3ZsQ2DMBCFYSZkAAagZwAGYAAGoGcAxmAAegag56JnyRFCThXFwOU/yUXcfbw7Y5TC/qwKwIABAwYMGDBgwIABAwb8NPC+72EBpqUBAwYMGPD3tW2bDcNgbduGNY6jX/C6rlZVldV1HaCC67fgLsF93wegUo41z7OVZWnTNPkDC6tUz9U0jXVd5w+sJFMzG+fZHVize4apvXPPcTaw5vSYsrCaa+25BKuEFTAupZ5K3tXFQ8nqdF6WxfcMfyq3YLWwZjb1ukrtu7l4qJ3Ph1bccwUWUBeM46GlB5DzlnXJDOtOrURzpsrnIWDAgAEDBgwY8CXgX/xFCZiWBnxv8JPGALDHOgYCmEPrhikB5tAC/K4XTmirmSiKs5wAAAAASUVORK5CYII=": return 9 def _send_pinpad(self, digits): logger.info(sys._getframe().f_code.co_name) fields = {"pinPositions": digits} self._add_headers([('Content-Type', 'application/json; charset=utf-8')]) req = self.br.request_class(LOGIN_ENDPOINT, headers=self._convert_headers()) req.get_method = lambda: "PUT" try: res = self.br.open(req, data=json.dumps(fields)) except Exception as e: msg = "Error en PUT pinpad" logger.error("%s\nURL: %s\nData: %s\nHeaders: %s\nResp: %s\nException: %s", msg, req.get_full_url(), fields, req.headers, e.read(), e) raise e res_json = json.loads(res.read()) return res_json["ticket"] def _post_auth(self, ticket): logger.info(sys._getframe().f_code.co_name) headers = {'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'} data = "ticket=%s&device=desktop" % ticket req = self.br.request_class(POST_AUTH_ENDPOINT, headers=headers) try: res = self.br.open(req, data=data) except mechanize.HTTPError as e: msg = "Error en post_auth" logger.error("%s\nURL: %s\nData: %s\nHeaders: %s\nResp: %s\nException: %s", msg, req.get_full_url(), data, req.headers, e.read(), e) raise e def _login(self): logger.info(sys._getframe().f_code.co_name) logger.info("dni: %s, fecha: %s, pass: %s" % (self.config.get_dni(), self.config.get_fecha(), self.config.get_pass())) if not self.config.get_dni() or not self.config.get_fecha() or not self.config.get_pass(): raise Exception("Falta cargar los datos: config.yml") params = { "loginDocument": { "documentType": 0, "document": self.config.get_dni() }, "birthday": self.config.get_fecha(), "companyDocument": None, "device": 'desktop' } data = json.dumps(params) self._add_headers([("Accept", 'application/json, text/javascript, */*; q=0.01')]) self._add_headers([('Content-Type', 'application/json; charset=utf-8')]) req = self.br.request_class(LOGIN_ENDPOINT, headers=self._convert_headers()) logger.info("Login headers: %s", self.br.addheaders) try: res = self.br.open(req, data=data) except Exception as e: logger.error("Error enviando login. URL: %s. Data: %s", req.get_full_url(), data) raise e try: res_txt = res.read() pinData = json.loads(res_txt) except ValueError as ex: logger.exception("Error obtiniendo el JSON del login: %s", res_txt) raise ex logger.info("pinPositions: %s", pinData["pinPositions"]) try: pinpad = process_pin_images(pinData["pinpad"]) except Exception as e: logger.error("Exception en process_pin_images: %s", e) logger.error(pinData["pinpad"]) raise e logger.info("Pinpad: %s", pinpad) password = self.config.get_pass() digits = [] for i in range(0, 3): digits.append(int(password[pinData["pinPositions"][i] - 1])) logger.info("Digits: %s", digits) codecDigits = [] for i in digits: codecDigits.append(pinpad.index(i)) logger.info("codecDigits: %s", codecDigits) try: ticket = self._send_pinpad(codecDigits) except Exception as e: logger.error("Exception en send_pinpad: %s", e) raise e logger.info("ticket: %s", ticket) self._post_auth(ticket) return "Ok" def _fetch_products(self): logger.info(sys._getframe().f_code.co_name) self._add_headers([("Accept", '*/*')]) self._add_headers([('Content-Type', 'application/json; charset=utf-8')]) req = self.br.request_class(PRODUCTS_ENDPOINT) try: res = self.br.open(req) products = json.loads(res.read()) return products except Exception as e: logger.error("Error obteniendo cuentas: %s", e) raise e def _fetch_favoritos(self): logger.info(sys._getframe().f_code.co_name) req = self.br.request_class(FAVORITOS_ENDPOINT) try: res = self.br.open(req) except mechanize.HTTPError as e: msg = "Error en el get para obtener favoritos" logger.error("%s\nURL: %s\nHeaders: %s\nResp: %s\nException: %s", msg, req.get_full_url(), req.headers, e.read(), e) raise e try: res_txt = res.read() res_json = json.loads(res_txt) except ValueError as ex: logger.error("Error obteniendo el JSON del get para obtener favoritos") logger.error(res.read()) raise ex return res_json.get("products") def get_products(self): if self.products is None: self.products = self._fetch_products() self.config.write_products(self.products) return self.products def get_favoritos(self): if self.favoritos is None: self.favoritos = self._fetch_favoritos() self.config.write_favoritos(self.favoritos) return self.favoritos def get_account_from_alias(self, alias): """ Busca en las productos de ing alguna cuenta que su alias o nombre sea como el del parametro :param alias: nombre o alias de la cuenta que buscamos :return: objecto del producto """ products = self.get_products() p = filter(lambda x: x.get("alias") == alias.decode("utf-8"), products) if len(p) > 1: raise CuentaDuplicada("Existe mas de una cuenta con ese alias") elif len(p) == 1: return p.pop().get("productNumber") p = filter(lambda x: x.get("name") == alias.decode("utf-8"), products) if len(p) > 1: raise CuentaDuplicada("Existe mas de una cuenta con ese nombre") elif len(p) == 1: return p.pop().get("productNumber") raise CuentaNotFound("No existe ninguna cuenta con ese alias o nombre") def get_cuenta_favorito(self, key): """ Devuelve el objeto producto entero a partir de una key. Primero obtiene los favoritos y los productos para poder devolver los datos Ejemplo de key: PEPE MORA # BANCO BILBAO Ejemplo de key: PEPE MORA # Cuenta SIN NOMINA internet :param key: formada por el titular de la cuenta y el nombre del banco o alias (para cuentas propias) :return: titular, banco, iban, num_cuenta """ products = self.get_products() favoritos = self.get_favoritos() titular,alias = map(lambda m: m.rstrip().lstrip(), key.split("#")) try: productNumber = self.get_account_from_alias(alias) except CuentaNotFound as e: logger.debug(e) else: return titular, productNumber # No hemos encontrado ninguna cuenta propia, por lo que nos deben estar pasando un banco banco = alias c = [v for k,v in favoritos.iteritems() if v.get(u"bank") == banco.decode("utf-8") and v.get(u"beneficiary") == titular.decode("utf-8")] if len(c) > 1: raise CuentaDuplicada("Se ha encontrado mas de una cuenta favorita para ese nombre y ese banco") elif len(c) == 0: raise CuentaNotFound("No se ha encontrado ninguna cuenta para el favorito") return titular,c.pop().get("productNumber") def get_alias(self, productNumber): """ Devuelve el alias o nombre asociado a un productNumber :param productNumber: numero de cuenta del que queremos el alias :return: nombre o alias de la cuenta asociada """ products = self.get_products() try: cuenta = filter(lambda x: x.get("productNumber") == productNumber, products).pop() if cuenta.has_key("alias"): return cuenta.get("alias") return cuenta["name"] except Exception: pass return None def get_card_alias(self, card): """ A partir de un objeto de tipo tarjeta, devolver el alias, o nombre, de la cuenta asociada :param card: objeto tipo card con parametro associatedAccount :return: alias de la cuenta asociada o None """ try: return self.get_alias(card.get("associatedAccount").get("productNumber")) except Exception: pass return None def fetch_last_transactions(self, account): logger.info(sys._getframe().f_code.co_name) end_date = date.today() start_date = date.today() - timedelta(days=30) # TODO: parametrizar este valor params = { "fromDate": start_date.strftime('%d/%m/%Y'), "toDate": end_date.strftime('%d/%m/%Y'), "limit": 6, # TODO: parametrizar este valor "offset": 0 } logger.info("Params para coger transactions: %s", params) self._add_headers([("Accept", 'application/json, text/javascript, */*; q=0.01')]) self._add_headers([('Content-Type', 'application/json; charset=utf-8')]) req = self.br.request_class("%s/%s/movements?%s" % ( PRODUCTS_ENDPOINT, account["uuid"], urllib.urlencode(params))) logger.info("Query a %s", req.get_full_url()) try: start_time = time.time() res = self.br.open(req) req_time = time.time() - start_time except Exception as e: logger.error("Error solicitando movimientos: %s", e) raise e logger.info("Tiempo de la request: %s", req_time) transactions = json.loads(res.read()) return_transactions = [] for t in transactions.get("elements", []): if t.get("amount") > 0: amount = colored(t.get("amount"), 'green') else: amount = colored(t.get("amount"), 'red') if t.get("balance") > 0: balance = colored(t.get("balance"), 'green') else: balance = colored(t.get("balance"), 'red', attrs=["bold"]) return_transactions.append([t.get("effectiveDate"), t.get("description"), amount, balance]) return return_transactions def fetch_pending_transactions(self, account): logger.info(sys._getframe().f_code.co_name) try: res_json = self.fetch("%s/%s/pending-movements" % (PRODUCTS_ENDPOINT, account["uuid"])) except Exception as ex: logger.exception("Error al obtener los movimientos pendientes") raise ex # Obtenemos los detalles para cada transaccion pendiente return_transactions = [] for tr in res_json: uuid = tr["uuid"] try: t = self.fetch("%s/%s/pending-movements/%s" % (PRODUCTS_ENDPOINT, account["uuid"], uuid)) except Exception as ex: logger.exception("Error al obtener los movimientos pendientes") raise ex if t.get("amount") > 0: amount = colored(t.get("amount"), 'green') else: amount = colored(t.get("amount"), 'red') balance = colored("pendiente", 'yellow') effectiveDate = colored(t.get("effectiveDate"), 'yellow') comment = colored(t.get("comment"), 'yellow') return_transactions.append([effectiveDate, comment, amount, balance]) return return_transactions def fetch(self, endpoint, headers=None, data=None, method=None): """ Realiza una peticion a ING el endpoint indicado y devuelve el json parseado :param endpoint: url donde realizar la peticion :param headers: listado de cabeceras opcional :param data: si esta definido este parametro se envia un POST :return: JSON parseado a objeto python """ if headers: req = self.br.request_class(endpoint, headers=headers) else: req = self.br.request_class(endpoint) if method: req.get_method = lambda: method try: res = self.br.open(req, data=data) res_txt = res.read() res_json = json.loads(res_txt) except mechanize.HTTPError as e: logger.error("Error enviando peticion\nURL: %s\nData: %s\nHeaders: %s\nResp: %s\nException: %s", req.get_full_url(), data, req.headers, e.read(), e) raise e except ValueError as e: logger.error("Error obteniendo JSON de la respuesta de ING") logger.error(res.read()) raise e return res_json def tarjetaCoordenadas(self, position): """ Obtiene el pinpad del endpoint y nos devuelve un array con la respuesta que tenemos que devolver :param position: posicion de la tarjeta de coordenadas que nos piden :return: array con las posiciones del pinpad que debe enviarse """ # Obtener pinpad try: res_json = self.fetch(CARD_ENDPOINT) except Exception as ex: logger.exception("Error obteniendo el pinpad") raise ex # Obtenemos el pinpad try: pinpad = process_pin_images(res_json["pinpad"]) except Exception as e: logger.error("Exception en process_pin_images: %s", e) logger.error(res_json["pinpad"]) raise e logger.info("Pinpad: %s", pinpad) # Obtenemos la coordenada que necesitamos coordenada = self.config.get_coordenada(position) codecDigits = [] for i in map(int, str(coordenada)): codecDigits.append(pinpad.index(i)) logger.info("codecDigits: %s", codecDigits) return codecDigits
adrianlzt/ingdirect_cli
browser.py
browser.py
py
20,033
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 14, "usage_type": "call" }, { "api_name": "mechanize.Browser", "line_number": 21, "usage_type": "call" }, { "api_name": "sys._getframe", "line_number": 66, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 72, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 78, "usage_type": "call" }, { "api_name": "sys._getframe", "line_number": 82, "usage_type": "call" }, { "api_name": "mechanize.HTTPError", "line_number": 89, "usage_type": "attribute" }, { "api_name": "sys._getframe", "line_number": 96, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 111, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 125, "usage_type": "call" }, { "api_name": "sys._getframe", "line_number": 165, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 171, "usage_type": "call" }, { "api_name": "sys._getframe", "line_number": 178, "usage_type": "call" }, { "api_name": "mechanize.HTTPError", "line_number": 184, "usage_type": "attribute" }, { "api_name": "json.loads", "line_number": 192, "usage_type": "call" }, { "api_name": "sys._getframe", "line_number": 300, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 302, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 302, "usage_type": "name" }, { "api_name": "datetime.date.today", "line_number": 303, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 303, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 303, "usage_type": "call" }, { "api_name": "urllib.urlencode", "line_number": 315, "usage_type": "call" }, { "api_name": "time.time", "line_number": 318, "usage_type": "call" }, { "api_name": "time.time", "line_number": 320, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 326, "usage_type": "call" }, { "api_name": "termcolor.colored", "line_number": 331, "usage_type": "call" }, { "api_name": "termcolor.colored", "line_number": 333, "usage_type": "call" }, { "api_name": "termcolor.colored", "line_number": 336, "usage_type": "call" }, { "api_name": "termcolor.colored", "line_number": 338, "usage_type": "call" }, { "api_name": "sys._getframe", "line_number": 345, "usage_type": "call" }, { "api_name": "termcolor.colored", "line_number": 364, "usage_type": "call" }, { "api_name": "termcolor.colored", "line_number": 366, "usage_type": "call" }, { "api_name": "termcolor.colored", "line_number": 368, "usage_type": "call" }, { "api_name": "termcolor.colored", "line_number": 369, "usage_type": "call" }, { "api_name": "termcolor.colored", "line_number": 370, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 393, "usage_type": "call" }, { "api_name": "mechanize.HTTPError", "line_number": 394, "usage_type": "attribute" } ]
7212182080
import torch from torch import nn from tqdm.auto import tqdm from torchvision import transforms from torchvision.utils import make_grid from torch.utils.data import DataLoader import matplotlib.pyplot as plt # import glob import random import os from torch.utils.data import Dataset from PIL import Image #filesize import os torch.manual_seed(0) def show_tensor_images(image_tensor, num_images=25, size=(1, 28, 28), img_name=None): ''' Function for visualizing images: Given a tensor of images, number of images, and size per image, plots and prints the images in an uniform grid. ''' image_tensor = (image_tensor + 1) / 2 image_shifted = image_tensor image_unflat = image_shifted.detach().cpu().view(-1, *size) image_grid = make_grid(image_unflat[:num_images], nrow=5) img_to_save = image_grid.permute(1, 2, 0).squeeze().cpu().numpy() if img_name!= None: plt.imsave(img_name, img_to_save) #.imshow(image_grid.permute(1, 2, 0).squeeze()) #plt.show() # Inspired by https://github.com/aitorzip/PyTorch-CycleGAN/blob/master/datasets.py class ImageDataset(Dataset): def __init__(self, root, transform=None, mode='train'): self.transform = transform self.files_A = sorted(glob.glob(os.path.join(root, '%sA' % mode) + '/*.*')) self.files_B = sorted(glob.glob(os.path.join(root, '%sB' % mode) + '/*.*')) if len(self.files_A) > len(self.files_B): self.files_A, self.files_B = self.files_B, self.files_A self.new_perm() assert len(self.files_A) > 0, "Make sure you downloaded the horse2zebra images!" def new_perm(self): self.randperm = torch.randperm(len(self.files_B))[:len(self.files_A)] def __getitem__(self, index): item_A = self.transform(Image.open(self.files_A[index % len(self.files_A)])) item_B = self.transform(Image.open(self.files_B[self.randperm[index]])) if item_A.shape[0] != 3: item_A = item_A.repeat(3, 1, 1) if item_B.shape[0] != 3: item_B = item_B.repeat(3, 1, 1) if index == len(self) - 1: self.new_perm() # Old versions of PyTorch didn't support normalization for different-channeled images return (item_A - 0.5) * 2, (item_B - 0.5) * 2 def __len__(self): return min(len(self.files_A), len(self.files_B)) class ResidualBlock(nn.Module): ''' ResidualBlock Class: Performs two convolutions and an instance normalization, the input is added to this output to form the residual block output. Values: input_channels: the number of channels to expect from a given input ''' def __init__(self, input_channels): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(input_channels, input_channels, kernel_size=3, padding=1, padding_mode='reflect') self.conv2 = nn.Conv2d(input_channels, input_channels, kernel_size=3, padding=1, padding_mode='reflect') self.instancenorm = nn.InstanceNorm2d(input_channels) self.activation = nn.ReLU() def forward(self, x): ''' Function for completing a forward pass of ResidualBlock: Given an image tensor, completes a residual block and returns the transformed tensor. Parameters: x: image tensor of shape (batch size, channels, height, width) ''' original_x = x.clone() x = self.conv1(x) x = self.instancenorm(x) x = self.activation(x) x = self.conv2(x) x = self.instancenorm(x) return original_x + x class ContractingBlock(nn.Module): ''' ContractingBlock Class Performs a convolution followed by a max pool operation and an optional instance norm. Values: input_channels: the number of channels to expect from a given input ''' def __init__(self, input_channels, use_bn=True, kernel_size=3, activation='relu'): super(ContractingBlock, self).__init__() self.conv1 = nn.Conv2d(input_channels, input_channels * 2, kernel_size=kernel_size, padding=1, stride=2, padding_mode='reflect') self.activation = nn.ReLU() if activation == 'relu' else nn.LeakyReLU(0.2) if use_bn: self.instancenorm = nn.InstanceNorm2d(input_channels * 2) self.use_bn = use_bn def forward(self, x): ''' Function for completing a forward pass of ContractingBlock: Given an image tensor, completes a contracting block and returns the transformed tensor. Parameters: x: image tensor of shape (batch size, channels, height, width) ''' x = self.conv1(x) if self.use_bn: x = self.instancenorm(x) x = self.activation(x) return x class ExpandingBlock(nn.Module): ''' ExpandingBlock Class: Performs a convolutional transpose operation in order to upsample, with an optional instance norm Values: input_channels: the number of channels to expect from a given input ''' def __init__(self, input_channels, use_bn=True): super(ExpandingBlock, self).__init__() self.conv1 = nn.ConvTranspose2d(input_channels, input_channels // 2, kernel_size=3, stride=2, padding=1, output_padding=1) if use_bn: self.instancenorm = nn.InstanceNorm2d(input_channels // 2) self.use_bn = use_bn self.activation = nn.ReLU() def forward(self, x): ''' Function for completing a forward pass of ExpandingBlock: Given an image tensor, completes an expanding block and returns the transformed tensor. Parameters: x: image tensor of shape (batch size, channels, height, width) skip_con_x: the image tensor from the contracting path (from the opposing block of x) for the skip connection ''' x = self.conv1(x) if self.use_bn: x = self.instancenorm(x) x = self.activation(x) return x class FeatureMapBlock(nn.Module): ''' FeatureMapBlock Class The final layer of a Generator - maps each the output to the desired number of output channels Values: input_channels: the number of channels to expect from a given input output_channels: the number of channels to expect for a given output ''' def __init__(self, input_channels, output_channels): super(FeatureMapBlock, self).__init__() self.conv = nn.Conv2d(input_channels, output_channels, kernel_size=7, padding=3, padding_mode='reflect') def forward(self, x): ''' Function for completing a forward pass of FeatureMapBlock: Given an image tensor, returns it mapped to the desired number of channels. Parameters: x: image tensor of shape (batch size, channels, height, width) ''' x = self.conv(x) return x class Generator(nn.Module): ''' Generator Class A series of 2 contracting blocks, 9 residual blocks, and 2 expanding blocks to transform an input image into an image from the other class, with an upfeature layer at the start and a downfeature layer at the end. Values: input_channels: the number of channels to expect from a given input output_channels: the number of channels to expect for a given output ''' def __init__(self, input_channels, output_channels, hidden_channels=64): super(Generator, self).