seq_id
string
text
string
repo_name
string
sub_path
string
file_name
string
file_ext
string
file_size_in_byte
int64
program_lang
string
lang
string
doc_type
string
stars
int64
dataset
string
pt
string
api
list
40261683440
import sys sys.path.append("..") import os import pandas import re import math import argparse from models.train_model import get_training_model_new from train.ds_iterator import DataIterator from train.ds_client_generator import DataGeneratorClient from keras.optimizers import Adam from keras.callbacks import LearningRateScheduler, ModelCheckpoint, CSVLogger, TensorBoard from keras.layers.convolutional import Conv2D from keras.applications.vgg19 import VGG19 def get_last_epoch(): data = pandas.read_csv(TRAINING_LOG) return max(data['epoch'].values) # euclidean loss as implemented in caffe https://github.com/BVLC/caffe/blob/master/src/caffe/layers/euclidean_loss_layer.cpp def eucl_loss(x, y): return K.sum(K.square(x - y)) / batch_size / 2 def step_decay(epoch): initial_lrate = base_lr steps = epoch * iterations_per_epoch lrate = initial_lrate * math.pow(gamma, math.floor(steps/stepsize)) return lrate if __name__ == '__main__': batch_size = 60 base_lr = 4e-5 # 2e-5 momentum = 0.9 weight_decay = 5e-4 lr_policy = "step" gamma = 0.333 stepsize = 68053#136106 #// after each stepsize iterations update learning rate: lr=lr*gamma max_iter = 20000 # 600000 #True = start data generator client, False = use augmented dataset file (deprecated) use_client_gen = True parser = argparse.ArgumentParser() parser.add_argument('--stages', type=int, default =6, help='number of stages') parser.add_argument('--port', type=int, default =5555, help= 'port where training data is running' ) parser.add_argument('--folder',type=str,default="weights_logs/5p_6/",help='"Where to save this training"' ) parser.add_argument('--gpu',default =1, help= 'what gpu to use, if "all" try to allocate on every gpu' ) parser.add_argument('--gpu_fraction', type=float, default =0.6, help= 'how much memory of the gpu to use' ) parser.add_argument('--np1', type=int, default =12, help= 'Number of pafs' ) parser.add_argument('--np2', type=int, default =6, help= 'number of heatmaps' ) args = parser.parse_args() folder = args.folder stages=int(args.stages) port=int(args.port) fraction = float(args.gpu_fraction) np1=int(args.np1)#12 #number of channels for pafs np2=int(args.np2)#6#number of channels for parts gpu = int(args.gpu) print(gpu) #stages=2#number of stages of network if gpu != 'all': print(gpu) os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152 os.environ["CUDA_VISIBLE_DEVICES"]="%d"%gpu import keras.backend as K import tensorflow as tf os.makedirs(folder,exist_ok=True) config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = fraction session = tf.Session(config=config) WEIGHTS_100_EPOCH = os.path.join(folder,"weights-2-{epoch:04d}_%d_%d_%d.h5"%(stages,np1,np2)) WEIGHTS_BEST = os.path.join(folder,"weights_%d_%d_%d.best.h5"%(stages,np1,np2)) WEIGHTS_COMPLETE = os.path.join(folder,"complete_model_%d_%d_%d.h5"%(stages,np1,np2)) TRAINING_LOG = os.path.join(folder,"training_new_%d_%d_%d.csv"%(stages,np1,np2)) LOGS_DIR = os.path.join(folder,"logs/") os.makedirs(LOGS_DIR,exist_ok=True) model = get_training_model_new(weight_decay,np1=np1,np2=np2,stages=stages) from_vgg = dict() from_vgg['conv1_1'] = 'block1_conv1' from_vgg['conv1_2'] = 'block1_conv2' from_vgg['conv2_1'] = 'block2_conv1' from_vgg['conv2_2'] = 'block2_conv2' from_vgg['conv3_1'] = 'block3_conv1' from_vgg['conv3_2'] = 'block3_conv2' from_vgg['conv3_3'] = 'block3_conv3' from_vgg['conv3_4'] = 'block3_conv4' from_vgg['conv4_1'] = 'block4_conv1' from_vgg['conv4_2'] = 'block4_conv2' # load previous weights or vgg19 if this is the first run if os.path.exists(WEIGHTS_BEST): print("Loading the best weights...") model.load_weights(WEIGHTS_BEST) last_epoch = get_last_epoch() + 1 else: print("Loading vgg19 weights...") vgg_model = VGG19(include_top=False, weights='imagenet') for layer in model.layers: if layer.name in from_vgg: vgg_layer_name = from_vgg[layer.name] layer.set_weights(vgg_model.get_layer(vgg_layer_name).get_weights()) print("Loaded VGG19 layer: " + vgg_layer_name) last_epoch = 0 # prepare generators if use_client_gen: train_client = DataGeneratorClient(port=port, host="localhost", hwm=160, batch_size=20,np1=np1,np2=np2,stages=stages) train_client.start() # check ds_generator_client.py train_di = train_client.gen() train_samples = 100 else: pass # Add our augmenter for check stuff # setup lr multipliers for conv layers lr_mult=dict() for layer in model.layers: if isinstance(layer, Conv2D): # stage = 1 if re.match("Mconv\d_stage1.*", layer.name): kernel_name = layer.weights[0].name bias_name = layer.weights[1].name lr_mult[kernel_name] = 1 lr_mult[bias_name] = 2 # stage > 1 elif re.match("Mconv\d_stage.*", layer.name): kernel_name = layer.weights[0].name bias_name = layer.weights[1].name lr_mult[kernel_name] = 4 lr_mult[bias_name] = 8 # vgg else: kernel_name = layer.weights[0].name bias_name = layer.weights[1].name lr_mult[kernel_name] = 1 lr_mult[bias_name] = 2 # configure loss functions losses = {} for i in range(1,stages+1): losses["weight_stage"+str(i)+"_L1"] = eucl_loss losses["weight_stage"+str(i)+"_L2"] = eucl_loss print(losses.keys()) # learning rate schedule - equivalent of caffe lr_policy = "step" iterations_per_epoch = train_samples // batch_size # configure callbacks lrate = LearningRateScheduler(step_decay) checkpoint = ModelCheckpoint(WEIGHTS_BEST, monitor='loss', verbose=0, save_best_only=False, save_weights_only=True, mode='min', period=1) checkpoint2 = ModelCheckpoint(WEIGHTS_100_EPOCH, monitor='loss', verbose=0, save_best_only=False, save_weights_only=True, mode='min', period=100) checkpoint3 = ModelCheckpoint(WEIGHTS_COMPLETE, monitor='loss', verbose=0, save_best_only=True,save_weights_only=False, mode='min', period=100) csv_logger = CSVLogger(TRAINING_LOG, append=True) tb = TensorBoard(log_dir=LOGS_DIR, histogram_freq=0, write_graph=True, write_images=False) callbacks_list = [lrate, checkpoint, csv_logger, tb,checkpoint2,checkpoint3] # sgd optimizer with lr multipliers #multisgd = MultiSGD(lr=base_lr, momentum=momentum, decay=0.0, nesterov=False, lr_mult=lr_mult) multisgd = Adam(lr=base_lr, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) # start training model.compile(loss=losses, optimizer=multisgd, metrics=["accuracy"]) model.fit_generator(train_di, steps_per_epoch=train_samples // batch_size, epochs=max_iter, callbacks=callbacks_list, #validation_data=val_di, #validation_steps=val_samples // batch_size, use_multiprocessing=False, initial_epoch=last_epoch )
piperod/beepose
beepose/train/train_stages.py
train_stages.py
py
7,547
python
en
code
8
github-code
6
[ { "api_name": "sys.path.append", "line_number": 2, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 2, "usage_type": "attribute" }, { "api_name": "pandas.read_csv", "line_number": 20, "usage_type": "call" }, { "api_name": "math.pow", "line_number": 29, "usage_type": "call" }, { "api_name": "math.floor", "line_number": 29, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 47, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 68, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 69, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 72, "usage_type": "call" }, { "api_name": "tensorflow.ConfigProto", "line_number": 73, "usage_type": "call" }, { "api_name": "tensorflow.Session", "line_number": 75, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 79, "usage_type": "call" }, { "api_name": "os.path", "line_number": 79, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 80, "usage_type": "call" }, { "api_name": "os.path", "line_number": 80, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 81, "usage_type": "call" }, { "api_name": "os.path", "line_number": 81, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 82, "usage_type": "call" }, { "api_name": "os.path", "line_number": 82, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 83, "usage_type": "call" }, { "api_name": "os.path", "line_number": 83, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 84, "usage_type": "call" }, { "api_name": "models.train_model.get_training_model_new", "line_number": 89, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 104, "usage_type": "call" }, { "api_name": "os.path", "line_number": 104, "usage_type": "attribute" }, { "api_name": "keras.applications.vgg19.VGG19", "line_number": 112, "usage_type": "call" }, { "api_name": "train.ds_client_generator.DataGeneratorClient", "line_number": 126, "usage_type": "call" }, { "api_name": "keras.layers.convolutional.Conv2D", "line_number": 140, "usage_type": "argument" }, { "api_name": "re.match", "line_number": 143, "usage_type": "call" }, { "api_name": "re.match", "line_number": 150, "usage_type": "call" }, { "api_name": "keras.callbacks.LearningRateScheduler", "line_number": 178, "usage_type": "call" }, { "api_name": "keras.callbacks.ModelCheckpoint", "line_number": 179, "usage_type": "call" }, { "api_name": "keras.callbacks.ModelCheckpoint", "line_number": 180, "usage_type": "call" }, { "api_name": "keras.callbacks.ModelCheckpoint", "line_number": 181, "usage_type": "call" }, { "api_name": "keras.callbacks.CSVLogger", "line_number": 182, "usage_type": "call" }, { "api_name": "keras.callbacks.TensorBoard", "line_number": 183, "usage_type": "call" }, { "api_name": "keras.optimizers.Adam", "line_number": 189, "usage_type": "call" } ]
15293278222
import numpy as np import pandas as pd from flask import Flask, render_template, request app = Flask(__name__) df = pd.read_csv("amazon_prime.csv") df = df.fillna("NaN") df["release_year"] = [str(x) for x in df['release_year']] def get_features(feats): input_columns = feats[0] inputs = feats[1] indices = [inputs.index(x) for x in inputs if x != ""] input_columns = [input_columns[idx] for idx in indices] inputs = [inputs[idx] for idx in indices] results = [] for sample in df.iloc: if len(results)==10: break for col in input_columns: features_idx = list(input_columns).index(col) input_ = inputs[features_idx].lower() split = sample[col].lower().split(", ") if input_ not in split: break else: results.append(sample["title"]) return results @app.route("/") def home(): return render_template("home.html") @app.route("/get_data", methods=["POST"]) def get_data(): website = "home.html" message = request.get_data() message = str(message)[2:-1].split("&") category = [x.split("=")[0] for x in message] value = [x.split("=")[1] for x in message] features = {"genre":"", "rating":"", "release_year":"", "duration":"", "actor":"", "director":"", "country":""} for col in category: idx = category.index(col) features[col] = value[idx] message = list(features.values()) if message[1].split("&")[0]=="age_rating": website = "secret_home.html" message[4] = message[4].replace("+", " ") message[5] = message[5].replace("+", " ") feature_names = ["listed_in", "rating", "release_year", "duration", "cast", "director", "country"] features = [feature_names, message] result = get_features(features) if message==['', '', '', '', '', '', '']: return render_template(website, result1="Please enter a value in any of the text boxes") if message[3] != "": input_ = message[3] if not input_.isnumeric(): return render_template(website, result1="Please enter the duration as a number") else: features[1][3] = input_+" min" if message[2] != "": input_ = message[2] if not input_.isnumeric(): return render_template(website, result1="Please enter the release year as a number") input_features = "Results for "+", ".join([x for x in message if x != ""]) if len(result)==0: return render_template(website, result1="Your input did not match any movie or TV show in the database") elif len(result)==1: return render_template(website, input_features=input_features, result1=result[0]) elif len(result)==2: return render_template(website, input_features=input_features, result1=result[0], result2=result[1]) elif len(result)==3: return render_template(website, input_features=input_features, result1=result[0], result2=result[1], result3=result[2]) elif len(result)==4: return render_template(website, input_features=input_features, result1=result[0], result2=result[1], result3=result[2], result4=result[3]) elif len(result)==5: return render_template(website, input_features=input_features, result1=result[0], result2=result[1], result3=result[2], result4=result[3], result5=result[4]) elif len(result)==6: return render_template(website, input_features=input_features, result1=result[0], result2=result[1], result3=result[2], result4=result[3], result5=result[4], result6=result[5]) elif len(result)==7: return render_template(website, input_features=input_features, result1=result[0], result2=result[1], result3=result[2], result4=result[3], result5=result[4], result6=result[5], result7=result[6]) elif len(result)==8: return render_template(website, input_features=input_features, result1=result[0], result2=result[1], result3=result[2], result4=result[3], result5=result[4], result6=result[5], result7=result[6], result8=result[7]) elif len(result)==9: return render_template(website, input_features=input_features, result1=result[0], result2=result[1], result3=result[2], result4=result[3], result5=result[4], result6=result[5], result7=result[6], result8=result[7], result9=result[8]) elif len(result)>=10: return render_template(website, input_features=input_features, result1=result[0], result2=result[1], result3=result[2], result4=result[3], result5=result[4], result6=result[5], result7=result[6], result8=result[7], result9=result[8], result10=result[9]) if __name__=='__main__': app.run(debug=True)
daBawse167/amazon-prime
app.py
app.py
py
4,782
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 5, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 7, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 39, "usage_type": "call" }, { "api_name": "flask.request.get_data", "line_number": 45, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 45, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 70, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 76, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 84, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 89, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 91, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 93, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 95, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 97, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 99, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 101, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 103, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 105, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 107, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 109, "usage_type": "call" } ]
16119409500
import customtkinter as tk tk.set_appearance_mode("dark") janela = tk.CTk() janela.title("Janela 1") janela.geometry("400x350") janela.configure(fg_color="grey31") janela.resizable(width=False,height=False) colunas = list(range(13)) linhas = list(range(13)) janela.grid_columnconfigure(colunas, weight=1) janela.grid_rowconfigure(linhas, weight=1) def verificar(): num1 = int(caixa1.get()) num2 = int(caixa2.get()) media = (num1 + num2) / 2 if media >= 6: texto1.configure(text="Aprovado", text_color="green") else: texto1.configure(text="Reprovado", text_color="red") texto= tk.CTkLabel(janela, text="Digite...") texto.grid(row=6, column=6) caixa1=tk.CTkEntry(janela, placeholder_text="Digite a primeira nota", width=250, height=50) caixa1.grid(row=7, column=6) caixa2=tk.CTkEntry(janela, placeholder_text="Digite a segunda nota", width=250, height=50) caixa2.grid(row=8, column=6) btn1= tk.CTkButton(janela, text="Clique Aqui", command= verificar, width=100, height=50, fg_color='DarkTurquoise') btn1.grid (row=9, column=6) texto1= tk.CTkLabel(janela, text="") texto1.grid(row=10, column=6) janela.mainloop()
dudasaanches/interface-grafica
1.py
1.py
py
1,201
python
pt
code
0
github-code
6
[ { "api_name": "customtkinter.set_appearance_mode", "line_number": 3, "usage_type": "call" }, { "api_name": "customtkinter.CTk", "line_number": 5, "usage_type": "call" }, { "api_name": "customtkinter.CTkLabel", "line_number": 27, "usage_type": "call" }, { "api_name": "customtkinter.CTkEntry", "line_number": 30, "usage_type": "call" }, { "api_name": "customtkinter.CTkEntry", "line_number": 33, "usage_type": "call" }, { "api_name": "customtkinter.CTkButton", "line_number": 36, "usage_type": "call" }, { "api_name": "customtkinter.CTkLabel", "line_number": 39, "usage_type": "call" } ]
37785863928
#!/usr/bin/env python3 # Modules libraries from PyInquirer import Separator from PyInquirer.prompts import list as PyInquirer_prompts_list from PyInquirer.prompts.common import if_mousedown from PyInquirer.prompts.list import basestring from prompt_toolkit.layout.controls import TokenListControl from prompt_toolkit.token import Token # pylint: skip-file # Override with https://github.com/CITGuru/PyInquirer/pull/88 class InquirerControl(TokenListControl): def __init__(self, choices, **kwargs): self.selected_option_index = 0 self.answered = False self.choices = choices self._init_choices(choices) super(InquirerControl, self).__init__(self._get_choice_tokens, **kwargs) def _init_choices(self, choices, default=None): # helper to convert from question format to internal format self.choices = [] # list (name, value, disabled) searching_first_choice = True for i, c in enumerate(choices): if isinstance(c, Separator): self.choices.append((c, None, None)) else: if isinstance(c, basestring): self.choices.append((c, c, None)) else: name = c.get('name') value = c.get('value', name) disabled = c.get('disabled', None) self.choices.append((name, value, disabled)) if searching_first_choice: self.selected_option_index = i # found the first choice searching_first_choice = False @property def choice_count(self): return len(self.choices) def _get_choice_tokens(self, cli): tokens = [] T = Token def append(index, choice): selected = (index == self.selected_option_index) @if_mousedown def select_item(cli, mouse_event): # pragma: no cover # bind option with this index to mouse event self.selected_option_index = index self.answered = True cli.set_return_value(None) if isinstance(choice[0], Separator): tokens.append((T.Separator, ' %s\n' % choice[0])) else: tokens.append( (T.Pointer if selected else T, ' \u276f ' if selected else ' ')) if selected: tokens.append((Token.SetCursorPosition, '')) if choice[2]: # disabled tokens.append((T.Selected if selected else T, '- %s (%s)' % (choice[0], choice[2]))) else: try: tokens.append( (T.Selected if selected else T, str(choice[0]), select_item)) except: # pragma: no cover tokens.append( (T.Selected if selected else T, choice[0], select_item)) tokens.append((T, '\n')) # prepare the select choices for i, choice in enumerate(self.choices): append(i, choice) tokens.pop() # Remove last newline. return tokens def get_selection(self): return self.choices[self.selected_option_index] # Patcher class class Patcher: # Constructor def __init__(self): # Apply library patches PyInquirer_prompts_list.InquirerControl = InquirerControl
starr-dusT/gitlab-ci
gitlabci_local/package/patcher.py
patcher.py
py
3,488
python
en
code
0
github-code
6
[ { "api_name": "prompt_toolkit.layout.controls.TokenListControl", "line_number": 14, "usage_type": "name" }, { "api_name": "PyInquirer.Separator", "line_number": 27, "usage_type": "argument" }, { "api_name": "PyInquirer.prompts.list.basestring", "line_number": 30, "usage_type": "argument" }, { "api_name": "prompt_toolkit.token.Token", "line_number": 47, "usage_type": "name" }, { "api_name": "PyInquirer.prompts.common.if_mousedown", "line_number": 52, "usage_type": "name" }, { "api_name": "PyInquirer.Separator", "line_number": 59, "usage_type": "argument" }, { "api_name": "prompt_toolkit.token.Token.SetCursorPosition", "line_number": 65, "usage_type": "attribute" }, { "api_name": "prompt_toolkit.token.Token", "line_number": 65, "usage_type": "name" }, { "api_name": "PyInquirer.prompts.list.InquirerControl", "line_number": 94, "usage_type": "attribute" }, { "api_name": "PyInquirer.prompts.list", "line_number": 94, "usage_type": "name" } ]
20774839234
import csv import math import time import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import matplotlib.ticker as mticker initial = time.time() B = 5e-4 RBW = 300 data = {} for k in range(11): for i in range(3): with open('C:\\Users\\uqfgotar\\Documents\\Magnetometry\\Sensitivity_calculations\\Fernando\\254_4\\14stJun' + '\\Spectrum_analyzer\\SSA_' + str("{:02d}".format(k+1)) + '_' + str(i+1) + '.csv') as a: df = csv.reader(a, delimiter=',') df_temp = [] for row in df: df_temp.append(row) df = df_temp[31:] for j in range(len(df)): df[j] = [np.float(df[j][0]), np.float(df[j][1])] data['SSA_' + str(k + 1) + '_exp_' + str(i + 1)] = np.reshape(np.array(df), (-1, 2)) data['SSA_' + str(k+1) + '_exp_' + str(i+1)] = np.array(df) # data['SSA_2_exp_1'] = data['SSA_2_exp_1'][:, 0:2] # data['SSA_8_exp_1'] = data['SSA_8_exp_1'][:, 0:2] Bmin_ref = np.zeros(11) SN_min = np.zeros(11) for k in range(11): SNR = [] mean = np.mean(data['SSA_' + str(k + 1) + '_exp_3'][370:440, 1]) for row in range(751): c = float(data['SSA_' + str(k + 1) + '_exp_2'][row, 1]) - mean SNR.append(c) data['SNR' + str(k + 1)] = np.array(SNR) SN_min = math.pow(10,(data['SNR' + str(k + 1)][370:440].max())/10) Bmin_ref[k] = np.divide(B,(np.sqrt(SN_min*RBW))) for k in range(13): with open('C:\\Users\\uqfgotar\\Documents\\Magnetometry\\Sensitivity_calculations\\Fernando\\254_4\\14stJun' + '\\Network_analyzer\\TRACE' + str("{:02d}".format(k+1)) + '.csv') as a: df = csv.reader(a, delimiter=',') df_temp = [] for row in df: df_temp.append(row) df = df_temp[3:] for j in range(len(df)): df[j] = [np.float(df[j][0]), np.float(df[j][1])] data['TRACE' + str(k + 1)] = np.reshape(np.array(df), (-1, 2)) S21_Snn_ref_ratio = np.zeros(11) Bmin_min = np.zeros(11) for k in range(11): Bmin = [] S21_Snn_ref_ratio[k] = data['TRACE' + str(k + 1)][8, 1]/data['TRACE13'][8, 1] for row in range(751): c = np.multiply(np.sqrt(np.multiply(np.divide(data['TRACE13'][row, 1], data['TRACE' + str(k + 1)][row, 1]), S21_Snn_ref_ratio[k])), Bmin_ref[k]) Bmin.append(c) for j in range(len(Bmin)): Bmin[j] = np.float(Bmin[j]) data['Bmin' + str(k)] = np.asarray(Bmin) data['Bmin_omega' + str(k)] = np.multiply(np.divide(data['Bmin' + str(k)], 1e-12), Bmin_ref[k]) print(data['Bmin_omega' + str(k)].shape) Bmin_min[k] = np.divide(data['Bmin' + str(k)].min(), 1e-6) height = [30, 60, 90, 150, 210, 270, 470, 670, 1000, 2000, 2400] height = np.array(height) axes = plt.gca() xmin = data['TRACE1'][:, 0].min() xmax = data['TRACE1'][:, 0].max() plt.figure(1) for k in range(11): plt.plot(data['TRACE' + str(k + 1)][:,0], data['Bmin_omega' + str(k)], label='$\Delta$z = ' + str(height[k])) plt.xlabel('Frequency (MHz)') plt.ylabel('Sensitivity ($\mu$T/$\sqrt{Hz}$)') axes.set_xlim([(xmin-50000), 2000000]) plt.figure(2) plt.plot(height, Bmin_min, 'ro') plt.xscale('log') plt.xlabel(r'$\Delta$z ($\mu$m)') plt.ylabel('Best sensitivity ($\mu$T/$\sqrt{Hz}$)') final = time.time() print('\n' + str(final - initial) + ' seconds') plt.show()
gotamyers/Flux_conc_height
Read_multiple_data_files.py
Read_multiple_data_files.py
py
3,404
python
en
code
0
github-code
6
[ { "api_name": "time.time", "line_number": 9, "usage_type": "call" }, { "api_name": "csv.reader", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.float", "line_number": 28, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 32, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 38, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 47, "usage_type": "call" }, { "api_name": "math.pow", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.divide", "line_number": 50, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 50, "usage_type": "call" }, { "api_name": "csv.reader", "line_number": 58, "usage_type": "call" }, { "api_name": "numpy.float", "line_number": 66, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 68, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 68, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 71, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 72, "usage_type": "call" }, { "api_name": "numpy.multiply", "line_number": 78, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 78, "usage_type": "call" }, { "api_name": "numpy.divide", "line_number": 78, "usage_type": "call" }, { "api_name": "numpy.float", "line_number": 83, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 85, "usage_type": "call" }, { "api_name": "numpy.multiply", "line_number": 87, "usage_type": "call" }, { "api_name": "numpy.divide", "line_number": 87, "usage_type": "call" }, { "api_name": "numpy.divide", "line_number": 89, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 92, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.gca", "line_number": 94, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 94, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 97, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 97, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 99, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 99, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 100, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 100, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 101, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 101, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 105, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 105, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 106, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 106, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xscale", "line_number": 107, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 107, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 108, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 108, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 109, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 109, "usage_type": "name" }, { "api_name": "time.time", "line_number": 111, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 114, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 114, "usage_type": "name" } ]
9910655539
from flask import Flask, render_template import requests, json NYTimes_API_KEY = 'ca470e1e91b15a82cc0d4350b08a3c0b:14:70189328' app = Flask(__name__, static_folder='static', static_url_path='/static') NYTimes_Search_URL = 'http://api.nytimes.com/svc/search/v2/articlesearch.json?q={0}+&api-key=' + NYTimes_API_KEY def searchArticle(topic): r = requests.get(NYTimes_Search_URL.format(topic)) data = json.loads(r.text) return data['response']['docs'] @app.route("/") def urlRoute(): return render_template('index.html', article=searchArticle('Artificial Intelligence')) if __name__ == "__main__": app.run()
NYUHackDays/NYTimes-Python-Done
nytimes.py
nytimes.py
py
614
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 5, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 10, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 11, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 16, "usage_type": "call" } ]
11004600528
from typing import List class Solution: def largestSumOfAverages(self, A: List[int], K: int) -> float: n = len(A) p = [0.0] * (n + 1) for i in range(n): p[i+1] = p[i]+A[i] dp = [0.0] * n for i in range(n): dp[i] = (p[n] - p[i])/(n-i) for k in range(K-1): for i in range(n): for j in range(i+1,n): dp[i] = max(dp[i], dp[j] + (p[j] - p[i])/(j-i)) return dp[0] print(Solution().largestSumOfAverages( [9,1,2,3,9], 3 ))
xixihaha1995/CS61B_SP19_SP20
temp/toy/python/813. Largest Sum of Averages.py
813. Largest Sum of Averages.py
py
555
python
en
code
0
github-code
6
[ { "api_name": "typing.List", "line_number": 5, "usage_type": "name" } ]
8495271737
import bpy from bpy_extras.object_utils import world_to_camera_view import numpy as np from util import poissonDiscSampling import math import random from mathutils import Euler, Vector import os import glob import sys class ForegroundObjectPlacementRandomizer: """ A randomizer class which randomly spawns virtual human objects. The foreground generation process of the blender scene involves selecting a subset from a pool of 3D human assets. These chosen 3D human assets are placed randomly within the region above the background objects. The placement positions of the foreground objects and their distances from each other are determined through Poisson distribution sampling within the specified spatial area. Attributes ---------- __scene (bpy.types.Scene): The blender scene data-block of current virtual environment. __camera (bpy.types.Camera): The blender camera data-block. __clip_start (float): Camera near clipping distance. __clip_end (float): Camera far clipping distance. num_foreground_object_in_scene_range (dict of str: int): The distribution of the number of retail items within the blender scene. __num_foreground_object_in_scene (int): The number of retail items within the blender scene. foreground_area (list of float): Spatial distribution area of foreground objects. __foreground_domain_size (numpy.ndarray): Spatial distribution area of foreground objects(convert foreground_area to ndarray). foreground_poisson_disk_sampling_radius (float): Foreground objects separation distance. asset_foreground_object_folder_path (str): The path to foreground object assets. __foreground_object_collection (bpy.types.Collection): The blender collection data-block of foreground objects. __n_particle (int): Number of generated particles of the poisson disks sampling. __particle_coordinates (numpy.ndarray): Coordinates of the poisson disks sampling. __particle_coordinates_can_see_in_view (list of list of float): Coordinates of the poisson disks sampling. Methods ------- __error_check(): Check assigned background object assets folder path isn't empty. __load_object(): Load asset from other blendfile to the current blendfile. __posson_disc_sampling(): Using poisson disk sampling algorithm to generate the sampling. __import_foreground_object_asset(): Import a number of __n_particle foreground objects into current blender scene. __check_particle_in_cam_view(): Check if the particles from the Poisson disk sampling are within the camera's view. foreground_object_placement_randomize(): Generate foreground. """ def __init__(self, num_foreground_object_in_scene_range = {"min": 1 , "max": 5}, # Must <= 5 foreground_area = [9, 7, 4], foreground_poisson_disk_sampling_radius = 1.5, asset_foreground_object_folder_path = "C:/Users/user/Documents/project/PeopleSansPeople/Asset/Human/Procedural" ): self.__scene = bpy.data.scenes["Scene"] self.__camera = bpy.data.objects['Camera'] self.__clip_start = bpy.data.objects['Camera'].data.clip_start self.__clip_end = bpy.data.objects['Camera'].data.clip_end self.num_foreground_object_in_scene_range = num_foreground_object_in_scene_range self.__num_foreground_object_in_scene = None self.foreground_area = foreground_area self.__foreground_domain_size = np.array(self.foreground_area) self.foreground_poisson_disk_sampling_radius = foreground_poisson_disk_sampling_radius self.asset_foreground_object_folder_path = asset_foreground_object_folder_path self.__foreground_object_collection = bpy.data.collections["HumanCollection"] self.__n_particle = None self.__particle_coordinates = None # np.array self.__particle_coordinates_can_see_in_view = list() def __error_check(self,asset_path_list): """Check assigned background object assets folder path isn't empty. Args: asset_path_list (list of str): list of the path to background object assets. """ num_asset_in_folder = len(asset_path_list) if num_asset_in_folder < 1: print(f'ERROR!!! can not find any foreground asset in {self.asset_foreground_object_folder_path}') input("Press Enter to continue...") sys.exit() def __load_object(self,filepath): """Load asset from other blendfile to the current blendfile. Args: filepath (str): The path to background object assets. References ---------- https://studio.blender.org/training/scripting-for-artists/5eabe54d521eafd0953f6d45/ https://docs.blender.org/api/current/bpy.types.BlendDataLibraries.html https://blender.stackexchange.com/questions/17876/import-object-without-bpy-ops-wm-link-append/33998#33998 https://blender.stackexchange.com/questions/34540/how-to-link-append-a-data-block-using-the-python-api?noredirect=1&lq=1 """ # Append object from .blend file with bpy.data.libraries.load(filepath, link = False,assets_only = True) as (data_from, data_to): data_to.objects = data_from.objects # Link object to current scene for obj in data_to.objects: if obj is not None: self.__foreground_object_collection.objects.link(obj) def __posson_disc_sampling(self): """Generate the sampling with a spatially variable sampling radius.""" # It seem like function poisson_disc_sampling sometimes will break (mtbf:2000-3000 cycle), when it break , return a empty list[] # add condition check len(self.__particle_coordinates) must >= 1 while self.__n_particle == None or self.__n_particle == 0: self.__particle_coordinates = poissonDiscSampling.poisson_disc_sampling(radius = self.foreground_poisson_disk_sampling_radius, sample_domain_size = self.__foreground_domain_size, sample_rejection_threshold = 30) self.__n_particle = len(self.__particle_coordinates) print(f"nParticle Prev : {self.__n_particle}") # Show posson disc sampling caculated particle num loc_offset = np.array([self.__foreground_domain_size[0]/2,self.__foreground_domain_size[1]/2,-2]) self.__particle_coordinates -= loc_offset def __import_foreground_object_asset(self): """Import a number of __n_particle foreground objects into current blender scene.""" # Check n_particle must bigger than num_foreground_object_in_scene if self.__n_particle < self.__num_foreground_object_in_scene: print('Warning!!! nParticle:{} must bigger than fg_obj_in_scene_num:{}'.format(self.__n_particle,self.__num_foreground_object_in_scene)) input("Press Enter to continue...") sys.exit() # Get foreground object asset path foreground_object_path_list = glob.glob(os.path.join(self.asset_foreground_object_folder_path, "*.blend")) self.__error_check(asset_path_list = foreground_object_path_list) num_fg_obj = len(foreground_object_path_list) print("num fg obj in folder: {}".format(num_fg_obj)) # Shuffle foreground_object_path_list random.shuffle(foreground_object_path_list) # Check num_foreground_object_in_scene is bigger than num_fg_obj if self.__num_foreground_object_in_scene >= num_fg_obj: # Loop importforeground object num_loop = self.__num_foreground_object_in_scene // num_fg_obj num_remain = self.__num_foreground_object_in_scene % num_fg_obj for i in range(num_loop): for fg_obj_path in foreground_object_path_list: self.__load_object(filepath = fg_obj_path) if num_remain != 0: for i in range(num_remain): self.__load_object(filepath = foreground_object_path_list[i]) else: # Randomly select n(n=num_foreground_object_in_scene) fg_obj from foreground_object_path_list, then import to scene foreground_object_path_list_selected = random.sample(foreground_object_path_list, self.__num_foreground_object_in_scene) for fg_obj_path in foreground_object_path_list_selected: self.__load_object(filepath = fg_obj_path) def __check_particle_in_cam_view(self): """Check if the particles from the Poisson disk sampling are within the camera's view. References ---------- https://blender.stackexchange.com/questions/284884/what-does-world-to-camera-view-depend-on https://blender.stackexchange.com/questions/258000/how-to-update-world-transformation-matrices-without-calling-a-scene-update/258002#258002 """ # Update camera object matrix_world self.__camera.matrix_world = self.__camera.matrix_basis for coordinates in self.__particle_coordinates: # World space to ndc space vector_p = Vector(coordinates) co_ndc = world_to_camera_view(self.__scene, self.__camera, vector_p) # Check wether point is inside frustum if (0.0 < co_ndc.x < 1.0 and 0.0 < co_ndc.y < 1.0 and self.__clip_start < co_ndc.z < self.__clip_end): self.__particle_coordinates_can_see_in_view.append(coordinates) # Update __particle_coordinates and __n_particle var value self.__particle_coordinates = np.array(self.__particle_coordinates_can_see_in_view) self.__n_particle = len(self.__particle_coordinates_can_see_in_view) def foreground_object_placement_randomize(self): """Generate foreground. References ---------- [1]https://stackoverflow.com/questions/14262654/numpy-get-random-set-of-rows-from-2d-array """ self.__num_foreground_object_in_scene = random.randint(self.num_foreground_object_in_scene_range["min"], self.num_foreground_object_in_scene_range["max"]) # PoissonDiskSampling self.__posson_disc_sampling() # Select particles which can see in cam view self.__check_particle_in_cam_view() # Import background object asset self.__import_foreground_object_asset() # Randomly select n(n=num_foreground_object_in_scene) location from __particle_coordinates [1] selected_indices = np.random.choice(self.__particle_coordinates.shape[0], size = self.__num_foreground_object_in_scene, replace = False) fg_location = self.__particle_coordinates[selected_indices] print("fg_num: {} ".format(len(fg_location))) print("fg_location:\n {} ".format(fg_location)) # Move all foregeound objects to fg_location fg_obj_list = [] for fg_obj in self.__foreground_object_collection.objects: if fg_obj.type == "ARMATURE": # Select armature object only fg_obj_list.append(fg_obj) for i in range(self.__num_foreground_object_in_scene): obj_location = (fg_location[i][0],fg_location[i][1], fg_location[i][2]) fg_obj_list[i].location = obj_location print("Particles in cam view num : {}".format(self.__n_particle)) # Show particle in cam view num print("Foreground Object Placement Randomize COMPLERED !!!") if __name__ == '__main__': randomizer = ForegroundObjectPlacementRandomizer() randomizer.foreground_object_placement_randomize()
MichaelLiLee/Synthetic-Data-Generator-for-Human-Detection
HumanSDG/HumanSDG_020_ForegroundObjectPalcementRandomizer.py
HumanSDG_020_ForegroundObjectPalcementRandomizer.py
py
11,870
python
en
code
0
github-code
6
[ { "api_name": "bpy.data", "line_number": 56, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 57, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 58, "usage_type": "attribute" }, { "api_name": "bpy.data", "line_number": 59, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 63, "usage_type": "call" }, { "api_name": "bpy.data", "line_number": 66, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 83, "usage_type": "call" }, { "api_name": "bpy.data.libraries.load", "line_number": 101, "usage_type": "call" }, { "api_name": "bpy.data", "line_number": 101, "usage_type": "attribute" }, { "api_name": "util.poissonDiscSampling.poisson_disc_sampling", "line_number": 114, "usage_type": "call" }, { "api_name": "util.poissonDiscSampling", "line_number": 114, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 120, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 130, "usage_type": "call" }, { "api_name": "glob.glob", "line_number": 133, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 133, "usage_type": "call" }, { "api_name": "os.path", "line_number": 133, "usage_type": "attribute" }, { "api_name": "random.shuffle", "line_number": 139, "usage_type": "call" }, { "api_name": "random.sample", "line_number": 156, "usage_type": "call" }, { "api_name": "mathutils.Vector", "line_number": 175, "usage_type": "call" }, { "api_name": "bpy_extras.object_utils.world_to_camera_view", "line_number": 176, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 182, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 194, "usage_type": "call" }, { "api_name": "numpy.random.choice", "line_number": 202, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 202, "usage_type": "attribute" } ]
21705466300
from os.path import basename from glob import glob from tqdm import tqdm def main(): """ フルラベルファイルのp16に歌唱者名を仕込む。 """ # フルラベルファイルが入ってるフォルダを指定 label_dir = input('label_dir: ').strip('"') # フルラベル全ファイル取得 l = glob(f'{label_dir}/**/*.lab', recursive=True) # ラベルファイルのp16部分に歌唱者名を埋め込む for path_label in tqdm(l): singer = basename(path_label).split('__')[0] with open(path_label, 'r') as fl: s = fl.read() s = s.replace(']xx/A:', f']{singer}/A:') with open(path_label, 'w') as fl: fl.write(s) if __name__ == '__main__': main()
oatsu-gh/nnsvs_mixed_db
recipe/00-svs-world/utils/set_singername_p16.py
set_singername_p16.py
py
763
python
ja
code
0
github-code
6
[ { "api_name": "glob.glob", "line_number": 13, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path.basename", "line_number": 16, "usage_type": "call" } ]
44248037473
import cv2 import numpy as np import glob import uuid import caffe import skimage.io from util import histogram_equalization from scipy.ndimage import zoom from skimage.transform import resize import random #from project_face import project_face import cv2 import numpy as np from matplotlib import pyplot as plt import dlib from project_face import frontalizer IMAGE_WIDTH = 32 IMAGE_HEIGHT = 32 class mouth_detector(): def __init__(self): self.PATH_face_model = '../lib/shape_predictor_68_face_landmarks.dat' self.md_face = dlib.shape_predictor(self.PATH_face_model) self.fronter = frontalizer('../lib/ref3d.pkl') self.face_det = dlib.get_frontal_face_detector() #HOG def mouth_detect_single(self,image,isPath): if isPath == True: img = cv2.imread(image, cv2.IMREAD_UNCHANGED) else: img = image img = cv2.resize(img, (300, 300), interpolation = cv2.INTER_CUBIC) #experimental img = histogram_equalization(img) facedets = self.face_det(img,1) if len(facedets) > 0: facedet_obj= facedets[0] #cv2.rectangle(img, (facedet_obj.left(),facedet_obj.top()),(facedet_obj.right(),facedet_obj.bottom()),(0,255,0),4,0) shape = self.md_face(img,facedet_obj) p2d = np.asarray([(shape.part(n).x, shape.part(n).y,) for n in range(shape.num_parts)], np.float32) #for n in range(shape.num_parts): # cv2.circle(img, (shape.part(n).x,shape.part(n).y), 2, (0,0,255), thickness=4, lineType=8, shift=0) rawfront, symfront = self.fronter.frontalization(img,facedet_obj,p2d) symfront_bgr = cv2.cvtColor(symfront, cv2.COLOR_RGB2BGR) face_hog_mouth = symfront_bgr[165:220, 130:190] #get half-bottom part #face_hog = symfront_bgr[100:200, 110:205] #get face region for display if(face_hog_mouth is not None): gray_img = cv2.cvtColor(face_hog_mouth, cv2.COLOR_BGR2GRAY) crop_img_resized = cv2.resize(gray_img, (IMAGE_WIDTH, IMAGE_HEIGHT), interpolation = cv2.INTER_CUBIC) #crop_img_resized_full = cv2.resize(symfront_bgr, (IMAGE_WIDTH, IMAGE_HEIGHT), interpolation = cv2.INTER_CUBIC) #cv2.imwrite("../img/output_test_img/mouthdetectsingle_crop_rezized.jpg",crop_img_resized) #cv2.imwrite("../img/output_test_img/mouthdetectsingle_face.jpg",img) #cv2.imwrite("../img/output_test_img/mouthdetectsingle_face_front.jpg",symfront_bgr) #cv2.imwrite("../img/output_test_img/mouthdetectsingle_face_mouth.jpg",face_hog_mouth) #cv2.imwrite("../img/output_test_img/mouthdetectsingle_face_front_.jpg",face_hog) return crop_img_resized,facedet_obj.left(),facedet_obj.top(),facedet_obj.right(),facedet_obj.bottom() else: return None,-1,-1,-1,-1 else: return None,-1,-1,-1,-1 def mouth_detect_bulk(self,input_folder,output_folder): transformed_data_set = [img for img in glob.glob(input_folder+"/*jpg")] for in_idx, img_path in enumerate(transformed_data_set): mouth = self.mouth_detect_single(img_path,True) if 'showingteeth' in img_path: guid = uuid.uuid4() uid_str = guid.urn str_guid = uid_str[9:] path = output_folder+"/"+str_guid+"_showingteeth.jpg" cv2.imwrite(path,mouth) else: guid = uuid.uuid4() uid_str = guid.urn str_guid = uid_str[9:] path = output_folder+"/"+str_guid+".jpg" cv2.imwrite(path,mouth) def negative_image(self,imagem): imagem = (255-imagem) return imagem def adaptative_threashold(self,input_img_path): img = cv2.imread(input_img_path,0) img = cv2.medianBlur(img,3) ret,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY) th2 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,\ cv2.THRESH_BINARY,11,2) th3 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\ cv2.THRESH_BINARY,11,2) #cv2.imwrite("../img/output_test_img/hmouthdetectsingle_adaptative.jpg",th3) return th3
juanzdev/TeethClassifierCNN
src/mouth_detector_dlib.py
mouth_detector_dlib.py
py
4,369
python
en
code
3
github-code
6
[ { "api_name": "dlib.shape_predictor", "line_number": 24, "usage_type": "call" }, { "api_name": "project_face.frontalizer", "line_number": 25, "usage_type": "call" }, { "api_name": "dlib.get_frontal_face_detector", "line_number": 26, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 31, "usage_type": "call" }, { "api_name": "cv2.IMREAD_UNCHANGED", "line_number": 31, "usage_type": "attribute" }, { "api_name": "cv2.resize", "line_number": 35, "usage_type": "call" }, { "api_name": "cv2.INTER_CUBIC", "line_number": 35, "usage_type": "attribute" }, { "api_name": "util.histogram_equalization", "line_number": 36, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 43, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 49, "usage_type": "call" }, { "api_name": "cv2.COLOR_RGB2BGR", "line_number": 49, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 53, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 53, "usage_type": "attribute" }, { "api_name": "cv2.resize", "line_number": 54, "usage_type": "call" }, { "api_name": "cv2.INTER_CUBIC", "line_number": 54, "usage_type": "attribute" }, { "api_name": "glob.glob", "line_number": 69, "usage_type": "call" }, { "api_name": "uuid.uuid4", "line_number": 74, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 78, "usage_type": "call" }, { "api_name": "uuid.uuid4", "line_number": 80, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 84, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 91, "usage_type": "call" }, { "api_name": "cv2.medianBlur", "line_number": 92, "usage_type": "call" }, { "api_name": "cv2.threshold", "line_number": 93, "usage_type": "call" }, { "api_name": "cv2.THRESH_BINARY", "line_number": 93, "usage_type": "attribute" }, { "api_name": "cv2.adaptiveThreshold", "line_number": 94, "usage_type": "call" }, { "api_name": "cv2.ADAPTIVE_THRESH_MEAN_C", "line_number": 94, "usage_type": "attribute" }, { "api_name": "cv2.THRESH_BINARY", "line_number": 95, "usage_type": "attribute" }, { "api_name": "cv2.adaptiveThreshold", "line_number": 96, "usage_type": "call" }, { "api_name": "cv2.ADAPTIVE_THRESH_GAUSSIAN_C", "line_number": 96, "usage_type": "attribute" }, { "api_name": "cv2.THRESH_BINARY", "line_number": 97, "usage_type": "attribute" } ]
42367773251
# -*- coding: utf-8 -*- from tornado.web import RequestHandler from ..Apps import Apps from ..Exceptions import AsyncyError from ..Sentry import Sentry class BaseHandler(RequestHandler): logger = None # noinspection PyMethodOverriding def initialize(self, logger): self.logger = logger def handle_story_exc(self, app_id, story_name, e): # Always prefer the app logger if the app is available. try: logger = Apps.get(app_id).logger except BaseException: logger = self.logger logger.error(f'Story execution failed; cause={str(e)}', exc=e) self.set_status(500, 'Story execution failed') self.finish() if isinstance(e, AsyncyError): Sentry.capture_exc(e, e.story, e.line) else: if story_name is None: Sentry.capture_exc(e) else: Sentry.capture_exc(e, extra={ 'story_name': story_name }) def is_finished(self): return self._finished def is_not_finished(self): return self.is_finished() is False
rashmi43/platform-engine
asyncy/http_handlers/BaseHandler.py
BaseHandler.py
py
1,138
python
en
code
0
github-code
6
[ { "api_name": "tornado.web.RequestHandler", "line_number": 9, "usage_type": "name" }, { "api_name": "Apps.Apps.get", "line_number": 20, "usage_type": "call" }, { "api_name": "Apps.Apps", "line_number": 20, "usage_type": "name" }, { "api_name": "Exceptions.AsyncyError", "line_number": 26, "usage_type": "argument" }, { "api_name": "Sentry.Sentry.capture_exc", "line_number": 27, "usage_type": "call" }, { "api_name": "Sentry.Sentry", "line_number": 27, "usage_type": "name" }, { "api_name": "Sentry.Sentry.capture_exc", "line_number": 30, "usage_type": "call" }, { "api_name": "Sentry.Sentry", "line_number": 30, "usage_type": "name" }, { "api_name": "Sentry.Sentry.capture_exc", "line_number": 32, "usage_type": "call" }, { "api_name": "Sentry.Sentry", "line_number": 32, "usage_type": "name" } ]
12771403336
import tensorflow as tf from yolo import YOLO, detect_video from PIL import Image import os os.environ['CUDA_VISIBLE_DEVICES'] = "1" def detect_img(yolo): img = '10.jpg' try: image = Image.open(img) except Exception as e: print('Open Error! Try again!') print(e) else: r_image = yolo.detect_image(image) r_image.show() # detect_img(YOLO()) path = '3.mp4' output = './result/333333333.mp4' detect_video(YOLO(), output_path=output)
Jerry-Z464/yolo
keras-yolo3/test.py
test.py
py
490
python
en
code
0
github-code
6
[ { "api_name": "os.environ", "line_number": 5, "usage_type": "attribute" }, { "api_name": "PIL.Image.open", "line_number": 10, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 10, "usage_type": "name" }, { "api_name": "yolo.detect_image", "line_number": 15, "usage_type": "call" }, { "api_name": "yolo.detect_video", "line_number": 22, "usage_type": "call" }, { "api_name": "yolo.YOLO", "line_number": 22, "usage_type": "call" } ]
42672162843
# -*- coding: utf-8 -*- """ Created on Apr 7 2021 Modified on May 05 2021 @author: Andres Sandino Convert "nii" image format in "png" in Lung WW=-500,WL=1500 """ #%% import os import numpy as np import matplotlib.pyplot as plt import cv2 import nibabel as nib # Patient number patient_no = 1 # Origin path and filename path = 'C:/Users/Andres/Desktop/CTAnotado/resultados/Dr Alvarado/' filename = 'maskEstudio1.nii' # Dest path destpath = 'C:/Users/Andres/Desktop/CovidImages/Mask/' # Load Image img = nib.load(path+filename) img = img.get_fdata() # Image format imgformat = '.png' array=np.asarray(img) #%% [width,length,numslices]=np.shape(array) [m,n,t]=np.shape(array) #for i in range(numslices): for i in range(35,40): #print(i) # List is flipped a=numslices-1-i slide = array[:,:,a] #Labeling files filename='P'+str(patient_no).zfill(4)+'_Im'+str(numslices-a).zfill(4)+'_mask'+imgformat print(filename) # Image rotation 90°, later flip 180° im2=np.rot90(slide) # for i in range(4): # im2=np.rot90(im2) i#m3=im2.copy() im3=np.fliplr(im2) norm_img=cv2.normalize(im3, None, alpha = 0, beta = 255, norm_type = cv2.NORM_MINMAX, dtype = cv2.CV_32F) norm_img=np.uint8(norm_img) cv2.imwrite(destpath+filename, norm_img) #plt.figure() #plt.axis('off') #plt.imshow(norm_img,cmap="gray") #plt.title('slide'+str(t-a))
andres87sg/LungCT
ConvertImages/get_nii_LungMask.py
get_nii_LungMask.py
py
1,553
python
en
code
1
github-code
6
[ { "api_name": "nibabel.load", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 36, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 39, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.rot90", "line_number": 57, "usage_type": "call" }, { "api_name": "numpy.fliplr", "line_number": 62, "usage_type": "call" }, { "api_name": "cv2.normalize", "line_number": 64, "usage_type": "call" }, { "api_name": "cv2.NORM_MINMAX", "line_number": 66, "usage_type": "attribute" }, { "api_name": "cv2.CV_32F", "line_number": 67, "usage_type": "attribute" }, { "api_name": "numpy.uint8", "line_number": 69, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 71, "usage_type": "call" } ]
26625675366
from django import template import re try: from django.utils.safestring import mark_safe except ImportError: mark_safe = lambda s:s register = template.Library() def rfc3339_date(date): return date.strftime('%Y-%m-%dT%H:%M:%SZ') register.filter('atom_date', rfc3339_date) def atom_tag_uri(url, date=None): tag = re.sub('^https?://', '', url) if date: tag = re.sub('/', ',%s:/' % date.strftime('%Y-%m-%d'), tag, 1) tag = re.sub('#', '/', tag) return 'tag:' + tag register.filter('atom_tag_uri', atom_tag_uri) def feed_safe_name(name): return name.replace(' ', '_').lower() register.filter('feed_safe_name', feed_safe_name) GOOGLE_TAGS = ('actor', 'age', 'age_range', 'agent', 'area', 'artist', 'aspect_ratio', 'author', 'bathrooms', 'battery_life', 'bedrooms', 'binding', 'brand', 'broker', 'calories', 'capacity', 'cholesterol', 'color', 'color_output', 'condition', 'cooking_time', 'course', 'course_date_range', 'course_number', 'course_times', 'cuisine', 'currency', 'department', 'description', 'director', 'display_type', 'edition', 'education', 'employer', 'ethnicity', 'event_date_range', 'event_type', 'expiration_date', 'expiration_date_time', 'feature', 'fiber', 'film_type', 'focus_type', 'format', 'from_location', 'functions', 'gender', 'genre', 'heel_height', 'height', 'hoa_dues', 'id', 'image_link', 'immigration_status', 'installation', 'interested_in', 'isbn', 'job_function', 'job_industry', 'job_type', 'language', 'length', 'link', 'listing_status', 'listing_type', 'load_type', 'location', 'lot_size', 'made_in', 'main_ingredient', 'make', 'marital_status', 'material', 'meal_type', 'megapixels', 'memory_card_slot', 'mileage', 'mls_listing_id', 'mls_name', 'model', 'model_number', 'mpn', 'name_of_item_reviewed', 'news_source', 'occasion', 'occupation', 'open_house_date_range', 'operating_system', 'optical_drive', 'pages', 'payment_accepted', 'payment_notes', 'performer', 'pickup', 'platform', 'preparation_time', 'price', 'price_type', 'processor_speed', 'product_type', 'property_taxes', 'property_type', 'protein', 'provider_class', 'provider_name', 'provider_telephone_number', 'publication_name', 'publication_volume', 'publish_date', 'publisher', 'quantity', 'rating', 'recommended_usage', 'resolution', 'review_type', 'reviewer_type', 'salary', 'salary_type', 'saturated_fat', 'school', 'school_district', 'screen_size', 'service_type', 'servings', 'sexual_orientation', 'shipping', 'shoe_width', 'size', 'sleeps', 'sodium', 'style', 'subject', 'tax_percent', 'tax_region', 'tech_spec_link', 'title', 'to_location', 'total_carbs', 'total_fat', 'travel_date_range', 'university', 'upc', 'url_of_item_reviewed', 'vehicle_type', 'venue_description', 'venue_name', 'venue_type', 'venue_website', 'vin', 'weight', 'width', 'wireless_interface', 'year', 'zoning', 'zoom' ) def make_googlebase_option(opt, custom): """Convert an option into a tag. First look to see if it is a predefined tag, if it is, good, use it. Otherwise make a custom tag.""" custom = custom.lower() in ('true','t','1') return make_googlebase_tag(opt.option_group.name, opt.name,custom) register.filter('make_googlebase_option', make_googlebase_option) def make_googlebase_attribute(att, custom): """Convert an attribute into a tag. First look to see if it is a predefined tag, if it is, good, use it. Otherwise make a custom tag.""" custom = custom.lower() in ('true','t','1') return make_googlebase_tag(att.name, att.value, custom) register.filter('make_googlebase_attribute', make_googlebase_attribute) def make_googlebase_tag(key, val, custom): """Convert a key/val pair into a tag. First look to see if it is a predefined tag, if it is, good, use it. Otherwise make a custom tag.""" key = feed_safe_name(key) if key in GOOGLE_TAGS: tag = "<g:%s>%s</g:%s>" elif key.endswith('s') and key[:-1] in GOOGLE_TAGS: key = key[:-1] tag = "<g:%s>%s</g:%s>" elif custom: tag = "<c:%s:string>%s</c:%s:string>" else: tag = None if tag: return mark_safe(tag % (key, val, key)) else: return "" def stripspaces(s): s = re.sub(r'^\s+', '', s) s = re.sub(r'\s+$', '', s) s = s.replace('\n\n','\n') return s register.filter('stripspaces', stripspaces)
dokterbob/satchmo
satchmo/apps/satchmo_ext/product_feeds/templatetags/satchmo_feed.py
satchmo_feed.py
py
4,527
python
en
code
30
github-code
6
[ { "api_name": "django.utils.safestring.mark_safe", "line_number": 6, "usage_type": "name" }, { "api_name": "django.template.Library", "line_number": 8, "usage_type": "call" }, { "api_name": "django.template", "line_number": 8, "usage_type": "name" }, { "api_name": "re.sub", "line_number": 16, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 19, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 21, "usage_type": "call" }, { "api_name": "django.utils.safestring.mark_safe", "line_number": 92, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 97, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 98, "usage_type": "call" } ]
6484090494
from rest_framework import serializers from django.contrib.auth import get_user_model from session.serializers.recent_sessions import RecentSessionSerializer User = get_user_model() class ClientListSerializer(serializers.ModelSerializer): number_of_sessions = serializers.SerializerMethodField() latest_session = serializers.SerializerMethodField() def get_number_of_sessions(self, obj): return obj.client_sessions.count() def get_latest_session(self, obj): session = obj.client_sessions.latest('created') return RecentSessionSerializer(session).data class Meta: model = User fields = [ 'id', 'full_name', 'coaches', 'email', 'about', 'location', 'phone_number', 'avatar', 'number_of_sessions', 'latest_session' ]
roberttullycarr/cyclingsimulator
backend/user/serializers/coach/list_clients.py
list_clients.py
py
909
python
en
code
0
github-code
6
[ { "api_name": "django.contrib.auth.get_user_model", "line_number": 6, "usage_type": "call" }, { "api_name": "rest_framework.serializers.ModelSerializer", "line_number": 9, "usage_type": "attribute" }, { "api_name": "rest_framework.serializers", "line_number": 9, "usage_type": "name" }, { "api_name": "rest_framework.serializers.SerializerMethodField", "line_number": 10, "usage_type": "call" }, { "api_name": "rest_framework.serializers", "line_number": 10, "usage_type": "name" }, { "api_name": "rest_framework.serializers.SerializerMethodField", "line_number": 11, "usage_type": "call" }, { "api_name": "rest_framework.serializers", "line_number": 11, "usage_type": "name" }, { "api_name": "session.serializers.recent_sessions", "line_number": 17, "usage_type": "name" }, { "api_name": "session.serializers.recent_sessions.RecentSessionSerializer", "line_number": 18, "usage_type": "call" }, { "api_name": "session.serializers.recent_sessions", "line_number": 18, "usage_type": "argument" } ]
11896445749
from django.http import HttpRequest from google_optimize.context_processors import google_experiment def test_experiment_processor(): request = HttpRequest() request.COOKIES["_gaexp"] = "GAX1.2.utSuKi3PRbmxeG08en8VNw.18147.1" experiment = google_experiment(request) assert experiment == dict(google_optimize={"redesign": "new_design"}) def test_context_processor_template(client): client.cookies["_gaexp"] = "GAX1.2.utSuKi3PRbmxeG08en8VNw.18147.1" response = client.get("/test") assert response.context["google_optimize"] == {"redesign": "new_design"}
danihodovic/django-google-optimize
tests/test_context_processors.py
test_context_processors.py
py
585
python
en
code
null
github-code
6
[ { "api_name": "django.http.HttpRequest", "line_number": 7, "usage_type": "call" }, { "api_name": "google_optimize.context_processors.google_experiment", "line_number": 9, "usage_type": "call" } ]
7357482434
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ This is an example script that uses DIC data from Carrol et al as input for SIF to find K field and cracktip data The output is written to a CSV file @author: Swati Gupta """ import SIF_final as SIF import numpy as np from os import walk import pdb from datetime import datetime import csv, timeit from pandas import read_csv synData = 0 r2 = 100 alpha = 2 N=-1 noise = -1 # provide path to directory containing displacement data files path = 'DICresults/' filenames = next(walk(path), (None, None, []))[2] # exclude temp files for file in filenames: if file.startswith('.'): filenames.remove(file) filenames.sort() #sort assuming files are named chronologically #initilize lenF = len(filenames) cracktip1 = np.zeros((lenF-1,2)) # Geo cracktip2 = np.zeros((lenF-1,2)) # Sep cracktip3 = np.zeros((lenF-1,2)) # DC K_field1 = np.zeros((lenF-1,6)) # Geo K_field2 = np.zeros((lenF-1,6)) # Sepp K_field3 = np.zeros((lenF-1,6)) # DC discr = 10 geo = 0 # = 1 if use geometrical method too or 0 if only use separability mat_constants = [0.327,109.1,43] #poisson's ratio, E, shear modulus prev = [545, 315] startT = timeit.default_timer() #loop over the set of files for i in range(0,lenF-1): file1 = path+filenames[i] print('filename \n', file1) # pdb.set_trace() data = read_csv(file1) x = data['x'].values y = data['y'].values u = data['u'].values v = data['v'].values cracktip1[i],cracktip2[i],cracktip3[i],K_field1[i],K_field2[i], K_field3[i] = \ SIF.SIF_projection(synData, r2 = 50, alpha = 2.5,coords = np.array([x,y]).T, coords_ref = np.array([x+u, y+v]).T, guess = prev, h=discr,geo = geo, constants = mat_constants) # prev = cracktip2[i] endT = timeit.default_timer() print("Time taken:", round(endT - startT, 2), "seconds to analyze ", lenF, "files") ## write output to file ## currentDT = datetime.now() # get current date and time outputFile = "DIC_" + str(currentDT) + ".csv" with open(outputFile, 'w') as f: writer = csv.writer(f) if geo: writer.writerow(['S.no','filename','x_geo','y_geo','K_I_geo','K_II_geo','T_geo','x_sep','y_sep','K_I_sep','K_II_sep','T_sep']) writer.writerows(zip(range(1,lenF),filenames,cracktip1[:,0], cracktip1[:,1],K_field1[:,2],K_field1[:,3],K_field1[:,4], cracktip2[:,0], cracktip2[:,1],K_field2[:,2],K_field2[:,3],K_field2[:,4])) else: writer.writerow(['S.no','filename','x','y','K_I','K_II','T']) writer.writerows(zip(range(1,lenF),filenames,cracktip2[:,0], cracktip2[:,1],K_field2[:,2],K_field2[:,3],K_field2[:,4]))
sg759/separability
DICexample.py
DICexample.py
py
2,731
python
en
code
0
github-code
6
[ { "api_name": "os.walk", "line_number": 27, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 36, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 38, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 39, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 41, "usage_type": "call" }, { "api_name": "timeit.default_timer", "line_number": 47, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 54, "usage_type": "call" }, { "api_name": "SIF_final.SIF_projection", "line_number": 60, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 60, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 61, "usage_type": "call" }, { "api_name": "timeit.default_timer", "line_number": 65, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 70, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 70, "usage_type": "name" }, { "api_name": "csv.writer", "line_number": 73, "usage_type": "call" } ]
26336217910
import streamlit as st import extra_streamlit_components as stx from datetime import datetime, timedelta import Scripts.constants as constants @st.experimental_singleton(suppress_st_warning=True) def get_manager(): return stx.CookieManager() # def get_user_cookies(): # COOKIES = constants.COOKIES.get(constants.COOKIE_ID, None) # # print("COOKIES", COOKIES) # if COOKIES != None: # COOKIES = [x.strip() for x in COOKIES.split(";")] # constants.CURR_USER = COOKIES[0] # constants.CURR_USER_IS_DOC = eval(COOKIES[1]) # def set_user_cookies(VALUE): # # Set final date of expiry # # set the cookie # VALUE = ''.join([VALUE[0], ";", str(VALUE[1])]) # constants.COOKIES[constants.COOKIE_ID] = VALUE # constants.COOKIES.save() def get_user_cookies(): COOKIES = constants.COOKIE_MANAGER.get_all() COOKIE = COOKIES.get(constants.COOKIE_ID, None) if COOKIE != None: COOKIE = [x.strip() for x in COOKIE.split(";")] constants.CURR_USER = COOKIE[0] constants.CURR_USER_IS_DOC = eval(COOKIE[1]) def set_user_cookies(VALUE): constants.COOKIE_MANAGER = get_manager() # Set final date of expiry EXPIRES_AT = datetime.now() + timedelta(days=constants.EXPIRES_IN_DAYS) # set the cookie constants.COOKIE_MANAGER.set( cookie = constants.COOKIE_ID, val = ''.join([VALUE[0], ";", str(VALUE[1])]), expires_at = EXPIRES_AT ) constants.CURR_USER = VALUE[0] constants.CURR_USER_IS_DOC = VALUE[1]
PeaPals/docnets
Scripts/cookie_manager.py
cookie_manager.py
py
1,550
python
en
code
0
github-code
6
[ { "api_name": "extra_streamlit_components.CookieManager", "line_number": 8, "usage_type": "call" }, { "api_name": "streamlit.experimental_singleton", "line_number": 6, "usage_type": "call" }, { "api_name": "Scripts.constants.COOKIE_MANAGER.get_all", "line_number": 38, "usage_type": "call" }, { "api_name": "Scripts.constants.COOKIE_MANAGER", "line_number": 38, "usage_type": "attribute" }, { "api_name": "Scripts.constants", "line_number": 38, "usage_type": "name" }, { "api_name": "Scripts.constants.COOKIE_ID", "line_number": 39, "usage_type": "attribute" }, { "api_name": "Scripts.constants", "line_number": 39, "usage_type": "name" }, { "api_name": "Scripts.constants.CURR_USER", "line_number": 43, "usage_type": "attribute" }, { "api_name": "Scripts.constants", "line_number": 43, "usage_type": "name" }, { "api_name": "Scripts.constants.CURR_USER_IS_DOC", "line_number": 44, "usage_type": "attribute" }, { "api_name": "Scripts.constants", "line_number": 44, "usage_type": "name" }, { "api_name": "Scripts.constants.COOKIE_MANAGER", "line_number": 48, "usage_type": "attribute" }, { "api_name": "Scripts.constants", "line_number": 48, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 50, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 50, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 50, "usage_type": "call" }, { "api_name": "Scripts.constants.EXPIRES_IN_DAYS", "line_number": 50, "usage_type": "attribute" }, { "api_name": "Scripts.constants", "line_number": 50, "usage_type": "name" }, { "api_name": "Scripts.constants.COOKIE_MANAGER.set", "line_number": 53, "usage_type": "call" }, { "api_name": "Scripts.constants.COOKIE_MANAGER", "line_number": 53, "usage_type": "attribute" }, { "api_name": "Scripts.constants", "line_number": 53, "usage_type": "name" }, { "api_name": "Scripts.constants.COOKIE_ID", "line_number": 54, "usage_type": "attribute" }, { "api_name": "Scripts.constants", "line_number": 54, "usage_type": "name" }, { "api_name": "Scripts.constants.CURR_USER", "line_number": 59, "usage_type": "attribute" }, { "api_name": "Scripts.constants", "line_number": 59, "usage_type": "name" }, { "api_name": "Scripts.constants.CURR_USER_IS_DOC", "line_number": 60, "usage_type": "attribute" }, { "api_name": "Scripts.constants", "line_number": 60, "usage_type": "name" } ]
