seq_id
string
text
string
repo_name
string
sub_path
string
file_name
string
file_ext
string
file_size_in_byte
int64
program_lang
string
lang
string
doc_type
string
stars
int64
dataset
string
pt
string
api
list
19670935871
from konlpy.tag import Kkma, Okt from pandas import DataFrame as df from gensim.models.word2vec import Word2Vec import pandas as pd import logging import time import re import os import matplotlib as mpl from sklearn.manifold import TSNE import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.cluster import DBSCAN start = time.time() logging.basicConfig( format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) kkma = Kkma() mc = Okt() def word2vec(): word_list = [] path_dir = "C:\\Users\\gusals\\Desktop\\현민\\딥러닝 특론\\리포트 2013~2015 pkl" file_list = os.listdir(path_dir) file_list.sort() print(file_list) for i in file_list: df = pd.read_pickle("C:\\Users\\gusals\\Desktop\\현민\\딥러닝 특론\\리포트 2013~2015 pkl\\%s" % i) for j in df['sentences']: if len(j) > 1: #print(j) word_list.append(j) print(len(word_list)) #print(word_list) embedding_model = Word2Vec(word_list, size=200, window=10, min_count=5, iter=500, sg=1, sample=1e-3, hs=0) # embedding_model2 = Word2Vec.load('C:\\Users\\gusals\\Desktop\\현민\\딥러닝 특론\\word2vec_model\\stock_summary_model_01.model') # embedding_model2.wv.save_word2vec_format("C:\\Users\\gusals\\Desktop\\현민\\딥러닝 특론\\word2vec_model\\word_vector_sample.bin", binary=True) # model2 = Word2Vec.load('C:\\Users\\gusals\\Desktop\\현민\\딥러닝 특론\\word2vec_model\\2013~2015_report_size20_win10_min5_iter500_hs0_intersect_ko2') # model2.wv.save_word2vec_format("C:\\Users\\gusals\\Desktop\\현민\\딥러닝 특론\\word2vec_model\\ko\\2013~2015_report_size20_win10_min5_iter500_hs0_intersect_ko2.bin", binary=True) # # prev_model = 'C:\\Users\\gusals\\Desktop\\현민\\딥러닝 특론\\word2vec_model\\ko\\2013~2015_report_size20_win10_min5_iter500_hs0_intersect_ko2.bin' # embedding_model.intersect_word2vec_format(fname=prev_model, lockf=1.0, binary=True) model_name = "2013~2015_report_size200_win10_min5_iter500_hs0" embedding_model.save('C:\\Users\\gusals\\Desktop\\현민\\딥러닝 특론\\word2vec_model\\%s' % model_name) word_vector = embedding_model.wv def tsne_plot(model): labels = [] tokens = [] mpl.rcParams['axes.unicode_minus'] = False plt.rc('font', family='NanumGothic') for word in model.wv.vocab: tokens.append(model[word]) labels.append(word) print(labels) print(len(labels)) tsne_model = TSNE(perplexity=40, n_components=2, init='pca', n_iter=2500, random_state=23) new_values = tsne_model.fit_transform(tokens) x = [] y = [] for value in new_values[:300]: x.append(value[0]) y.append(value[1]) plt.figure(figsize=(16, 16)) for i in range(len(x)): plt.scatter(x[i], y[i]) plt.annotate(labels[i], xy=(x[i], y[i]), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') plt.show() def cluster(model, file, model_name): result = model.wv # 어휘의 feature vector topic = pd.read_pickle('C:\\Users\\gusals\\Desktop\\현민\\딥러닝 특론\\토픽 모델링 결과\\%s' % file) #print(result.vocab.keys()) #vocabs = result.vocab.keys() vocabs = [] for i in topic['sentences']: for j in i: vocabs.append(j) print(len(vocabs)) # clean_file = open('C:\\Users\\gusals\\Desktop\\현민\\딥러닝 특론\\클러스터전처리.txt', 'r') # lines = clean_file.readlines() # clean_file.close() # remove_list = lines[0].split(', ') remove_list = [] word_vectors = [] clean_vocabs = [] for i in vocabs: for remove in remove_list: i = re.sub(remove, '', i) if len(i) > 1: clean_vocabs.append(i) for v in clean_vocabs: try: word_vectors.append(result[v]) except: print(v) clean_vocabs.remove(v) num_clusters = 50 # int(len(clean_vocabs) / 5) # int(word_vectors.shape[0]/50) # 어휘 크기의 1/5나 평균 5단어 print(num_clusters) num_clusters = int(num_clusters) kmeans_clustering = KMeans(n_clusters=num_clusters) idx = kmeans_clustering.fit_predict(word_vectors) #idx = DBSCAN(eps=1000, min_samples=2).fit(word_vectors) print(id) idx = list(idx) print(len(vocabs)) print(len(idx)) names = clean_vocabs print(names) word_centroid_map = {names[i]: idx[i] for i in range(len(idx))} dfIndustry = pd.DataFrame(columns=["cluster", "keyword"]) for c in range(num_clusters): # 클러스터 번호를 출력 print("\ncluster {}".format(c)) words = [] cluster_values = list(word_centroid_map.values()) for i in range(len(cluster_values)): if (cluster_values[i] == c): words.append(list(word_centroid_map.keys())[i]) if len(words) == 1: print(words) rowIndustry = [c, words] dfIndustry.loc[len(dfIndustry)] = rowIndustry print(dfIndustry) clean_file = open('C:\\Users\\gusals\\Desktop\\현민\\딥러닝 특론\\클러스터전처리.txt', 'r') lines = clean_file.readlines() clean_file.close() remove_list = lines[0].split(', ') count = 0 for i in dfIndustry['keyword']: clean_v = [] for j in i: print(j) for remove in remove_list: j = re.sub(remove, '', j) if len(j) > 1: clean_v.append(j) dfIndustry['keyword'][count] = clean_v count += 1 print(dfIndustry) print("time: ", time.time() - start) dfIndustry.to_pickle("C:\\Users\\gusals\\Desktop\\현민\\딥러닝 특론\\클러스터링최종\\군집_%s.pkl" % (model_name)) word2vec() #tsne_plot(model) # path_dir = "C:\\Users\\gusals\\Desktop\\현민\\딥러닝 특론\\토픽 모델링 결과" # file_list = os.listdir(path_dir) # file_list.sort() # print(file_list) # # for file in file_list: # cluster(model, file) # model_name = '2013~2015_report_size20_win20_min5_iter1000_hs0' # model = Word2Vec.load('C:\\Users\\gusals\\Desktop\\현민\\딥러닝 특론\\word2vec_model\\%s' % model_name) # file = '3년.pkl' # # cluster(model, file, model_name) #sim(['기계', '펄프'], model)
gusals6804/TopicModelling
Word2Vec.py
Word2Vec.py
py
6,481
python
en
code
0
github-code
6
[ { "api_name": "time.time", "line_number": 15, "usage_type": "call" }, { "api_name": "logging.basicConfig", "line_number": 16, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 18, "usage_type": "attribute" }, { "api_name": "konlpy.tag.Kkma", "line_number": 20, "usage_type": "call" }, { "api_name": "konlpy.tag.Okt", "line_number": 21, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 27, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 31, "usage_type": "name" }, { "api_name": "pandas.read_pickle", "line_number": 31, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 32, "usage_type": "name" }, { "api_name": "gensim.models.word2vec.Word2Vec", "line_number": 39, "usage_type": "call" }, { "api_name": "matplotlib.rcParams", "line_number": 59, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.rc", "line_number": 60, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 60, "usage_type": "name" }, { "api_name": "sklearn.manifold.TSNE", "line_number": 68, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 77, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 77, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 79, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 79, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.annotate", "line_number": 80, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 80, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 86, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 86, "usage_type": "name" }, { "api_name": "pandas.read_pickle", "line_number": 94, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 114, "usage_type": "call" }, { "api_name": "sklearn.cluster.KMeans", "line_number": 129, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 140, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 170, "usage_type": "call" }, { "api_name": "time.time", "line_number": 180, "usage_type": "call" } ]
16132746633
''' mobile monkey ''' import time from typing import List from threading import Thread import config_reader as config import emulator_manager import api_commands from telnet_connector import TelnetAdb from telnet_connector import GsmProfile from telnet_connector import NetworkDelay from telnet_connector import NetworkStatus from emulator import Emulator from fuzz_context import Fuzzer from adb_settings import Airplane, KeyboardEvent, UserRotation # import adb_settings as AdbSettings import util from adb_monkey import AdbMonkey from apk import Apk from adb_logcat import Logcat, TestType, FatalWatcher from log_analyzer import Analyzer PRINT_FLAG = True TIME_PRINT_FLAG = True emulator_model = config.EMULATOR_NAME emulator_port = config.EMULATOR_PORT contextual_events = 0 WILL_MONKEY = True def start_emulator() -> bool: ''' starts emulator ''' global emulator_model if emulator_manager.adb_instances_manager(): util.debug_print('already