__init__() self.upfeature = FeatureMapBlock(input_channels, hidden_channels) self.contract1 = ContractingBlock(hidden_channels) self.contract2 = ContractingBlock(hidden_channels * 2) res_mult = 4 self.res0 = ResidualBlock(hidden_channels * res_mult) self.res1 = ResidualBlock(hidden_channels * res_mult) self.res2 = ResidualBlock(hidden_channels * res_mult) self.res3 = ResidualBlock(hidden_channels * res_mult) self.res4 = ResidualBlock(hidden_channels * res_mult) self.res5 = ResidualBlock(hidden_channels * res_mult) self.res6 = ResidualBlock(hidden_channels * res_mult) self.res7 = ResidualBlock(hidden_channels * res_mult) self.res8 = ResidualBlock(hidden_channels * res_mult) self.expand2 = ExpandingBlock(hidden_channels * 4) self.expand3 = ExpandingBlock(hidden_channels * 2) self.downfeature = FeatureMapBlock(hidden_channels, output_channels) self.tanh = torch.nn.Tanh() def forward(self, x): ''' Function for completing a forward pass of Generator: Given an image tensor, passes it through the U-Net with residual blocks and returns the output. Parameters: x: image tensor of shape (batch size, channels, height, width) ''' x0 = self.upfeature(x) x1 = self.contract1(x0) x2 = self.contract2(x1) x3 = self.res0(x2) x4 = self.res1(x3) x5 = self.res2(x4) x6 = self.res3(x5) x7 = self.res4(x6) x8 = self.res5(x7) x9 = self.res6(x8) x10 = self.res7(x9) x11 = self.res8(x10) x12 = self.expand2(x11) x13 = self.expand3(x12) xn = self.downfeature(x13) return self.tanh(xn) class Discriminator(nn.Module): ''' Discriminator Class Structured like the contracting path of the U-Net, the discriminator will output a matrix of values classifying corresponding portions of the image as real or fake. Parameters: input_channels: the number of image input channels hidden_channels: the initial number of discriminator convolutional filters ''' def __init__(self, input_channels, hidden_channels=64): super(Discriminator, self).__init__() self.upfeature = FeatureMapBlock(input_channels, hidden_channels) self.contract1 = ContractingBlock(hidden_channels, use_bn=False, kernel_size=4, activation='lrelu') self.contract2 = ContractingBlock(hidden_channels * 2, kernel_size=4, activation='lrelu') self.contract3 = ContractingBlock(hidden_channels * 4, kernel_size=4, activation='lrelu') self.final = nn.Conv2d(hidden_channels * 8, 1, kernel_size=1) def forward(self, x): x0 = self.upfeature(x) x1 = self.contract1(x0) x2 = self.contract2(x1) x3 = self.contract3(x2) xn = self.final(x3) return xn import torch.nn.functional as F adv_criterion = nn.MSELoss() recon_criterion = nn.L1Loss() n_epochs = 200 dim_A = 3 dim_B = 3 display_step = 1000#200 batch_size = 1 lr = 0.0002 load_shape = 286 target_shape = 256 device = 'cuda' transform = transforms.Compose([ transforms.Resize(load_shape), transforms.RandomCrop(target_shape), transforms.RandomHorizontalFlip(), transforms.ToTensor(), ]) import torchvision dataset = ImageDataset("horse2zebra", transform=transform) gen_AB = Generator(dim_A, dim_B).to(device) gen_BA = Generator(dim_B, dim_A).to(device) gen_opt = torch.optim.Adam(list(gen_AB.parameters()) + list(gen_BA.parameters()), lr=lr, betas=(0.5, 0.999)) disc_A = Discriminator(dim_A).to(device) disc_A_opt = torch.optim.Adam(disc_A.parameters(), lr=lr, betas=(0.5, 0.999)) disc_B = Discriminator(dim_B).to(device) disc_B_opt = torch.optim.Adam(disc_B.parameters(), lr=lr, betas=(0.5, 0.999)) def weights_init(m): if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): torch.nn.init.normal_(m.weight, 0.0, 0.02) if isinstance(m, nn.BatchNorm2d): torch.nn.init.normal_(m.weight, 0.0, 0.02) torch.nn.init.constant_(m.bias, 0) # Feel free to change pretrained to False if you're training the model from scratch pretrained = True#True if pretrained: pre_dict = torch.load('cycleGAN_ckpt.pth')#cycleGAN_100000 gen_AB.load_state_dict(pre_dict['gen_AB']) gen_BA.load_state_dict(pre_dict['gen_BA']) gen_opt.load_state_dict(pre_dict['gen_opt']) disc_A.load_state_dict(pre_dict['disc_A']) disc_A_opt.load_state_dict(pre_dict['disc_A_opt']) disc_B.load_state_dict(pre_dict['disc_B']) disc_B_opt.load_state_dict(pre_dict['disc_B_opt']) else: gen_AB = gen_AB.apply(weights_init) gen_BA = gen_BA.apply(weights_init) disc_A = disc_A.apply(weights_init) disc_B = disc_B.apply(weights_init) # UNQ_C1 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # GRADED FUNCTION: get_disc_loss def get_disc_loss(real_X, fake_X, disc_X, adv_criterion): ''' Return the loss of the discriminator given inputs. Parameters: real_X: the real images from pile X fake_X: the generated images of class X disc_X: the discriminator for class X; takes images and returns real/fake class X prediction matrices adv_criterion: the adversarial loss function; takes the discriminator predictions and the target labels and returns a adversarial loss (which you aim to minimize) ''' #### START CODE HERE #### disc_fake_X_hat = disc_X(fake_X.detach()) # Detach generator disc_fake_X_loss = adv_criterion(disc_fake_X_hat, torch.zeros_like(disc_fake_X_hat)) disc_real_X_hat = disc_X(real_X) disc_real_X_loss = adv_criterion(disc_real_X_hat, torch.ones_like(disc_real_X_hat)) disc_loss = (disc_fake_X_loss + disc_real_X_loss) / 2 #### END CODE HERE #### return disc_loss # UNIT TEST test_disc_X = lambda x: x * 97 test_real_X = torch.tensor(83.) test_fake_X = torch.tensor(89.) test_adv_criterion = lambda x, y: x * 79 + y * 73 assert torch.abs((get_disc_loss(test_real_X, test_fake_X, test_disc_X, test_adv_criterion)) - 659054.5000) < 1e-6 test_disc_X = lambda x: x.mean(0, keepdim=True) test_adv_criterion = torch.nn.BCEWithLogitsLoss() test_input = torch.ones(20, 10) # If this runs, it's a pass - checks that the shapes are treated correctly get_disc_loss(test_input, test_input, test_disc_X, test_adv_criterion) print("Success!") # UNQ_C2 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # GRADED FUNCTION: get_gen_adversarial_loss def get_gen_adversarial_loss(real_X, disc_Y, gen_XY, adv_criterion): ''' Return the adversarial loss of the generator given inputs (and the generated images for testing purposes). Parameters: real_X: the real images from pile X disc_Y: the discriminator for class Y; takes images and returns real/fake class Y prediction matrices gen_XY: the generator for class X to Y; takes images and returns the images transformed to class Y adv_criterion: the adversarial loss function; takes the discriminator predictions and the target labels and returns a adversarial loss (which you aim to minimize) ''' #### START CODE HERE #### fake_Y = gen_XY(real_X) disc_fake_Y_hat = disc_Y(fake_Y) adversarial_loss = adv_criterion(disc_fake_Y_hat, torch.ones_like(disc_fake_Y_hat)) #### END CODE HERE #### return adversarial_loss, fake_Y # UNIT TEST test_disc_Y = lambda x: x * 97 test_real_X = torch.tensor(83.) test_gen_XY = lambda x: x * 89 test_adv_criterion = lambda x, y: x * 79 + y * 73 test_res = get_gen_adversarial_loss(test_real_X, test_disc_Y, test_gen_XY, test_adv_criterion) assert torch.abs(test_res[0] - 56606652) < 1e-6 assert torch.abs(test_res[1] - 7387) < 1e-6 test_disc_Y = lambda x: x.mean(0, keepdim=True) test_adv_criterion = torch.nn.BCEWithLogitsLoss() test_input = torch.ones(20, 10) # If this runs, it's a pass - checks that the shapes are treated correctly get_gen_adversarial_loss(test_input, test_disc_Y, test_gen_XY, test_adv_criterion) print("Success!") # UNQ_C3 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # GRADED FUNCTION: get_identity_loss def get_identity_loss(real_X, gen_YX, identity_criterion): ''' Return the identity loss of the generator given inputs (and the generated images for testing purposes). Parameters: real_X: the real images from pile X gen_YX: the generator for class Y to X; takes images and returns the images transformed to class X identity_criterion: the identity loss function; takes the real images from X and those images put through a Y->X generator and returns the identity loss (which you aim to minimize) ''' #### START CODE HERE #### identity_X = gen_YX(real_X) identity_loss = identity_criterion(identity_X, real_X) #### END CODE HERE #### return identity_loss, identity_X # UNIT TEST test_real_X = torch.tensor(83.) test_gen_YX = lambda x: x * 89 test_identity_criterion = lambda x, y: (x + y) * 73 test_res = get_identity_loss(test_real_X, test_gen_YX, test_identity_criterion) assert torch.abs(test_res[0] - 545310) < 1e-6 assert torch.abs(test_res[1] - 7387) < 1e-6 print("Success!") # UNQ_C4 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # GRADED FUNCTION: get_cycle_consistency_loss def get_cycle_consistency_loss(real_X, fake_Y, gen_YX, cycle_criterion): ''' Return the cycle consistency loss of the generator given inputs (and the generated images for testing purposes). Parameters: real_X: the real images from pile X fake_Y: the generated images of class Y gen_YX: the generator for class Y to X; takes images and returns the images transformed to class X cycle_criterion: the cycle consistency loss function; takes the real images from X and those images put through a X->Y generator and then Y->X generator and returns the cycle consistency loss (which you aim to minimize) ''' #### START CODE HERE #### cycle_X = gen_YX(fake_Y) cycle_loss = cycle_criterion(cycle_X, real_X) #### END CODE HERE #### return cycle_loss, cycle_X # UNIT TEST test_real_X = torch.tensor(83.) test_fake_Y = torch.tensor(97.) test_gen_YX = lambda x: x * 89 test_cycle_criterion = lambda x, y: (x + y) * 73 test_res = get_cycle_consistency_loss(test_real_X, test_fake_Y, test_gen_YX, test_cycle_criterion) assert torch.abs(test_res[1] - 8633) < 1e-6 assert torch.abs(test_res[0] - 636268) < 1e-6 print("Success!") # UNQ_C5 (UNIQUE CELL IDENTIFIER, DO NOT EDIT) # GRADED FUNCTION: get_gen_loss def get_gen_loss(real_A, real_B, gen_AB, gen_BA, disc_A, disc_B, adv_criterion, identity_criterion, cycle_criterion, lambda_identity=0.1, lambda_cycle=10): ''' Return the loss of the generator given inputs. Parameters: real_A: the real images from pile A real_B: the real images from pile B gen_AB: the generator for class A to B; takes images and returns the images transformed to class B gen_BA: the generator for class B to A; takes images and returns the images transformed to class A disc_A: the discriminator for class A; takes images and returns real/fake class A prediction matrices disc_B: the discriminator for class B; takes images and returns real/fake class B prediction matrices adv_criterion: the adversarial loss function; takes the discriminator predictions and the true labels and returns a adversarial loss (which you aim to minimize) identity_criterion: the reconstruction loss function used for identity loss and cycle consistency loss; takes two sets of images and returns their pixel differences (which you aim to minimize) cycle_criterion: the cycle consistency loss function; takes the real images from X and those images put through a X->Y generator and then Y->X generator and returns the cycle consistency loss (which you aim to minimize). Note that in practice, cycle_criterion == identity_criterion == L1 loss lambda_identity: the weight of the identity loss lambda_cycle: the weight of the cycle-consistency loss ''' # Hint 1: Make sure you include both directions - you can think of the generators as collaborating # Hint 2: Don't forget to use the lambdas for the identity loss and cycle loss! #### START CODE HERE #### # Adversarial Loss -- get_gen_adversarial_loss(real_X, disc_Y, gen_XY, adv_criterion) adv_loss_BA, fake_A = get_gen_adversarial_loss(real_B, disc_A, gen_BA, adv_criterion) adv_loss_AB, fake_B = get_gen_adversarial_loss(real_A, disc_B, gen_AB, adv_criterion) gen_adversarial_loss = adv_loss_BA + adv_loss_AB # Identity Loss -- get_identity_loss(real_X, gen_YX, identity_criterion) identity_loss_A, identity_A = get_identity_loss(real_A, gen_BA, identity_criterion) identity_loss_B, identity_B = get_identity_loss(real_B, gen_AB, identity_criterion) gen_identity_loss = identity_loss_A + identity_loss_B # Cycle-consistency Loss -- get_cycle_consistency_loss(real_X, fake_Y, gen_YX, cycle_criterion) cycle_loss_BA, cycle_A = get_cycle_consistency_loss(real_A, fake_B, gen_BA, cycle_criterion) cycle_loss_AB, cycle_B = get_cycle_consistency_loss(real_B, fake_A, gen_AB, cycle_criterion) gen_cycle_loss = cycle_loss_BA + cycle_loss_AB # Total loss gen_loss = lambda_identity * gen_identity_loss + lambda_cycle * gen_cycle_loss + gen_adversarial_loss #### END CODE HERE #### return gen_loss, fake_A, fake_B # UNIT TEST test_real_A = torch.tensor(97) test_real_B = torch.tensor(89) test_gen_AB = lambda x: x * 83 test_gen_BA = lambda x: x * 79 test_disc_A = lambda x: x * 47 test_disc_B = lambda x: x * 43 test_adv_criterion = lambda x, y: x * 73 + y * 71 test_recon_criterion = lambda x, y: (x + y) * 61 test_lambda_identity = 59 test_lambda_cycle = 53 test_res = get_gen_loss( test_real_A, test_real_B, test_gen_AB, test_gen_BA, test_disc_A, test_disc_B, test_adv_criterion, test_recon_criterion, test_recon_criterion, test_lambda_identity, test_lambda_cycle) assert test_res[0].item() == 4047804560 assert test_res[1].item() == 7031 assert test_res[2].item() == 8051 print("Success!") from skimage import color import numpy as np plt.rcParams["figure.figsize"] = (10, 10) def train(save_model=True): mean_generator_loss = 0 mean_discriminator_loss = 0 dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) cur_step = 0 for epoch in range(108,n_epochs): # Dataloader returns the batches # for image, _ in tqdm(dataloader): for real_A, real_B in tqdm(dataloader): # image_width = image.shape[3] real_A = nn.functional.interpolate(real_A, size=target_shape) real_B = nn.functional.interpolate(real_B, size=target_shape) cur_batch_size = len(real_A) real_A = real_A.to(device) real_B = real_B.to(device) ### Update discriminator A ### disc_A_opt.zero_grad() # Zero out the gradient before backpropagation with torch.no_grad(): fake_A = gen_BA(real_B) disc_A_loss = get_disc_loss(real_A, fake_A, disc_A, adv_criterion) disc_A_loss.backward(retain_graph=True) # Update gradients disc_A_opt.step() # Update optimizer ### Update discriminator B ### disc_B_opt.zero_grad() # Zero out the gradient before backpropagation with torch.no_grad(): fake_B = gen_AB(real_A) disc_B_loss = get_disc_loss(real_B, fake_B, disc_B, adv_criterion) disc_B_loss.backward(retain_graph=True) # Update gradients disc_B_opt.step() # Update optimizer ### Update generator ### gen_opt.zero_grad() gen_loss, fake_A, fake_B = get_gen_loss( real_A, real_B, gen_AB, gen_BA, disc_A, disc_B, adv_criterion, recon_criterion, recon_criterion ) gen_loss.backward() # Update gradients gen_opt.step() # Update optimizer # Keep track of the average discriminator loss mean_discriminator_loss += disc_A_loss.item() / display_step # Keep track of the average generator loss mean_generator_loss += gen_loss.item() / display_step ### Visualization code ### if cur_step % display_step == 0: print(f"Epoch {epoch}: Step {cur_step}: Generator (U-Net) loss: {mean_generator_loss}, Discriminator loss: {mean_discriminator_loss}") show_tensor_images(torch.cat([real_A, real_B]), size=(dim_A, target_shape, target_shape)) img_name = f'res_cycle/ep_{epoch}.png' show_tensor_images(torch.cat([fake_B, fake_A]), size=(dim_B, target_shape, target_shape),img_name=img_name) mean_generator_loss = 0 mean_discriminator_loss = 0 # You can change save_model to True if you'd like to save the model space_taken = sum(os.path.getsize(f) for f in os.listdir('models') if os.path.isfile(f))/(1024*1024*1024) if space_taken>20:#non più di 20 GB per questo script exit('Folder limit exceeded') if save_model: torch.save({ 'gen_AB': gen_AB.state_dict(), 'gen_BA': gen_BA.state_dict(), 'gen_opt': gen_opt.state_dict(), 'disc_A': disc_A.state_dict(), 'disc_A_opt': disc_A_opt.state_dict(), 'disc_B': disc_B.state_dict(), 'disc_B_opt': disc_B_opt.state_dict() }, f"models/cycleGAN_{cur_step}.pth") cur_step += 1 train()
Zefyrus94/GAN_test
cyclegan.py
cyclegan.py
py
25,719
python
en
code
1
github-code
6
[ { "api_name": "torch.manual_seed", "line_number": 16, "usage_type": "call" }, { "api_name": "torchvision.utils.make_grid", "line_number": 26, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.imsave", "line_number": 29, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 29, "usage_type": "name" }, { "api_name": "torch.utils.data.Dataset", "line_number": 34, "usage_type": "name" }, { "api_name": "glob.glob", "line_number": 37, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 37, "usage_type": "call" }, { "api_name": "os.path", "line_number": 37, "usage_type": "attribute" }, { "api_name": "glob.glob", "line_number": 38, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 38, "usage_type": "call" }, { "api_name": "os.path", "line_number": 38, "usage_type": "attribute" }, { "api_name": "torch.randperm", "line_number": 45, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 48, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 48, "usage_type": "name" }, { "api_name": "PIL.Image.open", "line_number": 49, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 49, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 61, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 61, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 71, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 71, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 72, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 72, "usage_type": "name" }, { "api_name": "torch.nn.InstanceNorm2d", "line_number": 73, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 73, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 74, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 74, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 90, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 90, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 99, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 99, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 100, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 100, "usage_type": "name" }, { "api_name": "torch.nn.LeakyReLU", "line_number": 100, "usage_type": "call" }, { "api_name": "torch.nn.InstanceNorm2d", "line_number": 102, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 102, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 118, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 118, "usage_type": "name" }, { "api_name": "torch.nn.ConvTranspose2d", "line_number": 128, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 128, "usage_type": "name" }, { "api_name": "torch.nn.InstanceNorm2d", "line_number": 130, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 130, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 132, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 132, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 149, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 149, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 160, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 160, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 171, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 171, "usage_type": "name" }, { "api_name": "torch.nn.Tanh", "line_number": 199, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 199, "usage_type": "attribute" }, { "api_name": "torch.nn.Module", "line_number": 225, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 225, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 240, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 240, "usage_type": "name" }, { "api_name": "torch.nn.MSELoss", "line_number": 251, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 251, "usage_type": "name" }, { "api_name": "torch.nn.L1Loss", "line_number": 252, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 252, "usage_type": "name" }, { "api_name": "torchvision.transforms.Compose", "line_number": 264, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 264, "usage_type": "name" }, { "api_name": "torchvision.transforms.Resize", "line_number": 265, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 265, "usage_type": "name" }, { "api_name": "torchvision.transforms.RandomCrop", "line_number": 266, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 266, "usage_type": "name" }, { "api_name": "torchvision.transforms.RandomHorizontalFlip", "line_number": 267, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 267, "usage_type": "name" }, { "api_name": "torchvision.transforms.ToTensor", "line_number": 268, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 268, "usage_type": "name" }, { "api_name": "torch.optim.Adam", "line_number": 276, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 276, "usage_type": "attribute" }, { "api_name": "torch.optim.Adam", "line_number": 278, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 278, "usage_type": "attribute" }, { "api_name": "torch.optim.Adam", "line_number": 280, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 280, "usage_type": "attribute" }, { "api_name": "torch.nn.Conv2d", "line_number": 283, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 283, "usage_type": "name" }, { "api_name": "torch.nn.ConvTranspose2d", "line_number": 