8201566770
from typing import Dict import os import shutil from hexlib.db import Table, PersistentState import pickle from tesseract import get_tesseract_langs import sqlite3 from config import LOG_FOLDER, logger from sist2 import SearchBackendType, Sist2SearchBackend RUNNING_FRONTENDS: Dict[str, int] = {} TESSERACT_LANGS = get_tesseract_langs() DB_SCHEMA_VERSION = "5" from pydantic import BaseModel def _serialize(item): if isinstance(item, BaseModel): return pickle.dumps(item) if isinstance(item, bytes): raise Exception("FIXME: bytes in PickleTable") return item def _deserialize(item): if isinstance(item, bytes): return pickle.loads(item) return item class PickleTable(Table): def __getitem__(self, item): row = super().__getitem__(item) if row: return dict((k, _deserialize(v)) for k, v in row.items()) return row def __setitem__(self, key, value): value = dict((k, _serialize(v)) for k, v in value.items()) super().__setitem__(key, value) def __iter__(self): for row in super().__iter__(): yield dict((k, _deserialize(v)) for k, v in row.items()) def sql(self, where_clause, *params): for row in super().sql(where_clause, *params): yield dict((k, _deserialize(v)) for k, v in row.items()) def get_log_files_to_remove(db: PersistentState, job_name: str, n: int): if n < 0: return [] counter = 0 to_remove = [] for row in db["task_done"].sql("WHERE has_logs=1 ORDER BY started DESC"): if row["name"].endswith(f"[{job_name}]"): counter += 1 if counter > n: to_remove.append(row) return to_remove def delete_log_file(db: PersistentState, task_id: str): db["task_done"][task_id] = { "has_logs": 0 } try: os.remove(os.path.join(LOG_FOLDER, f"sist2-{task_id}.log")) except: pass def migrate_v1_to_v2(db: PersistentState): shutil.copy(db.dbfile, db.dbfile + "-before-migrate-v2.bak") # Frontends db._table_factory = PickleTable frontends = [row["frontend"] for row in db["frontends"]] del db["frontends"] db._table_factory = Table for frontend in frontends: db["frontends"][frontend.name] = frontend list(db["frontends"]) # Jobs db._table_factory = PickleTable jobs = [row["job"] for row in db["jobs"]] del db["jobs"] db._table_factory = Table for job in jobs: db["jobs"][job.name] = job list(db["jobs"]) db["sist2_admin"]["info"] = { "version": "2" } def create_default_search_backends(db: PersistentState): es_backend = Sist2SearchBackend.create_default(name="elasticsearch", backend_type=SearchBackendType("elasticsearch")) db["search_backends"]["elasticsearch"] = es_backend sqlite_backend = Sist2SearchBackend.create_default(name="sqlite", backend_type=SearchBackendType("sqlite")) db["search_backends"]["sqlite"] = sqlite_backend def migrate_v3_to_v4(db: PersistentState): shutil.copy(db.dbfile, db.dbfile + "-before-migrate-v4.bak") create_default_search_backends(db) try: conn = sqlite3.connect(db.dbfile) conn.execute("ALTER TABLE task_done ADD COLUMN has_logs INTEGER DEFAULT 1") conn.commit() conn.close() except Exception as e: logger.exception(e) db["sist2_admin"]["info"] = { "version": "4" }
simon987/sist2
sist2-admin/sist2_admin/state.py
state.py
py
3,537
python
en
code
652
github-code
6
[ { "api_name": "typing.Dict", "line_number": 13, "usage_type": "name" }, { "api_name": "tesseract.get_tesseract_langs", "line_number": 15, "usage_type": "call" }, { "api_name": "pydantic.BaseModel", "line_number": 23, "usage_type": "argument" }, { "api_name": "pickle.dumps", "line_number": 24, "usage_type": "call" }, { "api_name": "pickle.loads", "line_number": 32, "usage_type": "call" }, { "api_name": "hexlib.db.Table", "line_number": 36, "usage_type": "name" }, { "api_name": "hexlib.db.PersistentState", "line_number": 57, "usage_type": "name" }, { "api_name": "hexlib.db.PersistentState", "line_number": 74, "usage_type": "name" }, { "api_name": "os.remove", "line_number": 80, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 80, "usage_type": "call" }, { "api_name": "config.LOG_FOLDER", "line_number": 80, "usage_type": "argument" }, { "api_name": "os.path", "line_number": 80, "usage_type": "attribute" }, { "api_name": "hexlib.db.PersistentState", "line_number": 85, "usage_type": "name" }, { "api_name": "shutil.copy", "line_number": 86, "usage_type": "call" }, { "api_name": "hexlib.db.Table", "line_number": 93, "usage_type": "name" }, { "api_name": "hexlib.db.Table", "line_number": 103, "usage_type": "name" }, { "api_name": "hexlib.db.PersistentState", "line_number": 113, "usage_type": "name" }, { "api_name": "sist2.Sist2SearchBackend.create_default", "line_number": 114, "usage_type": "call" }, { "api_name": "sist2.Sist2SearchBackend", "line_number": 114, "usage_type": "name" }, { "api_name": "sist2.SearchBackendType", "line_number": 115, "usage_type": "call" }, { "api_name": "sist2.Sist2SearchBackend.create_default", "line_number": 117, "usage_type": "call" }, { "api_name": "sist2.Sist2SearchBackend", "line_number": 117, "usage_type": "name" }, { "api_name": "sist2.SearchBackendType", "line_number": 117, "usage_type": "call" }, { "api_name": "hexlib.db.PersistentState", "line_number": 121, "usage_type": "name" }, { "api_name": "shutil.copy", "line_number": 122, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 127, "usage_type": "call" }, { "api_name": "config.logger.exception", "line_number": 132, "usage_type": "call" }, { "api_name": "config.logger", "line_number": 132, "usage_type": "name" } ]
40887076205
# Тестирование компонентов задач import unittest from pyodbc import Connection as PyodbcConnection from connections import Connection1 from task_classes.db.mssqldb import MSSqlTarget from task_classes.csv_task_classes import PrepareCsvBulkPackages class TestMSSqlTarget(unittest.TestCase): """Класс тестирования MSSqlTarget""" def setUp(self): """Проверка создания объекта""" self.ms_sql_target = MSSqlTarget( host=Connection1().host, user=Connection1().user, password=Connection1().password, database=Connection1().database, table=Connection1().table, update_id='test1' ) self.assertIsInstance(self.ms_sql_target, MSSqlTarget, "Объект должен создаваться корректно") def test_01_connect(self): """Провека соединения с базой данных""" db_conn = self.ms_sql_target.connect() self.assertIsInstance(db_conn, PyodbcConnection, "Соединение с Connection1 должно быть успешным") def test_02_touch(self): """Проверка записи в таблицу сессий загрузки""" self.ms_sql_target.create_marker_table() self.ms_sql_target.touch() self.assertTrue(self.ms_sql_target.exists(), "Загрузка должа быть зарегистрирована и помечена как выполненная") class TestCsv(unittest.TestCase): """Класс тестирования обработчиков csv-файлов""" def setUp(self): self.csv_task = PrepareCsvBulkPackages() def test_02_package(self): # print(self.csv_task.bulk_packages_directory) self.assertEqual(self.csv_task.bulk_packages_directory, r'D:\temp\data\packages', 'Каталог для Bulk-пакетов должен быть указан верно') def test_03_filename(self): print(self.csv_task.filename) self.assertEqual(self.csv_task.filename, r'D:\temp\data\packages\package.csv', 'Файл Bulk-пакетов должен быть указан верно') if __name__ == '__main__': unittest.main(failfast=True)
Foresco/luigivar
tests.py
tests.py
py
2,370
python
ru
code
0
github-code
6
[ { "api_name": "unittest.TestCase", "line_number": 10, "usage_type": "attribute" }, { "api_name": "task_classes.db.mssqldb.MSSqlTarget", "line_number": 15, "usage_type": "call" }, { "api_name": "connections.Connection1", "line_number": 16, "usage_type": "call" }, { "api_name": "connections.Connection1", "line_number": 17, "usage_type": "call" }, { "api_name": "connections.Connection1", "line_number": 18, "usage_type": "call" }, { "api_name": "connections.Connection1", "line_number": 19, "usage_type": "call" }, { "api_name": "connections.Connection1", "line_number": 20, "usage_type": "call" }, { "api_name": "task_classes.db.mssqldb.MSSqlTarget", "line_number": 24, "usage_type": "argument" }, { "api_name": "pyodbc.Connection", "line_number": 30, "usage_type": "argument" }, { "api_name": "unittest.TestCase", "line_number": 40, "usage_type": "attribute" }, { "api_name": "task_classes.csv_task_classes.PrepareCsvBulkPackages", "line_number": 44, "usage_type": "call" }, { "api_name": "unittest.main", "line_number": 58, "usage_type": "call" } ]
10068857131
import cv2 import numpy as np from time import sleep import os # global variables bg = None def run_avg(image, aWeight): global bg # initialize the background if bg is None: bg = image.copy().astype("float") return # compute weighted average, accumulate it and update the background cv2.accumulateWeighted(image, bg, aWeight) def segment(image, threshold=25): global bg # find the absolute difference between background and current frame diff = cv2.absdiff(bg.astype("uint8"), image) # threshold the diff image so that we get the foreground thresholded = cv2.threshold(diff, threshold, 255, cv2.THRESH_BINARY)[1] # get the contours in the thresholded image (_, cnts, _) = cv2.findContours(thresholded.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # return None, if no contours detected if len(cnts) == 0: return else: # based on contour area, get the maximum contour which is the hand segmented = max(cnts, key=cv2.contourArea) return (thresholded, segmented) if __name__ == "__main__" : index = 0 aWeight = 0.5 camera = cv2.VideoCapture(0) top, right, bottom, left = 10, 470, 250, 750 num_frames = 0 r = "" while True: (grabbed, frame) = camera.read() frame = cv2.flip(frame, 1) cv2.putText(frame,"predictio is "+r, (20,100), cv2.FONT_HERSHEY_PLAIN , 1.5, 100) clone = frame.copy() (height, width) = frame.shape[:2] roi = frame[top:bottom, right:left] gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (7, 7), 0) if num_frames < 30: run_avg(gray, aWeight) else: hand = segment(gray) if hand is not None: index +=1 if index % 30 == 0 : (thresholded, segmented) = hand thresholded = cv2.resize(thresholded, (64, 64)) cv2.drawContours(clone, [segmented + (right, top)], -1, (0, 0, 255)) cv2.imshow("Thresholded", thresholded) sleep(3) path = "test"+str(index)+".jpg" cv2.imwrite(path,thresholded) r = os.popen("python predict.py "+path).read()[:-1] print("prediction is ",r) os.popen("rm -fr "+path).read() print("images taken: {}".format(index)) cv2.rectangle(clone, (left, top), (right, bottom), (0,255,0), 2) num_frames += 1 cv2.imshow("recording", clone) keypress = cv2.waitKey(1) & 0xFF if keypress == ord("q") : break cv2.destroyWindow("recording") cv2.destroyWindow("Thresholded") camera = None
RemonIbrahimNashed/HandGestureUseingCNN
live.py
live.py
py
2,732
python
en
code
0
github-code
6
[ { "api_name": "cv2.accumulateWeighted", "line_number": 17, "usage_type": "call" }, { "api_name": "cv2.absdiff", "line_number": 22, "usage_type": "call" }, { "api_name": "cv2.threshold", "line_number": 25, "usage_type": "call" }, { "api_name": "cv2.THRESH_BINARY", "line_number": 28, "usage_type": "attribute" }, { "api_name": "cv2.findContours", "line_number": 31, "usage_type": "call" }, { "api_name": "cv2.RETR_EXTERNAL", "line_number": 32, "usage_type": "attribute" }, { "api_name": "cv2.CHAIN_APPROX_SIMPLE", "line_number": 33, "usage_type": "attribute" }, { "api_name": "cv2.contourArea", "line_number": 40, "usage_type": "attribute" }, { "api_name": "cv2.VideoCapture", "line_number": 48, "usage_type": "call" }, { "api_name": "cv2.flip", "line_number": 55, "usage_type": "call" }, { "api_name": "cv2.putText", "line_number": 56, "usage_type": "call" }, { "api_name": "cv2.FONT_HERSHEY_PLAIN", "line_number": 56, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 60, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 60, "usage_type": "attribute" }, { "api_name": "cv2.GaussianBlur", "line_number": 61, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 71, "usage_type": "call" }, { "api_name": "cv2.drawContours", "line_number": 72, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 73, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 74, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 76, "usage_type": "call" }, { "api_name": "os.popen", "line_number": 77, "usage_type": "call" }, { "api_name": "os.popen", "line_number": 79, "usage_type": "call" }, { "api_name": "cv2.rectangle", "line_number": 82, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 84, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 86, "usage_type": "call" }, { "api_name": "cv2.destroyWindow", "line_number": 90, "usage_type": "call" }, { "api_name": "cv2.destroyWindow", "line_number": 91, "usage_type": "call" } ]
73919543869
from django.shortcuts import render from resources.models import Resource def resources(request): resources = Resource.objects.all().order_by('order').filter(hidden=False) context = { 'resources': resources } return render(request, 'resources.html', context)
ctiller15/Humanity-first-tracker
resources/views.py
views.py
py
288
python
en
code
0
github-code
6
[ { "api_name": "resources.models", "line_number": 5, "usage_type": "name" }, { "api_name": "resources.models.Resource.objects.all", "line_number": 5, "usage_type": "call" }, { "api_name": "resources.models.Resource.objects", "line_number": 5, "usage_type": "attribute" }, { "api_name": "resources.models.Resource", "line_number": 5, "usage_type": "name" }, { "api_name": "resources.models", "line_number": 8, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 11, "usage_type": "call" } ]
36733100195
import os import sys import logging import MySQLdb #import datetime logger = logging.getLogger(__name__) locz = [] locz_file = '' # 'locz' table fields: chat_id, chat_title, user_id, user_name, date_time, latitude, longitude def add_loc(mess): locstr = 'chat.id:' + str(mess.chat.id) + ',chat.title:' + str(mess.chat.title) + ',user.id:' + str(mess.from_user.id) + ',user.username:' + str(mess.from_user.username) + ',message.date:' + str(mess.date) + ',location.latitude:' + str(mess.location.latitude) + ',location.longitude:' + str(mess.location.longitude) locz.append(locstr) # logger.info('locstr: ' + locstr) #sql = """insert into locz values({0}, '{1}', {2}, '{3}', '{4}', {5}, {6}).format(mess.chat.id, mess.chat.title, mess.from_user.id, mess.from_user.username, datetime.datetime.strptime(mess.date, '%Y-%m-%d %H:%M:%S'), mess.location.latitude, mess.location.longitude) sql = """insert into locz values({0}, '{1}', {2}, '{3}', '{4}', {5}, {6})""".format(mess.chat.id, mess.chat.title, mess.from_user.id, mess.from_user.username, mess.date, mess.location.latitude, mess.location.longitude) try: db = MySQLdb.connect(host="nikodim.mysql.pythonanywhere-services.com", user="nikodim", passwd="IkuRa700", db="nikodim$ikuradb", charset='utf8') try: db.query(sql) db.commit() except: logger.error('Location record to DB failure. ' + str(sys.exc_info()[0]) + '. sql: ' + sql) finally: db.close() except: logger.error('DB connection error. ' + str(sys.exc_info()[0])) save_loc() logger.info('Location added. ' + locstr) def select_locz(chat_id, user_id): sql = """select latitude, longitude, date_time from locz where chat_id = {0} and user_id = {1} order by date_time""".format(chat_id, user_id) try: db = MySQLdb.connect(host="nikodim.mysql.pythonanywhere-services.com", user="nikodim", passwd="IkuRa700", db="nikodim$ikuradb", charset='utf8') try: db.query(sql) r = db.store_result() rows = r.fetch_row(maxrows=0) except: logger.error('Select locations from DB failure. ' + str(sys.exc_info()[0]) + '. sql: ' + sql) finally: db.close() if not rows: return 'нет локов' else: res = '' for tup in rows: res = res + '|' + str(tup[0]) + ',' + str(tup[1]) return res except: logger.error('DB connection error. ' + str(sys.exc_info()[0])) return 'ошибка' def init_locz(): global locz global locz_file THIS_FOLDER = os.path.dirname(os.path.abspath(__file__)) locz_file = os.path.join(THIS_FOLDER, '-locs', 'locz.tdb') lf = open(locz_file, 'r', encoding='utf-8') locz = lf.readlines() lf.close() locz = [l.replace('\n', '') for l in locz] def save_loc(): global locz global locz_file locz = list(set(locz)) loczz = [l + '\n' for l in locz] lf = open(locz_file, 'w') lf.writelines(loczz) lf.close() # print('locz.db saved') init_locz()
nikodim500/pyIkuraTeleBot
locationstore.py
locationstore.py
py
3,142
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 7, "usage_type": "call" }, { "api_name": "MySQLdb.connect", "line_number": 22, "usage_type": "call" }, { "api_name": "sys.exc_info", "line_number": 27, "usage_type": "call" }, { "api_name": "sys.exc_info", "line_number": 31, "usage_type": "call" }, { "api_name": "MySQLdb.connect", "line_number": 39, "usage_type": "call" }, { "api_name": "sys.exc_info", "line_number": 45, "usage_type": "call" }, { "api_name": "sys.exc_info", "line_number": 56, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 62, "usage_type": "call" }, { "api_name": "os.path", "line_number": 62, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 62, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 63, "usage_type": "call" }, { "api_name": "os.path", "line_number": 63, "usage_type": "attribute" } ]
5257520483
import boto3 from secretss import accessKey, secretKey # upload files to AWS S3 bucket s3 = boto3.client('s3') bucket_name = "mmc-video-bucket" file_path = 'E:\Programming files\Home-Surveillance\\basicvideo.mp4' object_key = 'basicvideo.mp4' s3.upload_file(file_path, bucket_name, object_key)
Varun-Naik/Home-Surveillance
upload_to_s3.py
upload_to_s3.py
py
297
python
en
code
1
github-code
6
[ { "api_name": "boto3.client", "line_number": 5, "usage_type": "call" } ]
11417571951
# -*- coding: utf-8 -*- """ (C) 2014-2019 Roman Sirokov and contributors Licensed under BSD license http://github.com/r0x0r/pywebview/ """ import os import sys import logging import json import shutil import tempfile import webbrowser from threading import Event, Semaphore from ctypes import windll from platform import architecture from webview import WebViewException, _debug, _user_agent from webview.serving import resolve_url from webview.util import parse_api_js, interop_dll_path, parse_file_type, inject_base_uri, default_html, js_bridge_call from webview.js import alert from webview.js.css import disable_text_select import clr clr.AddReference('System.Windows.Forms') clr.AddReference('System.Collections') clr.AddReference('System.Threading') import System.Windows.Forms as WinForms from System import IntPtr, Int32, String, Action, Func, Type, Environment, Uri from System.Threading.Tasks import Task, TaskScheduler, TaskContinuationOptions from System.Drawing import Size, Point, Icon, Color, ColorTranslator, SizeF archpath = 'x64' if architecture()[0] == '64bit' else 'x86' os.environ['Path'] = interop_dll_path(archpath) + ';' + os.environ['Path'] clr.AddReference(interop_dll_path('Microsoft.Web.WebView2.Core.dll')) clr.AddReference(interop_dll_path('Microsoft.Web.WebView2.WinForms.dll')) from Microsoft.Web.WebView2.WinForms import WebView2, CoreWebView2CreationProperties from Microsoft.Web.WebView2.Core import CoreWebView2Environment logger = logging.getLogger('pywebview') class EdgeChrome: def __init__(self, form, window): self.pywebview_window = window self.web_view = WebView2() props = CoreWebView2CreationProperties() #props.UserDataFolder = os.path.join(os.getcwd(), 'profile') props.UserDataFolder = os.path.join(os.environ['LOCALAPPDATA'], 'pywebview') self.web_view.CreationProperties = props form.Controls.Add(self.web_view) self.js_results = {} self.js_result_semaphore = Semaphore(0) self.web_view.Dock = WinForms.DockStyle.Fill #settings under on_webview_ready self.web_view.CoreWebView2Ready += self.on_webview_ready self.web_view.NavigationStarting += self.on_navigation_start self.web_view.NavigationCompleted += self.on_navigation_completed self.web_view.WebMessageReceived += self.on_script_notify self.url = None self.ishtml = False self.html = None if window.real_url: self.load_url(window.real_url) elif window.html: self.html = window.html self.load_html(window.html, '') else: self.html = default_html self.load_html(default_html, '') def evaluate_js(self, script, id, callback=None): def _callback(result): if callback is None: self.js_results[id] = None if result is None or result == '' else json.loads(result) self.js_result_semaphore.release() else: # future js callback option to handle async js method callback(result) self.js_results[id] = None self.js_result_semaphore.release() self.syncContextTaskScheduler = TaskScheduler.FromCurrentSynchronizationContext() try: result = self.web_view.ExecuteScriptAsync(script).ContinueWith( Action[Task[String]]( lambda task: _callback(json.loads(task.Result)) ), self.syncContextTaskScheduler) except Exception as e: logger.exception('Error occurred in script') self.js_results[id] = None self.js_result_semaphore.release() def get_current_url(self): return self.url def load_html(self, content, base_uri): self.html = content self.ishtml = True self.web_view.EnsureCoreWebView2Async(None) def load_url(self, url): self.ishtml = False self.web_view.Source = Uri(url) def on_script_notify(self, _, args): try: func_name, func_param, value_id = json.loads(args.get_WebMessageAsJson()) if func_name == 'alert': WinForms.MessageBox.Show(func_param) elif func_name == 'console': print(func_param) else: js_bridge_call(self.pywebview_window, func_name, func_param, value_id) except Exception as e: logger.exception('Exception occured during on_script_notify') def on_new_window_request(self, _, args): args.set_Handled(True) #webbrowser.open(str(args.get_Uri())) def on_webview_ready(self, sender, args): sender.CoreWebView2.NewWindowRequested += self.on_new_window_request settings = sender.CoreWebView2.Settings settings.AreDefaultContextMenusEnabled = _debug settings.AreDefaultScriptDialogsEnabled = True settings.AreDevToolsEnabled = _debug settings.IsBuiltInErrorPageEnabled = True settings.IsScriptEnabled = True settings.IsWebMessageEnabled = True settings.IsStatusBarEnabled = _debug settings.IsZoomControlEnabled = True if self.html: sender.CoreWebView2.NavigateToString(self.html) def on_navigation_start(self, sender, args): pass def on_navigation_completed(self, sender, args): url = str(sender.Source) self.url = None if self.ishtml else url self.web_view.ExecuteScriptAsync('window.alert = (msg) => window.chrome.webview.postMessage(["alert", msg+"", ""])') if _debug: self.web_view.ExecuteScriptAsync('window.console = { log: (msg) => window.chrome.webview.postMessage(["console", msg+"", ""])}') self.web_view.ExecuteScriptAsync(parse_api_js(self.pywebview_window, 'chromium')) if not self.pywebview_window.text_select: self.web_view.ExecuteScriptAsync(disable_text_select) self.pywebview_window.loaded.set()
hanzzhu/chadle
venv/Lib/site-packages/webview/platforms/edgechromium.py
edgechromium.py
py
6,044
python
en
code
1
github-code
6
[ { "api_name": "clr.AddReference", "line_number": 30, "usage_type": "call" }, { "api_name": "clr.AddReference", "line_number": 31, "usage_type": "call" }, { "api_name": "clr.AddReference", "line_number": 32, "usage_type": "call" }, { "api_name": "platform.architecture", "line_number": 39, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 40, "usage_type": "attribute" }, { "api_name": "webview.util.interop_dll_path", "line_number": 40, "usage_type": "call" }, { "api_name": "clr.AddReference", "line_number": 41, "usage_type": "call" }, { "api_name": "webview.util.interop_dll_path", "line_number": 41, "usage_type": "call" }, { "api_name": "clr.AddReference", "line_number": 42, "usage_type": "call" }, { "api_name": "webview.util.interop_dll_path", "line_number": 42, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 46, "usage_type": "call" }, { "api_name": "Microsoft.Web.WebView2.WinForms.WebView2", "line_number": 51, "usage_type": "call" }, { "api_name": "Microsoft.Web.WebView2.WinForms.CoreWebView2CreationProperties", "line_number": 52, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 54, "usage_type": "call" }, { "api_name": "os.path", "line_number": 54, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 54, "usage_type": "attribute" }, { "api_name": "threading.Semaphore", "line_number": 59, "usage_type": "call" }, { "api_name": "System.Windows.Forms.DockStyle", "line_number": 60, "usage_type": "attribute" }, { "api_name": "System.Windows.Forms", "line_number": 60, "usage_type": "name" }, { "api_name": "webview.util.default_html", "line_number": 77, "usage_type": "name" }, { "api_name": "webview.util.default_html", "line_number": 78, "usage_type": "argument" }, { "api_name": "json.loads", "line_number": 83, "usage_type": "call" }, { "api_name": "System.Threading.Tasks.TaskScheduler.FromCurrentSynchronizationContext", "line_number": 91, "usage_type": "call" }, { "api_name": "System.Threading.Tasks.TaskScheduler", "line_number": 91, "usage_type": "name" }, { "api_name": "System.Action", "line_number": 94, "usage_type": "name" }, { "api_name": "System.Threading.Tasks.Task", "line_number": 94, "usage_type": "name" }, { "api_name": "System.String", "line_number": 94, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 95, "usage_type": "call" }, { "api_name": "System.Uri", "line_number": 113, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 117, "usage_type": "call" }, { "api_name": "System.Windows.Forms.MessageBox.Show", "line_number": 120, "usage_type": "call" }, { "api_name": "System.Windows.Forms.MessageBox", "line_number": 120, "usage_type": "attribute" }, { "api_name": "System.Windows.Forms", "line_number": 120, "usage_type": "name" }, { "api_name": "webview.util.js_bridge_call", "line_number": 124, "usage_type": "call" }, { "api_name": "webview._debug", "line_number": 135, "usage_type": "name" }, { "api_name": "webview._debug", "line_number": 137, "usage_type": "name" }, { "api_name": "webview._debug", "line_number": 141, "usage_type": "name" }, { "api_name": "webview._debug", "line_number": 153, "usage_type": "name" }, { "api_name": "webview.util.parse_api_js", "line_number": 156, "usage_type": "call" }, { "api_name": "webview.js.css.disable_text_select", "line_number": 159, "usage_type": "argument" } ]
7986369348
import basc_py4chan as chanapi import requests import argparse import sys import os class FourchanDownloader: def __init__(self): self.boards_list = chanapi.get_all_boards() def run(self): self.verify_boards() if len(self.board) == 0: print("No existing boards selected, you fucking idiot!") sys.exit(2) elif self.board[0] == '*': self.boards = chanapi.get_all_boards() else: self.boards = chanapi.get_boards(self.board) if self.thread_id != None: self.download_threads(self.boards[0]) else: self.download_boards() def board_exists(self, board_name): for board in self.boards_list: if board.name == board_name: return True return False def thread_exists(self, thread_id): return self.board[0].thread_exists(thread_id) def verify_boards(self): if self.board[0] == '*': return for f in self.board: if not self.board_exists(f): self.board.remove(f) def download_threads(self, board): for tid in self.thread_id: print(" >Thread #{0} at /{1}/:".format(tid, board.name)) if (board.thread_exists(tid)): t = board.get_thread(tid) t.expand() thread_files = t.files() thread_files_sum = sum(1 for _ in thread_files) fnum = 1 print(" =>Closed/sticky/archived?: {0}/{1}/{2}\n =>Bumplimit/imagelimit hit: {3}/{4}\n =>Posts: {5}\n =>Files: {6}\n =>Topic: {7}".format( t.closed, t.sticky, t.archived, t.bumplimit, t.imagelimit, len(t.all_posts), thread_files_sum, t.topic.text_comment[:50].encode('utf-8') )) for thread_file in t.files(): print("{0}/{1}".format(fnum, thread_files_sum)) self.download_image(thread_file, "{0}/{1}/{2}".format(self.directory, board.name, tid)) fnum += 1 else: print(" =>Thread is 404 (don't exists or got deleted)") print("") def download_boards(self): for b in self.boards: self.thread_id = b.get_all_thread_ids() self.download_threads(b) def download_image(self, url, path): file_name = url.split('/')[-1] imgpath = "{0}/{1}".format(path, file_name) if not os.path.exists(path): os.makedirs(path) print("Downloading image {0}".format(file_name)) response = requests.get(url, stream=True) size = int(response.headers.get('content-length')) if os.path.isfile(imgpath) and os.path.getsize(imgpath) == size: print("File is already downloaded!") return f = open(imgpath, "wb") if (size is None): f.write(response.content) else: dl = 0 for data in response.iter_content(chunk_size=4096): dl += len(data) f.write(data) done = int(50 * dl / size) sys.stdout.write("\r[{0}{1}]".format('=' * done, ' ' * (50-done))) sys.stdout.flush() print("") def main(): parser = argparse.ArgumentParser(description="Download pics from your favourite fucking boards (or threads). Enter board names, or one board name and threads ID's.", epilog="op is a faggot") parser.add_argument('-d', '--directory', default="4chan", help="directory or path in which pics will be saved (default: 4chan)") parser.add_argument('-b', '--board', help="board(s) short name(s) from where pictures will be downloaded (* means all boards, enter multiple with spaces)", nargs='+') parser.add_argument('-t', '--thread_id', help="thread ID's from where pics will be downloaded (you can enter multiple with spaces)", nargs='+') dl = FourchanDownloader() args = parser.parse_args(namespace=dl) if dl.board == None: print("You must enter at least one board, faggot!") sys.exit(1) dl.run() if __name__ == "__main__": main()
SteelPh0enix/4chanDownloader
4chan.py
4chan.py
py
4,179
python
en
code
0
github-code
6
[ { "api_name": "basc_py4chan.get_all_boards", "line_number": 10, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 16, "usage_type": "call" }, { "api_name": "basc_py4chan.get_all_boards", "line_number": 18, "usage_type": "call" }, { "api_name": "basc_py4chan.get_boards", "line_number": 20, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 73, "usage_type": "call" }, { "api_name": "os.path", "line_number": 73, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 74, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 77, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 80, "usage_type": "call" }, { "api_name": "os.path", "line_number": 80, "usage_type": "attribute" }, { "api_name": "os.path.getsize", "line_number": 80, "usage_type": "call" }, { "api_name": "sys.stdout.write", "line_number": 93, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 93, "usage_type": "attribute" }, { "api_name": "sys.stdout.flush", "line_number": 94, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 94, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentParser", "line_number": 98, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 107, "usage_type": "call" } ]
29703199407
import bpy import types import sys from select import select import socket import errno import mathutils import traceback from math import radians from bpy.props import * from ast import literal_eval as make_tuple from .callbacks import * from ..nodes.nodes import * def make_osc_messages(myOscKeys, myOscMsg): envars = bpy.context.scene.nodeosc_envars for item in myOscKeys: if item.dp_format_enable == False: # we cannot deal with a datapath string that has format syntax #print( "sending :{}".format(item) ) prop = None if item.node_type == 1: prop = eval(item.data_path + ".getValue()") else: prop = eval(item.data_path) # now make the values to be sent a tuple (unless its a string or None) if isinstance(prop, (bool, int, float)): prop = (prop,) elif prop is None: prop = 'None' elif isinstance(prop, (mathutils.Vector, mathutils.Quaternion, mathutils.Euler, mathutils.Matrix)): prop = tuple(prop) stringProp = str(prop) if not (item.filter_repetition and envars.repeat_argument_filter_OUT) and stringProp != item.value: item.value = stringProp # make sure the osc indices are a tuple indices = make_tuple(item.osc_index) if isinstance(indices, int): indices = (indices,) # sort the properties according to the osc_indices if prop is not None and not isinstance(prop, str) and len(indices) > 0: prop = tuple(prop[i] for i in indices) myOscMsg[item.osc_address] = prop return myOscMsg ####################################### # PythonOSC Server BASE CLASS # ####################################### class OSC_OT_OSCServer(bpy.types.Operator): _timer = None count = 0 ##################################### # CUSTOMIZEABLE FUNCTIONS: #inputServer = "" #for the receiving socket #outputServer = "" #for the sending socket #dispatcher = "" #dispatcher function def sendingOSC(self, context, event): pass # setup the sending server def setupInputServer(self, context, envars): pass # setup the receiving server def setupOutputServer(self, context, envars): pass # add method def addMethod(self, address, data): pass # add default method def addDefaultMethod(): pass # start receiving def startupInputServer(self, context, envars): pass # stop receiving def shutDownInputServer(self, context, envars): pass # # ##################################### ####################################### # MODAL Function # ####################################### def modal(self, context, event): envars = bpy.context.scene.nodeosc_envars if envars.isServerRunning == False: return self.cancel(context) if envars.message_monitor: if len(envars.error) > 0: for myError in envars.error: self.report({myError.type}, myError.name + myError.value) print(myError.name + myError.value) envars.error.clear() if event.type == 'TIMER': #hack to refresh the GUI self.count = self.count + envars.output_rate if envars.message_monitor == True: if self.count >= 100: self.count = 0 for area in context.screen.areas: if area.type == 'VIEW_3D': area.tag_redraw() # only available spot where updating the sorcar tree doesn't throw errors... executeSorcarNodeTrees(context) try: start = time.perf_counter() self.sendingOSC(context, event) # calculate the execution time end = time.perf_counter() bpy.context.scene.nodeosc_envars.executionTimeOutput = end - start except Exception as err: self.report({'WARNING'}, "Output error: {0}".format(err)) return self.cancel(context) return {'PASS_THROUGH'} ####################################### # Setup OSC Receiver and Sender # ####################################### def execute(self, context): envars = bpy.context.scene.nodeosc_envars if envars.port_in == envars.port_out: self.report({'WARNING'}, "Ports must be different.") return{'FINISHED'} if envars.isServerRunning == False: #Setting up the dispatcher for receiving try: self.setupInputServer(context, envars) self.setupOutputServer(context, envars) # all the osc messages handlers ready for registering to the server oscHandlerDict = {} oscHandleList = [] # register a message for executing if envars.node_update == "MESSAGE" and hasAnimationNodes(): # oscHandleList content: # callback type # blender datapath (i.e. bpy.data.objects['Cube']) # blender property (i.e. location) # blender property index (i.e. location[index]) # osc argument index to use (should be a tuplet, like (1,2,3)) # node type # datapath format string # loop range string # filter eval string oscHandleList = (-1, None, None, None, None, 0, '', '', True) self.addOscHandler(oscHandlerDict, envars.node_frameMessage, oscHandleList) for item in bpy.context.scene.NodeOSC_keys: filter_eval = True if item.filter_enable: filter_eval = item.filter_eval if item.osc_direction != "OUTPUT" and item.enabled: if item.dp_format_enable == False: # make osc index into a tuple .. oscIndex = make_tuple(item.osc_index) # ... and don't forget the corner case if isinstance(oscIndex, int): oscIndex = (oscIndex,) try: oscHandleList = None if item.data_path.find('script(') == 0: raise Exception("using script() with format disabled is not allowed!") elif item.data_path.find('][') != -1 and (item.data_path[-2:] == '"]' or item.data_path[-2:] == '\']'): #For custom properties # like bpy.data.objects['Cube']['customProp'] prop = item.data_path[item.data_path.rindex('['):] prop = prop[2:-2] # get rid of [' '] datapath = item.data_path[0:item.data_path.rindex('[')] oscHandleList = [1, eval(datapath), prop, item.idx, oscIndex, item.node_type, '', '', filter_eval] elif item.data_path[-1] == ']': #For normal properties with index in brackets # like bpy.data.objects['Cube'].location[0] datapath = item.data_path[0:item.data_path.rindex('.')] prop = item.data_path[item.data_path.rindex('.') + 1:item.data_path.rindex('[')] prop_index = item.data_path[item.data_path.rindex('[') + 1:item.data_path.rindex(']')] oscHandleList = [3, eval(datapath), prop, int(prop_index), oscIndex, item.node_type, '', '', filter_eval] elif item.data_path[-1] == ')': # its a function call oscHandleList = [7, item.data_path, '', item.idx, oscIndex, item.node_type, '', '', filter_eval] else: #without index in brackets datapath = item.data_path[0:item.data_path.rindex('.')] prop = item.data_path[item.data_path.rindex('.') + 1:] if isinstance(getattr(eval(datapath), prop), (int, float, str)): # property is single value oscHandleList = [2, eval(datapath), prop, item.idx, oscIndex, item.node_type, '', '', filter_eval] else: # property is array oscHandleList = [4, eval(datapath), prop, item.idx, oscIndex, item.node_type, '', '', filter_eval] if oscHandleList != None: self.addOscHandler(oscHandlerDict, item.osc_address.strip(), oscHandleList) else: self.report({'WARNING'}, "Unable to create listener for: object '"+item.data_path+"' with id '"+item.props+"' : {0}".format(err)) except Exception as err: self.report({'WARNING'}, "Register custom handle: object '"+item.data_path+"' with id '"+item.props+"' : {0}".format(err)) else: oscIndex = item.osc_index try: oscHandleList = None if item.data_path.find('script(') == 0: if item.data_path.find(').'): scriptName = item.data_path[7:item.data_path.find(').')] functionName = item.data_path[item.data_path.find(').')+2:] asModule = bpy.data.texts[scriptName].as_module() asFunction = getattr(asModule, functionName) oscHandleList = [11, scriptName + "." + functionName, asFunction, 0, item.osc_index, item.node_type, item.dp_format, '', filter_eval] else: if item.loop_enable: oscHandleList = [10, item.data_path, '', 0, item.osc_index, item.node_type, item.dp_format, item.loop_range, filter_eval] else: oscHandleList = [10, item.data_path, '', 0, item.osc_index, item.node_type, item.dp_format, '', filter_eval] if oscHandleList != None: self.addOscHandler(oscHandlerDict, item.osc_address.strip(), oscHandleList) else: self.report({'WARNING'}, "Unable to create listener for: object '"+item.data_path+"' with id '"+item.props+"' : {0}".format(err)) except Exception as err: self.report({'WARNING'}, "Register custom handle: object '"+item.data_path+"' with id '"+item.props+"' : {0}".format(err)) # lets go and find all nodes in all nodetrees that are relevant for us nodes_createCollections() for item in bpy.context.scene.NodeOSC_nodes: filter_eval = True if item.osc_direction != "OUTPUT": # make osc index into a tuple .. oscIndex = make_tuple(item.osc_index) # ... and don't forget the corner case if isinstance(oscIndex, int): oscIndex = (oscIndex,) try: if item.node_data_type == "SINGLE": oscHandleList = [5, eval(item.data_path), item.props, item.idx, oscIndex, item.node_type, '', '', filter_eval] elif item.node_data_type == "LIST": oscHandleList = [6, eval(item.data_path), item.props, item.idx, oscIndex, item.node_type, '', '', filter_eval] self.addOscHandler(oscHandlerDict, item.osc_address.strip(), oscHandleList) except Exception as err: self.report({'WARNING'}, "Register node handle: object '"+item.data_path+"' with id '"+item.props+"' : {0}".format(err)) # register all oscHandles on the server for address, oscHandles in oscHandlerDict.items(): self.addMethod(address, oscHandles) # this provides the callback functions with the oscHandles setOscHandlers(oscHandlerDict) # register the default method for unregistered addresses self.addDefaultMethod() # startup the receiving server self.startupInputServer(context, envars) # register the execute queue method bpy.app.timers.register(execute_queued_OSC_callbacks) #inititate the modal timer thread context.window_manager.modal_handler_add(self) self._timer = context.window_manager.event_timer_add(envars.output_rate/1000, window = context.window) except Exception as err: self.report({'WARNING'}, "Server startup: {0}".format(err)) return {'CANCELLED'} envars.isServerRunning = True self.report({'INFO'}, "Server successfully started!") return {'RUNNING_MODAL'} else: self.report({'INFO'}, "Server stopped!") envars.isServerRunning = False return{'FINISHED'} def cancel(self, context): envars = bpy.context.scene.nodeosc_envars self.shutDownInputServer(context, envars) context.window_manager.event_timer_remove(self._timer) # hack to check who is calling the cancel method. # see https://blender.stackexchange.com/questions/23126/is-there-a-way-to-execute-code-before-blender-is-closing traceback_elements = traceback.format_stack() # if the stack has 2 elements, it is because the server stop has been pushed. # otherwise it might be loading a new project which would cause an exception # and stop the proper shutdown of the server.. if traceback_elements.__len__ == 2: bpy.app.timers.unregister(execute_queued_OSC_callbacks) return {'CANCELLED'} # will take an address and a oscHandle data packet. # if the address has already been used, the package will be added to the packagelist def addOscHandler(self, handleDict, address, oscHandlePackage): oldpackage = handleDict.get(address) if oldpackage == None: oldpackage = [oscHandlePackage] else: oldpackage += [oscHandlePackage] handleDict[address] = oldpackage
maybites/blender.NodeOSC
server/_base.py
_base.py
py
16,277
python
en
code
100
github-code
6
[ { "api_name": "bpy.context", "line_number": 17, "usage_type": "attribute" }, { "api_name": "mathutils.Vector", "line_number": 33, "usage_type": "attribute" }, { "api_name": "mathutils.Quaternion", "line_number": 33, "usage_type": "attribute" }, { "api_name": "mathutils.Euler", "line_number": 33, "usage_type": "attribute" }, { "api_name": "mathutils.Matrix", "line_number": 33, "usage_type": "attribute" }, { "api_name": "ast.literal_eval", "line_number": 42, "usage_type": "call" }, { "api_name": "bpy.types", "line_number": 56, "usage_type": "attribute" }, { "api_name": "bpy.context", "line_number": 104, "usage_type": "attribute" }, { "api_name": "bpy.context", "line_number": 132, "usage_type": "attribute" }, { "api_name": "bpy.context", "line_number": 145, "usage_type": "attribute" }, { "api_name": "bpy.context", "line_number": 177, "usage_type": "attribute" }, { "api_name": "ast.literal_eval", "line_number": 184, "usage_type": "call" }, { "api_name": "bpy.data", "line_number": 238, "usage_type": "attribute" }, { "api_name": "bpy.context", "line_number": 259, "usage_type": "attribute" }, { "api_name": "ast.literal_eval", "line_number": 263, "usage_type": "call" }, { "api_name": "bpy.app.timers.register", "line_number": 292, "usage_type": "call" }, { "api_name": "bpy.app", "line_number": 292, "usage_type": "attribute" }, { "api_name": "bpy.context", "line_number": 315, "usage_type": "attribute" }, { "api_name": "traceback.format_stack", "line_number": 321, "usage_type": "call" }, { "api_name": "bpy.app.timers.unregister", "line_number": 326, "usage_type": "call" }, { "api_name": "bpy.app", "line_number": 326, "usage_type": "attribute" } ]
72646625788
# some functions from discovery/scripts/cdisco/cdisco.py import numpy as np import torch import torchvision import PIL.Image as Image from my_datasets import transform from my_datasets import transform_normalize def get_model_state(model, paths, y, dim_c, dim_w, dim_h, SAVEFOLD=''): batch_size = 32 tot_acc = 0 i=0 batch_start=0 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") embeddings = np.zeros((len(y),2048)) gradients = np.zeros((len(y), 2048)) predictions = np.zeros((len(y), 1000)) conv_embeddings=np.zeros((len(y) , dim_c)) gradients_wrt_conv_layer = np.zeros((len(y), dim_c, dim_w, dim_h), dtype=np.float32) conv_maps = np.zeros((len(y),dim_c,dim_w,dim_h)) print(f"embeddings shape: {embeddings.shape}") print(f"gradients shape: {gradients.shape}") print(f"predictions shape: {predictions.shape}") while batch_start+batch_size < len(y)+batch_size: # preprocessing the inputs print(batch_start) inputs = torch.stack([transform_normalize(transform(Image.open(paths[i]).convert("RGB"))) for i in range(batch_start, min(batch_start+batch_size, len(y)))]) inputs = inputs.clone().detach().requires_grad_(True) batch_y=y[batch_start:min(batch_start+batch_size, len(y))] # transfering to GPU inputs=inputs.to(device) model=model.to(device) # inference pass outs = model(inputs) # extracting embeddings # note: convolutional outputs should be avg pooled for this to actually make sense pooled_embeddings=torch.nn.functional.adaptive_avg_pool2d(outs['conv'], (1, 1)) conv_embeddings[batch_start:min(batch_start+batch_size, len(y)),:]=pooled_embeddings[:,:,0,0].cpu().detach().numpy() embeddings[batch_start:min(batch_start+batch_size, len(y)),:]=outs['avgpool'][:,:,0,0].cpu().detach().numpy() # computing prediction loss loss = torch.nn.CrossEntropyLoss() pred = outs['fc'] len_=pred.shape[0] target=np.zeros((len_, 1000)) for i in range(len(pred)): target[i,int(batch_y[i])]=1. target=torch.tensor(target, requires_grad=True).to(device) outloss = loss(pred, target) # Storing predictions softmaxf = torch.nn.Softmax(dim=1) predictions[batch_start:min(batch_start+batch_size, len(y)),:]=softmaxf(pred).detach().cpu() # Computing the gradients and storing them grads_wrt_conv = torch.autograd.grad(outloss, outs['conv'], retain_graph=True)[0] gradients_wrt_conv_layer[batch_start:min(batch_start+batch_size, len(y)),:,:,:] = grads_wrt_conv[:,:,:,:].cpu() conv_maps[batch_start:min(batch_start+batch_size, len(y)),:,:,:] = outs['conv'].cpu().detach() grads = torch.autograd.grad(outloss, outs['avgpool'], retain_graph=True)[0] gradients[batch_start:min(batch_start+batch_size, len(y)),:] = grads[:,:,0,0].cpu() batch_start += batch_size print(f"gradients shape {gradients.shape}, conv_embs shape {conv_embeddings.shape}, conv_maps.shape {conv_maps.shape}") """ SAVE INTERMEDIATE RESULTS """ np.save(f"{SAVEFOLD}/predictions.npy", predictions) np.save(f"{SAVEFOLD}/gradients_wrt_conv_layer.npy", gradients_wrt_conv_layer) np.save(f"{SAVEFOLD}/conv_maps.npy", conv_maps)
lomahony/sw-interpretability
scripts/get_embeddings.py
get_embeddings.py
py
3,411
python
en
code
4
github-code
6
[ { "api_name": "torch.device", "line_number": 15, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 15, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 15, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 17, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 19, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 20, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 22, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 22, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 23, "usage_type": "call" }, { "api_name": "torch.stack", "line_number": 32, "usage_type": "call" }, { "api_name": "my_datasets.transform_normalize", "line_number": 32, "usage_type": "call" }, { "api_name": "my_datasets.transform", "line_number": 32, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 32, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 32, "usage_type": "name" }, { "api_name": "torch.nn.functional.adaptive_avg_pool2d", "line_number": 45, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 45, "usage_type": "attribute" }, { "api_name": "torch.nn.CrossEntropyLoss", "line_number": 50, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 50, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 53, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 56, "usage_type": "call" }, { "api_name": "torch.nn.Softmax", "line_number": 60, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 60, "usage_type": "attribute" }, { "api_name": "torch.autograd.grad", "line_number": 64, "usage_type": "call" }, { "api_name": "torch.autograd", "line_number": 64, "usage_type": "attribute" }, { "api_name": "torch.autograd.grad", "line_number": 68, "usage_type": "call" }, { "api_name": "torch.autograd", "line_number": 68, "usage_type": "attribute" }, { "api_name": "numpy.save", "line_number": 77, "usage_type": "call" }, { "api_name": "numpy.save", "line_number": 78, "usage_type": "call" }, { "api_name": "numpy.save", "line_number": 79, "usage_type": "call" } ]
39359091601
import time from openpyxl import Workbook from selenium import webdriver import openpyxl # from selenium.webdriver.common import Keys from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions from selenium.webdriver.support.wait import WebDriverWait from selenium.common.exceptions import NoSuchElementException from selenium.common.exceptions import StaleElementReferenceException driver=webdriver.Chrome() driver.get('https://www.homechoice.co.za/home') driver.maximize_window() driver.implicitly_wait(5) searchbox=driver.find_element(By.ID,'CC-headerWidget-Search') searchbox.send_keys("beds") clickbtn=driver.find_element(By.ID,'searchSubmit').click() filterbtn=driver.find_element(By.XPATH,'//span[contains(text(),"HomeChoice")]') filterbtn.click() bedProducts=driver.find_elements(By.XPATH,'//h3[contains(@itemprop,"name")]') print("beds present in current page",len(bedProducts)) mybeds=[] myprice=[] for bed in bedProducts: # print(bed.text) mybeds.append(bed.text) print("=*"*50) time.sleep(2) bedPrices=driver.find_elements(By.XPATH,'//div[@itemprop="cash-price"]') my_element_id = '//span[contains(@id,"CC-product-price-max")]' ignored_exceptions=(NoSuchElementException,StaleElementReferenceException) print("prices present in a current page",len(bedPrices)) bedPrices = WebDriverWait(driver,10,ignored_exceptions=ignored_exceptions)\ .until(expected_conditions.presence_of_all_elements_located((By.XPATH, my_element_id))) for price in bedPrices: # print(price.text) myprice.append(price.text) finallist=zip(mybeds,myprice) # for data in list(finallist): # print(data) print("part1 completed") wb=Workbook() wb["Sheet"].title="BEDS DATA" sh1=wb.active sh1.append(["name","price"]) for x in list(finallist): sh1.append(x) wb.save("beddetail.xlsx") print("part2 is completed")
Paviterence/Selenium-Python-BasicCodes
webScrapping.py
webScrapping.py
py
1,886
python
en
code
1
github-code
6
[ { "api_name": "selenium.webdriver.Chrome", "line_number": 14, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 14, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 18, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 18, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 20, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 20, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 21, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 21, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 23, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 23, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 31, "usage_type": "call" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 32, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 32, "usage_type": "name" }, { "api_name": "selenium.common.exceptions.NoSuchElementException", "line_number": 34, "usage_type": "name" }, { "api_name": "selenium.common.exceptions.StaleElementReferenceException", "line_number": 34, "usage_type": "name" }, { "api_name": "selenium.webdriver.support.wait.WebDriverWait", "line_number": 36, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions.presence_of_all_elements_located", "line_number": 37, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions", "line_number": 37, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 37, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 37, "usage_type": "name" }, { "api_name": "openpyxl.Workbook", "line_number": 49, "usage_type": "call" } ]
29099740995
from torch.utils.data import Dataset from typing import List import torch import pandas as pd class InferenceDataset(Dataset): def __init__(self, texts: List[list], tokenizer, max_length: int): self.texts = texts self.tokenizer = tokenizer self.max_length = max_length def __len__(self): return len(self.texts) def __getitem__(self, item_index): inputs = self.tokenizer.encode_plus( text=self.texts[item_index], max_length=self.max_length, padding="max_length", return_tensors="pt", add_special_tokens=True, truncation=True ) return {"inputs_ids": inputs["input_ids"].flatten(), "attention_mask": inputs["attention_mask"].flatten()} class PairSarcasmDataset(Dataset): def __init__(self, texts: list, text_pairs: list, targets: list, tokenizer, max_len): self.texts = texts self.text_pairs = text_pairs self.targets = targets self.tokenizer = tokenizer self.max_len = max_len def __len__(self): return len(self.texts) def __getitem__(self, item_index): text = self.texts[item_index] text_pair = self.text_pairs[item_index] target = self.targets[item_index] inputs_ids = self.tokenizer.encode_plus(text=text, text_pair=text_pair, add_special_tokens=True, max_length=2 * self.max_len, return_tensors="pt", padding="max_length", truncation=True, return_token_type_ids=True).input_ids inputs_ids = inputs_ids.flatten() return {"inputs_ids": inputs_ids, "targets": torch.tensor(target)} class MultiSarcasmDataset(Dataset): def __init__(self, data: pd.DataFrame, label_columns, tokenizer, max_len): self.data = data self.tokenizer = tokenizer self.max_len = max_len self.label_columns = label_columns def __len__(self): return len(self.data) def __getitem__(self, item_index): data_row = self.data.iloc[item_index] text = data_row.tweets target = data_row[self.label_columns] inputs_ids = self.tokenizer.encode_plus(text=text, add_special_tokens=True, max_length=self.max_len, return_tensors="pt", padding="max_length", truncation=True, return_token_type_ids=True).input_ids inputs_ids = inputs_ids.flatten() return {"inputs_ids": inputs_ids, "label_sarcasm": torch.tensor(target[0]), "label_irony": torch.tensor(target[1]), "label_satire": torch.tensor(target[2]), "label_understatement": torch.tensor(target[3]), "label_overstatement": torch.tensor(target[4]), "label_rhetorical_question": torch.tensor(target[5])}
MaryNJ1995/Sarcasm_Detection
src/inference/dataset.py
dataset.py
py
3,398
python
en
code
1
github-code
6
[ { "api_name": "torch.utils.data.Dataset", "line_number": 7, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 8, "usage_type": "name" }, { "api_name": "torch.utils.data.Dataset", "line_number": 30, "usage_type": "name" }, { "api_name": "torch.tensor", "line_number": 57, "usage_type": "call" }, { "api_name": "torch.utils.data.Dataset", "line_number": 60, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 61, "usage_type": "attribute" }, { "api_name": "torch.tensor", "line_number": 86, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 87, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 88, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 89, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 90, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 91, "usage_type": "call" } ]
825675496
# -*- coding: utf-8 -*- """ Created on Tue May 10 04:27:29 2022 @author: ThinkPad """ from __future__ import print_function import argparse import os import numpy as np import random import torch import torch.nn.parallel import torch.optim as optim import torch.utils.data from PartialScan import PartialScans,unpickle,inferencePartialScans from model import feature_transform_regularizer from pointnetCls import PointNetCls import torch.nn.functional as F from tqdm import tqdm import random from random import sample # import open3d as o3d from normalizeData import normalizePoints def add_shape_arguments(parser): parser.add_argument( '--batchSize', type=int, default=3, help='input batch size') parser.add_argument( '--num_points', type=int, default=2500, help='input batch size') parser.add_argument( '--workers', type=int, help='number of data loading workers', default=2) parser.add_argument( '--nepoch', type=int, default=250, help='number of epochs to train for') parser.add_argument('--outf', type=str, default='cls', help='output folder') parser.add_argument('--model', type=str, default='', help='model path') parser.add_argument('--checkpoint', type=str, default='/gpfs/data/ssrinath/ychen485/TextCondRobotFetch/pointnet/cls/cls_model_10.pth', help="checkpoint dir") parser.add_argument('--feature_transform', action='store_true', help="use feature transform") def inference(scanpoints, latentcode, classifier, opt, ref_paths): opt.manualSeed = random.randint(1, 10000) # fix seed print("Random Seed: ", opt.manualSeed) random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) points_r = normalizePoints(scanpoints) points = np.random.rand(3, 1024, 3) if points_r.shape[0] < 1024: return False points[0] = points_r[0:1024, :] haveTarget = False classifier = classifier.eval() latent_dim = 512 for j in range(5): ischair = 0 for i in range(10): latents = np.zeros((1, latent_dim)) latents[0] = latentcode[j] for k, path in enumerate(sample(ref_paths, 2), 1): data = np.load(path) scanpoints = data['points_r'] # points_r = normalizePoints(scanpoints) points_r = scanpoints points[k] = points_r[0:1024, :] points_torch = torch.from_numpy(points[:, 0:1024, :]).to(torch.float32) points_torch = points_torch.transpose(2, 1) z = torch.from_numpy(latents).to(torch.float32) points_cuda, z = points_torch.cuda(), z.cuda() with torch.no_grad(): pred, trans, trans_feat = classifier(points_cuda, z) pred = pred[0] pred = torch.nn.functional.softmax(pred, dim=1) ischair = int((pred.data.max(0)[1][1] == 0).cpu()) + ischair print(ischair) if ischair - 4 > 0: haveTarget = True break return haveTarget def get_text_model(opt): classifier = PointNetCls(k=2, feature_transform=opt.feature_transform) checkpoint = torch.load(opt.checkpoint) classifier.load_state_dict(checkpoint) if torch.cuda.is_available(): classifier.cuda() return classifier if __name__ == "__main__": parser = argparse.ArgumentParser() add_shape_arguments(parser) opt = parser.parse_args() print(opt) blue = lambda x: '\033[94m' + x + '\033[0m' opt.manualSeed = random.randint(1, 10000) # fix seed print("Random Seed: ", opt.manualSeed) random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) latent_code = "/gpfs/data/ssrinath/ychen485/hyperPointnet/pointnet/03001627/ocnet_shapefeature_pc/embed_feats_train.pickle" latent_code_test = "/gpfs/data/ssrinath/ychen485/hyperPointnet/pointnet/03001627/ocnet_shapefeature_pc/embed_feats_test.pickle" latent_code_val = "/gpfs/data/ssrinath/ychen485/hyperPointnet/pointnet/03001627/ocnet_shapefeature_pc/embed_feats_val.pickle" shape_folder = "/gpfs/data/ssrinath/ychen485/partialPointCloud/03001627" latent_dim = 512 dataset = PartialScans(latentcode_dir = latent_code, shapes_dir = shape_folder) test_dataset = PartialScans(latentcode_dir = latent_code_test, shapes_dir = shape_folder) val_dataset = PartialScans(latentcode_dir = latent_code_val, shapes_dir = shape_folder) inference_loader = inferencePartialScans(shapes_dir = "") inferdataloader = torch.utils.data.DataLoader( inference_loader, batch_size=opt.batchSize, shuffle=False, num_workers=int(opt.workers)) dataloader = torch.utils.data.DataLoader( dataset, batch_size=opt.batchSize, shuffle=True, num_workers=int(opt.workers)) testdataloader = torch.utils.data.DataLoader( test_dataset, batch_size=opt.batchSize, shuffle=True, num_workers=int(opt.workers)) valdataloader = torch.utils.data.DataLoader( val_dataset, batch_size=opt.batchSize, shuffle=True, num_workers=int(opt.workers)) latent_dict = unpickle(latent_code) keylist = list(latent_dict.keys()) latent_dict_test = unpickle(latent_code_test) keylist_test = list(latent_dict_test.keys()) latent_dict_val = unpickle(latent_code_val) keylist_val = list(latent_dict_val.keys()) print("train set lenth: "+ str(len(dataset)) +", test set length: "+ str(len(test_dataset))) try: os.makedirs(opt.outf) except OSError: pass classifier = PointNetCls(k=2, feature_transform=opt.feature_transform) if opt.checkpoint != " ": checkpoint = torch.load(opt.checkpoint) classifier.load_state_dict(checkpoint) pass classifier.cuda() # # idx = random.randint(0, len(label) - 1) # i = random.randint(0, 2) # j = random.randint(0, 7) # path = shape_folder + "/" + label[t_idx] + "/pointcloud" + str(j) + str(i) + "_partial.npz" # data = np.load(path) # scanpoints = data['points_r'] # # points_r = normalizePoints(scanpoints) # points_r = scanpoints # points[1] = points_r[0:1024, :] # # # idx = random.randint(0, len(label) - 1) # i = random.randint(0, 2) # j = random.randint(0, 7) # path = shape_folder + "/" + label[t_idx] + "/pointcloud" + str(j) + str(i) + "_partial.npz" # data = np.load(path) # scanpoints = data['points_r'] # # points_r = normalizePoints(scanpoints) # points_r = scanpoints # points[2] = points_r[0:1024, :] num_batch = len(dataset) / opt.batchSize total_correct = 0 for epoch in range(1): for i, data in enumerate(valdataloader, 0): points_o, label = data points = points_o[:,0:1024,:].to(torch.float32) # print(points.shape) points.to(torch.float32) points = points.transpose(2, 1) target_np = np.zeros((len(label),)) t_idx = random.randint(0,len(label)-1) target_np[t_idx] = 1 target = torch.from_numpy(target_np).to(torch.int64) latents = np.zeros((1, latent_dim)) latents[0] = latent_dict_val[label[t_idx]] # for j in range(opt.batchSize): # if target[j] == 1: # latents[j] = latent_dict[label[j]] # else: # idx = random.randint(0,len(keylist)) # name = keylist[idx] # while(name == label[j]): # idx = random.randint(0,len(keylist)) # name = keylist[idx] # latents[j] = latent_dict[name] z = torch.from_numpy(latents).to(torch.float32) points, target, z = points.cuda(), target.cuda(), z.cuda() # optimizer.zero_grad() classifier = classifier.train() pred, trans, trans_feat = classifier(points, z) # print(pred.shape) pred = pred[0] # loss = F.nll_loss(pred, target) # if opt.feature_transform: # loss += feature_transform_regularizer(trans_feat) * 0.001 # loss.backward() # optimizer.step() pred_choice = pred.data.max(1)[1] correct = pred_choice.eq(target.data).cpu().sum() total_correct = total_correct + correct.item() if i%100 == 0: print('[%d: %d/%d] accuracy: %f' % (epoch, i, num_batch, total_correct / (100* opt.batchSize))) total_correct = 0 print(pred,pred_choice) # print(points) # print("inferencing:" ) path = "testpoints.npz" # path = "/gpfs/data/ssrinath/ychen485/partialPointCloud/03001627/ff9915c51ece4848cfc689934e433906/pointcloud70_partial.npz" data = np.load(path) # lst = data.files scanpoints = data['points_r'] # pcd1 = o3d.io.read_point_cloud(path) # scanpoints = np.asarray(pcd1.points) # print(scanpoints.shape) points_r = normalizePoints(scanpoints) # points_r = scanpoints # points_o[2] = points[0:1024,:] points = np.random.rand(3,1024,3) # points[0] = points_r[0:1024,:] points[0] = points_r[0:1024,:] idx = random.randint(0,len(label)-1) i = random.randint(0,2) j = random.randint(0,7) path = shape_folder +"/" + label[t_idx] + "/pointcloud"+str(j)+str(i)+"_partial.npz" # path = "/gpfs/data/ssrinath/ychen485/partialPointCloud/03001627/ff9915c51ece4848cfc689934e433906/pointcloud41_partial.npz" data = np.load(path) # lst = data.files scanpoints = data['points_r'] # pcd1 = o3d.io.read_point_cloud(path) # scanpoints = np.asarray(pcd1.points) # print(scanpoints.shape) points_r = normalizePoints(scanpoints) points_r = scanpoints # points_o[2] = points[0:1024,:] # points = np.zeros((3,1024,3)) # points[0] = points_r[0:1024,:] points[1] = points_r[0:1024,:] idx = random.randint(0,len(label)-1) i = random.randint(0,2) j = random.randint(0,7) path = shape_folder +"/" + label[t_idx] + "/pointcloud"+str(j)+str(i)+"_partial.npz" # path = "/gpfs/data/ssrinath/ychen485/partialPointCloud/03001627/589e717feb809e7c1c5a16cc04345597/pointcloud62_partial.npz" data = np.load(path) # lst = data.files scanpoints = data['points_r'] # pcd1 = o3d.io.read_point_cloud(path) # scanpoints = np.asarray(pcd1.points) # print(scanpoints.shape) points_r = normalizePoints(scanpoints) points_r = scanpoints # points_o[2] = points[0:1024,:] # points = np.zeros((3,1024,3)) # points[0] = points_r[0:1024,:] points[2] = points_r[0:1024,:] # from torch.autograd import Variable # sim_data = Variable(torch.rand(32,3,1024)) # print(points) # print(points_o) points = torch.from_numpy(points[:,0:1024,:]).to(torch.float32) points.to(torch.float32) # print(points) points = points.transpose(2, 1) # print(points) latents = np.zeros((1, latent_dim)) latents[0] = latent_dict['46323c7986200588492d9da2668ec34c'] z = torch.from_numpy(latents).to(torch.float32) # print(z) points, target, z = points.cuda(), target.cuda(), z.cuda() classifier = classifier.eval() pred, trans, trans_feat = classifier(points, z) pred = pred[0] pred_choice = pred.data.max(1)[1] print(torch.exp(pred),pred_choice) latents[0] = latent_dict_val['ba673ea75085e46cbfd72d7396bc040a'] z = torch.from_numpy(latents).to(torch.float32) points, target, z = points.cuda(), target.cuda(), z.cuda() classifier = classifier.train() pred, trans, trans_feat = classifier(points, z) pred = pred[0] pred_choice = pred.data.max(1)[1] print(torch.exp(pred),pred_choice) latents[0] = latent_dict_test['ff9915c51ece4848cfc689934e433906'] z = torch.from_numpy(latents).to(torch.float32) points, target, z = points.cuda(), target.cuda(), z.cuda() classifier = classifier.train() pred, trans, trans_feat = classifier(points, z) pred = pred[0] pred_choice = pred.data.max(1)[1] print(torch.exp(pred),pred_choice) latents[0] = latent_dict_test['fc07472e4dd1b6698ae97f14e63e7e01'] z = torch.from_numpy(latents).to(torch.float32) points, target, z = points.cuda(), target.cuda(), z.cuda() classifier = classifier.train() pred, trans, trans_feat = classifier(points, z) pred = pred[0] pred_choice = pred.data.max(1)[1] print(torch.exp(pred),pred_choice) latents[0] = latent_dict['3bd437d38068f4a61f285be552b78f9a'] latents[0] = (np.load('../language2shape/results/shape_0032.npy')[2]) z = torch.from_numpy(latents).to(torch.float32) # print(z) points, target, z = points.cuda(), target.cuda(), z.cuda() classifier = classifier.eval() pred, trans, trans_feat = classifier(points, z) pred = pred[0] pred_choice = pred.data.max(1)[1] path = "testpoints.npz" # path = "/gpfs/data/ssrinath/ychen485/partialPointCloud/03001627/ff9915c51ece4848cfc689934e433906/pointcloud70_partial.npz" data = np.load(path) # lst = data.files scanpoints = data['points_r'] # pcd1 = o3d.io.read_point_cloud(path) # scanpoints = np.asarray(pcd1.points) # print(scanpoints.shape) points_r = normalizePoints(scanpoints) inference(scanpoints, np.load('../language2shape/results/shape_0032.npy'),classifier)
FreddieRao/TextCondRobotFetch