emulators are running.', flag=PRINT_FLAG) return True else: util.debug_print( str.format("No emulator instance running. starting {} at port {}", emulator_model, emulator_port), flag=PRINT_FLAG) api_commands.adb_start_server_safe() emulator_manager.emulator_start_avd(emulator_port, emulator_model) # subprocess.Popen([command, # '-port', str(emulator_port), '-avd', # emulator_name, '-use-system-libs'], # stdout=subprocess.PIPE) emulator_manager.check_avd_booted_completely(emulator_port) return True def threads_to_run(emulator: Emulator, apk: Apk, fuzz: Fuzzer, will_monkey: bool) -> List: ''' runs the threads after checking permissions. ''' threads = [] global contextual_events util.debug_print(apk.permissions, flag=PRINT_FLAG) emulator_name = 'emulator-' + str(emulator.port) if "android.permission.INTERNET" in apk.permissions or \ "android.permission.ACCESS_NETWORK_STATE" in apk.permissions: util.debug_print("Internet permission detected", flag=PRINT_FLAG) network_delay_interval_events = fuzz.generate_step_interval_event( NetworkDelay) # print(network_delay_interval_events) contextual_events += len(network_delay_interval_events) threads.append(Thread(target=fuzz.random_network_delay, args=( config.LOCALHOST, emulator, network_delay_interval_events))) network_speed_interval_event = fuzz.generate_step_interval_event( NetworkStatus) # print(network_speed_interval_event) contextual_events += len(network_speed_interval_event) threads.append(Thread(target=fuzz.random_network_speed, args=( config.LOCALHOST, emulator, network_speed_interval_event))) airplane_mode_interval_events = fuzz.generate_step_interval_event( Airplane) # print(airplane_mode_interval_events) contextual_events += len(airplane_mode_interval_events) threads.append(Thread( target=fuzz.random_airplane_mode_call, args=(emulator_name, airplane_mode_interval_events))) if "android.permission.ACCESS_NETWORK_STATE" in apk.permissions: util.debug_print("access_network_state detected", flag=PRINT_FLAG) gsm_profile_interval_events = fuzz.generate_step_uniforminterval_event( GsmProfile) contextual_events += len(gsm_profile_interval_events) threads.append(Thread(target=fuzz.random_gsm_profile, args=( config.LOCALHOST, emulator, config.UNIFORM_INTERVAL, gsm_profile_interval_events))) user_rotation_interval_events = fuzz.generate_step_interval_event( UserRotation) contextual_events += len(user_rotation_interval_events) threads.append(Thread( target=fuzz.random_rotation, args=((emulator_name, user_rotation_interval_events)))) key_event_interval_events = fuzz.generate_step_interval_event( KeyboardEvent) contextual_events += len(key_event_interval_events) threads.append(Thread( target=fuzz.random_key_event, args=((emulator_name, key_event_interval_events)))) if will_monkey: monkey = AdbMonkey(emulator, apk, config.SEED, config.DURATION) thread_monkey = Thread(target=monkey.start_monkey) threads.append(thread_monkey) return threads def run(apk: Apk, emulator_name: str, emulator_port: int): ''' runs things ''' to_kill = False to_test = True to_full_run = True wipe_after_finish = False # test_time_seconds = 30 if not start_emulator(): return emulator = emulator_manager.get_adb_instance_from_emulators(emulator_name) # emulator_name = 'emulator-' + emulator.port telnet_connector = TelnetAdb(config.LOCALHOST, emulator.port) # apk = Apk(config.APK_FULL_PATH) # api_commands.adb_uninstall_apk(emulator, apk) # api_commands.adb_install_apk(emulator, apk) # api_commands.adb_start_launcher_of_apk(emulator, apk) log = Logcat(emulator, apk, TestType.MobileMonkey) # api_commands.adb_pidof_app(emulator, apk) if to_kill: telnet_connector.kill_avd() quit() if not to_test: return log.start_logcat() fuzz = Fuzzer(config.MINIMUM_INTERVAL, config.MAXIMUM_INTERVAL, config.SEED, config.DURATION, FatalWatcher(log.file_address)) # log.experimental_start_logcat(fuzz) # fuzz.print_intervals_events() threads = threads_to_run(emulator, apk, fuzz, WILL_MONKEY) # log_thread = Thread(target=log.start, args=(fuzz,)) global contextual_events print("Total contextual events: " + str(contextual_events)) # print(threads) # return # device = AdbSettings.AdbSettings('emulator-' + adb_instance.port) # triggers = [fuzz.set_continue_network_speed, # fuzz.set_continue_gsm_profile, # fuzz.set_continue_network_delay] # thread_test = Thread(target=time_to_test, args=[ # test_time_seconds, triggers, ]) # thread_fuzz_delay = Thread(target=fuzz.random_network_delay, args=( # config.LOCALHOST, emulator.port,)) # thread_fuzz_profile = Thread(target=fuzz.random_gsm_profile, args=( # config.LOCALHOST, emulator.port, 12,)) # thread_fuzz_speed = Thread(target=fuzz.random_network_speed, args=( # config.LOCALHOST, emulator.port,)) # thread_fuzz_rotation = Thread( # target=fuzz.random_rotation, args=((emulator_name,))) # thread_fuzz_airplane = Thread( # target=fuzz.random_airplane_mode_call, args=(emulator_name,)) # monkey = AdbMonkey(emulator, config.APP_PACKAGE_NAME, # config.SEED, config.DURATION) # thread_monkey = Thread(target=monkey.start_monkey) if to_full_run: util.debug_print( "started testing at {}".format(time.ctime()), flag=TIME_PRINT_FLAG) [thread.start() for thread in threads] # log_thread.start() [thread.join() for thread in threads] # log.log_process.kill() # log.stop_logcat() # log_thread.join() # thread_monkey.start() # thread_fuzz_rotation.start() # thread_fuzz_delay.start() # thread_fuzz_profile.start() # thread_fuzz_speed.start() # thread_fuzz_airplane.start() # thread_test.start() # thread_test.join() # thread_fuzz_delay.join() # thread_fuzz_profile.join() # thread_fuzz_speed.join() # thread_fuzz_rotation.join() # thread_fuzz_airplane.join() # thread_monkey.join() # telnet_connector.kill_avd() api_commands.adb_stop_activity_of_apk(emulator, apk) log.stop_logcat() api_commands.adb_uninstall_apk(emulator, apk) util.debug_print( 'Finished testing and uninstalling app at {}'.format(time.ctime()), flag=TIME_PRINT_FLAG) print(Analyzer(log.file_address)) if wipe_after_finish: print("successfully completed testing app. Closing emulator") telnet_connector.kill_avd() emulator_manager.emulator_wipe_data(emulator) if __name__ == '__main__': import os dir = os.path.dirname(__file__) StopFlagWatcher = os.path.join(dir, 'test/StopFlagWatcher') file = open(StopFlagWatcher, 'w') file.truncate() file.close() run(Apk(config.APK_FULL_PATH), config.EMULATOR_NAME, config.EMULATOR_PORT)
LordAmit/mobile-monkey
mobile_monkey.py
mobile_monkey.py
py
8,654
python
en
code
4
github-code
6
[ { "api_name": "config_reader.EMULATOR_NAME", "line_number": 26, "usage_type": "attribute" }, { "api_name": "config_reader.EMULATOR_PORT", "line_number": 27, "usage_type": "attribute" }, { "api_name": "emulator_manager.adb_instances_manager", "line_number": 37, "usage_type": "call" }, { "api_name": "util.debug_print", "line_number": 38, "usage_type": "call" }, { "api_name": "util.debug_print", "line_number": 41, "usage_type": "call" }, { "api_name": "api_commands.adb_start_server_safe", "line_number": 44, "usage_type": "call" }, { "api_name": "emulator_manager.emulator_start_avd", "line_number": 45, "usage_type": "call" }, { "api_name": "emulator_manager.check_avd_booted_completely", "line_number": 50, "usage_type": "call" }, { "api_name": "emulator.Emulator", "line_number": 54, "usage_type": "name" }, { "api_name": "apk.Apk", "line_number": 54, "usage_type": "name" }, { "api_name": "fuzz_context.Fuzzer", "line_number": 54, "usage_type": "name" }, { "api_name": "util.debug_print", "line_number": 61, "usage_type": "call" }, { "api_name": "apk.permissions", "line_number": 61, "usage_type": "attribute" }, { "api_name": "emulator.port", "line_number": 62, "usage_type": "attribute" }, { "api_name": "apk.permissions", "line_number": 63, "usage_type": "attribute" }, { "api_name": "apk.permissions", "line_number": 64, "usage_type": "attribute" }, { "api_name": "util.debug_print", "line_number": 65, "usage_type": "call" }, { "api_name": "telnet_connector.NetworkDelay", "line_number": 67, "usage_type": "argument" }, { "api_name": "threading.Thread", "line_number": 70, "usage_type": "call" }, { "api_name": "config_reader.LOCALHOST", "line_number": 71, "usage_type": "attribute" }, { "api_name": "telnet_connector.NetworkStatus", "line_number": 73, "usage_type": "argument" }, { "api_name": "threading.Thread", "line_number": 