283, "usage_type": "attribute" }, { "api_name": "torch.nn.init.normal_", "line_number": 284, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 284, "usage_type": "attribute" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 285, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 285, "usage_type": "name" }, { "api_name": "torch.nn.init.normal_", "line_number": 286, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 286, "usage_type": "attribute" }, { "api_name": "torch.nn.init.constant_", "line_number": 287, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 287, "usage_type": "attribute" }, { "api_name": "torch.load", "line_number": 292, "usage_type": "call" }, { "api_name": "torch.zeros_like", "line_number": 322, "usage_type": "call" }, { "api_name": "torch.ones_like", "line_number": 324, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 331, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 332, "usage_type": "call" }, { "api_name": "torch.abs", "line_number": 334, "usage_type": "call" }, { "api_name": "torch.nn.BCEWithLogitsLoss", "line_number": 336, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 336, "usage_type": "attribute" }, { "api_name": "torch.ones", "line_number": 337, "usage_type": "call" }, { "api_name": "torch.ones_like", "line_number": 361, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 367, "usage_type": "call" }, { "api_name": "torch.abs", "line_number": 371, "usage_type": "call" }, { "api_name": "torch.abs", "line_number": 372, "usage_type": "call" }, { "api_name": "torch.nn.BCEWithLogitsLoss", "line_number": 374, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 374, "usage_type": "attribute" }, { "api_name": "torch.ones", "line_number": 375, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 401, "usage_type": "call" }, { "api_name": "torch.abs", "line_number": 405, "usage_type": "call" }, { "api_name": "torch.abs", "line_number": 406, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 431, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 432, "usage_type": "call" }, { "api_name": "torch.abs", "line_number": 436, "usage_type": "call" }, { "api_name": "torch.abs", "line_number": 437, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 493, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 494, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 522, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 522, "usage_type": "name" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 528, "usage_type": "call" }, { "api_name": "tqdm.auto.tqdm", "line_number": 534, "usage_type": "call" }, { "api_name": "torch.nn.functional.interpolate", "line_number": 536, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 536, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 536, "usage_type": "name" }, { "api_name": "torch.nn.functional.interpolate", "line_number": 537, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 537, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 537, "usage_type": "name" }, { "api_name": "torch.no_grad", "line_number": 544, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 552, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 574, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 576, "usage_type": "call" }, { "api_name": "os.path.getsize", "line_number": 580, "usage_type": "call" }, { "api_name": "os.path", "line_number": 580, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 580, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 580, "usage_type": "call" }, { "api_name": "torch.save", "line_number": 584, "usage_type": "call" } ]
23647554795
from flask import render_template, request, flash, jsonify from appInitialize import app, db from model.client import Client from model.product import Product from model.order import Order import json @app.route('/') def index (): return render_template('layout.html') #Consultar clientes @app.route('/read/clients', methods=['GET']) def readClients (): clients = Client.query.filter_by(state = 'activo').all() return render_template('read.html', id = False, records = clients, route = 'client') @app.route('/api/read/clients', methods=['GET']) def apiReadClients (): clients = Client.query.filter_by(state = 'activo').all() return jsonify([{'name': client.name, 'document': client.document, 'state': client.state, 'created_at': client.created_at} for client in clients]) #Consultar productos @app.route('/read/products', methods=['GET']) def readProducts (): products = Product.query.filter(Product.state != 'inactivo').all() return render_template('read.html', id = False, records = products, route = 'product') @app.route('/api/read/products', methods=['GET']) def apiReadProducts (): products = Product.query.filter(Product.state != 'inactivo').all() return jsonify([{'name': product.name, 'document': product.price, 'state': product.state, 'created_at': product.created_at} for product in products]) #Consultar ordenes @app.route('/read/orders', methods=['GET', 'POST']) def readOrders (): if request.method == 'POST': id = request.form['id'] if id == "true": clientid = request.form['clientid'] client = Client.query.filter_by(clientid = clientid, state = 'activo').all() if len(client) == 0: flash('Cliente no encontrado') return render_template('read.html', id = True, route = 'order') else: orders = Order.query.filter_by(clientid = clientid, state = 'pendiente').join(Client, Order.clientid == Client.clientid and Client.state == 'activo').join(Product, Order.clientid == Product.productid and Product.state != 'inactivo').all() return render_template('read.html', id = False, records = orders, route = 'order') return render_template('read.html', id = True, route = 'order') @app.route('/api/read/orders', methods=['POST']) def apiReadOrders (): if request.method == 'POST': data = json.loads(request.data) client = Client.query.filter_by(clientid = data['clientid'], state = 'activo').all() if len(client) == 0: return "Registro no encontrado", 402 orders = Order.query.filter_by(clientid = data['clientid'], state = 'pendiente').join(Client, Order.clientid == Client.clientid and Client.state == 'activo').join(Product, Order.clientid == Product.productid and Product.state != 'inactivo').all() return jsonify([{'clientid': order.clientid, 'productid': order.productid, 'quantity': order.quantity, 'total': order.total, 'state': order.state, 'created_at': order.created_at} for order in orders]) #Consultar compras @app.route('/read/purchases', methods=['GET', 'POST']) def readPurchases (): if request.method == 'POST': id = request.form['id'] if id == "true": clientid = request.form['clientid'] client = Client.query.filter_by(clientid = clientid, state = 'activo').all() if len(client) == 0: flash('Cliente no encontrado') return render_template('read.html', id = True, route = 'purchase') else: orders = Order.query.filter_by(clientid = clientid, state = 'pagada').join(Client, Order.clientid == Client.clientid and Client.state == 'activo').join(Product, Order.clientid == Product.productid and Product.state != 'inactivo').all() return render_template('read.html', id = False, records = orders, route = 'purchase') return render_template('read.html', id = True, route = 'purchase') @app.route('/api/read/purchases', methods=['POST']) def apiReadPurchases (): if request.method == 'POST': data = json.loads(request.data) client = Client.query.filter_by(clientid = data['clientid'], state = 'activo').all() if len(client) == 0: return "Registro no encontrado", 402 orders = Order.query.filter_by(clientid = data['clientid'], state = 'pagada').join(Client, Order.clientid == Client.clientid and Client.state == 'activo').join(Product, Order.clientid == Product.productid and Product.state != 'inactivo').all() return jsonify([{'clientid': order.clientid, 'productid': order.productid, 'quantity': order.quantity, 'total': order.total, 'state': order.state, 'created_at': order.created_at} for order in orders]) if __name__ == '__main__': app.run(host='0.0.0.0', debug=True)
cesar-orozco-chr/tienda-online
read/app.py
app.py
py
4,862
python
en
code
0
github-code
6
[ { "api_name": "flask.render_template", "line_number": 10, "usage_type": "call" }, { "api_name": "appInitialize.app.route", "line_number": 8, "usage_type": "call" }, { "api_name": "appInitialize.app", "line_number": 8, "usage_type": "name" }, { "api_name": "model.client.Client.query.filter_by", "line_number": 15, "usage_type": "call" }, { "api_name": "model.client.Client.query", "line_number": 15, "usage_type": "attribute" }, { "api_name": "model.client.Client", "line_number": 15, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 16, "usage_type": "call" }, { "api_name": "appInitialize.app.route", "line_number": 13, "usage_type": "call" }, { "api_name": "appInitialize.app", "line_number": 13, "usage_type": "name" }, { "api_name": "model.client.Client.query.filter_by", "line_number": 20, "usage_type": "call" }, { "api_name": "model.client.Client.query", "line_number": 20, "usage_type": "attribute" }, { "api_name": "model.client.Client", "line_number": 20, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 21, "usage_type": "call" }, { "api_name": "appInitialize.app.route", "line_number": 18, "usage_type": "call" }, { "api_name": "appInitialize.app", "line_number": 18, "usage_type": "name" }, { "api_name": "model.product.Product.query.filter", "line_number": 26, "usage_type": "call" }, { "api_name": "model.product.Product.query", "line_number": 26, "usage_type": "attribute" }, { "api_name": "model.product.Product", "line_number": 26, "usage_type": "name" }, { "api_name": "model.product.Product.state", "line_number": 26, "usage_type": "attribute" }, { "api_name": "flask.render_template", "line_number": 27, "usage_type": "call" }, { "api_name": "appInitialize.app.route", "line_number": 24, "usage_type": "call" }, { "api_name": "appInitialize.app", "line_number": 24, "usage_type": "name" }, { "api_name": "model.product.Product.query.filter", "line_number": 31, "usage_type": "call" }, { "api_name": "model.product.Product.query", "line_number": 31, "usage_type": "attribute" }, { "api_name": "model.product.Product", "line_number": 31, "usage_type": "name" }, { "api_name": "model.product.Product.state", "line_number": 31, "usage_type": "attribute" }, { "api_name": "flask.jsonify", "line_number": 32, "usage_type": "call" }, { "api_name": "appInitialize.app.route", "line_number": 29, "usage_type": "call" }, { "api_name": "appInitialize.app", "line_number": 29, "usage_type": "name" }, { "api_name": "flask.request.method", "line_number": 37, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 37, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 38, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 38, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 40, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 40, "usage_type": "name" }, { "api_name": "model.client.Client.query.filter_by", "line_number": 41, "usage_type": "call" }, { "api_name": "model.client.Client.query", "line_number": 41, "usage_type": "attribute" }, { "api_name": "model.client.Client", "line_number": 41, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 43, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 44, "usage_type": "call" }, { "api_name": "model.product.Product", "line_number": 46, "usage_type": "argument" }, { "api_name": "model.client.Client", "line_number": 46, "usage_type": "argument" }, { "api_name": "model.order.Order.query.filter_by", "line_number": 46, "usage_type": "call" }, { "api_name": "model.order.Order.query", "line_number": 46, "usage_type": "attribute" }, { "api_name": "model.order.Order", "line_number": 46, "usage_type": "name" }, { "api_name": "model.order.Order.clientid", "line_number": 46, "usage_type": "attribute" }, { "api_name": "model.client.Client.clientid", "line_number": 46, "usage_type": "attribute" }, { "api_name": "model.client.Client.state", "line_number": 46, "usage_type": "attribute" }, { "api_name": "model.product.Product.productid", "line_number": 46, "usage_type": "attribute" }, { "api_name": "model.product.Product.state", "line_number": 46, "usage_type": "attribute" }, { "api_name": "flask.render_template", "line_number": 47, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 48, "usage_type": "call" }, { "api_name": "appInitialize.app.route", "line_number": 35, "usage_type": "call" }, { "api_name": "appInitialize.app", "line_number": 35, "usage_type": "name" }, { "api_name": "flask.request.method", "line_number": 52, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 52, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 53, "usage_type": "call" }, { "api_name": "flask.request.data", "line_number": 53, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 53, "usage_type": "name" }, { "api_name": "model.client.Client.query.filter_by", "line_number": 54, "usage_type": "call" }, { "api_name": "model.client.Client.query", "line_number": 54, "usage_type": "attribute" }, { "api_name": "model.client.Client", "line_number": 54, "usage_type": "name" }, { "api_name": "model.product.Product", "line_number": 57, "usage_type": "argument" }, { "api_name": "model.client.Client", "line_number": 57, "usage_type": "argument" }, { "api_name": "model.order.Order.query.filter_by", "line_number": 57, "usage_type": "call" }, { "api_name": "model.order.Order.query", "line_number": 57, "usage_type": "attribute" }, { "api_name": "model.order.Order", "line_number": 57, "usage_type": "name" }, { "api_name": "model.order.Order.clientid", "line_number": 57, "usage_type": "attribute" }, { "api_name": "model.client.Client.clientid", "line_number": 57, "usage_type": "attribute" }, { "api_name": "model.client.Client.state", "line_number": 57, "usage_type": "attribute" }, { "api_name": "model.product.Product.productid", "line_number": 57, "usage_type": "attribute" }, { "api_name": "model.product.Product.state", "line_number": 57, "usage_type": "attribute" }, { "api_name": "flask.jsonify", "line_number": 58, "usage_type": "call" }, { "api_name": "appInitialize.app.route", "line_number": 50, "usage_type": "call" }, { "api_name": "appInitialize.app", "line_number": 50, "usage_type": "name" }, { "api_name": "flask.request.method", "line_number": 63, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 63, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 64, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 64, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 66, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 66, "usage_type": "name" }, { "api_name": "model.client.Client.query.filter_by", "line_number": 67, "usage_type": "call" }, { "api_name": "model.client.Client.query", "line_number": 67, "usage_type": "attribute" }, { "api_name": "model.client.Client", "line_number": 67, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 69, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 70, "usage_type": "call" }, { "api_name": "model.product.Product", "line_number": 72, "usage_type": "argument" }, { "api_name": "model.client.Client", "line_number": 72, "usage_type": "argument" }, { "api_name": "model.order.Order.query.filter_by", "line_number": 72, "usage_type": "call" }, { "api_name": "model.order.Order.query", "line_number": 72, "usage_type": "attribute" }, { "api_name": "model.order.Order", "line_number": 72, "usage_type": "name" }, { "api_name": "model.order.Order.clientid", "line_number": 72, "usage_type": "attribute" }, { "api_name": "model.client.Client.clientid", "line_number": 72, "usage_type": "attribute" }, { "api_name": "model.client.Client.state", "line_number": 72, "usage_type": "attribute" }, { "api_name": "model.product.Product.productid", "line_number": 72, "usage_type": "attribute" }, { "api_name": "model.product.Product.state", "line_number": 72, "usage_type": "attribute" }, { "api_name": "flask.render_template", "line_number": 73, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 74, "usage_type": "call" }, { "api_name": "appInitialize.app.route", "line_number": 61, "usage_type": "call" }, { "api_name": "appInitialize.app", "line_number": 61, "usage_type": "name" }, { "api_name": "flask.request.method", "line_number": 78, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 78, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 79, "usage_type": "call" }, { "api_name": "flask.request.data", "line_number": 79, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 79, "usage_type": "name" }, { "api_name": "model.client.Client.query.filter_by", "line_number": 80, "usage_type": "call" }, { "api_name": "model.client.Client.query", "line_number": 80, "usage_type": "attribute" }, { "api_name": "model.client.Client", "line_number": 80, "usage_type": "name" }, { "api_name": "model.product.Product", "line_number": 83, "usage_type": "argument" }, { "api_name": "model.client.Client", "line_number": 83, "usage_type": "argument" }, { "api_name": "model.order.Order.query.filter_by", "line_number": 83, "usage_type": "call" }, { "api_name": "model.order.Order.query", "line_number": 83, "usage_type": "attribute" }, { "api_name": "model.order.Order", "line_number": 83, "usage_type": "name" }, { "api_name": "model.order.Order.clientid", "line_number": 83, "usage_type": "attribute" }, { "api_name": "model.client.Client.clientid", "line_number": 83, "usage_type": "attribute" }, { "api_name": "model.client.Client.state", "line_number": 83, "usage_type": "attribute" }, { "api_name": "model.product.Product.productid", "line_number": 83, "usage_type": "attribute" }, { "api_name": "model.product.Product.state", "line_number": 83, "usage_type": "attribute" }, { "api_name": "flask.jsonify", "line_number": 84, "usage_type": "call" }, { "api_name": "appInitialize.app.route", "line_number": 76, "usage_type": "call" }, { "api_name": "appInitialize.app", "line_number": 76, "usage_type": "name" }, { "api_name": "appInitialize.app.run", "line_number": 87, "usage_type": "call" }, { "api_name": "appInitialize.app", "line_number": 87, "usage_type": "name" } ]
21509653092
from fastapi import APIRouter, Depends, Request, Response from sqlalchemy.orm import Session from typing import List from uuid import UUID from api.models.node_threat import NodeThreatCreate, NodeThreatRead, NodeThreatUpdate from api.routes import helpers from db import crud from db.database import get_db from db.schemas.node_threat import NodeThreat from db.schemas.node_threat_type import NodeThreatType router = APIRouter( prefix="/node/threat", tags=["Node Threat"], ) # # CREATE # def create_node_threat( node_threat: NodeThreatCreate, request: Request, response: Response, db: Session = Depends(get_db), ): # Make sure that all the threat types that were given actually exist db_threat_types = crud.read_by_values(values=node_threat.types, db_table=NodeThreatType, db=db) # Create the new node threat new_threat = NodeThreat(**node_threat.dict()) # Set the threat types on the new node threat new_threat.types = db_threat_types # Save the new node threat to the database db.add(new_threat) crud.commit(db) response.headers["Content-Location"] = request.url_for("get_node_threat", uuid=new_threat.uuid) helpers.api_route_create(router, create_node_threat) # # READ # def get_all_node_threats(db: Session = Depends(get_db)): return crud.read_all(db_table=NodeThreat, db=db) def get_node_threat(uuid: UUID, db: Session = Depends(get_db)): return crud.read(uuid=uuid, db_table=NodeThreat, db=db) helpers.api_route_read_all(router, get_all_node_threats, List[NodeThreatRead]) helpers.api_route_read(router, get_node_threat, NodeThreatRead) # # UPDATE # def update_node_threat( uuid: UUID, node_threat: NodeThreatUpdate, request: Request, response: Response, db: Session = Depends(get_db), ): # Read the current node threat from the database db_node_threat: NodeThreat = crud.read(uuid=uuid, db_table=NodeThreat, db=db) # Get the data that was given in the request and use it to update the database object update_data = node_threat.dict(exclude_unset=True) if "description" in update_data: db_node_threat.description = update_data["description"] if "value" in update_data: db_node_threat.value = update_data["value"] if "types" in update_data: db_node_threat.types = crud.read_by_values( values=update_data["types"], db_table=NodeThreatType, db=db ) crud.commit(db) response.headers["Content-Location"] = request.url_for("get_node_threat", uuid=uuid) helpers.api_route_update(router, update_node_threat) # # DELETE # def delete_node_threat(uuid: UUID, db: Session = Depends(get_db)): crud.delete(uuid=uuid, db_table=NodeThreat, db=db) helpers.api_route_delete(router, delete_node_threat)
hollyfoxx/ace2-gui
backend/app/api/routes/node_threat.py
node_threat.py
py
2,805
python
en
code
1
github-code
6