pointnet/inference.py
inference.py
py
13,605
python
en
code
2
github-code
6
[ { "api_name": "random.randint", "line_number": 45, "usage_type": "call" }, { "api_name": "random.seed", "line_number": 47, "usage_type": "call" }, { "api_name": "torch.manual_seed", "line_number": 48, "usage_type": "call" }, { "api_name": "normalizeData.normalizePoints", "line_number": 50, "usage_type": "call" }, { "api_name": "numpy.random.rand", "line_number": 51, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 51, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 62, "usage_type": "call" }, { "api_name": "random.sample", "line_number": 64, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 65, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 71, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 71, "usage_type": "attribute" }, { "api_name": "torch.from_numpy", "line_number": 73, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 73, "usage_type": "attribute" }, { "api_name": "torch.no_grad", "line_number": 75, "usage_type": "call" }, { "api_name": "torch.nn.functional.softmax", "line_number": 78, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 78, "usage_type": "attribute" }, { "api_name": "pointnetCls.PointNetCls", "line_number": 90, "usage_type": "call" }, { "api_name": "torch.load", "line_number": 92, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 94, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 94, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentParser", "line_number": 101, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 109, "usage_type": "call" }, { "api_name": "random.seed", "line_number": 111, "usage_type": "call" }, { "api_name": "torch.manual_seed", "line_number": 112, "usage_type": "call" }, { "api_name": "PartialScan.PartialScans", "line_number": 120, "usage_type": "call" }, { "api_name": "PartialScan.PartialScans", "line_number": 122, "usage_type": "call" }, { "api_name": "PartialScan.PartialScans", "line_number": 124, "usage_type": "call" }, { "api_name": "PartialScan.inferencePartialScans", "line_number": 126, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 128, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 128, "usage_type": "attribute" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 134, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 134, "usage_type": "attribute" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 140, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 140, "usage_type": "attribute" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 146, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 146, "usage_type": "attribute" }, { "api_name": "PartialScan.unpickle", "line_number": 152, "usage_type": "call" }, { "api_name": "PartialScan.unpickle", "line_number": 154, "usage_type": "call" }, { "api_name": "PartialScan.unpickle", "line_number": 156, "usage_type": "call" }, { "api_name": "os.makedirs", "line_number": 161, "usage_type": "call" }, { "api_name": "pointnetCls.PointNetCls", "line_number": 165, "usage_type": "call" }, { "api_name": "torch.load", "line_number": 168, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 200, "usage_type": "attribute" }, { "api_name": "torch.float32", "line_number": 202, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 204, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 205, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 207, "usage_type": "call" }, { "api_name": "torch.int64", "line_number": 207, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 208, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 220, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 220, "usage_type": "attribute" }, { "api_name": "numpy.load", "line_number": 246, "usage_type": "call" }, { "api_name": "normalizeData.normalizePoints", "line_number": 254, "usage_type": "call" }, { "api_name": "numpy.random.rand", "line_number": 258, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 258, "usage_type": "attribute" }, { "api_name": "random.randint", "line_number": 262, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 263, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 264, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 267, "usage_type": "call" }, { "api_name": "normalizeData.normalizePoints", "line_number": 275, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 283, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 284, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 285, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 288, "usage_type": "call" }, { "api_name": "normalizeData.normalizePoints", "line_number": 296, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 310, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 310, "usage_type": "attribute" }, { "api_name": "torch.float32", "line_number": 311, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 315, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 317, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 317, "usage_type": "attribute" }, { "api_name": "torch.exp", "line_number": 324, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 327, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 327, "usage_type": "attribute" }, { "api_name": "torch.exp", "line_number": 333, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 336, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 336, "usage_type": "attribute" }, { "api_name": "torch.exp", "line_number": 342, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 345, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 345, "usage_type": "attribute" }, { "api_name": "torch.exp", "line_number": 351, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 354, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 355, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 355, "usage_type": "attribute" }, { "api_name": "numpy.load", "line_number": 364, "usage_type": "call" }, { "api_name": "normalizeData.normalizePoints", "line_number": 372, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 373, "usage_type": "call" } ]
12902368672
#!/usr/bin/python3 import sqlite3 import gspread from oauth2client.service_account import ServiceAccountCredentials scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive'] dbfile = 'TimeTrack4237.db' dbconn = sqlite3.connect(dbfile) student_hours = None with dbconn: dbcursor = dbconn.cursor() dbcursor.execute("SELECT name, SUM( ROUND( CAST( (JULIANDAY(checkout) - JULIANDAY(checkin)) * 24 AS REAL), 2)) \ FROM activity, students \ WHERE activity.id = students.id \ AND checkin IS NOT NULL \ AND checkout IS NOT NULL \ GROUP BY name \ ORDER BY name") student_hours = dbcursor.fetchall() if student_hours is not None: credentials = ServiceAccountCredentials.from_json_keyfile_name('credentials/timetrack4237-12f97a6ef02f.json', scope) gc = gspread.authorize(credentials) workbook = gc.open("TimeTrack4237") workbook.sheet1.clear() workbook.values_update( 'Sheet1!A1', params={'valueInputOption': 'RAW'}, body={'values': student_hours} )
washide/TimeTrack4237
UploadTotalHours.py
UploadTotalHours.py
py
1,173
python
en
code
0
github-code
6
[ { "api_name": "sqlite3.connect", "line_number": 10, "usage_type": "call" }, { "api_name": "oauth2client.service_account.ServiceAccountCredentials.from_json_keyfile_name", "line_number": 28, "usage_type": "call" }, { "api_name": "oauth2client.service_account.ServiceAccountCredentials", "line_number": 28, "usage_type": "name" }, { "api_name": "gspread.authorize", "line_number": 30, "usage_type": "call" } ]
70357157629
# coding=utf-8 import numpy as np import matplotlib.pyplot as plt MapL = 15 # Chessboard size WinN = 5 # "Five"-in-a-row step = 0 # Steps taken steps = [] # Coordinates of each step end_flag = 0 # Game end flag board = np.zeros((MapL,MapL),dtype=np.int64) # chessboard mode = 4 # modes: 0:player-player, 1:PC-player, 2:player-PC, 3:PC-PC # parameters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 coeffs = [np.array([[-12, 0,-35,-15,-34,-25,-1000,-45,-1000,-30,-30,-1000,-9500,-9500,-9500,-9500,-9500,-9500,-9500,-90000], [ 10, 3, 30, 15, 29, 12, 190, 55, 180, 20, 20, 4000, 140, 135, 130, 130, 200, 135, 135, 90000]]), np.array([[-15, 0,-35,-15,-34,-25,-1000,-40,-1000,-30,-30,-1000,-9500,-9500,-9500,-9500,-9500,-9500,-9500,-30000], [ 10,10, 30, 15, 29, 12, 195, 50, 180, 20, 20, 4000, 140, 135, 130, 130, 200, 135, 135, 40000]])] #numsall = np.zeros((2,len(coeffs[0][0]))) def judge(l,c,winn): '''judge if a player wins by taking a move (l,c)''' # line # count = 0 i = 0 while i < MapL-1 and count < WinN-1: if board[l][i] and board[l][i] == board[l][i+1]: count += 1 else: count = 0 i += 1 if count == WinN-1: return 1 # column # count = 0 i = 0 while i < MapL-1 and count < WinN-1: if board[i][c] and board[i][c] == board[i+1][c]: count += 1 else: count = 0 i += 1 if count == WinN-1: return 1 # Principal diagonal # count = 0 i = 0 l_ = l - min(l,c); c_ = c - min(l,c) while i+l_<MapL-1 and i+c_<MapL-1 and count<WinN-1: if board[i+l_][i+c_] and board[i+l_+1][i+c_+1] == board[i+l_][i+c_]: count += 1 else: count = 0 i += 1 if count == WinN-1: return 1 # Subdiagonal # count = 0 i = 0 while c > 0 and l < MapL-1: l += 1; c -= 1 while l-i>0 and i+c<MapL and count<WinN-1: if board[-i+l][i+c] and board[-i+l-1][i+c+1] == board[-i+l][i+c]: count += 1 else: count = 0 i += 1 if count == WinN-1: return 1 return 0 def auto(player=2,coeff=0): '''computer's move''' max_score = -np.inf ymax = 1; xmax = 1 # Calculate the scores at each point for y in range(MapL): for x in range(MapL): if not board[y][x]: cd = abs(y-MapL/2+0.5) + abs(x-MapL/2+0.5) if (not step and cd>3) or (step and not np.any(board[max(y-2,0):min(y+3,MapL),max(x-2,0):min(x+3,MapL)])): score = -np.inf #print(" ",end='') else: board[y][x] = player scores = score_calc(coeffs[coeff],player) score = scores[0] - cd + np.random.randint(-6,5) # my score in this move score_opp = scores[1] # the opponent's score in this move board[y][x] = 3 - player score2 = score_calc(coeffs[coeff],player)[0] # my score if the opponent take this move # Treatment of 33, 34 and 44 if coeffs[coeff][0][12]*3<score_opp<coeffs[coeff][0][6]*0.5+coeffs[coeff][0][12]: score -= coeffs[coeff][0][6] if 1.5<score2/coeffs[coeff][0][6]<2.5: score -= coeffs[coeff][0][6]*0.25 elif 1.9<score2/coeffs[coeff][0][12]<2.1 or 0.5<(score2-coeffs[coeff][0][12])/coeffs[coeff][0][6]<1.5: score -= coeffs[coeff][0][6]*0.5 elif 0.5<score2/coeffs[coeff][0][19]<3.5: score -= coeffs[coeff][0][12] #print('%5d' % score,end='') if max_score < score: max_score = score; ymax = y+1; xmax = x+1 board[y][x] = 0 else: pass #print(' ['+'%s'%chr(21*board[y][x]+45)+']',end='') #print("") #print("B:",end='') #for j in range(len(numsall[0])): print('%2d'%int(numsall[0][j]),end=' ') #print("\nW:",end='') #for j in range(len(numsall[0])): print('%2d'%int(numsall[1][j]),end=' ') #print("") return ymax,xmax def score_calc(coeff,player=2): '''calculate total score''' nums = np.zeros((2,len(coeffs[0][0]))) def one_calc(a): '''calculate each list''' l = len(a) a = a.tolist() for i in range(l-2): if a[i:i+3]==[0,1,0]: nums[0][0]+=1 elif a[i:i+3]==[2,1,0] or a[i:i+3]==[0,1,2]: nums[0][1]+=1 elif a[i:i+3]==[0,2,0]: nums[1][0]+=1 elif a[i:i+3]==[1,2,0] or a[i:i+3]==[0,2,1]: nums[1][1]+=1 for i in range(l-3): if a[i:i+4]==[0,1,1,0]: nums[0][2]+=1 elif a[i:i+4]==[2,1,1,0] or a[i:i+4]==[0,1,1,2]: nums[0][3]+=1 elif a[i:i+4]==[0,2,2,0]: nums[1][2]+=1 elif a[i:i+4]==[1,2,2,0] or a[i:i+4]==[0,2,2,1]: nums[1][3]+=1 for i in range(l-4): if a[i:i+5]==[0,1,0,1,0]: nums[0][4]+=1 elif a[i:i+5]==[0,1,0,1,2] or a[i:i+5]==[2,1,0,1,0]: nums[0][5]+=1 elif a[i:i+5]==[0,1,1,1,0]: nums[0][6]+=1 elif a[i:i+5]==[0,1,1,1,2] or a[i:i+5]==[2,1,1,1,0]: nums[0][7]+=1 elif a[i:i+5]==[1,1,1,1,1]: nums[0][-1]+=1 elif a[i:i+5]==[0,2,0,2,0]: nums[1][4]+=1 elif a[i:i+5]==[0,2,0,2,1] or a[i:i+5]==[1,2,0,2,0]: nums[1][5]+=1 elif a[i:i+5]==[0,2,2,2,0]: nums[1][6]+=1 elif a[i:i+5]==[0,2,2,2,1] or a[i:i+5]==[1,2,2,2,0]: nums[1][7]+=1 elif a[i:i+5]==[2,2,2,2,2]: nums[1][-1]+=1 if l>=6: for i in range(l-5): if a[i:i+6]==[0,1,0,1,1,0] or a[i:i+6]==[0,1,1,0,1,0]: nums[0][8]+=1 elif a[i:i+6]==[2,1,0,1,1,0] or a[i:i+6]==[0,1,1,0,1,2]: nums[0][9]+=1 elif a[i:i+6]==[2,1,1,0,1,0] or a[i:i+6]==[0,1,0,1,1,2]: nums[0][10]+=1 elif a[i:i+6]==[0,1,1,1,1,0]: nums[0][11]+=1 elif a[i:i+6]==[2,1,1,1,1,0] or a[i:i+6]==[0,1,1,1,1,2]: nums[0][12]+=1 elif a[i:i+6]==[1,1,1,0,1,1] or a[i:i+6]==[1,1,0,1,1,1]: nums[0][13]+=1 elif a[i:i+6]==[0,2,0,2,2,0] or a[i:i+6]==[0,2,2,0,2,0]: nums[1][8]+=1 elif a[i:i+6]==[1,2,0,2,2,0] or a[i:i+6]==[0,2,2,0,2,1]: nums[1][9]+=1 elif a[i:i+6]==[0,2,2,0,2,1] or a[i:i+6]==[0,2,0,2,2,1]: nums[1][10]+=1 elif a[i:i+6]==[0,2,2,2,2,0]: nums[1][11]+=1 elif a[i:i+6]==[1,2,2,2,2,0] or a[i:i+6]==[0,2,2,2,2,1]: nums[1][12]+=1 elif a[i:i+6]==[2,2,2,0,2,2] or a[i:i+6]==[2,2,0,2,2,2]: nums[1][13]+=1 if l>=7: for i in range(l-6): if a[i:i+7]==[0,1,1,1,0,1,0] or a[i:i+7]==[0,1,0,1,1,1,0]: nums[0][16]+=1 elif a[i:i+7]==[2,1,1,0,1,1,2] or a[i:i+7]==[2,1,0,1,1,1,2] or a[i:i+7]==[2,1,1,1,0,1,2]: nums[0][13]+=1 elif a[i:i+7]==[2,1,1,0,1,1,0] or a[i:i+7]==[0,1,1,0,1,1,2]: nums[0][14]+=1 elif a[i:i+7]==[0,1,1,0,1,1,0] or a[i:i+7]==[0,1,1,1,0,1,2] or a[i:i+7]==[2,1,0,1,1,1,0]: nums[0][15]+=1 elif a[i:i+7]==[0,1,0,1,1,1,2] or a[i:i+7]==[2,1,1,1,0,1,0]: nums[0][17]+=1 elif a[i:i+7]==[0,2,2,2,0,2,0] or a[i:i+7]==[0,2,0,2,2,2,0]: nums[1][16]+=1 elif a[i:i+7]==[1,2,2,0,2,2,1] or a[i:i+7]==[1,2,0,2,2,2,1] or a[i:i+7]==[1,2,2,2,0,2,1]: nums[1][13]+=1 elif a[i:i+7]==[1,2,2,0,2,2,0] or a[i:i+7]==[0,2,2,0,2,2,1]: nums[1][14]+=1 elif a[i:i+7]==[0,2,2,0,2,2,0] or a[i:i+7]==[0,2,2,2,0,2,1] or a[i:i+7]==[1,2,0,2,2,2,0]: nums[1][15]+=1 elif a[i:i+7]==[0,2,0,2,2,2,1] or a[i:i+7]==[1,2,2,2,0,2,0]: nums[1][17]+=1 for i in range(MapL): # Calculate row and column one_calc(board[i]) one_calc(board[:,i]) for i in range(-MapL+5,MapL-4): # Calculate the main and sub diagonals one_calc(np.diag(board,i)) one_calc(np.diag(np.flip(board,axis=0),i)) nums[:,0] -= nums[:,4]*2 + nums[:,8]+nums[:,10]+nums[:,16]+nums[:,17] nums[:,1] -= nums[:,5] + nums[:,9] nums[:,2] -= nums[:,8] + nums[:,9]+nums[:,14]+nums[:,15] nums[:,3] -= nums[:,10] + nums[:,14] nums[:,6] -= nums[:,15] + nums[:,16] nums[:,7] -= nums[:,17] #global numsall #numsall = nums if player==2: return np.sum(nums*coeff), np.sum(nums*np.flip(coeff,axis=0)) else: return np.sum(nums*np.flip(coeff,axis=0)), np.sum(nums*coeff) def button(event): '''event handler & modes''' if not end_flag: try: if mode == 0: move(round(event.ydata),round(event.xdata)) elif mode == 1: if not step % 2: y,x = auto(1,1); move(y,x) # auto(1-B 2-W, 0-Old 1-New) else: move(round(event.ydata),round(event.xdata)) elif mode == 2: if not step % 2: move(round(event.ydata),round(event.xdata)) else: y,x = auto(2); move(y,x) elif mode == 3: if not step % 2: y,x = auto(1); move(y,x) else: y,x = auto(2,1); move(y,x) except: pass def move(i,j): '''take a move''' global step,board,end_flag if step == MapL**2: end_flag = 2 try: if not board[i-1][j-1]: board[i-1][j-1] = step%2 + 1 step += 1 steps.append([i,j]) if judge(i-1,j-1,WinN): end_flag = 1 show() except: pass def show(): '''show the chessboard''' global step,board colors = ['w','k','w'] names = ['player','PC'] adsize = 0 if mode == 3 else step % 2 plt.clf() fig = plt.figure(num=1) mngr = plt.get_current_fig_manager() mngr.window.setGeometry(0+adsize,30,701+adsize,701) # position and size of the window fig.canvas.mpl_connect('button_press_event', button) plt.xlim(0.5,MapL+0.5); plt.ylim(0.5,MapL+0.5) for i in range(MapL): for j in range(MapL): if board[i][j]: plt.scatter(j+1,i+1, c=colors[board[i][j]],s=520*12/(MapL-1), linewidths=1,edgecolors='k',zorder=128) if step: plt.scatter(steps[-1][1],steps[-1][0],s=100,c='r',lw=5,marker='+',zorder=256) if MapL==15: plt.scatter([4,4,8,12,12],[4,12,8,4,12], c='k',s=10,zorder=2) else: plt.scatter([4,4,MapL-3,MapL-3],[4,MapL-3,4,MapL-3], c='k',s=10,zorder=2) plt.plot([1,1,MapL,MapL,1],[1,MapL,MapL,1,1],c='k',lw=1) plt.fill([1,MapL,MapL,1],[1,1,MapL,MapL],c='tan',alpha=0.5,zorder=0) plt.fill([-MapL,2*MapL,2*MapL,-MapL],[-MapL,-MapL,2*MapL,2*MapL],c='tan',alpha=0.4,zorder=1) plt.grid(True,ls='--',c='k',zorder=1) plt.text(MapL/2,MapL+1.5, "Step:"+str(step)+" Black:"+names[mode & 1]+" "+str(result[0])+":"+str(result[1])+" White:"+names[(mode&2)//2], fontsize=15,ha="center") ax = plt.gca() ax.set_xticks(range(1,MapL+1)) ax.set_yticks(range(1,MapL+1)) for edge in ['left','right','top','bottom']: ax.spines[edge].set_visible(False) if end_flag: if end_flag == 2: string = "Draw!" else: string = "Black Wins" if step%2 else "White Wins" plt.text(MapL/2+0.5,MapL+0.5,string,fontsize=20,c='r',va="center",ha="center") if mode & (step % 2 + 1): if not step: plt.pause(0.01) fig.canvas.draw_idle() fig.canvas.start_event_loop(0.1) if not end_flag: plt.clf() button(1) else: plt.show() def init(): '''Initialization interface''' def choice(event): global mode mode = 4 - round(event.ydata) if mode in [0,1,2,3] and 2.3 < event.xdata < 7.7: plt.close(0) fig = plt.figure(num=0) mngr = plt.get_current_fig_manager() mngr.window.setGeometry(100,100,600,600) fig.canvas.mpl_connect('button_press_event', choice) plt.xlim(0,10); plt.ylim(0,10) plt.xticks([]); plt.yticks([]) plt.text(5,8," Gobang ",fontsize=25,color="w",bbox=(dict(fc="k",alpha=0.5)), va="center",ha="center") plt.text(5,5.7,"Click the chessboard to play.\n Close the chessboard to refresh\n or start a new game.",fontsize=13,va="center",ha="center") plt.text(5,4,'● player vs ○ player',fontsize=15,bbox=dict(fc=(1, 0.85, 0.7)),va="center",ha="center") plt.text(5,2,'● player vs ○ PC ', fontsize=15,bbox=dict(fc=(1, 0.85, 0.7)),va="center",ha="center") plt.text(5,3,'● PC vs ○ player', fontsize=15,bbox=dict(fc=(1, 0.85, 0.7)),va="center",ha="center") plt.text(5,1,'● PC vs ○ PC ', fontsize=15,bbox=dict(fc=(1, 0.85, 0.7)),va="center",ha="center") img = plt.imread("go.jpg") plt.imshow(img,extent=[0,10,5,10]) plt.show() if mode == 4: exit() if __name__ == "__main__": result = [0,0] init() while 1: show() if end_flag: if end_flag == 2: pass elif step % 2: result[0] += 1 else: result[1] += 1 end_flag = 0 step = 0 steps.clear() board[board != 0] = 0 print("\n----- SCORE -----\nBlack",result[0],'-',result[1],"White\n"+"-"*17)
BetaGem/Games
gobang.py
gobang.py
py
13,951
python
en
code
2
github-code
6
[ { "api_name": "numpy.zeros", "line_number": 10, "usage_type": "call" }, { "api_name": "numpy.int64", "line_number": 10, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 15, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.inf", "line_number": 70, "usage_type": "attribute" }, { "api_name": "numpy.any", "line_number": 77, "usage_type": "call" }, { "api_name": "numpy.inf", "line_number": 78, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 83, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 83, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 112, "usage_type": "call" }, { "api_name": "numpy.diag", "line_number": 178, "usage_type": "call" }, { "api_name": "numpy.diag", "line_number": 179, "usage_type": "call" }, { "api_name": "numpy.flip", "line_number": 179, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 191, "usage_type": "call" }, { "api_name": "numpy.flip", "line_number": 191, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 193, "usage_type": "call" }, { "api_name": "numpy.flip", "line_number": 193, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.clf", "line_number": 232, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 232, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 233, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 233, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.get_current_fig_manager", "line_number": 234, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 234, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 237, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 237, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 237, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 241, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 241, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 245, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 245, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 247, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 247, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 249, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 249, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 251, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 251, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.fill", "line_number": 252, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 252, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.fill", "line_number": 253, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 253, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.grid", "line_number": 255, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 255, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 256, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 256, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.gca", "line_number": 259, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 259, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 269, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 269, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.pause", "line_number": 272, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 272, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.clf", "line_number": 275, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 275, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 278, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 278, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 285, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 285, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 286, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 286, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.get_current_fig_manager", "line_number": 287, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 287, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 291, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 291, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 291, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 292, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 292, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 292, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.text", "line_number": 293, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 293, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 294, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 294, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 295, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 295, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 296, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 296, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 297, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 297, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 298, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 298, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imread", "line_number": 299, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 299, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 300, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 300, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 301, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 301, "usage_type": "name" } ]
9752254935
import functools from flask_login import current_user, LoginManager from flask import session from src.model import UserModel login_manager = LoginManager() def roles_allowed(func=None, roles=None): """ Check if the user has at least one required role :param func: the function to decorate :param roles: an array of allowed roles """ if not func: return functools.partial(roles_allowed, roles=roles) @functools.wraps(func) def f(*args, **kwargs): role = session.get("ROLE") if not any(role in s for s in roles): return login_manager.unauthorized() return func(*args, **kwargs) return f @login_manager.user_loader def load_user(user_id): # user = User.query.get(user_id) if "current_user" in session: user = UserModel() user.fill_from_json(session["current_user"]) user.set_authenticated(True) return user return None
GreyTeam2020/GoOutSafe_microservice
gateway/src/auth.py
auth.py
py
949
python
en
code
3
github-code
6
[ { "api_name": "flask_login.LoginManager", "line_number": 7, "usage_type": "call" }, { "api_name": "functools.partial", "line_number": 17, "usage_type": "call" }, { "api_name": "flask.session.get", "line_number": 21, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 21, "usage_type": "name" }, { "api_name": "functools.wraps", "line_number": 19, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 32, "usage_type": "name" }, { "api_name": "src.model.UserModel", "line_number": 33, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 34, "usage_type": "name" } ]
14374651405
"""Bridgy App Engine config. """ import logging class StubsFilter(logging.Filter): """Suppress these INFO logs: Sandbox prevented access to file "/usr/local/Caskroom/google-cloud-sdk" If it is a static file, check that `application_readable: true` is set in your app.yaml """ def filter(self, record): msg = record.getMessage() if (msg.startswith('Sandbox prevented access to file') or msg.startswith('If it is a static file, check that')): return 0 return 1 logging.getLogger().addFilter(StubsFilter())
snarfed/bridgy-fed
appengine_config.py
appengine_config.py
py
580
python
en
code
219
github-code
6
[ { "api_name": "logging.Filter", "line_number": 6, "usage_type": "attribute" }, { "api_name": "logging.getLogger", "line_number": 19, "usage_type": "call" } ]
20519423740
"""! @brief Examples of usage and demonstration of abilities of K-Medoids algorithm in cluster analysis. @authors Andrei Novikov ([email protected]) @date 2014-2020 @copyright BSD-3-Clause """ from pyclustering.samples.definitions import SIMPLE_SAMPLES, FCPS_SAMPLES from pyclustering.cluster import cluster_visualizer from pyclustering.cluster.kmedoids import kmedoids from pyclustering.utils import read_sample, calculate_distance_matrix from pyclustering.utils import timedcall, distance_metric, type_metric def template_clustering(start_medoids, path, tolerance=0.25, show=True, **kwargs): ccore = kwargs.get('ccore', True) data_type = kwargs.get('data_type', 'points') original_data = read_sample(path) sample = original_data if data_type == 'distance_matrix': sample = calculate_distance_matrix(sample) metric = distance_metric(type_metric.EUCLIDEAN_SQUARE, data=sample) kmedoids_instance = kmedoids(sample, start_medoids, tolerance, metric=metric, ccore=ccore, data_type=data_type) (ticks, result) = timedcall(kmedoids_instance.process) clusters = kmedoids_instance.get_clusters() print("Iterations:", kmedoids_instance.get_iterations()) print([len(cluster) for cluster in clusters]) print(clusters) medoids = kmedoids_instance.get_medoids() print("Sample: ", path, "\t\tExecution time: ", ticks, "\n") if show is True: visualizer = cluster_visualizer(1) visualizer.append_clusters(clusters, original_data, 0) visualizer.append_cluster([original_data[index] for index in start_medoids], marker='*', markersize=15) visualizer.append_cluster(medoids, data=original_data, marker='*', markersize=15) visualizer.show() return original_data, clusters def cluster_sample1(): template_clustering([2, 9], SIMPLE_SAMPLES.SAMPLE_SIMPLE1) def cluster_sample2(): template_clustering([3, 12, 20], SIMPLE_SAMPLES.SAMPLE_SIMPLE2) def cluster_sample3(): template_clustering([4, 12, 25, 37], SIMPLE_SAMPLES.SAMPLE_SIMPLE3) def cluster_sample4(): template_clustering([4, 15, 30, 40, 50], SIMPLE_SAMPLES.SAMPLE_SIMPLE4) def cluster_sample5(): template_clustering([4, 18, 34, 55], SIMPLE_SAMPLES.SAMPLE_SIMPLE5) def cluster_elongate(): template_clustering([8, 56], SIMPLE_SAMPLES.SAMPLE_ELONGATE) def cluster_lsun(): template_clustering([10, 275, 385], FCPS_SAMPLES.SAMPLE_LSUN) def cluster_target(): template_clustering([10, 160, 310, 460, 560, 700], FCPS_SAMPLES.SAMPLE_TARGET) def cluster_two_diamonds(): template_clustering([10, 650], FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS) def cluster_wing_nut(): template_clustering([19, 823], FCPS_SAMPLES.SAMPLE_WING_NUT) def cluster_chainlink(): template_clustering([30, 900], FCPS_SAMPLES.SAMPLE_CHAINLINK) def cluster_hepta(): template_clustering([0, 35, 86, 93, 125, 171, 194], FCPS_SAMPLES.SAMPLE_HEPTA) def cluster_tetra(): template_clustering([0, 131, 214, 265], FCPS_SAMPLES.SAMPLE_TETRA) def cluster_atom(): template_clustering([0, 650], FCPS_SAMPLES.SAMPLE_ATOM) def cluster_engy_time(): template_clustering([10, 3000], FCPS_SAMPLES.SAMPLE_ENGY_TIME) def display_fcps_clustering_results(): (lsun, lsun_clusters) = template_clustering([10, 275, 385], FCPS_SAMPLES.SAMPLE_LSUN, 0.1, False) (target, target_clusters) = template_clustering([10, 160, 310, 460, 560, 700], FCPS_SAMPLES.SAMPLE_TARGET, 0.1, False) (two_diamonds, two_diamonds_clusters) = template_clustering([10, 650], FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS, 0.1, False) (wing_nut, wing_nut_clusters) = template_clustering([19, 823], FCPS_SAMPLES.SAMPLE_WING_NUT, 0.1, False) (chainlink, chainlink_clusters) = template_clustering([30, 900], FCPS_SAMPLES.SAMPLE_CHAINLINK, 0.1, False) (hepta, hepta_clusters) = template_clustering([0, 35, 86, 93, 125, 171, 194], FCPS_SAMPLES.SAMPLE_HEPTA, 0.1, False) (tetra, tetra_clusters) = template_clustering([0, 131, 214, 265], FCPS_SAMPLES.SAMPLE_TETRA, 0.1, False) (atom, atom_clusters) = template_clustering([0, 650], FCPS_SAMPLES.SAMPLE_ATOM, 0.1, False) visualizer = cluster_visualizer(8, 4) visualizer.append_clusters(lsun_clusters, lsun, 0) visualizer.append_clusters(target_clusters, target, 1) visualizer.append_clusters(two_diamonds_clusters, two_diamonds, 2) visualizer.append_clusters(wing_nut_clusters, wing_nut, 3) visualizer.append_clusters(chainlink_clusters, chainlink, 4) visualizer.append_clusters(hepta_clusters, hepta, 5) visualizer.append_clusters(tetra_clusters, tetra, 6) visualizer.append_clusters(atom_clusters, atom, 7) visualizer.show() cluster_sample1() cluster_sample2() cluster_sample3() cluster_sample4() cluster_sample5() cluster_elongate() cluster_lsun() cluster_target() cluster_two_diamonds() cluster_wing_nut() cluster_chainlink() cluster_hepta() cluster_tetra() cluster_atom() cluster_engy_time() display_fcps_clustering_results()
annoviko/pyclustering
pyclustering/cluster/examples/kmedoids_examples.py
kmedoids_examples.py
py
5,155
python
en
code
1,113
github-code
6
[ { "api_name": "pyclustering.utils.read_sample", "line_number": 24, "usage_type": "call" }, { "api_name": "pyclustering.utils.calculate_distance_matrix", "line_number": 27, "usage_type": "call" }, { "api_name": "pyclustering.utils.distance_metric", "line_number": 29, "usage_type": "call" }, { "api_name": "pyclustering.utils.type_metric.EUCLIDEAN_SQUARE", "line_number": 29, "usage_type": "attribute" }, { "api_name": "pyclustering.utils.type_metric", "line_number": 29, "usage_type": "name" }, { "api_name": "pyclustering.cluster.kmedoids.kmedoids", "line_number": 31, "usage_type": "call" }, { "api_name": "pyclustering.utils.timedcall", "line_number": 32, "usage_type": "call" }, { "api_name": "pyclustering.cluster.cluster_visualizer", "line_number": 42, "usage_type": "call" }, { "api_name": "pyclustering.samples.definitions.SIMPLE_SAMPLES.SAMPLE_SIMPLE1", "line_number": 52, "usage_type": "attribute" }, { "api_name": "pyclustering.samples.definitions.SIMPLE_SAMPLES", "line_number": 52, "usage_type": "name" }, { "api_name": "pyclustering.samples.definitions.SIMPLE_SAMPLES.SAMPLE_SIMPLE2", "line_number": 55, "usage_type": "attribute" }, { "api_name": "pyclustering.samples.definitions.SIMPLE_SAMPLES", "line_number": 55, "usage_type": "name" }, { "api_name": "pyclustering.samples.definitions.SIMPLE_SAMPLES.SAMPLE_SIMPLE3", "line_number": 58, "usage_type": "attribute" }, { "api_name": "pyclustering.samples.definitions.SIMPLE_SAMPLES", "line_number": 58, "usage_type": "name" }, { "api_name": "pyclustering.samples.definitions.SIMPLE_SAMPLES.SAMPLE_SIMPLE4", "line_number": 61, "usage_type": "attribute" }, { "api_name": "pyclustering.samples.definitions.SIMPLE_SAMPLES", "line_number": 61, "usage_type": "name" }, { "api_name": "pyclustering.samples.definitions.SIMPLE_SAMPLES.SAMPLE_SIMPLE5", "line_number": 64, "usage_type": "attribute" }, { "api_name": "pyclustering.samples.definitions.SIMPLE_SAMPLES", "line_number": 64, "usage_type": "name" }, { "api_name": "pyclustering.samples.definitions.SIMPLE_SAMPLES.SAMPLE_ELONGATE", "line_number": 67, "usage_type": "attribute" }, { "api_name": "pyclustering.samples.definitions.SIMPLE_SAMPLES", "line_number": 67, "usage_type": "name" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES.SAMPLE_LSUN", "line_number": 70, "usage_type": "attribute" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES", "line_number": 70, "usage_type": "name" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES.SAMPLE_TARGET", "line_number": 73, "usage_type": "attribute" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES", "line_number": 73, "usage_type": "name" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS", "line_number": 76, "usage_type": "attribute" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES", "line_number": 76, "usage_type": "name" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES.SAMPLE_WING_NUT", "line_number": 79, "usage_type": "attribute" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES", "line_number": 79, "usage_type": "name" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES.SAMPLE_CHAINLINK", "line_number": 82, "usage_type": "attribute" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES", "line_number": 82, "usage_type": "name" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES.SAMPLE_HEPTA", "line_number": 85, "usage_type": "attribute" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES", "line_number": 85, "usage_type": "name" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES.SAMPLE_TETRA", "line_number": 88, "usage_type": "attribute" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES", "line_number": 88, "usage_type": "name" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES.SAMPLE_ATOM", "line_number": 91, "usage_type": "attribute" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES", "line_number": 91, "usage_type": "name" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES.SAMPLE_ENGY_TIME", "line_number": 94, "usage_type": "attribute" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES", "line_number": 94, "usage_type": "name" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES.SAMPLE_LSUN", "line_number": 98, "usage_type": "attribute" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES", "line_number": 98, "usage_type": "name" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES.SAMPLE_TARGET", "line_number": 99, "usage_type": "attribute" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES", "line_number": 99, "usage_type": "name" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS", "line_number": 100, "usage_type": "attribute" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES", "line_number": 100, "usage_type": "name" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES.SAMPLE_WING_NUT", "line_number": 101, "usage_type": "attribute" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES", "line_number": 101, "usage_type": "name" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES.SAMPLE_CHAINLINK", "line_number": 102, "usage_type": "attribute" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES", "line_number": 102, "usage_type": "name" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES.SAMPLE_HEPTA", "line_number": 103, "usage_type": "attribute" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES", "line_number": 103, "usage_type": "name" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES.SAMPLE_TETRA", "line_number": 104, "usage_type": "attribute" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES", "line_number": 104, "usage_type": "name" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES.SAMPLE_ATOM", "line_number": 105, "usage_type": "attribute" }, { "api_name": "pyclustering.samples.definitions.FCPS_SAMPLES", "line_number": 105, "usage_type": "name" }, { "api_name": "pyclustering.cluster.cluster_visualizer", "line_number": 107, "usage_type": "call" } ]
73928041148
from pyvi import window from pyvi.modes import normal class Editor(object): _command = None active_tab = None def __init__(self, tabs=None, config=None, normal=normal): self.config = config self.mode = self.normal = normal self.count = None if tabs is None: tabs = self.tabs = [window.Tab(self)] else: tabs = self.tabs = list(tabs) if tabs: self.active_tab = tabs[0] @property def active_window(self): return self.active_tab.active_window def keypress(self, keys): return self.mode.keypress(self, keys)
Julian/PyVi
pyvi/editor.py
editor.py
py
635
python
en
code
11
github-code
6
[ { "api_name": "pyvi.modes.normal", "line_number": 10, "usage_type": "name" }, { "api_name": "pyvi.modes.normal", "line_number": 12, "usage_type": "name" }, { "api_name": "pyvi.window.Tab", "line_number": 16, "usage_type": "call" }, { "api_name": "pyvi.window", "line_number": 16, "usage_type": "name" } ]
21594560177
from django.shortcuts import render, redirect import csv from django.http import HttpResponse from django.template.loader import render_to_string # from weasyprint import HTML # Create your views here. from .models import Members, Loans, Deposits from django.db.models import Avg, Sum from .forms import MemberForm def home(request): total_dep = Deposits.objects.aggregate(mytotal=Sum('Amount_deposit')) total_loan = Loans.objects.aggregate(myloan=Sum('Amount_loan')) maximum_dep = Deposits.objects.aggregate(mymax=Avg('Amount_deposit')) member_list=Members.objects.all() total_members=member_list.count() context={'member_list':member_list,'total_members':total_members,'total_dep':total_dep,'maximum_dep':maximum_dep,'total_loan':total_loan} return render(request,'information_system/home.html',context) def members(request,pk): members=Members.objects.get(id=pk) deposits=Deposits.objects.get(id=pk) deposit = members.deposits_set.all() deptotal=deposits.Amount_deposit # myFilter=MemberFilter(request., qs=deposit) # deposit=myFilter.qs dep_count=deposit.count() fname_by=members.FirstName lname_by=members.LastName dep_by=fname_by+lname_by dep_amount=deposits.Amount_deposit total_depos = Deposits.objects.aggregate(mytotal=Sum('Amount_deposit')) context={'members':members,'dep_amount':dep_amount,'dep_by':dep_by,'deposit':deposit,'total_depos':total_depos,'deptotal':deptotal} return render(request,'information_system/Members.html',context) def export(request): response=HttpResponse(content_type='text/csv') writer=csv.writer(response) writer.writerow(['Account Number','First Name','Last Name','Date_start']) for member in Members.objects.all().values_list('AccountNumber','FirstName','LastName','Date_start'): writer.writerow(member) response['Content-Disposition'] = 'attachment; filename="Member_List.csv"' return response def update(request, pk): member=Members.objects.get(id=pk) form=MemberForm(instance=member) if request.method == 'POST': form=MemberForm(request.Post, instance=member) if form.is_valid(): form.save() return redirect('/') context = {'form':form} return render(request,'information_system/memberform.html',context) def loan(request): loan_list=Loans.objects.all() total_loans=loan_list.count() context={'total_loans':total_loans,'loan_list':loan_list} return render(request,'information_system/loan.html',context) def deposit(request): deposit_list=Deposits.objects.all() ##To get total deposit total_dep = Deposits.objects.aggregate(mytotal=Sum('Amount_deposit')) maximum_dep=Deposits.objects.aggregate(mymax=Avg('Amount_deposit')) context={'total_dep':total_dep,'maximum_dep':maximum_dep,'deposit_list':deposit_list} return render(request,'information_system/Deposit.html',context)
laloluka/sol
information_system/views.py
views.py
py
2,960
python
en
code
0
github-code
6
[ { "api_name": "models.Deposits.objects.aggregate", "line_number": 15, "usage_type": "call" }, { "api_name": "models.Deposits.objects", "line_number": 15, "usage_type": "attribute" }, { "api_name": "models.Deposits", "line_number": 15, "usage_type": "name" }, { "api_name": "django.db.models.Sum", "line_number": 15, "usage_type": "call" }, { "api_name": "models.Loans.objects.aggregate", "line_number": 16, "usage_type": "call" }, { "api_name": "models.Loans.objects", "line_number": 16, "usage_type": "attribute" }, { "api_name": "models.Loans", "line_number": 16, "usage_type": "name" }, { "api_name": "django.db.models.Sum", "line_number": 16, "usage_type": "call" }, { "api_name": "models.Deposits.objects.aggregate", "line_number": 17, "usage_type": "call" }, { "api_name": "models.Deposits.objects", "line_number": 17, "usage_type": "attribute" }, { "api_name": "models.Deposits", "line_number": 17, "usage_type": "name" }, { "api_name": "django.db.models.Avg", "line_number": 17, "usage_type": "call" }, { "api_name": "models.Members.objects.all", "line_number": 18, "usage_type": "call" }, { "api_name": "models.Members.objects", "line_number": 18, "usage_type": "attribute" }, { "api_name": "models.Members", "line_number": 18, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 23, "usage_type": "call" }, { "api_name": "models.Members.objects.get", "line_number": 29, "usage_type": "call" }, { "api_name": "models.Members.objects", "line_number": 29, "usage_type": "attribute" }, { "api_name": "models.Members", "line_number": 29, "usage_type": "name" }, { "api_name": "models.Deposits.objects.get", "line_number": 30, "usage_type": "call" }, { "api_name": "models.Deposits.objects", "line_number": 30, "usage_type": "attribute" }, { "api_name": "models.Deposits", "line_number": 30, "usage_type": "name" }, { "api_name": "models.Deposits.objects.aggregate", "line_number": 44, "usage_type": "call" }, { "api_name": "models.Deposits.objects", "line_number": 44, "usage_type": "attribute" }, { "api_name": "models.Deposits", "line_number": 44, "usage_type": "name" }, { "api_name": "django.db.models.Sum", "line_number": 44, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 46, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 49, "usage_type": "call" }, { "api_name": "csv.writer", "line_number": 50, "usage_type": "call" }, { "api_name": "models.Members.objects.all", "line_number": 52, "usage_type": "call" }, { "api_name": "models.Members.objects", "line_number": 52, "usage_type": "attribute" }, { "api_name": "models.Members", "line_number": 52, "usage_type": "name" }, { "api_name": "models.Members.objects.get", "line_number": 63, "usage_type": "call" }, { "api_name": "models.Members.objects", "line_number": 63, "usage_type": "attribute" }, { "api_name": "models.Members", "line_number": 63, "usage_type": "name" }, { "api_name": "forms.MemberForm", "line_number": 64, "usage_type": "call" }, { "api_name": "forms.MemberForm", "line_number": 66, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 69, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 71, "usage_type": "call" }, { "api_name": "models.Loans.objects.all", "line_number": 77, "usage_type": "call" }, { "api_name": "models.Loans.objects", "line_number": 77, "usage_type": "attribute" }, { "api_name": "models.Loans", "line_number": 77, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 80, "usage_type": "call" }, { "api_name": "models.Deposits.objects.all", "line_number": 82, "usage_type": "call" }, { "api_name": "models.Deposits.objects", "line_number": 82, "usage_type": "attribute" }, { "api_name": "models.Deposits", "line_number": 82, "usage_type": "name" }, { "api_name": "models.Deposits.objects.aggregate", "line_number": 84, "usage_type": "call" }, { "api_name": "models.Deposits.objects", "line_number": 84, "usage_type": "attribute" }, { "api_name": "models.Deposits", "line_number": 84, "usage_type": "name" }, { "api_name": "django.db.models.Sum", "line_number": 84, "usage_type": "call" }, { "api_name": "models.Deposits.objects.aggregate", "line_number": 85, "usage_type": "call" }, { "api_name": "models.Deposits.objects", "line_number": 85, "usage_type": "attribute" }, { "api_name": "models.Deposits", "line_number": 85, "usage_type": "name" }, { "api_name": "django.db.models.Avg", "line_number": 85, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 88, "usage_type": "call" } ]
37512481914
import os import pytest from contextlib import contextmanager from tempfile import TemporaryDirectory, NamedTemporaryFile from unittest.mock import patch from zipfile import ZipFile from repo2docker.contentproviders import Hydroshare from repo2docker.contentproviders.base import ContentProviderException def test_content_id(): with patch.object(Hydroshare, "urlopen") as fake_urlopen: fake_urlopen.return_value.url = ( "https://www.hydroshare.org/resource/b8f6eae9d89241cf8b5904033460af61" ) def read(): return '{"dates": [{"type": "modified", "start_date": "2019-09-25T16:09:17.006152Z"}]}' fake_urlopen.return_value.read = read hydro = Hydroshare() hydro.detect("10.4211/hs.b8f6eae9d89241cf8b5904033460af61") assert hydro.content_id == "b8f6eae9d89241cf8b5904033460af61.v1569427757" def test_detect_hydroshare(): with patch.object(Hydroshare, "urlopen") as fake_urlopen: fake_urlopen.return_value.url = ( "https://www.hydroshare.org/resource/b8f6eae9d89241cf8b5904033460af61" ) def read(): return '{"dates": [{"type": "modified", "start_date": "2019-09-25T16:09:17.006152Z"}]}' fake_urlopen.return_value.read = read # valid Hydroshare DOIs trigger this content provider expected = { "host": { "hostname": [ "https://www.hydroshare.org/resource/", "http://www.hydroshare.org/resource/", ], "django_irods": "https://www.hydroshare.org/django_irods/download/bags/", "version": "https://www.hydroshare.org/hsapi/resource/{}/scimeta/elements", }, "resource": "b8f6eae9d89241cf8b5904033460af61", "version": "1569427757", } assert ( Hydroshare().detect( "https://www.hydroshare.org/resource/b8f6eae9d89241cf8b5904033460af61" ) == expected ) # assert a call to urlopen was called to fetch version assert fake_urlopen.call_count == 1 assert ( Hydroshare().detect("10.4211/hs.b8f6eae9d89241cf8b5904033460af61") == expected ) # assert 2 more calls were made, one to resolve the DOI and another to fetch the version assert fake_urlopen.call_count == 3 assert ( Hydroshare().detect( "https://doi.org/10.4211/hs.b8f6eae9d89241cf8b5904033460af61" ) == expected ) # assert 2 more calls were made, one to resolve the DOI and another to fetch the version assert fake_urlopen.call_count == 5 with patch.object(Hydroshare, "urlopen") as fake_urlopen: # Don't trigger the Hydroshare content provider assert Hydroshare().detect("/some/path/here") is None assert Hydroshare().detect("https://example.com/path/here") is None # don't handle DOIs that aren't from Hydroshare fake_urlopen.return_value.url = ( "http://joss.theoj.org/papers/10.21105/joss.01277" ) def read(): return '{"dates": [{"type": "modified", "start_date": "2019-09-25T16:09:17.006152Z"}]}' fake_urlopen.return_value.read = read assert Hydroshare().detect("https://doi.org/10.21105/joss.01277") is None @contextmanager def hydroshare_archive(prefix="b8f6eae9d89241cf8b5904033460af61/data/contents"): with NamedTemporaryFile(suffix=".zip") as zfile: with ZipFile(zfile.name, mode="w") as zip: zip.writestr("{}/some-file.txt".format(prefix), "some content") zip.writestr("{}/some-other-file.txt".format(prefix), "some more content") yield zfile class MockInfo: def __init__(self, content_type): self.content_type = content_type def get_content_type(self): return self.content_type class MockResponse: def __init__(self, content_type, status_code): self.content_type = content_type self.status_code = status_code self.mock_info = MockInfo(self.content_type) def getcode(self): return self.status_code def info(self): return self.mock_info def test_fetch_bag(): # we "fetch" a local ZIP file to simulate a Hydroshare resource with hydroshare_archive() as hydro_path: with patch.object( Hydroshare, "urlopen", side_effect=[ MockResponse("application/html", 200), MockResponse("application/zip", 200), ], ): with patch.object( Hydroshare, "_urlretrieve", side_effect=[(hydro_path, None)] ): hydro = Hydroshare() hydro.resource_id = "b8f6eae9d89241cf8b5904033460af61" spec = { "host": { "hostname": [ "https://www.hydroshare.org/resource/", "http://www.hydroshare.org/resource/", ], "django_irods": "https://www.hydroshare.org/django_irods/download/bags/", }, "resource": "123456789", } with TemporaryDirectory() as d: output = [] for l in hydro.fetch(spec, d): output.append(l) unpacked_files = set(os.listdir(d)) expected = set(["some-other-file.txt", "some-file.txt"]) assert expected == unpacked_files def test_fetch_bag_failure(): with hydroshare_archive(): with patch.object( Hydroshare, "urlopen", side_effect=[MockResponse("application/html", 500)] ): hydro = Hydroshare() spec = { "host": { "hostname": [ "https://www.hydroshare.org/resource/", "http://www.hydroshare.org/resource/", ], "django_irods": "https://www.hydroshare.org/django_irods/download/bags/", }, "resource": "123456789", } with TemporaryDirectory() as d: with pytest.raises( ContentProviderException, match=r"Failed to download bag\. status code 500\.", ): # loop for yield statements for l in hydro.fetch(spec, d): pass def test_fetch_bag_timeout(): with hydroshare_archive(): with patch.object( Hydroshare, "urlopen", side_effect=[MockResponse("application/html", 200)] ): hydro = Hydroshare() spec = { "host": { "hostname": [ "https://www.hydroshare.org/resource/", "http://www.hydroshare.org/resource/", ], "django_irods": "https://www.hydroshare.org/django_irods/download/bags/", }, "resource": "123456789", } with TemporaryDirectory() as d: with pytest.raises( ContentProviderException, match=r"Bag taking too long to prepare, exiting now, try again later\.", ): # loop for yield statements for l in hydro.fetch(spec, d, timeout=0): pass
igorkatinas/jupyter
tests/unit/contentproviders/test_hydroshare.py
test_hydroshare.py
py
7,638
python
en
code
0
github-code
6
[ { "api_name": "unittest.mock.patch.object", "line_number": 14, "usage_type": "call" }, { "api_name": "repo2docker.contentproviders.Hydroshare", "line_number": 14, "usage_type": "argument" }, { "api_name": "unittest.mock.patch", "line_number": 14, "usage_type": "name" }, { "api_name": "repo2docker.contentproviders.Hydroshare", "line_number": 23, "usage_type": "call" }, { "api_name": "unittest.mock.patch.object", "line_number": 30, "usage_type": "call" }, { "api_name": "repo2docker.contentproviders.Hydroshare", "line_number": 30, "usage_type": "argument" }, { "api_name": "unittest.mock.patch", "line_number": 30, "usage_type": "name" }, { "api_name": "repo2docker.contentproviders.Hydroshare", "line_number": 53, "usage_type": "call" }, { "api_name": "repo2docker.contentproviders.Hydroshare", "line_number": 61, "usage_type": "call" }, { "api_name": "repo2docker.contentproviders.Hydroshare", "line_number": 67, "usage_type": "call" }, { "api_name": "unittest.mock.patch.object", "line_number": 75, "usage_type": "call" }, { "api_name": "repo2docker.contentproviders.Hydroshare", "line_number": 75, "usage_type": "argument" }, { "api_name": "unittest.mock.patch", "line_number": 75, "usage_type": "name" }, { "api_name": "repo2docker.contentproviders.Hydroshare", "line_number": 77, "usage_type": "call" }, { "api_name": "repo2docker.contentproviders.Hydroshare", "line_number": 78, "usage_type": "call" }, { "api_name": "repo2docker.contentproviders.Hydroshare", "line_number": 88, "usage_type": "call" }, { "api_name": "tempfile.NamedTemporaryFile", "line_number": 93, "usage_type": "call" }, { "api_name": "zipfile.ZipFile", "line_number": 94, "usage_type": "call" }, { "api_name": "contextlib.contextmanager", "line_number": 91, "usage_type": "name" }, { "api_name": "unittest.mock.patch.object", "line_number": 125, "usage_type": "call" }, { "api_name": "repo2docker.contentproviders.Hydroshare", "line_number": 126, "usage_type": "argument" }, { "api_name": "unittest.mock.patch", "line_number": 125, "usage_type": "name" }, { "api_name": "unittest.mock.patch.object", "line_number": 133, "usage_type": "call" }, { "api_name": "repo2docker.contentproviders.Hydroshare", "line_number": 134, "usage_type": "argument" }, { "api_name": "unittest.mock.patch", "line_number": 133, "usage_type": "name" }, { "api_name": "repo2docker.contentproviders.Hydroshare", "line_number": 136, "usage_type": "call" }, { "api_name": "tempfile.TemporaryDirectory", "line_number": 149, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 154, "usage_type": "call" }, { "api_name": "unittest.mock.patch.object", "line_number": 161, "usage_type": "call" }, { "api_name": "repo2docker.contentproviders.Hydroshare", "line_number": 162, "usage_type": "argument" }, { "api_name": "unittest.mock.patch", "line_number": 161, "usage_type": "name" }, { "api_name": "repo2docker.contentproviders.Hydroshare", "line_number": 164, "usage_type": "call" }, { "api_name": "tempfile.TemporaryDirectory", "line_number": 175, "usage_type": "call" }, { "api_name": "pytest.raises", "line_number": 176, "usage_type": "call" }, { "api_name": "repo2docker.contentproviders.base.ContentProviderException", "line_number": 177, "usage_type": "argument" }, { "api_name": "unittest.mock.patch.object", "line_number": 187, "usage_type": "call" }, { "api_name": "repo2docker.contentproviders.Hydroshare", "line_number": 188, "usage_type": "argument" }, { "api_name": "unittest.mock.patch", "line_number": 187, "usage_type": "name" }, { "api_name": "repo2docker.contentproviders.Hydroshare", "line_number": 190, "usage_type": "call" }, { "api_name": "tempfile.TemporaryDirectory", "line_number": 201, "usage_type": "call" }, { "api_name": "pytest.raises", "line_number": 202, "usage_type": "call" }, { "api_name": "repo2docker.contentproviders.base.ContentProviderException", "line_number": 203, "usage_type": "argument" } ]
19400189989
from typing import List import random # 398. 随机数索引 # https://leetcode-cn.com/problems/random-pick-index/ # 蓄水池抽样 class Solution: def __init__(self, nums: List[int]): self.nums = nums def pick(self, target: int) -> int: ans = -1 k = 1 for i, each in enumerate(self.nums): if each == target: rand = random.randint(1, k) if rand == 1: # print('hit') ans = i k += 1 return ans nums = [1, 2, 3, 3, 3] # Your Solution object will be instantiated and called as such: obj = Solution(nums) param_1 = obj.pick(3) print(param_1)
Yigang0622/LeetCode
randomNumIndexing.py
randomNumIndexing.py
py
693
python
en
code
1
github-code
6
[ { "api_name": "typing.List", "line_number": 11, "usage_type": "name" }, { "api_name": "random.randint", "line_number": 19, "usage_type": "call" } ]
730586622
from selenium import webdriver from selenium.webdriver.common.by import By chrome_driver_path = r"C:\Users\Tobiloba\development\chromedriver.exe" driver = webdriver.Chrome(executable_path=chrome_driver_path) #driver.get('https://www.amazon.com/dp/B0963P9QTM/ref=sbl_dpx_kitchen-electric-cookware_B08GC6PL3D_0') #price = driver.find_element(By.CLASS_NAME, "a-price") #print(price.text) driver.get('https://www.python.org/') # # search = driver.find_element(By.NAME, 'q') # bug_link = driver.find_element(By.XPATH, '//*[@id="site-map"]/div[2]/div/ul/li[3]/a') # print(bug_link.text, bug_link.get_attribute('a')) # print(search.tag_name) # # driver.find_elements(By.XPATH, '') event_times = driver.find_elements(By.CSS_SELECTOR, '.event-widget time') events = driver.find_elements(By.CSS_SELECTOR, '.event-widget a') event_dict = {} # for i in range(len(event_times)): # for time in event_times: # for event in events: # event_dict[i] = f'{time.text}, {event.text}' for n in range(len(event_times)): event_dict[n] = { 'name': events[n].text, 'time': event_times[n].text } print(event_dict) #driver.close() driver.quit()
adecool/python100days
day-48/main.py
main.py
py
1,180
python
en
code
0
github-code
6
[ { "api_name": "selenium.webdriver.Chrome", "line_number": 8, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 8, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.CSS_SELECTOR", "line_number": 23, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 23, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.CSS_SELECTOR", "line_number": 24, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 24, "usage_type": "name" } ]
42197867431
from django.test import TestCase from feedback.forms import FeedbackForm class TestForms(TestCase): def test_feedback_form_valid_data(self): form = FeedbackForm(data={ 'titolo': 'Recensione', 'descrizione': 'Una descrizione', 'voto': 5 }) self.assertTrue(form.is_valid()) def test_user_form_no_data(self): form = FeedbackForm(data={}) self.assertFalse(form.is_valid()) self.assertEquals(len(form.errors), 3)
lucacasarotti/CineDate
feedback/tests/test_forms.py
test_forms.py
py
506
python
en
code
0
github-code
6
[ { "api_name": "django.test.TestCase", "line_number": 5, "usage_type": "name" }, { "api_name": "feedback.forms.FeedbackForm", "line_number": 8, "usage_type": "call" }, { "api_name": "feedback.forms.FeedbackForm", "line_number": 17, "usage_type": "call" } ]
650276737
#! /bin/python # IMPORTANT do threadctl import first (before numpy imports) from threadpoolctl import threadpool_limits import os import sys import json import luigi import nifty.tools as nt import cluster_tools.utils.volume_utils as vu import cluster_tools.utils.function_utils as fu from cluster_tools.cluster_tasks import SlurmTask, LocalTask, LSFTask from elf.io.label_multiset_wrapper import LabelMultisetWrapper from elf.label_multiset import create_multiset_from_labels, serialize_multiset class CreateMultisetBase(luigi.Task): """ CreateMultiset base class """ task_name = 'create_multiset' src_file = os.path.abspath(__file__) allow_retry = False # input and output volumes input_path = luigi.Parameter() input_key = luigi.Parameter() output_path = luigi.Parameter() output_key = luigi.Parameter() # dependency dependency = luigi.TaskParameter() def requires(self): return self.dependency @staticmethod def default_task_config(): config = LocalTask.default_task_config() config.update({'compression': 'gzip'}) return config def run_impl(self): # get the global config and init configs shebang, block_shape, roi_begin, roi_end = self.global_config_values() self.init(shebang) # get shape and make block config shape = vu.get_shape(self.input_path, self.input_key) # load the create_multiset config config = self.get_task_config() compression = config.get('compression', 'gzip') # require output dataset with vu.file_reader(self.output_path) as f: f.require_dataset(self.output_key, shape=shape, chunks=tuple(block_shape), compression=compression, dtype='uint8') # update the config with input and output paths and keys # as well as block shape config.update({'input_path': self.input_path, 'input_key': self.input_key, 'output_path': self.output_path, 'output_key': self.output_key, 'block_shape': block_shape}) block_list = vu.blocks_in_volume(shape, block_shape, roi_begin, roi_end) self._write_log('scheduling %i blocks to be processed' % len(block_list)) n_jobs = min(len(block_list), self.max_jobs) # prime and run the jobs self.prepare_jobs(n_jobs, block_list, config) self.submit_jobs(n_jobs) # wait till jobs finish and check for job success self.wait_for_jobs() self.check_jobs(n_jobs) class CreateMultisetLocal(CreateMultisetBase, LocalTask): """ CreateMultiset on local machine """ pass class CreateMultisetSlurm(CreateMultisetBase, SlurmTask): """ CreateMultiset on slurm cluster """ pass class CreateMultisetLSF(CreateMultisetBase, LSFTask): """ CreateMultiset on lsf cluster """ pass # # Implementation # @threadpool_limits.wrap(limits=1) # restrict the numpy threadpool to 1 to avoid oversubscription def _create_multiset_block(blocking, block_id, ds_in, ds_out): fu.log("start processing block %i" % block_id) block = blocking.getBlock(block_id) bb = vu.block_to_bb(block) labels = ds_in[bb] # we can't encode the paintra ignore label paintera_ignore_label = 18446744073709551615 pignore_mask = labels == paintera_ignore_label if pignore_mask.sum() > 0: labels[pignore_mask] = 0 if labels.sum() == 0: fu.log("block %i is empty" % block_id) fu.log_block_success(block_id) return # compute multiset from input labels multiset = create_multiset_from_labels(labels) ser = serialize_multiset(multiset) chunk_id = tuple(bs // ch for bs, ch in zip(block.begin, ds_out.chunks)) ds_out.write_chunk(chunk_id, ser, True) fu.log_block_success(block_id) def write_metadata(ds_out, max_id): attrs = ds_out.attrs attrs['maxId'] = max_id attrs['isLabelMultiset'] = True @threadpool_limits.wrap(limits=1) # restrict the numpy threadpool to 1 to avoid oversubscription def create_multiset(job_id, config_path): fu.log("start processing job %i" % job_id) fu.log("reading config from %s" % config_path) with open(config_path, 'r') as f: config = json.load(f) # read the input cofig input_path = config['input_path'] input_key = config['input_key'] block_shape = list(config['block_shape']) block_list = config['block_list'] # read the output config output_path = config['output_path'] output_key = config['output_key'] shape = list(vu.get_shape(output_path, output_key)) # get the blocking blocking = nt.blocking([0, 0, 0], shape, block_shape) # submit blocks with vu.file_reader(input_path, 'r') as f_in, vu.file_reader(output_path) as f_out: ds_in = f_in[input_key] if ds_in.attrs.get('isLabelMultiset', False): ds_in = LabelMultisetWrapper(ds_in) ds_out = f_out[output_key] for block_id in block_list: _create_multiset_block(blocking, block_id, ds_in, ds_out) if job_id == 0: max_id = ds_in.attrs['maxId'] write_metadata(ds_out, max_id) # log success fu.log_job_success(job_id) if __name__ == '__main__': path = sys.argv[1] assert os.path.exists(path), path job_id = int(os.path.split(path)[1].split('.')[0].split('_')[-1]) create_multiset(job_id, path)
constantinpape/cluster_tools
cluster_tools/label_multisets/create_multiset.py
create_multiset.py
py
5,506
python
en
code
32
github-code
6