76, "usage_type": "call" }, { "api_name": "config_reader.LOCALHOST", "line_number": 77, "usage_type": "attribute" }, { "api_name": "adb_settings.Airplane", "line_number": 80, "usage_type": "argument" }, { "api_name": "threading.Thread", "line_number": 83, "usage_type": "call" }, { "api_name": "apk.permissions", "line_number": 87, "usage_type": "attribute" }, { "api_name": "util.debug_print", "line_number": 88, "usage_type": "call" }, { "api_name": "telnet_connector.GsmProfile", "line_number": 90, "usage_type": "argument" }, { "api_name": "threading.Thread", "line_number": 92, "usage_type": "call" }, { "api_name": "config_reader.LOCALHOST", "line_number": 93, "usage_type": "attribute" }, { "api_name": "config_reader.UNIFORM_INTERVAL", "line_number": 94, "usage_type": "attribute" }, { "api_name": "adb_settings.UserRotation", "line_number": 97, "usage_type": "argument" }, { "api_name": "threading.Thread", "line_number": 99, "usage_type": "call" }, { "api_name": "adb_settings.KeyboardEvent", "line_number": 104, "usage_type": "argument" }, { "api_name": "threading.Thread", "line_number": 106, "usage_type": "call" }, { "api_name": "adb_monkey.AdbMonkey", "line_number": 110, "usage_type": "call" }, { "api_name": "config_reader.SEED", "line_number": 111, "usage_type": "attribute" }, { "api_name": "config_reader.DURATION", "line_number": 111, "usage_type": "attribute" }, { "api_name": "threading.Thread", "line_number": 112, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 55, "usage_type": "name" }, { "api_name": "apk.Apk", "line_number": 118, "usage_type": "name" }, { "api_name": "emulator_manager.get_adb_instance_from_emulators", "line_number": 130, "usage_type": "call" }, { "api_name": "telnet_connector.TelnetAdb", "line_number": 133, "usage_type": "call" }, { "api_name": "config_reader.LOCALHOST", "line_number": 133, "usage_type": "attribute" }, { "api_name": "emulator.port", "line_number": 133, "usage_type": "attribute" }, { "api_name": "adb_logcat.Logcat", "line_number": 139, "usage_type": "call" }, { "api_name": "adb_logcat.TestType.MobileMonkey", "line_number": 139, "usage_type": "attribute" }, { "api_name": "adb_logcat.TestType", "line_number": 139, "usage_type": "name" }, { "api_name": "telnet_connector.kill_avd", "line_number": 144, "usage_type": "call" }, { "api_name": "fuzz_context.Fuzzer", "line_number": 151, "usage_type": "call" }, { "api_name": "config_reader.MINIMUM_INTERVAL", "line_number": 151, "usage_type": "attribute" }, { "api_name": "config_reader.MAXIMUM_INTERVAL", "line_number": 152, "usage_type": "attribute" }, { "api_name": "config_reader.SEED", "line_number": 152, "usage_type": "attribute" }, { "api_name": "config_reader.DURATION", "line_number": 153, "usage_type": "attribute" }, { "api_name": "adb_logcat.FatalWatcher", "line_number": 153, "usage_type": "call" }, { "api_name": "util.debug_print", "line_number": 184, "usage_type": "call" }, { "api_name": "time.ctime", "line_number": 185, "usage_type": "call" }, { "api_name": "api_commands.adb_stop_activity_of_apk", "line_number": 208, "usage_type": "call" }, { "api_name": "api_commands.adb_uninstall_apk", "line_number": 210, "usage_type": "call" }, { "api_name": "util.debug_print", "line_number": 211, "usage_type": "call" }, { "api_name": "time.ctime", "line_number": 212, "usage_type": "call" }, { "api_name": "log_analyzer.Analyzer", "line_number": 214, "usage_type": "call" }, { "api_name": "telnet_connector.kill_avd", "line_number": 217, "usage_type": "call" }, { "api_name": "emulator_manager.emulator_wipe_data", "line_number": 218, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 224, "usage_type": "call" }, { "api_name": "os.path", "line_number": 224, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 226, "usage_type": "call" }, { "api_name": "os.path", "line_number": 226, "usage_type": "attribute" }, { "api_name": "apk.Apk", "line_number": 231, "usage_type": "call" }, { "api_name": "config_reader.APK_FULL_PATH", "line_number": 231, "usage_type": "attribute" }, { "api_name": "config_reader.EMULATOR_NAME", "line_number": 231, "usage_type": "attribute" }, { "api_name": "config_reader.EMULATOR_PORT", "line_number": 231, "usage_type": "attribute" } ]