[ { "api_name": "fastapi.APIRouter", "line_number": 14, "usage_type": "call" }, { "api_name": "api.models.node_threat.NodeThreatCreate", "line_number": 26, "usage_type": "name" }, { "api_name": "fastapi.Request", "line_number": 27, "usage_type": "name" }, { "api_name": "fastapi.Response", "line_number": 28, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 29, "usage_type": "name" }, { "api_name": "fastapi.Depends", "line_number": 29, "usage_type": "call" }, { "api_name": "db.database.get_db", "line_number": 29, "usage_type": "argument" }, { "api_name": "db.crud.read_by_values", "line_number": 32, "usage_type": "call" }, { "api_name": "db.crud", "line_number": 32, "usage_type": "name" }, { "api_name": "db.schemas.node_threat_type.NodeThreatType", "line_number": 32, "usage_type": "name" }, { "api_name": "db.schemas.node_threat.NodeThreat", "line_number": 35, "usage_type": "call" }, { "api_name": "db.add", "line_number": 41, "usage_type": "call" }, { "api_name": "db.crud.commit", "line_number": 42, "usage_type": "call" }, { "api_name": "db.crud", "line_number": 42, "usage_type": "name" }, { "api_name": "api.routes.helpers.api_route_create", "line_number": 47, "usage_type": "call" }, { "api_name": "api.routes.helpers", "line_number": 47, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 55, "usage_type": "name" }, { "api_name": "fastapi.Depends", "line_number": 55, "usage_type": "call" }, { "api_name": "db.database.get_db", "line_number": 55, "usage_type": "argument" }, { "api_name": "db.crud.read_all", "line_number": 56, "usage_type": "call" }, { "api_name": "db.crud", "line_number": 56, "usage_type": "name" }, { "api_name": "db.schemas.node_threat.NodeThreat", "line_number": 56, "usage_type": "name" }, { "api_name": "uuid.UUID", "line_number": 59, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 59, "usage_type": "name" }, { "api_name": "fastapi.Depends", "line_number": 59, "usage_type": "call" }, { "api_name": "db.database.get_db", "line_number": 59, "usage_type": "argument" }, { "api_name": "db.crud.read", "line_number": 60, "usage_type": "call" }, { "api_name": "db.crud", "line_number": 60, "usage_type": "name" }, { "api_name": "db.schemas.node_threat.NodeThreat", "line_number": 60, "usage_type": "name" }, { "api_name": "api.routes.helpers.api_route_read_all", "line_number": 63, "usage_type": "call" }, { "api_name": "api.routes.helpers", "line_number": 63, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 63, "usage_type": "name" }, { "api_name": "api.models.node_threat.NodeThreatRead", "line_number": 63, "usage_type": "name" }, { "api_name": "api.routes.helpers.api_route_read", "line_number": 64, "usage_type": "call" }, { "api_name": "api.models.node_threat.NodeThreatRead", "line_number": 64, "usage_type": "argument" }, { "api_name": "api.routes.helpers", "line_number": 64, "usage_type": "name" }, { "api_name": "uuid.UUID", "line_number": 73, "usage_type": "name" }, { "api_name": "api.models.node_threat.NodeThreatUpdate", "line_number": 74, "usage_type": "name" }, { "api_name": "fastapi.Request", "line_number": 75, "usage_type": "name" }, { "api_name": "fastapi.Response", "line_number": 76, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 77, "usage_type": "name" }, { "api_name": "fastapi.Depends", "line_number": 77, "usage_type": "call" }, { "api_name": "db.database.get_db", "line_number": 77, "usage_type": "argument" }, { "api_name": "db.schemas.node_threat.NodeThreat", "line_number": 80, "usage_type": "name" }, { "api_name": "db.crud.read", "line_number": 80, "usage_type": "call" }, { "api_name": "db.crud", "line_number": 80, "usage_type": "name" }, { "api_name": "db.crud.read_by_values", "line_number": 92, "usage_type": "call" }, { "api_name": "db.crud", "line_number": 92, "usage_type": "name" }, { "api_name": "db.schemas.node_threat_type.NodeThreatType", "line_number": 93, "usage_type": "name" }, { "api_name": "db.crud.commit", "line_number": 96, "usage_type": "call" }, { "api_name": "db.crud", "line_number": 96, "usage_type": "name" }, { "api_name": "api.routes.helpers.api_route_update", "line_number": 101, "usage_type": "call" }, { "api_name": "api.routes.helpers", "line_number": 101, "usage_type": "name" }, { "api_name": "uuid.UUID", "line_number": 109, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 109, "usage_type": "name" }, { "api_name": "fastapi.Depends", "line_number": 109, "usage_type": "call" }, { "api_name": "db.database.get_db", "line_number": 109, "usage_type": "argument" }, { "api_name": "db.crud.delete", "line_number": 110, "usage_type": "call" }, { "api_name": "db.crud", "line_number": 110, "usage_type": "name" }, { "api_name": "db.schemas.node_threat.NodeThreat", "line_number": 110, "usage_type": "name" }, { "api_name": "api.routes.helpers.api_route_delete", "line_number": 113, "usage_type": "call" }, { "api_name": "api.routes.helpers", "line_number": 113, "usage_type": "name" } ]
73739274748
#!/usr/bin/env python3 """" This module provides the interface to manage the state of configured workers. It allows to setup the virtual environment, install dependencies into it and then to execute BuildBot worker commands. """ import sys import os.path import argparse import getpass import socket import paramiko import logging sys.path.append(os.path.abspath("{}/../../master/".format(__file__))) import maxscale.config.workers as workers def determineHost(host, domain): possibleHosts = [ host, "{}.{}".format(host, domain) ] for checkHost in possibleHosts: try: socket.gethostbyname(checkHost) except BaseException: continue return checkHost return None def determineHosts(arguments): hosts = {} for hostConfiguration in workers.WORKER_CREDENTIALS: if arguments.host is not None and hostConfiguration["host"] != arguments.host: continue host = determineHost(hostConfiguration["host"], arguments.domain) if host is None: continue if host in hosts: hosts[host].append(hostConfiguration) else: hosts[host] = [hostConfiguration] return hosts def runCommand(sshClient, command): logging.debug("Calling command '{}'".format(command)) stdin, stdout, stderr = sshClient.exec_command(command) stdin.close() stdoutContents = stdout.readlines() stderrContents = stderr.readlines() stdoutText = "".join(stdoutContents).strip() stderrText = "".join(stderrContents).strip() logging.debug("Stdout:\n{}".format(stdoutText)) logging.debug("Stderr:\n{}".format(stderrText)) return [stdoutText, stderrText] def isDirectoryAbsent(sshClient, directory): _, stderr = runCommand(sshClient, "ls -ld {}".format(directory)) if stderr: return True else: return False PYTHON_VENV = "~/buildbot-virtual-env" WORKERS_DIR = "~/buildbot-workers" CURRENT_DIR = os.path.dirname(os.path.realpath(__file__)) def executeActionOnHost(hosts, user, description, action): """Execute an action for every host""" client = paramiko.SSHClient() client.load_system_host_keys() for hostIp in hosts: logging.info(description.format(hostIp=hostIp)) client.connect(hostIp, username=user) action(client, hosts[hostIp]) client.close() def setupVirtualEnv(sshClient): if isDirectoryAbsent(sshClient, PYTHON_VENV): logging.info("Creating python virtual environment in {}".format(PYTHON_VENV)) runCommand(sshClient, "python3 -m virtualenv -p /usr/bin/python3 {}".format(PYTHON_VENV)) logging.info("Installing latest version of requirements") absolutePythonEnvDir, _ = runCommand(sshClient, "cd {}; pwd".format(PYTHON_VENV)) sftClient = sshClient.open_sftp() sftClient.put("{}/requirements-worker.txt".format(CURRENT_DIR), "{}/requirements.txt".format(absolutePythonEnvDir)) workerWrapper = "{}/bin/run-worker.py".format(absolutePythonEnvDir) sftClient.put("{}/run-worker.py".format(CURRENT_DIR), workerWrapper) sftClient.chmod(workerWrapper, 0o755) runCommand(sshClient, "{}/bin/pip3 install -U -r {}/requirements.txt".format(PYTHON_VENV, PYTHON_VENV)) def configureVirtualEnvironment(hosts, arguments): def performAction(client, _): setupVirtualEnv(client) executeActionOnHost(hosts, arguments.user, "Configuring virtual environment on host '{hostIp}'", performAction) def createWorkerConfig(sshClient, config, masterHost): logging.info("Creating configuration for worker '{}'.".format(config["name"])) runCommand(sshClient, "mkdir -p {}".format(WORKERS_DIR)) runCommand(sshClient, "rm -rf {dir}/{name}".format(dir=WORKERS_DIR, **config)) runCommand(sshClient, "{venv}/bin/run-worker.py create-worker --umask=0o002 {dir}/{name} {server} {name} {password}".format( venv=PYTHON_VENV, dir=WORKERS_DIR, server=masterHost, **config)) runCommand(sshClient, "echo '{host}' > {dir}/{name}/info/host".format(dir=WORKERS_DIR, **config)) def installWorkers(hosts, arguments): def performAction(client, host): setupVirtualEnv(client) for worker in host: createWorkerConfig(client, worker, arguments.master) stopWorkers(hosts, arguments) executeActionOnHost(hosts, arguments.user, "Configuring host '{hostIp}'", performAction) def callBuildbotAction(action, hosts, arguments): def performAction(client, host): for worker in host: if isDirectoryAbsent(client, "{dir}/{name}".format(dir=WORKERS_DIR, **worker)): logging.error("Worker '{name}' configuration does not exist, doing nothing".format(**worker)) continue runCommand(client, "{venv}/bin/run-worker.py {action} {dir}/{name}".format( venv=PYTHON_VENV, dir=WORKERS_DIR, action=action, **worker)) logging.info("Executing action '{}'".format(action)) executeActionOnHost(hosts, arguments.user, "Executing command on host '{hostIp}", performAction) def restartWorkers(hosts, arguments): callBuildbotAction("restart", hosts, arguments) def stopWorkers(hosts, arguments): callBuildbotAction("stop", hosts, arguments) def startWorkers(hosts, arguments): callBuildbotAction("start", hosts, arguments) AVAILABLE_ACTIONS = { "install": installWorkers, "configureVenv": configureVirtualEnvironment, "restart": restartWorkers, "stop": stopWorkers, "start": startWorkers } def parseArguments(): parser = argparse.ArgumentParser(description="A tool to install, restart the BuildBot worker instances.") parser.add_argument("action", help="Action to perform, install for example.", choices=AVAILABLE_ACTIONS.keys()) parser.add_argument("--host", help="Host to manage.") parser.add_argument("--user", help="User to use during the SSH connection to host.", default=getpass.getuser()) parser.add_argument("--domain", help="Default domain for hosts", default="mariadb.com") parser.add_argument("--master", help="Domain name of the master to configure on workers", default="maxscale-jenkins.mariadb.com") parser.add_argument("--debug", help="Show debug output", dest="debug", action="store_true") parser.set_defaults(debug=False) return parser.parse_args() def main(): arguments = parseArguments() if arguments.debug: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.INFO) action = AVAILABLE_ACTIONS.get(arguments.action) if action is None: logging.error("Unknown action '{}'.".format(arguments.action)) exit(1) hosts = determineHosts(arguments) action(hosts, arguments) if __name__ == "__main__": main()
dA505819/maxscale-buildbot
worker-management/manage.py
manage.py
py
6,833
python
en
code
0
github-code
6
[ { "api_name": "sys.path.append", "line_number": 18, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 18, "usage_type": "attribute" }, { "api_name": "os.path.path.abspath", "line_number": 18, "usage_type": "call" }, { "api_name": "os.path.path", "line_number": 18, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 18, "usage_type": "name" }, { "api_name": "socket.gethostbyname", "line_number": 29, "usage_type": "call" }, { "api_name": "maxscale.config.workers.WORKER_CREDENTIALS", "line_number": 38, "usage_type": "attribute" }, { "api_name": "maxscale.config.workers", "line_number": 38, "usage_type": "name" }, { "api_name": "logging.debug", "line_number": 52, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 59, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 60, "usage_type": "call" }, { "api_name": "os.path.path.dirname", "line_number": 74, "usage_type": "call" }, { "api_name": "os.path.path", "line_number": 74, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 74, "usage_type": "name" }, { "api_name": "os.path.path.realpath", "line_number": 74, "usage_type": "call" }, { "api_name": "paramiko.SSHClient", "line_number": 79, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 82, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 90, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 92, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 110, "usage_type": "call" }, { "api_name": "logging.error", "line_number": 132, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 137, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 163, "usage_type": "call" }, { "api_name": "getpass.getuser", "line_number": 166, "usage_type": "call" }, { "api_name": "logging.basicConfig", "line_number": 178, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 178, "usage_type": "attribute" }, { "api_name": "logging.basicConfig", "line_number": 180, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 180, "usage_type": "attribute" }, { "api_name": "logging.error", "line_number": 183, "usage_type": "call" } ]
25968516319
"""added san and is_my_move to Move Revision ID: f39051a2ca9b Revises: c9b0d072e5e4 Create Date: 2020-12-16 13:05:46.434429 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'f39051a2ca9b' down_revision = 'c9b0d072e5e4' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table('moves', schema=None) as batch_op: batch_op.add_column(sa.Column('is_my_move', sa.Boolean(), nullable=True)) batch_op.add_column(sa.Column('san', sa.String(length=8), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table('moves', schema=None) as batch_op: batch_op.drop_column('san') batch_op.drop_column('is_my_move') # ### end Alembic commands ###
joshua-stauffer/opening-book-api
migrations/versions/f39051a2ca9b_added_san_and_is_my_move_to_move.py
f39051a2ca9b_added_san_and_is_my_move_to_move.py
py
929
python
en
code
2
github-code
6
[ { "api_name": "alembic.op.batch_alter_table", "line_number": 21, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 21, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 22, "usage_type": "call" }, { "api_name": "sqlalchemy.Boolean", "line_number": 22, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 23, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 23, "usage_type": "call" }, { "api_name": "alembic.op.batch_alter_table", "line_number": 30, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 30, "usage_type": "name" } ]
20473378944
import json import numpy as np class calculte(): def __init__(self, data, n_x, n_y, t_s, morning_time, afternoon_time): self.data = data self.n_x = n_x self.n_y = n_y self.t_s = t_s self.morning = morning_time self.afternoon_time = afternoon_time def _process_data_(self, num): list_patientID = np.array(self.data['就诊号'])[:] list_doctID = np.array(self.data['医生'])[:] list_sleepy = np.array(self.data['麻醉方式'])[:] list_operation = np.array(self.data['time'])[:] list_clean = np.array(self.data['手术级别'])[:] list_operation = (np.ceil(list_operation / 5) * 5).astype(np.int) list_sleepy.reshape((num, 1)) for i in range(num): b = list_sleepy[i] if (b == '全身麻醉' or b == '全身麻醉(喉罩)'): tb = 60 else: tb = 0 list_sleepy[i] = tb list_clean.reshape((num, 1)) for i in range(num): a = list_clean[i] if a == '1.0': tp = 10 elif a == '2.0' or a == '3.0': tp = 20 else: tp = 30 list_clean[i] = tp c = np.vstack((list_doctID, list_patientID, list_operation, list_sleepy, list_clean)) key = [i + 1 for i in range(num)] e = [] #存储了所有信息的列表,每一个列表的内容是一个字典 for i in range(num): f = dict() d = c[:, i] f[key[i]] = d e.append(f) return list_doctID, list_patientID, list_operation, list_sleepy, list_clean, e def _best_result_(self,best_paixu,Num,list_doctID,list_sleepy,list_operation,list_clean): return list_1,list_2,list_3 def _get_list_(self,a): key = [] dic = {} key_2 = ['time_of_operation', 'time_of_sleep', 'time_of_clean'] for i in range(self.n_x): c = a[i] key.append('手术室{}'.format(i+1)) x = [] for j in range(int(len(c) / 3)): e = 3 * j d = c[e:e + 3] f = dict(zip(key_2, d)) x.append(f) dic[key[i]] = x return dic def _output_date_(self,output_1): f = open('output.json', 'w', encoding='utf-8') json.dump(output_1, f, ensure_ascii=False, indent=4) f.close()
Jkcert/deecamp-frontend
src/ors_backend/model/schedule/calculation.py
calculation.py
py
2,473
python
en
code
1
github-code
6
[ { "api_name": "numpy.array", "line_number": 13, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 14, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 15, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 16, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 17, "usage_type": "call" }, { "api_name": "numpy.ceil", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.int", "line_number": 18, "usage_type": "attribute" }, { "api_name": "numpy.vstack", "line_number": 37, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 68, "usage_type": "call" } ]
32143586237
import utils import requests import json, sys from datetime import date, datetime, timedelta space_key = "SVMC" # parentTitle = "Project Report - Automatic" # weeklyPageTitle = "Weekly Project Status Report" # monthlyPageTitle = "CP Monthly Report" dailyPageTitle = "Issue Status Tool" pageUrgentPrjTitle = "Issue Tool Project List" user = utils.open_file(".plm")[0] pw = utils.open_file(".plm")[2] def submitToWiki(page_title, page_content): response = getPageContent(page_title, space_key) if response.json()['size'] > 0: print('update page %s' % page_title) page_id = response.json()['results'][0]['id'] current_version = response.json()['results'][0]['version']['number'] data = { 'id': str(page_id), 'type': 'page', 'title': page_title, 'space': {'key': space_key}, 'version': {'number': current_version + 1}, 'body': { 'storage': { 'value': str(page_content), 'representation': 'storage', } } } data_to_send = json.dumps(data).encode("utf-8") response = requests.put('http://mobilerndhub.sec.samsung.net/wiki/rest/api/content/%s' % page_id, headers={'Content-Type': 'application/json'}, data=data_to_send, auth=(user, pw)) if response.status_code == requests.codes['ok']: print("View page at %s" % response.url) else: print('add page %s' % page_title) response = requests.get('http://mobilerndhub.sec.samsung.net/wiki/rest/api/content?spaceKey=%s&title=%s' % (space_key, parentTitle), auth=(user, pw)) parent_id = response.json()['results'][0]['id'] data = { 'type': 'page', 'title': page_title, "ancestors": [{"id": parent_id}], 'space': {'key': space_key}, 'body': { 'storage': { 'value': str(page_content), 'representation': 'storage', } } } data_to_send = json.dumps(data).encode("utf-8") response = requests.post('http://mobilerndhub.sec.samsung.net/wiki/rest/api/content/', headers={'Content-Type': 'application/json'}, data=data_to_send, auth=(user, pw)) if response.status_code == requests.codes['ok']: print("View page at %s" % response.url) def getPageContent(pageTitle, space_key): response = requests.get('http://mobilerndhub.sec.samsung.net/wiki/rest/api/content?spaceKey=%s&title=%s&' 'expand=space,body.view,version,container' % (space_key, pageTitle), auth=(user, pw)) if not response.status_code == requests.codes['ok']: print("Cannot get content of page: " + pageTitle) sys.exit(1) return response def getListSingleID(data): """ :param data: table data :return: list mysingle to chart group """ list_id = [] index = data[0].index('Owner') for i in data: list_id.append(i[index]) del (list_id[0]) return list_id def makeLinkChat(mySingleId): """Returns <a> tag with href from single ID""" info_link = "mysingleim://%s" return r"<a target='_blank' href='%s'>%s</a>" % (info_link % mySingleId, mySingleId) def makeLinkNameChat(mySingleId, name_member): """Returns <a> tag with href from single ID""" info_link = "mysingleim://%s" return r"<a target='_blank' href='%s'>%s</a>" % (info_link % mySingleId, name_member) def makeLinkChatGroup(listID): """Returns <a> tag with href from single ID""" strListID = "" for i in range(0, len(listID)): strListID += str(listID[i]) + ';' info_link = "mysingleim://%s" return r"<a target='_blank' style='font-size: 12px; font-style: normal;' target='_blank' href='%s'>%s</a>" % ( info_link % strListID, "<br />Chat") def makeLinkPLM(PLMCaseCode): """Returns <a> tag with href from mysingleID""" return "<a target='_blank' href='http://splm.sec.samsung.net/wl/tqm/defect/defectreg/getDefectCodeSearch.do?defectCode=%s'>%s</a>" % ( PLMCaseCode, PLMCaseCode) def make_link_chat(single_id, text): """Returns <a> tag with href from single ID""" info_link = "mysingleim://%s" return r"<a target='_blank' href='%s'>%s</a>" % (info_link % single_id, text) def make_link_jira(jira_key): jira_link = r"http://mobilerndhub.sec.samsung.net/its/browse/%s" return r"<a target='_blank' href='%s'>%s</a>" % (jira_link % jira_key, jira_key) def make_link_jira_with_summary(jira_key, text): jira_link = r"http://mobilerndhub.sec.samsung.net/its/browse/%s" return r"<a target='_blank' href='%s'>%s</a>" % (jira_link % jira_key, text) def