[ { "api_name": "luigi.Task", "line_number": 21, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 26, "usage_type": "call" }, { "api_name": "os.path", "line_number": 26, "usage_type": "attribute" }, { "api_name": "luigi.Parameter", "line_number": 30, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 31, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 32, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 33, "usage_type": "call" }, { "api_name": "luigi.TaskParameter", "line_number": 35, "usage_type": "call" }, { "api_name": "cluster_tools.cluster_tasks.LocalTask.default_task_config", "line_number": 42, "usage_type": "call" }, { "api_name": "cluster_tools.cluster_tasks.LocalTask", "line_number": 42, "usage_type": "name" }, { "api_name": "cluster_tools.utils.volume_utils.get_shape", "line_number": 52, "usage_type": "call" }, { "api_name": "cluster_tools.utils.volume_utils", "line_number": 52, "usage_type": "name" }, { "api_name": "cluster_tools.utils.volume_utils.file_reader", "line_number": 59, "usage_type": "call" }, { "api_name": "cluster_tools.utils.volume_utils", "line_number": 59, "usage_type": "name" }, { "api_name": "cluster_tools.utils.volume_utils.blocks_in_volume", "line_number": 68, "usage_type": "call" }, { "api_name": "cluster_tools.utils.volume_utils", "line_number": 68, "usage_type": "name" }, { "api_name": "cluster_tools.cluster_tasks.LocalTask", "line_number": 81, "usage_type": "name" }, { "api_name": "cluster_tools.cluster_tasks.SlurmTask", "line_number": 88, "usage_type": "name" }, { "api_name": "cluster_tools.cluster_tasks.LSFTask", "line_number": 95, "usage_type": "name" }, { "api_name": "cluster_tools.utils.function_utils.log", "line_number": 109, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils", "line_number": 109, "usage_type": "name" }, { "api_name": "cluster_tools.utils.volume_utils.block_to_bb", "line_number": 111, "usage_type": "call" }, { "api_name": "cluster_tools.utils.volume_utils", "line_number": 111, "usage_type": "name" }, { "api_name": "cluster_tools.utils.function_utils.log", "line_number": 122, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils", "line_number": 122, "usage_type": "name" }, { "api_name": "cluster_tools.utils.function_utils.log_block_success", "line_number": 123, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils", "line_number": 123, "usage_type": "name" }, { "api_name": "elf.label_multiset.create_multiset_from_labels", "line_number": 127, "usage_type": "call" }, { "api_name": "elf.label_multiset.serialize_multiset", "line_number": 128, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils.log_block_success", "line_number": 132, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils", "line_number": 132, "usage_type": "name" }, { "api_name": "threadpoolctl.threadpool_limits.wrap", "line_number": 107, "usage_type": "call" }, { "api_name": "threadpoolctl.threadpool_limits", "line_number": 107, "usage_type": "name" }, { "api_name": "cluster_tools.utils.function_utils.log", "line_number": 143, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils", "line_number": 143, "usage_type": "name" }, { "api_name": "cluster_tools.utils.function_utils.log", "line_number": 144, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils", "line_number": 144, "usage_type": "name" }, { "api_name": "json.load", "line_number": 146, "usage_type": "call" }, { "api_name": "cluster_tools.utils.volume_utils.get_shape", "line_number": 158, "usage_type": "call" }, { "api_name": "cluster_tools.utils.volume_utils", "line_number": 158, "usage_type": "name" }, { "api_name": "nifty.tools.blocking", "line_number": 161, "usage_type": "call" }, { "api_name": "nifty.tools", "line_number": 161, "usage_type": "name" }, { "api_name": "cluster_tools.utils.volume_utils.file_reader", "line_number": 164, "usage_type": "call" }, { "api_name": "cluster_tools.utils.volume_utils", "line_number": 164, "usage_type": "name" }, { "api_name": "elf.io.label_multiset_wrapper.LabelMultisetWrapper", "line_number": 167, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils.log_job_success", "line_number": 178, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils", "line_number": 178, "usage_type": "name" }, { "api_name": "threadpoolctl.threadpool_limits.wrap", "line_number": 141, "usage_type": "call" }, { "api_name": "threadpoolctl.threadpool_limits", "line_number": 141, "usage_type": "name" }, { "api_name": "sys.argv", "line_number": 182, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 183, "usage_type": "call" }, { "api_name": "os.path", "line_number": 183, "usage_type": "attribute" }, { "api_name": "os.path.split", "line_number": 184, "usage_type": "call" }, { "api_name": "os.path", "line_number": 184, "usage_type": "attribute" } ]
11110715644
# coding:utf-8 import pygame class Main(object): def __init__(self, title, height, width, Fps=60): self.height = height self.width = width self.title = title self.Fps = Fps self.main() self.vars() self.events() def main(self): pygame.init() # 初始化pygame pygame.mixer.init() # 背景音乐初始化 pygame.display.set_caption(self.title) # 设置窗口标题 self.screen = pygame.display.set_mode([self.height, self.width]) # 将屏幕赋值为全局变量方便调用 def events(self): pygame.mixer.music.play(-1, 0) # 播放背景音乐(-1是循环播放,0是从0秒开始播放) while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() # 将背景图片载入到窗口0,0的位置。 self.screen.blit(self.New_Default_Background_Pic, (0, 0)) # 刷新背景(如果不刷新屏幕就不更新) pygame.display.update() def vars(self): # 导入图片; self.Old_Default_Background_Pic = pygame.image.load("bg_page.jpg") # 将图片缩放到与窗口一样大; self.New_Default_Background_Pic = pygame.transform.scale(self.Old_Default_Background_Pic, (self.height, self.width)) pygame.image.load("bg_page.jpg") self.Old_Default_Background_Music = pygame.mixer.music.load("rainy-season.mp3") if __name__ == "__main__": Main("Pixel World", 1280, 768)
PatrickShun/pygameDemo
pygamedemo_run.py
pygamedemo_run.py
py
1,650
python
zh
code
0
github-code
6
[ { "api_name": "pygame.init", "line_number": 17, "usage_type": "call" }, { "api_name": "pygame.mixer.init", "line_number": 18, "usage_type": "call" }, { "api_name": "pygame.mixer", "line_number": 18, "usage_type": "attribute" }, { "api_name": "pygame.display.set_caption", "line_number": 19, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 19, "usage_type": "attribute" }, { "api_name": "pygame.display.set_mode", "line_number": 20, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 20, "usage_type": "attribute" }, { "api_name": "pygame.mixer.music.play", "line_number": 24, "usage_type": "call" }, { "api_name": "pygame.mixer", "line_number": 24, "usage_type": "attribute" }, { "api_name": "pygame.event.get", "line_number": 26, "usage_type": "call" }, { "api_name": "pygame.event", "line_number": 26, "usage_type": "attribute" }, { "api_name": "pygame.QUIT", "line_number": 27, "usage_type": "attribute" }, { "api_name": "pygame.quit", "line_number": 28, "usage_type": "call" }, { "api_name": "pygame.display.update", "line_number": 32, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 32, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 36, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 36, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 38, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 38, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 39, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 39, "usage_type": "attribute" }, { "api_name": "pygame.mixer.music.load", "line_number": 40, "usage_type": "call" }, { "api_name": "pygame.mixer", "line_number": 40, "usage_type": "attribute" } ]
37635242690
from videos_freeze_analyzer import VideosFreezeAnalyzer from video_valid_points_list_generator import dowload_url from video_valid_points_list_generator import VideoValidPointsListGeneratorFfmpeg from video_freeze_analyzer import VideoFreezeAnalyzer import json def main(urls): files = [] for url in urls: files.append(dowload_url(url)) videos_list =[] for file_name in files: video_valid_list = VideoValidPointsListGeneratorFfmpeg(file_name).generate_valid_points_list() videos_list.append(VideoFreezeAnalyzer().analyze(video_valid_list)) videos_output = VideosFreezeAnalyzer(videos_list).analyze() results = json.dumps(videos_output, indent=4) print(results) if __name__ == '__main__': urls = ["https://storage.googleapis.com/hiring_process_data/freeze_frame_input_a.mp4", "https://storage.googleapis.com/hiring_process_data/freeze_frame_input_b.mp4", "https://storage.googleapis.com/hiring_process_data/freeze_frame_input_c.mp4"] main(urls)
EderRobins/video_freeze_analyzer
main.py
main.py
py
1,064
python
en
code
0
github-code
6
[ { "api_name": "video_valid_points_list_generator.dowload_url", "line_number": 11, "usage_type": "call" }, { "api_name": "video_valid_points_list_generator.VideoValidPointsListGeneratorFfmpeg", "line_number": 15, "usage_type": "call" }, { "api_name": "video_freeze_analyzer.VideoFreezeAnalyzer", "line_number": 16, "usage_type": "call" }, { "api_name": "videos_freeze_analyzer.VideosFreezeAnalyzer", "line_number": 18, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 19, "usage_type": "call" } ]
8412088860
from rest_framework import serializers from .models import ( Product, ProductImage, Size, Category ) class CategoryListSerializer(serializers.HyperlinkedModelSerializer): url = serializers.HyperlinkedIdentityField( view_name='products:category-detail-view', lookup_field='slug' ) class Meta: model = Category fields = ( 'id', 'title', 'url', ) class CategoryDetailSerializer(CategoryListSerializer): products = serializers.SerializerMethodField() class Meta: model = Category fields = ( 'id', 'title', 'products', ) def get_products(self, obj): # The source of the SSL context override return ProductListSerializer(obj.product_set.all(), many=True, context=self.context).data class ProductListSerializer(serializers.HyperlinkedModelSerializer): url = serializers.HyperlinkedIdentityField( view_name='products:product-detail-view', lookup_field='slug') class Meta: model = Product fields = ( 'id', 'slug', 'title', 'price', 'image', 'url', ) class ProductDetailSerializer(ProductListSerializer): sizes = serializers.SerializerMethodField() productImages = serializers.SerializerMethodField() categories = CategoryListSerializer(many=True) class Meta: model = Product fields = ( 'id', 'title', 'price', 'image', 'slug', 'categories', 'sizes', 'description', 'productImages', ) def get_sizes(self, obj): return SizeSerializer(obj.size_set.all(), many=True).data def get_productImages(self, obj): return ProductImageSerializer( obj.productimage_set.all(), many=True ).data class SizeSerializer(serializers.ModelSerializer): class Meta: model = Size fields = ( 'id', 'size', 'slug', 'stock', ) class ProductImageSerializer(serializers.ModelSerializer): class Meta: model = ProductImage fields = ( 'id', 'image', )
fanimashaun-r7/Nf_Kicks_Api
app/products/serializers.py
serializers.py
py
2,365
python
en
code
0
github-code
6
[ { "api_name": "rest_framework.serializers.HyperlinkedModelSerializer", "line_number": 11, "usage_type": "attribute" }, { "api_name": "rest_framework.serializers", "line_number": 11, "usage_type": "name" }, { "api_name": "rest_framework.serializers.HyperlinkedIdentityField", "line_number": 12, "usage_type": "call" }, { "api_name": "rest_framework.serializers", "line_number": 12, "usage_type": "name" }, { "api_name": "models.Category", "line_number": 18, "usage_type": "name" }, { "api_name": "rest_framework.serializers.SerializerMethodField", "line_number": 27, "usage_type": "call" }, { "api_name": "rest_framework.serializers", "line_number": 27, "usage_type": "name" }, { "api_name": "models.Category", "line_number": 30, "usage_type": "name" }, { "api_name": "rest_framework.serializers.HyperlinkedModelSerializer", "line_number": 42, "usage_type": "attribute" }, { "api_name": "rest_framework.serializers", "line_number": 42, "usage_type": "name" }, { "api_name": "rest_framework.serializers.HyperlinkedIdentityField", "line_number": 43, "usage_type": "call" }, { "api_name": "rest_framework.serializers", "line_number": 43, "usage_type": "name" }, { "api_name": "models.Product", "line_number": 47, "usage_type": "name" }, { "api_name": "rest_framework.serializers.SerializerMethodField", "line_number": 59, "usage_type": "call" }, { "api_name": "rest_framework.serializers", "line_number": 59, "usage_type": "name" }, { "api_name": "rest_framework.serializers.SerializerMethodField", "line_number": 60, "usage_type": "call" }, { "api_name": "rest_framework.serializers", "line_number": 60, "usage_type": "name" }, { "api_name": "models.Product", "line_number": 64, "usage_type": "name" }, { "api_name": "rest_framework.serializers.ModelSerializer", "line_number": 87, "usage_type": "attribute" }, { "api_name": "rest_framework.serializers", "line_number": 87, "usage_type": "name" }, { "api_name": "models.Size", "line_number": 89, "usage_type": "name" }, { "api_name": "rest_framework.serializers.ModelSerializer", "line_number": 98, "usage_type": "attribute" }, { "api_name": "rest_framework.serializers", "line_number": 98, "usage_type": "name" }, { "api_name": "models.ProductImage", "line_number": 100, "usage_type": "name" } ]
72638922747
import pandas as pd from dotenv import load_dotenv import os # load env load_dotenv() # load dataset url = "https://raw.githubusercontent.com/erijmo/3690/main/healthcare_dataset.csv" df = pd.read_csv(url) # set api key api_key = os.getenv("OPENAI_API_KEY") def get_healthcare_response(user_input, user_name, df): # search for keyword in user input for column in df.columns: if column.lower() in user_input: response = f"{user_name}, your {column.lower()} is {df[column].iloc[0]}" return response # if no keyword located, ask for clarification return "I'm sorry, I couldn't understand your request. Can you please provide more details?" # prompt response print("HealthcareBot: Hello! I'm your HealthcareBot. May I know your name, please?") while True: user_name = input("User: ") # check if the user's name is in the system if user_name.lower() in df["Name"].str.lower().values: print(f"HealthcareBot: Thank you, {user_name}! How can I assist you today?") break else: print("HealthcareBot: I'm sorry, but I couldn't find your name in the system. Please try again.") # user interaction loop while True: user_input = input("User: ") # check if any exit-related keywords are present in the user input if any(keyword in user_input.lower() for keyword in ['exit', 'bye', 'quit']): print("HealthcareBot: Goodbye! If you have more questions, feel free to ask.") break response = get_healthcare_response(user_input, user_name, df) if response: print("HealthcareBot:", response)
erijmo/3690
chatbot.py
chatbot.py
py
1,661
python
en
code
0
github-code
6
[ { "api_name": "dotenv.load_dotenv", "line_number": 6, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 10, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 13, "usage_type": "call" } ]
39803355853
import pickle from pathlib import Path script_location = Path(__file__).absolute().parent data_loc = script_location / "name_gen_model" from bangla_linga.BN_countvectorizer import CountVectorizer import bangla_linga.BN_ngram as ng class BN_gen_pred(object): def __init__(self,model_name=data_loc): self.model_name = model_name with open(model_name, 'rb') as p: self.ob = pickle.load(p) def get_name_ara(self, name=None): gram_2 = ng.n_gram(name, 2) g2 = ' '.join(gram_2) gram_3 = ng.n_gram(name, 3) g3 = ' '.join(gram_3) name = [name + " " + g2 + " " + g3] ct = CountVectorizer() test = ct.transform(name) return test def predict_gender(self, name="None"): pred_gen = self.ob.predict(self.get_name_ara(name)) if pred_gen == 0: return 'male' else: return 'female'
Kowsher/Bangla-NLP
Bangla Linga/bangla_linga/gender_prediction.py
gender_prediction.py
py
846
python
en
code
11
github-code
6
[ { "api_name": "pathlib.Path", "line_number": 4, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 15, "usage_type": "call" }, { "api_name": "bangla_linga.BN_ngram.n_gram", "line_number": 19, "usage_type": "call" }, { "api_name": "bangla_linga.BN_ngram", "line_number": 19, "usage_type": "name" }, { "api_name": "bangla_linga.BN_ngram.n_gram", "line_number": 22, "usage_type": "call" }, { "api_name": "bangla_linga.BN_ngram", "line_number": 22, "usage_type": "name" }, { "api_name": "bangla_linga.BN_countvectorizer.CountVectorizer", "line_number": 27, "usage_type": "call" } ]
27009678128
import numpy as np import run as r from sklearn.gaussian_process.kernels import ABCMeta, Matern, ConstantKernel, Exponentiation, ExpSineSquared, Hyperparameter, KernelOperator, \ NormalizedKernelMixin, PairwiseKernel, RationalQuadratic, StationaryKernelMixin, RBF, CompoundKernel, DotProduct, Product, GenericKernelMixin, WhiteKernel, \ Kernel, Sum ''' [id] 112 [name] GaussianProcessRegressor [input] x_train 训练集 训练集标签数据集 二维数组 必须 定数 y_train 测试集 测试集数据集 二维数组 必须 定数 x_test 训练集标签 训练集标签标签 一维数组 必须 定数 y_test 测试集标签 测试集标签 一维数组 必须 定数 kernel 内核 默认为None,指定GP协方差函数的内核。如果传递了None,则默认使用内核'1.0 * RBF(1.0)'。请注意,内核的超参数在拟合过程中已优化,可选字符串 字符串 不必须 定数 alpha alpha 默认为1e-10,拟合期间将值添加到内核矩阵的对角线。较大的值对应于观测结果中增加的噪声水平。通过确保计算值形成正定矩阵,这也可以防止拟合期间出现潜在的数值问题。如果传递了数组,则该数组必须具有与用于拟合的数据相同的条目数,并且用作与数据点有关的噪声水平。请注意,这等效于添加c = alpha的WhiteKernel。直接允许将噪声级别指定为参数主要是为了方便和与Ridge保持一致,可选数组,浮点数 字符串 不必须 定数 optimizer optimizer 默认为'fmin_l_bfgs_b',可以是内部支持的用于优化kernel 's parameters, specified by a string, or an externally defined optimizer passed as a callable. Per default, the ' L-BFGS-B ' algorithm from scipy.optimize.minimize is used. If None is passed, the kernel' s参数的优化器之一。可用的内部优化器是:: 'fmin_l_bfgs_b,可选'fmin_l_bfgs_b' 字符串 不必须 定数 n_restarts_optimizer 重新启动次数 默认为0,用于查找内核初始参数的优化程序的重新启动次数,以及从允许的theta值空间中随机抽取的theta采样对数均匀性中剩余的参数(如果有的话)。如果大于0,则所有边界必须是有限的。请注意,n_restarts_optimizer == 0表示执行了一次运行,可选整数 整数 不必须 定数 normalize_y normalize_y 默认为False,无论目标值y是否被归一化,目标值的均值和方差分别设置为等于0和1。对于使用零均值,单位方差先验的情况,建议使用此方法。注意,在此实现中,在报告GP预测之前,将规范化反转,可选布尔值 布尔值 不必须 定数 copy_X_train copy_X_train 默认为True,如果为True,则训练数据的永久副本存储在对象中。否则,仅存储对训练数据的引用,如果对数据进行外部修改,则可能导致预测更改,可选布尔值 布尔值 不必须 定数 random_state 随机种子 默认为None,确定用于初始化中心的随机数生成。在多个函数调用之间传递int以获得可重复的结果,可选整数 整数 不必须 定数 [output] train_predict 预测 训练集预测结果 一维数组(数值) test_predict 预测 测试集预测结果 一维数组(数值) train_score 正确率 训练集预测结果的正确率 数字 test_score 正确率 测试集预测结果的正确率 数字 X_train_ X_train_ 训练数据的特征向量或其他表示形式(预测也需要) 二维数组 y_train_ y_train_ 训练数据中的目标值(预测也需要) 一维数组 L_ L_ 'X_train_'中内核的下三角Cholesky分解 二维数组 kernel_ kernel_ 用于预测的内核。内核的结构与作为参数传递的内核相同,但具有优化的超参数 字符串 alpha_ alpha 核空间中训练数据点的对偶系数 一维数组 log_marginal_likelihood_value_ 对数边际可能性 'self.kernel_.theta'的对数边际可能性 浮点数 [outline] [describe] 高斯过程回归(GPR)。 该实现基于Rasmussen和Williams提出的高斯机器学习过程算法(GPML)的算法2.1。 除了标准的scikit-learn估计器API外,GaussianProcessRegressor:*允许进行预测而无需事先拟合(基于GP优先级)*提供其他方法sample_y(X),该方法评估在给定输入下从GPR(优先级或后验)中提取的样本*公开了一个方法log_marginal_likelihood(theta),该方法可在外部用于其他选择超参数的方式,例如通过马尔可夫链蒙特卡洛。 ''' def main(x_train, y_train, x_test, y_test, kernel=None, alpha=1e-10, optimizer="fmin_l_bfgs_b", n_restarts_optimizer=0, normalize_y=False, copy_X_train=True, random_state=None ): if type(x_train) is str: x_train = eval(x_train) if type(y_train) is str: y_train = eval(y_train) if type(x_test) is str: x_test = eval(x_test) if type(y_test) is str: y_test = eval(y_test) if type(kernel) is str: kernel = eval(kernel) if type(alpha) is str: alpha = eval(alpha) if type(n_restarts_optimizer) is str: n_restarts_optimizer = eval(n_restarts_optimizer) if type(normalize_y) is str: normalize_y = eval(normalize_y) if type(copy_X_train) is str: copy_X_train = eval(copy_X_train) if type(random_state) is str: random_state = eval(random_state) return r.run(x_train=x_train, y_train=y_train, x_test=x_test, y_test=y_test, kernel=kernel, alpha=alpha, optimizer=optimizer, n_restarts_optimizer=n_restarts_optimizer, normalize_y=normalize_y, copy_X_train=copy_X_train, random_state=random_state) if __name__ == '__main__': import numpy as np import json array = np.loadtxt('D:\\123_2.csv', delimiter=',') array = array[0:20, :] y = array[:, -1].tolist() x = np.delete(array, -1, axis=1).tolist() array = array.tolist() back = main(x, y, x, y) print(back) for i in back: print(i + ":" + str(back[i])) json.dumps(back)
lisunshine1234/mlp-algorithm-python
machine_learning/regression/gaussian_processes/GaussianProcessRegressor/main.py
main.py
py
6,034
python
zh
code
0
github-code
6
[ { "api_name": "run.run", "line_number": 74, "usage_type": "call" }, { "api_name": "numpy.loadtxt", "line_number": 86, "usage_type": "call" }, { "api_name": "numpy.delete", "line_number": 90, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 98, "usage_type": "call" } ]
17522204148
import json import sqlite3 from urllib import response from fastapi.testclient import TestClient import time import pytest from main import app, conn, c from models import AtualizarFilme, AtualizarPlaneta, Filme, Planeta, Excluido, InserirPlaneta client = TestClient(app) # def test_create_schema(): # c.executescript(""" # BEGIN TRANSACTION; # DROP TABLE IF EXISTS "Filme"; # CREATE TABLE IF NOT EXISTS "Filme" ( # "id" INTEGER NOT NULL, # "Nome" TEXT NOT NULL, # "Data_de_lancamento" TEXT NOT NULL, # "Excluido" INTEGER NOT NULL, # PRIMARY KEY("id") # ); # DROP TABLE IF EXISTS "Planeta"; # CREATE TABLE IF NOT EXISTS "Planeta" ( # "id" INTEGER NOT NULL, # "Nome" TEXT NOT NULL, # "Clima" TEXT NOT NULL, # "Diametro" INTEGER NOT NULL, # "Populacao" INTEGER NOT NULL, # "Excluido" INTEGER NOT NULL, # PRIMARY KEY("id") # ); # DROP TABLE IF EXISTS "Planeta_Apareceu_Filme"; # CREATE TABLE IF NOT EXISTS "Planeta_Apareceu_Filme" ( # "id" INTEGER NOT NULL UNIQUE, # "PlanetaID" INTEGER NOT NULL, # "FilmeID" INTEGER NOT NULL, # "Excluido" INTEGER NOT NULL, # PRIMARY KEY("id" AUTOINCREMENT) # ); # INSERT INTO "Filme" VALUES (1,'A morte do jedi','2020-04-23 10:20:30.400000+02:30',0); # INSERT INTO "Filme" VALUES (2,'O jedi não morreu','2021-04-23 10:20:30.400000+02:30',0); # INSERT INTO "Filme" VALUES (3,'O jedi nunca morreu','1970-01-01 00:33:41+00:00',0); # INSERT INTO "Filme" VALUES (4,'Ou será que morreu?','1970-01-01 00:33:41+00:00',0); # INSERT INTO "Filme" VALUES (5,'Não morreu, eu sabia!','2032-04-23 10:20:30.400000+02:30',0); # INSERT INTO "Planeta" VALUES (1,'Marte','vento',55,66,0); # INSERT INTO "Planeta" VALUES (2,'Marte 2','vento',10000,564612,0); # INSERT INTO "Planeta" VALUES (3,'Planeta Voador','string',787878,152314856,0); # INSERT INTO "Planeta" VALUES (5,'Nao lembro','murky',5489645,5164,0); # INSERT INTO "Planeta" VALUES (6,'Planetoide','string',48654,1,1); # INSERT INTO "Planeta_Apareceu_Filme" VALUES (1,1,1,0); # INSERT INTO "Planeta_Apareceu_Filme" VALUES (2,1,2,0); # INSERT INTO "Planeta_Apareceu_Filme" VALUES (3,2,2,0); # INSERT INTO "Planeta_Apareceu_Filme" VALUES (4,6,1,1); # INSERT INTO "Planeta_Apareceu_Filme" VALUES (5,6,2,1); # INSERT INTO "Planeta_Apareceu_Filme" VALUES (10,6,3,1); # INSERT INTO "Planeta_Apareceu_Filme" VALUES (11,6,4,1); # INSERT INTO "Planeta_Apareceu_Filme" VALUES (12,6,5,1); # COMMIT; # """) def test_read_root(): response = client.get('/') assert response.status_code == 200 assert response.json() == {'Hello,': 'World!'} def test_read_planets_error_without_bool(): response = client.get('/api/v1/planets') #Sem ?show_deleted=true assert response.status_code == 422 def test_read_planets_deleted_true(): response = client.get('/api/v1/planets?show_deleted=true') assert response.status_code == 200 print(type(response.json())) # assert response.json() == [ # { # "id": 1, # "Nome": "Marte", # "Clima": "vento", # "Diametro": 55, # "Populacao": 66, # "Excluido": 0, # "Filmes_em_que_apareceu": [ # 1, # 2 # ] # }, # { # "id": 2, # "Nome": "Marte", # "Clima": "vento", # "Diametro": 55, # "Populacao": 66, # "Excluido": 0, # "Filmes_em_que_apareceu": [ # 2 # ] # }, # { # "id": 3, # "Nome": "sexomaluco", # "Clima": "string", # "Diametro": 0, # "Populacao": 0, # "Excluido": 1, # "Filmes_em_que_apareceu": [] # }, # { # "id": 5, # "Nome": "string", # "Clima": "murky", # "Diametro": 0, # "Populacao": 0, # "Excluido": 1, # "Filmes_em_que_apareceu": [] # }, # { # "id": 6, # "Nome": "string", # "Clima": "string", # "Diametro": 0, # "Populacao": 0, # "Excluido": 1, # "Filmes_em_que_apareceu": [ # 1, # 2, # 3, # 4, # 5 # ] # } # ] def test_read_planets_deleted_false(): response = client.get('/api/v1/planets?show_deleted=false') assert response.status_code == 200 def test_read_planet(): response = client.get('/api/v1/planets/1') assert response.status_code == 200 assert response.json() == { "id": 1, "Nome": "Marte", "Clima": "vento", "Diametro": 55, "Populacao": 66, "Excluido": 0, "Filmes_em_que_apareceu": [ 1, 2 ] } def test_create_planet_movie_doesnt_exist(): json={ "id": 61, "Nome": "string", "Diametro": 0, "Populacao": 0, "FilmesID": [ 0 ], "Excluido": 1 } response = client.post('/api/v1/planets', json=json ) assert response.status_code == 400 #assert response.json() == {"detail": 'Pelo menos um dos filmes inseridos não existe',} # def test_create_planet(): # json={ # "id": 44, # "Nome": "teste", # "Diametro": 0, # "Populacao": 0, # "FilmesID": [ # 1 # ], # "Excluido": 0 # } # response = client.post('/api/v1/planets', # json=json # ) # assert response.status_code == 200
MarceloTerra0/FastAPI_TesteTuring
test_main.py
test_main.py
py
5,453
python
en
code
0
github-code
6
[ { "api_name": "fastapi.testclient.TestClient", "line_number": 11, "usage_type": "call" }, { "api_name": "main.app", "line_number": 11, "usage_type": "argument" }, { "api_name": "urllib.response", "line_number": 67, "usage_type": "name" }, { "api_name": "urllib.response.status_code", "line_number": 68, "usage_type": "attribute" }, { "api_name": "urllib.response", "line_number": 68, "usage_type": "name" }, { "api_name": "urllib.response.json", "line_number": 69, "usage_type": "call" }, { "api_name": "urllib.response", "line_number": 69, "usage_type": "name" }, { "api_name": "urllib.response", "line_number": 72, "usage_type": "name" }, { "api_name": "urllib.response.status_code", "line_number": 74, "usage_type": "attribute" }, { "api_name": "urllib.response", "line_number": 74, "usage_type": "name" }, { "api_name": "urllib.response", "line_number": 77, "usage_type": "name" }, { "api_name": "urllib.response.status_code", "line_number": 78, "usage_type": "attribute" }, { "api_name": "urllib.response", "line_number": 78, "usage_type": "name" }, { "api_name": "urllib.response.json", "line_number": 79, "usage_type": "call" }, { "api_name": "urllib.response", "line_number": 79, "usage_type": "name" }, { "api_name": "urllib.response", "line_number": 140, "usage_type": "name" }, { "api_name": "urllib.response.status_code", "line_number": 141, "usage_type": "attribute" }, { "api_name": "urllib.response", "line_number": 141, "usage_type": "name" }, { "api_name": "urllib.response", "line_number": 144, "usage_type": "name" }, { "api_name": "urllib.response.status_code", "line_number": 145, "usage_type": "attribute" }, { "api_name": "urllib.response", "line_number": 145, "usage_type": "name" }, { "api_name": "urllib.response.json", "line_number": 146, "usage_type": "call" }, { "api_name": "urllib.response", "line_number": 146, "usage_type": "name" }, { "api_name": "urllib.response", "line_number": 170, "usage_type": "name" }, { "api_name": "urllib.response.status_code", "line_number": 173, "usage_type": "attribute" }, { "api_name": "urllib.response", "line_number": 173, "usage_type": "name" } ]
21341173003
import torch from torch.optim import SGD import torch.nn.functional as F from sklearn.metrics import accuracy_score from models_torch.FFM import FFM_Layer from utils.load_data import load_criteo_data if __name__ == '__main__': (X_train, y_train), (X_test, y_test), feature_info = load_criteo_data('dataset/criteo_sample.csv', sparse_return='category') X_train = torch.tensor(X_train, dtype=torch.float32) X_test = torch.tensor(X_test, dtype=torch.float32) y_train = torch.tensor(y_train, dtype=torch.float32) y_test = torch.tensor(y_test, dtype=torch.float32) # 参数 k = 8 n_epoch = 10 lr = 0.01 # 初始化 model = FFM_Layer(dense_features=feature_info['dense_feature'], sparse_features=feature_info['sparse_feature'], sparse_feature_dim=feature_info['max_one_hot_dim'], k=k) optim = SGD(lr=lr, params=model.parameters(), weight_decay=1e-4) criterion = F.binary_cross_entropy # 训练模型 for epoch in range(n_epoch): model.train() logits = torch.reshape(model(X_train), (-1,)) loss = criterion(logits, y_train) # 更新权重 optim.zero_grad() # 清除累计梯度 loss.backward() optim.step() if epoch % 1 == 0 and epoch: print('epoch: {}, loss: {}'.format(epoch, loss)) # 模型评估 model.eval() with torch.no_grad(): pred = torch.reshape(model(X_test), (-1,)) loss = criterion(pred, y_test) pred = [1 if x > 0.5 else 0 for x in pred] print('acc: {}, loss: {}'.format(accuracy_score(y_test, pred), loss))
KrianJ/CtrEstimate
predict_ffm_torch.py
predict_ffm_torch.py
py
1,739
python
en
code
0
github-code
6
[ { "api_name": "utils.load_data.load_criteo_data", "line_number": 10, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 12, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 12, "usage_type": "attribute" }, { "api_name": "torch.tensor", "line_number": 13, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 13, "usage_type": "attribute" }, { "api_name": "torch.tensor", "line_number": 14, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 14, "usage_type": "attribute" }, { "api_name": "torch.tensor", "line_number": 15, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 15, "usage_type": "attribute" }, { "api_name": "models_torch.FFM.FFM_Layer", "line_number": 21, "usage_type": "call" }, { "api_name": "torch.optim.SGD", "line_number": 23, "usage_type": "call" }, { "api_name": "torch.nn.functional.binary_cross_entropy", "line_number": 24, "usage_type": "attribute" }, { "api_name": "torch.nn.functional", "line_number": 24, "usage_type": "name" }, { "api_name": "torch.reshape", "line_number": 28, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 39, "usage_type": "call" }, { "api_name": "torch.reshape", "line_number": 40, "usage_type": "call" }, { "api_name": "sklearn.metrics.accuracy_score", "line_number": 43, "usage_type": "call" } ]
10695567948
import subprocess from multiprocessing import Pool import os import numpy as np import sys def Thread(arg): print(arg) file = open('output/' + str(0) + '.log', 'w') subprocess.call(arg, shell=True, stdout=file) def main(): seed = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) batch = np.array([10, 50, 100, 200]) # batch = batch.repeat(9) batch = np.tile(batch, 9) hidden = np.array([25, 50, 100]) hidden = hidden.repeat(4) hidden = np.tile(hidden, 3) optim = {0: 'adam', 1: 'adagrad', 2: 'adadelta', 3: 'sgd'} op_idx = np.array([0, 1, 2, 3]) op_idx = op_idx.repeat(12) lr = np.array([0.1, 0.01, 0.001]) ed_pass = np.array([4, 8, 10]) idx = [x for x in range(36)] arglist = [] st = int(sys.argv[1]) print(st) end = int(sys.argv[2]) print(end) for i in range(st, end): opt_st = optim[op_idx[i]] pcmd = "python dt_pl_parser.py --train data/wsj10_tr --tag_num 1 --hidden " + str( hidden[i]) + " " + "--batch " + str( batch[i]) + " " + "--optim " + opt_st + " " + "--do_eval --use_trigram " + "--sample_idx " + str(idx[i]) arglist.append(pcmd) print(pcmd) p = Pool(4) p.map(Thread, arglist, chunksize=1) p.close() p.join() if __name__ == '__main__': main()
mikufan/NCRFAE_DepParsing
noderun_pl_model.py
noderun_pl_model.py
py
1,323
python
en
code
3
github-code
6
[ { "api_name": "subprocess.call", "line_number": 11, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 15, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 16, "usage_type": "call" }, { "api_name": "numpy.tile", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 19, "usage_type": "call" }, { "api_name": "numpy.tile", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 23, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 25, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 26, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 31, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 33, "usage_type": "attribute" }, { "api_name": "multiprocessing.Pool", "line_number": 44, "usage_type": "call" } ]
25316393069
from typing import List, Set, Callable, Optional, Iterator import math class Tile: def __init__(self, tile: List[str], tile_id: int = 0): self.tile = tile self.id = tile_id self.edge_len = len(tile) def right_edge(self) -> str: return "".join(t[-1] for t in self.tile) def left_edge(self) -> str: return "".join(t[0] for t in self.tile) def top_edge(self) -> str: return self.tile[0] def bottom_edge(self) -> str: return self.tile[-1] def rotate_right(self) -> None: rotated = [] for ix in range(self.edge_len): rotated.append( "".join( [ self.tile[self.edge_len - jx - 1][ix] for jx in range(self.edge_len) ] ) ) self.tile = rotated def flip(self) -> None: flipped = [] for t in self.tile[::-1]: flipped.append(t) self.tile = flipped def check(order: List[Tile], tile: Tile, edge_size: int) -> bool: return ( False if ( (len(order) + 1) % edge_size != 1 and tile.left_edge() != order[len(order) - 1].right_edge() ) or ( len(order) >= edge_size and tile.top_edge() != order[len(order) - edge_size].bottom_edge() ) else True ) reassemble: List[Callable[[Tile], Optional[Tile]]] = [ lambda tile: tile, lambda tile: tile.rotate_right(), lambda tile: tile.rotate_right(), lambda tile: tile.rotate_right(), lambda tile: tile.flip(), lambda tile: tile.rotate_right(), lambda tile: tile.rotate_right(), lambda tile: tile.rotate_right(), ] def recursion( order: List[Tile], visited: Set[Tile], tiles: List[Tile], edge_size: int ) -> List[Tile]: if len(order) == len(tiles): return order result = [] for tile in tiles: if tile not in visited: for r in reassemble: r(tile) if check(order, tile, edge_size): result = recursion( order + [tile], visited.union({tile}), tiles, edge_size ) if result: return result return result def part1(tiles: List[Tile]) -> int: size = len(tiles) edge_size = int(math.sqrt(size)) order = recursion([], set(), tiles, edge_size) upper_left = 0 upper_right = edge_size - 1 bottom_left = size - edge_size bottom_right = size - 1 return ( order[upper_left].id * order[upper_right].id * order[bottom_left].id * order[bottom_right].id ) def extract_data(lines: List[str]) -> Iterator[Tile]: tile: List[str] = [] for line in lines + [""]: if "Tile" in line: tile_id = int(line.split()[1].strip(":")) elif line: tile += [line] elif tile: yield Tile(tile, tile_id) tile = [] with open("input") as input_file: lines = [line for line in input_file.read().splitlines()] print(part1(list(extract_data(lines))))
stx73/aoc2020
day20/p1.py
p1.py
py
3,211
python
en
code
0
github-code
6
[ { "api_name": "typing.List", "line_number": 6, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 43, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 58, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 58, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 58, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 71, "usage_type": "name" }, { "api_name": "typing.Set", "line_number": 71, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 72, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 90, "usage_type": "name" }, { "api_name": "math.sqrt", "line_number": 92, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 108, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 109, "usage_type": "name" }, { "api_name": "typing.Iterator", "line_number": 108, "usage_type": "name" } ]
24905708193
import cadquery as cq import cadquery.selectors as cqs import logging import importlib import utilities # TODO: Change to a relative import ".utilities" to preempt name clashes. from types import SimpleNamespace as Measures from math import sin, cos, radians # A parametric cover that can be hooked to the top edge of an eyeglasses lens. # # You might want to reduce the amount of light reaching the eye even more for practical use. For # that, you can drill chains of small holes through the top face and the inclined face at the # bottom and then sew flexible black material there. Cut the material so that it seals well against # the user's face. # # To use this design, you need Python, CadQuery (https://cadquery.readthedocs.io/en/latest/) and # ideally also CQ-Editor, the CadQuery IDE (https://github.com/CadQuery/CQ-editor). # # License: Unlicence and Creative Commons Public Domain Dedication (CC-0). # # Tasks for now # TODO: Rework the design so that it consists of a sweep operation along a single path, with wires # automatically swept orthogonal to the path. Wires are then defined as a parametrized hook # profile together with a position along that path in percent or millimeters from both ends. # In addition, the type of transition (ruled or round) between wires should be defined. The # problem is of course that sweeps always interpolate between wires with splines. So probably # lofting should be used, and the rounded path is only there to place the wires exactly, not to # sweep them along. The rounding is achieved by choosing round transition for lofting. # TODO: Replace the upper hook bar over the lens with two narrow hooks, also a bit shorter than now. # TODO: Remove the hook along the current stem cover part, keeping the hook infill though. This # should help attaching and detaching the lens cover. # TODO: Round the lower back corner, so it cannot poke into the head. This can be done by using # three profiles with "round" transition for lofting. # TODO: Cut off the lower right corner according to the manually cut prototype. This can be done # by using three profiles with "round" transition for lofting. # TODO: Add a top surface light blocker, carved according to the face contour. The shape should be # an arc, with the distance between arc and outer corner being 25 mm. Can be created from the # lens cover path and this arc, then extruding that face by 1.6 mm. Since this can easily be # 3D printed, there is no reason to use other material. # # Tasks for later # TODO: Add documentation for all methods. # TODO: Reduce the size of this script by a lot by replacing all the *_start_wire() and *_end_wire() # methods with calls to a more general method. This requires proper specification of position # and rotation at once, possibly also by combining multiple other such positions and rotations. # In CadQuery, the Location type is for that (or maybe it has a different name, but there is one). # TODO: Add the general edge chamfering. That's very impractical though for a design like this, # as edge selection is very difficult here. # TODO: Add sewing holes along the upper horizontal surface and on the lower 45° angled surface, # for sewing on flexible parts that block out light entering from below and above the glasses. # TODO: Implement vertical arcing for the outside of the cover. But not really needed in practice. # TODO: Add the chamfers to the lower corner of the lens. # TODO: Improve how space is made for the stem-to-lens frame element of 1.2 mm additional thickness. # TODO: Add a clip that connects to the bottom of the glasses lens. Can be done by # adjusting the shape of the "hook" profile used for the sweep. # TODO: Replace the bent section between lens and stem cover with a spline that smoothly # continues to both the lens and stem cover sections. measures = Measures( part_name = "lens_cover", color = "steelblue", alpha = 0.0, debug = True, side = "left", # "left" or "right". TODO: Implement "right" using mirroring. thickness = 1.6, # For FDM, that's 4 walls with a 0.4 mm nozzle. Corrected from 0.8. edge_smoothing = 0.4, # For all edges, to make them nicer to the touch. lens_cover = Measures( # Lens width 58.3 mm + stem corner width 5.6 mm - stem cover width 6.1 mm. # Corrected from 55.5 mm width = 57.8, height = 35.3, # Corrected from 33.5 vertical_arc_height = 1.7, # TODO: Implement that this is utilized, then reduce hook_depth. horizontal_arc_height = 2.3, # Only small radii possible due to a bug. Cornercase radii may may result in non-manifoldness. lower_corner_radius = 2.0, hook_depth = 4.6, # Lens thickness 2.9 mm, vertical arc height 1.7 mm. hook_height = 8.0, frame_attachment_depth = 1.4, # Provides additional hook depth at outer side of lens, for frame. overhang_angle_start = 45, # Visually adapted to achieve the same lower endpoint position compared to a shape with # frame_attachment_depth = 0. overhang_angle_end = 48, overhang_size_start = 7.0, # Visually adapted to achieve the same lower endpoint position compared to a shape with # frame_attachment_depth = 0. overhang_size_end = 7.5 ), corner_cover = Measures( height = 35.3, hook_depth = 5.0, # Adapted visually to create a corner. Corrected from 7.0. # TODO: Calculate hook_height always automatically as the midpoint between lens cover and # hinge cover height, as when forgetting to do this manually, the interpolation can create # shapes that let the lofts partially fail. hook_height = 8.0, # Midpoint between lens cover and hinge cover hook heights. hook_height_infill = 2.7, # Midpoint between lens cover and stem cover hook heights. Avoids interpolation issues. overhang_angle = 45, overhang_size = 7.0 ), hinge_cover = Measures( depth = 18.0, # Measured from the lens cover back plane. height = 35.3, path_angle = 100, lower_corner_radius = 12.0, hook_depth = 4.5, # Measured glasses stem width is 3.8 mm. hook_height = 8.0, hook_height_infill = 5.4, overhang_angle = 45, overhang_size = 7.0 ), stem_cover = Measures( depth = 22.0, # Measured from the lens cover back plane. height = 35.3, path_angle = 100, lower_corner_radius = 12.0, hook_depth = 4.5, # Measured glasses stem width is 3.8 mm. hook_height = 14.0, hook_height_infill = 5.4, overhang_angle = 45, overhang_size = 7.0 ), ) # Selective reloading to pick up changes made between script executions. # See: https://github.com/CadQuery/CQ-editor/issues/99#issue-525367146 importlib.reload(utilities) class LensCover: def __init__(self, workplane, measures): """ A parametric eye cover that can be hooked to the top edge of eyeglasses. :param workplane: The CadQuery workplane to create the eye cover on. This workplane is assumed to be coplanar with the face of the eyeglass user, with the plane's normal pointing into the "front" direction of the model. :param measures: The measures to use for the parameters of this design. Expects a nested [SimpleNamespace](https://docs.python.org/3/library/types.html#types.SimpleNamespace) object. See example above for the possible attributes. """ self.model = workplane self.measures = measures self.log = logging.getLogger(__name__) m = self.measures # Points on the sweep path that we'll need repeatedly. m.lens_startpoint = (0, 0) # We create a space for the rounded edge that is 60-70% of the wrap radius, to achieve a # smooth shape transition for angles slightly larger than 90°. m.lens_endpoint = (-m.lens_cover.width, 0) m.hinge_startpoint = (-m.lens_cover.width, -m.lens_cover.hook_depth - 2 * m.thickness) # toTuple() yields a (x,y,z) coordinate, but we only want (x,y) here. # When slicing in Python "[0:2]", the specified end element (index 2) will not be in the result. m.stem_startpoint =self.hinge_path().val().positionAt(1).toTuple()[0:2] self.build() def profile_wire(self, height, hook_depth, hook_height, hook_height_infill = 0.1, overhang_angle = 90, overhang_size = 0.1, debug_name = None ): """ Object of class Wire, representing the base shape of the hook. A multi-section sweep requires wires placed along the path to use for the shape-adapted sweeping. These wires should be orthogonal to the path to get the desired shape. """ # hook_height_infill is by default 0.1 just because the CAD kernel cannot handle 0 here. # TODO: Create a profile with a curved section. Proposal: Use swipe() and # convert a face of the resulting 3D shape back into a wire. m = self.measures # Remember that translate() uses global (!) coordinates. wire = ( cq.Workplane("YZ") # Covering outer element of the profile. .rect(m.thickness, height, forConstruction = True) .translate((0, -0.5 * m.thickness, -0.5 * height)) .toPending() # Horizontal element of the hook, including hook infill if any. .copyWorkplane(cq.Workplane("YZ")) .rect(hook_depth + 2 * m.thickness, m.thickness + hook_height_infill, forConstruction = True) .translate((0, -0.5 * (hook_depth + 2 * m.thickness), -0.5 * (m.thickness + hook_height_infill))) .toPending() # Vertical element of the hook with the tip. .copyWorkplane(cq.Workplane("YZ")) .rect(m.thickness, hook_height + m.thickness, forConstruction = True) # -0.499 instead of -0.5 due to a malfunction of union_pending() when having a complete # intersection in this corner. Strangely, only for this corner. .translate((0, -hook_depth - 1.5 * m.thickness, -0.499 * (hook_height + m.thickness))) .toPending() # Overhang at the bottom of the profile shape. .copyWorkplane(cq.Workplane("YZ")) .rect(m.thickness, overhang_size, forConstruction = True) # 0.499 because otherwise union_pending() cannot create a correct result. This happens due to # the CAD kernel limitations of unioning shapes that share one corner exactly. .translate((0, -0.5 * m.thickness, -height - 0.499 * overhang_size)) .rotate((1, 0, -height), (-1, 0, -height), overhang_angle) .toPending() .union_pending() .ctx.pendingWires[0] ) if m.debug and debug_name is not None: showable_wire = cq.Workplane().newObject([wire]).wires().val() show_object(showable_wire, name = debug_name) return wire # Wire at the start of the sweep, defining the lens cover cross-section next to the nose. def lens_start_wire(self): m = self.measures wire = ( cq.Workplane().newObject([ self.profile_wire( height = m.lens_cover.height, hook_depth = m.lens_cover.hook_depth, hook_height = m.lens_cover.hook_height, overhang_angle = m.lens_cover.overhang_angle_start, overhang_size = m.lens_cover.overhang_size_start ) ]) .wires() .val() ) if m.debug: show_object(wire, name = "lens_start_wire") return wire # Wire at the end of the lens / start of the bent section. # Position is slightly approximate as it treats the path as made from straight lines. def lens_end_wire(self): m = self.measures wire = ( cq.Workplane().newObject([self.profile_wire( height = m.lens_cover.height, hook_depth = m.lens_cover.hook_depth + m.lens_cover.frame_attachment_depth, hook_height = m.lens_cover.hook_height, overhang_angle = m.lens_cover.overhang_angle_end, overhang_size = m.lens_cover.overhang_size_end )]) .translate((*m.lens_endpoint, 0)) .translate((0, 1.4, 0)) # TODO: Make this parametric. .val() ) if m.debug: show_object(wire, name = "lens_end_wire") return wire # Wire at the end of the lens / start of the bent section. # Position is slightly approximate as it treats the path as made from straight lines. def corner_center_wire(self): m = self.measures wire = ( cq.Workplane().newObject([self.profile_wire( height = m.corner_cover.height, hook_depth = m.corner_cover.hook_depth, hook_height = m.corner_cover.hook_height, hook_height_infill = m.corner_cover.hook_height_infill, overhang_angle = m.corner_cover.overhang_angle, overhang_size = m.corner_cover.overhang_size )]) # Move the wire to the +y part so we can rotate around origin to rotate around the # back edge. .translate((0, m.corner_cover.hook_depth + 2 * m.thickness, 0)) # Rotate around the back edge of the initial wire, now at origin. # Rotate by half the angle that the hinge start wire will have. .rotate((0, 0, 1), (0, 0, -1), 0.5 * (-90 + (m.hinge_cover.path_angle - 90))) # Bring the wire into its final position. .translate((*m.lens_endpoint, 0)) .translate((0, -m.lens_cover.hook_depth - 2 * m.thickness, 0)) .val() ) if m.debug: show_object(wire, name = "corner_center_wire") return wire # Wire at the start of the stem cover / end of the bent section. # Position is slightly approximate as it treats the path as made from straight lines. def hinge_start_wire(self): m = self.measures wire = ( cq.Workplane().newObject([self.profile_wire( height = m.hinge_cover.height, hook_depth = m.hinge_cover.hook_depth, hook_height = m.hinge_cover.hook_height, hook_height_infill = m.hinge_cover.hook_height_infill, overhang_angle = m.hinge_cover.overhang_angle, overhang_size = m.hinge_cover.overhang_size )]) .wires() # Rotate around the back (-y) edge of the initial wire. .rotate( (0, -m.hinge_cover.hook_depth - 2 * m.thickness, 1), (0, -m.hinge_cover.hook_depth - 2 * m.thickness, -1), -90 + (m.hinge_cover.path_angle - 90) ) # Move so that the original back edge is at the origin, to prepare the move along the path. .translate((0, m.hinge_cover.hook_depth + 2 * m.thickness, 0)) # Easiest to find the point at the very start of the path is via positionAt(0) .translate(self.hinge_path().val().positionAt(0).toTuple()) .val() ) if m.debug: show_object(wire, name = "hinge_start_wire") return wire def hinge_end_wire(self): m = self.measures wire = ( cq.Workplane().newObject([self.profile_wire( height = m.hinge_cover.height, hook_depth = m.hinge_cover.hook_depth, hook_height = m.hinge_cover.hook_height, hook_height_infill = m.hinge_cover.hook_height_infill, overhang_angle = m.hinge_cover.overhang_angle, overhang_size = m.hinge_cover.overhang_size )]) .wires() # Rotate around the back (-y) edge of the initial wire. .rotate( (0, -m.hinge_cover.hook_depth - 2 * m.thickness, 1), (0, -m.hinge_cover.hook_depth - 2 * m.thickness, -1), -90 + (m.hinge_cover.path_angle - 90) ) # Move so that the original back edge is at the origin, to prepare the move along the path. .translate((0, m.hinge_cover.hook_depth + 2 * m.thickness, 0)) # Easiest to find the point at the very end of the path is via positionAt(1) .translate(self.hinge_path().val().positionAt(1).toTuple()) .val() ) if m.debug: show_object(wire, name = "hinge_end_wire") return wire def stem_start_wire(self): m = self.measures wire = ( cq.Workplane().newObject([self.profile_wire( height = m.stem_cover.height, hook_depth = m.stem_cover.hook_depth, hook_height = m.stem_cover.hook_height, hook_height_infill = m.stem_cover.hook_height_infill, overhang_angle = m.stem_cover.overhang_angle, overhang_size = m.stem_cover.overhang_size )]) .wires() # Rotate around the back (-y) edge of the initial wire. .rotate( (0, -m.stem_cover.hook_depth - 2 * m.thickness, 1), (0, -m.stem_cover.hook_depth - 2 * m.thickness, -1), -90 + (m.stem_cover.path_angle - 90) ) # Move so that the original back edge is at the origin, to prepare the move along the path. .translate((0, m.stem_cover.hook_depth + 2 * m.thickness, 0)) # Easiest to find the point at the very beginning of the path is via positionAt(0) # But not exactly at the beginning as that would place the wire into the same position # as the hinge end wire, and we can't loft wires in the same position. .translate(self.stem_path().val().positionAt(0.01).toTuple()) .val() ) if m.debug: show_object(wire, name = "stem_end_wire") return wire def stem_end_wire(self): m = self.measures wire = ( cq.Workplane().newObject([self.profile_wire( height = m.stem_cover.height, hook_depth = m.stem_cover.hook_depth, hook_height = m.stem_cover.hook_height, hook_height_infill = m.stem_cover.hook_height_infill, overhang_angle = m.stem_cover.overhang_angle, overhang_size = m.stem_cover.overhang_size )]) .wires() # Rotate around the back (-y) edge of the initial wire. .rotate( (0, -m.stem_cover.hook_depth - 2 * m.thickness, 1), (0, -m.stem_cover.hook_depth - 2 * m.thickness, -1), -90 + (m.stem_cover.path_angle - 90) ) # Move so that the original back edge is at the origin, to prepare the move along the path. .translate((0, m.stem_cover.hook_depth + 2 * m.thickness, 0)) # Easiest to find the point at the very end of the path is via positionAt(1) .translate(self.stem_path().val().positionAt(1).toTuple()) .val() ) if m.debug: show_object(wire, name = "stem_end_wire") return wire def lens_path(self): """ The sweeping path follows the planar upper edge of the eye cover shape. Points are defined in the XY plane, drawing a cover for the left lens from origin to -x. """ m = self.measures path = ( cq .Workplane("XY") .moveTo(*m.lens_startpoint) .sagittaArc(m.lens_endpoint, -m.lens_cover.horizontal_arc_height) .wire() # Since we don't want a closed wire, close() will not create the wire. We have to. ) if m.debug: show_object(path, name = "lens_path") return path def hinge_path(self): m = self.measures path = ( cq .Workplane("XY") .moveTo(*m.hinge_startpoint) .polarLine(m.hinge_cover.depth, 360 - m.hinge_cover.path_angle) .wire() # Since we don't want a closed wire, close() will not create the wire. We have to. ) if m.debug: show_object(path, name = "hinge_path") return path def stem_path(self): m = self.measures path = ( cq .Workplane("XY") .moveTo(*m.stem_startpoint) .polarLine(m.stem_cover.depth, 360 - m.stem_cover.path_angle) .wire() # Since we don't want a closed wire, close() will not create the wire. We have to. ) if m.debug: show_object(path, name = "stem_path") return path def build(self): cq.Workplane.union_pending = utilities.union_pending m = self.measures # Sweeping along the path sections. # Due to CadQuery issue #808 (https://github.com/CadQuery/cadquery/issues/808), we cannot # simply do one multi-section sweep along a single path with all six wires along it. # And, the default transition = "right" would crash CadQuery-Editor due to a CAD kernel bug. lens_cover = cq.Workplane("YZ") lens_cover.ctx.pendingWires.extend([ self.lens_start_wire(), self.lens_end_wire() ]) lens_cover = lens_cover.sweep( self.lens_path(), multisection = True, transition = "round" ) corner_cover = cq.Workplane("YZ") corner_cover.ctx.pendingWires.extend([ self.lens_end_wire(), self.corner_center_wire(), self.hinge_start_wire() ]) corner_cover = corner_cover.loft() hinge_and_stem_cover = cq.Workplane("YZ") hinge_and_stem_cover.ctx.pendingWires.extend([ self.hinge_start_wire(), self.hinge_end_wire(), self.stem_start_wire(), self.stem_end_wire() ]) hinge_and_stem_cover = hinge_and_stem_cover.loft(ruled = True) # The internal combine function of loft() and sweep() is a bit fragile, so instead to obtain # a singel solid we created the individual parts first and then union() them together here. self.model = ( cq.Workplane("YZ") .union(lens_cover) .union(corner_cover) .union(hinge_and_stem_cover) ) # Rounding the lower corners. # TODO: Reimplement this, as it does not work when having the 45° overhang at the bottom. # self.model = ( # self.model # # # Rounding the lower corner of the lens cover. # .faces(">X") # .edges("<Z") # # TODO: Fix that only small radii are possible here. This is probably because the part # # is curved. # .fillet(m.lens_cover.lower_corner_radius) # # # Rounding the lower corner of the stem cover. # .faces("<Y") # .edges("<Z") # .fillet(m.stem_cover.lower_corner_radius) # ) # ============================================================================= # Part Creation # ============================================================================= part = LensCover(cq.Workplane(), measures) show_options = {"color": measures.color, "alpha": measures.alpha} show_object(part.model, name = measures.part_name, options = show_options)
tanius/cadquery-models
lenscover/lens_cover.py
lens_cover.py
py
23,912
python
en
code
11
github-code
6
[ { "api_name": "types.SimpleNamespace", "line_number": 59, "usage_type": "call" }, { "api_name": "types.SimpleNamespace", "line_number": 68, "usage_type": "call" }, { "api_name": "types.SimpleNamespace", "line_number": 89, "usage_type": "call" }, { "api_name": "types.SimpleNamespace", "line_number": 100, "usage_type": "call" }, { "api_name": "types.SimpleNamespace", "line_number": 111, "usage_type": "call" }, { "api_name": "importlib.reload", "line_number": 127, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 145, "usage_type": "call" }, { "api_name": "cadquery.Workplane", "line_number": 179, "usage_type": "call" }, { "api_name": "cadquery.Workplane", "line_number": 187, "usage_type": "call" }, { "api_name": "cadquery.Workplane", "line_number": 193, "usage_type": "call" }, { "api_name": "cadquery.Workplane", "line_number": 201, "usage_type": "call" }, { "api_name": "cadquery.Workplane", "line_number": 214, "usage_type": "call" }, { "api_name": "cadquery.Workplane", "line_number": 225, "usage_type": "call" }, { "api_name": "cadquery.Workplane", "line_number": 248, "usage_type": "call" }, { "api_name": "cadquery.Workplane", "line_number": 270, "usage_type": "call" }, { "api_name": "cadquery.Workplane", "line_number": 300, "usage_type": "call" }, { "api_name": "cadquery.Workplane", "line_number": 330, "usage_type": "call" }, { "api_name": "cadquery.Workplane", "line_number": 360, "usage_type": "call" }, { "api_name": "cadquery.Workplane", "line_number": 392, "usage_type": "call" }, { "api_name": "cadquery.Workplane", "line_number": 426, "usage_type": "call" }, { "api_name": "cadquery.Workplane", "line_number": 441, "usage_type": "call" }, { "api_name": "cadquery.Workplane", "line_number": 456, "usage_type": "call" }, { "api_name": "cadquery.Workplane", "line_number": 468, "usage_type": "attribute" }, { "api_name": "utilities.union_pending", "line_number": 468, "usage_type": "attribute" }, { "api_name": "cadquery.Workplane", "line_number": 475, "usage_type": "call" }, { "api_name": "cadquery.Workplane", "line_number": 486, "usage_type": "call" }, { "api_name": "cadquery.Workplane", "line_number": 494, "usage_type": "call" }, { "api_name": "cadquery.Workplane", "line_number": 506, "usage_type": "call" }, { "api_name": "cadquery.Workplane", "line_number": 535, "usage_type": "call" } ]
39048517647
import re import logging from datetime import datetime, timezone __all__ = ('datetime_to_ns',) logger = logging.getLogger('aionationstates') class DataClassWithId: def __eq__(self, other): # Ids in NS are pretty much always not globally unique. if type(self) is not type(other): return NotImplemented return self.id == other.id def __hash__(self): return hash((self.id,)) def __repr__(self): return f'<{self.__class__.__name__} id={self.id}>' def normalize(identifier): identifier = identifier.lower().replace(' ', '_') if not re.match('^[a-z0-9_-]+$', identifier): raise ValueError(f'provided identifier {identifier} contains invalid' ' characters.') return identifier def banner_url(id): return f'https://www.nationstates.net/images/banners/{id}.jpg' def timestamp(line): return datetime.utcfromtimestamp(int(line)) def utc_seconds(datetime_): return int(datetime_.replace(tzinfo=timezone.utc).timestamp()) def unscramble_encoding(text): """This is a workaround for a bug in the NS server-side code. (This entire lib is, honestly.) Specifically, somewhere in the process W-1252 encoded text is wrongly interpreted to be ISO-8859-1, resulting in *some* characters being deterministically unintentionally replaced with useless to the user Unicode control chars. This is a very common problem. Common enough, in fact, to be accounted for in the HTML treatment of Character References as defined by the specification. Well, it is technically a parse error, but nobody really cares since the correct, expected character is returned. For this reason, the bug is not present (or at least not visible) on the NS web interface, and only shows itself when dealing with the API. Interestingly enough, these characters are not always serialized as NCRs, in the dispatch CDATA they are represented literally, meaning that even modifying the XML parser to include a bit of HTML leniency would not be enough. Not that anyone would do that regardless. This function reverses the process, substiuting the unprintable mess returned by NS for the Unicode characters it must have originated from. It's a bit ugly, but gets the job done. """ return text.translate(unscramble_table) unscramble_table = str.maketrans({ '\u0080': '\N{EURO SIGN}', '\u0082': '\N{SINGLE LOW-9 QUOTATION MARK}', '\u0083': '\N{LATIN SMALL LETTER F WITH HOOK}', '\u0084': '\N{DOUBLE LOW-9 QUOTATION MARK}', '\u0085': '\N{HORIZONTAL ELLIPSIS}', '\u0086': '\N{DAGGER}', '\u0087': '\N{DOUBLE DAGGER}', '\u0088': '\N{MODIFIER LETTER CIRCUMFLEX ACCENT}', '\u0089': '\N{PER MILLE SIGN}', '\u008A': '\N{LATIN CAPITAL LETTER S WITH CARON}', '\u008B': '\N{SINGLE LEFT-POINTING ANGLE QUOTATION MARK}', '\u008C': '\N{LATIN CAPITAL LIGATURE OE}', '\u008E': '\N{LATIN CAPITAL LETTER Z WITH CARON}', '\u0091': '\N{LEFT SINGLE QUOTATION MARK}', '\u0092': '\N{RIGHT SINGLE QUOTATION MARK}', '\u0093': '\N{LEFT DOUBLE QUOTATION MARK}', '\u0094': '\N{RIGHT DOUBLE QUOTATION MARK}', '\u0095': '\N{BULLET}', '\u0096': '\N{EN DASH}', '\u0097': '\N{EM DASH}', '\u0098': '\N{SMALL TILDE}', '\u0099': '\N{TRADE MARK SIGN}', '\u009A': '\N{LATIN SMALL LETTER S WITH CARON}', '\u009B': '\N{SINGLE RIGHT-POINTING ANGLE QUOTATION MARK}', '\u009C': '\N{LATIN SMALL LIGATURE OE}', '\u009E': '\N{LATIN SMALL LETTER Z WITH CARON}', '\u009F': '\N{LATIN CAPITAL LETTER Y WITH DIAERESIS}', }) class aobject: """Inheriting this class allows you to define an async __init__. Code shamelessly ripped from StackOverflow. Before getting angry at me for abusing python features, remind yourself that all async/await code is already an abuse of generators and embrace the simple truth that practicality beats purity. """ async def __new__(cls, *a, **kw): instance = super().__new__(cls) await instance.__init__(*a, **kw) return instance async def __init__(self): pass def actually_synchronous(async_function): def wrapper(*args, **kwargs): coro_object = async_function(*args, **kwargs) try: coro_object.send(None) except StopIteration as e: return e.value else: raise TypeError("the function supplied isn't actually synchronous") return wrapper async def alist(asyncgen): return [item async for item in asyncgen] def datetime_to_ns(then): """Transform a :any:`datetime.datetime` into a NationStates-style string. For example "6 days ago", "105 minutes ago", etc. """ if then == datetime(1970, 1, 1, 0, 0): return 'Antiquity' now = datetime.utcnow() delta = now - then seconds = delta.total_seconds() # There's gotta be a better way to do this... years, seconds = divmod(seconds, 60*60*24*365) days, seconds = divmod(seconds, 60*60*24) hours, seconds = divmod(seconds, 60*60) minutes, seconds = divmod(seconds, 60) years = int(years) days = int(days) hours = int(hours) minutes = int(minutes) seconds = round(seconds) if years > 1: if days > 1: return f'{years} years {days} days ago' elif days == 1: return '{years} years 1 day ago' return '{years} years ago' if years == 1: if days > 1: return f'1 year {days} days ago' elif days == 1: return '1 year 1 day ago' return '1 year ago' if days > 3: return f'{days} days ago' if days > 1: if hours > 1: return f'{days} days {hours} hours ago' elif hours == 1: return f'{days} days 1 hour ago' return f'{days} days ago' if days == 1: if hours > 1: return f'1 day {hours} hours ago' elif hours == 1: return '1 day 1 hour ago' return '1 day ago' if hours > 1: return f'{hours} hours ago' if hours == 1: return f'{minutes + 60} minutes ago' if minutes > 1: return f'{minutes} minutes ago' if minutes == 1: return '1 minute ago' return 'Seconds ago'
micha030201/aionationstates
aionationstates/utils.py
utils.py
py
6,383
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 9, "usage_type": "call" }, { "api_name": "re.match", "line_number": 28, "usage_type": "call" }, { "api_name": "datetime.datetime.utcfromtimestamp", "line_number": 39, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 39, "usage_type": "name" }, { "api_name": "datetime.timezone.utc", "line_number": 43, "usage_type": "attribute" }, { "api_name": "datetime.timezone", "line_number": 43, "usage_type": "name" }, { "api_name": "datetime.datetime", "line_number": 148, "usage_type": "call" }, { "api_name": "datetime.datetime.utcnow", "line_number": 151, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 151, "usage_type": "name" } ]
43724719541