21884337737
""" Series of galactic operations (doesn't that sound cool?!). ...as in converting coordinates, calculating DM etc. """ from datetime import timedelta import ctypes as C import math import numpy as np import os import pandas as pd import random from frbpoppy.paths import paths # Import fortran libraries uni_mods = os.path.join(paths.models(), 'universe/') dm_mods = os.path.join(paths.models(), 'ne2001/') loc = os.path.join(dm_mods, 'libne2001.so') ne2001lib = C.CDLL(loc) ne2001lib.dm_.restype = C.c_float def frac_deg(ra, dec): """Convert coordinates expressed in hh:mm:ss to fractional degrees.""" # Inspired by Joe Filippazzo calculator rh, rm, rs = [float(r) for r in ra.split(':')] ra = rh*15 + rm/4 + rs/240 dd, dm, ds = [float(d) for d in dec.split(':')] if dd < 0: sign = -1 else: sign = 1 dec = dd + sign*dm/60 + sign*ds/3600 return ra, dec def lb_to_xyz(gl, gb, dist): """ Convert galactic coordinates to galactic XYZ. Args: l (float): Galactic longitude [fractional degrees] b (float): Galactic latitude [fractional degrees] dist (float): Distance to source [Gpc] Returns: gx, gy, gz: Galactic XYZ [Gpc] """ rsun = 8.5e-6 # Gpc L = np.radians(gl) B = np.radians(gb) gx = dist * np.cos(B) * np.sin(L) gy = rsun - dist * np.cos(B) * np.cos(L) gz = dist * np.sin(B) return gx, gy, gz def lb_to_radec(l, b): """ Convert galactic coordinates to RA, Dec. Formulas from 'An Introduction to Modern Astrophysics (2nd Edition)' by Bradley W. Carroll, Dale A. Ostlie (Eq. 24.19 onwards). NOTE: This function is not as accurate as the astropy conversion, nor as the Javascript calculators found online. However, as using astropy was prohibitively slow while running over large populations, frbpoppy uses this function. While this function is not as accurate, the under/over estimations of the coordinates are equally distributed meaning the errors cancel each other in the limit of large populations. Args: l (float): Galactic longitude [fractional degrees] b (float): Galactic latitude [fractional degrees] Returns: ra, dec (float): Right ascension and declination [fractional degrees] """ gl = np.radians(l) gb = np.radians(b) # Coordinates of the galactic north pole (J2000) a_ngp = np.radians(12.9406333 * 15.) d_ngp = np.radians(27.1282500) l_ngp = np.radians(123.9320000) sd_ngp = np.sin(d_ngp) cd_ngp = np.cos(d_ngp) sb = np.sin(gb) cb = np.cos(gb) # Calculate right ascension y = cb*np.sin(l_ngp - gl) x = cd_ngp*sb - sd_ngp*cb*np.cos(l_ngp - gl) ra = np.arctan2(y, x) + a_ngp ra = np.degrees(ra) % 360 # Calculate declination dec = np.arcsin(sd_ngp*sb + cd_ngp*cb*np.cos(l_ngp - gl)) dec = np.degrees(dec) % 360. dec[dec > 270] = -(360 - dec[dec > 270]) return ra, dec def radec_to_lb(ra, dec, frac=False): """ Convert from ra, dec to galactic coordinates. Formulas from 'An Introduction to Modern Astrophysics (2nd Edition)' by Bradley W. Carroll, Dale A. Ostlie (Eq. 24.16 onwards). NOTE: This function is not as accurate as the astropy conversion, nor as the Javascript calculators found online. However, as using astropy was prohibitively slow while running over large populations, we use this function. While this function is not as accurate, the under/over estimations of the coordinates are equally distributed meaning the errors cancel each other in the limit of large populations. Args: ra (string): Right ascension given in the form '19:06:53' dec (string): Declination given in the form '-40:37:14' frac (bool): Denote whether coordinates are already fractional or not Returns: gl, gb (float): Galactic longitude and latitude [fractional degrees] """ if not frac: ra, dec = frac_deg(ra, dec) a = np.radians(ra) d = np.radians(dec) # Coordinates of the galactic north pole (J2000) a_ngp = np.radians(12.9406333 * 15.) d_ngp = np.radians(27.1282500) l_ngp = np.radians(123.9320000) sd_ngp = np.sin(d_ngp) cd_ngp = np.cos(d_ngp) sd = np.sin(d) cd = np.cos(d) # Calculate galactic longitude y = cd*np.sin(a - a_ngp) x = cd_ngp*sd - sd_ngp*cd*np.cos(a - a_ngp) gl = - np.arctan2(y, x) + l_ngp gl = np.degrees(gl) % 360 # Shift so in range -180 to 180 if isinstance(gl, np.ndarray): gl[gl > 180] = -(360 - gl[gl > 180]) else: if gl > 180: gl = -(360 - gl) # Calculate galactic latitude gb = np.arcsin(sd_ngp*sd + cd_ngp*cd*np.cos(a - a_ngp)) gb = np.degrees(gb) % 360 if isinstance(gb, np.ndarray): gb[gb > 270] = -(360 - gb[gb > 270]) else: if gb > 270: gb = -(360 - gb) return gl, gb def separation(ra_1, dec_1, ra_2, dec_2): """Separation between points on sky [degrees]. Using a special case of the Vincenty formula for an ellipsoid with equal major and minor axes. See https://en.wikipedia.org/wiki/Great-circle_distance for more info. """ # Convert to radians ra_1 = np.deg2rad(ra_1) dec_1 = np.deg2rad(dec_1) ra_2 = np.deg2rad(ra_2) dec_2 = np.deg2rad(dec_2) # Shortcuts sdr = np.sin(ra_2 - ra_1) cdr = np.cos(ra_2 - ra_1) cd1 = np.cos(dec_1) cd2 = np.cos(dec_2) sd1 = np.sin(dec_1) sd2 = np.sin(dec_2) # Calculation upper = np.sqrt((cd2*sdr)**2 + (cd1*sd2 - sd1*cd2*cdr)**2) lower = sd1*sd2 + cd1*cd2*cdr sep = np.arctan2(upper, lower) return np.rad2deg(sep) def ne2001_dist_to_dm(dist, gl, gb): """ Convert position to a dispersion measure using NE2001. Args: dist (float): Distance to source [Gpc]. Distance will be cut at 100kpc, as NE2001 can not cope with larger distances. This value should be more than enough to clear the Milky Way. gl (float): Galactic longitude [fractional degrees] gb (float): Galactic latitude [fractional degrees] Returns: dm (float): Dispersion measure [pc*cm^-3] """ dist *= 1e6 # Convert from Gpc to kpc # NE2001 gives errors if distance input is too large! 100 kpc ought to be # enough to clear the galaxy. if dist > 100: dist = 100 dist = C.c_float(dist) gl = C.c_float(gl) gb = C.c_float(gb) inpath = C.create_string_buffer(dm_mods.encode()) linpath = C.c_int(len(dm_mods)) dm = ne2001lib.dm_(C.byref(dist), C.byref(gl), C.byref(gb), C.byref(C.c_int(4)), C.byref(C.c_float(0.0)), C.byref(inpath), C.byref(linpath) ) return dm def ne2001_get_smtau(dist, gl, gb): """ Use the NE2001 model to calculate scattering measure. Calculations based on work presented in Cordes & Lazio (1991, DOI: 10.1086/170261) Args: dist (array): Distance to source [kpc]. Distance will be cut at 100 kpc as NE2001 can not cope with larger distances. Therefore the calculated scattering will only be that from the Milky Way. gl (array): Galactic longitude [fractional degrees] gb (array): Galactic latitude [fractional degrees] Returns: sm (array): Scattering measure smtau (array): Scattering measure, but unsure why different to sm """ # NE2001 gives errors if distance input is too large! 100 kpc ought to be # enough to clear the galaxy. dist[dist > 100] = 100 sms = np.ones_like(dist) smtaus = np.ones_like(dist) for i, d in enumerate(dist): disti = C.c_float(d) # Note the galactic coordinates need to be given in radians gli = C.c_float(math.radians(gl[i])) gbi = C.c_float(math.radians(gb[i])) ndir = C.c_int(-1) sm = C.c_float(0.) smtau = C.c_float(0.) inpath = C.create_string_buffer(dm_mods.encode()) linpath = C.c_int(len(dm_mods)) ne2001lib.dmdsm_(C.byref(gli), C.byref(gbi), C.byref(ndir), C.byref(C.c_float(0.0)), C.byref(disti), C.byref(C.create_string_buffer(' '.encode())), C.byref(sm), C.byref(smtau), C.byref(C.c_float(0.0)), C.byref(C.c_float(0.0)), C.byref(inpath), C.byref(linpath) ) sms[i], smtaus[i] = sm.value, smtau.value return sms, smtaus def ne2001_scint_time_bw(dist, gl, gb, freq): """ Use the NE2001 model to get the diffractive scintillation timescale. Args: dist (array): Distance to source [Gpc]. Distance will be cut at 100 kpc as NE2001 can not cope with larger distances. Therefore the calculated scintillation timescale will only be that from the Milky Way. gl (array): Galactic longitude [fractional degrees] gb (array): Galactic latitude [fractional degrees] freq (float): Observing frequency [MHz] Returns: scint_time (float): Diffractive scintillation timescale [Hz] scint_bw (float): Scintillation bandwidth [Hz] """ dist *= 1e6 # Convert from Gpc to kpc sm, smtau = ne2001_get_smtau(dist, gl, gb) scint_time = np.ones_like(dist) scint_time[smtau <= 0.] = float('NaN') # Eq. 46 of Cordes & Lazio 1991, ApJ, 376, 123 uses coefficient 3.3 # instead of 2.3. They do this in the code and mention it explicitly, # so I