make_img_jira(link): return r"<img src='%s' class='icon'>" % link def make_status_jira(text): if text.lower() == 'new': return r"<span class='aui-lozenge aui-lozenge-subtle aui-lozenge-complete'>%s</span>" % text else: return r"<span class='aui-lozenge aui-lozenge-subtle aui-lozenge-current'>%s</span>" % text def create_isssue_owner(owner_list): html = "<head> \n </head> \n <body> \n <div> \n <p>" for i in owner_list: key = get_user_key(i) html += '<ac:link><ri:user ri:userkey="%s" /></ac:link>' % key html += ", " html += "</p> \n </div> \n </body>" return html def check_time_update(): response = getPageContent(dailyPageTitle, space_key) page_key = response.json()['results'][0]['id'] response = requests.get("http://mobilerndhub.sec.samsung.net/wiki/rest/api/content/%s/history" % str(page_key), auth=(user, pw)) time_update = response.json()['lastUpdated']['when'][:19] # %Y-%m-%dT%H:%M:%S datetime_update = datetime.strptime(time_update, "%Y-%m-%dT%H:%M:%S") - timedelta(hours=2) # HQ earlier VN 2 hours print("latest time update page: %s" % datetime_update.strftime("%H:%M %d-%m-%Y")) return datetime_update def get_updated_date(pageTitle): response = getPageContent(pageTitle, space_key) page_key = response.json()['results'][0]['id'] response = requests.get("http://mobilerndhub.sec.samsung.net/wiki/rest/api/content/%s/history" % str(page_key), auth=(user, pw)) return response.json()['lastUpdated']['when'][:10] # YYYY-MM-DD def get_user_key(user_name): request_data = requests.get("http://mobilerndhub.sec.samsung.net/wiki/rest/api/user?username=%s" % user_name, auth=(user, pw)) return request_data.json()['userKey'] def get_all_data_jira_task_list(project_key): # Query data with in 3 month jql_query = "project = %s and status not in (resolved, cancelled) and created > startOfMonth(-2) order by " \ "created desc" % project_key max_result = 1000 params = { "jql": jql_query, "startAt": 0, "maxResults": max_result, "fields": [ "key", "summary", "issuetype", "created", "duedate", "resolutiondate", "assignee", "priority", "status" ] } url_query = 'http://mobilerndhub.sec.samsung.net/its/rest/api/2/search' data_task_list_json = requests.get(url_query, params=params, auth=(user, pw)) list_all_task = json.loads(data_task_list_json.text) return list_all_task['issues'] def convert_date_time(date_time): date_time = datetime.strptime(date_time, "%Y-%m-%d").date() return date_time def get_data_jira_task_list_by_team(all_data_jira_task_list, member_id_list): num_of_jira_task_by_team = {} info_detail_jira_task = [] data_jira_task_for_pie_chart = [["", 'Jira Tasks'], ['Done', 0], ['NEW', 0], ["In Progress", 0]] list_all_member = [] for team, member_of_team in member_id_list.items(): num_of_jira_task_by_team[team] = [0, 0] # [open, in progress] list_all_member += member_of_team number_of_jira_task_by_member = {key: 0 for key in list_all_member} for task_info in all_data_jira_task_list: summary = task_info['fields']['summary'] if not summary.startswith('[Automatic]'): due_date = task_info['fields']['duedate'] created = task_info['fields']['created'][:10] resolve_date = task_info['fields']['resolutiondate'] if resolve_date is None: resolve_date = '' else: resolve_date = convert_date_time(resolve_date[:10]) if due_date is None: due_date = '' # else: # due_date = convert_date_time(due_date) single_id = task_info['fields']['assignee']['key'] team = "" status_jira = task_info['fields']['status']['name'].lower() if status_jira == 'in progress': data_jira_task_for_pie_chart[3][1] += 1 elif status_jira == 'new': data_jira_task_for_pie_chart[2][1] += 1 else: data_jira_task_for_pie_chart[1][1] += 1 if status_jira == 'done' and resolve_date == date.today(): # include jira task resolve to day number_of_jira_task_by_member[single_id] += 1 if status_jira == 'in progress' or status_jira == 'new': try: number_of_jira_task_by_member[single_id] += 1 except KeyError: number_of_jira_task_by_member[single_id] = 1 for key, value in member_id_list.items(): if single_id in value: team = key if status_jira == 'in progress': num_of_jira_task_by_team[key][1] = num_of_jira_task_by_team[key][1] + 1 elif status_jira == 'new': num_of_jira_task_by_team[key][0] = num_of_jira_task_by_team[key][0] + 1 break info = [ make_link_jira(task_info['key']), summary, make_img_jira(task_info['fields']['issuetype']['iconUrl']), created, due_date, make_link_chat(single_id, task_info['fields']['assignee']['displayName']), team, make_img_jira(task_info['fields']['priority']['iconUrl']), make_status_jira(task_info['fields']['status']['name']) ] info_detail_jira_task.append(info) data_chart_pie_jira = 'var dataChartPieJira = ' + str(data_jira_task_for_pie_chart) + '; \n' return num_of_jira_task_by_team, info_detail_jira_task, number_of_jira_task_by_member, data_chart_pie_jira
hoangdt9/hoang
WikiSubmit.py
WikiSubmit.py
py
11,061
python
en
code
0
github-code
6
[ { "api_name": "utils.open_file", "line_number": 13, "usage_type": "call" }, { "api_name": "utils.open_file", "line_number": 14, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 39, "usage_type": "call" }, { "api_name": "requests.put", "line_number": 41, "usage_type": "call" }, { "api_name": "requests.codes", "line_number": 44, "usage_type": "attribute" }, { "api_name": "requests.get", "line_number": 49, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 67, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 69, "usage_type": "call" }, { "api_name": "requests.codes", "line_number": 72, "usage_type": "attribute" }, { "api_name": "requests.get", "line_number": 77, "usage_type": "call" }, { "api_name": "requests.codes", "line_number": 79, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 81, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 170, "usage_type": "call" }, { "api_name": "datetime.datetime.strptime", "line_number": 173, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 173, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 173, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 181, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 187, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 216, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 218, "usage_type": "call" }, { "api_name": "datetime.datetime.strptime", "line_number": 223, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 223, "usage_type": "name" }, { "api_name": "datetime.date.today", "line_number": 268, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 268, "usage_type": "name" } ]
70827770107
from selenium import webdriver from datetime import datetime import boto3 import os import time now = datetime.now() folder_name = now.strftime("%Y%m%d") image_name = "traffic_" + now.strftime("%Y%m%d") + "-" + now.strftime("%H-%M") + ".png" Bucket_name = "googletrafficmap" prefix = folder_name + "/" #Get map snapshot driver = webdriver.PhantomJS(service_log_path=os.path.devnull) driver.set_window_size(1920, 1080) # set the window size that you need driver.get('http://googletrafficmap.s3-website.ca-central-1.amazonaws.com') # driver.save_screenshot(folder_name + "/" + image_name) screenshotPNG = driver.get_screenshot_as_png() #Get screenshot in binary data #Create low-client connection client = boto3.client('s3') #Uploading image to s3 bucket and creating folder structure at the same time client.put_object( Bucket = Bucket_name, Body = screenshotPNG, Key = folder_name + "/" + image_name ) time.sleep(60) driver.close() driver.quit()
nathan36/GoogleTrafficMap-GIF
GoogleTrafficMap-GIF/saveImage.py
saveImage.py
py
993
python
en
code
0
github-code
6
[ { "api_name": "datetime.datetime.now", "line_number": 7, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 7, "usage_type": "name" }, { "api_name": "selenium.webdriver.PhantomJS", "line_number": 14, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 14, "usage_type": "name" }, { "api_name": "os.path", "line_number": 14, "usage_type": "attribute" }, { "api_name": "boto3.client", "line_number": 21, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 29, "usage_type": "call" } ]
9695092385
#!/bin/python3 import datetime import json import threading import time import turtle import sys from urllib import request from collections import namedtuple class ISS(): def __init__(self): self.is_instance = True self._astronauts_url = 'http://api.open-notify.org/astros.json' self._location_url = 'http://api.open-notify.org/iss-now.json' self._location_tuple = namedtuple( 'Location', ['latitude', 'longitude']) self._location() def __enter__(self): return self def __exit__(self, exctype, excinst, exctb): self.is_instance = False def __repr__(self): return (f'{self.__class__.__name__}:\n\tTimestamp:{self._update_timestamp}\n\tLocation:{self.location}\n\tPeople: {self.people_in_space}') def _get_page(self, url): response = request.urlopen(url) result = json.loads(response.read()) return result def _location(self): result = self._get_page(self._location_url) self.location = self._location_tuple(result['iss_position']['latitude'], result['iss_position']['longitude']) self._update_timestamp = result['timestamp'] @property def people_in_space(self): result = self._get_page(self._astronauts_url) return [people['name'] for people in result['people']] class Tracker(ISS): def __init__(self): super().__init__() self._bgpic = 'images/map.gif' self._shape = 'images/iss2.gif' self._screen = turtle.Screen() self._screen.title('Python ISS Tracker') self._screen.setup(width=720, height=360) self._screen.setworldcoordinates(-180, -90, 180, 90) self._screen.bgpic(self._bgpic) self._screen.register_shape(self._shape) self._screen.onscreenclick(self.update_turtle_location, btn=1) self._tracker = turtle.Turtle() self._tracker.shape(self._shape) self._tracker.setheading(90) def update_turtle_location(self, *args): self._location() self._tracker.penup() self._tracker.goto(float(self.location[0]), float(self.location[1])) # Debug print(self.__repr__()) if __name__ == '__main__': try: with Tracker() as iss: iss.update_turtle_location() turtle.mainloop() except KeyboardInterrupt: sys.exit(0) # # http://open-notify.org/Open-Notify-API/ # url = 'http://api.open-notify.org/astros.json' # response = urllib.request.urlopen(url) # result = json.loads(response.read()) # print('People in Space: ', result['number']) # people = result['people'] # for p in people: # print(p['name'], ' in ', p['craft']) # url = 'http://api.open-notify.org/iss-now.json' # response = urllib.request.urlopen(url) # result = json.loads(response.read()) # location = result['iss_position'] # lat = float(location['latitude']) # lon = float(location['longitude']) # print('Latitude: ', lat) # print('Longitude: ', lon) # screen = turtle.Screen() # screen.setup(720, 360) # screen.setworldcoordinates(-180, -90, 180, 90) # screen.bgpic('map.gif') # screen = turtle.Screen() # screen.setup(720, 360) # screen.setworldcoordinates(-180, -90, 180, 90) # # image source: # # map.jpg: http://visibleearth.nasa.gov/view.php?id=57752 Credit: NASA # screen.bgpic('map.gif') # screen.register_shape('iss2.gif') # iss = turtle.Turtle() # iss.shape('iss2.gif') # iss.setheading(90) # iss.penup() # iss.goto(lon, lat) # # When Does ISS next pass over me? # #london # #lat = 51.5072 # #lon = 0.1275 # # Tokyo # #lat = 35.689487 # #lon = 139.691706 # # Space Center, Houston # lat = 29.5502 # lon = -95.097 # location = turtle.Turtle() # location.penup() # location.color('yellow') # location.goto(lon, lat) # location.dot(5) # location.hideturtle() # url = 'http://api.open-notify.org/iss-pass.json?lat=' + \ # str(lat) + '&lon=' + str(lon) # response = urllib.request.urlopen(url) # result = json.loads(response.read()) # #print result # over = result['response'][1]['risetime'] # location.write(time.ctime(over))
mattbhenley/ISS_Locator
locator.py
locator.py
py
4,144
python
en
code
0
github-code
6
[ { "api_name": "collections.namedtuple", "line_number": 21, "usage_type": "call" }, { "api_name": "urllib.request.urlopen", "line_number": 35, "usage_type": "call" }, { "api_name": "urllib.request", "line_number": 35, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 36, "usage_type": "call" }, { "api_name": "turtle.Screen", "line_number": 58, "usage_type": "call" }, { "api_name": "turtle.Turtle", "line_number": 66, "usage_type": "call" }, { "api_name": "turtle.mainloop", "line_number": 83, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 86, "usage_type": "call" } ]
35168238376
from serpent.game_agent import GameAgent from serpent.input_controller import KeyboardKey import offshoot class SerpentSuperHexagonGameAgent(GameAgent): def __init__(self, **kwargs): super().__init__(**kwargs) self.frame_handlers["PLAY"] = self.handle_play self.frame_handler_setups["PLAY"] = self.setup_play self.analytics_client = None #Ccontext class setup plugin_path = offshoot.config["file_paths"]["plugins"] context_classifier_path = "datasets/context_classifier.model" from serpent.machine_learning.context_classification.context_classifiers.cnn_inception_v3_context_classifier import \ CNNInceptionV3ContextClassifier context_classifier = CNNInceptionV3ContextClassifier( input_shape=(240, 384, 3)) # Replace with the shape (rows, cols, channels) of your captured context frames context_classifier.prepare_generators() context_classifier.load_classifier(context_classifier_path) self.machine_learning_models["context_classifier"] = context_classifier def setup_play(self): # self.input_controller.tap_key(KeyboardKey.KEY_SPACE) pass def handle_play(self, game_frame): # for i, game_frame in enumerate(self.game_frame_buffer.frames): # self.visual_debugger.store_image_data( # game_frame.frame, # game_frame.frame.shape, # str(i) # ) # self.input_controller.tap_key(KeyboardKey.KEY_RIGHT) context = self.machine_learning_models["context_classifier"].predict(game_frame.frame) print("Context:", context)
cameron-j-knight/General-AI
plugins/SerpentSuperHexagonGameAgentPlugin/files/serpent_SuperHexagon_game_agent.py
serpent_SuperHexagon_game_agent.py
py
1,675
python
en
code
0
github-code
6
[ { "api_name": "serpent.game_agent.GameAgent", "line_number": 5, "usage_type": "name" }, { "api_name": "offshoot.config", "line_number": 17, "usage_type": "attribute" }, { "api_name": "serpent.machine_learning.context_classification.context_classifiers.cnn_inception_v3_context_classifier.CNNInceptionV3ContextClassifier", "line_number": 23, "usage_type": "call" } ]
37169098035
__author__ = "Moath Maharmeh" __license__ = "GNU General Public License v2.0" __version__ = "1.1" __email__ = "[email protected]" __created__ = "13/Dec/2018" __modified__ = "5/Apr/2019" __project_page__ = "https://github.com/iomoath/file_watchtower" import sqlite3 import os import csv DEFAULT_PATH = os.path.join(os.path.dirname(__file__), 'database.sqlite3') def get_db_path(): global DEFAULT_PATH return DEFAULT_PATH def db_connect(db_path=DEFAULT_PATH): con = sqlite3.connect(db_path) return con def create_tables(): file_record_query = """ CREATE TABLE IF NOT EXISTS file_record ( id INTEGER PRIMARY KEY AUTOINCREMENT, file_path TEXT NOT NULL UNIQUE, hash TEXT NOT NULL, file_size TEXT NOT NULL, exists_on_disk varchar(6) NOT NULL, datetime_last_check TEXT NOT NULL)""" email_msg_query = """ CREATE TABLE IF NOT EXISTS email_msg ( id INTEGER PRIMARY KEY, subject TEXT NOT NULL, body TEXT NOT NULL, attachment TEXT, is_sent VARCHAR(6) DEFAULT 'False')""" conn = db_connect() try: cursor = conn.cursor() cursor.execute(file_record_query) cursor.execute(email_msg_query) except: pass finally: conn.commit() conn.close() def insert_file_record(file_record_dict): conn = db_connect() try: cursor = conn.cursor() query = """ INSERT INTO file_record (file_path, hash, file_size, exists_on_disk, datetime_last_check) VALUES (?, ?, ?, ?, ?)""" cursor.execute(query, (file_record_dict["path"], file_record_dict["hash"], file_record_dict["file_size"], file_record_dict["exists_on_disk"], file_record_dict["datetime_last_check"])) return cursor.lastrowid except: conn.rollback() raise finally: conn.commit() conn.close() def get_exists_on_disk_value(file_path): conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT exists_on_disk FROM file_record WHERE file_path=? LIMIT 1", (file_path,)) rows = cursor.fetchall() return rows[0][0] except IndexError: return None finally: conn.close() def get_exists_on_disk_value_by_hash(file_hash): conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT exists_on_disk FROM file_record WHERE hash=? LIMIT 1", (file_hash,)) rows = cursor.fetchall() return rows[0][0] except IndexError: return None finally: conn.close() def update_exists_on_disk_value(file_path, new_value): conn = db_connect() try: cursor = conn.cursor() query = """UPDATE file_record SET exists_on_disk =? WHERE file_path =?""" cursor.execute(query, (new_value, file_path,)) return cursor.rowcount except: conn.rollback() raise finally: conn.commit() conn.close() def update_exists_on_disk_value_by_hash(file_hash, new_value): conn = db_connect() try: cursor = conn.cursor() query = """UPDATE file_record SET exists_on_disk =? WHERE hash =?""" cursor.execute(query, (new_value, file_hash,)) return cursor.rowcount except: conn.rollback() raise finally: conn.commit() conn.close() def update_file_last_check(file_path, new_datetime_check): conn = db_connect() try: cursor = conn.cursor() query = """UPDATE file_record SET datetime_last_check =? WHERE file_path =?""" cursor.execute(query, (new_datetime_check, file_path,)) return cursor.rowcount except: conn.rollback() raise finally: conn.commit() conn.close() def update_file_path(file_hash, old_path, new_path): conn = db_connect() try: cursor = conn.cursor() query = """UPDATE file_record SET file_path =? WHERE hash =? and file_path=?""" cursor.execute(query, (new_path, file_hash, old_path)) return cursor.rowcount except: conn.rollback() raise finally: conn.commit() conn.close() def get_file_records(file_path): conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT * FROM file_record WHERE file_path=?", (file_path,)) rows = cursor.fetchall() return rows except IndexError: return None finally: conn.commit() conn.close() def get_file_records_by_hash(file_hash): conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT * FROM file_record WHERE hash=?", (file_hash,)) rows = cursor.fetchall() return rows except Exception: conn.rollback() raise finally: conn.close() def get_all_file_paths(): # returns all files paths conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT file_path FROM file_record") rows = cursor.fetchall() path_list = [] for row in rows: path_list.append(row[0]) return path_list except: conn.rollback() finally: conn.close() def get_file_hash(file_path): conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT hash FROM file_record WHERE file_path=? LIMIT 1", (file_path,)) rows = cursor.fetchall() return rows[0][0] except IndexError: return None finally: conn.close() def get_file_path_by_hash(file_hash): conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT file_path FROM file_record WHERE hash=? LIMIT 1", (file_hash,)) rows = cursor.fetchall() return rows[0][0] except IndexError: return None finally: conn.close() def is_file_has_record_by_path(file_path): conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT id FROM file_record WHERE file_path=? LIMIT 1", (file_path,)) rows = cursor.fetchall() return len(rows) > 0 except: conn.rollback() return False finally: conn.close() def is_file_has_record_by_hash(hash): conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT id FROM file_record WHERE hash=? LIMIT 1", (hash,)) rows = cursor.fetchall() return len(rows) > 0 except: conn.rollback() finally: conn.close() def get_file_size(file_path): conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT file_size FROM file_record WHERE file_path=? LIMIT 1", (file_path,)) rows = cursor.fetchall() return rows[0][0] except IndexError: return None finally: conn.close() def get_file_size_by_hash(file_hash): conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT file_size FROM file_record WHERE hash=? LIMIT 1", (file_hash,)) rows = cursor.fetchall() return rows[0][0] except IndexError: return None finally: conn.close() def update_file_hash(file_path, new_hash): conn = db_connect() try: cursor = conn.cursor() query = """UPDATE file_record SET hash =? WHERE file_path =?""" cursor.execute(query, (new_hash, file_path,)) return cursor.rowcount except: conn.rollback() raise finally: conn.commit() conn.close() def delete_file_record(file_path): conn = db_connect() try: cursor = conn.cursor() query = """DELETE FROM file_record WHERE file_path=?""" cursor.execute(query, (file_path,)) return cursor.rowcount except: conn.rollback() raise finally: conn.commit() conn.close() def insert_email_msg(email_msg_dict): conn = db_connect() try: cursor = conn.cursor() query = """ INSERT INTO email_msg (subject, body, attachment) VALUES (?, ?, ?)""" cursor.execute(query, ( email_msg_dict["subject"], email_msg_dict["body"], email_msg_dict["attachment"])) return cursor.lastrowid except: conn.rollback() raise finally: conn.commit() conn.close() def delete_msg(msg_id): conn = db_connect() try: cursor = conn.cursor() query = """DELETE FROM email_msg WHERE id=?""" cursor.execute(query, (msg_id,)) return cursor.rowcount except: conn.rollback() raise finally: conn.commit() conn.close() def get_unsent_messages(): conn = db_connect() try: cursor = conn.cursor() cursor.execute("SELECT * FROM email_msg WHERE is_sent='False'") rows = cursor.fetchall() list_messages = [] for row in rows: msg = { "id": row[0], "subject": row[1], "body": row[2], "attachments": row[3], "is_sent": row[4] } list_messages.append(msg) return list_messages except: conn.rollback() raise finally: conn.close() def delete_sent_messages(): conn = db_connect() try: cursor = conn.cursor() query = """DELETE FROM email_msg WHERE is_sent=?""" cursor.execute(query, ("True",)) return cursor.rowcount except: conn.rollback() raise finally: conn.commit() conn.close() def dump_file_records_to_csv(export_path): conn = db_connect() try: cursor = conn.cursor() cursor.execute('SELECT * FROM file_record') with open(export_path, 'w') as out_csv_file: csv_out = csv.writer(out_csv_file) # write header csv_out.writerow([d[0] for d in cursor.description]) # write data for result in cursor: csv_out.writerow(result) except: conn.rollback() raise finally: conn.close() def delete_all_data(): conn = db_connect() try: cursor = conn.cursor() query1 = """DELETE FROM email_msg""" query2 = """DELETE FROM file_record""" cursor.execute(query1, ) cursor.execute(query2, ) return cursor.rowcount except: conn.rollback() raise finally: conn.commit() conn.close() # init the database, if no db file or tables, it will be created here create_tables()
iomoath/file_watchtower