from PyQt5.QtCore import QThread, QMutex, pyqtSignal from binance.client import Client import pyupbit import pybithumb import requests from bs4 import BeautifulSoup from debug import debuginfo class binanceThread(QThread): binance_data = pyqtSignal(dict) def __init__(self): QThread.__init__(self) self.mutex = QMutex() self.binance = Client() self.binanceList = list() self.exchange_rate = float(1100) self.isRun = True def delSymbol(self, symbol): if symbol+"BTC" in self.binanceList: self.binanceList.remove(symbol+"BTC") def _start(self): self.isRun = True self.start() def stop(self): self.isRun = False def get_symbol_list(self): binanceList = list() try: for i in self.binance.get_all_tickers(): symbol = i['symbol'] if symbol[-3:] == 'BTC': binanceList.append(symbol[:-3]) if symbol == 'BTCUSDT': binanceList.append(symbol[:-4]) except Exception as e: debuginfo(e) pass return binanceList def save_list(self, list): for i in list: if i == 'BTC': self.binanceList.append('BTCUSDT') else: self.binanceList.append(i+'BTC') def get_dollor(self): try: res = requests.get('http://finance.naver.com/') text = res.text soup = BeautifulSoup(text, 'html.parser') td = soup.select_one( "#content > div.article2 > div.section1 > div.group1 > table > tbody > tr > td") exchange_rate = '' for i in td.text: if i == ',': pass else: exchange_rate += i self.exchange_rate = float(exchange_rate) except Exception as e: debuginfo(e) def get_prices(self): prices = dict() try: for i in self.binance.get_all_tickers(): prices[i['symbol']] = i['price'] except Exception as e: debuginfo(e) pass return prices def get_orderbooks(self): orderbooks = dict() try: for i in self.binance.get_orderbook_tickers(): orderbooks[i['symbol']] = dict() orderbooks[i['symbol']]['bidPrice'] = i['bidPrice'] orderbooks[i['symbol']]['bidQty'] = i['bidQty'] orderbooks[i['symbol']]['askPrice'] = i['askPrice'] orderbooks[i['symbol']]['askQty'] = i['askQty'] except Exception as e: debuginfo(e) pass return orderbooks def calculate_krw(self, price, BTCUSDT, exchange_rate): return str(round(float(price) * BTCUSDT * exchange_rate, 2)) def run(self): while self.isRun: self.mutex.lock() binanceDict = dict() self.get_dollor() prices = self.get_prices() orderbooks = self.get_orderbooks() try: BTCUSDT = float(prices['BTCUSDT']) binanceDict['BTC'] = dict() binanceDict['BTC']['price'] = str(round(BTCUSDT * self.exchange_rate, 2)) binanceDict['BTC']['ask'] = str( round(float(orderbooks['BTCUSDT']['askPrice']) * self.exchange_rate, 2)) + '/' + str( round(float(orderbooks['BTCUSDT']['askQty']), 2)) binanceDict['BTC']['bid'] = str( round(float(orderbooks['BTCUSDT']['bidPrice']) * self.exchange_rate, 2)) + '/' + str( round(float(orderbooks['BTCUSDT']['bidQty']), 2)) except Exception as e: debuginfo(e) for i in self.binanceList: if i == 'BTCUSDT': continue try: symbol = i.replace('BTC', '') binanceDict[symbol] = dict() binanceDict[symbol]['price'] = self.calculate_krw(prices[i], BTCUSDT, self.exchange_rate) binanceDict[symbol]['ask'] = self.calculate_krw(orderbooks[i]['askPrice'], BTCUSDT, self.exchange_rate) + '/' + str(round(float(orderbooks[i]['askQty']), 2)) binanceDict[symbol]['bid'] = self.calculate_krw(orderbooks[i]['bidPrice'], BTCUSDT, self.exchange_rate) + '/' + str(round(float(orderbooks[i]['bidQty']), 2)) except Exception as e: debuginfo(e) pass self.binance_data.emit(binanceDict) self.mutex.unlock() class upbitThread(QThread): upbit_data = pyqtSignal(dict) def __init__(self): QThread.__init__(self) self.mutex = QMutex() self.upbit = pyupbit self.upbitList = list() self.isRun = True def delSymbol(self, symbol): if "KRW-"+symbol in self.upbitList: self.upbitList.remove("KRW-"+symbol) def _start(self): self.isRun = True self.start() def stop(self): self.isRun = False def get_symbol_list(self): upbitList = list() try: for i in self.upbit.get_tickers(fiat="KRW"): upbitList.append(i.split('KRW-')[1]) except Exception as e: debuginfo(e) pass return upbitList def save_list(self, list): for i in list: self.upbitList.append('KRW-'+i) def run(self): while self.isRun: self.mutex.lock() upbitDict = dict() prices = self.upbit.get_current_price(self.upbitList) orderbooks = self.upbit.get_orderbook(self.upbitList) if orderbooks and prices: for i in orderbooks: try: symbol = i['market'].split('-')[1] orderbook = i['orderbook_units'][0] ask = str(orderbook['ask_price']) + '/' + str(round(orderbook['ask_size'], 2)) bid = str(orderbook['bid_price']) + '/' + str(round(orderbook['bid_size'], 2)) upbitDict[symbol] = dict() upbitDict[symbol]['price'] = str(round(prices[i['market']], 2)) upbitDict[symbol]['ask'] = ask upbitDict[symbol]['bid'] = bid except Exception as e: debuginfo(e) self.upbit_data.emit(upbitDict) self.mutex.unlock() class bithumbThread(QThread): bithumb_data = pyqtSignal(dict) def __init__(self): QThread.__init__(self) self.mutex = QMutex() self.bithumb = pybithumb.Bithumb self.bithumbList = list() self.isRun = True def delSymbol(self, symbol): if symbol in self.bithumbList: self.bithumbList.remove(symbol) def _start(self): self.isRun = True self.start() def stop(self): self.isRun = False def get_symbol_list(self): bithumbList = list() try: bithumbList = self.bithumb.get_tickers() except Exception as e: debuginfo(e) pass return bithumbList def save_list(self, list): self.bithumbList = list def run(self): while self.isRun: self.mutex.lock() bithumbDict = dict() prices = self.bithumb.get_current_price('ALL') orderbooks = self.bithumb.get_orderbook('ALL') if orderbooks and prices: orderbooks = orderbooks['data'] for i in self.bithumbList: try: price = prices[i]['closing_price'] orderbook = orderbooks[i] ask = orderbook['asks'][0]['price'] + '/' + str(round(float(orderbook['asks'][0]['quantity']), 2)) bid = orderbook['bids'][0]['price'] + '/' + str(round(float(orderbook['bids'][0]['quantity']), 2)) bithumbDict[i] = dict() bithumbDict[i]['price'] = price bithumbDict[i]['ask'] = ask bithumbDict[i]['bid'] = bid except Exception as e: debuginfo(e) pass self.bithumb_data.emit(bithumbDict) self.mutex.unlock() if __name__ == "__main__": binance = binanceThread() upbit = upbitThread() bithumb = bithumbThread() binanceList = binance.get_symbol_list() upbitList = upbit.get_symbol_list() bithumbList = bithumb.get_symbol_list() binanceUpbitDuplicate = list() binanceBithumbDuplicate = list() upbitBithumbDuplicate = list() for i in binanceList: if i in upbitList: binanceUpbitDuplicate.append(i) if i in bithumbList: binanceBithumbDuplicate.append(i) for i in upbitList: if i in bithumbList: upbitBithumbDuplicate.append(i) newBinanceList = list(set(binanceUpbitDuplicate+binanceBithumbDuplicate)) newUpbitList = list(set(binanceUpbitDuplicate+upbitBithumbDuplicate)) newBithumbList = list(set(binanceBithumbDuplicate+upbitBithumbDuplicate)) binance.save_list(newBinanceList) upbit.save_list(newUpbitList) bithumb.save_list(newBithumbList)
JunTae90/coin_viewer
thread.py
thread.py
py
9,535
python
en
code
0
github-code
6
[ { "api_name": "PyQt5.QtCore.QThread", "line_number": 11, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.pyqtSignal", "line_number": 12, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QThread.__init__", "line_number": 14, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QThread", "line_number": 14, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.QMutex", "line_number": 15, "usage_type": "call" }, { "api_name": "binance.client.Client", "line_number": 16, "usage_type": "call" }, { "api_name": "debug.debuginfo", "line_number": 42, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 56, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 58, "usage_type": "call" }, { "api_name": "debug.debuginfo", "line_number": 69, "usage_type": "call" }, { "api_name": "debug.debuginfo", "line_number": 77, "usage_type": "call" }, { "api_name": "debug.debuginfo", "line_number": 91, "usage_type": "call" }, { "api_name": "debug.debuginfo", "line_number": 118, "usage_type": "call" }, { "api_name": "debug.debuginfo", "line_number": 130, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QThread", "line_number": 137, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.pyqtSignal", "line_number": 138, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QThread.__init__", "line_number": 140, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QThread", "line_number": 140, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.QMutex", "line_number": 141, "usage_type": "call" }, { "api_name": "debug.debuginfo", "line_number": 163, "usage_type": "call" }, { "api_name": "debug.debuginfo", "line_number": 189, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QThread", "line_number": 193, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.pyqtSignal", "line_number": 194, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QThread.__init__", "line_number": 196, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QThread", "line_number": 196, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.QMutex", "line_number": 197, "usage_type": "call" }, { "api_name": "pybithumb.Bithumb", "line_number": 198, "usage_type": "attribute" }, { "api_name": "debug.debuginfo", "line_number": 218, "usage_type": "call" }, { "api_name": "debug.debuginfo", "line_number": 245, "usage_type": "call" }, { "api_name": "binance.client", "line_number": 251, "usage_type": "name" }, { "api_name": "binance.client.get_symbol_list", "line_number": 255, "usage_type": "call" }, { "api_name": "binance.client", "line_number": 255, "usage_type": "name" }, { "api_name": "binance.client.save_list", "line_number": 277, "usage_type": "call" }, { "api_name": "binance.client", "line_number": 277, "usage_type": "name" } ]
6806255656
""" Пожалуйста, приступайте к этой задаче после того, как вы сделали и получили ревью ко всем остальным задачам в этом репозитории. Она значительно сложнее. Есть набор сообщений из чата в следующем формате: ``` messages = [ { "id": "efadb781-9b04-4aad-9afe-e79faef8cffb", "sent_at": datetime.datetime(2022, 10, 11, 23, 11, 11, 721), "sent_by": 46, # id пользователя-отправителя "reply_for": "7b22ae19-6c58-443e-b138-e22784878581", # id сообщение, на которое это сообщение является ответом (может быть None) "seen_by": [26, 91, 71], # идентификаторы пользователей, которые видели это сообщение "text": "А когда ревью будет?", } ] ``` Так же есть функция `generate_chat_history`, которая вернёт список из большого количества таких сообщений. Установите библиотеку lorem, чтобы она работала. Нужно: 1. Вывести айди пользователя, который написал больше всех сообщений. 2. Вывести айди пользователя, на сообщения которого больше всего отвечали. 3. Вывести айди пользователей, сообщения которых видело больше всего уникальных пользователей. 4. Определить, когда в чате больше всего сообщений: утром (до 12 часов), днём (12-18 часов) или вечером (после 18 часов). 5. Вывести идентификаторы сообщений, который стали началом для самых длинных тредов (цепочек ответов). Весь код стоит разбить на логические части с помощью функций. """ import random import uuid import datetime from pprint import pprint from collections import defaultdict import lorem def generate_chat_history(): messages_amount = random.randint(200, 1000) users_ids = list( {random.randint(1, 10000) for _ in range(random.randint(5, 20))} ) sent_at = datetime.datetime.now() - datetime.timedelta(days=100) messages = [] for _ in range(messages_amount): sent_at += datetime.timedelta(minutes=random.randint(0, 240)) messages.append({ "id": uuid.uuid4(), "sent_at": sent_at, "sent_by": random.choice(users_ids), "reply_for": random.choice( [ None, ( random.choice([m["id"] for m in messages]) if messages else None ), ], ), "seen_by": random.sample(users_ids, random.randint(1, len(users_ids))), "text": lorem.sentence(), }) return messages def find_id_user_most_messages(messages: list) -> int: messages_per_user = defaultdict(int) for message in messages: messages_per_user[message['sent_by']] += 1 max_messages = 0 user_ids_with_max_messages = 0 for key, value in messages_per_user.items(): if value > max_messages: max_messages = value user_ids_with_max_messages = [key] elif value == max_messages: user_ids_with_max_messages.append(key) return user_ids_with_max_messages def find_id_user_most_messages_replies(messages: list) -> int: replies_per_message = defaultdict(int) for message in messages: if message['reply_for'] is None: continue replies_per_message[message['reply_for']] += 1 most_replied_messages = set() most_replied_count = 0 for key, value in replies_per_message.items(): if value > most_replied_count: most_replied_count = value most_replied_messages = {key} elif value == most_replied_count: most_replied_messages.add(key) most_replied_users = [] for message in messages: if message['id'] in most_replied_messages: most_replied_users.append(message['sent_by']) return most_replied_users def find_id_user_most_see_messages(messages: list) -> list: users = defaultdict(set) for message in messages: if users.get(message['sent_by']) is None: users[message['sent_by']] = set(message['seen_by']) else: users[message['sent_by']] = users[message['sent_by']].union(message['seen_by']) most_see_message_user = [] max_len_seen_by = 0 for key, value in users.items(): if len(value) > max_len_seen_by: most_see_message_user = [] max_len_seen_by = len(value) most_see_message_user.append(key) elif len(value) == max_len_seen_by: most_see_message_user.append(key) return most_see_message_user def when_most_messages(messages: list) -> str: count_morning = 0 count_day = 0 count_evening = 0 for message in messages: time = message['sent_at'] time = time.time() if datetime.time(0, 0, 0) < time < datetime.time(12, 0, 0): count_morning += 1 elif datetime.time(12, 0, 0) <= time <= datetime.time(18, 0, 0): count_day += 1 else: count_evening += 1 if count_morning > count_day and count_morning > count_evening: return 'Утром' elif count_day > count_evening: return 'Днем' else: return 'Вечером' # вспомогательная функция для нахождения id сообщения отправителя def find_id_message(messages: list, id_message) -> str: for message in messages: if message['id'] == id_message: return message['reply_for'] def find_id_messages_which_have_most_threads(messages: list) -> list: dict_result = defaultdict(int) for message in messages: if message['reply_for'] is None: continue else: id_message = message['reply_for'] count_threads = 0 while True: count_threads += 1 id_message_find = find_id_message(messages, id_message) if id_message_find is None: break else: id_message = id_message_find dict_result[id_message] = count_threads id_message = [] max_value = 0 for key, value in dict_result.items(): if value > max_value: max_value = value id_message.clear() id_message.append(key) elif value == max_value: id_message.append(key) return id_message if __name__ == "__main__": # pprint(generate_chat_history()) print(find_id_user_most_messages(generate_chat_history())) print(find_id_user_most_messages_replies(generate_chat_history())) print(find_id_user_most_see_messages(generate_chat_history())) print(when_most_messages(generate_chat_history())) print(find_id_messages_which_have_most_threads(generate_chat_history()))
hodakoov/basic_exercises
for_dict_challenges_bonus.py
for_dict_challenges_bonus.py
py
7,598
python
ru
code
null
github-code
6
[ { "api_name": "random.randint", "line_number": 43, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 45, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 47, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 47, "usage_type": "attribute" }, { "api_name": "datetime.timedelta", "line_number": 47, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 50, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 50, "usage_type": "call" }, { "api_name": "uuid.uuid4", "line_number": 52, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 54, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 55, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 59, "usage_type": "call" }, { "api_name": "random.sample", "line_number": 64, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 65, "usage_type": "call" }, { "api_name": "lorem.sentence", "line_number": 66, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 72, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 89, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 113, "usage_type": "call" }, { "api_name": "datetime.time", "line_number": 142, "usage_type": "call" }, { "api_name": "datetime.time", "line_number": 144, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 165, "usage_type": "call" } ]
27465756937
import keras.backend as K import tensorflow as tf import cv2 import imageio import numpy as np def square_sum(x): return K.sum(K.square(x), axis=-1, keepdims=True) def euclSq(x): x, y = x x = K.batch_flatten(x) y = K.batch_flatten(y) return square_sum(x - y) def l2_normalize(x): inv_sqrt = 1. / K.sqrt(K.maximum(square_sum(x), 1e-6)) return x * inv_sqrt def gram_matrix(x): filters = x.shape[3] size = x.shape[1] V = K.reshape(x, (-1, size * size, 1, filters)) V = K.permute_dimensions(V, (0, 3, 2, 1)) VT = K.permute_dimensions(V, (0, 2, 1, 3)) return K.sum(V * VT, axis=3) def triplet_loss(x): return K.maximum(x[0] - x[1] + 1, 0) def gram(x): m, n = map(int, x.shape[2:]) G = gram_matrix(x) return G / (4 * m**2 * n**2) def get_image(filepath): with open(filepath, 'rb') as f: img = imageio.imread(f) img = crop_resize(img) return np.clip(img / 255, 0, 1) def crop_resize(img): height, width = img.shape[:2] if height > width: center = height // 2 up = center - width // 2 down = center + width // 2 img = img[up:down, :, :] elif height < width: center = width // 2 left = center - height // 2 right = center + height // 2 img = img[:, left:right, :] img = cv2.resize(img, (256, 256), cv2.INTER_LANCZOS4) return img
ebatuhankaynak/DeepPotato
src/util.py
util.py
py
1,405
python
en
code
0
github-code
6
[ { "api_name": "keras.backend.sum", "line_number": 8, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 8, "usage_type": "name" }, { "api_name": "keras.backend.square", "line_number": 8, "usage_type": "call" }, { "api_name": "keras.backend.batch_flatten", "line_number": 13, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 13, "usage_type": "name" }, { "api_name": "keras.backend.batch_flatten", "line_number": 14, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 14, "usage_type": "name" }, { "api_name": "keras.backend.sqrt", "line_number": 19, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 19, "usage_type": "name" }, { "api_name": "keras.backend.maximum", "line_number": 19, "usage_type": "call" }, { "api_name": "keras.backend.reshape", "line_number": 26, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 26, "usage_type": "name" }, { "api_name": "keras.backend.permute_dimensions", "line_number": 27, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 27, "usage_type": "name" }, { "api_name": "keras.backend.permute_dimensions", "line_number": 28, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 28, "usage_type": "name" }, { "api_name": "keras.backend.sum", "line_number": 29, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 29, "usage_type": "name" }, { "api_name": "keras.backend.maximum", "line_number": 32, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 32, "usage_type": "name" }, { "api_name": "imageio.imread", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.clip", "line_number": 43, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 59, "usage_type": "call" }, { "api_name": "cv2.INTER_LANCZOS4", "line_number": 59, "usage_type": "attribute" } ]
37407227644
from matplotlib import pyplot as plt from findiff import FinDiff import pandas as pd import numpy as np from tqdm import tqdm id_col = 'ID' date_col = 'DATE' px_close = 'px_last' px_high = 'px_high' px_low = 'px_low' px_open = 'px_open' def find_derivative(series): #1 day interval ''' Compute the first and second derivatives (1-step interval) of a given series. Parameters ---------- series: np.array series of values to find derivatives Returns ------- mom: np.array first derivative momacc: np.array second derivative Examples -------- >>> series array([6.85, 7.06, 7.31, 8. , 7.72, 7.27, 6.57, 7.66, 8.27, 8.31]) >>> mom, momacc = find_derivative(series) >>> mom array([ 0.19 , 0.23 , 0.47 , 0.205, -0.365, -0.575, 0.195, 0.85 , 0.325, -0.245]) >>> momacc array([-0.36, 0.04, 0.44, -0.97, -0.17, -0.25, 1.79, -0.48, -0.57, -0.66]) ''' d_dx = FinDiff(0, 1, 1) d2_dx2 = FinDiff(0, 1, 2) clarr = np.asarray(series) mom = d_dx(clarr) momacc = d2_dx2(clarr) return mom, momacc def find_local_min_max(series, mom, momacc): ''' Find local minimum and maximum points from a series Parameters ---------- series: np.array series of values to find derivatives mom: np.array first derivative momacc: np.array sescond derivative Returns ------- local_mins: dict dictionary of index and value of local minimum of the series local_max: dict dictionary of index and value of local maximum of the series Examples -------- >>> series array([6.85, 7.06, 7.31, 8. , 7.72, 7.27, 6.57, 7.66, 8.27, 8.31]) >>> local_mins, local_maxs = find_local_min_max(series, mom, momacc) >>> local_mins {6: 6.57} >>> local_maxs {3: 8.0, 9: 8.31} ''' local_mins = [] local_maxs = [] for i in range(len(mom)-1): series_dict = {i: series[i], i+1: series[i+1]} if mom[i] <0 and mom[i+1]> 0: local_mins.append(min(series_dict, key=series_dict.get)) elif mom[i] > 0 and mom[i+1]<0: local_maxs.append(max(series_dict, key=series_dict.get)) elif mom[i] == 0 and momacc[i] >0: local_mins.append(i) elif mom[i] == 0 and momacc[i] <0: local_maxs.append(i) local_mins = {i : series[i] for i in local_mins} local_maxs = {j : series[j] for j in local_maxs} return local_mins, local_maxs def get_state_local_min_max(dff, col = 'px_high', ma1 = 5, ma2 = 22): ''' Main function to get trendline. NOTE: shifted one day late to avoid look-ahead bias Step 1: Label period as up and down based on the spread between short ma and long ma i) short ma > long ma: up trend ii) long ma > short ma: down trend Label state when there is a change in state up - down / down - up state 1, 2, 3, ... Aggregate max or min of state. Step 2: Find local min and max points of the col input Step 3: Filter rows where local_max == max_in_state or local_min == min_in_state Transform the rows into wide form, calculate the m, c that connects the two points Parameters ---------- dff: DataFrame stock df with DATE and ohlc prices, re-index to start from 0 is necessary col: str price high or price low. px_high to get resistance line (down trend), px_low to get support line (up trend) ma1: int short moving average period (in days) ma2: int long moving average period (in days) Returns ------- dff2: DataFrame dataframe with ma_1st, ma_2nd, state and local_min/max line_df: DataFrame dataframe of the y equation, start and end period date of the support/resist line ''' # dff['ma_1st'] = dff[col].rolling(ma1).mean() # dff['ma_2nd'] = dff[col].rolling(ma2).mean() dff['ma_1st'] = dff[col].ewm(span=ma1, min_periods = ma1, adjust=False).mean() dff['ma_2nd'] = dff[col].ewm(span=ma2, min_periods = ma2, adjust=False).mean() dff['spread'] = (dff['ma_1st'] - dff['ma_2nd']).shift() dff.dropna(subset=['spread'], inplace=True) dff.reset_index(drop=True, inplace=True) dff['sign'] = dff['spread'].map(lambda x: 'up' if x>0 else 'down') dff['state'] = (dff['sign']!=dff['sign'].shift()).astype(int).cumsum() mom, momacc = find_derivative(dff[col].values) local_mins, local_maxs = find_local_min_max(dff[col].values, mom, momacc) return dff, local_mins, local_maxs def refine_end_filter(end_filter_df, local_): end_of_state=end_filter_df.groupby('state')[date_col].rank(ascending=False) ==1 end_filter_df.loc[end_of_state, local_] = None end_filter_df[local_] = end_filter_df.groupby('state')[local_].ffill() return end_filter_df.dropna() def get_line(df, local_='local_maxs', start_='up', agg = 'max', m_increase = 1): ''' local_ = 'local_maxs' start_ = 'up' agg = 'max' m_increase = 1 ''' start_rule = df['sign'] == start_ start_filter = df[start_rule].copy() start_filter = start_filter[start_filter[local_] == start_filter.groupby('state')[local_].transform(agg)]\ .reset_index()[[id_col,'index', date_col,'state',local_]] start_filter = start_filter.assign(state=start_filter.state+1) next_start_filter = start_filter.assign(next_start_dt=start_filter[date_col].shift(-1)).fillna(df[date_col].max()) cols = list(start_filter.columns) start_filter.columns = ['start_'+i if i not in [id_col,'state'] else i for i in start_filter.columns] end_rule = df['sign'] != start_ end_filter = df[end_rule].dropna(subset=[local_]).reset_index() # end_filter = refine_end_filter(end_filter, local_) start_end_filter = start_filter.merge(end_filter[cols], on=[id_col,'state'], how='left').dropna()\ .merge(next_start_filter[[id_col, 'state','next_start_dt']], on=[id_col, 'state'], how='left') ####### start_end_filter['m'] = (start_end_filter[local_] - start_end_filter['start_' + local_]) / \ (start_end_filter['index'] - start_end_filter['start_index']) start_end_filter['c'] = start_end_filter[local_] - start_end_filter['m']*start_end_filter['index'] gradient_sign = (m_increase*start_end_filter['m'] < m_increase*start_end_filter.groupby('state')['m'].shift()).map(lambda x: 1 if not x else None) start_end_filter['m'] = (start_end_filter['m'] * gradient_sign).ffill() start_end_filter['c'] = (start_end_filter['c'] * gradient_sign).ffill() start_end_filter['line_group'] = gradient_sign.cumsum().ffill() start_end_filter = start_end_filter[m_increase*start_end_filter['m']<0].drop_duplicates(subset=[date_col], keep='last') dff2 = df.merge(start_end_filter.drop('index',1), on=[id_col,date_col,'state', local_], how='left').ffill() fillins = (dff2[date_col]>dff2['next_start_dt']).map(lambda x: None if x else 1) dff2['y'] = (dff2['m']*dff2.index + dff2['c'])*fillins dff2['y2'] = dff2['m']*dff2.index + dff2['c'] dff2['cross'] = m_increase*dff2[px_close] > m_increase*dff2['y'] first_cross = dff2[dff2['cross']==True].reset_index().groupby('line_group')[date_col].first().reset_index().assign(first_cross=1) dff2 = dff2.merge(first_cross, on=['line_group',date_col], how='left').drop('cross',1) dff2['first_cross'] = dff2['first_cross'].fillna(0) start_end_filter = start_end_filter.merge(first_cross.rename(columns={date_col:'cross_'+date_col}), on='line_group', how='left') return dff2, start_end_filter def _trendline_doc_string(original): def wrapper(target): target.__doc__ = original.__doc__ return target return wrapper @_trendline_doc_string(get_state_local_min_max) def get_down_trendline(dff, col = 'px_high', ma1 = 5, ma2 = 22): dff = dff.reset_index(drop=True) dff, _, local_maxs = get_state_local_min_max(dff, col, ma1, ma2) dff['local_maxs'] = dff.index.map(local_maxs) dff2, line_df = get_line(dff, local_='local_maxs', start_='up', agg = 'max', m_increase = 1) return dff2, line_df @_trendline_doc_string(get_state_local_min_max) def get_up_trendline(dff, col='px_low', ma1=5, ma2=22): dff = dff.reset_index(drop=True) dff, local_mins, _ = get_state_local_min_max(dff, col, ma1, ma2) dff['local_mins'] = dff.index.map(local_mins) dff2, line_df = get_line(dff, local_='local_mins', start_='down', agg = 'min', m_increase = -1) return dff2, line_df def cal_ret(price_df, col='px_last', ret_days=None, shift_days=0): ''' Calculate the future return, i.e. forward return from today. Will return NaN if the days in future not present yet Parameters ---------- price_df: DataFrame dataframe with stock prices Returns ------- price_df: DataFrame dataframe with forward returns calculated ''' if ret_days == None: ret_days = [10, 30] for d in ret_days: price_df['%dD_return'%d] = price_df[col].pct_change(d).shift(-1*(d+shift_days))*100 return price_df #[['DATE',col]+] def add_features(df): ''' Add feature to df (on the cross date) Parameters ---------- df: DataFrame df with required fields to generate features Returns ------- df: DataFrame df with added features ''' # cols = df.columns.tolist() df['price_change_5D'] = df['px_last'].pct_change(5)*100 df['price_change_f0'] = df['px_last'].pct_change()*100 df['price_change_f1'] = df['px_last'].pct_change().shift(-1)*100 df['open-close_f0'] = (df['px_last']/df['px_open']-1)*100 df['open-close_f1'] = (df['px_last']/df['px_open']-1).shift(-1)*100 df['accel'] = df['px_high'].diff().diff() df['avat'] = df['volume']/df['volume'].rolling(20).mean() # feature_cols = list(set(df.columns).difference(set(cols))) return df def full_ma_line_run(df, col='px_high', ma1=5, ma2=22): ''' Generate full trendline and crosses get_down_trendline Parameters ---------- df: DataFrame full stock df with prices col: str px_high for downtrend, px_low for uptrend ma1: int short moving average (days) ma2: int long moving average (days) Returns ------- trend_line_df: DataFrame line_df generated from trendline_func stock_ma_line_df: DataFrame full_stock_df with merged line_df and its repective crosses after the last_DATE Examples -------- >>> stock_ma_line_df, trend_line_df = full_ma_line_run(df, 'px_high', ma1=5, ma2=22, feature_func=add_features) ''' if 'high' in col: trendline_func = get_down_trendline else: trendline_func = get_up_trendline stock_ma_line_df = pd.DataFrame() trend_line_df = pd.DataFrame() for stock in tqdm((sorted(df[id_col].unique()))): dff = df[df[id_col]==stock].sort_values(date_col).copy() try: dff2, line_df = trendline_func(dff) stock_ma_line_df = stock_ma_line_df.append(dff2) trend_line_df = trend_line_df.append(line_df) except Exception as e: print(stock, e) return stock_ma_line_df.reset_index(drop=True), trend_line_df ################################################ Channel Breakout ######################################################## from sklearn.linear_model import LinearRegression def channel_lr(stock_df, start_date, end_date): train_df = stock_df[(stock_df[date_col]>=start_date)&(stock_df[date_col]<=end_date)].copy() y = train_df[px_close] X = train_df.index.values lr = LinearRegression() lr.fit(X.reshape(-1,1), y) a = lr.coef_[0] b = lr.intercept_ y_pred = a*X + b BU = max(train_df[px_high] - y_pred) BL = min(train_df[px_low] - y_pred) return dict(a=a, b=b, BU=BU, BL=BL) def channel_project(stock_df, line_df, m_increase): stock_df = stock_df.reset_index(drop=True) line_df = line_df.drop_duplicates(subset=['line_group']) channel_lr_df = [] for lrow in line_df.to_dict(orient='records'): channel_lr_params = channel_lr(stock_df, lrow['start_' + date_col], lrow[date_col]) channel_lr_df.append({**lrow, **channel_lr_params}) channel_lr_df = pd.DataFrame(channel_lr_df) stock_df = stock_df.merge(channel_lr_df[[id_col,date_col, 'a','b','BU','BL']], how='left').ffill() fillins = (stock_df[date_col]>stock_df['next_start_dt']).map(lambda x: None if x else 1) stock_df['project'] = (stock_df['a']*stock_df.index + stock_df['b'] + stock_df['a'] + m_increase*stock_df['BU'])*fillins stock_df['cross'] = m_increase*stock_df[px_close] > m_increase*stock_df['project'] first_cross = stock_df[stock_df['cross']==True].reset_index().groupby('line_group')[date_col]\ .first().reset_index().assign(first_channel_cross=1) stock_df = stock_df.merge(first_cross, on=['line_group',date_col], how='left').drop('cross',1) stock_df['first_cross'] = stock_df['first_cross'].fillna(0) channel_lr_df = channel_lr_df.merge(first_cross.rename(columns={date_col:'channel_cross_'+date_col}), on='line_group', how='left') return stock_df, channel_lr_df def full_channel_run(stock_ma_line_df, trend_line_df, col='px_high'): m_increase = 1 if 'high' in col else -1 stock_channel_df = pd.DataFrame() full_channel_df = pd.DataFrame() for stock in tqdm((sorted(stock_ma_line_df[id_col].unique()))): stock_df = stock_ma_line_df[stock_ma_line_df[id_col]==stock] line_df = trend_line_df[trend_line_df[id_col]==stock] try: dff2, channel_df = channel_project(stock_df, line_df, m_increase) stock_channel_df = stock_channel_df.append(dff2) full_channel_df = full_channel_df.append(channel_df) except Exception as e: print(stock, e) cross_dates = ['cross_%s'%date_col,'channel_cross_%s'%date_col] full_channel_df['later_cross_date'] = full_channel_df[cross_dates].max(axis=1) full_channel_df['both'] = full_channel_df[cross_dates].isnull().sum(axis=1).map(lambda x: 1 if x==0 else 0) return stock_channel_df, full_channel_df ################################################ Visualization ######################################################## import plotly.graph_objects as go from ipywidgets import interact, interactive, Dropdown, HTML, VBox, HBox def plt_trendline(df, line_df, stock, col='px_high'): ''' Plot price with trendline Parameters ---------- df: DataFrame dataframe with dates and stock prices line_df: DataFrame dataframe which contains start end index and date of trendline stock: str stock name for plot title col: str px_high or px_low ''' if 'high' in col: local_ = 'local_maxs' else: local_ = 'local_mins' plt.rcParams['figure.figsize'] = (20,8) fig, ax = plt.subplots() df = df.set_index(date_col) df[col].plot(color='black') df[['ma_1st','ma_2nd']].plot(alpha=0.5, ax=ax) if 'ma_1st' in df.columns else None plt.scatter(df.query('first_cross==1').index, df.query('first_cross==1')['y'], marker='x', color='red', s=100) for line_g in df['line_group'].dropna().unique(): df_plot = df[df['line_group']==line_g].dropna(subset=['y']).iloc[[0, -1]].copy() df_plot['y'].plot(color='red', linewidth=1) for row in line_df.to_dict(orient='records'): plt.plot([row['start_' + date_col], row[date_col]], [row['start_' + local_] , row['m']*row['index'] + row['c']], color='purple', linewidth=1) plt.title(stock) return plt def interactive_plt_trendline(df, ma1=5, ma2=22, direction='down'): if direction == 'down': trendline_func = get_down_trendline col = 'px_high' else: trendline_func = get_up_trendline col = 'px_low' stock_selec = Dropdown(options = sorted(df.ID.unique())) @interact() def plot(stock = stock_selec): dff = df[df[id_col]==stock].reset_index(drop=True).copy() dff2, line_df = trendline_func(dff, ma1=ma1, ma2=ma2) plt_trendline(dff2, line_df, stock, col) def plt_channel(channel_df, channel_line_df, stock): fig, ax = plt.subplots() channel_df = channel_df.set_index(date_col) channel_df[px_close].plot(color='black') channel_df[['ma_1st','ma_2nd']].plot(alpha=0.5, ax=ax) if 'ma_1st' in channel_df.columns else None for crow in channel_line_df.to_dict(orient='records'): line_g = channel_df[channel_df['line_group']==crow['line_group']] dff2_plot = line_g.dropna(subset=['project']).iloc[[0,-1]].copy() dff2_plot['project'].plot(color='red', linewidth=1) cross = line_g.query('first_channel_cross==1') if cross.shape[0] : plt.scatter(cross.index, cross[px_close], marker='x', color='red', s=100) date_X = [crow['start_'+date_col], crow[date_col]] X = np.array([crow['start_index'], crow['index']]) plt.plot(date_X, crow['a']*X+crow['b'], color='brown') plt.plot(date_X, crow['a']*X+crow['b']+crow['BU'], color='cyan') plt.plot(date_X, crow['a']*X+crow['b']+crow['BL'], color='cyan') plt.title(stock) return plt def interactive_plt_channel(df, ma1=5, ma2=22, direction='down'): if direction == 'down': trendline_func = get_down_trendline col = px_high m_increase = 1 else: trendline_func = get_up_trendline col = px_low m_increase = -1 stock_selec = Dropdown(options = sorted(df.ID.unique())) @interact() def plot(stock = stock_selec): dff = df[df[id_col]==stock].reset_index(drop=True).copy() dff2, line_df = trendline_func(dff, ma1=ma1, ma2=ma2) dff3, channel_df = channel_project(dff2, line_df, m_increase) plt_channel(dff3, channel_df, stock) def interactive_plt_channel2(stock_channel_df, channel_line_df): def _plot_cross(cross): stock = stock_selec.value stock_df = stock_channel_df[stock_channel_df[id_col]==stock].reset_index(drop=True).copy() channel_df = channel_line_df[channel_line_df[id_col]==stock] if cross == 'All': plt_channel(stock_df, channel_df, stock) else: plt_channel(stock_df, channel_df.iloc[cross:cross+1], stock) def update_cross_selec(stock): cross_selec.options = ['All'] + list(range(channel_line_df[channel_line_df[id_col]==stock].shape[0])) stock_selec = Dropdown(options = sorted(stock_channel_df[id_col].unique())) init = channel_line_df[channel_line_df['ID']==stock_selec.value].shape[0] cross_selec = Dropdown(options = range(init)) j = interactive(update_cross_selec, stock=stock_selec) i = interactive(_plot_cross, cross=cross_selec) k = VBox() display(j) display(i) display(k) import plotly.graph_objects as go def plotly_trendline(df, line_df, stock, fig=None): if not fig: fig = go.Figure() fig.add_trace(go.Candlestick(x=df[date_col], open=df[px_open], high=df[px_high], low=df[px_low], close=df[px_close], showlegend=False)) local_ = [i for i in line_df.columns if 'start_' in i and date_col not in i and 'index' not in i][0] for row in line_df.to_dict(orient='records'): line_g = df[df['line_group']==row['line_group']] df_plot = line_g.dropna(subset=['y']).iloc[[0, -1]].copy() fig.add_trace(go.Scatter(x=df_plot[date_col], y=df_plot['y'], mode='lines', showlegend=False, hoverinfo='skip', line = dict(color = 'purple', width=1))) cross = line_g.query('first_cross==1') if cross.shape[0] : fig.add_trace(go.Scatter(x=cross[date_col], y=cross[px_close], showlegend=False, mode='markers', marker_symbol='x', marker_color='black')) fig.add_trace(go.Scatter(x=[row['start_' + date_col], row[date_col]], y=[row[local_] , row['m']*row['index'] + row['c']], mode='lines', line_color='black', showlegend=False)) fig.update_layout(title=stock, template='ygridoff', xaxis_rangeslider_visible=False) return fig def plotly_channel(channel_df, channel_line_df, stock, fig=None): if not fig: fig = go.Figure() # fig.add_trace(go.Scatter(x=channel_df[date_col], y=channel_df[px_close], line_color='black', showlegend=False)) fig.add_trace(go.Candlestick(x=channel_df[date_col], open=channel_df[px_open], high=channel_df[px_high], low=channel_df[px_low], close=channel_df[px_close], showlegend=False)) for line_g in channel_line_df['line_group'].dropna().unique(): dff2_plot = channel_df[channel_df['line_group']==line_g].iloc[[0,-1]].copy() for crow in channel_line_df.to_dict(orient='records'): date_X = [crow['start_'+date_col], crow[date_col]] line_g = channel_df[channel_df['line_group']==crow['line_group']] dff2_plot = line_g.dropna(subset=['project']).iloc[[0,-1]].copy() fig.add_vline(dff2_plot[date_col].iloc[0] ,line_dash="dot", line=dict(color='black')) fig.add_trace(go.Scatter(x=dff2_plot[date_col], y=dff2_plot['project'], mode='lines', showlegend=False, hoverinfo='skip', line = dict(color = 'black', width=1))) cross = line_g.query('first_channel_cross==1') if cross.shape[0] : fig.add_trace(go.Scatter(x=cross[date_col], y=cross[px_close], showlegend=False, mode='markers', marker_symbol='x', marker_color='black')) X = np.array([crow['start_index'], crow['index']]) fig.add_trace(go.Scatter(x=date_X, y=crow['a']*X+crow['b'], mode='lines', line_color='black', showlegend=False)) fig.add_trace(go.Scatter(x=date_X, y=crow['a']*X+crow['b']+crow['BU'], mode='lines', hoverinfo='skip', showlegend=False,line = dict(color = 'blue', width=1))) fig.add_trace(go.Scatter(x=date_X, y=crow['a']*X+crow['b']+crow['BL'], mode='lines', hoverinfo='skip', showlegend=False,line = dict(color = 'blue', width=1))) fig.update_layout(title=stock, template='ygridoff', xaxis_rangeslider_visible=False) return fig def interactive_plt_channel3(stock_channel_df, channel_line_df): def _plot_cross(cross): stock = stock_selec.value stock_df = stock_channel_df[stock_channel_df[id_col]==stock].reset_index(drop=True).copy() channel_df = channel_line_df[channel_line_df[id_col]==stock] if cross == 'All': fig = plotly_channel(stock_df, channel_df, stock) fig2 = plotly_trendline(stock_df, channel_df, stock) else: fig = plotly_channel(stock_df, channel_df.iloc[cross:cross+1], stock) fig2 = plotly_trendline(stock_df, channel_df.iloc[cross:cross+1], stock) k.children= [go.FigureWidget(fig2), go.FigureWidget(fig)] def update_cross_selec(stock): cross_selec.options = ['All'] + list(range(channel_line_df[channel_line_df[id_col]==stock].shape[0])) _plot_cross('All') stock_selec = Dropdown(options = sorted(stock_channel_df[id_col].unique())) init = channel_line_df[channel_line_df['ID']==stock_selec.value].shape[0] cross_selec = Dropdown(options = range(init)) j = interactive(update_cross_selec, stock=stock_selec) i = interactive(_plot_cross, cross=cross_selec) k = VBox() display(j) display(i) display(k)
etq-quant/etqbankloan
Lib/etiqalib/ta/turning_points.py
turning_points.py
py
24,726
python
en
code
0
github-code
6
[ { "api_name": "findiff.FinDiff", "line_number": 42, "usage_type": "call" }, { "api_name": "findiff.FinDiff", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 44, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 320, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 321, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 323, "usage_type": "call" }, { "api_name": "sklearn.linear_model.LinearRegression", "line_number": 343, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 363, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 383, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 384, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 386, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 426, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 426, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 427, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 427, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 433, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 433, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 440, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 440, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 443, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 443, "usage_type": "name" }, { "api_name": "matplotlib.pyplot", "line_number": 444, "usage_type": "name" }, { "api_name": "ipywidgets.Dropdown", "line_number": 455, "usage_type": "call" }, { "api_name": "ipywidgets.interact", "line_number": 457, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 465, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 465, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 477, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 477, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 480, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 481, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 481, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 482, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 482, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 483, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 483, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 485, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 485, "usage_type": "name" }, { "api_name": "matplotlib.pyplot", "line_number": 486, "usage_type": "name" }, { "api_name": "ipywidgets.Dropdown", "line_number": 499, "usage_type": "call" }, { "api_name": "ipywidgets.interact", "line_number": 501, "usage_type": "call" }, { "api_name": "ipywidgets.Dropdown", "line_number": 524, "usage_type": "call" }, { "api_name": "ipywidgets.Dropdown", "line_number": 526, "usage_type": "call" }, { "api_name": "ipywidgets.interactive", "line_number": 528, "usage_type": "call" }, { "api_name": "ipywidgets.interactive", "line_number": 529, "usage_type": "call" }, { "api_name": "ipywidgets.VBox", "line_number": 530, "usage_type": "call" }, { "api_name": "plotly.graph_objects.Figure", "line_number": 540, "usage_type": "call" }, { "api_name": "plotly.graph_objects", "line_number": 540, "usage_type": "name" }, { "api_name": "plotly.graph_objects.Candlestick", "line_number": 542, "usage_type": "call" }, { "api_name": "plotly.graph_objects", "line_number": 542, "usage_type": "name" }, { "api_name": "plotly.graph_objects.Scatter", "line_number": 553, "usage_type": "call" }, { "api_name": "plotly.graph_objects", "line_number": 553, "usage_type": "name" }, { "api_name": "plotly.graph_objects.Scatter", "line_number": 558, "usage_type": "call" }, { "api_name": "plotly.graph_objects", "line_number": 558, "usage_type": "name" }, { "api_name": "plotly.graph_objects.Scatter", "line_number": 561, "usage_type": "call" }, { "api_name": "plotly.graph_objects", "line_number": 561, "usage_type": "name" }, { "api_name": "plotly.graph_objects.Figure", "line_number": 571, "usage_type": "call" }, { "api_name": "plotly.graph_objects", "line_number": 571, "usage_type": "name" }, { "api_name": "plotly.graph_objects.Candlestick", "line_number": 574, "usage_type": "call" }, { "api_name": "plotly.graph_objects", "line_number": 574, "usage_type": "name" }, { "api_name": "plotly.graph_objects.Scatter", "line_number": 590, "usage_type": "call" }, { "api_name": "plotly.graph_objects", "line_number": 590, "usage_type": "name" }, { "api_name": "plotly.graph_objects.Scatter", "line_number": 595, "usage_type": "call" }, { "api_name": "plotly.graph_objects", "line_number": 595, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 598, "usage_type": "call" }, { "api_name": "plotly.graph_objects.Scatter", "line_number": 599, "usage_type": "call" }, { "api_name": "plotly.graph_objects", "line_number": 599, "usage_type": "name" }, { "api_name": "plotly.graph_objects.Scatter", "line_number": 600, "usage_type": "call" }, { "api_name": "plotly.graph_objects", "line_number": 600, "usage_type": "name" }, { "api_name": "plotly.graph_objects.Scatter", "line_number": 602, "usage_type": "call" }, { "api_name": "plotly.graph_objects", "line_number": 602, "usage_type": "name" }, { "api_name": "plotly.graph_objects.FigureWidget", "line_number": 624, "usage_type": "call" }, { "api_name": "plotly.graph_objects", "line_number": 624, "usage_type": "name" }, { "api_name": "ipywidgets.Dropdown", "line_number": 631, "usage_type": "call" }, { "api_name": "ipywidgets.Dropdown", "line_number": 633, "usage_type": "call" }, { "api_name": "ipywidgets.interactive", "line_number": 635, "usage_type": "call" }, { "api_name": "ipywidgets.interactive", "line_number": 636, "usage_type": "call" }, { "api_name": "ipywidgets.VBox", "line_number": 637, "usage_type": "call" } ]
40187735381
from luigi.contrib.postgres import CopyToTable from src.utils.general import read_yaml_file from src.utils.utils import load_df from src.pipeline.LuigiBiasFairnessTaskRDS import BiasFairnessTask #from src.pipeline.ingesta_almacenamiento import get_s3_client from datetime import date from time import gmtime, strftime import src.utils.constants as cte import pandas as pd import luigi import psycopg2 import yaml #import pickle import marbles.core import marbles.mixins class BiasFairnessTest(marbles.core.TestCase, marbles.mixins.DateTimeMixins): def __init__(self, my_date, data): super(BiasFairnessTest, self).__init__() self.date = my_date self.data = data def test_get_date_validation(self): self.assertDateTimesPast( sequence = [self.date], strict = True, msg = "La fecha solicitada debe ser menor a la fecha de hoy" ) return True def test_get_nrow_file_validation(self): data = self.data nrow = data.shape[0] self.assertGreater(nrow, 1, note = "El archivo debe de tener al menos 2 registros") return True class BiasFairnessTestTask(CopyToTable): path_cred = luigi.Parameter(default = 'credentials.yaml') initial = luigi.BoolParameter(default=True, parsing = luigi.BoolParameter.EXPLICIT_PARSING) limit = luigi.IntParameter(default = 300000) date = luigi.DateParameter(default = None) initial_date = luigi.DateParameter(default = None) bucket_path = luigi.Parameter(default = cte.BUCKET) exercise = luigi.BoolParameter(default=True, parsing = luigi.BoolParameter.EXPLICIT_PARSING) with open(cte.CREDENTIALS, 'r') as f: config = yaml.safe_load(f) credentials = config['db'] user = credentials['user'] password = credentials['pass'] database = credentials['database'] host = credentials['host'] port = credentials['port'] table = 'metadata.test_bias_fairness' columns = [("file_name", "VARCHAR"), ("data_date", "DATE"), ("processing_date", "TIMESTAMPTZ"), ("test_name", "VARCHAR"), ("result", "BOOLEAN") ] def requires(self): return BiasFairnessTask( self.path_cred, self.initial, self.limit, self.date, self.initial_date, self.bucket_path, self.exercise ) def input(self): with open(cte.CREDENTIALS, 'r') as f: config = yaml.safe_load(f) credentials = config['db'] user = credentials['user'] password = credentials['pass'] database = credentials['database'] host = credentials['host'] conn = psycopg2.connect( dbname=database, user=user, host=host, password=password ) cur = conn.cursor() cur.execute( """ SELECT * FROM sesgo.bias_fairness """ ) rows = cur.fetchall() data = pd.DataFrame(rows) data.columns = [desc[0] for desc in cur.description] return data def rows(self): file_name = "bias-fairness-" + self.date.strftime('%Y-%m-%d') test = BiasFairnessTest(data = self.input(), my_date = self.date) print("Realizando prueba unitaria: Validación de Fecha") test_val = test.test_get_date_validation() print("Prueba uitaria aprobada") print("Realizando prueba unitaria: Validación de número de renglones") test_nrow = test.test_get_nrow_file_validation() print("Prueba uitaria aprobada") date_time = strftime("%Y-%m-%d %H:%M:%S", gmtime()) data_test = { "file_name": [file_name, file_name], "data_date": [self.date, self.date], "processing_date": [date_time, date_time], "test_name": ["test_get_date_validation", "test_get_nrow_file_validation"], "result": [test_val, test_nrow] } data_test = pd.DataFrame(data_test) records = data_test.to_records(index=False) r = list(records) for element in r: yield element
Acturio/DPA-Project
src/pipeline/LuigiBiasFairnessTestTask.py
LuigiBiasFairnessTestTask.py
py
3,890
python
en
code
0
github-code
6
[ { "api_name": "marbles.core.core", "line_number": 18, "usage_type": "attribute" }, { "api_name": "marbles.core", "line_number": 18, "usage_type": "name" }, { "api_name": "marbles.core.mixins", "line_number": 18, "usage_type": "attribute" }, { "api_name": "luigi.contrib.postgres.CopyToTable", "line_number": 41, "usage_type": "name" }, { "api_name": "luigi.Parameter", "line_number": 43, "usage_type": "call" }, { "api_name": "luigi.BoolParameter", "line_number": 44, "usage_type": "call" }, { "api_name": "luigi.IntParameter", "line_number": 45, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 46, "usage_type": "name" }, { "api_name": "luigi.DateParameter", "line_number": 46, "usage_type": "call" }, { "api_name": "luigi.DateParameter", "line_number": 47, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 48, "usage_type": "call" }, { "api_name": "src.utils.constants.BUCKET", "line_number": 48, "usage_type": "attribute" }, { "api_name": "src.utils.constants", "line_number": 48, "usage_type": "name" }, { "api_name": "luigi.BoolParameter", "line_number": 49, "usage_type": "call" }, { "api_name": "src.utils.constants.CREDENTIALS", "line_number": 52, "usage_type": "attribute" }, { "api_name": "src.utils.constants", "line_number": 52, "usage_type": "name" }, { "api_name": "yaml.safe_load", "line_number": 53, "usage_type": "call" }, { "api_name": "src.pipeline.LuigiBiasFairnessTaskRDS.BiasFairnessTask", "line_number": 73, "usage_type": "call" }, { "api_name": "src.utils.constants.CREDENTIALS", "line_number": 86, "usage_type": "attribute" }, { "api_name": "src.utils.constants", "line_number": 86, "usage_type": "name" }, { "api_name": "yaml.safe_load", "line_number": 87, "usage_type": "call" }, { "api_name": "psycopg2.connect", "line_number": 95, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 110, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 129, "usage_type": "call" }, { "api_name": "time.gmtime", "line_number": 129, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 139, "usage_type": "call" } ]
3755394850
import asyncio import traceback from neptune_py.skeleton.skeleton import NeptuneServiceSkeleton from neptune_py.skeleton.messager import ( NeptuneWriterBaseAbstract, NeptuneMessageType ) import struct import collections class TLV: _format = '!HI' meta_size = struct.calcsize(_format) tlv = collections.namedtuple('tlv_tuple', 'tag length') MagicTag = 13 @classmethod def pack(cls, tag, data): return struct.pack(cls._format, tag, len(data)) + data @classmethod def unpack(cls, data): if len(data) < cls.meta_size: return None tag, length = struct.unpack(cls._format, data) return cls.tlv(tag=tag, length=length) class TlvWriter(NeptuneWriterBaseAbstract): def __init__(self, writer): super().__init__() self.writer = writer self.closed = False def write(self, message): self.writer.write(TLV.pack(TLV.MagicTag, message)) def close(self): if self.closed: return self.closed = True if self.writer.can_write_eof(): self.writer.write_eof() else: self.writer.close() class NeptuneTlvBase(NeptuneServiceSkeleton): def __init__(self, host, port, messager_manager, name=None): super().__init__(name) self.host = host self.port = port self.messager_manager = messager_manager self.messager_id = 0 async def connection_handler(self, reader, writer): peername = writer.get_extra_info("peername") self.get_logger().debug(f'{peername} connected') messager_id = self.messager_id tlv_writer = TlvWriter(writer) self.messager_manager.on_connected(messager_id, tlv_writer) self.messager_id += 1 try: while True: meta = await reader.readexactly(TLV.meta_size) tlv = TLV.unpack(meta) # print(tlv) data = await reader.readexactly(tlv.length) self.messager_manager.on_message(messager_id, data) except asyncio.IncompleteReadError as e: if e.partial: # empty data indicates peer closed the connection, otherwise the data # is illegal. self.get_logger().debug(f'{peername} illegal data') except Exception as e: self.get_logger().error(traceback.format_exc()) finally: self.get_logger().debug(f'{peername} closed') self.messager_manager.on_disconnected(messager_id) writer.close() await writer.wait_closed() def init(self): self.get_logger().debug(f'init {self.__class__.__name__} {self.name}') async def finish(self): self.get_logger().debug(f'stopping {self.__class__.__name__} {self.name}...') class NeptuneTlvService(NeptuneTlvBase): """ tlv message server """ async def logic(self): # https://docs.python.org/3.6/library/asyncio-protocol.html # 'Changed in version 3.6: The socket option TCP_NODELAY is now set by default.' server = await asyncio.start_server(self.connection_handler, self.host, self.port) async with server: self.get_logger().debug(f'NeptuneTlvService {self.name} starts to server') await server.serve_forever() class NeptuneTlvClient(NeptuneTlvBase): """ tlv message client """ async def logic(self): reader, writer = await asyncio.open_connection(self.host, self.port) await self.connection_handler(reader, writer)
kstardust/neptune
neptune_py/skeleton/transporter/neptune_tlv.py
neptune_tlv.py
py
3,598
python
en
code
0
github-code
6
[ { "api_name": "struct.calcsize", "line_number": 14, "usage_type": "call" }, { "api_name": "collections.namedtuple", "line_number": 15, "usage_type": "call" }, { "api_name": "struct.pack", "line_number": 20, "usage_type": "call" }, { "api_name": "struct.unpack", "line_number": 26, "usage_type": "call" }, { "api_name": "neptune_py.skeleton.messager.NeptuneWriterBaseAbstract", "line_number": 30, "usage_type": "name" }, { "api_name": "neptune_py.skeleton.skeleton.NeptuneServiceSkeleton", "line_number": 50, "usage_type": "name" }, { "api_name": "asyncio.IncompleteReadError", "line_number": 75, "usage_type": "attribute" }, { "api_name": "traceback.format_exc", "line_number": 81, "usage_type": "call" }, { "api_name": "asyncio.start_server", "line_number": 102, "usage_type": "call" }, { "api_name": "asyncio.open_connection", "line_number": 113, "usage_type": "call" } ]
26531296671
from pyhpecfm import fabric from lib.actions import HpecfmBaseAction class fabricIpLookup(HpecfmBaseAction): def run(self): cfm_fabrics = fabric.get_fabric_ip_networks(self.client) if isinstance(cfm_fabrics, list): fabric_data = [] # Loop through cfm_fabrics and process IPZ for fabip in cfm_fabrics: desc = fabip['description'] if desc == '': desc = 'HPE Composable Fabric' out ={ 'u_desc':desc, 'u_fabu_uid':fabip['fabric_uuid'], 'u_name':fabip['name'], 'u_mode':fabip['mode'], 'u_sub_address':fabip['subnet']['address'], 'u_mask_prefix':fabip['subnet']['prefix_length'] } fabric_data.append(out) return (True, fabric_data) return (False, switches)
HewlettPackard/stackstorm-hpe-cfm
actions/get_fabric_ips.py
get_fabric_ips.py
py
979
python
en
code
1
github-code
6
[ { "api_name": "lib.actions.HpecfmBaseAction", "line_number": 4, "usage_type": "name" }, { "api_name": "pyhpecfm.fabric.get_fabric_ip_networks", "line_number": 6, "usage_type": "call" }, { "api_name": "pyhpecfm.fabric", "line_number": 6, "usage_type": "name" } ]
39939937920
from mpl_toolkits.mplot3d import axes3d import numpy as np import pandas as pd import matplotlib.pyplot as plt import csv from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter from mpl_toolkits.mplot3d import Axes3D import plotly.graph_objects as go import plotly.express as px import publico as func pd.options.mode.chained_assignment = None # default='warn' from dateutil import parser def MediaFileRede(res_select, interval_time=5): res_select.drop_duplicates(subset=None, keep="first", inplace=True) # cria campos res_select['Timer2'] = 0 res_select['Media2'] = 0.0 velo_total = 0.0 count=0 timer_atual = 0.0 timer_ant = 0.0 elapset_atual= 0.0 elapset_cumulativo = 0.0 count_timer=interval_time for index, row in res_select.iterrows(): timer_atual = row['Tempo'] if (timer_ant!=0.0): elapset_atual = float(row['Tempo']) - float(timer_ant) # print(abs(elapset_atual)) elapset_cumulativo+=float(elapset_atual) if ((elapset_cumulativo >= interval_time)): # print('Chegou') # break media_velo = velo_total / count res_select.at[index,"Media2"] = media_velo res_select.at[index,"Timer2"] = count_timer elapset_cumulativo=0.0 timer_ant = 0.0 velo_total=0.0 media_velo=0.0 count=0 count_timer+=interval_time if (timer_atual != timer_ant): timer_ant = timer_atual velo_total = velo_total + row['Download'] count+=1 # remove zeros res_select = res_select[(res_select['Timer2']!=0) & (res_select['Timer2']<=280) & (res_select['Media2']<300) ] return res_select EXP="70" print("Loading Dataframe...") # BASELINE GERAL *************************************************** df1 = pd.read_csv("../repositorio/" + EXP + "/REDE_GERAL.csv") df1['Download'] = df1['Download'].astype(float) df1['Upload'] = df1['Upload'].astype(float) df1['Tempo'] = df1['Tempo'].astype(float) df1['Source'] = "BASELINE" # df1_filtro = df1.loc[(df1['Bytes'] > 0)] df1_select = df1[['Download', 'Source', 'Tempo']] df1_select = MediaFileRede(df1_select) # ************************************************************************* # BASELINE 1TO 2 ********************************************************** df2 = pd.read_csv("../repositorio/" + EXP + "/REDE_BASELINE_1TO2.csv") df2['Download'] = df2['Download'].astype(float) df2['Upload'] = df2['Upload'].astype(float) # df2['Duracao'] = df2['Duracao'].astype(float) df2['Tempo'] = df2['Tempo'].astype(float) # df2['Bytes'] = df2['Bytes'].astype(float) df2['Source'] = "1TO2" # df4_filtro = 7df4.loc[(df4['Bytes'] > 0)] df2_select = df2[['Download', 'Source', 'Tempo']] df2_select = MediaFileRede(df2_select) #******************************************************************** print("Loading Dataframe...") # BASELINE RANDOM ********************************************************** df3 = pd.read_csv("../repositorio/" + EXP + "/REDE_BASELINE_RANDOM.csv") df3['Download'] = df3['Download'].astype(float) df3['Upload'] = df3['Upload'].astype(float) # df3['Duracao'] = df3['Duracao'].astype(float) df3['Tempo'] = df3['Tempo'].astype(float) # df3['Bytes'] = df3['Bytes'].astype(float) df3['Source'] = "RAND" # df4_filtro = df4.loc[(df4['Bytes'] > 0)] df3_select = df3[['Download', 'Source', 'Tempo']] df3_select = MediaFileRede(df3_select) #******************************************************************** print("Loading Dataframe...") # BASELINE THRESHOLD ********************************************************** df4 = pd.read_csv("../repositorio/" + EXP + "/REDE_BASELINE_THRESHOLD.csv") df4['Download'] = df4['Download'].astype(float) df4['Upload'] = df4['Upload'].astype(float) # df4['Duracao'] = df4['Duracao'].astype(float) df4['Tempo'] = df4['Tempo'].astype(float) # df4['Bytes'] = df4['Bytes'].astype(float) df4['Source'] = "LIM-5" # df4_filtro = df4.loc[(df4['Bytes'] > 0)] df4_select = df4[['Download', 'Source', 'Tempo']] df4_select = MediaFileRede(df4_select) #******************************************************************** print("Loading Dataframe...") # DBSCAN ********************************************************** df5 = pd.read_csv("../repositorio/" + EXP + "/REDE_DBSCAN.csv") df5['Download'] = df5['Download'].astype(float) df5['Upload'] = df5['Upload'].astype(float) df5['Tempo'] = df5['Tempo'].astype(float) df5['Source'] = "DBSCAN" # df1_filtro = df1.loc[(df1['Bytes'] > 0)] df5_select =df5[['Download', 'Source', 'Tempo']] df5_select = MediaFileRede(df5_select) #******************************************************************** # # # DBSCAN FILTER ********************************************************** # # df6 = pd.read_csv("../repositorio/" + EXP + "/REDE_DBSCAN_FILTER.csv") # # df6['Download'] = df6['Download'].astype(float) # # df6['Upload'] = df6['Upload'].astype(float) # # df6['Duracao'] = df6['Duracao'].astype(float) # # df6['STime'] = df6['STime'].astype(float) # # df6['Bytes'] = df6['Bytes'].astype(float) # # df6['Source'] = "DBSCAN - FILTER" # # df6_filtro = df6.loc[(df6['Bytes'] > 0)] # # df6_select = df6_filtro[['Upload','Bytes','Source', 'STime','Duracao']] # # df6_select = MediaFileRede(df6_select) # # #******************************************************************** # XMEANS ********************************************************** df7 = pd.read_csv("../repositorio/" + EXP + "/REDE_XMEANS.csv") df7['Download'] = df7['Download'].astype(float) df7['Upload'] = df7['Upload'].astype(float) # df7['Duracao'] = df7['Duracao'].astype(float) df7['Tempo'] = df7['Tempo'].astype(float) # df7['Bytes'] = df7['Bytes'].astype(float) df7['Source'] = "XMEANS" # df1_filtro = df1.loc[(df1['Bytes'] > 0)] df7_select =df7[['Download', 'Source', 'Tempo']] df7_select = MediaFileRede(df7_select) #******************************************************************** print("Loading Chart...") # res = pd.concat([df1_select,df5_select,df7_select], sort=False) # res = pd.concat([df1_select,df2_select,df3_select,df4_select, df5_select,df7_select], sort=False) res = pd.concat([df1_select,df2_select,df3_select,df4_select], sort=False) fig = px.line(res.reset_index(), x="Timer2", y="Media2", color="Source", title='Network Traffic').for_each_trace(lambda t: t.update(name=t.name.replace("Source=",""))) # https://plotly.com/python/axes/ # https://plotly.com/python/line-charts/ # fig.update_layout( # # title = "AnaliseAlgorithms ", # yaxis = dict( # # range=[0,9], # # tick0=0, dtick=2.5, # title_text='Upload Rate', # ), # xaxis = dict( # title_text='Normalized Simulation Time (<i>i</i>)', # ), # ) fig.update_layout( # title = "AnaliseAlgorithms ", yaxis = dict( # # range=[0,9], # tick0=0, dtick=5, title_text='Network Traffic', ), font=dict(size=16), xaxis = dict( title_text='Normalized Simulation Time (<i>t</i>)', ), # plot_bgcolor='rgba(0,1,0,0)' # 76 64=todos legend=dict( x=0.76, y=1.1, font=dict(size=16), orientation='h' ), # annotations=[dict( # xref='paper', # yref='paper', # ) # ] ) fig.show()
urbancomp/fogarch
FogLayer/visualization/chart3_old.py
chart3_old.py
py
7,553
python
en
code
1
github-code
6
[ { "api_name": "pandas.options", "line_number": 18, "usage_type": "attribute" }, { "api_name": "pandas.read_csv", "line_number": 81, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 95, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 111, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 128, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 145, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 174, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 192, "usage_type": "call" }, { "api_name": "plotly.express.line", "line_number": 194, "usage_type": "call" }, { "api_name": "plotly.express", "line_number": 194, "usage_type": "name" } ]
35777431960
from pydoc import tempfilepager from PIL import Image import numpy import cv2 slot_1_box = (905, 215, 930, 235) slot_2_box = (933, 215, 958, 235) slot_3_box = (961, 215, 986, 235) slots_poss = (slot_1_box, slot_2_box, slot_3_box) def get_crop(_source, _box): return Image.open(_source).convert('RGB').crop(_box) # .save(tmp_path) def calculate(image1, image2): image1 = cv2.cvtColor(numpy.asarray(image1), cv2.COLOR_RGB2BGR) image2 = cv2.cvtColor(numpy.asarray(image2), cv2.COLOR_RGB2BGR) hist1 = cv2.calcHist([image1], [0], None, [256], [0.0, 255.0]) hist2 = cv2.calcHist([image2], [0], None, [256], [0.0, 255.0]) # 计算直方图的重合度 degree = 0 for i in range(len(hist1)): if hist1[i] != hist2[i]: degree = degree + \ (1 - abs(hist1[i] - hist2[i]) / max(hist1[i], hist2[i])) else: degree = degree + 1 degree = degree / len(hist1) return degree def classify_hist_with_split(image1, image2, size=(256, 256)): # image1 = Image.open(image1) image2 = Image.open(image2) # 将图像resize后,分离为RGB三个通道,再计算每个通道的相似值 image1 = cv2.cvtColor(numpy.asarray(image1), cv2.COLOR_RGB2BGR) image2 = cv2.cvtColor(numpy.asarray(image2), cv2.COLOR_RGB2BGR) image1 = cv2.resize(image1, size) image2 = cv2.resize(image2, size) sub_image1 = cv2.split(image1) sub_image2 = cv2.split(image2) sub_data = 0 for im1, im2 in zip(sub_image1, sub_image2): sub_data += calculate(im1, im2) sub_data = sub_data / 3 return sub_data class analyzer(): def __init__(self,sourcepath,slotpath): self.sourcepath = sourcepath self.slotpath = slotpath pass def analyze(self, img): source_path = self.sourcepath + img res = [0 for _ in range(len(slots_poss))] for i in range(len(slots_poss)): img1_path = get_crop(source_path, slots_poss[i]) for level in range(4): img2_path = self.slotpath + 'slot_lv' + str(level + 1)+'.png' result = classify_hist_with_split(img1_path, img2_path) if result[0] > 0.8: res[i] = (level+1) # print(img + str(level) + "相似度为:" + "%.2f%%" % (result * 100)) # print(img, res) # Image.open(source_path).crop((905, 215, 986, 235) # ).save(tmppath + str(res) + "-" + img) return res
BruceCheng1995/cyber_hunter
src/analyze_slot.py
analyze_slot.py
py
2,531
python
en
code
0
github-code
6
[ { "api_name": "PIL.Image.open", "line_number": 13, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 13, "usage_type": "name" }, { "api_name": "cv2.cvtColor", "line_number": 17, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 17, "usage_type": "call" }, { "api_name": "cv2.COLOR_RGB2BGR", "line_number": 17, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 18, "usage_type": "call" }, { "api_name": "cv2.COLOR_RGB2BGR", "line_number": 18, "usage_type": "attribute" }, { "api_name": "cv2.calcHist", "line_number": 19, "usage_type": "call" }, { "api_name": "cv2.calcHist", "line_number": 20, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 35, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 35, "usage_type": "name" }, { "api_name": "cv2.cvtColor", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 37, "usage_type": "call" }, { "api_name": "cv2.COLOR_RGB2BGR", "line_number": 37, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 38, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 38, "usage_type": "call" }, { "api_name": "cv2.COLOR_RGB2BGR", "line_number": 38, "usage_type": "attribute" }, { "api_name": "cv2.resize", "line_number": 39, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 40, "usage_type": "call" }, { "api_name": "cv2.split", "line_number": 41, "usage_type": "call" }, { "api_name": "cv2.split", "line_number": 42, "usage_type": "call" } ]
72715840829
from django.db import models from django import forms from django.contrib.auth import get_user_model # Create your models here. class Challenge(models.Model): title = models.CharField(max_length=200) author = models.ForeignKey ( # author info will be retrieved from the user model get_user_model(), on_delete=models.PROTECT # if the author user is deleted, preserve the challenge created ) pitch = models.CharField(max_length=200) description = models.TextField(default="") website = models.URLField() image_url = models.ImageField() date_created = models.DateTimeField() deadline = models.DateTimeField() class Meta: ordering = ["date_created"] # create a Challenge Form model to store its structure class ChallengeForm(forms.ModelForm): class Meta: model = Challenge fields = ( 'title', 'author', 'pitch', 'description', 'website', 'image_url', 'deadline' ) # how do we store the tasks from the front end?
hackathon-team-1/ReadingChallenge
readingchallenge/challenges/models.py
models.py
py
1,024
python
en
code
0
github-code
6
[ { "api_name": "django.db.models.Model", "line_number": 7, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 7, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 8, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 8, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 9, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 9, "usage_type": "name" }, { "api_name": "django.contrib.auth.get_user_model", "line_number": 10, "usage_type": "call" }, { "api_name": "django.db.models.PROTECT", "line_number": 11, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 11, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 13, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 13, "usage_type": "name" }, { "api_name": "django.db.models.TextField", "line_number": 14, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 14, "usage_type": "name" }, { "api_name": "django.db.models.URLField", "line_number": 15, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 15, "usage_type": "name" }, { "api_name": "django.db.models.ImageField", "line_number": 16, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 16, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 17, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 17, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 18, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 18, "usage_type": "name" }, { "api_name": "django.forms.ModelForm", "line_number": 24, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 24, "usage_type": "name" } ]
16916661051
import subprocess import sys import json import platform import os from crmetrics import CRBase class CRLogs(CRBase): def _get_container_logs(self, pod, namespace, containers, kubeconfig): for c in containers: container = c['name'] cmd = 'kubectl logs ' + pod + ' -n ' + namespace + ' -c ' + container + ' ' + kubeconfig #print(cmd) print("======== Pod::" + pod + "/container::" + container + " ===========") try: out = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True).communicate()[0] if out: print(out) except Exception as e: print(e) def get_logs(self, pod, namespace, kubeconfig): cmd = 'kubectl get pods ' + pod + ' -n ' + namespace + ' -o json ' + kubeconfig #print(cmd) try: out = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True).communicate()[0] if out: json_output = json.loads(out) containers = json_output['spec']['containers'] self._get_container_logs(pod, namespace, containers, kubeconfig) if 'initContainers' in json_output['spec']: init_containers = json_output['spec']['initContainers'] self._get_container_logs(pod, namespace, init_containers, kubeconfig) except Exception as e: print(e) def get_resources_composition(self, kind, instance, namespace, kubeconfig): platf = platform.system() kubeplus_home = os.getenv('KUBEPLUS_HOME') cmd = '' json_output = {} if platf == "Darwin": cmd = kubeplus_home + '/plugins/kubediscovery-macos composition ' elif platf == "Linux": cmd = kubeplus_home + '/plugins/kubediscovery-linux composition ' else: print("OS not supported:" + platf) return json_output cmd = cmd + kind + ' ' + instance + ' ' + namespace + ' ' + kubeconfig #print(cmd) out = '' try: out = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True).communicate()[0] out = out.decode('utf-8') except Exception as e: print(e) if out: print(out) try: json_output = json.loads(out) except Exception as e: print(e) return json_output def get_pods1(self, resources): pod_list = [] for resource in resources: #print(resource) if resource['Kind'] == 'Pod': present = False for p in pod_list: if p['Name'] == resource['Name']: present = True break if not present: pod_list.append(resource) #print(pod_list) return pod_list if __name__ == '__main__': crLogs = CRLogs() #crLogs.get_logs(sys.argv[1], sys.argv[2]) #resources = sys.argv[1] relation = sys.argv[1] kind = sys.argv[2] instance = sys.argv[3] namespace = sys.argv[4] kubeconfig = sys.argv[5] #print(kind + " " + instance + " " + namespace + " " + kubeconfig) resources = {} #if relation == 'connections': # resources = crLogs.get_resources_connections(kind, instance, namespace, kubeconfig) # #print(resources) #if relation == 'composition': # resources = crLogs.get_resources_composition(kind, instance, namespace, kubeconfig) # #print(resources) #resource_json = json.loads(resources) pods = crLogs.get_pods(kind, instance, kubeconfig) for pod in pods: pod_name = pod['Name'] pod_namespace = pod['Namespace'] #print(pod_name) crLogs.get_logs(pod_name, pod_namespace, kubeconfig) print("---------------------------------------")
cloud-ark/kubeplus
plugins/crlogs.py
crlogs.py
py
3,366
python
en
code
555
github-code
6
[ { "api_name": "crmetrics.CRBase", "line_number": 8, "usage_type": "name" }, { "api_name": "subprocess.Popen", "line_number": 18, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 18, "usage_type": "attribute" }, { "api_name": "subprocess.PIPE", "line_number": 19, "usage_type": "attribute" }, { "api_name": "subprocess.Popen", "line_number": 29, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 29, "usage_type": "attribute" }, { "api_name": "subprocess.PIPE", "line_number": 30, "usage_type": "attribute" }, { "api_name": "json.loads", "line_number": 33, "usage_type": "call" }, { "api_name": "platform.system", "line_number": 45, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 46, "usage_type": "call" }, { "api_name": "subprocess.Popen", "line_number": 60, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 60, "usage_type": "attribute" }, { "api_name": "subprocess.PIPE", "line_number": 61, "usage_type": "attribute" }, { "api_name": "json.loads", "line_number": 68, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 92, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 93, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 94, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 95, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 96, "usage_type": "attribute" } ]
5461750614
#Gets the longitude and latittude for an address using the Google Maps API import json import time import pandas as pd import urllib.error import urllib.parse import urllib.request #Gets api key from txt file with open(r".txt","r") as file: API_KEY = r"&key=" + file.readline() GEO_URL = r"https://maps.googleapis.com/maps/api/geocode/json?&address=" #Creates dataframe of all addresses from csv file specified df = pd.read_csv(r".csv") # df = pd.read_csv(r"-test.csv") #Removes duplicate addresses unique_search_address = df['SearchAddress'].unique() headers = ['SearchAddress','LAT','LON'] lat_lon = [] row = 1 for addr in unique_search_address: #formats address to be able to use in api f_addr = addr.replace(",", "").replace(" ", "%20") url = GEO_URL + f_addr + API_KEY try: result = json.load(urllib.request.urlopen(url)) lat_lon.append(( addr, result['results'][0]['geometry']['location']['lat'], result['results'][0]['geometry']['location']['lng'])) except: lat_lon.append((addr, None, None)) #Lets user know what row is being searched and prints to console, helpful in knowing script is running successfully but otherwise not necessary print(row) row = row + 1 #Converts list of address, lat, & lon tuples to a datafram df_join = pd.DataFrame(lat_lon, columns=headers) #Adds lat and lon to original dataframe using a left join df = df.merge(df_join, how='left', on='SearchAddress') df.to_csv(r".csv", index=False) # df.to_csv(r"test-results.csv", index=False)
randr000/MyPythonScripts
get_lat_lon_Google.py
get_lat_lon_Google.py
py
1,674
python
en
code
0
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 17, "usage_type": "call" }, { "api_name": "json.load", "line_number": 33, "usage_type": "call" }, { "api_name": "urllib.error.request.urlopen", "line_number": 33, "usage_type": "call" }, { "api_name": "urllib.error.request", "line_number": 33, "usage_type": "attribute" }, { "api_name": "urllib.error", "line_number": 33, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 47, "usage_type": "call" } ]
21402453945
import torch import math from torch import nn import torch.nn.functional as F from transformers.activations import get_activation from .utils import init_weights def _mask(logits, mask): return mask * logits - 1e3 * (1 - mask) # VarMisuse ----------------------------------------------------------------- class _LocRepairPointerHead(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.prediction = nn.Linear(config.hidden_size, 2) self.apply(init_weights) def forward(self, input_states): hidden = self.dense(input_states) hidden = get_activation("gelu")(hidden) logits = self.prediction(hidden) logits = logits.transpose(2, 1) return logits class VarMisuseBaseModel(nn.Module): def __init__(self, config, encoder): super().__init__() self.config = config self.encoder = encoder @torch.no_grad() def score(self, logits, labels): probs = nn.Softmax(dim = 2)(logits) # Location metrics loc_predict = probs[:, 0, :] loc_labels = labels[:, 0, :] locate = loc_predict.argmax(dim=1) locate = torch.nn.functional.one_hot(locate, num_classes=loc_predict.shape[1]).float() locate_acc = (locate * loc_labels).sum(dim=1) buggy_labels = 1 - loc_labels[:, 0] # Buggy classification false_alarms = 1 - ((1 - buggy_labels)*locate_acc).sum() / ((1 - buggy_labels).sum() + 1e-9) bug_acc = (buggy_labels * locate_acc).sum() / (buggy_labels.sum() + 1e-9) # Classification cls_predict = loc_predict[:, 0].round() cls_labels = loc_labels[:, 0] cls_acc = (cls_predict * cls_labels).mean() + ((1 - cls_predict) * buggy_labels).mean() #Repair pointer rep_probs = probs[:, 1, :] rep_labels = labels[:, 1, :] target_probs = (rep_labels * rep_probs).sum(dim=-1) target_predict = target_probs.round() target_acc = (target_predict * buggy_labels).sum() / (1e-9 + buggy_labels.sum()) joint_acc = (buggy_labels * locate_acc * target_predict).sum() / (1e-9 + buggy_labels.sum()) return { "classification_acc": cls_acc.item(), "localization_acc": locate_acc.mean().item(), "bug_acc": bug_acc.item(), "false_alarm_rate": false_alarms.item(), "repair_acc": target_acc.item(), "loc_repair_acc": joint_acc.item(), "avg_prediction": cls_predict.mean().item() } def loc_repair_acc(self, tokens, position_ids = None, labels = None): pass def forward(self, tokens, token_mask = None, position_ids = None, labels = None): prediction = self.loc_repair_logits(tokens, position_ids, labels) # Mask prediction if token_mask is not None: token_mask = token_mask.float().unsqueeze(1).expand_as(prediction) prediction = _mask(prediction, token_mask) # Calculate a loss if necessary if labels is not None: log_probs = nn.LogSoftmax(dim=2)(prediction) norm = labels.sum(dim=-1, keepdim = True) per_token_loss = (-labels * log_probs) / (norm + 1e-9) per_example_loss = per_token_loss.sum(dim=-1) per_task_loss = per_example_loss.mean(dim = 0) return per_task_loss.sum(), prediction return prediction class VarMisuseModel(VarMisuseBaseModel): def __init__(self, config, encoder): super().__init__(config, encoder) self.head = _LocRepairPointerHead(config) def loc_repair_logits(self, tokens, position_ids = None, labels = None): attention_mask = tokens.sum(dim=2).clamp_(0, 1) encoding, _ = self.encoder( tokens = tokens, attention_mask = attention_mask.bool(), position_ids = position_ids ) return self.head(encoding) # General model that works with inner repairs and localization -------------------------------- class _LocateHead(nn.Module): def __init__(self, config): super().__init__() self.ffn_in = nn.Linear(2 * config.hidden_size, config.hidden_size) self.ffn_out = nn.Linear(config.hidden_size, 1) self.apply(init_weights) def forward(self, context_embed, token_embed, token_mask = None, labels = None): assert context_embed.shape[1] == token_embed.shape[1] # Localization prediction -------------------------------- diff_vector = token_embed - context_embed diff_vector = torch.cat([context_embed, diff_vector], dim = 2) hidden = self.ffn_in(diff_vector) hidden = nn.Tanh()(hidden) hidden = self.ffn_out(hidden) hidden = hidden.squeeze(-1) if token_mask is not None: hidden = _mask(hidden, token_mask) # Loss calculation --------------------------------------- if labels is not None: locate_labels = labels[:, 0, :] log_probs = nn.LogSoftmax(dim=1)(hidden) loss = (-locate_labels * log_probs).sum(dim=1) return loss.mean(), hidden return None, hidden class _RepairHead(nn.Module): def __init__(self, config): super().__init__() self.config = config if config.decoder_vocab_size > 0: # We have a target vocab self.decoder = nn.Linear(config.hidden_size, config.decoder_vocab_size, bias = False) self.apply(init_weights) def forward(self, error_embed, context_embed, token_mask = None, labels = None, target_labels = None): # Compute a local pointer -------------------------------- repair_logits = torch.bmm(error_embed.unsqueeze(1), context_embed.transpose(2, 1)).squeeze() repair_logits /= math.sqrt(error_embed.shape[1]) if len(repair_logits.shape) < 2: repair_logits = repair_logits.unsqueeze(0) if token_mask is not None and not self.config.token_annotate: repair_logits = _mask(repair_logits, token_mask) if labels is not None: repair_labels = labels[:, 1, :] # Compute a global vocab index --------------------------- if hasattr(self, "decoder"): decoder_logits = self.decoder(error_embed) repair_logits = torch.cat([repair_logits, decoder_logits], dim = 1) if labels is not None and target_labels is not None: ohe_labels = F.one_hot(target_labels, num_classes=self.config.decoder_vocab_size) ohe_labels[:, 0] = 0 repair_labels = torch.cat([repair_labels, ohe_labels], dim = 1) # Loss computation --------------------------------------- if labels is not None: repair_log_probs = nn.LogSoftmax(dim = 1)(repair_logits) norm = repair_labels.sum(dim = -1).clamp_(0, 1) # Collect log probs # log sum_(t_i = w)(P(t_i)) = log sum_(t_i = w)(exp log P(t_i)) # = LSE(log P(t_i)) repair_log_probs = _mask(repair_log_probs, repair_labels) per_example_loss = -norm * torch.logsumexp(repair_log_probs, dim = 1) return per_example_loss.mean(), repair_logits return None, repair_logits class LocateRepairModel(nn.Module): def __init__(self, config, encoder): super().__init__() self.config = config self.encoder = encoder self.locate_head = _LocateHead(config) self.repair_head = _RepairHead(config) @torch.no_grad() def score(self, logits, labels): locate_logits, repair_logits = logits # Score for localization loc_predict = nn.Softmax(dim = 1)(locate_logits) loc_labels = labels[:, 0, :] locate = loc_predict.argmax(dim=1) locate = torch.nn.functional.one_hot(locate, num_classes=loc_predict.shape[1]).float() locate_acc = (locate * loc_labels).sum(dim=1) buggy_labels = 1 - loc_labels[:, 0] # Buggy classification false_alarms = 1 - ((1 - buggy_labels)*locate_acc).sum() / ((1 - buggy_labels).sum() + 1e-9) bug_acc = (buggy_labels * locate_acc).sum() / (buggy_labels.sum() + 1e-9) # Classification cls_predict = loc_predict[:, 0].round() cls_labels = loc_labels[:, 0] cls_acc = (cls_predict * cls_labels).mean() + ((1 - cls_predict) * buggy_labels).mean() # Repair scores rep_probs = nn.Softmax(dim = 1)(repair_logits) rep_labels = labels[:, 1, :] if rep_probs.shape[1] != rep_labels.shape[1]: target_labels = labels[:, 2, :] target_labels = target_labels[loc_labels.bool()] ohe_labels = F.one_hot(target_labels, num_classes=self.config.decoder_vocab_size) ohe_labels[:, 0] = 0 rep_labels = torch.cat([rep_labels, ohe_labels], dim = 1) target_probs = (rep_labels * rep_probs).sum(dim=-1) target_predict = target_probs.round() target_acc = (target_predict * buggy_labels).sum() / (1e-9 + buggy_labels.sum()) joint_acc = (buggy_labels * locate_acc * target_predict).sum() / (1e-9 + buggy_labels.sum()) return { "classification_acc": cls_acc.item(), "localization_acc": locate_acc.mean().item(), "bug_acc": bug_acc.item(), "false_alarm_rate": false_alarms.item(), "repair_acc": target_acc.item(), "loc_repair_acc": joint_acc.item(), "avg_prediction": cls_predict.mean().item() } def forward(self, tokens, token_mask = None, position_ids = None, labels = None): attention_mask = tokens.sum(dim=2).clamp_(0, 1) context_embed, token_embed = self.encoder( tokens = tokens, attention_mask = attention_mask.bool(), position_ids = position_ids, token_type_ids = token_mask if self.config.token_annotate else None, ) locate_loss, locate_logits = self.locate_head(context_embed, token_embed, token_mask, labels) # Either use the gold localization or the predicted to get the error position error_repair_labels = None if labels is not None: # We are training locate_mask = labels[:, 0, :].bool() if self.config.decoder_vocab_size > 0: assert labels.shape[1] >= 2, "If a target vocabulary is specified we expect that target labels are provided." error_repair_labels = labels[:, 2, :] error_repair_labels = error_repair_labels[locate_mask] else: # We are at inference locate = locate_logits.argmax(dim=1) locate_mask = F.one_hot(locate, num_classes=tokens.shape[1]).bool() error_hidden = context_embed[locate_mask] # ---------------------------------------------------------------- repair_loss, repair_logits = self.repair_head( error_hidden, context_embed, token_mask, labels, error_repair_labels ) if labels is not None: return locate_loss + repair_loss, (locate_logits, repair_logits) return (locate_logits, repair_logits) # Masked repair ---------------------------------------------------------------- class MaskedRepairModel(nn.Module): def __init__(self, config, encoder): super().__init__() self.config = config self.encoder = encoder self.repair_head = _RepairHead(config) @torch.no_grad() def score(self, repair_logits, labels): # Repair mask loc_labels = labels[:, 0, :] buggy_labels = 1 - loc_labels[:, 0] # Repair scores rep_probs = nn.Softmax(dim = 1)(repair_logits) rep_labels = labels[:, 1, :] if rep_probs.shape[1] != rep_labels.shape[1]: target_labels = labels[:, 2, :] target_labels = target_labels[loc_labels.bool()] ohe_labels = F.one_hot(target_labels, num_classes=self.config.decoder_vocab_size) ohe_labels[:, 1] = 0 rep_labels = torch.cat([rep_labels, ohe_labels], dim = 1) target_probs = (rep_labels * rep_probs).sum(dim=-1) target_predict = target_probs.round() target_acc = (target_predict * buggy_labels).sum() / (1e-9 + buggy_labels.sum()) return { "repair_acc": target_acc.item() } def forward(self, tokens, token_mask = None, position_ids = None, labels = None, repair_mask = None): attention_mask = tokens.sum(dim=2).clamp_(0, 1) context_embed, _ = self.encoder( tokens = tokens, attention_mask = attention_mask.bool(), position_ids = position_ids, token_type_ids = token_mask if self.config.token_annotate else None, ) # Either use the gold localization or the predicted to get the error position error_repair_labels = None if labels is not None: # We are training locate_mask = labels[:, 0, :].bool() if self.training and self.config.decoder_vocab_size > 0: assert labels.shape[1] >= 2, "If a target vocabulary is specified we expect that target labels are provided." error_repair_labels = labels[:, 2, :] error_repair_labels = error_repair_labels[locate_mask] else: # We are at inference if repair_mask is None: raise ValueError("Location labels are required to identify mask position.") locate_mask = repair_mask.bool() error_hidden = context_embed[locate_mask] # ---------------------------------------------------------------- repair_loss, repair_logits = self.repair_head( error_hidden, context_embed, token_mask, labels, error_repair_labels ) if labels is not None: return repair_loss, repair_logits return repair_logits
cedricrupb/ctxmutants
ctxmutants/modelling/meta_models.py
meta_models.py
py
14,434
python
en
code
0
github-code
6
[ { "api_name": "torch.nn.Module", "line_number": 16, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 16, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 21, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 21, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 22, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 22, "usage_type": "name" }, { "api_name": "utils.init_weights", "line_number": 24, "usage_type": "argument" }, { "api_name": "transformers.activations.get_activation", "line_number": 28, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 34, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 34, "usage_type": "name" }, { "api_name": "torch.nn.Softmax", "line_number": 44, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 44, "usage_type": "name" }, { "api_name": "torch.nn.functional.one_hot", "line_number": 51, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 51, "usage_type": "attribute" }, { "api_name": "torch.no_grad", "line_number": 42, "usage_type": "call" }, { "api_name": "torch.nn.LogSoftmax", "line_number": 99, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 99, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 134, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 134, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 139, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 139, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 140, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 140, "usage_type": "name" }, { "api_name": "utils.init_weights", "line_number": 142, "usage_type": "argument" }, { "api_name": "torch.cat", "line_number": 150, "usage_type": "call" }, { "api_name": "torch.nn.Tanh", "line_number": 152, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 152, "usage_type": "name" }, { "api_name": "torch.nn.LogSoftmax", "line_number": 162, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 162, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 170, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 170, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 177, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 177, "usage_type": "name" }, { "api_name": "utils.init_weights", "line_number": 178, "usage_type": "argument" }, { "api_name": "torch.bmm", "line_number": 184, "usage_type": "call" }, { "api_name": "math.sqrt", "line_number": 185, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 200, "usage_type": "call" }, { "api_name": "torch.nn.functional.one_hot", "line_number": 203, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 203, "usage_type": "name" }, { "api_name": "torch.cat", "line_number": 205, "usage_type": "call" }, { "api_name": "torch.nn.LogSoftmax", "line_number": 210, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 210, "usage_type": "name" }, { "api_name": "torch.logsumexp", "line_number": 217, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 225, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 225, "usage_type": "name" }, { "api_name": "torch.nn.Softmax", "line_number": 241, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 241, "usage_type": "name" }, { "api_name": "torch.nn.functional.one_hot", "line_number": 245, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 245, "usage_type": "attribute" }, { "api_name": "torch.nn.Softmax", "line_number": 260, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 260, "usage_type": "name" }, { "api_name": "torch.nn.functional.one_hot", "line_number": 266, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 266, "usage_type": "name" }, { "api_name": "torch.cat", "line_number": 268, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 236, "usage_type": "call" }, { "api_name": "torch.nn.functional.one_hot", "line_number": 318, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 318, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 340, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 340, "usage_type": "name" }, { "api_name": "torch.nn.Softmax", "line_number": 357, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 357, "usage_type": "name" }, { "api_name": "torch.nn.functional.one_hot", "line_number": 363, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 363, "usage_type": "name" }, { "api_name": "torch.cat", "line_number": 365, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 349, "usage_type": "call" } ]
5479249067
""" Proximal Policy Optimization Algorithms (PPO): https://arxiv.org/pdf/1707.06347.pdf Related Tricks(May not be useful): Mastering Complex Control in MOBA Games with Deep Reinforcement Learning (Dual Clip) https://arxiv.org/pdf/1912.09729.pdf A Closer Look at Deep Policy Gradients (Value clip, Reward normalizer) https://openreview.net/pdf?id=ryxdEkHtPS Revisiting Design Choices in Proximal Policy Optimization https://arxiv.org/pdf/2009.10897.pdf Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations (DAPG): https://arxiv.org/pdf/1709.10087.pdf """ from collections import defaultdict from copy import deepcopy import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import math from maniskill2_learn.env import build_replay from maniskill2_learn.networks import build_actor_critic, build_model from maniskill2_learn.utils.torch import build_optimizer from maniskill2_learn.utils.data import DictArray, GDict, to_np, to_torch from maniskill2_learn.utils.meta import get_logger, get_world_rank, get_world_size from maniskill2_learn.utils.torch import BaseAgent, RunningMeanStdTorch, RunningSecondMomentumTorch, barrier, get_flat_grads, get_flat_params, set_flat_grads from ..builder import MFRL @MFRL.register_module() class PPO(BaseAgent): def __init__( self, actor_cfg, critic_cfg, env_params, gamma=0.99, lmbda=0.95, max_kl=None, obs_norm=False, rew_norm=True, adv_norm=True, recompute_value=True, eps_clip=0.2, critic_coeff=0.5, entropy_coeff=0.0, num_epoch=10, critic_epoch=-1, actor_epoch=-1, num_mini_batch=-1, critic_warmup_epoch=0, batch_size=256, max_grad_norm=0.5, rms_grad_clip=None, dual_clip=None, critic_clip=False, shared_backbone=False, detach_actor_feature=True, debug_grad=False, demo_replay_cfg=None, dapg_lambda=0.1, dapg_damping=0.995, ignore_dones=True, visual_state_coeff=-1, visual_state_mlp_cfg=None, **kwargs ): super(PPO, self).__init__() assert dual_clip is None or dual_clip > 1.0, "Dual-clip PPO parameter should greater than 1.0." assert max_grad_norm is None or rms_grad_clip is None, "Only one gradient clip mode is allowed!" assert ( (num_epoch > 0 and (actor_epoch < 0 and critic_epoch < 0)) or (num_epoch < 0 and (actor_epoch > 0 and critic_epoch > 0)), "We need only one set of the parameters num_epoch > 0, (actor_epoch > 0 and critic_epoch > 0).", ) if not rew_norm: assert not critic_clip, "Value clip is available only when `reward_normalization` is True" actor_cfg = deepcopy(actor_cfg) critic_cfg = deepcopy(critic_cfg) actor_optim_cfg = actor_cfg.pop("optim_cfg", None) critic_optim_cfg = critic_cfg.pop("optim_cfg", None) obs_shape = env_params["obs_shape"] self.is_discrete = env_params["is_discrete"] self.gamma = gamma self.lmbda = lmbda self.adv_norm = adv_norm self.obs_rms = RunningMeanStdTorch(obs_shape, clip_max=10) if obs_norm else None self.rew_rms = RunningMeanStdTorch(1) if rew_norm else None self.critic_coeff = critic_coeff self.entropy_coeff = entropy_coeff self.eps_clip = eps_clip self.dual_clip = dual_clip self.critic_clip = critic_clip self.max_kl = max_kl self.recompute_value = recompute_value self.max_grad_norm = max_grad_norm self.rms_grad_clip = rms_grad_clip self.debug_grad = debug_grad self.num_mini_batch = num_mini_batch self.batch_size = batch_size # The batch size for policy gradient self.critic_warmup_epoch = critic_warmup_epoch self.num_epoch = num_epoch self.critic_epoch = critic_epoch self.actor_epoch = actor_epoch # Use extra state to get better feature self.regress_visual_state = visual_state_coeff > 0 and visual_state_mlp_cfg is not None and "visual_state" in obs_shape self.visual_state_coeff = visual_state_coeff if self.regress_visual_state: assert shared_backbone, "Only Visuomotor policy supports extra state fitting" # For DAPG self.dapg_lambda = nn.Parameter(to_torch(dapg_lambda), requires_grad=False) self.dapg_damping = dapg_damping self.demo_replay = build_replay(demo_replay_cfg) if self.demo_replay is not None: for key in ['obs', 'actions']: assert key in self.demo_replay.memory, f"DAPG needs {key} in your demo!" # For done signal process. self.ignore_dones = ignore_dones # Build networks actor_cfg.update(env_params) critic_cfg.update(env_params) self.actor, self.critic = build_actor_critic(actor_cfg, critic_cfg, shared_backbone) if self.regress_visual_state: visual_state_mlp_cfg.mlp_spec += [obs_shape["visual_state"]] self.extra_fit = build_model(visual_state_mlp_cfg) if rms_grad_clip is not None: self.grad_rms = RunningSecondMomentumTorch(get_flat_params(self, trainable=True).shape, clip_max=rms_grad_clip) self.shared_backbone = shared_backbone self.detach_actor_feature = detach_actor_feature self.actor_optim = build_optimizer(self.actor, actor_optim_cfg) self.critic_optim = build_optimizer(self.critic, critic_optim_cfg) def compute_critic_loss(self, samples): # For update_actor_critic and update critic assert isinstance(samples, (dict, GDict)) values = self.critic( samples["obs"], episode_dones=samples["episode_dones"], save_feature=True ) feature = self.critic.values[0].backbone.pop_attr("saved_feature") visual_feature = self.critic.values[0].backbone.pop_attr("saved_visual_feature") if self.detach_actor_feature and feature is not None: feature = feature.detach() if self.critic_clip and isinstance(self.critic_clip, float): v_clip = samples["old_values"] + (values - samples["old_values"]).clamp(-self.critic_clip, self.critic_clip) vf1 = (samples["returns"] - values).pow(2) vf2 = (samples["returns"] - v_clip).pow(2) critic_loss = torch.max(vf1, vf2) else: critic_loss = (samples["returns"] - values).pow(2) critic_loss = critic_loss.mean() if samples["is_valid"] is None else critic_loss[samples["is_valid"]].mean() return critic_loss, feature, visual_feature def update_actor_critic(self, samples, demo_samples=None, with_critic=False): """ Returns True if self.max_kl is not None and policy update causes large kl divergence between new policy and old policy, in which case we stop the policy update and throw away the current replay buffer """ is_valid = samples["is_valid"] self.actor_optim.zero_grad() self.critic_optim.zero_grad() ret = {} critic_loss, actor_loss, demo_actor_loss, visual_state_loss, entropy_term = [0.0] * 5 feature, visual_feature, critic_loss, policy_std = [None] * 4 if with_critic: critic_mse, feature, visual_feature = self.compute_critic_loss(samples) critic_loss = critic_mse * self.critic_coeff ret["ppo/critic_err"] = critic_mse.item() # ret['ppo/critic_loss'] = critic_loss.item() # Run actor forward alls = self.actor( samples["obs"], episode_dones=samples["episode_dones"], mode="dist" if self.is_discrete else "dist_std", feature=feature, save_feature=feature is None, require_aux_loss=True, # auxiliary backbone self-supervision, e.g. aux_regress in VisuomotorTransformerFrame ) if isinstance(alls, dict) and 'aux_loss' in alls.keys(): # auxiliary backbone self-supervision, e.g. aux_regress in VisuomotorTransformerFrame alls, backbone_aux_loss = alls['feat'], alls['aux_loss'] else: backbone_aux_loss = None if not self.is_discrete: new_distributions, policy_std = alls else: new_distributions, policy_std = alls, None del alls if visual_feature is None: visual_feature = self.actor.backbone.pop_attr("saved_visual_feature") # Compute actor loss dist_entropy = new_distributions.entropy().mean() recent_log_p = new_distributions.log_prob(samples["actions"]) log_ratio = recent_log_p - samples["old_log_p"] ratio = log_ratio.exp() # print("ratio", ratio[:20], flush=True) # Estimation of KL divergence = p (log p - log q) with method in Schulman blog: http://joschu.net/blog/kl-approx.html with torch.no_grad(): approx_kl_div = (ratio - 1 - log_ratio).mean().item() clip_frac = (torch.abs(ratio - 1) > self.eps_clip).float().mean().item() if policy_std is not None: ret["ppo/policy_std"] = policy_std.mean().item() ret["ppo/entropy"] = dist_entropy.item() ret["ppo/mean_p_ratio"] = ratio.mean().item() ret["ppo/max_p_ratio"] = ratio.max().item() ret["ppo/log_p"] = recent_log_p.mean().item() ret["ppo/clip_frac"] = clip_frac ret["ppo/approx_kl"] = approx_kl_div sign = GDict(self.max_kl is not None and approx_kl_div > self.max_kl * 1.5).allreduce(op="BOR", wrapper=False) if sign: return True, ret if ratio.ndim == samples["advantages"].ndim - 1: ratio = ratio[..., None] surr1 = ratio * samples["advantages"] surr2 = ratio.clamp(1 - self.eps_clip, 1 + self.eps_clip) * samples["advantages"] surr = torch.min(surr1, surr2) if self.dual_clip: surr = torch.max(surr, self.dual_clip * samples["advantages"]) actor_loss = -surr[is_valid].mean() entropy_term = -dist_entropy * self.entropy_coeff ret["ppo/actor_loss"] = actor_loss.item() ret["ppo/entropy_loss"] = entropy_term.item() # DAPG actor loss if demo_samples is not None: new_demo_distributions = self.actor(demo_samples["obs"], mode="dist") nll_loss_demo = -new_demo_distributions.log_prob(demo_samples["actions"]).mean() demo_actor_loss = nll_loss_demo * self.dapg_lambda with torch.no_grad(): ret["dapg/demo_nll_loss"] = nll_loss_demo.item() ret["dapg/demo_actor_loss"] = demo_actor_loss.item() # State regression loss if self.regress_visual_state: assert feature is not None visual_state_mse = F.mse_loss(self.extra_fit(visual_feature), samples["obs/visual_state"], reduction="none") visual_state_mse = visual_state_mse[is_valid].mean() ret["ppo-extra/visual_state_mse"] = visual_state_mse visual_state_loss = visual_state_mse * self.visual_state_coeff ret["ppo-extra/visual_state_loss"] = visual_state_loss.item() # Backbone auxiliary supervision loss if backbone_aux_loss is not None: ret["ppo-extra/backbone_auxiliary_loss"] = backbone_aux_loss.item() loss = actor_loss + entropy_term + critic_loss + visual_state_loss + demo_actor_loss if backbone_aux_loss is not None: loss = loss + backbone_aux_loss loss.backward() net = self if with_critic else self.actor ret["grad/grad_norm"] = net.grad_norm if math.isnan(ret["grad/grad_norm"]): print("############ Debugging nan grad ############", flush=True) print("Dist mean", new_distributions.mean, flush=True) print("Dist std", new_distributions.stddev, flush=True) print("Samples[actions]", samples["actions"], flush=True) print("Recent_log_p", recent_log_p, flush=True) print("Samples[old_log_p]", samples["old_log_p"], flush=True) for k, v in ret.keys(): print(k, v, flush=True) if self.shared_backbone: if getattr(self.actor.backbone, "visual_nn", None) is not None: ret["grad/visual_grad"] = self.actor.backbone.visual_nn.grad_norm if getattr(self.actor.backbone, "final_mlp", None) is not None: ret["grad/actor_mlp_grad"] = self.actor.backbone.final_mlp.grad_norm elif self.actor.final_mlp is not None: ret["grad/actor_mlp_grad"] = self.actor.final_mlp.grad_norm if with_critic: if getattr(self.critic.values[0].backbone, "final_mlp", None) is not None: ret["grad/critic_mlp_grad"] = self.critic.values[0].backbone.final_mlp.grad_norm elif self.critic.values[0].final_mlp is not None: ret["grad/critic_mlp_grad"] = self.critic.values[0].final_mlp.grad_norm if self.max_grad_norm is not None: nn.utils.clip_grad_norm_(net.parameters(), self.max_grad_norm) elif self.rms_grad_clip is not None: grads = get_flat_grads(self) grads = self.grad_rms.add(grads) set_flat_grads(self, grads) ret["grad/clipped_grad_norm"] = net.grad_norm self.actor_optim.step() if with_critic: self.critic_optim.step() return False, ret def update_critic(self, samples, demo_samples=None): self.critic_optim.zero_grad() critic_mse = self.compute_critic_loss(samples)[0] critic_loss = critic_mse * self.critic_coeff critic_loss.backward() ret = {} ret["grad/grad_norm"] = self.critic.grad_norm if self.max_grad_norm is not None: nn.utils.clip_grad_norm_(self.critic.parameters(), self.max_grad_norm) elif self.rms_grad_clip is not None: assert False grads = get_flat_grads(self) grads = self.grad_rms.add(grads) set_flat_grads(self, grads) ret["grad/clipped_grad_norm"] = self.critic.grad_norm ret["ppo/critic_loss"] = critic_loss.item() ret["ppo/critic_mse"] = critic_mse.item() self.critic_optim.step() return ret def update_parameters(self, memory, updates, with_v=False): world_size = get_world_size() logger = get_logger() ret = defaultdict(list) process_batch_size = self.batch_size if GDict(memory["obs"]).is_big else None if self.num_mini_batch < 0: max_samples = GDict(len(memory)).allreduce(op="MAX", device=self.device, wrapper=False) if world_size > 1 else len(memory) num_mini_batch = int((max_samples + self.batch_size - 1) // self.batch_size) else: num_mini_batch = self.num_mini_batch logger.info(f"Number of batches in one PPO epoch: {num_mini_batch}!") if len(memory) < memory.capacity: memory["episode_dones"][len(memory) :] = True # Do transformation for all valid samples memory["episode_dones"] = (memory["episode_dones"] + memory["is_truncated"]) > 1 - 0.1 if self.has_obs_process: self.obs_rms.sync() obs = GDict({"obs": memory["obs"], "next_obs": memory["next_obs"]}).to_torch(device="cpu", wrapper=False) obs = GDict(self.process_obs(obs, batch_size=process_batch_size)).to_numpy(wrapper=False) memory.update(obs) with torch.no_grad(): memory["old_distribution"], memory["old_log_p"] = self.get_dist_with_logp( obs=memory["obs"], actions=memory["actions"], batch_size=process_batch_size ) ret["ppo/old_log_p"].append(memory["old_log_p"].mean().item()) demo_memory = self.demo_replay if demo_memory is not None: with torch.no_grad(): demo_memory = self.demo_replay.sample(min(len(self.demo_replay), len(memory))) if self.has_obs_process: demo_memory = demo_memory.to_torch(device="cpu") demo_memory = self.process_obs(demo_memory, batch_size=process_batch_size) demo_memory = demo_memory.to_numpy() if self.ignore_dones: demo_memory["dones"] = demo_memory["dones"] * 0 def run_over_buffer(epoch_id, mode="v"): nonlocal memory, ret, demo_memory, logger assert mode in ["v", "pi", "v+pi"] if "v" in mode and (epoch_id == 0 or self.recompute_value): with self.critic.no_sync(): memory.update( self.compute_gae( obs=memory["obs"], next_obs=memory["next_obs"], rewards=memory["rewards"], dones=memory["dones"], episode_dones=memory["episode_dones"], update_rms=True, batch_size=process_batch_size, ignore_dones=self.ignore_dones, ) ) if self.adv_norm: # print(mean_adv, std_adv) mean_adv = memory["advantages"].mean(0) std_adv = memory["advantages"].std(0) + 1e-8 mean_adv, std_adv = GDict([mean_adv, std_adv]).allreduce(wrapper=False) # print(mean_adv, std_adv) # exit(0) memory["advantages"] = (memory["advantages"] - mean_adv) / std_adv ret["ppo/adv_mean"].append(mean_adv.item()) ret["ppo/adv_std"].append(std_adv.item()) ret["ppo/max_normed_adv"].append(np.abs(memory["advantages"]).max().item()) ret["ppo/v_target"].append(memory["returns"].mean().item()) ret["ppo/ori_returns"].append(memory["original_returns"].mean().item()) def run_one_iter(samples, demo_samples): if "pi" in mode: flag, infos = self.update_actor_critic(samples, demo_samples, with_critic=(mode == "v+pi")) for key in infos: ret[key].append(infos[key]) elif mode == "v": flag, infos = False, self.update_critic(samples, demo_samples) for key in infos: ret[key].append(infos[key]) return flag for samples in memory.mini_batch_sampler(self.batch_size, drop_last=True, auto_restart=True, max_num_batches=num_mini_batch): samples = DictArray(samples).to_torch(device=self.device, non_blocking=True) demo_samples = None if demo_memory is not None: indices = np.random.randint(0, high=len(demo_memory), size=self.batch_size) demo_samples = demo_memory.slice(indices).to_torch(device=self.device, non_blocking=True) if run_one_iter(samples, demo_samples): return True return False if self.critic_warmup_epoch > 0: logger.info("**Warming up critic at the beginning of training; this causes reported ETA to be slower than actual ETA**") for i in range(self.critic_warmup_epoch): run_over_buffer(i, "v") if self.num_epoch > 0: for i in range(self.num_epoch): num_actor_epoch = i + 1 if run_over_buffer(i, "v+pi"): break else: for i in range(self.critic_epoch): run_over_buffer(i, "v") for i in range(self.actor_epoch): num_actor_epoch = i + 1 if run_over_buffer(i, "pi"): break self.critic_warmup_epoch = 0 ret = {key: np.mean(ret[key]) for key in ret} with torch.no_grad(): ret["param/max_policy_abs"] = torch.max(torch.abs(get_flat_params(self.actor))).item() ret["param/policy_norm"] = torch.norm(get_flat_params(self.actor)).item() if isinstance(self.critic, nn.Module): ret["param/max_critic_abs"] = torch.max(torch.abs(get_flat_params(self.critic))).item() ret["param/critic_norm"] = torch.norm(get_flat_params(self.critic)).item() for key in ["old_distribution", "old_log_p", "old_values", "old_next_values", "original_returns", "returns", "advantages"]: if key in memory.memory: memory.memory.pop(key) ret["ppo/num_actor_epoch"] = num_actor_epoch if self.demo_replay is not None: # For DAPG ret["dapg/demo_lambda"] = self.dapg_lambda.item() self.dapg_lambda *= self.dapg_damping if with_v: # For PPG ret["vf"] = to_np(memory["original_returns"]) # exit(0) return ret
haosulab/ManiSkill2-Learn
maniskill2_learn/methods/mfrl/ppo.py
ppo.py
py
21,464
python
en
code
53
github-code
6
[ { "api_name": "maniskill2_learn.utils.torch.BaseAgent", "line_number": 36, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 90, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 91, "usage_type": "call" }, { "api_name": "maniskill2_learn.utils.torch.RunningMeanStdTorch", "line_number": 102, "usage_type": "call" }, { "api_name": "maniskill2_learn.utils.torch.RunningMeanStdTorch", "line_number": 103, "usage_type": "call" }, { "api_name": "torch.nn.Parameter", "line_number": 132, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 132, "usage_type": "name" }, { "api_name": "maniskill2_learn.utils.data.to_torch", "line_number": 132, "usage_type": "call" }, { "api_name": "maniskill2_learn.env.build_replay", "line_number": 134, "usage_type": "call" }, { "api_name": "maniskill2_learn.networks.build_actor_critic", "line_number": 146, "usage_type": "call" }, { "api_name": "maniskill2_learn.networks.build_model", "line_number": 150, "usage_type": "call" }, { "api_name": "maniskill2_learn.utils.torch.RunningSecondMomentumTorch", "line_number": 153, "usage_type": "call" }, { "api_name": "maniskill2_learn.utils.torch.get_flat_params", "line_number": 153, "usage_type": "call" }, { "api_name": "maniskill2_learn.utils.torch.build_optimizer", "line_number": 158, "usage_type": "call" }, { "api_name": "maniskill2_learn.utils.torch.build_optimizer", "line_number": 159, "usage_type": "call" }, { "api_name": "maniskill2_learn.utils.data.GDict", "line_number": 163, "usage_type": "name" }, { "api_name": "torch.max", "line_number": 176, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 233, "usage_type": "call" }, { "api_name": "torch.abs", "line_number": 235, "usage_type": "call" }, { "api_name": "maniskill2_learn.utils.data.GDict", "line_number": 245, "usage_type": "call" }, { "api_name": "torch.min", "line_number": 255, "usage_type": "call" }, { "api_name": "torch.max", "line_number": 257, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 268, "usage_type": "call" }, { "api_name": "torch.nn.functional.mse_loss", "line_number": 275, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 275, "usage_type": "name" }, { "api_name": "math.isnan", "line_number": 292, "usage_type": "call" }, { "api_name": "torch.nn.utils.clip_grad_norm_", "line_number": 318, "usage_type": "call" }, { "api_name": "torch.nn.utils", "line_number": 318, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 318, "usage_type": "name" }, { "api_name": "maniskill2_learn.utils.torch.get_flat_grads", "line_number": 320, "usage_type": "call" }, { "api_name": "maniskill2_learn.utils.torch.set_flat_grads", "line_number": 322, "usage_type": "call" }, { "api_name": "torch.nn.utils.clip_grad_norm_", "line_number": 340, "usage_type": "call" }, { "api_name": "torch.nn.utils", "line_number": 340, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 340, "usage_type": "name" }, { "api_name": "maniskill2_learn.utils.torch.get_flat_grads", "line_number": 343, "usage_type": "call" }, { "api_name": "maniskill2_learn.utils.torch.set_flat_grads", "line_number": 345, "usage_type": "call" }, { "api_name": "maniskill2_learn.utils.meta.get_world_size", "line_number": 354, "usage_type": "call" }, { "api_name": "maniskill2_learn.utils.meta.get_logger", "line_number": 355, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 356, "usage_type": "call" }, { "api_name": "maniskill2_learn.utils.data.GDict", "line_number": 358, "usage_type": "call" }, { "api_name": "maniskill2_learn.utils.data.GDict", "line_number": 360, "usage_type": "call" }, { "api_name": "maniskill2_learn.utils.data.GDict", "line_number": 373, "usage_type": "call" }, { "api_name": "maniskill2_learn.utils.data.GDict", "line_number": 374, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 377, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 385, "usage_type": "call" }, { "api_name": "maniskill2_learn.utils.data.GDict", "line_number": 417, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 423, "usage_type": "call" }, { "api_name": "maniskill2_learn.utils.data.DictArray", "line_number": 440, "usage_type": "call" }, { "api_name": "numpy.random.randint", "line_number": 443, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 443, "usage_type": "attribute" }, { "api_name": "numpy.mean", "line_number": 468, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 469, "usage_type": "call" }, { "api_name": "torch.max", "line_number": 470, "usage_type": "call" }, { "api_name": "torch.abs", "line_number": 470, "usage_type": "call" }, { "api_name": "maniskill2_learn.utils.torch.get_flat_params", "line_number": 470, "usage_type": "call" }, { "api_name": "torch.norm", "line_number": 471, "usage_type": "call" }, { "api_name": "maniskill2_learn.utils.torch.get_flat_params", "line_number": 471, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 472, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 472, "usage_type": "name" }, { "api_name": "torch.max", "line_number": 473, "usage_type": "call" }, { "api_name": "torch.abs", "line_number": 473, "usage_type": "call" }, { "api_name": "maniskill2_learn.utils.torch.get_flat_params", "line_number": 473, "usage_type": "call" }, { "api_name": "torch.norm", "line_number": 474, "usage_type": "call" }, { "api_name": "maniskill2_learn.utils.torch.get_flat_params", "line_number": 474, "usage_type": "call" }, { "api_name": "maniskill2_learn.utils.data.to_np", "line_number": 487, "usage_type": "call" }, { "api_name": "builder.MFRL.register_module", "line_number": 35, "usage_type": "call" }, { "api_name": "builder.MFRL", "line_number": 35, "usage_type": "name" } ]
442805106
import tensorflow as tf from PIL import Image import cv2 import numpy as np import uuid import os from .admin import model_path, label_path from .utility import load_image_into_numpy_array, calculate_area, delete_and_create_folder, shortest_longest_area import sys sys.path.append("../models/research") from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as vis_util # define a class brand object that will take the video input, make predictions and calculate the KPI metrics class BrandObjectService: def __init__(self, video_path): self.video_path = video_path self.save_path = "./save_path" self.predicted_path = './predicted_frames' delete_and_create_folder(self.save_path) delete_and_create_folder(self.predicted_path) def predict(self): NUM_CLASSES = 7 KPIs_dict = dict() #Load a (frozen) Tensorflow model into memory. detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(model_path, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') # Loading label map label_map = label_map_util.load_labelmap(label_path) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) # Size, in inches, of the output images. IMAGE_SIZE = (500, 500) count = 0 frame_number = 0 cap = cv2.VideoCapture(self.video_path) with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: while cap.isOpened(): frame_number += 1 ret, frame = cap.read() filename = str(uuid.uuid4()) + ".jpg" fullpath = os.path.join(self.save_path, filename) cv2.imwrite(fullpath, frame) count += 1 ### for testing script... if count == 50: break image = Image.open(fullpath) image_np = load_image_into_numpy_array(image) image_np_expanded = np.expand_dims(image_np, axis=0) image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') boxes = detection_graph.get_tensor_by_name('detection_boxes:0') scores = detection_graph.get_tensor_by_name('detection_scores:0') classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') (boxes, scores, classes, num_detections) = sess.run( [boxes, scores, classes, num_detections], feed_dict={image_tensor: image_np_expanded}) # Visualization of the results of a detection image, box_to_display_str_map = vis_util.visualize_boxes_and_labels_on_image_array( image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8) image_pil = Image.fromarray(np.uint8(image_np)).convert('RGB') im_width, im_height = image_pil.size area_whole = im_width * im_height for key, value in box_to_display_str_map.items(): ymin, xmin, ymax, xmax = key (left, right, top, bottom) = ( xmin * im_width, xmax * im_width, ymin * im_height, ymax * im_height) area = calculate_area(top, left, bottom, right) percent_area = round(area / area_whole, 2) rindex = value[0].rfind(':') brand_name = value[0][:rindex] if brand_name in KPIs_dict.keys(): KPIs_dict[brand_name]['count'] += 1 KPIs_dict[brand_name]['area'].append(percent_area) KPIs_dict[brand_name]['frames'].append(frame_number) else: KPIs_dict[brand_name] = {"count": 1} KPIs_dict[brand_name].update({"area": [percent_area]}) KPIs_dict[brand_name].update({"frames": [frame_number]}) full_predicted_path = os.path.join(self.predicted_path, str(uuid.uuid4()) + ".jpg") cv2.imwrite(full_predicted_path, image) KPIs_dict = self.process_kpi(KPIs_dict) return KPIs_dict # define a function that will return the dictonary with KPI metrics per logo def process_kpi(self, KPIs_dict): for each_brand, analytics_dict in KPIs_dict.items(): area = analytics_dict['area'] response = shortest_longest_area(area) KPIs_dict[each_brand].update(response) return KPIs_dict
krishnakaushik25/Forecasting-Business-KPI
modular_code/src/ML_Pipeline/predict.py
predict.py
py
5,576
python
en
code
0
github-code
6
[ { "api_name": "sys.path.append", "line_number": 12, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 12, "usage_type": "attribute" }, { "api_name": "utility.delete_and_create_folder", "line_number": 23, "usage_type": "call" }, { "api_name": "utility.delete_and_create_folder", "line_number": 24, "usage_type": "call" }, { "api_name": "tensorflow.Graph", "line_number": 32, "usage_type": "call" }, { "api_name": "tensorflow.GraphDef", "line_number": 34, "usage_type": "call" }, { "api_name": "tensorflow.gfile.GFile", "line_number": 35, "usage_type": "call" }, { "api_name": "admin.model_path", "line_number": 35, "usage_type": "argument" }, { "api_name": "tensorflow.gfile", "line_number": 35, "usage_type": "attribute" }, { "api_name": "tensorflow.import_graph_def", "line_number": 38, "usage_type": "call" }, { "api_name": "object_detection.utils.label_map_util.load_labelmap", "line_number": 42, "usage_type": "call" }, { "api_name": "admin.label_path", "line_number": 42, "usage_type": "argument" }, { "api_name": "object_detection.utils.label_map_util", "line_number": 42, "usage_type": "name" }, { "api_name": "object_detection.utils.label_map_util.convert_label_map_to_categories", "line_number": 43, "usage_type": "call" }, { "api_name": "object_detection.utils.label_map_util", "line_number": 43, "usage_type": "name" }, { "api_name": "object_detection.utils.label_map_util.create_category_index", "line_number": 45, "usage_type": "call" }, { "api_name": "object_detection.utils.label_map_util", "line_number": 45, "usage_type": "name" }, { "api_name": "cv2.VideoCapture", "line_number": 53, "usage_type": "call" }, { "api_name": "tensorflow.Session", "line_number": 55, "usage_type": "call" }, { "api_name": "uuid.uuid4", "line_number": 61, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 62, "usage_type": "call" }, { "api_name": "os.path", "line_number": 62, "usage_type": "attribute" }, { "api_name": "cv2.imwrite", "line_number": 63, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 70, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 70, "usage_type": "name" }, { "api_name": "utility.load_image_into_numpy_array", "line_number": 71, "usage_type": "call" }, { "api_name": "numpy.expand_dims", "line_number": 72, "usage_type": "call" }, { "api_name": "object_detection.utils.visualization_utils.visualize_boxes_and_labels_on_image_array", "line_number": 84, "usage_type": "call" }, { "api_name": "object_detection.utils.visualization_utils", "line_number": 84, "usage_type": "name" }, { "api_name": "numpy.squeeze", "line_number": 86, "usage_type": "call" }, { "api_name": "numpy.squeeze", "line_number": 87, "usage_type": "call" }, { "api_name": "numpy.int32", "line_number": 87, "usage_type": "attribute" }, { "api_name": "numpy.squeeze", "line_number": 88, "usage_type": "call" }, { "api_name": "PIL.Image.fromarray", "line_number": 93, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 93, "usage_type": "name" }, { "api_name": "numpy.uint8", "line_number": 93, "usage_type": "call" }, { "api_name": "utility.calculate_area", "line_number": 100, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 116, "usage_type": "call" }, { "api_name": "os.path", "line_number": 116, "usage_type": "attribute" }, { "api_name": "uuid.uuid4", "line_number": 116, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 117, "usage_type": "call" }, { "api_name": "utility.shortest_longest_area", "line_number": 126, "usage_type": "call" } ]
28041597167
import unittest import os from conans.test.utils.test_files import temp_folder from conans.util.files import save from time import sleep class SaveTestCase(unittest.TestCase): def setUp(self): folder = temp_folder() self.filepath = os.path.join(folder, "file.txt") # Save some content and keep timestamp self.content = "my content" save(self.filepath, self.content) self.timestamp = os.path.getmtime(self.filepath) sleep(1) # precission is seconds, so we need to sleep def only_if_modified_true_test(self): save(self.filepath, self.content, only_if_modified=True) self.assertEqual(self.timestamp, os.path.getmtime(self.filepath)) def only_if_modified_false_test(self): save(self.filepath, self.content, only_if_modified=False) self.assertNotEqual(self.timestamp, os.path.getmtime(self.filepath)) def modified_only_true_test(self): save(self.filepath, "other content", only_if_modified=True) self.assertNotEqual(self.timestamp, os.path.getmtime(self.filepath)) def modified_only_false_test(self): save(self.filepath, "other content", only_if_modified=False) self.assertNotEqual(self.timestamp, os.path.getmtime(self.filepath))
pianoslum/conan
conans/test/util/files_test.py
files_test.py
py
1,276
python
en
code
null
github-code
6
[ { "api_name": "unittest.TestCase", "line_number": 9, "usage_type": "attribute" }, { "api_name": "conans.test.utils.test_files.temp_folder", "line_number": 12, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 13, "usage_type": "call" }, { "api_name": "os.path", "line_number": 13, "usage_type": "attribute" }, { "api_name": "conans.util.files.save", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path.getmtime", "line_number": 18, "usage_type": "call" }, { "api_name": "os.path", "line_number": 18, "usage_type": "attribute" }, { "api_name": "time.sleep", "line_number": 19, "usage_type": "call" }, { "api_name": "conans.util.files.save", "line_number": 22, "usage_type": "call" }, { "api_name": "os.path.getmtime", "line_number": 23, "usage_type": "call" }, { "api_name": "os.path", "line_number": 23, "usage_type": "attribute" }, { "api_name": "conans.util.files.save", "line_number": 26, "usage_type": "call" }, { "api_name": "os.path.getmtime", "line_number": 27, "usage_type": "call" }, { "api_name": "os.path", "line_number": 27, "usage_type": "attribute" }, { "api_name": "conans.util.files.save", "line_number": 30, "usage_type": "call" }, { "api_name": "os.path.getmtime", "line_number": 31, "usage_type": "call" }, { "api_name": "os.path", "line_number": 31, "usage_type": "attribute" }, { "api_name": "conans.util.files.save", "line_number": 34, "usage_type": "call" }, { "api_name": "os.path.getmtime", "line_number": 35, "usage_type": "call" }, { "api_name": "os.path", "line_number": 35, "usage_type": "attribute" } ]
12260712099
#!/usr/bin/env python # -*- coding:utf-8 -*- import pymysql money_all=56.75+2+938.7+83.2 money_all_str=str(money_all) print(money_all_str) money_real=int(money_all) print(str(money_real)) print(7/3) print(7//5) print(35<54) def sort(x): return x['price'] mydb=pymysql.connect( host="localhost", user='root', password="123456", ) cursor=mydb.cursor() sqltext='show databases' cursor.execute(sqltext) for row in cursor: print(row)
hedychium/python_learning
erase_zero.py
erase_zero.py
py
459
python
en
code
0
github-code
6
[ { "api_name": "pymysql.connect", "line_number": 23, "usage_type": "call" } ]
30763374181
# -*- coding: utf-8 -*- """ Created on Mon Dec 26 15:42:17 2016 @author: Shahidur Rahman """ import explorers import stringRecorder import pandas from sqlalchemy import create_engine import random from mmh3 import hash128 #from sklearn.datasets import load_iris import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) engine = create_engine('mysql+pymysql://root:shahidur_123@localhost:3306/mwt') j=0 #Data generation import numpy as np #import pdb;pdb.set_trace() mu, sigma = 0, 1 actionValue = np.random.normal(mu, sigma, 200000) #type(actionValue) minVal = np.amin(actionValue) maxVal = np.amax(actionValue) trainData = np.random.normal(mu, sigma, 200000) testValue = np.random.normal(mu, sigma, 200000) #s1 = np.empty(2000, dtype=np.int) for i in range(0,200000): #reward generation trainData[i] = int(round(0 + (trainData[i]-minVal)*(1-0)/(maxVal-minVal),0)) #action generation actionValue[i] = int(round(1 + (actionValue[i]-minVal)*(10-1)/(maxVal-minVal),0)) #testData testValue[i] = int(round(1 + (testValue[i]-minVal)*(10-0)/(maxVal-minVal),0)) X = [0] * 200000 Y = [0] * 200000 X1 = [0] * 200000 y1 = [0] * 200000 from random import randint for i in range(0,200000): X[i] = [randint(0,9), randint(0,9), randint(0,9), randint(0,9), randint(0,9), randint(0,9), actionValue[i]] Y[i] = [randint(0,9), randint(0,9), randint(0,9), randint(0,9), randint(0,9), randint(0,9)] #train data set up actionValue for i in range(0,200000): X1[i], y1[i] = [np.asarray(X[i])[0], np.asarray(X[i])[1], np.asarray(X[i])[2], np.asarray(X[i])[3], np.asarray(X[i])[4], np.asarray(X[i])[5]], actionValue[i] #train data setup rewardValue X2, y2 = X, trainData #model action selection from sklearn import svm clf = svm.SVC(kernel='rbf') modelActionSelection = clf.fit(X1, y1) #model reward allocation clf = svm.SVC(kernel='rbf') modelRewardAllocation = clf.fit(X2, y2) for i in range(0,200000): #epsilon epsilon = round(random.random(),3) #unique number generator unique_key =hash128('my string of doom ', seed=1234) ##of actions noOfActions = 10 print(i) #policy decision policyDecision = modelActionSelection.predict(Y[i]) #print("predict["+str(i)+"] is "+str(predict)) for x in policyDecision: policyDecision = int(x) #scores scores = [.2,.5,.3] callExplorer = explorers.explorers(epsilon,noOfActions,policyDecision,scores) storeValues = callExplorer.algoSelection() #reward check dataset rewardCheckData = [np.asarray(Y[i])[0], np.asarray(Y[i])[1], np.asarray(Y[i])[2], np.asarray(Y[i])[3], np.asarray(Y[i])[4], np.asarray(Y[i])[5], storeValues['actionID']] rewardValue = int(modelRewardAllocation.predict(rewardCheckData)) record = stringRecorder.stringRecorder(str(Y[i]), str(storeValues['actionID']),str(storeValues['actionProbability']), str(unique_key), str(storeValues['isExplore']), str(epsilon), str(noOfActions),str(policyDecision),str(storeValues['explorerAlgo']), str(rewardValue)) record = record.sewStrings() #print('record : '+str(record)) colList="context,actionID,actionProbability,unique_key,isExplore,epsilon,noOfActions,policyDecision,explorerAlgo,rewardValue".split(',') #c1=['col1'] df = pandas.DataFrame(data=record,index=colList) #transpose the data df=df.T #print("printing panda df here") #print(df) #push data in sql #rf = pandas.DataFrame(data=['10',1,2,'62019057582468709482189373788949966293',4,5,6,7,'8'],index=colList) #rf=rf.T #rf.to_sql(con=engine, name='stringrecord', if_exists='append', index=False) df.to_sql(con=engine, name='stringrecord', if_exists='append', index=False) df.to_sql(con=engine, name='stringrecord_test', if_exists='append', index=False)
skshahidur/nlp_paper_implementation
Word-Embedding/mwt_v1.py
mwt_v1.py
py
4,021
python
en
code
0
github-code
6
[ { "api_name": "warnings.filterwarnings", "line_number": 16, "usage_type": "call" }, { "api_name": "sqlalchemy.create_engine", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.random.normal", "line_number": 25, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 25, "usage_type": "attribute" }, { "api_name": "numpy.amin", "line_number": 27, "usage_type": "call" }, { "api_name": "numpy.amax", "line_number": 28, "usage_type": "call" }, { "api_name": "numpy.random.normal", "line_number": 29, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 29, "usage_type": "attribute" }, { "api_name": "numpy.random.normal", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 30, "usage_type": "attribute" }, { "api_name": "random.randint", "line_number": 47, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 52, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 53, "usage_type": "call" }, { "api_name": "sklearn.svm.SVC", "line_number": 60, "usage_type": "call" }, { "api_name": "sklearn.svm", "line_number": 60, "usage_type": "name" }, { "api_name": "sklearn.svm.SVC", "line_number": 64, "usage_type": "call" }, { "api_name": "sklearn.svm", "line_number": 64, "usage_type": "name" }, { "api_name": "random.random", "line_number": 70, "usage_type": "call" }, { "api_name": "mmh3.hash128", "line_number": 73, "usage_type": "call" }, { "api_name": "explorers.explorers", "line_number": 88, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 92, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 93, "usage_type": "call" }, { "api_name": "stringRecorder.stringRecorder", "line_number": 96, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 102, "usage_type": "call" } ]
9805159119
import multiprocessing # Gunicorn app # Tell Gunicorn which application to run wsgi_app = "django_examples.asgi:application" # Requests # Restart workers after so many requests, with some variability. max_requests = 1000 max_requests_jitter = 50 # Logging # Use stdout for logging log_file = "-" # Workers bind = "0.0.0.0:8000" workers = multiprocessing.cpu_count() * 2 + 1 worker_class = "uvicorn.workers.UvicornWorker"
andrewguest/django-alpine-htmx
gunicorn.conf.py
gunicorn.conf.py
py
425
python
en
code
0
github-code
6
[ { "api_name": "multiprocessing.cpu_count", "line_number": 18, "usage_type": "call" } ]
27267958481
from django.shortcuts import render from django.views.decorators.csrf import csrf_exempt from rest_framework.parsers import JSONParser from django.http.response import JsonResponse from viteproject.models import DesignSave from viteproject.serializers import DesignSaveSerializer from django.core.files.storage import default_storage # Create your views here. @csrf_exempt def save_designAPI(request,id=0): if request.method == 'GET': designSave = DesignSave.objects.all() designSaveSerializer = DesignSaveSerializer(designSave,many=True) return JsonResponse(designSaveSerializer.data,safe=False) elif request.method == 'POST': designSave_data = JSONParser().parse(request) designSaveSerializer = DesignSaveSerializer(data=designSave_data) if designSaveSerializer.is_valid(): designSaveSerializer.save() return JsonResponse("Added Successfully",safe=False) return JsonResponse("Failed to Add",safe=False) elif request.method == 'PUT': designSave_data = JSONParser().parse(request) designSave = DesignSave.objects.get(DesignId = designSave_data['DesignId']) designSaveSerializer = DesignSaveSerializer(designSave,data=designSave_data) if designSaveSerializer.is_valid(): designSaveSerializer.save() return JsonResponse("Update Successfully",safe=False) return JsonResponse("Fail Update") elif request.method=='DELETE': designSave = DesignSave.objects.get(DesignId=id) designSave.delete() return JsonResponse("Delete Successfully",safe=False) @csrf_exempt def SaveFile(request): file=request.FILES['file'] file_name = default_storage.save(file.name,file) return JsonResponse(file_name,safe=False)
SurajBhosale003/Osdag-React-Django
backend/viteproject/views.py
views.py
py
1,795
python
en
code
0
github-code
6
[ { "api_name": "viteproject.models.DesignSave.objects.all", "line_number": 15, "usage_type": "call" }, { "api_name": "viteproject.models.DesignSave.objects", "line_number": 15, "usage_type": "attribute" }, { "api_name": "viteproject.models.DesignSave", "line_number": 15, "usage_type": "name" }, { "api_name": "viteproject.serializers.DesignSaveSerializer", "line_number": 16, "usage_type": "call" }, { "api_name": "django.http.response.JsonResponse", "line_number": 17, "usage_type": "call" }, { "api_name": "rest_framework.parsers.JSONParser", "line_number": 19, "usage_type": "call" }, { "api_name": "viteproject.serializers.DesignSaveSerializer", "line_number": 20, "usage_type": "call" }, { "api_name": "django.http.response.JsonResponse", "line_number": 23, "usage_type": "call" }, { "api_name": "django.http.response.JsonResponse", "line_number": 24, "usage_type": "call" }, { "api_name": "rest_framework.parsers.JSONParser", "line_number": 26, "usage_type": "call" }, { "api_name": "viteproject.models.DesignSave.objects.get", "line_number": 27, "usage_type": "call" }, { "api_name": "viteproject.models.DesignSave.objects", "line_number": 27, "usage_type": "attribute" }, { "api_name": "viteproject.models.DesignSave", "line_number": 27, "usage_type": "name" }, { "api_name": "viteproject.serializers.DesignSaveSerializer", "line_number": 28, "usage_type": "call" }, { "api_name": "django.http.response.JsonResponse", "line_number": 31, "usage_type": "call" }, { "api_name": "django.http.response.JsonResponse", "line_number": 32, "usage_type": "call" }, { "api_name": "viteproject.models.DesignSave.objects.get", "line_number": 34, "usage_type": "call" }, { "api_name": "viteproject.models.DesignSave.objects", "line_number": 34, "usage_type": "attribute" }, { "api_name": "viteproject.models.DesignSave", "line_number": 34, "usage_type": "name" }, { "api_name": "django.http.response.JsonResponse", "line_number": 36, "usage_type": "call" }, { "api_name": "django.views.decorators.csrf.csrf_exempt", "line_number": 12, "usage_type": "name" }, { "api_name": "django.core.files.storage.default_storage.save", "line_number": 42, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage", "line_number": 42, "usage_type": "name" }, { "api_name": "django.http.response.JsonResponse", "line_number": 43, "usage_type": "call" }, { "api_name": "django.views.decorators.csrf.csrf_exempt", "line_number": 39, "usage_type": "name" } ]
26041579406
from __future__ import annotations import itertools import re from collections import defaultdict from typing import Iterable, Iterator, Sequence, Tuple, TypeVar from pkg_resources import Requirement from typing_extensions import Protocol from pants.backend.python.subsystems.setup import PythonSetup from pants.backend.python.target_types import InterpreterConstraintsField from pants.build_graph.address import Address from pants.engine.engine_aware import EngineAwareParameter from pants.engine.target import Target from pants.util.docutil import bin_name from pants.util.frozendict import FrozenDict from pants.util.memo import memoized from pants.util.ordered_set import FrozenOrderedSet, OrderedSet from pants.util.strutil import softwrap # This protocol allows us to work with any arbitrary FieldSet. See # https://mypy.readthedocs.io/en/stable/protocols.html. class FieldSetWithInterpreterConstraints(Protocol): @property def address(self) -> Address: ... @property def interpreter_constraints(self) -> InterpreterConstraintsField: ... _FS = TypeVar("_FS", bound=FieldSetWithInterpreterConstraints) RawConstraints = Tuple[str, ...] # The current maxes are 2.7.18 and 3.6.15. We go much higher, for safety. _PATCH_VERSION_UPPER_BOUND = 30 @memoized def interpreter_constraints_contains( a: RawConstraints, b: RawConstraints, interpreter_universe: tuple[str, ...] ) -> bool: """A memoized version of `InterpreterConstraints.contains`. This is a function in order to keep the memoization cache on the module rather than on an instance. It can't go on `PythonSetup`, since that would cause a cycle with this module. """ return InterpreterConstraints(a).contains(InterpreterConstraints(b), interpreter_universe) @memoized def parse_constraint(constraint: str) -> Requirement: """Parse an interpreter constraint, e.g., CPython>=2.7,<3. We allow shorthand such as `>=3.7`, which gets expanded to `CPython>=3.7`. See Pex's interpreter.py's `parse_requirement()`. """ try: parsed_requirement = Requirement.parse(constraint) except ValueError: parsed_requirement = Requirement.parse(f"CPython{constraint}") return parsed_requirement # Normally we would subclass `DeduplicatedCollection`, but we want a custom constructor. class InterpreterConstraints(FrozenOrderedSet[Requirement], EngineAwareParameter): @classmethod def for_fixed_python_version( cls, python_version_str: str, interpreter_type: str = "CPython" ) -> InterpreterConstraints: return cls([f"{interpreter_type}=={python_version_str}"]) def __init__(self, constraints: Iterable[str | Requirement] = ()) -> None: # #12578 `parse_constraint` will sort the requirement's component constraints into a stable form. # We need to sort the component constraints for each requirement _before_ sorting the entire list # for the ordering to be correct. parsed_constraints = ( i if isinstance(i, Requirement) else parse_constraint(i) for i in constraints ) super().__init__(sorted(parsed_constraints, key=lambda c: str(c))) def __str__(self) -> str: return " OR ".join(str(constraint) for constraint in self) def debug_hint(self) -> str: return str(self) @property def description(self) -> str: return str(sorted(str(c) for c in self)) @classmethod def merge(cls, ics: Iterable[InterpreterConstraints]) -> InterpreterConstraints: return InterpreterConstraints( cls.merge_constraint_sets(tuple(str(requirement) for requirement in ic) for ic in ics) ) @classmethod def merge_constraint_sets( cls, constraint_sets: Iterable[Iterable[str]] ) -> frozenset[Requirement]: """Given a collection of constraints sets, merge by ORing within each individual constraint set and ANDing across each distinct constraint set. For example, given `[["CPython>=2.7", "CPython<=3"], ["CPython==3.6.*"]]`, return `["CPython>=2.7,==3.6.*", "CPython<=3,==3.6.*"]`. """ # A sentinel to indicate a requirement that is impossible to satisfy (i.e., one that # requires two different interpreter types). impossible = parse_constraint("IMPOSSIBLE") # Each element (a Set[ParsedConstraint]) will get ANDed. We use sets to deduplicate # identical top-level parsed constraint sets. # First filter out any empty constraint_sets, as those represent "no constraints", i.e., # any interpreters are allowed, so omitting them has the logical effect of ANDing them with # the others, without having to deal with the vacuous case below. constraint_sets = [cs for cs in constraint_sets if cs] if not constraint_sets: return frozenset() parsed_constraint_sets: set[frozenset[Requirement]] = set() for constraint_set in constraint_sets: # Each element (a ParsedConstraint) will get ORed. parsed_constraint_set = frozenset( parse_constraint(constraint) for constraint in constraint_set ) parsed_constraint_sets.add(parsed_constraint_set) if len(parsed_constraint_sets) == 1: return next(iter(parsed_constraint_sets)) def and_constraints(parsed_constraints: Sequence[Requirement]) -> Requirement: merged_specs: set[tuple[str, str]] = set() expected_interpreter = parsed_constraints[0].project_name for parsed_constraint in parsed_constraints: if parsed_constraint.project_name != expected_interpreter: return impossible merged_specs.update(parsed_constraint.specs) formatted_specs = ",".join(f"{op}{version}" for op, version in merged_specs) return parse_constraint(f"{expected_interpreter}{formatted_specs}") ored_constraints = ( and_constraints(constraints_product) for constraints_product in itertools.product(*parsed_constraint_sets) ) ret = frozenset(cs for cs in ored_constraints if cs != impossible) if not ret: # There are no possible combinations. attempted_str = " AND ".join(f"({' OR '.join(cs)})" for cs in constraint_sets) raise ValueError( softwrap( f""" These interpreter constraints cannot be merged, as they require conflicting interpreter types: {attempted_str} """ ) ) return ret @classmethod def create_from_targets( cls, targets: Iterable[Target], python_setup: PythonSetup ) -> InterpreterConstraints | None: """Returns merged InterpreterConstraints for the given Targets. If none of the given Targets have InterpreterConstraintsField, returns None. NB: Because Python targets validate that they have ICs which are a subset of their dependencies, merging constraints like this is only necessary when you are _mixing_ code which might not have any inter-dependencies, such as when you're merging un-related roots. """ fields = [ tgt[InterpreterConstraintsField] for tgt in targets if tgt.has_field(InterpreterConstraintsField) ] if not fields: return None return cls.create_from_compatibility_fields(fields, python_setup) @classmethod def create_from_compatibility_fields( cls, fields: Iterable[InterpreterConstraintsField], python_setup: PythonSetup ) -> InterpreterConstraints: """Returns merged InterpreterConstraints for the given `InterpreterConstraintsField`s. NB: Because Python targets validate that they have ICs which are a subset of their dependencies, merging constraints like this is only necessary when you are _mixing_ code which might not have any inter-dependencies, such as when you're merging un-related roots. """ constraint_sets = {field.value_or_global_default(python_setup) for field in fields} # This will OR within each field and AND across fields. merged_constraints = cls.merge_constraint_sets(constraint_sets) return InterpreterConstraints(merged_constraints) @classmethod def group_field_sets_by_constraints( cls, field_sets: Iterable[_FS], python_setup: PythonSetup ) -> FrozenDict[InterpreterConstraints, tuple[_FS, ...]]: results = defaultdict(set) for fs in field_sets: constraints = cls.create_from_compatibility_fields( [fs.interpreter_constraints], python_setup ) results[constraints].add(fs) return FrozenDict( { constraints: tuple(sorted(field_sets, key=lambda fs: fs.address)) for constraints, field_sets in sorted(results.items()) } ) def generate_pex_arg_list(self) -> list[str]: args = [] for constraint in self: args.extend(["--interpreter-constraint", str(constraint)]) return args def _valid_patch_versions(self, major: int, minor: int) -> Iterator[int]: for p in range(0, _PATCH_VERSION_UPPER_BOUND + 1): for req in self: if req.specifier.contains(f"{major}.{minor}.{p}"): # type: ignore[attr-defined] yield p def _includes_version(self, major: int, minor: int) -> bool: return any(True for _ in self._valid_patch_versions(major, minor)) def includes_python2(self) -> bool: """Checks if any of the constraints include Python 2. This will return True even if the code works with Python 3 too, so long as at least one of the constraints works with Python 2. """ return self._includes_version(2, 7) def minimum_python_version(self, interpreter_universe: Iterable[str]) -> str | None: """Find the lowest major.minor Python version that will work with these constraints. The constraints may also be compatible with later versions; this is the lowest version that still works. """ for major, minor in sorted(_major_minor_to_int(s) for s in interpreter_universe): if self._includes_version(major, minor): return f"{major}.{minor}" return None def snap_to_minimum(self, interpreter_universe: Iterable[str]) -> InterpreterConstraints | None: """Snap to the lowest Python major.minor version that works with these constraints. Will exclude patch versions that are expressly incompatible. """ for major, minor in sorted(_major_minor_to_int(s) for s in interpreter_universe): for p in range(0, _PATCH_VERSION_UPPER_BOUND + 1): for req in self: if req.specifier.contains(f"{major}.{minor}.{p}"): # type: ignore[attr-defined] # We've found the minimum major.minor that is compatible. req_strs = [f"{req.project_name}=={major}.{minor}.*"] # Now find any patches within that major.minor that we must exclude. invalid_patches = sorted( set(range(0, _PATCH_VERSION_UPPER_BOUND + 1)) - set(self._valid_patch_versions(major, minor)) ) req_strs.extend(f"!={major}.{minor}.{p}" for p in invalid_patches) req_str = ",".join(req_strs) snapped = parse_constraint(req_str) return InterpreterConstraints([snapped]) return None def _requires_python3_version_or_newer( self, *, allowed_versions: Iterable[str], prior_version: str ) -> bool: if not self: return False patch_versions = list(reversed(range(0, _PATCH_VERSION_UPPER_BOUND))) # We only look at the prior Python release. For example, consider Python 3.8+ # looking at 3.7. If using something like `>=3.5`, Py37 will be included. # `==3.6.*,!=3.7.*,==3.8.*` is unlikely, and even that will work correctly as # it's an invalid constraint so setuptools returns False always. `['==2.7.*', '==3.8.*']` # will fail because not every single constraint is exclusively 3.8. prior_versions = [f"{prior_version}.{p}" for p in patch_versions] allowed_versions = [ f"{major_minor}.{p}" for major_minor in allowed_versions for p in patch_versions ] def valid_constraint(constraint: Requirement) -> bool: if any( constraint.specifier.contains(prior) for prior in prior_versions # type: ignore[attr-defined] ): return False if not any( constraint.specifier.contains(allowed) for allowed in allowed_versions # type: ignore[attr-defined] ): return False return True return all(valid_constraint(c) for c in self) def requires_python38_or_newer(self, interpreter_universe: Iterable[str]) -> bool: """Checks if the constraints are all for Python 3.8+. This will return False if Python 3.8 is allowed, but prior versions like 3.7 are also allowed. """ py38_and_later = [ interp for interp in interpreter_universe if _major_minor_to_int(interp) >= (3, 8) ] return self._requires_python3_version_or_newer( allowed_versions=py38_and_later, prior_version="3.7" ) def to_poetry_constraint(self) -> str: specifiers = [] wildcard_encountered = False for constraint in self: specifier = str(constraint.specifier) # type: ignore[attr-defined] if specifier: specifiers.append(specifier) else: wildcard_encountered = True if not specifiers or wildcard_encountered: return "*" return " || ".join(specifiers) def enumerate_python_versions( self, interpreter_universe: Iterable[str] ) -> FrozenOrderedSet[tuple[int, int, int]]: """Return a set of all plausible (major, minor, patch) tuples for all Python 2.7/3.x in the specified interpreter universe that matches this set of interpreter constraints. This also validates our assumptions around the `interpreter_universe`: - Python 2.7 is the only Python 2 version in the universe, if at all. - Python 3 is the last major release of Python, which the core devs have committed to in public several times. """ if not self: return FrozenOrderedSet() minors = [] for major_minor in interpreter_universe: major, minor = _major_minor_to_int(major_minor) if major == 2: if minor != 7: raise AssertionError( softwrap( f""" Unexpected value in `[python].interpreter_versions_universe`: {major_minor}. Expected the only Python 2 value to be '2.7', given that all other versions are unmaintained or do not exist. """ ) ) minors.append((2, minor)) elif major == 3: minors.append((3, minor)) else: raise AssertionError( softwrap( f""" Unexpected value in `[python].interpreter_versions_universe`: {major_minor}. Expected to only include '2.7' and/or Python 3 versions, given that Python 3 will be the last major Python version. Please open an issue at https://github.com/pantsbuild/pants/issues/new if this is no longer true. """ ) ) valid_patches = FrozenOrderedSet( (major, minor, patch) for (major, minor) in sorted(minors) for patch in self._valid_patch_versions(major, minor) ) if not valid_patches: raise ValueError( softwrap( f""" The interpreter constraints `{self}` are not compatible with any of the interpreter versions from `[python].interpreter_versions_universe`. Please either change these interpreter constraints or update the `interpreter_versions_universe` to include the interpreters set in these constraints. Run `{bin_name()} help-advanced python` for more information on the `interpreter_versions_universe` option. """ ) ) return valid_patches def contains(self, other: InterpreterConstraints, interpreter_universe: Iterable[str]) -> bool: """Returns True if the `InterpreterConstraints` specified in `other` is a subset of these `InterpreterConstraints`. This is restricted to the set of minor Python versions specified in `universe`. """ if self == other: return True this = self.enumerate_python_versions(interpreter_universe) that = other.enumerate_python_versions(interpreter_universe) return this.issuperset(that) def partition_into_major_minor_versions( self, interpreter_universe: Iterable[str] ) -> tuple[str, ...]: """Return all the valid major.minor versions, e.g. `('2.7', '3.6')`.""" result: OrderedSet[str] = OrderedSet() for major, minor, _ in self.enumerate_python_versions(interpreter_universe): result.add(f"{major}.{minor}") return tuple(result) def major_minor_version_when_single_and_entire(self) -> None | tuple[int, int]: """Returns the (major, minor) version that these constraints cover, if they cover all of exactly one major minor version, without rules about patch versions. This is a best effort function, e.g. for using during inference that can be overridden. Examples: All of these return (3, 9): `==3.9.*`, `CPython==3.9.*`, `>=3.9,<3.10`, `<3.10,>=3.9` All of these return None: - `==3.9.10`: restricted to a single patch version - `==3.9`: restricted to a single patch version (0, implicitly) - `==3.9.*,!=3.9.2`: excludes a patch - `>=3.9,<3.11`: more than one major version - `>=3.9,<3.11,!=3.10`: too complicated to understand it only includes 3.9 - more than one requirement in the list: too complicated """ try: return _major_minor_version_when_single_and_entire(self) except _NonSimpleMajorMinor: return None def _major_minor_to_int(major_minor: str) -> tuple[int, int]: return tuple(int(x) for x in major_minor.split(".", maxsplit=1)) # type: ignore[return-value] class _NonSimpleMajorMinor(Exception): pass _ANY_PATCH_VERSION = re.compile(r"^(?P<major>\d+)\.(?P<minor>\d+)(?P<any_patch>\.\*)?$") def _parse_simple_version(version: str, require_any_patch: bool) -> tuple[int, int]: match = _ANY_PATCH_VERSION.fullmatch(version) if match is None or (require_any_patch and match.group("any_patch") is None): raise _NonSimpleMajorMinor() return int(match.group("major")), int(match.group("minor")) def _major_minor_version_when_single_and_entire(ics: InterpreterConstraints) -> tuple[int, int]: if len(ics) != 1: raise _NonSimpleMajorMinor() req = next(iter(ics)) just_cpython = req.project_name == "CPython" and not req.extras and not req.marker if not just_cpython: raise _NonSimpleMajorMinor() # ==major.minor or ==major.minor.* if len(req.specs) == 1: operator, version = next(iter(req.specs)) if operator != "==": raise _NonSimpleMajorMinor() return _parse_simple_version(version, require_any_patch=True) # >=major.minor,<major.(minor+1) if len(req.specs) == 2: (operator_lo, version_lo), (operator_hi, version_hi) = iter(req.specs) if operator_lo != ">=": # if the lo operator isn't >=, they might be in the wrong order (or, if not, the check # below will catch them) operator_lo, operator_hi = operator_hi, operator_lo version_lo, version_hi = version_hi, version_lo if operator_lo != ">=" and operator_hi != "<": raise _NonSimpleMajorMinor() major_lo, minor_lo = _parse_simple_version(version_lo, require_any_patch=False) major_hi, minor_hi = _parse_simple_version(version_hi, require_any_patch=False) if major_lo == major_hi and minor_lo + 1 == minor_hi: return major_lo, minor_lo raise _NonSimpleMajorMinor() # anything else we don't understand raise _NonSimpleMajorMinor()