db.py
db.py
py
10,875
python
en
code
30
github-code
6
[ { "api_name": "os.path.join", "line_number": 14, "usage_type": "call" }, { "api_name": "os.path", "line_number": 14, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 14, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 24, "usage_type": "call" }, { "api_name": "csv.writer", "line_number": 410, "usage_type": "call" } ]
15932158711
from ..exceptions import HydraError, ResourceNotFoundError from . import scenario, network from .. import db from ..db.model import ResourceGroup, ResourceGroupItem, Node, Link from .scenario import _get_scenario from sqlalchemy.orm.exc import NoResultFound import logging log = logging.getLogger(__name__) def _get_group(group_id): try: return db.DBSession.query(ResourceGroup).filter(ResourceGroup.id==group_id).one() except NoResultFound: raise ResourceNotFoundError("ResourceGroup %s not found"%(group_id,)) def _get_item(item_id): try: item = db.DBSession.query(ResourceGroupItem).filter(ResourceGroupItem.id==item_id).one() return item except NoResultFound: raise ResourceNotFoundError("ResourceGroupItem %s not found"%(item_id,)) def add_resourcegroup(group, network_id,**kwargs): """ Add a new group to a network. """ group_i = ResourceGroup() group_i.name = group.name group_i.description = group.description group_i.status = group.status group_i.network_id = network_id db.DBSession.add(group_i) db.DBSession.flush() return group_i def delete_resourcegroup(group_id, purge_data='N', **kwargs): """ Add a new group to a scenario. """ group_i = _get_group(group_id) if purge_data == 'Y': network._purge_datasets_unique_to_resource('GROUP', group_id) #This should cascaded to delete all the group items. db.DBSession.delete(group_i) db.DBSession.flush() return 'OK' def update_resourcegroup(group,**kwargs): """ Add a new group to a network. """ group_i = _get_group(group.id) group_i.name = group.name group_i.description = group.description group_i.status = group.status db.DBSession.flush() return group_i def add_resourcegroupitem(group_item, scenario_id,**kwargs): _get_scenario(scenario_id, kwargs['user_id'], check_can_edit=True) #Check whether the ref_id is correct. if group_item.ref_key == 'NODE': try: db.DBSession.query(Node).filter(Node.id==group_item.ref_id).one() except NoResultFound: raise HydraError("Invalid ref ID %s for a Node group item!"%(group_item.ref_id)) elif group_item.ref_key == 'LINK': try: db.DBSession.query(Link).filter(Link.id==group_item.ref_id).one() except NoResultFound: raise HydraError("Invalid ref ID %s for a Link group item!"%(group_item.ref_id)) elif group_item.ref_key == 'GROUP': try: db.DBSession.query(ResourceGroup).filter(ResourceGroup.id==group_item.ref_id).one() except NoResultFound: raise HydraError("Invalid ref ID %s for a Group group item!"%(group_item.ref_id)) else: raise HydraError("Invalid ref key: %s"%(group_item.ref_key)) group_item_i = ResourceGroupItem() group_item_i.scenario_id = scenario_id group_item_i.group_id = group_item.group_id group_item_i.ref_key = group_item.ref_key if group_item.ref_key == 'NODE': group_item_i.node_id = group_item.ref_id elif group_item.ref_key == 'LINK': group_item_i.link_id = group_item.ref_id elif group_item.ref_key == 'GROUP': group_item_i.subgroup_id = group_item.ref_id db.DBSession.add(group_item_i) db.DBSession.flush() return group_item_i def delete_resourcegroupitem(item_id,**kwargs): group_item_i = _get_item(item_id) _get_scenario(group_item_i.scenario_id, kwargs['user_id'], check_can_edit=True) db.DBSession.delete(group_item_i) db.DBSession.flush() return 'OK'
hydraplatform/hydra-base
hydra_base/lib/groups.py
groups.py
py
3,757
python
en
code
8
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 10, "usage_type": "call" }, { "api_name": "db.model.DBSession.query", "line_number": 14, "usage_type": "call" }, { "api_name": "db.model.ResourceGroup", "line_number": 14, "usage_type": "argument" }, { "api_name": "db.model.DBSession", "line_number": 14, "usage_type": "attribute" }, { "api_name": "db.model", "line_number": 14, "usage_type": "name" }, { "api_name": "db.model.ResourceGroup.id", "line_number": 14, "usage_type": "attribute" }, { "api_name": "sqlalchemy.orm.exc.NoResultFound", "line_number": 15, "usage_type": "name" }, { "api_name": "exceptions.ResourceNotFoundError", "line_number": 16, "usage_type": "call" }, { "api_name": "db.model.DBSession.query", "line_number": 20, "usage_type": "call" }, { "api_name": "db.model.ResourceGroupItem", "line_number": 20, "usage_type": "argument" }, { "api_name": "db.model.DBSession", "line_number": 20, "usage_type": "attribute" }, { "api_name": "db.model", "line_number": 20, "usage_type": "name" }, { "api_name": "db.model.ResourceGroupItem.id", "line_number": 20, "usage_type": "attribute" }, { "api_name": "sqlalchemy.orm.exc.NoResultFound", "line_number": 22, "usage_type": "name" }, { "api_name": "exceptions.ResourceNotFoundError", "line_number": 23, "usage_type": "call" }, { "api_name": "db.model.ResourceGroup", "line_number": 29, "usage_type": "call" }, { "api_name": "db.model.DBSession.add", "line_number": 34, "usage_type": "call" }, { "api_name": "db.model.DBSession", "line_number": 34, "usage_type": "attribute" }, { "api_name": "db.model", "line_number": 34, "usage_type": "name" }, { "api_name": "db.model.DBSession.flush", "line_number": 35, "usage_type": "call" }, { "api_name": "db.model.DBSession", "line_number": 35, "usage_type": "attribute" }, { "api_name": "db.model", "line_number": 35, "usage_type": "name" }, { "api_name": "db.model.DBSession.delete", "line_number": 47, "usage_type": "call" }, { "api_name": "db.model.DBSession", "line_number": 47, "usage_type": "attribute" }, { "api_name": "db.model", "line_number": 47, "usage_type": "name" }, { "api_name": "db.model.DBSession.flush", "line_number": 48, "usage_type": "call" }, { "api_name": "db.model.DBSession", "line_number": 48, "usage_type": "attribute" }, { "api_name": "db.model", "line_number": 48, "usage_type": "name" }, { "api_name": "db.model.DBSession.flush", "line_number": 62, "usage_type": "call" }, { "api_name": "db.model.DBSession", "line_number": 62, "usage_type": "attribute" }, { "api_name": "db.model", "line_number": 62, "usage_type": "name" }, { "api_name": "scenario._get_scenario", "line_number": 69, "usage_type": "call" }, { "api_name": "db.model.DBSession.query", "line_number": 74, "usage_type": "call" }, { "api_name": "db.model.Node", "line_number": 74, "usage_type": "argument" }, { "api_name": "db.model.DBSession", "line_number": 74, "usage_type": "attribute" }, { "api_name": "db.model", "line_number": 74, "usage_type": "name" }, { "api_name": "db.model.Node.id", "line_number": 74, "usage_type": "attribute" }, { "api_name": "sqlalchemy.orm.exc.NoResultFound", "line_number": 76, "usage_type": "name" }, { "api_name": "exceptions.HydraError", "line_number": 77, "usage_type": "call" }, { "api_name": "db.model.DBSession.query", "line_number": 80, "usage_type": "call" }, { "api_name": "db.model.Link", "line_number": 80, "usage_type": "argument" }, { "api_name": "db.model.DBSession", "line_number": 80, "usage_type": "attribute" }, { "api_name": "db.model", "line_number": 80, "usage_type": "name" }, { "api_name": "db.model.Link.id", "line_number": 80, "usage_type": "attribute" }, { "api_name": "sqlalchemy.orm.exc.NoResultFound", "line_number": 81, "usage_type": "name" }, { "api_name": "exceptions.HydraError", "line_number": 82, "usage_type": "call" }, { "api_name": "db.model.DBSession.query", "line_number": 85, "usage_type": "call" }, { "api_name": "db.model.ResourceGroup", "line_number": 85, "usage_type": "argument" }, { "api_name": "db.model.DBSession", "line_number": 85, "usage_type": "attribute" }, { "api_name": "db.model", "line_number": 85, "usage_type": "name" }, { "api_name": "db.model.ResourceGroup.id", "line_number": 85, "usage_type": "attribute" }, { "api_name": "sqlalchemy.orm.exc.NoResultFound", "line_number": 86, "usage_type": "name" }, { "api_name": "exceptions.HydraError", "line_number": 87, "usage_type": "call" }, { "api_name": "exceptions.HydraError", "line_number": 89, "usage_type": "call" }, { "api_name": "db.model.ResourceGroupItem", "line_number": 91, "usage_type": "call" }, { "api_name": "db.model.DBSession.add", "line_number": 103, "usage_type": "call" }, { "api_name": "db.model.DBSession", "line_number": 103, "usage_type": "attribute" }, { "api_name": "db.model", "line_number": 103, "usage_type": "name" }, { "api_name": "db.model.DBSession.flush", "line_number": 104, "usage_type": "call" }, { "api_name": "db.model.DBSession", "line_number": 104, "usage_type": "attribute" }, { "api_name": "db.model", "line_number": 104, "usage_type": "name" }, { "api_name": "scenario._get_scenario", "line_number": 111, "usage_type": "call" }, { "api_name": "db.model.DBSession.delete", "line_number": 112, "usage_type": "call" }, { "api_name": "db.model.DBSession", "line_number": 112, "usage_type": "attribute" }, { "api_name": "db.model", "line_number": 112, "usage_type": "name" }, { "api_name": "db.model.DBSession.flush", "line_number": 113, "usage_type": "call" }, { "api_name": "db.model.DBSession", "line_number": 113, "usage_type": "attribute" }, { "api_name": "db.model", "line_number": 113, "usage_type": "name" } ]
30791686316
from numba import * from numba import error #@autojit def func(): if x: print("hello") else: print("world") def compile_func1(): try: jit(void())(func) except error.NumbaError as e: print("exception: %s" % e) __doc__ = """ >>> compile_func1() --------------------- Numba Encountered Errors or Warnings --------------------- if x: -------^ Error 6:7: No global named 'x' -------------------------------------------------------------------------------- exception: 6:7: No global named 'x' """ #@autojit def func2(): print(10[20]) def compile_func2(): try: jit(void())(func2) except error.NumbaError as e: print("exception: %s" % e) __doc__ += """>>> compile_func2() --------------------- Numba Encountered Errors or Warnings --------------------- print(10[20]) ----------^ Error 29:10: object of type int cannot be indexed -------------------------------------------------------------------------------- exception: 29:10: object of type int cannot be indexed """ @autojit # this often messes up line numbers def func_decorated(): print(10[20]) def compile_func3(): try: func_decorated() except error.NumbaError as e: print("exception: %s" % e) __doc__ += """ >>> compile_func3() --------------------- Numba Encountered Errors or Warnings --------------------- print(10[20]) ----------^ Error 48:10: object of type int cannot be indexed -------------------------------------------------------------------------------- exception: 48:10: object of type int cannot be indexed """ if __name__ == '__main__': import numba numba.testmod()
garrison/numba
numba/tests/test_reporting.py
test_reporting.py
py
1,664
python
en
code
null
github-code
6
[ { "api_name": "numba.error.NumbaError", "line_number": 14, "usage_type": "attribute" }, { "api_name": "numba.error", "line_number": 14, "usage_type": "name" }, { "api_name": "numba.error.NumbaError", "line_number": 34, "usage_type": "attribute" }, { "api_name": "numba.error", "line_number": 34, "usage_type": "name" }, { "api_name": "numba.error.NumbaError", "line_number": 53, "usage_type": "attribute" }, { "api_name": "numba.error", "line_number": 53, "usage_type": "name" }, { "api_name": "numba.testmod", "line_number": 68, "usage_type": "call" } ]
74637081787
import socket import time from PyQt5.QtCore import QTimer, QThread import queue import logging import pyaudio import threading logging.basicConfig(format="%(message)s", level=logging.INFO) class AudioRec(QThread): def __init__(self, threadChat): super().__init__() self.threadChat = threadChat self.host_name = socket.gethostname() self.host_ip = socket.gethostbyname(self.host_name) # self.host_ip = '127.0.0.1' self.port = 9634 self.socket_address = (self.host_ip, self.port) # a maxsize 100 will be ideal but lags with video at the moment # must send frames from server VideoGen and make sync in client # using audio and frame timestamps self.q = queue.Queue(maxsize=5) self.BUFF_SIZE = 65536 self.audio_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.audio_socket.setsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF, self.BUFF_SIZE) self.audio_socket.bind(self.socket_address) self.p = pyaudio.PyAudio() self.CHUNK = 1024 self.stream = self.p.open(format=self.p.get_format_from_width(2), channels=2, rate=44100, output=True, frames_per_buffer=self.CHUNK) self.timer = QTimer() self.timer.timeout.connect(self.play_audio) self.timer.start(1000 * 0.8 * self.CHUNK / 44100) t1 = threading.Thread(target=self.get_audio_data, args=()) t1.start() print('Listening for audio...') def get_audio_data(self): while self.threadChat.nickname == "": # print('wait audio') # time.sleep(0.1) pass while True: try: self.frame, _ = self.audio_socket.recvfrom(self.BUFF_SIZE) self.q.put(self.frame) except BlockingIOError: pass except Exception as e: logging.error(e) def play_audio(self): if not self.q.empty(): frame = self.q.get() self.stream.write(frame)
shully899509/OpenParty
app/client/ClientAudio.py
ClientAudio.py
py
2,191
python
en
code
0
github-code
6
[ { "api_name": "logging.basicConfig", "line_number": 10, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 10, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.QThread", "line_number": 13, "usage_type": "name" }, { "api_name": "socket.gethostname", "line_number": 18, "usage_type": "call" }, { "api_name": "socket.gethostbyname", "line_number": 19, "usage_type": "call" }, { "api_name": "queue.Queue", "line_number": 27, "usage_type": "call" }, { "api_name": "socket.socket", "line_number": 30, "usage_type": "call" }, { "api_name": "socket.AF_INET", "line_number": 30, "usage_type": "attribute" }, { "api_name": "socket.SOCK_DGRAM", "line_number": 30, "usage_type": "attribute" }, { "api_name": "socket.SOL_SOCKET", "line_number": 31, "usage_type": "attribute" }, { "api_name": "socket.SO_RCVBUF", "line_number": 31, "usage_type": "attribute" }, { "api_name": "pyaudio.PyAudio", "line_number": 33, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QTimer", "line_number": 41, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 45, "usage_type": "call" }, { "api_name": "logging.error", "line_number": 62, "usage_type": "call" } ]
70713803388
import re import os import sys import time import json import torch import wandb import random import datasets import evaluate import numpy as np import transformers from accelerate import Accelerator from accelerate.utils import set_seed from torch.utils.data import DataLoader from transformers import AutoTokenizer, DefaultDataCollator, AutoModelForSequenceClassification set_seed(42) MODEL_NAME = str(sys.argv[1]) MIXED_PRECISION = str(sys.argv[2]) def prepare_dataset(data_folder, label2id, data_types): def combine_data(example): temp_text = "" for data_type in data_types: temp_text += example[data_type] + " " example["text"] = temp_text return example dataset = datasets.load_from_disk(data_folder + "dataset/") dataset = dataset["train"] dataset_encoded = dataset.class_encode_column("category") dataset_aligned = dataset_encoded.align_labels_with_mapping(label2id, "category") dataset = dataset_aligned.map(combine_data, remove_columns=["title", "body"]) dataset = dataset.rename_column("category", "label") return dataset def main(): def preprocess_function(examples): return tokenizer(examples["text"], truncation=True, padding='max_length', max_length=hps["max_length"], return_tensors='pt') models = {"bert": "bert-base-uncased", "distilbert": "distilbert-base-uncased", "tinybert": "huawei-noah/TinyBERT_General_4L_312D"} hps = { "batch_size": 32, "gradient_accumulation_steps": 2, "learning_rate": 2e-5, "data_types": ["title", "body"], "model_name": models[MODEL_NAME], "num_epochs": 3, "max_length": 256, "weight_decay": 0.01, "num_warmup_steps": 0.2, "mixed_precision": MIXED_PRECISION, "split_batches": True, } wandb_id = wandb.util.generate_id() accelerator = Accelerator(log_with="wandb", gradient_accumulation_steps=hps["gradient_accumulation_steps"], split_batches=hps["split_batches"], mixed_precision=hps["mixed_precision"]) accelerator.init_trackers( project_name="DMOZ-classification", config=hps, init_kwargs={"wandb": { "name": MODEL_NAME.upper() + "_DMOZ_" + str(wandb_id), "job_type": "training", "group": str(wandb_id), "tags": [MODEL_NAME.upper(), "DMOZ"], } }, ) data_folder = str(sys.argv[3]) id2label = {0: "Arts", 1: "Business", 2: "Computers", 3: "Health", 4: "Home", 5: "News", 6: "Recreation", 7: "Reference", 8: "Science", 9: "Shopping", 10: "Society", 11: "Sports", 12: "Games"} label2id = {v: k for k, v in id2label.items()} labels = label2id.keys() dataset = prepare_dataset(data_folder, label2id, hps["data_types"]) tokenizer = AutoTokenizer.from_pretrained(hps["model_name"]) data_collator = DefaultDataCollator() tokenized_data = dataset.map(preprocess_function, batched=True) tokenized_data = tokenized_data.remove_columns("text") train_dataloader = DataLoader( tokenized_data, shuffle=True, batch_size=hps["batch_size"], collate_fn=data_collator, drop_last=True, ) model = AutoModelForSequenceClassification.from_pretrained( hps["model_name"], num_labels=len(labels), id2label=id2label, label2id=label2id, ) optimizer = torch.optim.AdamW( model.parameters(), lr=(hps["learning_rate"] * accelerator.num_processes), weight_decay=hps["weight_decay"], eps=1e-8, ) num_training_steps = hps["num_epochs"] * len(tokenized_data) num_warmup_steps = int(hps["num_warmup_steps"] * len(train_dataloader)) lr_scheduler = transformers.get_linear_schedule_with_warmup( optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps ) train_dataloader, model, optimizer, lr_scheduler = accelerator.prepare(train_dataloader, model, optimizer, lr_scheduler) starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True) accuracy = evaluate.load("accuracy") model.train() starter.record() for epoch in range(hps["num_epochs"]): for idx, batch in enumerate(train_dataloader): with accelerator.accumulate(model): outputs = model(**batch) loss = outputs.loss logits = outputs.logits accelerator.backward(loss) predictions = logits.argmax(dim=-1) accelerator.log({"batch/batch_step": idx, "batch/loss": loss, "batch/accuracy": accuracy.compute(predictions=predictions, references=batch["labels"])["accuracy"]}) optimizer.step() lr_scheduler.step() optimizer.zero_grad() ender.record() torch.cuda.synchronize() training_time = starter.elapsed_time(ender) accelerator.log({"train": {"train_time": training_time}}) # Saving model accelerator.wait_for_everyone() model = accelerator.unwrap_model(model) state_dict = model.state_dict() filename = data_folder + "models/BERT/model.pt" accelerator.save(state_dict, filename) accelerator.end_training() if accelerator.is_main_process: wandb.init( project="DMOZ-classification", name="MODEL_" + str(wandb_id), group=str(wandb_id), job_type="model", tags=["model"], ) model_artifact = wandb.Artifact( name="model_" + MODEL_NAME.upper() + "_DMOZ", type="model" ) model_artifact.add_file(filename) wandb.log_artifact(model_artifact) wandb.finish() if __name__ == "__main__": main()