pantsbuild/pants
src/python/pants/backend/python/util_rules/interpreter_constraints.py
interpreter_constraints.py
py
21,381
python
en
code
2,896
github-code
6
[ { "api_name": "typing_extensions.Protocol", "line_number": 25, "usage_type": "name" }, { "api_name": "pants.build_graph.address.Address", "line_number": 27, "usage_type": "name" }, { "api_name": "pants.backend.python.target_types.InterpreterConstraintsField", "line_number": 31, "usage_type": "name" }, { "api_name": "typing.TypeVar", "line_number": 35, "usage_type": "call" }, { "api_name": "typing.Tuple", "line_number": 38, "usage_type": "name" }, { "api_name": "pants.util.memo.memoized", "line_number": 45, "usage_type": "name" }, { "api_name": "pkg_resources.Requirement.parse", "line_number": 65, "usage_type": "call" }, { "api_name": "pkg_resources.Requirement", "line_number": 65, "usage_type": "name" }, { "api_name": "pkg_resources.Requirement.parse", "line_number": 67, "usage_type": "call" }, { "api_name": "pkg_resources.Requirement", "line_number": 67, "usage_type": "name" }, { "api_name": "pants.util.memo.memoized", "line_number": 57, "usage_type": "name" }, { "api_name": "pkg_resources.Requirement", "line_number": 58, "usage_type": "name" }, { "api_name": "pants.util.ordered_set.FrozenOrderedSet", "line_number": 72, "usage_type": "name" }, { "api_name": "pkg_resources.Requirement", "line_number": 72, "usage_type": "name" }, { "api_name": "pants.engine.engine_aware.EngineAwareParameter", "line_number": 72, "usage_type": "name" }, { "api_name": "typing.Iterable", "line_number": 79, "usage_type": "name" }, { "api_name": "pkg_resources.Requirement", "line_number": 79, "usage_type": "name" }, { "api_name": "pkg_resources.Requirement", "line_number": 84, "usage_type": "argument" }, { "api_name": "typing.Iterable", "line_number": 99, "usage_type": "name" }, { "api_name": "typing.Iterable", "line_number": 106, "usage_type": "name" }, { "api_name": "pkg_resources.Requirement", "line_number": 128, "usage_type": "name" }, { "api_name": "typing.Sequence", "line_number": 139, "usage_type": "name" }, { "api_name": "pkg_resources.Requirement", "line_number": 139, "usage_type": "name" }, { "api_name": "itertools.product", "line_number": 152, "usage_type": "call" }, { "api_name": "pants.util.strutil.softwrap", "line_number": 159, "usage_type": "call" }, { "api_name": "pkg_resources.Requirement", "line_number": 107, "usage_type": "name" }, { "api_name": "typing.Iterable", "line_number": 170, "usage_type": "name" }, { "api_name": "pants.engine.target.Target", "line_number": 170, "usage_type": "name" }, { "api_name": "pants.backend.python.subsystems.setup.PythonSetup", "line_number": 170, "usage_type": "name" }, { "api_name": "pants.backend.python.target_types.InterpreterConstraintsField", "line_number": 181, "usage_type": "name" }, { "api_name": "pants.backend.python.target_types.InterpreterConstraintsField", "line_number": 183, "usage_type": "argument" }, { "api_name": "typing.Iterable", "line_number": 191, "usage_type": "name" }, { "api_name": "pants.backend.python.target_types.InterpreterConstraintsField", "line_number": 191, "usage_type": "name" }, { "api_name": "pants.backend.python.subsystems.setup.PythonSetup", "line_number": 191, "usage_type": "name" }, { "api_name": "typing.Iterable", "line_number": 206, "usage_type": "name" }, { "api_name": "pants.backend.python.subsystems.setup.PythonSetup", "line_number": 206, "usage_type": "name" }, { "api_name": "collections.defaultdict", "line_number": 208, "usage_type": "call" }, { "api_name": "pants.util.frozendict.FrozenDict", "line_number": 214, "usage_type": "call" }, { "api_name": "pants.util.frozendict.FrozenDict", "line_number": 207, "usage_type": "name" }, { "api_name": "typing.Iterator", "line_number": 227, "usage_type": "name" }, { "api_name": "typing.Iterable", "line_number": 244, "usage_type": "name" }, { "api_name": "typing.Iterable", "line_number": 255, "usage_type": "name" }, { "api_name": "typing.Iterable", "line_number": 278, "usage_type": "name" }, { "api_name": "pkg_resources.Requirement", "line_number": 293, "usage_type": "name" }, { "api_name": "typing.Iterable", "line_number": 306, "usage_type": "name" }, { "api_name": "typing.Iterable", "line_number": 333, "usage_type": "name" }, { "api_name": "pants.util.ordered_set.FrozenOrderedSet", "line_number": 345, "usage_type": "call" }, { "api_name": "pants.util.strutil.softwrap", "line_number": 353, "usage_type": "call" }, { "api_name": "pants.util.strutil.softwrap", "line_number": 366, "usage_type": "call" }, { "api_name": "pants.util.ordered_set.FrozenOrderedSet", "line_number": 377, "usage_type": "call" }, { "api_name": "pants.util.strutil.softwrap", "line_number": 385, "usage_type": "call" }, { "api_name": "pants.util.docutil.bin_name", "line_number": 392, "usage_type": "call" }, { "api_name": "pants.util.ordered_set.FrozenOrderedSet", "line_number": 334, "usage_type": "name" }, { "api_name": "typing.Iterable", "line_number": 400, "usage_type": "name" }, { "api_name": "typing.Iterable", "line_number": 413, "usage_type": "name" }, { "api_name": "pants.util.ordered_set.OrderedSet", "line_number": 416, "usage_type": "name" }, { "api_name": "re.compile", "line_number": 455, "usage_type": "call" } ]
21499361084
import importlib import matplotlib import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import re import seaborn as sns import shutil from datetime import timedelta from file_read_backwards import FileReadBackwards from functools import partial from getpass import getuser from openpyxl import load_workbook from openpyxl.styles import Font, PatternFill, Alignment, Border, Side from openpyxl.utils import get_column_letter from pathlib import Path from prettytable import PrettyTable from scipy.fft import fft, fftfreq from socket import gethostname from statistics import stdev, mean from tqdm import tqdm from warnings import warn import utils.find as find import utils.fetch as fetch import utils.constants as cst # * =================================================================================================== def issteady(run: str) -> bool: log_file = find.find_logs(find.find_runs(run)[0])[0] with FileReadBackwards(log_file) as frb: for line in frb: if line.startswith("Time ="): if line.split()[-1].isdigit(): return True else: return False # * =================================================================================================== def ncol(handles: list) -> int: max_text_length = 60 nhandles = len(handles) total_length = sum(len(text) for text in handles) + 3 * nhandles if total_length > max_text_length: if nhandles > 6: ncol = 4 else: ncol = max(int(nhandles / 2), int((nhandles + 1) / 2)) row_index = range(0, nhandles - ncol, ncol) for i in row_index: words_in_row = [handles[k] for k in range(i, i + ncol)] if sum(len(word) for word in words_in_row) > max_text_length: ncol -= 1 break else: ncol = nhandles return ncol # * =================================================================================================== def print_header(run_dirs: list[Path]) -> None: # Check project is unique if not len({r.parent.name for r in run_dirs}) == 1: raise ValueError("Multiple project directories found.") # If unique project project = f'{cst.bmag}{run_dirs[0].parent.name}{cst.bcyan}' runs_num = [k.name for k in run_dirs] format_runs = f'{cst.bmag}{f"{cst.reset}, {cst.bmag}".join(sorted(runs_num))}{cst.bcyan}' title_df = pd.DataFrame({f'{cst.reset}{cst.bold}PROJECT{cst.bcyan}': project, f'{cst.reset}{cst.bold}RUN(S){cst.bcyan}': format_runs}, index=['Data']) # Create a prettytable object pt = PrettyTable() for col in title_df.columns: pt.add_column(col, title_df[col].values) pt.align[col] = 'c' pt.min_width[col] = int(shutil.get_terminal_size().columns / 2) - 4 # print the table print(cst.bcyan) print(pt, end=f'{cst.reset}') print('') # * =================================================================================================== def get_avg(df: pd.DataFrame, *, rng: int, type_avg: str = 'final', **kwargs) -> dict: # Select all the columns except 'Time' by default columns = list(df.columns)[1:] # If one or more columns are specified with 'usecols' if 'usecols' in kwargs: usecols = kwargs.get('usecols') columns = [col for col in list(df.columns)[1:] if re.search(re.compile(usecols), col)] # Return a dict of the mean value of each column over rng iterations if type_avg == 'final': return {c: df.loc[:, c].tail(rng).mean() for c in columns} # Get the window of series of observations of rng size for each column elif type_avg == 'moving': windows = {c: df.loc[:, c].rolling(rng) for c in columns} # Create a series of moving averages of each window for each column moving_avgs = {k: windows.get(k).mean().tolist() for k in windows} # Remove null entries final_dict = {k: moving_avgs.get(k)[rng - 1:] for k in moving_avgs} return final_dict # * =================================================================================================== def _format_excel(file_path): # Load the Excel file workbook = load_workbook(file_path) sheet = workbook.active # Set font styles header_font = Font(name="Calibri", bold=True, size=14) content_font = Font(name="Calibri", size=12) # Set alignment alignment = Alignment(horizontal="center", vertical="center") # Set fill color fill_main = PatternFill(start_color="C7D1E0", end_color="C7D1E0", fill_type="solid") fill_data = PatternFill(start_color="F2F2F2", end_color="F2F2F2", fill_type="solid") # Set border border_color = "FF0000" thin_border = Border(top=Side(style=None), right=Side(style=None), bottom=Side(style=None), left=Side(style=None)) # Format header row for cell in sheet[1]: cell.font = header_font cell.alignment = alignment cell.fill = fill_main cell.border = thin_border cell.value = cell.value.upper() # Format content rows for row in sheet.iter_rows(min_row=2): for cell in row: cell.font = content_font cell.alignment = alignment cell.fill = fill_data cell.border = thin_border if isinstance(cell.value, (int, float)): if cell.coordinate >= 'K': cell.number_format = '0.00E+00' # Scientific notation format code # Increase header row height sheet.row_dimensions[1].height = 40 for row in sheet.iter_rows(min_row=2): sheet.row_dimensions[row[0].row].height = 20 # Calculate the maximum text length in each column max_text_lengths = {} print(sheet.column_dimensions['G'].width) for row in sheet.iter_rows(min_row=1, values_only=True): for column_index, cell_value in enumerate(row, start=1): column_letter = get_column_letter(column_index) text_length = len(str(cell_value)) if column_letter not in max_text_lengths or text_length > max_text_lengths[column_letter]: max_text_lengths[column_letter] = text_length # Set the column width as 1.2 times the maximum text length for column_letter, max_length in max_text_lengths.items(): column_width = (max_length * 1.2) + 2 # Add some extra padding sheet.column_dimensions[column_letter].width = column_width # Save the modified Excel file workbook.save(file_path)
vicmcl/postpro
utils/misc.py
misc.py
py
6,902
python
en
code
0
github-code
6
[ { "api_name": "utils.find.find_logs", "line_number": 34, "usage_type": "call" }, { "api_name": "utils.find", "line_number": 34, "usage_type": "name" }, { "api_name": "utils.find.find_runs", "line_number": 34, "usage_type": "call" }, { "api_name": "file_read_backwards.FileReadBackwards", "line_number": 35, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 69, "usage_type": "name" }, { "api_name": "utils.constants.bmag", "line_number": 76, "usage_type": "attribute" }, { "api_name": "utils.constants", "line_number": 76, "usage_type": "name" }, { "api_name": "utils.constants.bcyan", "line_number": 76, "usage_type": "attribute" }, { "api_name": "utils.constants.bmag", "line_number": 78, "usage_type": "attribute" }, { "api_name": "utils.constants", "line_number": 78, "usage_type": "name" }, { "api_name": "utils.constants.reset", "line_number": 78, "usage_type": "attribute" }, { "api_name": "utils.constants.bcyan", "line_number": 78, "usage_type": "attribute" }, { "api_name": "pandas.DataFrame", "line_number": 79, "usage_type": "call" }, { "api_name": "utils.constants.reset", "line_number": 79, "usage_type": "attribute" }, { "api_name": "utils.constants", "line_number": 79, "usage_type": "name" }, { "api_name": "utils.constants.bold", "line_number": 79, "usage_type": "attribute" }, { "api_name": "utils.constants.bcyan", "line_number": 79, "usage_type": "attribute" }, { "api_name": "utils.constants.reset", "line_number": 80, "usage_type": "attribute" }, { "api_name": "utils.constants", "line_number": 80, "usage_type": "name" }, { "api_name": "utils.constants.bold", "line_number": 80, "usage_type": "attribute" }, { "api_name": "utils.constants.bcyan", "line_number": 80, "usage_type": "attribute" }, { "api_name": "prettytable.PrettyTable", "line_number": 83, "usage_type": "call" }, { "api_name": "shutil.get_terminal_size", "line_number": 88, "usage_type": "call" }, { "api_name": "utils.constants.bcyan", "line_number": 91, "usage_type": "attribute" }, { "api_name": "utils.constants", "line_number": 91, "usage_type": "name" }, { "api_name": "utils.constants.reset", "line_number": 92, "usage_type": "attribute" }, { "api_name": "utils.constants", "line_number": 92, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 97, "usage_type": "attribute" }, { "api_name": "re.search", "line_number": 109, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 109, "usage_type": "call" }, { "api_name": "openpyxl.load_workbook", "line_number": 130, "usage_type": "call" }, { "api_name": "openpyxl.styles.Font", "line_number": 134, "usage_type": "call" }, { "api_name": "openpyxl.styles.Font", "line_number": 135, "usage_type": "call" }, { "api_name": "openpyxl.styles.Alignment", "line_number": 138, "usage_type": "call" }, { "api_name": "openpyxl.styles.PatternFill", "line_number": 141, "usage_type": "call" }, { "api_name": "openpyxl.styles.PatternFill", "line_number": 142, "usage_type": "call" }, { "api_name": "openpyxl.styles.Border", "line_number": 146, "usage_type": "call" }, { "api_name": "openpyxl.styles.Side", "line_number": 146, "usage_type": "call" }, { "api_name": "openpyxl.styles.Side", "line_number": 147, "usage_type": "call" }, { "api_name": "openpyxl.styles.Side", "line_number": 148, "usage_type": "call" }, { "api_name": "openpyxl.styles.Side", "line_number": 149, "usage_type": "call" }, { "api_name": "openpyxl.utils.get_column_letter", "line_number": 182, "usage_type": "call" } ]
71243441147
import random import string #Image:一个画布 #ImageDraw:一个画笔 #ImageFont:画笔的字体 from PIL import Image,ImageDraw,ImageFont #Captcha验证码 class Captcha(object): #生成几位验证码 number = 4 #验证码图片的宽度和高度 size = (100,30) #验证码字体大小 fontsize = 25 #加入干扰线的条数 line_number = 2 # 构建一个验证码源文件 SOURCE = list(string.ascii_letters) for index in range(0,10): SOURCE.append(str(index)) #随机生成颜色 @classmethod def __gene_random_color(cls,start=0,end=255): random.seed() return (random.randint(start,end),random.randint(start,end),random.randint(start,end)) #随机产生一个字体 @classmethod def __gene_random_font(cls): fonts=[ 'cambriaz.ttf', 'consola.ttf', # 'modern.fon', # 'smalle.fon' ] #随机从列表中取一个元素 font = random.choice(fonts) return 'tool/captcha/'+font #随机生成一个字符串(包括英文和数字) @classmethod def gene_text(cls,number): #number是生成验证码的位数 return ''.join(random.sample(cls.SOURCE,number)) #生成干扰线 @classmethod def __gene_line(cls,draw,width,height): begin = (random.randint(0,width),random.randint(0,height)) end = (random.randint(0,width),random.randint(0,height)) draw.line([begin,end],fill=cls.__gene_random_color(),width=2) #绘制干扰点 @classmethod def __gene_points(cls,draw,point_chance,width,height): chance = min(100,max(0,int(point_chance))) #大小限制在[0,100] for w in range(width): for h in range(height): tmp = random.randint(0,100) if tmp > 100 - chance: draw.point((w,h),fill=cls.__gene_random_color()) #生成验证码 @classmethod def gene_captcha(cls): #验证码图片的宽和高 width,height = cls.size #创建图片(画板) image = Image.new('RGBA',(width,height),cls.__gene_random_color(0,100)) #验证码的字体 font = ImageFont.truetype(cls.__gene_random_font(),cls.fontsize) #创建画笔 draw = ImageDraw.Draw(image) # 生成字符串 text = cls.gene_text(cls.number) #获取字体的尺寸 font_width,font_height = font.getsize(text) #填充字符串 draw.text(((width - font_width) / 2,(height - font_height) / 2),text,font=font,fill=cls.__gene_random_color(150,255)) #绘制干扰线 for x in range(0,cls.line_number): cls.__gene_line(draw,width,height) #绘制噪点 cls.__gene_points(draw,10,width,height) # with open('captcha.png','wb') as fp: # image.save(fp) return (image,text)
lubocsu/BBS
tool/captcha/__init__.py
__init__.py
py
2,943
python
en
code
23
github-code
6
[ { "api_name": "string.ascii_letters", "line_number": 20, "usage_type": "attribute" }, { "api_name": "random.seed", "line_number": 26, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 27, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 39, "usage_type": "call" }, { "api_name": "random.sample", "line_number": 46, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 51, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 52, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 61, "usage_type": "call" }, { "api_name": "PIL.Image.new", "line_number": 71, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 71, "usage_type": "name" }, { "api_name": "PIL.ImageFont.truetype", "line_number": 73, "usage_type": "call" }, { "api_name": "PIL.ImageFont", "line_number": 73, "usage_type": "name" }, { "api_name": "PIL.ImageDraw.Draw", "line_number": 75, "usage_type": "call" }, { "api_name": "PIL.ImageDraw", "line_number": 75, "usage_type": "name" } ]
13865138503
import argparse import datetime import json import os from itertools import zip_longest from pathlib import Path from typing import List, Optional, Tuple import gpxpy from rich import box from hiking.import_export import JSON_IMPORT_EXAMPLE from hiking.models import Hike from hiking.utils import DATA_HOME, DEFAULT_BOX_STYLE, SlimDateRange # TODO: find a way to auto-detect this from rich BOX_FORMATS = [ "ASCII", "ASCII2", "ASCII_DOUBLE_HEAD", "SQUARE", "SQUARE_DOUBLE_HEAD", "MINIMAL", "MINIMAL_HEAVY_HEAD", "MINIMAL_DOUBLE_HEAD", "SIMPLE", "SIMPLE_HEAD", "SIMPLE_HEAVY", "HORIZONTALS", "ROUNDED", "HEAVY", "HEAVY_EDGE", "HEAVY_HEAD", "DOUBLE", "DOUBLE_EDGE", "MARKDOWN", ] def get_valid_fields_for_args(exclude: Optional[List] = None): exclude = exclude or [] return [ field.info["name"] for field in Hike.FIELDS if field.info["data_view"] and field.info["name"] not in exclude ] class DateRangeType: description = ( "Only include hikes contained in provided daterange (default: all hikes)" ) examples = ( "Valid examples:\n" "1970-01-01\n" "1970-01-01/1970-02-01\n" "1970-01-01/ (all hikes from start date)\n" "/1970-01-01 (all hikes until end date)" ) help = f"{description}\n{examples}" def __call__(self, raw: str, *args, **kwargs): start = end = raw splitted = raw.split("/") if len(splitted) == 2 and all(splitted): start, end = splitted elif start.endswith("/"): start = start.rstrip("/") end = None elif end.startswith("/"): end = end.lstrip("/") start = None try: start = ( datetime.datetime.strptime(start, "%Y-%m-%d").date() if start else datetime.date.min ) end = ( datetime.datetime.strptime(end, "%Y-%m-%d").date() if end else datetime.date.max ) except ValueError as e: raise argparse.ArgumentTypeError(f"{e.args[0]}\n{self.examples}") return SlimDateRange(start, end) class WritableDirPathType: def __call__(self, raw: str, *args, **kwargs): directory = Path(raw) if ( not directory.exists() or not directory.is_dir() or not os.access(directory, os.W_OK) ): raise argparse.ArgumentTypeError( f'Cannot write to directory: "{directory.absolute()}". ' f"Make sure it exists and is writable." ) return directory class GPXFileType(argparse.FileType): def __call__(self, *args, **kwargs): file = super().__call__(*args, **kwargs) try: gpx_xml = file.read() gpxpy.parse(gpx_xml) except Exception as e: raise argparse.ArgumentTypeError(f"Cannot read *.gpx file: {str(e)}") return gpx_xml class JsonFileType(argparse.FileType): def __call__(self, *args, **kwargs): file = super().__call__(*args, **kwargs) try: data = json.load(file) except Exception as e: raise argparse.ArgumentTypeError(f"Cannot read *.json file: {str(e)}") return data def validate_order_key(value: str) -> Tuple[str, bool]: reverse = False if value.startswith("-"): reverse = True value = value.lstrip("-") if value not in get_valid_fields_for_args(): raise argparse.ArgumentTypeError("Invalid order_key") return value, reverse def validate_plot(value: str) -> Tuple[str, str]: try: x, y = tuple(value.split(",")) for i in x, y: assert i in get_valid_fields_for_args(["name"]) return x, y except (ValueError, AssertionError): raise argparse.ArgumentTypeError("plot") def validate_table_style(value: str) -> Tuple[str, str]: try: box_style = getattr(box, value.upper()) except AttributeError: raise argparse.ArgumentTypeError("Invalid table-style") return box_style def set_default_subparser( parser: argparse.ArgumentParser, default_subcommand: str, raw_args: List[str] ): subparser_found = False for arg in raw_args: if arg in ["-h", "--help"]: # pragma: no cover break else: for x in parser._subparsers._actions: if not isinstance(x, argparse._SubParsersAction): continue for sp_name in x._name_parser_map.keys(): if sp_name in raw_args: subparser_found = True if not subparser_found: raw_args.insert(0, default_subcommand) def parse_arguments(raw_args: List[str]) -> argparse.Namespace: """ Parse all arguments. """ def format_list(data: List[str]): data.sort() col_1 = data[: int(round(len(data) / 2))] col_2 = data[int(round(len(data) / 2)) :] table_data = list(zip_longest(col_1, col_2, fillvalue="")) longest = 0 for i in table_data: if len(i[0]) > longest: longest = len(i[0]) result = [f"{i[0].ljust(longest)}{' ' * 5}{i[1]}" for i in table_data] return "\n".join(result) parser = argparse.ArgumentParser( formatter_class=argparse.RawTextHelpFormatter, prog="hiking" ) debug_arg_dict = { "help": "Show debug information (log queries)", "action": "store_true", } subparsers = parser.add_subparsers(dest="command") show = subparsers.add_parser( "show", help="Show hike(s) (default)", description="Show hike(s) (default)", formatter_class=argparse.RawTextHelpFormatter, ) show.add_argument( "ids", metavar="ID", help="Hike ID", nargs="*", type=int, ) show.add_argument( "-d", "--daterange", help=DateRangeType.help, type=DateRangeType(), default=SlimDateRange(datetime.date.min, datetime.date.max), ) show.add_argument( "-s", "--search", help="Search for text in name and body (case insensitive)", type=str, ) show.add_argument( "-t", "--table-style", help=( "Table format style (default: simple)\n" f"Available options:\n{format_list(BOX_FORMATS)}" ), default=DEFAULT_BOX_STYLE, type=validate_table_style, ) show.add_argument( "-o", "--order-key", help=( 'Key to use for hike sorting. To reverse, prepend with "-".\n' "Available options:\n" f"{format_list(get_valid_fields_for_args())}" ), default=("date", False), type=validate_order_key, ) show.add_argument( "--plot", help=( "Fields to plot in a graph.\n" "*experimental*\n" "Example:\n" '"date,distance"\n' "Available options:\n" f"{format_list(get_valid_fields_for_args(exclude=['name']))}" ), default=(), type=validate_plot, ) show.add_argument("--debug", **debug_arg_dict) create = subparsers.add_parser( "create", help="Create a new record", description="Create a new record.", formatter_class=argparse.RawTextHelpFormatter, ) create.add_argument( "--gpx", metavar="GPX_FILE", type=GPXFileType("r"), help="Import from *.gpx-file", ) create.add_argument("--debug", **debug_arg_dict) edit = subparsers.add_parser( "edit", help="Edit a record", description="Edit a record.", formatter_class=argparse.RawTextHelpFormatter, ) edit.add_argument( "id", metavar="ID", help="Hike ID", type=int, ) edit.add_argument( "--gpx", metavar="GPX_FILE", type=GPXFileType("r"), help="Import from *.gpx-file", ) edit.add_argument("--debug", **debug_arg_dict) delete = subparsers.add_parser( "delete", help="Delete records by ID", description="Delete records by ID.", formatter_class=argparse.RawTextHelpFormatter, ) delete.add_argument( "-f", "--force", help="Do not ask before deletion", action="store_true", ) delete.add_argument( "-q", "--quiet", help="Do not display hikes before deletion", action="store_true", ) delete.add_argument( "-a", "--all", help="Delete all hikes", action="store_true", ) delete.add_argument( "ids", metavar="ID", help="Hike ID", nargs="*", type=int, ) delete.add_argument("--debug", **debug_arg_dict) _import = subparsers.add_parser( "import", help="Import records from JSON", description=f"Import records from JSON.\nFormat:\n{JSON_IMPORT_EXAMPLE}", formatter_class=argparse.RawTextHelpFormatter, ) _import.add_argument( "json_data", metavar="JSON_FILE", help="Path to JSON file", type=JsonFileType("r"), ) _import.add_argument("--debug", **debug_arg_dict) export = subparsers.add_parser( "export", help="Export records as JSON and GPX", description="Export records as JSON and GPX.", formatter_class=argparse.RawTextHelpFormatter, ) export.add_argument( "export_dir", metavar="EXPORT_DIR", help="Path to export directory", type=WritableDirPathType(), ) export.add_argument( "ids", metavar="ID", help="Hike ID", nargs="*", type=int, ) export.add_argument( "-d", "--daterange", help=DateRangeType.help, type=DateRangeType(), default=SlimDateRange(datetime.date.min, datetime.date.max), ) export.add_argument( "-i", "--include-ids", help='Include IDs in export. Needed for "update", must be omitted for "create"', action="store_true", ) export.add_argument("--debug", **debug_arg_dict) set_default_subparser(parser, "show", raw_args) args = parser.parse_args(raw_args) if args.command == "delete" and not args.ids and not args.all: raise parser.error("IDs or --all must be provided") elif args.command == "delete" and args.ids and args.all: raise parser.error("Ambiguous argument: IDs and --all provided") try: WritableDirPathType()(DATA_HOME.parent) except argparse.ArgumentTypeError: raise parser.error(f"Cannot write to user data director: {DATA_HOME.parent}") return args
open-dynaMIX/hiking
hiking/arg_parsing.py
arg_parsing.py
py
10,991
python
en
code
0
github-code
6
[ { "api_name": "typing.Optional", "line_number": 40, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 40, "usage_type": "name" }, { "api_name": "hiking.models.Hike.FIELDS", "line_number": 44, "usage_type": "attribute" }, { "api_name": "hiking.models.Hike", "line_number": 44, "usage_type": "name" }, { "api_name": "datetime.datetime.strptime", "line_number": 76, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 76, "usage_type": "attribute" }, { "api_name": "datetime.date", "line_number": 78, "usage_type": "attribute" }, { "api_name": "datetime.datetime.strptime", "line_number": 81, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 81, "usage_type": "attribute" }, { "api_name": "datetime.date", "line_number": 83, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentTypeError", "line_number": 86, "usage_type": "call" }, { "api_name": "hiking.utils.SlimDateRange", "line_number": 87, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 92, "usage_type": "call" }, { "api_name": "os.access", "line_number": 96, "usage_type": "call" }, { "api_name": "os.W_OK", "line_number": 96, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentTypeError", "line_number": 98, "usage_type": "call" }, { "api_name": "argparse.FileType", "line_number": 105, "usage_type": "attribute" }, { "api_name": "gpxpy.parse", "line_number": 110, "usage_type": "call" }, { "api_name": "argparse.ArgumentTypeError", "line_number": 112, "usage_type": "call" }, { "api_name": "argparse.FileType", "line_number": 116, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 120, "usage_type": "call" }, { "api_name": "argparse.ArgumentTypeError", "line_number": 122, "usage_type": "call" }, { "api_name": "argparse.ArgumentTypeError", "line_number": 132, "usage_type": "call" }, { "api_name": "typing.Tuple", "line_number": 126, "usage_type": "name" }, { "api_name": "argparse.ArgumentTypeError", "line_number": 143, "usage_type": "call" }, { "api_name": "typing.Tuple", "line_number": 136, "usage_type": "name" }, { "api_name": "rich.box", "line_number": 148, "usage_type": "argument" }, { "api_name": "argparse.ArgumentTypeError", "line_number": 150, "usage_type": "call" }, { "api_name": "typing.Tuple", "line_number": 146, "usage_type": "name" }, { "api_name": "argparse.ArgumentParser", "line_number": 155, "usage_type": "attribute" }, { "api_name": "typing.List", "line_number": 155, "usage_type": "name" }, { "api_name": "argparse._SubParsersAction", "line_number": 163, "usage_type": "attribute" }, { "api_name": "typing.List", "line_number": 172, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 177, "usage_type": "name" }, { "api_name": "itertools.zip_longest", "line_number": 181, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 189, "usage_type": "call" }, { "api_name": "argparse.RawTextHelpFormatter", "line_number": 190, "usage_type": "attribute" }, { "api_name": "argparse.RawTextHelpFormatter", "line_number": 204, "usage_type": "attribute" }, { "api_name": "hiking.utils.SlimDateRange", "line_number": 220, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 220, "usage_type": "attribute" }, { "api_name": "hiking.utils.DEFAULT_BOX_STYLE", "line_number": 237, "usage_type": "name" }, { "api_name": "argparse.RawTextHelpFormatter", "line_number": 273, "usage_type": "attribute" }, { "api_name": "argparse.RawTextHelpFormatter", "line_number": 289, "usage_type": "attribute" }, { "api_name": "argparse.RawTextHelpFormatter", "line_number": 312, "usage_type": "attribute" }, { "api_name": "hiking.import_export.JSON_IMPORT_EXAMPLE", "line_number": 349, "usage_type": "name" }, { "api_name": "argparse.RawTextHelpFormatter", "line_number": 350, "usage_type": "attribute" }, { "api_name": "argparse.RawTextHelpFormatter", "line_number": 366, "usage_type": "attribute" }, { "api_name": "hiking.utils.SlimDateRange", "line_number": 389, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 389, "usage_type": "attribute" }, { "api_name": "hiking.utils.DATA_HOME.parent", "line_number": 411, "usage_type": "attribute" }, { "api_name": "hiking.utils.DATA_HOME", "line_number": 411, "usage_type": "name" }, { "api_name": "argparse.ArgumentTypeError", "line_number": 412, "usage_type": "attribute" }, { "api_name": "hiking.utils.DATA_HOME.parent", "line_number": 413, "usage_type": "attribute" }, { "api_name": "hiking.utils.DATA_HOME", "line_number": 413, "usage_type": "name" }, { "api_name": "argparse.Namespace", "line_number": 172, "usage_type": "attribute" } ]
35729401904
#!/usr/bin/python # -*- coding: UTF-8 -*- # from multiprocessing.pool import ThreadPool import threading from time import sleep import requests from selenium import webdriver from bs4 import BeautifulSoup import output as op class FlaskScraper: # groupName: webUrl dictOfNameAndWebUrl = {} # weburl: webCont dictOfNameAndWebCont = {} # weburl: webCOnt without mark dictOfNameAndWebContWithoutMk = {} # initialize def __init__(self, chatBot, dictOfNameAndWebsite): for key in dictOfNameAndWebsite: web = dictOfNameAndWebsite[key] if(key in FlaskScraper.dictOfNameAndWebUrl.keys()): FlaskScraper.dictOfNameAndWebUrl[key] = web # if(not web in FlaskScraper.dictOfNameAndWebCont.keys()): FlaskScraper.dictOfNameAndWebCont.setdefault(web, ['null']) FlaskScraper.dictOfNameAndWebContWithoutMk.setdefault(web, ['null']) # FlaskScraper.dictOfNameAndWebCont.setdefault(web, self.ScraperFromFlaskByCheck(key)) else: FlaskScraper.dictOfNameAndWebUrl.setdefault(key, web) # if(not web in FlaskScraper.dictOfNameAndWebCont.keys()): FlaskScraper.dictOfNameAndWebCont.setdefault(web, ['null']) FlaskScraper.dictOfNameAndWebContWithoutMk.setdefault(web, ['null']) # FlaskScraper.dictOfNameAndWebCont.setdefault(web, self.ScraperFromFlaskByCheck(key)) self.MultiClientController(chatBot, {key : web}) # self.UpdateWebsiteUrl(chatBot, dictOfNameAndWebsite) # self.UpdateWebsiteCont(dictOfNameAndWebsite) def Scraper(weburl): driver = webdriver.Chrome("/usr/local/share/chromedriver") driver.get(weburl) try: driver.find_element_by_xpath("//a[contains(text(),'Show all completed tasks')]").click() except: pass # driver.find_element_by_id() # print("------------", driver.page_source) sleep(2) soup = BeautifulSoup(driver.page_source, "html.parser") spanlist = soup.find_all('span', attrs={'class':'best_in_place'}) driver.quit() return spanlist # bind group name with url & bind group name with web content def UpdateWebsiteUrl(self, chatBot, key, web): # for key in incDicOfNameAndWebsite: # web = incDicOfNameAndWebsite[key] # print(1) if(web in FlaskScraper.dictOfNameAndWebUrl.values()): return "fail" # print(2) if(key in FlaskScraper.dictOfNameAndWebUrl.keys()): FlaskScraper.dictOfNameAndWebUrl[key] = web # if(not web in FlaskScraper.dictOfNameAndWebCont.keys()): FlaskScraper.dictOfNameAndWebCont.setdefault(web, ['null']) FlaskScraper.dictOfNameAndWebContWithoutMk.setdefault(web, ['null']) # FlaskScraper.dictOfNameAndWebCont.setdefault(web, self.ScraperFromFlaskByCheck(key)) else: FlaskScraper.dictOfNameAndWebUrl.setdefault(key, web) # if(not web in FlaskScraper.dictOfNameAndWebCont.keys()): FlaskScraper.dictOfNameAndWebCont.setdefault(web, ['null']) FlaskScraper.dictOfNameAndWebContWithoutMk.setdefault(web, ['null']) # FlaskScraper.dictOfNameAndWebCont.setdefault(web, self.ScraperFromFlaskByCheck(key)) self.MultiClientController(chatBot, {key : web}) return "succeed" # multiple clients generator def MultiClientController(self, chatBot, nameOfGrp): for k in nameOfGrp: try: thread = threading.Thread(target=ScraperTimeController, args=(k, chatBot, )) thread.start() except: print ("Error: unable to start thread for %s !" %(k)) # check command def ScraperFromFlaskByCheck(self, nameOfGrp): # print(dictOfNameAndWebsite.value[0]) # html = requests.get(dictOfNameAndWebsite.values()[0]).content thisKey = FlaskScraper.dictOfNameAndWebUrl[nameOfGrp] # html = requests.get(thisKey).content # driver.get(thisKey) # driver.find_element_by_xpath("//a[contains(text(),'Show all completed tasks')]").click() # sleep(2) # soup = BeautifulSoup(driver.page_source, "html.parser") # spanlist = soup.find_all('span', attrs={'class':'best_in_place'}) spanlist = FlaskScraper.Scraper(thisKey) # print("before") MessageWithoutMk, Message = op.ChangeFormatOfOutput(spanlist) # print("in") if (Message != FlaskScraper.dictOfNameAndWebCont[thisKey]): # print("in if") FlaskScraper.dictOfNameAndWebCont[thisKey] = Message # print("in if 2") FlaskScraper.dictOfNameAndWebContWithoutMk[thisKey] = MessageWithoutMk # print("in if 3") # print("after") # Message = [] # for i in range(1,len(spanlist)): # checkbox=str(spanlist[i].find_previous_sibling('input')) # if 'checked' in checkbox: # Message.append(spanlist[i].text+'-completed') # else: # Message.append(spanlist[i].text+'-uncompleted') # if (Message != FlaskScraper.dictOfNameAndWebCont[thisKey]): # FlaskScraper.dictOfNameAndWebCont[thisKey] = Message return Message # time controller, send news to users def ScraperTimeController(key, chatBot): while True: weburl = FlaskScraper.dictOfNameAndWebUrl[key] Message = ScraperFromFlaskByTime(weburl) if(Message != ['null']): # News=weburl + '\n' +'Update: \n' News = "" for strMessage in Message: News = News + strMessage + '\n' News = News + weburl my_friend = chatBot.search(puid=key)[0] my_friend.send(News) sleep(3) # listen to the website, return news def ScraperFromFlaskByTime(weburl): spanlist = FlaskScraper.Scraper(weburl) print("test1") # driver.get(thisKey) # driver.find_element_by_xpath("//a[contains(text(),'Show all completed tasks')]").click() # sleep(2) # soup = BeautifulSoup(driver.page_source, "html.parser") # spanlist = soup.find_all('span', attrs={'class':'best_in_place'}) # html = requests.get(weburl).content # soup = BeautifulSoup(html,"html.parser") # spanlist = soup.find_all('span',attrs={'class':'best_in_place'}) MessageWithoutMk, Message = op.ChangeFormatOfOutput(spanlist) oldContent = [] for v in FlaskScraper.dictOfNameAndWebContWithoutMk[weburl]: oldContent.append(v) # first time to log if (FlaskScraper.dictOfNameAndWebCont[weburl] == ['null'] and \ Message != FlaskScraper.dictOfNameAndWebCont[weburl]): FlaskScraper.dictOfNameAndWebCont[weburl] = Message FlaskScraper.dictOfNameAndWebContWithoutMk[weburl] = MessageWithoutMk return Message elif (Message != FlaskScraper.dictOfNameAndWebCont[weburl]): print(Message) print(MessageWithoutMk) print(oldContent) print(FlaskScraper.dictOfNameAndWebContWithoutMk[weburl]) # print("Message",Message) # print("FlaskScraper.dictOfNameAndWebCont[weburl])", FlaskScraper.dictOfNameAndWebCont[weburl]) tmplist = [] cnt = 0 for i in range(len(MessageWithoutMk)): if MessageWithoutMk[i] in oldContent: if Message[i] not in FlaskScraper.dictOfNameAndWebCont[weburl]: print("Message[%d]" %(i), Message[i]) print("oldContent index", oldContent.index(MessageWithoutMk[i])) print("oldCOntent", oldContent) print("cont",FlaskScraper.dictOfNameAndWebCont[weburl]) tmplist.append("\u2713 " + MessageWithoutMk[i]) # finished oldContent.remove(MessageWithoutMk[i]) cnt = cnt + 1 else: # print("not in MessageWithoutMk[%d]" %(i), MessageWithoutMk[i]) # print("oldContent", oldContent) # print("tmplist[0]", MessageWithoutMk[i]) print("--------------------------------") tmplist.append("\u2610 " + MessageWithoutMk[i]) # added for i in range(len(oldContent)): tmplist.append("\u2717 " + oldContent[i]) # delete print("final",tmplist) if(tmplist != []): FlaskScraper.dictOfNameAndWebCont[weburl] = Message FlaskScraper.dictOfNameAndWebContWithoutMk[weburl] = MessageWithoutMk return tmplist else: return ['null'] # cnt = 0 else: return ['null'] # newContent = [] # Message = [] # oldContent = FlaskScraper.dictOfNameAndWebCont[weburl] # dictOldContent = {} # for cont in oldContent: # if cont.find('-completed') > 0: # dictOldContent[cont[:cont.find('-completed')]] ='-completed' # elif cont.find('-uncompleted') > 0: # dictOldContent[cont[:cont.find('-uncompleted')]] ='-uncompleted' # for i in range(1,len(spanlist)): # checkbox=str(spanlist[i].find_previous_sibling('input')) # if 'checked' in checkbox: # newContent.append(spanlist[i].text+'-completed') # if spanlist[i].text in dictOldContent.keys(): # if dictOldContent[spanlist[i].text] == '-uncompleted': # Message.append('completed: '+spanlist[i].text) # dictOldContent[spanlist[i].text] = '-checked' # else: # Message.append('add: '+spanlist[i].text) # else: # newContent.append(spanlist[i].text+'-uncompleted') # if spanlist[i].text in dictOldContent.keys(): # if dictOldContent[spanlist[i].text] == '-completed': # Message.append('uncompleted: '+spanlist[i].text) # dictOldContent[spanlist[i].text] = '-checked' # else: # Message.append('add: '+spanlist[i].text) # for cont in dictOldContent: # if dictOldContent[cont] != '-checked': # Message.append('delete: ' + cont) # if Message !=[]: # FlaskScraper.dictOfNameAndWebCont[weburl]=newContent # return Message # else: # return ['null']
clamli/fdatanotice
scraper.py
scraper.py
py
8,975
python
en
code
0
github-code
6
[ { "api_name": "selenium.webdriver.Chrome", "line_number": 43, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 43, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 52, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 53, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 87, "usage_type": "call" }, { "api_name": "output.ChangeFormatOfOutput", "line_number": 109, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 145, "usage_type": "call" }, { "api_name": "output.ChangeFormatOfOutput", "line_number": 165, "usage_type": "call" } ]
36106930014
import pyperclip import re matchPhone = re.compile(r'''( (\d{3}|\(\d{3}\)) # area code (\s|-|\.) # separator (\d{3}) # first 3 digits (\s|-|\.) # separator (\d{4}) # last 4 digits (\s*(ext|x|ext.)\s*(\d{2,5}))? #extension )''', re.VERBOSE) matchEmail = re.compile(r'''( [a-zA-Z0-9._%+-]+ # address @[a-zA-Z0-9.-]+ # domain name \.(\w*) # domain suffix )''', re.VERBOSE) matchURL = re.compile(r'''( (http://|https://) # prefix (.*) # domain name (\.\w{2,}) # suffix )''', re.VERBOSE) text = pyperclip.paste() matches = [] for match in matchPhone.findall(text): phoneNum = '-'.join([match[1], match[3], match[5]]) if match[8] != '': phoneNum += ' x' + match[8] matches.append(phoneNum) for match in matchEmail.findall(text): matches.append(match[0]) for match in matchURL.findall(text): matches.append(match[0]) print('\n'.join(matches)) pyperclip.copy('\n'.join(matches))
kaisteussy/AtBS
automate_the_boring_stuff/Chapter 7/phoneAndEmail.py
phoneAndEmail.py
py
1,355
python
en
code
0
github-code
6
[ { "api_name": "re.compile", "line_number": 4, "usage_type": "call" }, { "api_name": "re.VERBOSE", "line_number": 11, "usage_type": "attribute" }, { "api_name": "re.compile", "line_number": 13, "usage_type": "call" }, { "api_name": "re.VERBOSE", "line_number": 17, "usage_type": "attribute" }, { "api_name": "re.compile", "line_number": 19, "usage_type": "call" }, { "api_name": "re.VERBOSE", "line_number": 23, "usage_type": "attribute" }, { "api_name": "pyperclip.paste", "line_number": 25, "usage_type": "call" }, { "api_name": "pyperclip.copy", "line_number": 42, "usage_type": "call" } ]
15068023113
from os import name from django.urls import path from . import views urlpatterns = [ path('', views.home, name="home"), path('about/', views.about, name="about"), path('join_us/', views.join_us, name="join_us"), path('hotel_detail/<int:hotel_id>/', views.hotel_detail, name="hotel_detail"), path('hotel_detail/<int:hotel_id>/<slug:extra>/', views.hotel_detail, name="hotel_detail"), path('cart/', views.my_cart, name="my_cart"), path('cart/plus', views.plus_cart, name="plus_cart"), path('cart/minus', views.minus_cart, name="minus_cart"), path('verify_payment/', views.verifyPayment, name='verify_payment'), path('order/', views.orders, name="order"), path('search/', views.search_items, name="search"), path('all_hotel/', views.all_hotel, name="all_hotel"), path('all_menu/', views.all_menu, name="all_menu"), path('health/', views.health, name="health"), ]
leenabadgujar/Online_Tiffin_Service
food/urls.py
urls.py
py
935
python
en
code
0
github-code
6
[ { "api_name": "django.urls.path", "line_number": 6, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 7, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 8, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 9, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 11, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 13, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 14, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 15, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 16, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 17, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 18, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 19, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 20, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 21, "usage_type": "call" } ]
71840534267
# coding=utf8 from validate_email import validate_email if __name__ == '__main__': f = open("stargazers_email.txt", "r") emails = f.readlines() emails = [line.rstrip('\n') for line in emails] valid_email = [] for i in range(len(emails)): is_valid = validate_email(emails[i], verify=True) print(is_valid) if is_valid == 'True': valid_email.append(emails[i]) print(len(valid_email)) with open('valid_email.txt', 'w') as f: for item in valid_email: f.write("%s\n" % item)
haoshuai999/Master-project
validate_stargazers_email.py
validate_stargazers_email.py
py
494
python
en
code
0
github-code
6
[ { "api_name": "validate_email.validate_email", "line_number": 11, "usage_type": "call" } ]
24367084112
import numpy as np import cv2 as cv image = cv.imread('lena.jpg') image = cv.cvtColor(image, cv.COLOR_BGR2GRAY) img = np.array(image) height = image.shape[0] width = image.shape[1] kernel= np.array([[-1, -1, -1],[-1, 8, -1], [-1, -1, -1]]) #print(kernel) m= kernel.shape[0]//2 w=h=3 conv= np.zeros(image.shape) for i in range(m,height-m): for j in range(m, width-m): s=0 for k in range(h): for l in range(w): s=s+img[i-m+k][j-m+l]*kernel[k][l] conv[i][j]=s #print(img) cv.imshow('img', conv) cv.waitKey() #cv.destroyAllWindows()
maximana99/kernel-python
main.py
main.py
py
589
python
en
code
0
github-code
6
[ { "api_name": "cv2.imread", "line_number": 4, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 5, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 5, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 7, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 11, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 15, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 26, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 27, "usage_type": "call" } ]
11046567215
import urllib.request, json import pytz from datetime import datetime dateTimeStr=datetime.utcnow().replace(tzinfo=pytz.utc) def jsonReaderScooter(urlToOpen): with urllib.request.urlopen(urlToOpen) as url: data = json.loads(url.read().decode()) retStr='lat,lon,isdisabled,time\n' try: with open('outputDataUpdated.csv','r') as reader: if retStr in reader: retStr='' except: pass for item in data["data"]["bikes"]: retStr+=str(item['lat'])+','+str(item['lon'])+','+str(item['is_disabled'])+','+str(dateTimeStr)+'\n' with open('outputDataUpdated.csv', 'a+') as writer: writer.writelines(retStr) return True url = ["https://mds.bird.co/gbfs/los-angeles/free_bikes","https://s3.amazonaws.com/lyft-lastmile-production-iad/lbs/lax/free_bike_status.json","https://la-gbfs.getwheelsapp.com/free_bike_status.json"] for i in url: jsonReaderScooter(i)
hjames034/scooterRecordLA
parseScooter.py
parseScooter.py
py
941
python
en
code
0
github-code
6
[ { "api_name": "datetime.datetime.utcnow", "line_number": 4, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 4, "usage_type": "name" }, { "api_name": "pytz.utc", "line_number": 4, "usage_type": "attribute" }, { "api_name": "urllib.request.request.urlopen", "line_number": 6, "usage_type": "call" }, { "api_name": "urllib.request.request", "line_number": 6, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 6, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 7, "usage_type": "call" } ]
34608382125
import sys import pygame from setting import Settings from setting import Ship import game_functions as gf def run_game(): # Initialize game and create a screen object. pygame.init() ai_settings = Settings() screen = pygame.display.set_mode( (ai_settings.screen_width, ai_settings.screen_height)) ship = Ship(screen) pygame.display.set_caption("Andy and Mr. Umair's Rocket game") bg_color = (30,67,78) # Start the main loop for the game. while True: gf.check_events(ship) ship.update() # Watch for keyboard and mouse events. # Make the most recently drawn screen visible. gf.update_screen(ai_settings, screen, ship) run_game()
andy-miao-gu/preply_by_umair
old/okbruhpygame.py
okbruhpygame.py
py
749
python
en
code
0
github-code
6
[ { "api_name": "pygame.init", "line_number": 13, "usage_type": "call" }, { "api_name": "setting.Settings", "line_number": 15, "usage_type": "call" }, { "api_name": "pygame.display.set_mode", "line_number": 17, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 17, "usage_type": "attribute" }, { "api_name": "setting.Ship", "line_number": 19, "usage_type": "call" }, { "api_name": "pygame.display.set_caption", "line_number": 20, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 20, "usage_type": "attribute" }, { "api_name": "game_functions.check_events", "line_number": 24, "usage_type": "call" }, { "api_name": "game_functions.update_screen", "line_number": 29, "usage_type": "call" } ]
21139527922
#!/usr/bin/env python3 import time from pymavlink import mavutil from trunk import * #from colored import fg, bg, attr from colored import fg, bg, attr #if get_Setting('mainLoopStatus', 'status.json', 0) == "closed": # print("Warning: Manual override enabled") # set_Setting('mainLoopStatus', 'manual', 'status.json', 1) print("Hello, Launching MavLink viewer...") timer1 = time.time() # Start a connection listening to a UDP port #the_connection = mavutil.mavlink_connection('udpin:localhost:14540') time.sleep(1) print("--->Looking for ports, please wait... Can take up to a minute...") print("") port1 = '/dev/ttyACM1' port2 = '/dev/ttyACM2' current = port1 while 1: try: the_connection = mavutil.mavlink_connection(current) time.sleep(1) the_connection.wait_heartbeat() break except: pass if current == port1: current = port2 elif current == port2: current = port1 time.sleep(1) print("Connected to port: " + current) print("Heartbeat from System %u, Component %u" % (the_connection.target_system, the_connection.target_system)) time.sleep(4) #https://mavlink.io/en/messages/common.html#MAV_DATA_STREAM_EXTENDED_STATUS for i in range(0, 3): the_connection.mav.request_data_stream_send(the_connection.target_system, the_connection.target_component, mavutil.mavlink.MAV_DATA_STREAM_ALL, 4, 1) pevent = mavutil.periodic_event(5) while(1): the_connection.recv_msg() if pevent.trigger(): try: IMU = the_connection.messages['RAW_IMU'] IMU2= the_connection.messages['SCALED_IMU2'] try: IMU3= the_connection.messages['SCALED_IMU3'] except: pass PR1= the_connection.messages['SCALED_PRESSURE'] GPS_RAW= the_connection.messages['GPS_RAW_INT'] #print(IMU) print("\tAx\tAy\tAz\t|Gx\tGy\tGz\t|Mx\tMy\tMz") print(f"0|\t{IMU.xacc:.0f}\t{IMU.yacc:.0f}\t{IMU.zacc:.0f}\t|{IMU.xgyro:.0f}\t{IMU.ygyro:.0f}\t{IMU.zgyro:.0f}\t|{IMU.xmag:.0f}\t{IMU.ymag:.0f}\t{IMU.zmag:.0f}") print(f"1|\t{IMU2.xacc:.0f}\t{IMU2.yacc:.0f}\t{IMU2.zacc:.0f}\t|{IMU2.xgyro:.0f}\t{IMU2.ygyro:.0f}\t{IMU2.zgyro:.0f}\t|{IMU2.xmag:.0f}\t{IMU2.ymag:.0f}\t{IMU2.zmag:.0f}") print(f"2|\t{IMU3.xacc:.0f}\t{IMU3.yacc:.0f}\t{IMU3.zacc:.0f}\t|{IMU3.xgyro:.0f}\t{IMU3.ygyro:.0f}\t{IMU3.zgyro:.0f}\t|{IMU3.xmag:.0f}\t{IMU3.ymag:.0f}\t{IMU3.zmag:.0f}") print(f"Pressure1 Abs: {PR1.press_abs:.2f} \tDif: {PR1.press_diff:.1f} \tTemp: {PR1.temperature:.0f}" + "\tSats in View: " + str(GPS_RAW.satellites_visible)) #print("Sats in View: " + str(GPS_RAW.satellites_visible)) except: print("Error") try: PR2= the_connection.messages['SCALED_PRESSURE2'] print(f"Pressure2 Abs: {PR2.press_abs:.2f} \tDif: {PR2.press_diff:.1f} \tTemp: {PR2.temperature:.0f}") #print(" ") except: print(f"Pressure2 Abs: INOP \tDif: INOP \tTemp: INOP") #print("...Press ctrl+c to exit...") print('%s ...Press ctrl+c to exit... %s' % (fg(3), attr(0))) print(" ") time.sleep(.005) #ALL = the_connection.recv_match(blocking=True) #print(ALL)
j07rdi/controlzero_testing
mavlink_test.py
mavlink_test.py
py
3,092
python
en
code
1
github-code
6
[ { "api_name": "time.time", "line_number": 14, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 19, "usage_type": "call" }, { "api_name": "pymavlink.mavutil.mavlink_connection", "line_number": 29, "usage_type": "call" }, { "api_name": "pymavlink.mavutil", "line_number": 29, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 30, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 39, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 43, "usage_type": "call" }, { "api_name": "pymavlink.mavutil.mavlink", "line_number": 46, "usage_type": "attribute" }, { "api_name": "pymavlink.mavutil", "line_number": 46, "usage_type": "name" }, { "api_name": "pymavlink.mavutil.periodic_event", "line_number": 48, "usage_type": "call" }, { "api_name": "pymavlink.mavutil", "line_number": 48, "usage_type": "name" }, { "api_name": "colored.fg", "line_number": 82, "usage_type": "call" }, { "api_name": "colored.attr", "line_number": 82, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 85, "usage_type": "call" } ]
41146228063
from flask import Flask, g, render_template, request, send_from_directory, url_for import sqlite3, os, datetime from werkzeug.utils import redirect, secure_filename SITENAME = 'SaLeeMas - PicShare' # Définir le dossier dans lequel les photos # vont petre uploadés UPLOAD_FOLDER = 'uploads' ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'gif'} app = Flask(__name__) # Attention, à préciser le répertoire local ! DATABASE = 'app.db' # On définit une variable globale qui rendra # nos fichiers accesssibles même via les templates # récupéré de la doc FLASK app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER # Se connecter à la DB (code récupéré de la doc FLASK) def get_db(): db = getattr(g, '_database', None) if db is None: db = g._database = sqlite3.connect(DATABASE) return db # La fonction pour spécifier les types de fichier autorisés def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS # La route de la homepage @app.route("/", methods=["GET", "POST"]) def show_pictures(): db = get_db() print("All categories") if request.method == 'GET': categories = db.execute("SELECT name from categories order by id") pictures = db.execute("SELECT id, title, filename \ from pictures order by upload_date desc") # print(pictures.fetchall()) return render_template("index.html", all_pictures=pictures, all_categories=categories) # La route de la homepage avec la categorie name en argument @app.route("/<category>", methods=["GET", "POST"]) def show_category_pictures(category): db = get_db() if request.method == 'GET': # print("Chosen category", category) categories = db.execute("SELECT name from categories order by id") if category: print("category", category) pictures = db.execute("SELECT pictures.id, title, filename \ from pictures left join categories \ on category_id = categories.id \ where categories.name = (?) \ order by upload_date desc", [category]) # print(pictures.fetchall()) return render_template("index.html", all_pictures=pictures, all_categories=categories, chosen_category=category) # La route du chemin d'accès à l'image à renvoyer, avec # le nom du répertoire "uploads/", suivi du nom du fichier image @app.route('/uploads/<filename>') def download_file(filename): print("send_from_directory", send_from_directory(app.config["UPLOAD_FOLDER"], filename)) return send_from_directory(app.config["UPLOAD_FOLDER"], filename) # La route de la page upload @app.route("/upload", methods=["GET", "POST"]) def upload(): db = get_db() categories_cursor = db.execute("select name from categories order by id;") categories_name = categories_cursor.fetchall() print("I am the result of your query: ", categories_name) list_of_categories = [] for category in categories_name: name = category[0] list_of_categories.append(name) print("i am the list of cat : ", list_of_categories) if request.method == 'POST': file = request.files['file'] print("I am the files.filename : ", file.filename) if allowed_file(file.filename): filename = secure_filename(file.filename) # c'est le path title = request.form.get("title") description = request.form.get("description") print(description, " - ", request.form.get("description")) category = request.form.get("category") file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename)) upload_date = datetime.datetime.now() # print("datetime.datetime.now()", datetime.datetime.now()) # sauvegarder le fichier dans la DB db = get_db() if category: cursor1 = db.execute("SELECT id from categories \ where name = ?", [category]) category_id = cursor1.fetchone() # print(category_id[0]) db.execute("INSERT into pictures (title, filename, upload_date, category_id, description) \ values (? , ? , ? , ? , ? )", [title, filename, upload_date, int(category_id[0]), description]) # # vérifier si le titre existe déjà # cursor_title = db.execute( # "SELECT id, title FROM pictures WHERE title = (?)", [title]) # print("I'am the cursor: ", cursor_title) # # On l'enregistre dans une variable et on l'affiche # # avec fetchone, si le résultat n'est pas None on retourne 404 # title_request = cursor_title.fetchone() # print("hey I'm the request title ", title_request) # if title_request is not None: abort(404) db.commit() return render_template("picture_uploaded.html") return render_template('upload.html', list_of_categories=list_of_categories) # La route de la page picture @app.route("/picture/<picture_id>", methods=["GET", "POST"]) def picture_id(picture_id): if picture_id and request.method == 'POST': comment = request.form.get("comment") # print("I am the comment :", comment) comment_date = datetime.datetime.now() # print("datetime.datetime.now()", comment_date) # sauvegarder le fichier dans la DB db = get_db() db.execute("INSERT into comments (comment, comment_date, picture_id) \ values (? , ? , ?)", [comment, comment_date, picture_id]) db.commit() if picture_id and request.method == 'GET': # print("I am the id of the chosen picture :", picture_id) db = get_db() pictures = db.execute("SELECT title, filename, upload_date, description, categories.name \ from pictures inner join categories \ on category_id = categories.id \ where pictures.id = (?)", [picture_id]) # print(pictures) comments = db.execute("SELECT comment, comment_date \ from comments inner join pictures \ on picture_id = pictures.id \ where pictures.id = (?) \ order by comment_date desc", [picture_id]) # print(comments) return render_template("picture.html", all_pictures=pictures, all_comments=comments) # print("not picture_id") return redirect("/picture/" + picture_id) if __name__ == "__main__": app.run(debug=True)
Sabrina-MORSLI/PicShare
picshare/run.py
run.py
py
7,210
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 11, "usage_type": "call" }, { "api_name": "flask.g", "line_number": 22, "usage_type": "argument" }, { "api_name": "flask.g._database", "line_number": 24, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 24, "usage_type": "name" }, { "api_name": "sqlite3.connect", "line_number": 24, "usage_type": "call" }, { "api_name": "flask.request.method", "line_number": 38, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 38, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 43, "usage_type": "call" }, { "api_name": "flask.request.method", "line_number": 51, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 51, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 63, "usage_type": "call" }, { "api_name": "flask.send_from_directory", "line_number": 74, "usage_type": "call" }, { "api_name": "flask.send_from_directory", "line_number": 75, "usage_type": "call" }, { "api_name": "flask.request.method", "line_number": 91, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 91, "usage_type": "name" }, { "api_name": "flask.request.files", "line_number": 92, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 92, "usage_type": "name" }, { "api_name": "werkzeug.utils.secure_filename", "line_number": 95, "usage_type": "call" }, { "api_name": "flask.request.form.get", "line_number": 96, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 96, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 96, "usage_type": "name" }, { "api_name": "flask.request.form.get", "line_number": 97, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 97, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 97, "usage_type": "name" }, { "api_name": "flask.request.form.get", "line_number": 98, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 98, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 98, "usage_type": "name" }, { "api_name": "flask.request.form.get", "line_number": 99, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 99, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 99, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 100, "usage_type": "call" }, { "api_name": "os.path", "line_number": 100, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 101, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 101, "usage_type": "attribute" }, { "api_name": "flask.render_template", "line_number": 123, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 124, "usage_type": "call" }, { "api_name": "flask.request.method", "line_number": 130, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 130, "usage_type": "name" }, { "api_name": "flask.request.form.get", "line_number": 131, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 131, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 131, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 133, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 133, "usage_type": "attribute" }, { "api_name": "flask.request.method", "line_number": 142, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 142, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 156, "usage_type": "call" }, { "api_name": "werkzeug.utils.redirect", "line_number": 160, "usage_type": "call" } ]
3121294529
import os import sys import time from functools import partial from multiprocessing import Pool from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.chrome.service import Service from webdriver_manager.chrome import ChromeDriverManager chrome_options = webdriver.ChromeOptions() chrome_options.add_argument('--headless') chrome_options.add_argument('window-size=1920,1080') chrome_options.add_argument('start-maximised') chrome_options.add_argument('--no-sandbox') chrome_options.add_argument('--disable-dev-shm-usage') def scroll_to_page_end_n_times(browser, s, page_load_wait_seconds): for _ in range(s): print(f'ScrollHeight before scrolling: {browser.execute_script("return document.documentElement.scrollHeight")}') browser.execute_script('window.scrollTo(0, document.body.scrollHeight);') print(f'Scrolled, waiting for {page_load_wait_seconds} seconds to load page') time.sleep(page_load_wait_seconds) print(f'ScrollHeight after scrolling: {browser.execute_script("return document.documentElement.scrollHeight")}') return def links_collection(main_page_link, num_links, start_at_link_num, scroll_limit, page_load_wait_seconds, element_load_wait_seconds): print('Working in background...') n = 0 s = 0 link_num = start_at_link_num links_dict = {} chrome_driver = webdriver.Chrome(service=Service(ChromeDriverManager().install()), options=chrome_options) with chrome_driver as browser: browser.get(main_page_link) while n < num_links: try: link_path = '/html/body/div[1]/div/div[1]/div/div[3]/div/div/div/div[1]/div[1]/div[2]/div/div/div/div/div/div/div[' + str( link_num) + ']/a/div[1]/div/div/div/div/div[2]/div[1]/div/div/div/div[2]/span/span/object/a' page = WebDriverWait(browser, element_load_wait_seconds).until(EC.visibility_of_element_located((By.XPATH, link_path))) event_url_long = page.get_attribute('href') event_url_cutoff = event_url_long[event_url_long.find('events/') + 7:].find('/') event_url = event_url_long[:event_url_long.find('events/') + 7 + event_url_cutoff + 1] event_title = page.text print(f'Fetching link for event: {event_title}') links_dict[event_title + str(n)] = event_url link_num += 1 n += 1 except Exception as e: # print(f'links_collection exception:\n{e}') if s < scroll_limit: s += 1 scroll_to_page_end_n_times(browser, s, page_load_wait_seconds) else: break print(f'\nNumber of links: {str(len(links_dict.items()))}') return links_dict def get_location(browser, element_load_wait_seconds): try: link_path = '/html/body/div[1]/div/div[1]/div/div[3]/div/div/div/div[1]/div[1]/div[2]/div/div/div[1]/div[1]/div[2]/div/div[2]/div/div[1]/div/div/div[3]' page = WebDriverWait(browser, element_load_wait_seconds).until(EC.visibility_of_element_located((By.XPATH, link_path))) e_location = page.text except Exception as e: e_location = 'n/a' #print(f'get_location exception:\n{e}') return e_location def get_datetime(browser, element_load_wait_seconds): try: link_path = '/html/body/div[1]/div/div[1]/div/div[3]/div/div/div/div[1]/div[1]/div[2]/div/div/div[1]/div[1]/div[2]/div/div[2]/div/div[1]/div/div/div[1]/span' page = WebDriverWait(browser, element_load_wait_seconds).until(EC.visibility_of_element_located((By.XPATH, link_path))) e_datetime_str = page.text except Exception as e: e_datetime_str = 'n/a' # print(f'get_datetime exception:\n{e}') return e_datetime_str def get_host_and_num_people_responded(browser, element_load_wait_seconds): try: link_path = '/html/body/div[1]/div/div[1]/div/div[3]/div/div/div/div[1]/div[1]/div[2]/div/div/div[2]/div/div/div/div/div[1]/div/div/div' page = WebDriverWait(browser, element_load_wait_seconds).until(EC.visibility_of_element_located((By.XPATH, link_path))) children = page.find_elements(By.XPATH, './child::*') e_host = '' e_num_people_responded = '' for child in children: textContent = child.text if 'Event by' in textContent: e_host = textContent[textContent.find('Event by') + 9:] elif 'people responded' in textContent: e_num_people_responded = textContent[:textContent.find('people responded')].strip() elif 'person responded' in textContent: e_num_people_responded = textContent[:textContent.find('person responded')].strip() else: pass if e_host == '': e_host = 'n/a' if e_num_people_responded == '': e_num_people_responded = 'n/a' except Exception as e: e_host = 'n/a' e_num_people_responded = 'n/a' # print(f'get_host_and_num_people_responded exception:\n{e}') return e_host, e_num_people_responded def get_description(browser, element_load_wait_seconds): try: link_path = '/html/body/div[1]/div/div[1]/div/div[3]/div/div/div/div[1]/div[1]/div[2]/div/div/div[2]/div/div/div/div/div[1]/div/div/div/div[last()]/div/span' page = WebDriverWait(browser, element_load_wait_seconds).until(EC.visibility_of_element_located((By.XPATH, link_path))) children = page.find_elements(By.XPATH, './child::*') for child in children: try: see_more_btn = child.find_element(By.XPATH, "./div[@role='button']") see_more_btn.click() except: pass children = page.find_elements(By.XPATH, './child::*') e_description = '' for child in children: e_description += child.text e_description += '\n' if 'See less' in e_description: e_description = e_description[:e_description.find(' See less')] elif 'See more' in e_description: e_description = e_description[:e_description.find('... See more')] else: pass if e_description == '': e_description = 'n/a' except Exception as e: e_description = 'n/a' # print(f'get_description exception:\n{e}') return e_description def get_image_url(browser, element_load_wait_seconds): try: link_path = '/html/body/div[1]/div/div[1]/div/div[3]/div/div/div/div[1]/div[1]/div[2]/div/div/div[1]/div[1]/div[1]/div/div/div[2]/div/a/div/div/div/div/div/img' page = WebDriverWait(browser, element_load_wait_seconds).until(EC.visibility_of_element_located((By.XPATH, link_path))) img_path = page.get_attribute('src') except Exception as ignore: try: link_path = '/html/body/div[1]/div/div[1]/div/div[3]/div/div/div/div[1]/div[1]/div[2]/div/div/div[1]/div[1]/div[1]/div/div/div[2]/div/a/div/div/div/div/img' page = WebDriverWait(browser, element_load_wait_seconds).until(EC.visibility_of_element_located((By.XPATH, link_path))) img_path = page.get_attribute('src') except Exception as e: img_path = 'n/a' # print(f'get_image_url exception:\n{e}') return img_path def crawl_links(element_load_wait_seconds, current_link): e_location = 'n/a' e_datetime = 'n/a' e_host = 'n/a' e_num_people_responded = 'n/a' e_description = 'n/a' img_path= 'n/a' try: chrome_driver = webdriver.Chrome(service=Service(ChromeDriverManager().install()), options=chrome_options) with chrome_driver as browser: print(f'Crawling on: {current_link}') # Using Selenium browser.get(current_link) e_location = get_location(browser, element_load_wait_seconds) e_datetime = get_datetime(browser, element_load_wait_seconds) e_host, e_num_people_responded = get_host_and_num_people_responded(browser, element_load_wait_seconds) e_description = get_description(browser, element_load_wait_seconds) img_path = get_image_url(browser, element_load_wait_seconds) except Exception as e: print(f'crawl_links exception:\n{e}') # if the links are not found in a page, print exception return e_location, e_host, e_num_people_responded, e_datetime, e_description, img_path def main(dict): num_links = dict['num_links'] start_at_link_num = dict['start_at_link_num'] scroll_limit = dict['scroll_limit'] page_load_wait_seconds = dict['page_load_wait_seconds'] element_load_wait_seconds = dict['element_load_wait_seconds'] event_search_keyword = dict['event_search_keyword'] main_page_link = f'https://www.facebook.com/events/search/?q={event_search_keyword}' pool_size = dict['pool_size'] links_dict = links_collection(main_page_link, num_links, start_at_link_num, scroll_limit, page_load_wait_seconds, element_load_wait_seconds) print('\nInitiating scraping...') #pool = Pool(processes=pool_size) # creates pool of n processes at a time #func = partial(crawl_links, element_load_wait_seconds) #e_details_list = pool.map(func, list(links_dict.values())) # maps the function crawl_links (with arg element_load_wait_seconds) with the links_dict.items() input e_details_list = [crawl_links(element_load_wait_seconds, link) for link in list(links_dict.values())] return_dict = { 'payload' : [] } e_details_labels = ['location', 'host', 'numPeopleResponded', 'datetime', 'details', 'imgPath'] for (e_name, e_link), e_details in zip(links_dict.items(), e_details_list): event_dict = {} event_dict['link'] = e_link event_dict['name'] = e_name[:-1] for e_detail_item_label, e_detail_item in zip(e_details_labels, e_details): event_dict[e_detail_item_label] = e_detail_item return_dict['payload'].append(event_dict) return return_dict
davi1972/greener-app
greener-scraper/greener-scraper-cli.py
greener-scraper-cli.py
py
9,583
python
en
code
1
github-code
6
[ { "api_name": "selenium.webdriver.ChromeOptions", "line_number": 13, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 13, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 25, "usage_type": "call" }, { "api_name": "selenium.webdriver.Chrome", "line_number": 37, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 37, "usage_type": "name" }, { "api_name": "selenium.webdriver.chrome.service.Service", "line_number": 37, "usage_type": "call" }, { "api_name": "webdriver_manager.chrome.ChromeDriverManager", "line_number": 37, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.ui.WebDriverWait", "line_number": 44, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions.visibility_of_element_located", "line_number": 44, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions", "line_number": 44, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 44, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 44, "usage_type": "name" }, { "api_name": "selenium.webdriver.support.ui.WebDriverWait", "line_number": 66, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions.visibility_of_element_located", "line_number": 66, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions", "line_number": 66, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 66, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 66, "usage_type": "name" }, { "api_name": "selenium.webdriver.support.ui.WebDriverWait", "line_number": 76, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions.visibility_of_element_located", "line_number": 76, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions", "line_number": 76, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 76, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 76, "usage_type": "name" }, { "api_name": "selenium.webdriver.support.ui.WebDriverWait", "line_number": 88, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions.visibility_of_element_located", "line_number": 88, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions", "line_number": 88, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 88, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 88, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 90, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 90, "usage_type": "name" }, { "api_name": "selenium.webdriver.support.ui.WebDriverWait", "line_number": 118, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions.visibility_of_element_located", "line_number": 118, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions", "line_number": 118, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 118, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 118, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 120, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 120, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 123, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 123, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 128, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 128, "usage_type": "name" }, { "api_name": "selenium.webdriver.support.ui.WebDriverWait", "line_number": 152, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions.visibility_of_element_located", "line_number": 152, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions", "line_number": 152, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 152, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 152, "usage_type": "name" }, { "api_name": "selenium.webdriver.support.ui.WebDriverWait", "line_number": 157, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions.visibility_of_element_located", "line_number": 157, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions", "line_number": 157, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 157, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 157, "usage_type": "name" }, { "api_name": "selenium.webdriver.Chrome", "line_number": 172, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 172, "usage_type": "name" }, { "api_name": "selenium.webdriver.chrome.service.Service", "line_number": 172, "usage_type": "call" }, { "api_name": "webdriver_manager.chrome.ChromeDriverManager", "line_number": 172, "usage_type": "call" } ]
9771781643
#Brownian Motion Simulator #Simulate first on $R^1$ import numpy as np import numpy import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt def graph(points): data = np.array(points) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(data[:,0],data[:,1]) ax.set_xlabel("X") ax.set_ylabel("Y") plt.axis('scaled') plt.show() return def run1d(n): function = BMinterval(n) pointlist = convert(function) graph(pointlist) return def grapher(func): a = convert(func) graph(a) return def convert(func): a = [] for term in func: a.append([term, func[term]]) return a def BMinterval(n,startpos,starttime): #creates a 1-d Brownian motion on $[0,1]$ with $D_n$ dyadic level. B = {} i = 1 B[starttime] = startpos B[starttime + 1] = startpos + np.random.randn() while i < n: k = 0 while 2*k + 1 <= np.power(2,i): diadic = float(np.power(2,i)) d = (2*k + 1) / diadic B[starttime + d] = startpos + .5 * ( B[starttime + (d - 1 / diadic)] + B[starttime + (d + 1 / diadic)] - 2*startpos) + .5 * np.random.randn()/ diadic k = k + 1 i = i + 1 return B def BM(n,t): #creates a depth n brownian motion on [0,t], where t is an integer: i = 1 B = BMinterval(n,0,0) while i < t: B = dict(B.items() + BMinterval(n, B[i], i).items()) i = i + 1 return B def BM2d(n,t): B1 = BM(n,t) B2 = BM(n,t) list = [] for term in B1: list.append([B1[term],B2[term]]) return list def fracpart(number): return number - np.floor(number) def inbox(points): ##Returns percentage of in points that are (up to ZxZ) in a the box, [0,1/2]x[0,1/2] c = 0 for term in points: if (fracpart(term[0]) <= .5) and (fracpart(term[1]) <= .5): c = c + 1 return c / float(len(points)) def fold(points): new = [] for term in points: new.append([fracpart(term[0]),fracpart(term[1])]) return new def inint(points,k): c = 0 for term in points: if (fracpart(points[term])) <= k: c = c + 1 return c / float(len(points)) def fold2(points): new = [] for term in points: new.append([fracpart(points[term])]) return new
ElleNajt/TinyProjects
BrownianMotionSimulator.py
BrownianMotionSimulator.py
py
2,129
python
en
code
4
github-code
6
[ { "api_name": "numpy.array", "line_number": 12, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 13, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 13, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axis", "line_number": 18, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 18, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 19, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 19, "usage_type": "name" }, { "api_name": "numpy.random.randn", "line_number": 46, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 46, "usage_type": "attribute" }, { "api_name": "numpy.power", "line_number": 50, "usage_type": "call" }, { "api_name": "numpy.power", "line_number": 51, "usage_type": "call" }, { "api_name": "numpy.random.randn", "line_number": 53, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 53, "usage_type": "attribute" }, { "api_name": "numpy.floor", "line_number": 77, "usage_type": "call" } ]
650134167
#! /usr/bin/python import os import sys import json import luigi import numpy as np import vigra import nifty.ufd as nufd import cluster_tools.utils.volume_utils as vu import cluster_tools.utils.function_utils as fu from cluster_tools.cluster_tasks import SlurmTask, LocalTask, LSFTask # # Find Labeling Tasks # class MergeAssignmentsBase(luigi.Task): """ MergeAssignments base class """ task_name = "merge_assignments" src_file = os.path.abspath(__file__) allow_retry = False output_path = luigi.Parameter() output_key = luigi.Parameter() shape = luigi.ListParameter() # task that is required before running this task dependency = luigi.TaskParameter() def requires(self): return self.dependency def run_impl(self): shebang, block_shape, roi_begin, roi_end = self.global_config_values() self.init(shebang) block_list = vu.blocks_in_volume(self.shape, block_shape, roi_begin, roi_end) n_jobs = min(len(block_list), self.max_jobs) config = self.get_task_config() config.update({"output_path": self.output_path, "output_key": self.output_key, "tmp_folder": self.tmp_folder, "n_jobs": n_jobs, "block_list": block_list}) # we only have a single job to find the labeling self.prepare_jobs(1, None, config) self.submit_jobs(1) # wait till jobs finish and check for job success self.wait_for_jobs() # log the save-path again self.check_jobs(1) class MergeAssignmentsLocal(MergeAssignmentsBase, LocalTask): """ MergeAssignments on local machine """ pass class MergeAssignmentsSlurm(MergeAssignmentsBase, SlurmTask): """ MergeAssignments on slurm cluster """ pass class MergeAssignmentsLSF(MergeAssignmentsBase, LSFTask): """ MergeAssignments on lsf cluster """ pass def merge_assignments(job_id, config_path): fu.log("start processing job %i" % job_id) fu.log("reading config from %s" % config_path) with open(config_path, "r") as f: config = json.load(f) output_path = config["output_path"] output_key = config["output_key"] tmp_folder = config["tmp_folder"] n_jobs = config["n_jobs"] block_list = config["block_list"] id_prefix = "ids" assignment_prefix = "cc_assignments" # load labels label_paths = [os.path.join(tmp_folder, f"{id_prefix}_{block_id}.npy") for block_id in block_list] labels = [np.load(pp) if os.path.exists(pp) else [0] for pp in label_paths] labels = np.unique(np.concatenate(labels)) # load assignments assignment_paths = [os.path.join(tmp_folder, f"{assignment_prefix}_{job_id}.npy") for job_id in range(n_jobs)] assignments = [np.load(pp) for pp in assignment_paths if os.path.exists(pp)] if assignments: assignments = np.concatenate(assignments, axis=0) assignments = np.unique(assignments, axis=0) assert assignments.shape[1] == 2 fu.log("have %i pairs of node assignments" % len(assignments)) have_assignments = True else: fu.log("did not find any node assignments and will not merge any components") have_assignments = False if have_assignments: ufd = nufd.boost_ufd(labels) ufd.merge(assignments) label_assignments = ufd.find(labels) else: label_assignemnts = labels.copy() n_labels = len(labels) label_assignemnts, max_id, _ = vigra.analysis.relabelConsecutive(label_assignments, keep_zeros=True, start_label=1) assert len(label_assignments) == n_labels fu.log("reducing the number of labels from %i to %i" % (n_labels, max_id + 1)) label_assignments = np.concatenate([labels[:, None], label_assignments[:, None]], axis=1).astype("uint64") chunks = (min(65334, n_labels), 2) with vu.file_reader(output_path) as f: f.create_dataset(output_key, data=label_assignments, compression="gzip", chunks=chunks) fu.log_job_success(job_id) if __name__ == "__main__": path = sys.argv[1] assert os.path.exists(path), path job_id = int(os.path.split(path)[1].split(".")[0].split("_")[-1]) merge_assignments(job_id, path)
constantinpape/cluster_tools
cluster_tools/connected_components/merge_assignments.py
merge_assignments.py
py
4,231
python
en
code
32
github-code
6
[ { "api_name": "luigi.Task", "line_number": 21, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 26, "usage_type": "call" }, { "api_name": "os.path", "line_number": 26, "usage_type": "attribute" }, { "api_name": "luigi.Parameter", "line_number": 29, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 30, "usage_type": "call" }, { "api_name": "luigi.ListParameter", "line_number": 31, "usage_type": "call" }, { "api_name": "luigi.TaskParameter", "line_number": 33, "usage_type": "call" }, { "api_name": "cluster_tools.utils.volume_utils.blocks_in_volume", "line_number": 42, "usage_type": "call" }, { "api_name": "cluster_tools.utils.volume_utils", "line_number": 42, "usage_type": "name" }, { "api_name": "cluster_tools.cluster_tasks.LocalTask", "line_number": 59, "usage_type": "name" }, { "api_name": "cluster_tools.cluster_tasks.SlurmTask", "line_number": 66, "usage_type": "name" }, { "api_name": "cluster_tools.cluster_tasks.LSFTask", "line_number": 73, "usage_type": "name" }, { "api_name": "cluster_tools.utils.function_utils.log", "line_number": 82, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils", "line_number": 82, "usage_type": "name" }, { "api_name": "cluster_tools.utils.function_utils.log", "line_number": 83, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils", "line_number": 83, "usage_type": "name" }, { "api_name": "json.load", "line_number": 86, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 98, "usage_type": "call" }, { "api_name": "os.path", "line_number": 98, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 99, "usage_type": "call" }, { "api_name": "os.path", "line_number": 99, "usage_type": "attribute" }, { "api_name": "numpy.load", "line_number": 99, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 100, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 100, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 103, "usage_type": "call" }, { "api_name": "os.path", "line_number": 103, "usage_type": "attribute" }, { "api_name": "numpy.load", "line_number": 104, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 104, "usage_type": "call" }, { "api_name": "os.path", "line_number": 104, "usage_type": "attribute" }, { "api_name": "numpy.concatenate", "line_number": 107, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 108, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils.log", "line_number": 110, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils", "line_number": 110, "usage_type": "name" }, { "api_name": "cluster_tools.utils.function_utils.log", "line_number": 113, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils", "line_number": 113, "usage_type": "name" }, { "api_name": "nifty.ufd.boost_ufd", "line_number": 117, "usage_type": "call" }, { "api_name": "nifty.ufd", "line_number": 117, "usage_type": "name" }, { "api_name": "vigra.analysis.relabelConsecutive", "line_number": 124, "usage_type": "call" }, { "api_name": "vigra.analysis", "line_number": 124, "usage_type": "attribute" }, { "api_name": "cluster_tools.utils.function_utils.log", "line_number": 126, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils", "line_number": 126, "usage_type": "name" }, { "api_name": "numpy.concatenate", "line_number": 128, "usage_type": "call" }, { "api_name": "cluster_tools.utils.volume_utils.file_reader", "line_number": 130, "usage_type": "call" }, { "api_name": "cluster_tools.utils.volume_utils", "line_number": 130, "usage_type": "name" }, { "api_name": "cluster_tools.utils.function_utils.log_job_success", "line_number": 132, "usage_type": "call" }, { "api_name": "cluster_tools.utils.function_utils", "line_number": 132, "usage_type": "name" }, { "api_name": "sys.argv", "line_number": 136, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 137, "usage_type": "call" }, { "api_name": "os.path", "line_number": 137, "usage_type": "attribute" }, { "api_name": "os.path.split", "line_number": 138, "usage_type": "call" }, { "api_name": "os.path", "line_number": 138, "usage_type": "attribute" } ]
32102340399
from typing import List class Solution: def canJump(self, nums: List[int]) -> bool: if not nums or len(nums) < 2: return True max_arrive = nums[0] for i in range(1, len(nums)): if max_arrive < i: return False max_arrive = max(max_arrive, i + nums[i]) return True nums = [0,1] print(Solution().canJump(nums))
Eleanoryuyuyu/LeetCode
python/Greedy/55. 跳跃游戏.py
55. 跳跃游戏.py
py
398
python
en
code
3
github-code
6
[ { "api_name": "typing.List", "line_number": 4, "usage_type": "name" } ]
39131633270
import random from itertools import zip_longest from typing import List from config import MuZeroConfig from game.game import AbstractGame import _pickle as cPickle import os import numpy as np class ReplayBuffer(object): def __init__(self, config: MuZeroConfig, fighter): self.window_size = config.window_size self.batch_size = config.batch_size self.buffer = [] self.loaded_games = [] self.current_games = [] self.memory_path = config.memory_path self.fighter = fighter def save_game(self, game): if sum([len(i.root_values) for i in self.buffer]) > self.window_size: self.buffer.pop(0) if game.player1_historic_network == True: game.game_player1_priority = 0 game.player1_priorities = list(np.full(len(game.root_values), 0)) else: game.game_player1_priority = 1e3*len(game.root_values) game.player1_priorities = list(np.full(len(game.root_values), 1e3)) player1_zero_move_idx = [i for i, j in enumerate(game.child_visits) if j[0][0] == 1.] for idx in player1_zero_move_idx: game.player1_priorities[idx] = 0 if game.player2_historic_network == True: game.game_player2_priority = 0 game.player2_priorities = list(np.full(len(game.root_values), 0)) else: game.game_player2_priority = 1e3*len(game.root_values) game.player2_priorities = list(np.full(len(game.root_values), 1e3)) player2_zero_move_idx = [i for i, j in enumerate(game.child_visits) if j[1][0] == 1.] for idx in player2_zero_move_idx: game.player2_priorities[idx] = 0 self.buffer.append(game) def update_buffer(self): new_files = [f for f in os.listdir(self.memory_path) if f not in self.loaded_games] new_files = [f for f in new_files if (f.split('_')[-1][:-4] == self.fighter) | (f.split('_')[-2] == self.fighter)] new_files.sort(key = lambda x: int(x.split('_')[1])) if len(new_files) > self.window_size // 1100: self.loaded_games = self.loaded_games + new_files[:-self.window_size // 1100] new_files = new_files[-self.window_size // 1100:] if len(new_files) != 0: for new_file in new_files: with open(os.path.join(self.memory_path,new_file), 'rb') as game_file: game = cPickle.load(game_file) self.save_game(game) self.loaded_games.append(new_file) if sum([len(i.root_values) for i in self.buffer]) > self.window_size: self.current_games.pop(0) self.current_games.append(new_file) def sample_batch(self, num_unroll_steps: int, unroll_step_size : int, td_steps: int, fighter): # Generate some sample of data to train on games = self.sample_games(fighter) game_pos = [(g, self.sample_position(self.buffer[g], fighter), 'player1' if self.buffer[g].player1 == fighter else 'player2') for g in games] game_data = [(self.buffer[g].make_image(i, p), [action.index for action in [j[int(p[-1]) - 1] for j in self.buffer[g].history[i:i + num_unroll_steps]]], self.buffer[g].make_target(i, num_unroll_steps, unroll_step_size, td_steps, p)) for (g, i, p) in game_pos] sample_weights = [self.buffer[g].player1_priorities[i] if p == 'player1' else self.buffer[g].player2_priorities[i] for (g, i, p) in game_pos] game_weights = [self.buffer[g].game_player1_priority if p == 'player1' else self.buffer[g].game_player2_priority for (g, i, p) in game_pos] weight_batch = 1 / (np.array(sample_weights) * np.array(game_weights)) weight_batch = weight_batch / np.max(weight_batch) # Pre-process the batch image_batch, actions_time_batch, targets_batch = zip(*game_data) targets_init_batch, *targets_time_batch = zip(*targets_batch) actions_time_batch = list(zip_longest(*actions_time_batch, fillvalue=0)) # Building batch of valid actions and a dynamic mask for hidden representations during BPTT batch = image_batch, targets_init_batch, targets_time_batch, actions_time_batch return batch, game_pos, weight_batch**0.4 def sample_games(self, fighter) -> List[AbstractGame]: # Sample game from buffer either uniformly or according to some priority. game_probs = np.array([game.game_player1_priority if game.player1 == fighter else game.game_player2_priority for game in self.buffer]) game_probs /= np.sum(game_probs) return np.random.choice(len(self.buffer), size=self.batch_size, p = game_probs) def sample_position(self, game: AbstractGame, fighter) -> int: # Sample position from game either uniformly or according to some priority. if game.player1 == fighter: pos_probs = game.player1_priorities / sum(game.player1_priorities) if game.player2 == fighter: pos_probs = game.player2_priorities / sum(game.player2_priorities) return np.random.choice(len(pos_probs), p=pos_probs) def sample_position_value_bias(self, game: AbstractGame) -> int: # Sample position from game either uniformly or according to some priority. history = [i.index for i in game.history] counts = np.bincount(history) common = np.argmax(counts) above_avg = [i[0] for i in np.argwhere(history==common)] below_avg = [i[0] for i in np.argwhere(history!=common)] if random.randint(0,5) != 5: return np.random.choice(below_avg) else: return np.random.choice(above_avg) def update_priorities(self, priorities, idx_info, fighter): for i in range(len(idx_info)): game_id, game_pos, _ = idx_info[i] priority = priorities[i,:] start_idx = game_pos if self.buffer[game_id].player1 == fighter: end_idx = min(game_pos+len(priority), len(self.buffer[game_id].player1_priorities)) self.buffer[game_id].player1_priorities[start_idx:end_idx] = priority[:end_idx-start_idx] self.buffer[game_id].game_player1_priority = np.mean(self.buffer[game_id].player1_priorities) * len(self.buffer[game_id].root_values) if self.buffer[game_id].player2 == fighter: end_idx = min(game_pos+len(priority), len(self.buffer[game_id].player2_priorities)) self.buffer[game_id].player2_priorities[start_idx:end_idx] = priority[:end_idx-start_idx] self.buffer[game_id].game_player2_priority = np.mean(self.buffer[game_id].player2_priorities) * len(self.buffer[game_id].root_values)
Nebraskinator/StreetFighter2AI
muzero/training/replay_buffer.py
replay_buffer.py
py
6,951
python
en
code
1
github-code
6
[ { "api_name": "config.MuZeroConfig", "line_number": 13, "usage_type": "name" }, { "api_name": "config.window_size", "line_number": 14, "usage_type": "attribute" }, { "api_name": "config.batch_size", "line_number": 15, "usage_type": "attribute" }, { "api_name": "config.memory_path", "line_number": 19, "usage_type": "attribute" }, { "api_name": "game.game.player1_historic_network", "line_number": 25, "usage_type": "attribute" }, { "api_name": "game.game", "line_number": 25, "usage_type": "name" }, { "api_name": "game.game.game_player1_priority", "line_number": 26, "usage_type": "attribute" }, { "api_name": "game.game", "line_number": 26, "usage_type": "name" }, { "api_name": "game.game.player1_priorities", "line_number": 27, "usage_type": "attribute" }, { "api_name": "game.game", "line_number": 27, "usage_type": "name" }, { "api_name": "numpy.full", "line_number": 27, "usage_type": "call" }, { "api_name": "game.game.root_values", "line_number": 27, "usage_type": "attribute" }, { "api_name": "game.game.game_player1_priority", "line_number": 29, "usage_type": "attribute" }, { "api_name": "game.game", "line_number": 29, "usage_type": "name" }, { "api_name": "game.game.root_values", "line_number": 29, "usage_type": "attribute" }, { "api_name": "game.game.player1_priorities", "line_number": 30, "usage_type": "attribute" }, { "api_name": "game.game", "line_number": 30, "usage_type": "name" }, { "api_name": "numpy.full", "line_number": 30, "usage_type": "call" }, { "api_name": "game.game.root_values", "line_number": 30, "usage_type": "attribute" }, { "api_name": "game.game.child_visits", "line_number": 31, "usage_type": "attribute" }, { "api_name": "game.game", "line_number": 31, "usage_type": "name" }, { "api_name": "game.game.player1_priorities", "line_number": 33, "usage_type": "attribute" }, { "api_name": "game.game", "line_number": 33, "usage_type": "name" }, { "api_name": "game.game.player2_historic_network", "line_number": 34, "usage_type": "attribute" }, { "api_name": "game.game", "line_number": 34, "usage_type": "name" }, { "api_name": "game.game.game_player2_priority", "line_number": 35, "usage_type": "attribute" }, { "api_name": "game.game", "line_number": 35, "usage_type": "name" }, { "api_name": "game.game.player2_priorities", "line_number": 36, "usage_type": "attribute" }, { "api_name": "game.game", "line_number": 36, "usage_type": "name" }, { "api_name": "numpy.full", "line_number": 36, "usage_type": "call" }, { "api_name": "game.game.root_values", "line_number": 36, "usage_type": "attribute" }, { "api_name": "game.game.game_player2_priority", "line_number": 38, "usage_type": "attribute" }, { "api_name": "game.game", "line_number": 38, "usage_type": "name" }, { "api_name": "game.game.root_values", "line_number": 38, "usage_type": "attribute" }, { "api_name": "game.game.player2_priorities", "line_number": 39, "usage_type": "attribute" }, { "api_name": "game.game", "line_number": 39, "usage_type": "name" }, { "api_name": "numpy.full", "line_number": 39, "usage_type": "call" }, { "api_name": "game.game.root_values", "line_number": 39, "usage_type": "attribute" }, { "api_name": "game.game.child_visits", "line_number": 40, "usage_type": "attribute" }, { "api_name": "game.game", "line_number": 40, "usage_type": "name" }, { "api_name": "game.game.player2_priorities", "line_number": 42, "usage_type": "attribute" }, { "api_name": "game.game", "line_number": 42, "usage_type": "name" }, { "api_name": "game.game", "line_number": 43, "usage_type": "argument" }, { "api_name": "os.listdir", "line_number": 47, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 55, "usage_type": "call" }, { "api_name": "os.path", "line_number": 55, "usage_type": "attribute" }, { "api_name": "game.game", "line_number": 56, "usage_type": "name" }, { "api_name": "_pickle.load", "line_number": 56, "usage_type": "call" }, { "api_name": "game.game", "line_number": 57, "usage_type": "argument" }, { "api_name": "numpy.array", "line_number": 72, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 73, "usage_type": "call" }, { "api_name": "itertools.zip_longest", "line_number": 77, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 86, "usage_type": "call" }, { "api_name": "game.game.player1", "line_number": 86, "usage_type": "attribute" }, { "api_name": "game.game", "line_number": 86, "usage_type": "name" }, { "api_name": "game.game.game_player1_priority", "line_number": 86, "usage_type": "attribute" }, { "api_name": "game.game.game_player2_priority", "line_number": 86, "usage_type": "attribute" }, { "api_name": "numpy.sum", "line_number": 87, "usage_type": "call" }, { "api_name": "numpy.random.choice", "line_number": 88, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 88, "usage_type": "attribute" }, { "api_name": "typing.List", "line_number": 84, "usage_type": "name" }, { "api_name": "game.game.AbstractGame", "line_number": 84, "usage_type": "name" }, { "api_name": "game.game.AbstractGame", "line_number": 90, "usage_type": "name" }, { "api_name": "game.game.player1", "line_number": 92, "usage_type": "attribute" }, { "api_name": "game.game", "line_number": 92, "usage_type": "name" }, { "api_name": "game.game.player1_priorities", "line_number": 93, "usage_type": "attribute" }, { "api_name": "game.game", "line_number": 93, "usage_type": "name" }, { "api_name": "game.game.player2", "line_number": 94, "usage_type": "attribute" }, { "api_name": "game.game", "line_number": 94, "usage_type": "name" }, { "api_name": "game.game.player2_priorities", "line_number": 95, "usage_type": "attribute" }, { "api_name": "game.game", "line_number": 95, "usage_type": "name" }, { "api_name": "numpy.random.choice", "line_number": 96, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 96, "usage_type": "attribute" }, { "api_name": "game.game.AbstractGame", "line_number": 98, "usage_type": "name" }, { "api_name": "game.game.history", "line_number": 100, "usage_type": "attribute" }, { "api_name": "game.game", "line_number": 100, "usage_type": "name" }, { "api_name": "numpy.bincount", "line_number": 101, "usage_type": "call" }, { "api_name": "numpy.argmax", "line_number": 102, "usage_type": "call" }, { "api_name": "numpy.argwhere", "line_number": 103, "usage_type": "call" }, { "api_name": "numpy.argwhere", "line_number": 104, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 105, "usage_type": "call" }, { "api_name": "numpy.random.choice", "line_number": 106, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 106, "usage_type": "attribute" }, { "api_name": "numpy.random.choice", "line_number": 108, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 108, "usage_type": "attribute" }, { "api_name": "numpy.mean", "line_number": 118, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 122, "usage_type": "call" } ]
26806868269
# -*- coding: utf-8 -*- """ Created on Wed Jan 23 17:29:26 2019 @author: dell """ from selenium import webdriver from time import sleep from bs4 import BeautifulSoup as bs url = "https://www.google.com/" browser = webdriver.Chrome("E:\\Study\\Project_4_Web_Scrapping\\chromedriver.exe") browser.get(url) sleep(2) search = browser.find_element_by_xpath('//*[@id="tsf"]/div[2]/div/div[1]/div/div[1]/input') search.click() type_search = "wikipedia" search.send_keys(type_search) sleep(2) search1 = browser.find_element_by_xpath('//*[@id="tsf"]/div[2]/div/div[2]/div[2]/div/center/input[1]') search1.click() sleep(5) browser.quit()
lavish71/Forsk_2019
Project_4_Web_Scrapping/Project_4_2/Project_4_2_2.py
Project_4_2_2.py
py
665
python
en
code
0
github-code
6
[ { "api_name": "selenium.webdriver.Chrome", "line_number": 13, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 13, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 16, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 23, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 28, "usage_type": "call" } ]
25135340045
from flask import Flask, request, render_template from chatXYZ import run, run_test import logging # API Key from config import openai_api_key log_handler = logging.StreamHandler() log_formatter = logging.Formatter("%(asctime)s - %(message)s") log_handler.setFormatter(log_formatter) logger = logging.getLogger() logger.setLevel(logging.INFO) logger.addHandler(log_handler) app = Flask(__name__) api_key_mode = "system" # "user"" or "system" SHOW_API_KEY_BOX = True if api_key_mode == "user" else False @app.route("/", methods=["GET", "POST"]) def index(): if request.method == "POST": query = request.form["query"] # Get answer or error message try: if api_key_mode == "user": api_key = request.form["api_key"].strip() if api_key == "": # API key is not provided in user mode; show error result = f"Please enter your OpenAI API Key!" elif api_key != "": # If API key provided in user mode; use it result = run_test(query, api_key=api_key, victim="Oppie") elif api_key_mode == "system": # API key is not required in system mode; use system key api_key = openai_api_key["OPENAI_API_KEY"] result = run_test(query, api_key=api_key, victim="Oppie") logger.info(f"User input: {query}") # Using logger else: raise NotImplementedError("Please set api_key_mode to either 'user' or 'system'.") except Exception as e: result = f"Ah, it seems something terrible has happened. Perhaps too many people are trying to ask me questions at the moment, or the test has gone wrong. Error: {e}" return render_template("index.html", result=result, query=query, show_api_key_box=SHOW_API_KEY_BOX) else: return render_template("index.html", show_api_key_box=SHOW_API_KEY_BOX) @app.route("/") def home(): return render_template("index.html", show_api_key_box=SHOW_API_KEY_BOX) if __name__ == "__main__": app.run(host="127.0.0.1", port=8080, debug=True)
rikab/ChatXYZ
main.py
main.py
py
2,111
python
en
code
null
github-code
6
[ { "api_name": "logging.StreamHandler", "line_number": 9, "usage_type": "call" }, { "api_name": "logging.Formatter", "line_number": 10, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 13, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 14, "usage_type": "attribute" }, { "api_name": "flask.Flask", "line_number": 17, "usage_type": "call" }, { "api_name": "flask.request.method", "line_number": 25, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 25, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 26, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 26, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 31, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 31, "usage_type": "name" }, { "api_name": "chatXYZ.run_test", "line_number": 35, "usage_type": "call" }, { "api_name": "config.openai_api_key", "line_number": 37, "usage_type": "name" }, { "api_name": "chatXYZ.run_test", "line_number": 38, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 44, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 46, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 51, "usage_type": "call" } ]
11735874338
import sys import enum from sqlalchemy import Column, DateTime, Integer, String, ForeignKey, Table from sqlalchemy.orm import relationship, backref from rhinventory.extensions import db class SimpleAssetAttribute(): name: str def __str__(self) -> str: return f"{self.name}" def asset_n_to_n_table(other_table: db.Model) -> Table: other_name = other_table.__name__.lower() return Table( f"asset_{other_name}", db.Model.metadata, Column("asset_id", ForeignKey("assets.id")), Column(f"{other_name}_id", ForeignKey(other_table.id)), ) class Platform(db.Model, SimpleAssetAttribute): __tablename__ = 'platforms' id: int = Column(Integer, primary_key=True) # type: ignore slug: str = Column(String, nullable=False) # type: ignore name: str = Column(String, nullable=False) # type: ignore last_used = Column(DateTime, nullable=True) asset_platform_table = asset_n_to_n_table(Platform) class AssetTag(db.Model, SimpleAssetAttribute): __tablename__ = 'tags' id: int = Column(Integer, primary_key=True) # type: ignore name: str = Column(String, nullable=False) # type: ignore description: str = Column(String, nullable=False) # type: ignore last_used = Column(DateTime, nullable=True) asset_tag_table = asset_n_to_n_table(AssetTag) class Packaging(db.Model, SimpleAssetAttribute): __tablename__ = 'packagings' id: int = Column(Integer, primary_key=True) # type: ignore name: str = Column(String, nullable=False) # type: ignore last_used = Column(DateTime, nullable=True) # An asset can have a single packaging multiple times so we need a middle table class AssetPackaging(db.Model): __tablename__ = 'asset_packaging' id: int = Column(Integer, primary_key=True) # type: ignore asset_id: int = Column(Integer, ForeignKey('assets.id')) # type: ignore packaging_id: int = Column(Integer, ForeignKey(Packaging.id)) # type: ignore #asset = relationship("Asset") #packaging = relationship(Packaging) class Medium(db.Model, SimpleAssetAttribute): __tablename__ = 'media' id: int = Column(Integer, primary_key=True) # type: ignore name: str = Column(String, nullable=False) # type: ignore last_used = Column(DateTime, nullable=True) class AssetMedium(db.Model): __tablename__ = 'asset_mediums' id: int = Column(Integer, primary_key=True) # type: ignore asset_id: int = Column(Integer, ForeignKey('assets.id')) # type: ignore medium_id: int = Column(Integer, ForeignKey(Medium.id)) # type: ignore #asset = relationship("Asset") #medium = relationship(Medium) class Company(db.Model, SimpleAssetAttribute): __tablename__ = 'companies' id: int = Column(Integer, primary_key=True) # type: ignore name: str = Column(String, nullable=False) # type: ignore last_used = Column(DateTime, nullable=True) class CompanyAlias(db.Model): __tablename__ = 'company_aliases' id: int = Column(Integer, primary_key=True) # type: ignore alias: str = Column(String, nullable=False) # type: ignore company_id = Column(Integer, ForeignKey(Company.id), nullable=False) company = relationship(Company, backref="aliases") asset_company_table = asset_n_to_n_table(Company)
retroherna/rhinventory
rhinventory/models/asset_attributes.py
asset_attributes.py
py
3,448
python
en
code
1
github-code
6
[ { "api_name": "rhinventory.extensions.db.Model", "line_number": 14, "usage_type": "attribute" }, { "api_name": "rhinventory.extensions.db", "line_number": 14, "usage_type": "name" }, { "api_name": "sqlalchemy.Table", "line_number": 16, "usage_type": "call" }, { "api_name": "rhinventory.extensions.db.Model", "line_number": 18, "usage_type": "attribute" }, { "api_name": "rhinventory.extensions.db", "line_number": 18, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 19, "usage_type": "call" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 19, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 20, "usage_type": "call" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 20, "usage_type": "call" }, { "api_name": "sqlalchemy.Table", "line_number": 14, "usage_type": "name" }, { "api_name": "rhinventory.extensions.db.Model", "line_number": 23, "usage_type": "attribute" }, { "api_name": "rhinventory.extensions.db", "line_number": 23, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 25, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 25, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 26, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 26, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 27, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 27, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 28, "usage_type": "call" }, { "api_name": "sqlalchemy.DateTime", "line_number": 28, "usage_type": "argument" }, { "api_name": "rhinventory.extensions.db.Model", "line_number": 32, "usage_type": "attribute" }, { "api_name": "rhinventory.extensions.db", "line_number": 32, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 34, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 34, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 35, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 35, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 36, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 36, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 37, "usage_type": "call" }, { "api_name": "sqlalchemy.DateTime", "line_number": 37, "usage_type": "argument" }, { "api_name": "rhinventory.extensions.db.Model", "line_number": 41, "usage_type": "attribute" }, { "api_name": "rhinventory.extensions.db", "line_number": 41, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 43, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 43, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 44, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 44, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 45, "usage_type": "call" }, { "api_name": "sqlalchemy.DateTime", "line_number": 45, "usage_type": "argument" }, { "api_name": "rhinventory.extensions.db.Model", "line_number": 48, "usage_type": "attribute" }, { "api_name": "rhinventory.extensions.db", "line_number": 48, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 50, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 50, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 51, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 51, "usage_type": "argument" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 51, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 52, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 52, "usage_type": "argument" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 52, "usage_type": "call" }, { "api_name": "rhinventory.extensions.db.Model", "line_number": 57, "usage_type": "attribute" }, { "api_name": "rhinventory.extensions.db", "line_number": 57, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 59, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 59, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 60, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 60, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 61, "usage_type": "call" }, { "api_name": "sqlalchemy.DateTime", "line_number": 61, "usage_type": "argument" }, { "api_name": "rhinventory.extensions.db.Model", "line_number": 63, "usage_type": "attribute" }, { "api_name": "rhinventory.extensions.db", "line_number": 63, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 65, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 65, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 66, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 66, "usage_type": "argument" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 66, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 67, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 67, "usage_type": "argument" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 67, "usage_type": "call" }, { "api_name": "rhinventory.extensions.db.Model", "line_number": 72, "usage_type": "attribute" }, { "api_name": "rhinventory.extensions.db", "line_number": 72, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 74, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 74, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 75, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 75, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 76, "usage_type": "call" }, { "api_name": "sqlalchemy.DateTime", "line_number": 76, "usage_type": "argument" }, { "api_name": "rhinventory.extensions.db.Model", "line_number": 78, "usage_type": "attribute" }, { "api_name": "rhinventory.extensions.db", "line_number": 78, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 80, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 80, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 81, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 81, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 82, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 82, "usage_type": "argument" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 82, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.relationship", "line_number": 83, "usage_type": "call" } ]
27265911454
import time import json from scrape_linkedin.utils import AnyEC from scrape_linkedin.Profile import Profile from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.common.exceptions import TimeoutException, NoSuchElementException class ProfileScraper: """ Scraper for Personal LinkedIn Profiles. See inherited Scraper class for details about the constructor. """ MAIN_SELECTOR = '.core-rail' ERROR_SELECTOR = '.profile-unavailable' def __init__(self, driver): self.timeout = 10 self.driver = driver self.scroll_pause = 0.1 self.scroll_increment = 300 def scrape_by_email(self, email): self.load_profile_page( 'https://www.linkedin.com/sales/gmail/profile/proxy/{}'.format(email)) return self.get_profile() def scrape(self, url='', user=None): self.load_profile_page(url, user) return self.get_profile() def load_profile_page(self, url='', user=None): """Load profile page and all async content Params: - url {str}: url of the profile to be loaded Raises: ValueError: If link doesn't match a typical profile url """ if user: url = 'http://www.linkedin.com/in/' + user if 'com/in/' not in url and 'sales/gmail/profile/proxy/' not in url: raise ValueError( "Url must look like... .com/in/NAME or... '.com/sales/gmail/profile/proxy/EMAIL") self.driver.get(url) # Wait for page to load dynamically via javascript try: myElem = WebDriverWait(self.driver, self.timeout).until(AnyEC( EC.presence_of_element_located( (By.CSS_SELECTOR, self.MAIN_SELECTOR)), EC.presence_of_element_located( (By.CSS_SELECTOR, self.ERROR_SELECTOR)) )) except TimeoutException as e: raise ValueError( """Took too long to load profile. Common problems/solutions: 1. Invalid LI_AT value: ensure that yours is correct (they update frequently) 2. Slow Internet: increase the time out parameter in the Scraper constructor 3. Invalid e-mail address (or user does not allow e-mail scrapes) on scrape_by_email call """) # Check if we got the 'profile unavailable' page try: self.driver.find_element_by_css_selector(self.MAIN_SELECTOR) except: raise ValueError( 'Profile Unavailable: Profile link does not match any current Linkedin Profiles') # Scroll to the bottom of the page incrementally to load any lazy-loaded content self.scroll_to_bottom() def get_profile(self): try: profile = self.driver.find_element_by_css_selector( self.MAIN_SELECTOR).get_attribute("outerHTML") except: raise Exception( "Could not find profile wrapper html. This sometimes happens for exceptionally long profiles. Try decreasing scroll-increment.") contact_info = self.get_contact_info() return Profile(profile + contact_info) def get_contact_info(self): try: # Scroll to top to put clickable button in view self.driver.execute_script("window.scrollTo(0, 0);") button = self.driver.find_element_by_css_selector( 'a[data-control-name="contact_see_more"]') button.click() contact_info = self.wait_for_el('.pv-contact-info') return contact_info.get_attribute('outerHTML') except Exception as e: print(e) return "" def scroll_to_bottom(self): """Scroll to the bottom of the page Params: - scroll_pause_time {float}: time to wait (s) between page scroll increments - scroll_increment {int}: increment size of page scrolls (pixels) """ expandable_button_selectors = [ 'button[aria-expanded="false"].pv-skills-section__additional-skills', 'button[aria-expanded="false"].pv-profile-section__see-more-inline', 'button[aria-expanded="false"].pv-top-card-section__summary-toggle-button', 'button[data-control-name="contact_see_more"]' ] current_height = 0 while True: for name in expandable_button_selectors: try: self.driver.find_element_by_css_selector(name).click() except: pass # Use JQuery to click on invisible expandable 'see more...' elements self.driver.execute_script( 'document.querySelectorAll(".lt-line-clamp__ellipsis:not(.lt-line-clamp__ellipsis--dummy) .lt-line-clamp__more").forEach(el => el.click())') # Scroll down to bottom new_height = self.driver.execute_script( "return Math.min({}, document.body.scrollHeight)".format(current_height + self.scroll_increment)) if (new_height == current_height): break self.driver.execute_script( "window.scrollTo(0, Math.min({}, document.body.scrollHeight));".format(new_height)) current_height = new_height # Wait to load page time.sleep(self.scroll_pause) def wait(self, condition): return WebDriverWait(self.driver, self.timeout).until(condition) def wait_for_el(self, selector): return self.wait(EC.presence_of_element_located(( By.CSS_SELECTOR, selector )))
DumbMachine/linkedin
person.py
person.py
py
5,813
python
en
code
0
github-code
6
[ { "api_name": "selenium.webdriver.support.ui.WebDriverWait", "line_number": 50, "usage_type": "call" }, { "api_name": "scrape_linkedin.utils.AnyEC", "line_number": 50, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions.presence_of_element_located", "line_number": 51, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions", "line_number": 51, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.CSS_SELECTOR", "line_number": 52, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 52, "usage_type": "name" }, { "api_name": "selenium.webdriver.support.expected_conditions.presence_of_element_located", "line_number": 53, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions", "line_number": 53, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.CSS_SELECTOR", "line_number": 54, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 54, "usage_type": "name" }, { "api_name": "selenium.common.exceptions.TimeoutException", "line_number": 56, "usage_type": "name" }, { "api_name": "scrape_linkedin.Profile.Profile", "line_number": 83, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 132, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.ui.WebDriverWait", "line_number": 135, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions.presence_of_element_located", "line_number": 138, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions", "line_number": 138, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.CSS_SELECTOR", "line_number": 139, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 139, "usage_type": "name" } ]
34218162586
# -*- coding: utf-8 -*- """ Created on Tue Feb 8 11:01:20 2022 @author: sonne """ #0. Imports from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.figure import Figure import matplotlib.patches as patches import matplotlib.animation as animation import matplotlib.ticker as ticker import tkinter as Tk #Interface import numpy as np #Numerische Mathematik import itertools #für Iteration import random #Zufallszahlen from scipy.constants import k #Boltzmann-Konstante #1. Dictionaries für die Edelgase Masse = {"Helium" : 6.642e-27, "Neon" : 3.351e-26, "Argon" : 6.634e-26, "Krypton" : 1.392e-25, "Xenon": 2.180e-25} Durchmesser = {"Helium" : 36.58, # 1.4e-10m "Neon" : 44.22, # 1.58e-10m "Argon" : 65.96, # 1.88e-10m "Krypton" : 76.15, # 2.00e-10m "Xenon": 87.07} # 2.18e-10m Farbe = {"Helium" : "blue", "Neon" : "darkblue", "Argon" : "blueviolet", "Krypton" : "purple", "Xenon": "indigo"} LennardJones_epsilon = {"Helium" : 14e-23, "Neon" : 50e-23, "Argon" : 167e-23, "Krypton" : 225e-23, "Xenon": 320e-23} LennardJones_sigma = {"Helium" : 2.56e-10, "Neon" : 2.74e-10, "Argon" : 3.4e-10, "Krypton" : 3.65e-10, "Xenon": 3.98e-10} #2. Figure für Plot erstellen #2.1 für die Simulation fig = Figure(figsize = (6,6)) ax = fig.add_subplot(111) #2.2 für Beschleunigungspfeil arrow = Figure(figsize = (1.5,1.5)) #Zweites Plotfenster für den Beschleunigungsvektor arr = arrow.add_subplot(111) arr.set_xlim(-1,1) arr.set_ylim(-1,1) arr.axes.xaxis.set_visible(False) #Achsen zur Übersichtlichkeit ausgeblendet arr.axes.yaxis.set_visible(False) Inaktiv_text = arr.text(0,0,'Aktiviere \n"Teilchen verfolgen"', ha="center", va = "center", fontsize = 8.) #Text in der Figure zu Beginn Pfeil = patches.Arrow(0, 0, 0, 0) #Pfeilobjekt mit Länge 0 erstellen patch = arr.add_patch(Pfeil) #Pfeil zu Plot hinzufügen #3. Interface mit Tkinter class Interface(): def __init__(self, Teilchentracker_aus = True): self.root = Tk.Toplevel() self.Teilchentracker_aus = Teilchentracker_aus #3.1 Tkinter-Fenster konfigurieren self.root.title("C5 Molecular Dynamics") #Titel des Fensters self.root.geometry("1400x800") #Größe des Fensters in Pixel self.root.config(bg = "white") #weißer Hintergrund self.root.columnconfigure(0, weight=3) self.root.columnconfigure(1, weight=1) self.root.columnconfigure(2, weight =1) self.Ueberschrift = Tk.Label(self.root,text="Thermal motion", font = "Verdana 20 bold", \ bg = "white").grid(column=0, row=0) #3.2 Canvas für die Simulation und für den Beschleunigungspfeil erstellen self.canvas = FigureCanvasTkAgg(fig, master=self.root) #für Simulation self.canvas.get_tk_widget().grid(column=0, row=1, rowspan = 9, sticky = Tk.N) self.Label_Beschleunigungspfeil = Tk.Label(self.root, text = "Acceleration",\ font = "Verdana 10 bold", bg = "white").grid(column = 2, row = 1) self.canvas_arrow = FigureCanvasTkAgg(arrow, master=self.root) #für Pfeil self.canvas_arrow.get_tk_widget().grid(column=2, row =2, rowspan = 2, sticky = Tk.N, pady = 10) #3.2 Schieberegler für Änderung der Temperatur self.Label_Temperatur = Tk.Label(self.root, text = "Temperature in K", font = "Verdana 10 bold",\ bg = "white").grid(column = 1, row =1) self.Slider_Temperatur = Tk.Scale(self.root, from_=1, to=2000, orient = "horizontal",\ bg = "white") #Schieberegler self.Slider_Temperatur.grid(column = 1, row = 2) #Schieberegler platzieren self.Slider_Temperatur.set(300) #Startwert self.Button_Temperatur = Tk.Button(self.root, text="Change temperature", bg= "lightgreen", \ compound = "left", width = 18, command= \ self.update_Temperatur).grid(column = 1, row = 3) #Knopf, ruft Funktion für Temperatur auf #3.3 Schieberegler für Änderung der Teilchenzahl self.Label_Teilchenzahl = Tk.Label(self.root, text = "Number of particles", \ font = "Verdana 10 bold", bg = "white").grid(column = 1, row = 4, sticky= Tk.S) self.Slider_Teilchenzahl = Tk.Scale(self.root, from_=1, to=20,\ orient = "horizontal", bg = "white") #Schieberegler self.Slider_Teilchenzahl.grid(column = 1, row = 5) #Schieberegler platzieren self.Slider_Teilchenzahl.set(5) #Startwert self.Button_Teilchenzahl = Tk.Button(self.root, text="Change number of particles",\ bg = "lightgreen", compound = "left", width = 18,\ command=self.update_Teilchenzahl).grid(column = 1, row = 6) #Knopf, ruft Funktion für Teilchenzahl auf #3.4 Dropdownmenü für Änderung der Teilchenart self.Label_Teilchenart = Tk.Label(self.root, text = "Gas type", font = "Verdana 10 bold",\ bg = "white").grid(column = 1, row = 7, sticky = Tk.S) Edelgase = ["Helium","Neon", "Argon","Krypton","Xenon"] #Liste der Optionen Variable = Tk.StringVar() #Definition des Wert des Widgets, Hält eine Zeichenfolge; Standardwert "" Variable.set(Edelgase[0]) #gibt an welches Element der Liste im Menü angezeigt wird self.dropdown = Tk.OptionMenu(self.root, Variable, *Edelgase, command= \ self.update_Teilchenart).grid(column = 1, row = 8) #Widget für Dropdown-Menü erstellen #3.5 Label mit Informationen zur aktuellen Simulation self.Infos = Tk.Label(self.root, text = "Informationen", bg = "white", font = \ "Verdana 10 bold").grid(column = 2, row = 7, sticky = Tk.S) self.Label_Infos = Tk.Label(self.root, text = "Infos", justify = "left") #Label erstellen self.Label_Infos.grid(column = 2, row = 8) #Label platzieren #3.6 Teilchentracker zum An- und Ausschalten self.Label_Teilchentracker = Tk.Label(self.root, text = "Track particle", font = \ "Verdana 10 bold", bg = "white").grid(column = 2, row = 4, sticky = Tk.S) self.Button_teilchen_verfolgen = Tk.Button(self.root, fg = "darkgreen", text="Teilchen verfolgen", bg = "white",\ height = 2, command=self.teilchen_verfolgen).grid(column = 2, row = 5, \ rowspan = 2, sticky = Tk.N, pady = 12) #Knopf, aktiviert Teilchentracker #3.7 Stopp-Knopf zum Beenden des Programms self.Beenden = Tk.Button(self.root, text = "Interrupt", fg= "white", bg="maroon",\ command = self.stopp, width = 65).grid(column = 1, row = 9, columnspan = 2) #Knopf, ruft Stopp-Funktion auf #Funktionen für Tkinter-Schaltflächen: def update_Temperatur(self): box.Temperatur = self.Slider_Temperatur.get() #Wert des Schiebereglers abrufen box.start_Animation() #Startbedingungen aktualisieren def update_Teilchenzahl(self): box.Teilchenzahl = self.Slider_Teilchenzahl.get() #Wert des Schiebereglers abrufen box.particles = [Particle(i) for i in range(box.Teilchenzahl)] #neue Teilchen erstellen box.start_Animation() #Startbedingungen aktualisieren def update_Teilchenart(self, Variable): partikel.Teilchenart = str(Variable) #Teilchenart als String speichern (für Infolabel) partikel.m = Masse.get(Variable) #Masse im Dictionary nachschlagen und aktualisieren partikel.R = Durchmesser.get(Variable) #Teilchenradius im Dictionary nachschlagen und aktualisieren partikel.color = Farbe.get(Variable) #Farbe im Dictionary nachschlagen und aktualisieren partikel.epsilon = LennardJones_epsilon.get(Variable) #Parameter im Dictionary nachschlagen und aktualisieren partikel.sigma = LennardJones_sigma.get(Variable) #Parameter im Dictionary nachschlagen und aktualisieren box.start_Animation() #Startbedingungen aktualisieren def teilchen_verfolgen(self): #Möglichkeit die Farbe eines Teilchens zu ändern und den Beschleunigungsvektor zu verfolgen global patch, Inaktiv_text if self.Teilchentracker_aus: #wenn noch nicht aktiv Inaktiv_text.remove() #Text aus Plot entfernen arrow.canvas.draw() self.Button_teilchen_verfolgen = Tk.Button(self.root, foreground = "white",\ text="Teilchen entfolgen", bg = "darkgreen", height = 2,\ command=self.teilchen_verfolgen).grid(column = 2, row = 5,\ rowspan = 2, sticky = Tk.N, pady = 12) #Knopf ändert sein Aussehen self.Teilchentracker_aus = False else: #falls schon aktiv Inaktiv_text = arr.text(0,0,'Aktiviere \n"Teilchen verfolgen"', ha="center", va = "center", fontsize = 8.) #Text in Plot einfügen arrow.canvas.draw() self.Button_teilchen_verfolgen = Tk.Button(self.root, foreground = "darkgreen",\ text="Teilchen verfolgen", bg = "white", height = 2,\ command=self.teilchen_verfolgen).grid(column = 2, row = 5,\ rowspan = 2, sticky = Tk.N, pady = 12) #Knopf ändert sein Aussehen patch.remove() #Pfeil entfernen Pfeil = patches.Arrow(0, 0, 0, 0) #einen neuen Pfeil der Länge 0 erstellen patch = arr.add_patch(Pfeil) #Pfeil hinzufügen arrow.canvas.draw() #Pfeil anzeigen self.Teilchentracker_aus = True def stopp(self): self.root.destroy() #Tkinter-Fenster schließen self.root.quit() #Programmausführung stoppen interface = Interface() #auf die Klasse Interface() mit interface zugreifen #4. Beschleunigungspfeil für das erste Teilchen def pfeil(Beschleunigung): global patch if interface.Teilchentracker_aus == False: #nur wenn Teilchentracker aktiv ist Betrag_Beschleunigung = np.sqrt(Beschleunigung[0]**2 + Beschleunigung[1]**2) if Betrag_Beschleunigung != 0: patch.remove() #Pfeil entfernen Pfeil_x = Beschleunigung[0]/np.abs(Beschleunigung[0]) \ * np.log(np.abs(Beschleunigung[0]))/50 #logarithmisch skalierte Beschleunigung, #um die nötigen Größenordnungen abzudecken Pfeil_y = Beschleunigung[1]/np.abs(Beschleunigung[1]) \ * np.log(np.abs(Beschleunigung[1]))/50 #logarithmisch skalierte Beschleunigung Pfeil = patches.FancyArrow(0, 0, Pfeil_x, Pfeil_y, color = "maroon", width = 0.05, overhang = 0.2,\ head_width = 0.25, head_length = 0.3) #Pfeil mit den Komponenten der #Beschleunigung erstellen patch = arr.add_patch(Pfeil) #Pfeil hinzufügen arrow.canvas.draw() #Pfeil anzeigen #5. Kritischer Radius kritischerRadius = 4e-9 # entspricht 40% der Boxgröße, um Rechenaufwand zu reduzieren #6. Teilchen als Klasse: class Particle(): #Ordnet jedem Teilchen einen Radius (R), Masse (m), Farbe (color), #und die Parameter für das Lennard-Jones-Potential (sigma, epsilon) zu def __init__(self, R = 36.58, m = 6.642e-27, color = "blue", epsilon = 14e-23, sigma = 2.56e-10, Teilchenart = "Helium"): self.R, self.m, self.color, self.epsilon, self.sigma, self.Teilchenart = R, m, color, epsilon, sigma, Teilchenart partikel = Particle() #auf Klasse Particle() als partikel zugreifen # 7. Funktionen für die Bewegung der Teilchen in der Box class Box(): #enthält die Funktionen für die Bewegung der Teilchen in der Box def __init__(self, Teilchenzahl = 5, dt=4E-15, Temperatur = 300, Boxgroesse = 1e-8,\ Anfangsgeschwindigkeit = 1367.8, E_gesamt = 3.1e-20): #Default-Werte für Anzahl der Teilchen, Zeitintervall, Temperatur, Boxgröße, Anfangsgeschwindigkeit, Gesamtenergie self.dt, self.Teilchenzahl, self.Temperatur, self.Boxgroesse, self.Anfangsgeschwindigkeit, \ self.E_gesamt = dt, Teilchenzahl, Temperatur, Boxgroesse, Anfangsgeschwindigkeit, E_gesamt self.particles = [Particle(i) for i in range(self.Teilchenzahl)] #für jedes Teilchen eine Instanz der Particle-Klasse erstellen #7.1 Startbedingungen für die Simulation berechnen und festlegen def start_Animation(self): self.scatter = ax.scatter([],[], s= partikel.R) #Streudiagramm mit Teilchen als Marker, Größe entsprechend des Teilchenradius self.Anfangsgeschwindigkeit = self.mittlere_Geschwindigkeit(self.Temperatur) #Anfangsgeschwindigkeit aus Temperatur berechnen self.E_gesamt = self.gesamtenergie(self.Teilchenzahl, self.Anfangsgeschwindigkeit) #Gesamtenergie aus kinetischer Energie bestimmen Infos = "Edelgas: " + partikel.Teilchenart + \ "\nMasse: %10.3e kg \nGesamtenergie: %10.3e J \nMittlere Geschwindigkeit: %8.2f m/s" \ % (partikel.m, box.E_gesamt, box.Anfangsgeschwindigkeit) #Text für das Info-Label interface.Label_Infos.configure(text = Infos) #Labelinhalt aktualisieren box.startpositionen() #Startpositionen-Funktion aufrufen for particle in self.particles: angle = random.uniform(-1, 1) #zufälliger Winkel für Richtung der Geschwindigkeit particle.v = np.array([(np.cos(angle * np.pi/2)), (np.sin(angle * np.pi/2))]) \ * self.Anfangsgeschwindigkeit #Anfangsgeschwindigkeit als Array definieren particle.a = np.zeros(2) #Beschleunigung zum Zeitpunkt t=0 ist Null #7.1.1 Anfangsgeschwindigkeit der Teilchen als mittlere Geschwindigkeit festlegen def mittlere_Geschwindigkeit(self, T): return np.sqrt(3*k*T/partikel.m) #Als mittlere Geschwindigkeit über Temperatur berechnen #7.1.2 Gesamtenergie aller Teilchen berechnen def gesamtenergie(self, Teilchenzahl, v): return Teilchenzahl * 0.5 * partikel.m * v**2 #Summe der kinetischen Energie #7.1.3 Startpostitionen der Teilchen zufällig bestimmen def startpositionen(self): for particle in self.particles: particle.r = 100*np.random.uniform(0, self.Boxgroesse/100, size=2) #Startposition zufällig #innerhalb des Kastens festlegen #Wiederholung der zufälligen Teilchenverteilung bei Überlappung von 2 Teilchen zu Beginn der Animation for particle, particle2 in itertools.combinations(self.particles, 2): #für jedes Teilchenpaar # Abstand berechnen x_diff = particle.r[0] - particle2.r[0] y_diff = particle.r[1] - particle2.r[1] Abstand = np.sqrt(x_diff**2 + y_diff**2) if Abstand < 1.12*partikel.sigma: #wenn Abstand kleiner abstoßende Wechselwirkunegn box.startpositionen() #neue Startpositionen berechnen #7.2 Trajektorien der Teilchen über Velocity-Verlet-Algorithmus bestimmen def zeitliche_Entwicklung(self, particles, Boxgroesse, dt, E_gesamt): box.kollision_Box(particles, Boxgroesse) #elastische Stöße mit Wand berücksichtigen for particle in particles: particle.r += dt * particle.v + dt**2*particle.a #Ort nach Velocity-Verlet-Algorithmus bestimmen particle.a_vorher = particle.a #Wert für die Beschleunigung für nächsten Zeitschritt speichern particle.a = np.zeros(2) #Beschleunigung wieder auf Null setzen vor neuer Evaluation des Potentials box.beschleunigung(particles) #Beschleunigung aus dem Potential berechnen particle.v = (particle.v + dt/2 * (particle.a + particle.a_vorher)) \ * box.normierung(particles, E_gesamt) #Geschwindigkeit nach Velocity-Verlet-Algorithmus bestimmen und normieren pfeil(box.particles[0].a) #Beschleunigungspfeil updaten #7.2.1 Elastische Stöße mit den Wänden der Box def kollision_Box(self, particles, Boxgroesse): for particle in self.particles: for i in range(0,2): #für x- und y-Koordinate if particle.r[i] >= Boxgroesse: particle.r[i] = Boxgroesse #Verhindert 'Tunneling', wo die Geschwind. eines sehr schnellen # Teilchens vor Rückkehr in den Kasten zweimal gespiegelt wird particle.v[i] *=-1 #Spiegelung der Geschwindigkeit if particle.r[i] <= 0: particle.r[i] = 0 #s.o. particle.v[i] *=-1 #7.2.2 Abstand und Beschleunigung der Teilchen bestimmen def beschleunigung(self, particles): for particle, particle2 in itertools.combinations(self.particles, 2): #über alle Paare von Teilchen iterieren #Abstand berechnen x_diff = particle.r[0] - particle2.r[0] y_diff = particle.r[1] - particle2.r[1] Abstand = np.sqrt(x_diff**2 + y_diff**2) #Wechselwirkung aus Potential berechnen: if Abstand < kritischerRadius: #nur Wechselwirkung bestimmen, wenn innerhalb des kritischen Radius Wechselwirkung = self.lennardJones_Kraft(Abstand) #Abstand in Lennard-Jones-Potential einsetzen particle.a[0] -= 1/(partikel.m) * Wechselwirkung * x_diff/Abstand particle.a[1] -= 1/(partikel.m) * Wechselwirkung * y_diff/Abstand particle2.a[0] += 1/(partikel.m) * Wechselwirkung * x_diff/Abstand particle2.a[1] += 1/(partikel.m) * Wechselwirkung * y_diff/Abstand #7.2.3 Lennard-Jones-Potential def lennardJones_Kraft(self, Distanz): #Kraft als Gradient des LennardJones-Potentials in Abhängigkeit #vom Abstand der Teilchen return (-24 * partikel.epsilon) * (2 *(partikel.sigma**12 / Distanz**13) -(partikel.sigma**6 / Distanz**7)) #7.2.4 Geschwindigkeiten für Energieerhaltung normieren def normierung(self, particles, E_gesamt): Summe_v=0 for particle in particles: Summe_v += particle.v**2 #alle Geschwindigkeitsquadrate aufaddieren return np.sqrt(E_gesamt /(0.5*Particle().m*Summe_v)) #neue Gesamtenergie bestimmen und Skalierungsfaktor zurückgeben #7.3 Position der Teilchen zurückgeben def position(self, particles): #Funktion um den Ort jedes Teilchens an die Animation zu übergeben return [particle.r for particle in particles] box = Box() #auf die Klasse Box() als box zugreifen #8. Animation starten und Programm ausführen def particle_Farbe(particles): for particle in box.particles: particle.color = partikel.color #jedem Teilchen die Farbe des Edelgases aus der Particle-Klasse zuweisen if interface.Teilchentracker_aus == False: #wenn Teiclhentracker aktiviert box.particles[0].color = "red" #erstes Teilchen wird rot eingefärbt return [particle.color for particle in box.particles] #Farben zurückgeben def init(): #Box darstellen ax.set_xlim (0, box.Boxgroesse) #Boxgröße einstellen ax.set_ylim (0, box.Boxgroesse) ax.xaxis.set_major_locator(ticker.FixedLocator(np.arange(0,12e-9, 2e-9))) #Ticklabels einstellen ax.yaxis.set_major_locator(ticker.FixedLocator(np.arange(0,12e-9, 2e-9))) ax.xaxis.set_ticklabels(np.arange(0,11,2)) #Beschriftungen in nm festlegen ax.yaxis.set_ticklabels(np.arange(0,11,2)) ax.set_xlabel("Boxbreite in nm") #Achsenbeschriftung return box.scatter, def update(frame): #Funktion für die Animation (FunAn) box.zeitliche_Entwicklung(box.particles, box.Boxgroesse, box.dt, box.E_gesamt) #Funktion für zetilche Entwicklung aufrufen box.scatter.set_offsets(np.array(box.position(box.particles))) #neuen Ort der Marker übernehmen box.scatter.set_color(particle_Farbe(box.particles)) #Farbe der Teilchen ggf. ändern return box.scatter, box.start_Animation() #Funktion für Startbedingungen aufrufen ani = animation.FuncAnimation(fig, update , frames=range(10000), init_func = init, blit=True,\ interval = 1/2000, repeat = True) #Animation abrufen Tk.mainloop() #Tkinter-Fenster aufrufen
tappelnano/molecular_dynamics
2022_02_13_C5_Molekulardynamik.py
2022_02_13_C5_Molekulardynamik.py
py
22,402
python
de
code
0
github-code
6
[ { "api_name": "matplotlib.figure.Figure", "line_number": 56, "usage_type": "call" }, { "api_name": "matplotlib.figure.Figure", "line_number": 61, "usage_type": "call" }, { "api_name": "matplotlib.patches.Arrow", "line_number": 68, "usage_type": "call" }, { "api_name": "matplotlib.patches", "line_number": 68, "usage_type": "name" }, { "api_name": "tkinter.Toplevel", "line_number": 76, "usage_type": "call" }, { "api_name": "tkinter.Label", "line_number": 88, "usage_type": "call" }, { "api_name": "matplotlib.backends.backend_tkagg.FigureCanvasTkAgg", "line_number": 93, "usage_type": "call" }, { "api_name": "tkinter.N", "line_number": 94, "usage_type": "attribute" }, { "api_name": "tkinter.Label", "line_number": 96, "usage_type": "call" }, { "api_name": "matplotlib.backends.backend_tkagg.FigureCanvasTkAgg", "line_number": 98, "usage_type": "call" }, { "api_name": "tkinter.N", "line_number": 99, "usage_type": "attribute" }, { "api_name": "tkinter.Label", "line_number": 103, "usage_type": "call" }, { "api_name": "tkinter.Scale", "line_number": 105, "usage_type": "call" }, { "api_name": "tkinter.Button", "line_number": 109, "usage_type": "call" }, { "api_name": "tkinter.Label", "line_number": 117, "usage_type": "call" }, { "api_name": "tkinter.S", "line_number": 118, "usage_type": "attribute" }, { "api_name": "tkinter.Scale", "line_number": 119, "usage_type": "call" }, { "api_name": "tkinter.Button", "line_number": 123, "usage_type": "call" }, { "api_name": "tkinter.Label", "line_number": 130, "usage_type": "call" }, { "api_name": "tkinter.S", "line_number": 131, "usage_type": "attribute" }, { "api_name": "tkinter.StringVar", "line_number": 133, "usage_type": "call" }, { "api_name": "tkinter.OptionMenu", "line_number": 135, "usage_type": "call" }, { "api_name": "tkinter.Label", "line_number": 140, "usage_type": "call" }, { "api_name": "tkinter.S", "line_number": 141, "usage_type": "attribute" }, { "api_name": "tkinter.Label", "line_number": 142, "usage_type": "call" }, { "api_name": "tkinter.Label", "line_number": 147, "usage_type": "call" }, { "api_name": "tkinter.S", "line_number": 148, "usage_type": "attribute" }, { "api_name": "tkinter.Button", "line_number": 149, "usage_type": "call" }, { "api_name": "tkinter.N", "line_number": 151, "usage_type": "attribute" }, { "api_name": "tkinter.Button", "line_number": 157, "usage_type": "call" }, { "api_name": "tkinter.Button", "line_number": 186, "usage_type": "call" }, { "api_name": "tkinter.N", "line_number": 189, "usage_type": "attribute" }, { "api_name": "tkinter.Button", "line_number": 197, "usage_type": "call" }, { "api_name": "tkinter.N", "line_number": 200, "usage_type": "attribute" }, { "api_name": "matplotlib.patches.Arrow", "line_number": 203, "usage_type": "call" }, { "api_name": "matplotlib.patches", "line_number": 203, "usage_type": "name" }, { "api_name": "numpy.sqrt", "line_number": 219, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 222, "usage_type": "call" }, { "api_name": "numpy.log", "line_number": 223, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 223, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 225, "usage_type": "call" }, { "api_name": "numpy.log", "line_number": 226, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 226, "usage_type": "call" }, { "api_name": "matplotlib.patches.FancyArrow", "line_number": 227, "usage_type": "call" }, { "api_name": "matplotlib.patches", "line_number": 227, "usage_type": "name" }, { "api_name": "random.uniform", "line_number": 270, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 271, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 271, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 271, "usage_type": "attribute" }, { "api_name": "numpy.sin", "line_number": 271, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 273, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 278, "usage_type": "call" }, { "api_name": "scipy.constants.k", "line_number": 278, "usage_type": "name" }, { "api_name": "numpy.random.uniform", "line_number": 289, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 289, "usage_type": "attribute" }, { "api_name": "itertools.combinations", "line_number": 294, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 298, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 310, "usage_type": "call" }, { "api_name": "itertools.combinations", "line_number": 332, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 337, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 360, "usage_type": "call" }, { "api_name": "matplotlib.ticker.FixedLocator", "line_number": 384, "usage_type": "call" }, { "api_name": "matplotlib.ticker", "line_number": 384, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 384, "usage_type": "call" }, { "api_name": "matplotlib.ticker.FixedLocator", "line_number": 385, "usage_type": "call" }, { "api_name": "matplotlib.ticker", "line_number": 385, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 385, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 386, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 387, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 393, "usage_type": "call" }, { "api_name": "matplotlib.animation.FuncAnimation", "line_number": 399, "usage_type": "call" }, { "api_name": "matplotlib.animation", "line_number": 399, "usage_type": "name" }, { "api_name": "tkinter.mainloop", "line_number": 401, "usage_type": "call" } ]
72274308029
import datetime import inspect import json import logging from typing import Callable, Dict, List, Union _JSON_INDENT = 4 _JSON_SEPERATORS = (",", ": ") _DEPTH_RECURSION_DEFAULT = 1 _DEPTH_RECURSION_GET_LOGGER = 2 _DEPTH_RECURSION_JSON_LOGGER = 3 _LOGGING_LEVEL = logging.INFO if not __debug__ else logging.DEBUG _FORMATTER_STR_DETAILED = ( "%(asctime)s (PID:%(process)d) %(levelname)s %(name)s: %(message)s" ) # _FORMATTER_STR_SIMPLE = "%(name)s %(message)s" _FORMATTER_STR = _FORMATTER_STR_DETAILED def get_method_name( module_name: str = None, class_name: str = None, depth_recursion: int = _DEPTH_RECURSION_DEFAULT, ) -> str: """Retrieves a method name with a module name and class name. :param module_name: Module name :type module_name: str :param class_name: Class name :type class_name: str :param depth_recursion: Depth of recursive call for call stacks (>=1) :type depth_recursion: int :return: Method name :rtype: str """ if depth_recursion < 1: raise ValueError(f"depth_recursion is not natural number. - {depth_recursion}") # Gets an appropriate frame stack where the logger is called. f_stack = inspect.currentframe() for _ in range(depth_recursion): f_stack = f_stack.f_back if f_stack is None: raise ValueError("Reached the call stack limit.") method_name = f_stack.f_code.co_name if module_name is None and class_name is None: return method_name elif module_name is None: return f"{class_name}.{method_name}" elif class_name is None: return f"{module_name}.{method_name}" else: return f"{module_name}.{class_name}.{method_name}" def _logging_base_decorator(func_logging_decorator: Callable) -> Callable: """Decorator Function with Parameters. :param func_logging_system: Function object for Decoration :type func_logging_system: Function object :return: Wrapper function's object :rtype: Callable """ def wrapper(*args, **kwargs): def wrapper_logging_decorator(func_get_logger): return func_logging_decorator(func_get_logger, *args, **kwargs) return wrapper_logging_decorator return wrapper @_logging_base_decorator def _logging_decorator( func_get_logger: Callable, level: int = _LOGGING_LEVEL, is_propagate: bool = False ) -> Callable: """Decorator Function for Python Logging. :param func_get_logger: Function object for Decoration :type func_get_logger: function :param level: Logging Level :type level: int :param is_propagate: Need Propagation or not (False: Not propagate / True: Propagate) :type is_propagate: bool :return Wrapper function's object :rtype: Callable """ handler = logging.StreamHandler() handler.setLevel(level) formatter = logging.Formatter(_FORMATTER_STR) handler.setFormatter(formatter) def wrapper(name): logger = func_get_logger(name) if handler is not None: logger.addHandler(handler) logger.setLevel(level) logger.propagate = is_propagate return logger return wrapper @_logging_decorator() def get_logger(name: str) -> logging.Logger: """Gets a logger with the name. :param name: Name of the logger :type name: str :return Logger :rtype: logging.Logger """ return logging.getLogger(name=name) def get_default_logger() -> logging.Logger: """Gets a logger with the method name. :return Logger :rtype: logging.Logger """ return get_logger(name=get_method_name(depth_recursion=_DEPTH_RECURSION_GET_LOGGER)) def get_class_default_logger( class_name: str, module_name: str = None ) -> logging.Logger: """Gets a logger with the class name. :param class_name: Class name. :type class_name: str :param class_name: (optional) Module name. :type class_name: str :return Logger :rtype: logging.Logger """ return get_logger( name=get_method_name( module_name=module_name, class_name=class_name, depth_recursion=_DEPTH_RECURSION_GET_LOGGER, ) ) def _json_serialize(obj: object) -> str: """Serializes the given object :param obj: obj :type obj: object :return iso-formatted obj :rtype: str """ if isinstance(obj, (datetime.datetime, datetime.date)): return obj.isoformat() raise TypeError(f"Type {type(obj)} not serializable") def _json_dumps(json_items: Union[List[object], Dict[object, object]]) -> str: """Dumps as a JSON format. :param json_items: Items to be converted to a JSON format. :type json_items: list or dict :return JSON formatted items. :rtype: str """ return json.dumps( json_items, indent=_JSON_INDENT, ensure_ascii=False, sort_keys=True, separators=_JSON_SEPERATORS, default=_json_serialize, ) def json_logger( level: int, json_items: Union[List[object], Dict[object, object]], module_name: str = None, class_name: str = None, depth_recursion: int = 2, msg: str = None, ) -> None: """Logs the given json string. :param level: Logging level. :type level: int :param json_items: Items to be converted to a JSON format. :type json_items: list or dict :param module_name: Module name. :type module_name: str :param class_name: Class name. :type class_name: str :param depth_recursion: Depth recursion. :type depth_recursion: int :param msg: Logging message. :type msg: str """ get_logger( get_method_name( module_name=module_name, class_name=class_name, depth_recursion=depth_recursion, ) ).log(level=level, msg=msg) get_logger( get_method_name( module_name=module_name, class_name=class_name, depth_recursion=depth_recursion, ) ).log(level=level, msg=_json_dumps(json_items)) def json_logger_debug( json_items: Union[List[object], Dict[object, object]], module_name: str = None, class_name: str = None, msg: str = None, ) -> None: """Logs the given json string as DEBUG. :param json_items: Items to be converted to a JSON format. :type json_items: list or dict :param module_name: Module name. :type module_name: str :param class_name: Class name. :type class_name: str :param msg: Logging message. :type msg: str """ json_logger( level=logging.DEBUG, json_items=json_items, module_name=module_name, class_name=class_name, depth_recursion=_DEPTH_RECURSION_JSON_LOGGER, msg=msg, ) def json_logger_info( json_items: Union[List[object], Dict[object, object]], module_name: str = None, class_name: str = None, msg: str = None, ) -> None: """Logs the given json string as INFO. :param json_items: Items to be converted to a JSON format. :type json_items: list or dict :param module_name: Module name. :type module_name: str :param class_name: Class name. :type class_name: str :param msg: Logging message. :type msg: str """ json_logger( level=logging.INFO, json_items=json_items, module_name=module_name, class_name=class_name, depth_recursion=_DEPTH_RECURSION_JSON_LOGGER, msg=msg, ) def json_logger_warning( json_items: Union[List[object], Dict[object, object]], module_name: str = None, class_name: str = None, msg: str = None, ) -> None: """Logs the given json string as WARNING. :param json_items: Items to be converted to a JSON format. :type json_items: list or dict :param module_name: Module name. :type module_name: str :param class_name: Class name. :type class_name: str :param msg: Logging message. :type msg: str """ json_logger( level=logging.WARNING, json_items=json_items, module_name=module_name, class_name=class_name, depth_recursion=_DEPTH_RECURSION_JSON_LOGGER, msg=msg, ) def json_logger_error( json_items: Union[List[object], Dict[object, object]], module_name: str = None, class_name: str = None, msg: str = None, ) -> None: """Logs the given json string as ERROR. :param json_items: Items to be converted to a JSON format. :type json_items: list or dict :param module_name: Module name. :type module_name: str :param class_name: Class name. :type class_name: str :param msg: Logging message. :type msg: str """ json_logger( level=logging.ERROR, json_items=json_items, module_name=module_name, class_name=class_name, depth_recursion=_DEPTH_RECURSION_JSON_LOGGER, msg=msg, ) def json_logger_critical( json_items: Union[List[object], Dict[object, object]], module_name: str = None, class_name: str = None, msg: str = None, ) -> None: """Logs the given json string as CRITICAL. :param json_items: Items to be converted to a JSON format. :type json_items: list or dict :param module_name: Module name. :type module_name: str :param class_name: Class name. :type class_name: str :param msg: Logging message. :type msg: str """ json_logger( level=logging.CRITICAL, json_items=json_items, module_name=module_name, class_name=class_name, depth_recursion=_DEPTH_RECURSION_JSON_LOGGER, msg=msg, )
novus-inc/pylogger
pylogger/pylogger.py
pylogger.py
py
9,703
python
en
code
0
github-code
6
[ { "api_name": "logging.INFO", "line_number": 14, "usage_type": "attribute" }, { "api_name": "logging.DEBUG", "line_number": 14, "usage_type": "attribute" }, { "api_name": "inspect.currentframe", "line_number": 45, "usage_type": "call" }, { "api_name": "typing.Callable", "line_number": 64, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 85, "usage_type": "name" }, { "api_name": "logging.StreamHandler", "line_number": 101, "usage_type": "call" }, { "api_name": "logging.Formatter", "line_number": 105, "usage_type": "call" }, { "api_name": "typing.Callable", "line_number": 86, "usage_type": "name" }, { "api_name": "logging.getLogger", "line_number": 129, "usage_type": "call" }, { "api_name": "logging.Logger", "line_number": 120, "usage_type": "attribute" }, { "api_name": "logging.Logger", "line_number": 132, "usage_type": "attribute" }, { "api_name": "logging.Logger", "line_number": 143, "usage_type": "attribute" }, { "api_name": "datetime.datetime", "line_number": 173, "usage_type": "attribute" }, { "api_name": "datetime.date", "line_number": 173, "usage_type": "attribute" }, { "api_name": "typing.Union", "line_number": 178, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 178, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 178, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 187, "usage_type": "call" }, { "api_name": "typing.Union", "line_number": 199, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 199, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 199, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 242, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 242, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 242, "usage_type": "name" }, { "api_name": "logging.DEBUG", "line_number": 262, "usage_type": "attribute" }, { "api_name": "typing.Union", "line_number": 272, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 272, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 272, "usage_type": "name" }, { "api_name": "logging.INFO", "line_number": 292, "usage_type": "attribute" }, { "api_name": "typing.Union", "line_number": 302, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 302, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 302, "usage_type": "name" }, { "api_name": "logging.WARNING", "line_number": 322, "usage_type": "attribute" }, { "api_name": "typing.Union", "line_number": 332, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 332, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 332, "usage_type": "name" }, { "api_name": "logging.ERROR", "line_number": 352, "usage_type": "attribute" }, { "api_name": "typing.Union", "line_number": 362, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 362, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 362, "usage_type": "name" }, { "api_name": "logging.CRITICAL", "line_number": 382, "usage_type": "attribute" } ]
38058129584
from lib.processors import findFaceGetPulse import networkx as nx """ Simple tool to visualize the design of the real-time image analysis Everything needed to produce the graph already exists in an instance of the assembly. """ #get the component/data dependancy graph (depgraph) of the assembly assembly = findFaceGetPulse() graph = assembly._depgraph._graph #prune a few unconnected nodes not related to the actual analysis graph.remove_node("@xin") graph.remove_node("@xout") graph.remove_node("driver") #plot the graph to disc as a png image ag = nx.to_agraph(graph) ag.layout('dot') ag.draw('design.png')
noahcse/webcam_pulse_detect
make_design_graph.py
make_design_graph.py
py
615
python
en
code
1
github-code
6
[ { "api_name": "lib.processors.findFaceGetPulse", "line_number": 12, "usage_type": "call" }, { "api_name": "networkx.to_agraph", "line_number": 21, "usage_type": "call" } ]