JesseBrons/Webpageclassification
training/train_model_BERT.py
train_model_BERT.py
py
5,845
python
en
code
1
github-code
6
[ { "api_name": "accelerate.utils.set_seed", "line_number": 18, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 20, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 21, "usage_type": "attribute" }, { "api_name": "datasets.load_from_disk", "line_number": 31, "usage_type": "call" }, { "api_name": "wandb.util.generate_id", "line_number": 61, "usage_type": "call" }, { "api_name": "wandb.util", "line_number": 61, "usage_type": "attribute" }, { "api_name": "accelerate.Accelerator", "line_number": 63, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 77, "usage_type": "attribute" }, { "api_name": "transformers.AutoTokenizer.from_pretrained", "line_number": 85, "usage_type": "call" }, { "api_name": "transformers.AutoTokenizer", "line_number": 85, "usage_type": "name" }, { "api_name": "transformers.DefaultDataCollator", "line_number": 86, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 91, "usage_type": "call" }, { "api_name": "transformers.AutoModelForSequenceClassification.from_pretrained", "line_number": 99, "usage_type": "call" }, { "api_name": "transformers.AutoModelForSequenceClassification", "line_number": 99, "usage_type": "name" }, { "api_name": "torch.optim.AdamW", "line_number": 105, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 105, "usage_type": "attribute" }, { "api_name": "transformers.get_linear_schedule_with_warmup", "line_number": 114, "usage_type": "call" }, { "api_name": "torch.cuda.Event", "line_number": 122, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 122, "usage_type": "attribute" }, { "api_name": "evaluate.load", "line_number": 124, "usage_type": "call" }, { "api_name": "torch.cuda.synchronize", "line_number": 143, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 143, "usage_type": "attribute" }, { "api_name": "wandb.init", "line_number": 156, "usage_type": "call" }, { "api_name": "wandb.Artifact", "line_number": 163, "usage_type": "call" }, { "api_name": "wandb.log_artifact", "line_number": 168, "usage_type": "call" }, { "api_name": "wandb.finish", "line_number": 170, "usage_type": "call" } ]
44632720863
#!/usr/bin/env python import sys import shutil from typing import Optional, List, Tuple, Dict import typer from rich import print from rich.columns import Columns from rich.console import Console from rich.traceback import install # fmt: off # Mapping from topics to colors TOPICS = { "TIMR": "#9a9a99", "VOTE": "#67a0b2", "LEAD": "#d0b343", "TERM": "#70c43f", "LOG1": "#4878bc", "LOG2": "#398280", "CMIT": "#98719f", "PERS": "#d08341", "SNAP": "#FD971F", "DROP": "#ff615c", "CLNT": "#00813c", "TEST": "#fe2c79", "INFO": "#ffffff", "WARN": "#d08341", "ERRO": "#fe2626", "TRCE": "#fe2626", } # fmt: on def list_topics(value: Optional[str]): if value is None: return value topics = value.split(",") for topic in topics: if topic not in TOPICS: raise typer.BadParameter(f"topic {topic} not recognized") return topics def main( file: typer.FileText = typer.Argument(None, help="File to read, stdin otherwise"), colorize: bool = typer.Option(True, "--no-color"), n_columns: Optional[int] = typer.Option(None, "--columns", "-c"), ignore: Optional[str] = typer.Option(None, "--ignore", "-i", callback=list_topics), just: Optional[str] = typer.Option(None, "--just", "-j", callback=list_topics), ): topics = list(TOPICS) # We can take input from a stdin (pipes) or from a file input_ = file if file else sys.stdin # Print just some topics or exclude some topics (good for avoiding verbose ones) if just: topics = just if ignore: topics = [lvl for lvl in topics if lvl not in set(ignore)] topics = set(topics) console = Console() width = console.size.width panic = False for line in input_: try: time, topic, *msg = line.strip().split(" ") # To ignore some topics if topic not in topics: continue msg = " ".join(msg) # Debug calls from the test suite aren't associated with # any particular peer. Otherwise we can treat second column # as peer id if topic != "TEST": i = int(msg[1]) # Colorize output by using rich syntax when needed if colorize and topic in TOPICS: color = TOPICS[topic] msg = f"[{color}]{msg}[/{color}]" # Single column printing. Always the case for debug stmts in tests if n_columns is None or topic == "TEST": print(time, msg) # Multi column printing, timing is dropped to maximize horizontal # space. Heavylifting is done through rich.column.Columns object else: cols = ["" for _ in range(n_columns)] msg = "" + msg cols[i] = msg col_width = int(width / n_columns) cols = Columns(cols, width=col_width - 1, equal=True, expand=True) print(cols) except: # Code from tests or panics does not follow format # so we print it as is if line.startswith("panic"): panic = True # Output from tests is usually important so add a # horizontal line with hashes to make it more obvious if not panic: print("#" * console.width) print(line, end="") if __name__ == "__main__": typer.run(main)
fansehep/Raft_Key-Value
RAFT_6_824/src/raft/dslogs.py
dslogs.py
py
3,483
python
en
code
4
github-code
6
[ { "api_name": "typing.Optional", "line_number": 35, "usage_type": "name" }, { "api_name": "typer.BadParameter", "line_number": 41, "usage_type": "call" }, { "api_name": "typer.FileText", "line_number": 46, "usage_type": "attribute" }, { "api_name": "typing.Optional", "line_number": 48, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 49, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 50, "usage_type": "name" }, { "api_name": "typer.Argument", "line_number": 46, "usage_type": "call" }, { "api_name": "typer.Option", "line_number": 47, "usage_type": "call" }, { "api_name": "typer.Option", "line_number": 48, "usage_type": "call" }, { "api_name": "typer.Option", "line_number": 49, "usage_type": "call" }, { "api_name": "typer.Option", "line_number": 50, "usage_type": "call" }, { "api_name": "sys.stdin", "line_number": 55, "usage_type": "attribute" }, { "api_name": "rich.console.Console", "line_number": 63, "usage_type": "call" }, { "api_name": "rich.print", "line_number": 89, "usage_type": "call" }, { "api_name": "rich.columns.Columns", "line_number": 97, "usage_type": "call" }, { "api_name": "rich.print", "line_number": 98, "usage_type": "call" }, { "api_name": "rich.print", "line_number": 107, "usage_type": "call" }, { "api_name": "rich.print", "line_number": 108, "usage_type": "call" }, { "api_name": "typer.run", "line_number": 112, "usage_type": "call" } ]
30109795593
# -*- coding: utf-8 -*- """ Created on Thu Oct 7 10:30:52 2021 @author: X """ import json import lz4.frame, lz4.block import os import copy # The full path to the Firefox folders is: # C:\Users\USERNAME\AppData\Roaming\Mozilla\Firefox\Profiles # Each profile gets its own folder and from there, the bookmark files are saved # in "bookmarksbackups". def bookmarkbackups(): USERS=r"C:\Users" users=os.listdir(USERS) MOZAPPDATA=r"AppData\Roaming\Mozilla\Firefox\Profiles" REMOVE=['All Users', 'Default', 'Default User', 'desktop.ini', 'Public'] rv=[] for each in REMOVE: users.remove(each) for user in users: for profile_folder in os.listdir(os.path.join(USERS,user,MOZAPPDATA)): for bookmark_file in os.listdir(os.path.join(USERS,user,MOZAPPDATA, profile_folder,"bookmarkbackups")): rv.append(os.path.join(USERS,user,MOZAPPDATA,profile_folder, "bookmarkbackups",bookmark_file)) return rv def readfile(fn): with open(fn,'rb') as fh: return fh.read() # The backup files are lz4 compressed and start with "mozLz40" def readbookmarkfile(fn): file_content=readfile(fn) if file_content[0:8]==bytes("mozLz40\x00".encode('ascii')): file_content = lz4.block.decompress(file_content[8:]) return json.loads(file_content) def count_links(j,count=0): if type(j)==dict: if "children" in j: for e in j["children"]: count+=count_links(e) return count else:#if no children then it's a link return 1 assert False def count_and_validate_flatv(v): count=0 for j in v: if "children" in j: for e in j["children"]: if e["type"]!="text/x-moz-place": return False, count count+=1 else: assert False return True,count def grab_all_links(j,depth=0): rv=[] if "children" in j: for e in j["children"]: if e["type"]=="text/x-moz-place": rv.append(e) elif e["type"]=="text/x-moz-place-container": rv.extend(grab_all_links(e,depth+1)) else: assert False return rv def printkeys(j): for k,v in j.items(): if k!="children": print(k,"=",v,sep="") else: print(len(v),"children") print() def write_pretty(j,fn): with open(fn, "w") as write_file: json.dump(j, write_file, indent=4) # I had a bug where if every item didn't have its own unique id it would fail # to load in Firefox. I created this dictionary making function to discover # duplicate ids. In the end I just change all the ids in the big data structure # rather than trying to keep track during the process of merging. def id_dict(n,d): id = n["id"] if n["type"]=="text/x-moz-place": if id in d: d[id]+=1 else: d[id]=1 elif n["type"]=="text/x-moz-place-container": if id in d: d[id]+=1 else: d[id]=1 if "children" in n: for sub in n["children"]: id_dict(sub,d) else: assert False def return_id_dict(n): d={} id_dict(n,d) return d def fix_all_ids(n,id=100): n["id"]=id id+=1 if "children" in n: for sub in n["children"]: id=fix_all_ids(sub,id) return id def remove_children(j): rv={} for k,v in j.items(): if k=="children": continue rv[k]=v return rv def link_anywhere_in_rv(j,rv): for folder in rv: for link in folder["children"]: if j["uri"]==link["uri"]: return True return False # There are a few contradictory ideas here. It is possible to comment out # if link_anywhere_in_rv() to only search folders with the same name # first it searches if the link exists anywhere, leave that in to not have dupe # then it looks for a place for the link to go # it looks for a matching folder name # then compares all links. If the folder name matches then it first checks the # uris for a match. If already in folder skips # but if not then it returns the destination folder # if the uri is unique then it returns False signaling to create a place for it def already_in_rv(link,title,rv): if link_anywhere_in_rv(link,rv): #print(link["title"]) return True for i,j in enumerate(rv): dest=None if j["title"]==title: dest = i if "children" in j: for sub in j["children"]: if sub["uri"]==link["uri"]: return True if dest!=None: return rv[dest] return False def merge_link_folder(link,folder,rv,idd): assert link["type"]=="text/x-moz-place" assert "children" not in link assert folder["type"]=="text/x-moz-place-container" assert type(rv)==list b = already_in_rv(link,folder["title"],rv) if b==False: rv.append(remove_children(folder)) rv[-1]["children"]=[link] elif type(b)==dict: if "children" not in b: b["children"]=[] b["children"].append(link) else: assert b==True def merge_link_folder_all(folder,rv,idd): assert folder["type"]=="text/x-moz-place-container" if "children" not in folder: return for sub in folder["children"]: if sub["type"]=="text/x-moz-place": merge_link_folder(sub,folder,rv,idd) elif sub["type"]=="text/x-moz-place-container": merge_link_folder_all(sub,rv,idd) else: assert False # mut is a name for the template structure that has a "menu" "unfiled" and # "toolbar" folder. I actually later include "mobile" as well. # This stucture is the empty structure that I merge all the links into since I # don't want links to fall into those orignal folders and instead to fall into # alternate ones that are under the root menu folder def build_mut(): mut=readbookmarkfile("empty_pretty.json") for each in mut["children"][0]["children"]: each["children"]=[] return mut["children"][0]["children"] def process_alts(first=None): if first==None: files=[] else: files=[first] files.extend(bookmarkbackups()) rv=build_mut() idd={} for fn in files: j=readbookmarkfile(fn) if count_links(j)<10000: merge_link_folder_all(j,rv,idd) else: print(fn) return rv def create_merged_json(first=None): v=process_alts(first) merged=readbookmarkfile("empty_pretty.json") merged["children"][0]["children"]=v print("count =",count_links(merged)) fix_all_ids(merged) write_pretty(merged,"merged.json") return merged merged=create_merged_json(input("Primary bookmark file: "))
AndrewWigginCout/bookmarks
bookmarks.py
bookmarks.py
py
7,127
python
en
code
1
github-code
6
[ { "api_name": "os.listdir", "line_number": 18, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 25, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 25, "usage_type": "call" }, { "api_name": "os.path", "line_number": 25, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 26, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 26, "usage_type": "call" }, { "api_name": "os.path", "line_number": 26, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 28, "usage_type": "call" }, { "api_name": "os.path", "line_number": 28, "usage_type": "attribute" }, { "api_name": "lz4.frame.block.decompress", "line_number": 38, "usage_type": "call" }, { "api_name": "lz4.frame.block", "line_number": 38, "usage_type": "attribute" }, { "api_name": "lz4.frame", "line_number": 38, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 39, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 79, "usage_type": "call" } ]
73839717628
from asyncio import sleep, run import os import random from dotenv import load_dotenv import discord from discord.ext import commands, tasks import data from table2ascii import table2ascii as t2a, PresetStyle import asyncpg from datetime import datetime, timedelta load_dotenv() TOKEN = os.getenv('DISCORD_TOKEN') intents = discord.Intents.all() intents.members = True bot = commands.Bot(command_prefix='!', intents=intents) async def create_db_pool(): bot.db = await asyncpg.create_pool(dsn="postgres://postgres:database@localhost:5432/finance_bot") print("connected to db") @bot.event async def on_ready(): print(f'{bot.user.name} has connected to Discord!') @bot.command(name='curr_price', help='Get the current price of one or more stocks') async def curr_price(ctx, *args): ret_array = [] non_existent = [] for tag in args: if data.ticker_exists(str(tag)): ret_array.append([str(tag), f"${round(data.current_price(str(tag)), 2)}"]) else: non_existent.append(str(tag)) output = t2a( header=["Ticker", "Price"], body=[arr for arr in ret_array], style=PresetStyle.thin_compact ) await ctx.send(f"```\n{output}\n```") if len(non_existent) > 0: await ctx.send(f"{', '.join(non_existent)} symbol/s do not exist") @bot.command(name='info', help='Get info of a particular stock according to the list of keys') async def get_info(ctx, symbol: str, key: str): if not data.ticker_exists(symbol): await ctx.send(f"Ticker symbol {symbol} does not exist or may be delisted.") else: try: await ctx.send(data.get_info(symbol, key)) except KeyError: await ctx.send(f"{key} is not a valid information identifier") @get_info.error async def info_error(ctx, error): if isinstance(error, commands.MissingRequiredArgument): await ctx.send("Incorrect arguments entered. Please enter: !get_info \{ticker symbol\} \{information requested\}") @bot.command(name='balance_sheet', help='Returns the most recent balance sheet of a single company specified by the ticker symbol entered') async def balance_sheet(ctx, symbol: str): print("calling") if not data.ticker_exists(symbol): await ctx.send(f"Ticker symbol {symbol} does not exist or may be delisted.") return print("calling2") bsheet = data.get_balance_sheet(symbol) print("calling3") for i in range(0, 4): print("calling4") sheet1 = bsheet[int((i / 4) * len(bsheet)):int(len(bsheet) * ((i + 1) / 4))] output = t2a( body=[arr for arr in sheet1], style=PresetStyle.thin_compact ) await ctx.send(f"```\n{output}\n```") @balance_sheet.error async def bsheet_error(ctx, error): if isinstance(error, commands.MissingRequiredArgument): await ctx.send("Incorrect arguments entered. Please enter: !balance_sheet \{ticker symbol\}") @bot.command(name='earnings', help='Returns a graph of a companies revenue and earnings over the past 4 years') async def earnings(ctx, symbol: str): if not data.ticker_exists(symbol): await ctx.send(f"Ticker symbol {symbol} does not exist or may be delisted.") return url = data.get_earnings(symbol, False) embed = discord.Embed(title=f"{symbol} Earnings") embed.set_image(url=url) await ctx.send(embed=embed) @earnings.error async def earnings_error(ctx, error): if isinstance(error, commands.MissingRequiredArgument): await ctx.send("Incorrect arguments entered. Please enter: !earnings \{ticker symbol\}") @bot.command(name='quarterly_earnings', help='Returns a graph of a companies revenue and earnings over the past 4 quarters') async def quarterly_earnings(ctx, symbol: str): if not data.ticker_exists(symbol): await ctx.send(f"Ticker symbol {symbol} does not exist or may be delisted.") return url = data.get_earnings(symbol, True) embed = discord.Embed(title=f"{symbol} Earnings") embed.set_image(url=url) await ctx.send(embed=embed) @quarterly_earnings.error async def qearnings_error(ctx, error): if isinstance(error, commands.MissingRequiredArgument): await ctx.send("Incorrect arguments entered. Please enter: !quarterly_earnings \{ticker symbol\}") @bot.command(name='add_news', help='Adds a ticker to get daily news for') async def add_news(ctx, symbol: str): if not data.ticker_exists(symbol): await ctx.send(f"Ticker symbol {symbol} does not exist or may be delisted.") return check_ticker = await bot.db.fetch('SELECT ticker FROM news_tickers WHERE ticker = $1', symbol) if len(check_ticker) > 0: await ctx.send(f"Ticker symbol {symbol} has already been added") else: await bot.db.execute('INSERT INTO news_tickers(ticker) VALUES ($1)', symbol) @tasks.loop(hours=24) async def daily_news(ctx): tickers = await bot.db.fetch('SELECT ticker FROM news_tickers') ticker_array = [ticker[0] for ticker in tickers] news = data.get_news(ticker_array) set_of = set(ticker_array) for article in news.values(): related_tickers = [company for company in article['relatedTickers'] if company in set_of] ticker_string = ", ".join(related_tickers) publisher = article['publisher'] thumbnail = None try: thumbnail = article['thumbnail']['resolution'][0]['url'] except KeyError: pass embed=discord.Embed(title=article['title'], url=article['link'], color=0x00ffff) if thumbnail: embed.set_thumbnail(url=thumbnail) embed.add_field(name="Publisher", value=publisher, inline=False) embed.add_field(name="Related Tickers", value=ticker_string, inline=True) await ctx.send(embed=embed) @daily_news.before_loop async def before_daily_news(): now = datetime.now() current_hour = now.strftime("%H") if int(current_hour) > 8: nine_am = (now + timedelta(days=1)).replace(hour=9, minute=0, microsecond=0, second=0) else: nine_am = datetime(year=int(now.strftime("%Y")), month=int(now.strftime("%m")), day=int(now.strftime("%d")), hour=9) diff = (nine_am - now).seconds await sleep(diff) @bot.command(name="remove_news", help="Remove a ticker from the news watchlist") async def remove_news(ctx, symbol: str): tickers = await bot.db.fetch('SELECT ticker FROM news_tickers') ticker_array = [ticker[0] for ticker in tickers] if symbol not in ticker_array: await ctx.send(f"Ticker {symbol} is not in the watchlist.") else: await bot.db.execute('''DELETE FROM news_tickers where ticker = $1''', symbol) async def main(): await create_db_pool() await bot.start(TOKEN) run(main())
NexhmedinQ/Discord-Finance-Bot
bot.py
bot.py
py
6,920
python
en
code
0
github-code
6
[ { "api_name": "dotenv.load_dotenv", "line_number": 13, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 14, "usage_type": "call" }, { "api_name": "discord.Intents.all", "line_number": 16, "usage_type": "call" }, { "api_name": "discord.Intents", "line_number": 16, "usage_type": "attribute" }, { "api_name": "discord.ext.commands.Bot", "line_number": 18, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 18, "usage_type": "name" }, { "api_name": "asyncpg.create_pool", "line_number": 22, "usage_type": "call" }, { "api_name": "data.ticker_exists", "line_number": 34, "usage_type": "call" }, { "api_name": "data.current_price", "line_number": 35, "usage_type": "call" }, { "api_name": "table2ascii.table2ascii", "line_number": 39, "usage_type": "call" }, { "api_name": "table2ascii.PresetStyle.thin_compact", "line_number": 42, "usage_type": "attribute" }, { "api_name": "table2ascii.PresetStyle", "line_number": 42, "usage_type": "name" }, { "api_name": "data.ticker_exists", "line_number": 54, "usage_type": "call" }, { "api_name": "data.get_info", "line_number": 58, "usage_type": "call" }, { "api_name": "discord.ext.commands.MissingRequiredArgument", "line_number": 64, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 64, "usage_type": "name" }, { "api_name": "data.ticker_exists", "line_number": 71, "usage_type": "call" }, { "api_name": "data.get_balance_sheet", "line_number": 75, "usage_type": "call" }, { "api_name": "table2ascii.table2ascii", "line_number": 80, "usage_type": "call" }, { "api_name": "table2ascii.PresetStyle.thin_compact", "line_number": 82, "usage_type": "attribute" }, { "api_name": "table2ascii.PresetStyle", "line_number": 82, "usage_type": "name" }, { "api_name": "discord.ext.commands.MissingRequiredArgument", "line_number": 88, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 88, "usage_type": "name" }, { "api_name": "data.ticker_exists", "line_number": 93, "usage_type": "call" }, { "api_name": "data.get_earnings", "line_number": 96, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 97, "usage_type": "call" }, { "api_name": "discord.ext.commands.MissingRequiredArgument", "line_number": 103, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 103, "usage_type": "name" }, { "api_name": "data.ticker_exists", "line_number": 108, "usage_type": "call" }, { "api_name": "data.get_earnings", "line_number": 111, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 112, "usage_type": "call" }, { "api_name": "discord.ext.commands.MissingRequiredArgument", "line_number": 118, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 118, "usage_type": "name" }, { "api_name": "data.ticker_exists", "line_number": 123, "usage_type": "call" }, { "api_name": "data.get_news", "line_number": 136, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 149, "usage_type": "call" }, { "api_name": "discord.ext.tasks.loop", "line_number": 132, "usage_type": "call" }, { "api_name": "discord.ext.tasks", "line_number": 132, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 160, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 160, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 163, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 165, "usage_type": "call" }, { "api_name": "asyncio.sleep", "line_number": 167, "usage_type": "call" }, { "api_name": "asyncio.run", "line_number": 182, "usage_type": "call" } ]
28395924014
import os import numpy as np from PIL import Image from torch.utils.data import Dataset from torchvision import transforms class AnimeDataset(Dataset): def __init__(self, dataset_path, image_size): self.transform = transforms.Compose([ transforms.Resize(image_size), transforms.CenterCrop(image_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) self.paths = [os.path.join(dataset_path, name) for name in os.listdir(dataset_path)] def __getitem__(self, item): image = Image.open(self.paths[item]) data = self.transform(image) return data def __len__(self): return len(self.paths) class LossWriter: def __init__(self, save_path): self.save_path = save_path def add(self, loss, i): with open(self.save_path, mode="a") as f: term = str(i) + " " + str(loss) + "\n" f.write(term) f.close() def recover_image(img): return ( (img.numpy() * np.array([0.5, 0.5, 0.5]).reshape((1, 3, 1, 1)) + np.array([0.5, 0.5, 0.5]).reshape((1, 3, 1, 1)) ).transpose(0, 2, 3, 1) * 255 ).clip(0, 255).astype(np.uint8)
cwpeng-cn/DCGAN
data.py
data.py
py
1,276
python
en
code
0
github-code
6
[ { "api_name": "torch.utils.data.Dataset", "line_number": 8, "usage_type": "name" }, { "api_name": "torchvision.transforms.Compose", "line_number": 11, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 11, "usage_type": "name" }, { "api_name": "torchvision.transforms.Resize", "line_number": 12, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 12, "usage_type": "name" }, { "api_name": "torchvision.transforms.CenterCrop", "line_number": 13, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 13, "usage_type": "name" }, { "api_name": "torchvision.transforms.ToTensor", "line_number": 14, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 14, "usage_type": "name" }, { "api_name": "torchvision.transforms.Normalize", "line_number": 15, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 15, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path", "line_number": 17, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 17, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 20, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 20, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 45, "usage_type": "attribute" } ]
18956703257
from datetime import datetime, timezone from slack_sdk import WebClient from slack_sdk.errors import SlackApiError import logging import os import mongo_client from typing import Optional, List, Union import random client = WebClient(token=os.environ.get("SLACK_TOKEN")) good_words_collection = mongo_client.get_good_words_collection() EMOJIS = os.environ.get("VALID_EMOJIS").split(' ') def add_historical_goodwords(): # Call the conversations.list method using the WebClient result = client.conversations_history(channel="C0441R6SKBN") conversation_history = result["messages"] for message in conversation_history: word = message['text'] date_millis = float(message['ts']) user_id = message['user'] temp_list = list(filter(lambda a: len(a) > 0, word.split(" "))) if len(temp_list) == 1: handle_word_sent(temp_list[0], date_millis, user_id, True) def process_event(event: object): if event.get('text', False) and event.get('ts', False) and event.get('user', False): if event.get('thread_ts', False): print(f"Replies to posts not accepted.") return message = event['text'] millis_time = float(event['ts']) user = event['user'] channel = event['channel'] temp_list = list(filter(lambda a: len(a) > 0, message.split(" "))) if len(temp_list) > 1 or channel != "C0441R6SKBN": print(f"invalid submission: {temp_list}") else: handle_word_sent(temp_list[0], millis_time, user) else: print(f"Event missing attribute ts or text: {event}") def handle_word_sent(word: str, millis_time: float, user_id: str, historical: bool=False): prev_sent = find_word(word) if prev_sent is not None: if not historical: client.chat_postMessage(channel="C0441R6SKBN", text=f"{word} was previously sent on {datetime.fromtimestamp(prev_sent['date_millis']).strftime('%m/%d/%Y')}", thread_ts=str(millis_time)) print(f"Thread Time: {datetime.fromtimestamp(prev_sent['date_millis']).strftime('%m/%d/%Y')}, Prev Sent Word: {word}") elif not historical: insert_new_word(word, millis_time, user_id) client.reactions_add(channel="C0441R6SKBN", name=random.choice(EMOJIS), timestamp=str(millis_time)) else: insert_new_word(word, millis_time, user_id) def insert_new_word(word: str, date_millis: float, user: str): word_lowercase = word.lower() document = { "word": word_lowercase, "date_millis": date_millis, "user_id": user } good_words_collection.insert_one(document) print(f"Successfully added word: \n {document['word']} \n millis: {document['date_millis']}") def find_word(word: str): result = good_words_collection.find_one({"word": word.lower()}) print(f"Found: {result}") return result
isaacson-f/slack-bots
goodwords_service.py
goodwords_service.py
py
2,887
python
en
code
0
github-code
6
[ { "api_name": "slack_sdk.WebClient", "line_number": 11, "usage_type": "call" }, { "api_name": "os.environ.get", "line_number": 11, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 11, "usage_type": "attribute" }, { "api_name": "mongo_client.get_good_words_collection", "line_number": 13, "usage_type": "call" }, { "api_name": "os.environ.get", "line_number": 15, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 15, "usage_type": "attribute" }, { "api_name": "datetime.datetime.fromtimestamp", "line_number": 50, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 50, "usage_type": "name" }, { "api_name": "datetime.datetime.fromtimestamp", "line_number": 51, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 51, "usage_type": "name" }, { "api_name": "random.choice", "line_number": 54, "usage_type": "call" } ]
8528358737
""" crown.py COMP9444, CSE, UNSW """ import torch import torch.nn as nn import matplotlib.pyplot as plt # the data for this task has three columns: x y and class. # the input of nn will be x and y, and the output will be a binary class. class Full3Net(torch.nn.Module): # assume we have a linear nn here: def __init__(self, hid=3): super(Full3Net, self).__init__() # define the structure of the nn # define the first hidden layer: size of in feature is 2 and size of out feature is define by variable hid self.hidden1 = nn.Linear(2, hid) # define the second hidden layer: size of in feature is hid and size of out feature is hid self.hidden2 = nn.Linear(hid, hid) # define the third layer: the size of input is hid from layer 2, the size of output is 1 self.hidden3 = nn.Linear(hid, 1) def forward(self, input): # assume we are having a linear nn. # calculate the linear sum of the weight with the input: sum1 = self.hidden1(input) # apply the activation function: tanh self.hid1 = torch.tanh(sum1) # calculate the linear sum of the weight with the first hidden layer output after activation sum2 = self.hidden2(self.hid1) # apply the activation function: tanh self.hid2 = torch.tanh(sum2) # compute the sum for the final layer out_sum = self.hidden3(self.hid2) # apply the activation function: sigmoid output = torch.sigmoid(out_sum) return output class Full4Net(torch.nn.Module): def __init__(self, hid): super(Full4Net, self).__init__() def forward(self, input): self.hid1 = None self.hid2 = None self.hid3 = None return 0*input[:,0] class DenseNet(torch.nn.Module): def __init__(self, num_hid): super(DenseNet, self).__init__() def forward(self, input): self.hid1 = None self.hid2 = None return 0*input[:,0]
sijinwnag/COMP9444_HW1
hw1/crown.py
crown.py
py
2,002
python
en
code
0
github-code
6
[ { "api_name": "torch.nn", "line_number": 13, "usage_type": "attribute" }, { "api_name": "torch.nn.Linear", "line_number": 19, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 19, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 21, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 21, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 23, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 23, "usage_type": "name" }, { "api_name": "torch.tanh", "line_number": 31, "usage_type": "call" }, { "api_name": "torch.tanh", "line_number": 35, "usage_type": "call" }, { "api_name": "torch.sigmoid", "line_number": 39, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 43, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 53, "usage_type": "attribute" } ]
39189785619
""" Example of the FrequentistSurface plot. Usage: surf_plot.py FILE where FILE is a file containing Surface to be plotted. The surface is expected to be found in the `/surface` directory of the FILE. """ import sys import matplotlib.pyplot as plt from cafplot import load from cafplot.plot.surface import ( plot_surface, plot_surface_best_fit, plot_surface_gauss_contour ) root_file = load(sys.argv[1]) surface = root_file.get_fsurface('surface') f, ax = plt.subplots() im = plot_surface(ax, surface) plot_surface_best_fit(ax, surface, color = 'red', marker = '*') plot_surface_gauss_contour( ax, surface, sigma = 1, color = 'red', label = r'1$\sigma$' ) ax.set_xlabel(r'$\sin^2 \theta_{23}$') ax.set_ylabel(r'$\Delta m^2_{32}$') ax.legend() f.colorbar(im) plt.show()
usert5432/cafplot
examples/surf_plot.py
surf_plot.py
py
791
python
en
code
0
github-code
6
[ { "api_name": "cafplot.load", "line_number": 17, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 17, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 20, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 20, "usage_type": "name" }, { "api_name": "cafplot.plot.surface.plot_surface", "line_number": 22, "usage_type": "call" }, { "api_name": "cafplot.plot.surface.plot_surface_best_fit", "line_number": 24, "usage_type": "call" }, { "api_name": "cafplot.plot.surface.plot_surface_gauss_contour", "line_number": 25, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 36, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 36, "usage_type": "name" } ]
5033666757
from django.shortcuts import render from django.http import HttpResponse, HttpResponseRedirect from django.db import transaction from django.template import loader from django.core.exceptions import ValidationError from django.contrib.auth import authenticate, login, logout from django.contrib import messages from django.shortcuts import render, get_object_or_404, redirect from django.urls import reverse from django.core.mail import send_mail, BadHeaderError from django.contrib.auth.decorators import login_required from .forms import UserForm, RegisterForm, UserProfileForm, ContactForm from .models import UserProfile, Event def index(request): template = loader.get_template("help/index.html") return HttpResponse(template.render(request=request)) @transaction.atomic def register(request): registered = False if request.method == "POST": user_form = RegisterForm(data=request.POST) userprofile_form = UserProfileForm(data=request.POST) if user_form.is_valid() and userprofile_form.is_valid(): user = user_form.save() user.set_password(user.password) user.save() phone = userprofile_form.cleaned_data.get("phone") userprofile = UserProfile.objects.filter(user_id=user.id) userprofile.update(phone=phone) registered = True else: messages.error(request, ( 'Veuillez corriger les erreurs ci-dessous.')) else: user_form = RegisterForm() userprofile_form = UserProfileForm() return render( request, "help/registration.html", { "user_form": user_form, "userprofile_form": userprofile_form, "registered": registered} ) def logout2(request): logout(request) return redirect(reverse("index")) @login_required() def update_event(request): if request.method == "POST": id = request.POST['event_id'] event = Event.objects.filter(id=id) event.update(status="closed") return redirect(reverse('profile')) else: user_form = RegisterForm() userprofile_form = UserProfileForm() return render(request, "help/profile.html") def contact(request): send = False email = [] contact_form = ContactForm() if request.method == "POST": subject = "demande d'info" from_email = "needhelp_contact" email.append(request.POST['Email']) body = { 'name': request.POST['Nom'], 'email': request.POST['Email'], 'phone': request.POST['Mobile'], 'message': request.POST['Message'], } message = "\n".join(body.values()) try: send_mail( subject, message, from_email, email ) except BadHeaderError: return HttpResponse('Invalid header found.') send = True # return redirect(reverse('contact')) else: contact_form = ContactForm() return render( request, "help/contact.html", { 'contact_form': contact_form, 'send': send })
davidbarat/P13
needhelp/help/views.py
views.py
py
3,219
python
en
code
0
github-code
6
[ { "api_name": "django.template.loader.get_template", "line_number": 17, "usage_type": "call" }, { "api_name": "django.template.loader", "line_number": 17, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 18, "usage_type": "call" }, { "api_name": "forms.RegisterForm", "line_number": 25, "usage_type": "call" }, { "api_name": "forms.UserProfileForm", "line_number": 26, "usage_type": "call" }, { "api_name": "models.UserProfile.objects.filter", "line_number": 32, "usage_type": "call" }, { "api_name": "models.UserProfile.objects", "line_number": 32, "usage_type": "attribute" }, { "api_name": "models.UserProfile", "line_number": 32, "usage_type": "name" }, { "api_name": "django.contrib.messages.error", "line_number": 36, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 36, "usage_type": "name" }, { "api_name": "forms.RegisterForm", "line_number": 39, "usage_type": "call" }, { "api_name": "forms.UserProfileForm", "line_number": 40, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 41, "usage_type": "call" }, { "api_name": "django.db.transaction.atomic", "line_number": 21, "usage_type": "attribute" }, { "api_name": "django.db.transaction", "line_number": 21, "usage_type": "name" }, { "api_name": "django.contrib.auth.logout", "line_number": 50, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 51, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 51, "usage_type": "call" }, { "api_name": "models.Event.objects.filter", "line_number": 58, "usage_type": "call" }, { "api_name": "models.Event.objects", "line_number": 58, "usage_type": "attribute" }, { "api_name": "models.Event", "line_number": 58, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 61, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 61, "usage_type": "call" }, { "api_name": "forms.RegisterForm", "line_number": 64, "usage_type": "call" }, { "api_name": "forms.UserProfileForm", "line_number": 65, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 66, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 54, "usage_type": "call" }, { "api_name": "forms.ContactForm", "line_number": 72, "usage_type": "call" }, { "api_name": "django.core.mail.send_mail", "line_number": 86, "usage_type": "call" }, { "api_name": "django.core.mail.BadHeaderError", "line_number": 93, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 94, "usage_type": "call" }, { "api_name": "forms.ContactForm", "line_number": 98, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 100, "usage_type": "call" } ]
24206813915
import webapp2 import jinja2 import os from google.appengine.ext import db template_dir = os.path.join(os.path.dirname(__file__), 'templates') template_env = jinja2.Environment(loader=jinja2.FileSystemLoader(template_dir), autoescape=True) def to_render(template, **para): t = template_env.get_template(template) return t.render(para) def blog_key(name='default'): return db.Key.from_path('blog', name) class Art(db.Model): title = db.StringProperty(required = True) arc = db.TextProperty(required = True) created = db.DateTimeProperty(auto_now_add = True) def render(self): self._render_text = self.arc.replace('\n', '<br>') return to_render('post.html', p = self) class BaseHandler(webapp2.RequestHandler): def render(self, template, **para): self.response.out.write(to_render(template, **para)) class FrontPage(BaseHandler): def get(self): arts = [] arts = db.GqlQuery("select * from Art order by created DESC") self.render("frontPage.html", arts = arts) class ShowPost(BaseHandler): def get(self, post_id): key = db.Key.from_path('Art', int(post_id), parent=blog_key()) post = db.get(key) self.render('permanlink.html', post = post) """Problem: 1. redirect('/blog') don't refresh the page 2. how add id colum to db automatiaclly increase 3. miss click on the title jump to a new page """ class NewPost(BaseHandler): def get(self): self.render("newPost.html") def post(self): title = self.request.get('title') arc = self.request.get('arc') if title and arc.strip(): a = Art(parent=blog_key(), title = title, arc = arc) a.put() self.redirect('/blog/%s' % str(a.key().id())) else: self.render("newPost.html", title=title, arc = arc, error="Content insufficiency") app = webapp2.WSGIApplication([('/blog/?', FrontPage), ('/blog/newpost', NewPost), ('/blog/([0-9]+)', ShowPost)], debug=True)
tongtie/udacity
WebDevelopment/hw3/my_solution.py
my_solution.py
py
2,089
python
en
code
0
github-code
6
[ { "api_name": "os.path.join", "line_number": 6, "usage_type": "call" }, { "api_name": "os.path", "line_number": 6, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 6, "usage_type": "call" }, { "api_name": "jinja2.Environment", "line_number": 7, "usage_type": "call" }, { "api_name": "jinja2.FileSystemLoader", "line_number": 7, "usage_type": "call" }, { "api_name": "google.appengine.ext.db.Key.from_path", "line_number": 14, "usage_type": "call" }, { "api_name": "google.appengine.ext.db.Key", "line_number": 14, "usage_type": "attribute" }, { "api_name": "google.appengine.ext.db", "line_number": 14, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.Model", "line_number": 16, "usage_type": "attribute" }, { "api_name": "google.appengine.ext.db", "line_number": 16, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.StringProperty", "line_number": 17, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 17, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.TextProperty", "line_number": 18, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 18, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.DateTimeProperty", "line_number": 19, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 19, "usage_type": "name" }, { "api_name": "webapp2.RequestHandler", "line_number": 26, "usage_type": "attribute" }, { "api_name": "google.appengine.ext.db.GqlQuery", "line_number": 33, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 33, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.Key.from_path", "line_number": 38, "usage_type": "call" }, { "api_name": "google.appengine.ext.db.Key", "line_number": 38, "usage_type": "attribute" }, { "api_name": "google.appengine.ext.db", "line_number": 38, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.get", "line_number": 39, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 39, "usage_type": "name" }, { "api_name": "webapp2.WSGIApplication", "line_number": 63, "usage_type": "call" } ]