trust it! <- From psrpoppy scint_time[smtau > 0.] = 3.3 * (freq/1e3)**1.2 * smtau**(-0.6) scint_bw = np.ones_like(dist) scint_bw[sm <= 0.] = float('NaN') # (eq. 48) scint_bw[sm > 0.] = 223. * (freq/1e3)**4.4 * sm**(-1.2) / dist return scint_time, scint_bw def scatter_bhat(dm, offset=-6.46, scindex=-3.86, freq=1400.0): """ Calculate scattering timescale (values default to those from Bhat et al. (2004, DOI:10.1086/382680) and to simluate the scatter around this relationship, draw from a Gaussian around this value. Args: dm (array): Dispersion measure [pc*cm^-3] offset (float): Offset of scattering relationship. Defaults to -6.46 scindex (float): Scattering index. Defaults to -3.86 freq (float): Frequency at which to evaluate scattering time [MHz]. Defaults to 1400 MHz Returns: array: Scattering timescale [ms] """ log_t = offset + 0.154*np.log10(dm) + 1.07*np.log10(dm)**2 log_t += scindex*np.log10(freq/1e3) # Width of Gaussian distribution based on values given Lorimer et al (2008) t_scat = 10**np.random.normal(log_t, 0.8) return t_scat def load_T_sky(): """ Read the Haslam sky temperature map into a list. ... from which temperatures can be retrieved. The temperature sky map is given in the weird units of HealPix, and despite looking up info on this coordinate system, I don't have the foggiest idea of how to transform these to galactic coordinates. I have therefore directly copied the following code from psrpoppy in the assumption Sam Bates managed to figure it out. Returns: t_sky_list (list): List of sky temperatures in HealPix? coordinates? """ model = os.path.join(os.path.dirname(__file__), '../data/models/tsky/') path = os.path.join(model, 'haslam_2014.dat') t_sky_list = [] with open(path) as f: for line in f: str_idx = 0 while str_idx < len(line): # each temperature occupies space of 5 chars temp_string = line[str_idx:str_idx+5] try: t_sky_list.append(float(temp_string)) except ValueError: pass str_idx += 5 return t_sky_list class Redshift: """Class for converting redshift to other distance measures.""" def __init__(self, z, H_0=67.74, W_m=0.3089, W_v=0.6911): """ Convert redshift to a various measures. Based on James Schombert's python implementation of Edward L. Wright's cosmology calculator. Args: z (array): Redshift self.H_0 (float, optional): Hubble parameter. self.W_m (float, optional): Omega matter. self.W_v (float, optional): Omega vacuum. Returns: array: One of the distance measures [Gpc], or comoving volume from Earth to the source [Gpc^3] """ self.z = z self.H_0 = H_0 self.W_m = W_m self.W_v = W_v # Initialize constants self.W_r = 0.4165/(self.H_0*self.H_0) # Omega radiation self.W_k = 1.0 - self.W_m - self.W_r - self.W_v # Omega curvature self.c = 299792.458 # Velocity of light [km/sec] self.dcmr = 0. self.az = 1/(1+self.z) # Distance measures self.dc_mpc = None self.dl_mpc = None def dist_co(self): """Calculate the corresponding comoving distance [Gpc].""" n = 1000 for i in range(n): a = self.az+(1-self.az)*(i+0.5)/n s = sum([self.W_k, self.W_m/a, self.W_r/(a*a), self.W_v*a*a]) adot = np.sqrt(s) self.dcmr += 1/(a*adot) self.dcmr = (1.-self.az)*self.dcmr/n self.dc_mpc = (self.c/self.H_0)*self.dcmr # Comoving distance [Mpc] return self.dc_mpc*1e-3 # Convert to Gpc def dist_lum(self): """Calculate the corresponding luminosity distance [Gpc].""" if self.dc_mpc is None: self.dist_co() # Calculate luminosity distance ratio = np.ones_like(self.dcmr) x = np.sqrt(abs(self.W_k))*self.dcmr mask = (x > 0.1) if self.W_k > 0: ratio[mask] = 0.5*(np.exp(x[mask])-np.exp(-x[mask]))/x[mask] else: ratio[mask] = np.sin(x[mask])/x[mask] y = x*x if self.W_k < 0: y = -y ratio[~mask] = 1. + y[~mask]/6. + y[~mask]*y[~mask]/120. dcmt = ratio*self.dcmr da = self.az*dcmt dl = da/(self.az*self.az) self.dl_mpc = (self.c/self.H_0)*dl # Luminosity distance [Mpc] return self.dl_mpc*1e-3 # Covert to Gpc def vol_co(self): """Calculate the corresponding comoving volume [Gpc^3].""" if self.dl_mpc is None: self.dist_lum() ratio = np.ones_like(self.dcmr) x = math.sqrt(abs(self.W_k))*self.dcmr mask = (x > 0.1) if self.W_k > 0: n = (0.125*(np.exp(2.*x[mask])-np.exp(-2.*x[mask]))-x[mask]/2.) ratio[mask] = n/(x[mask]**3/3) else: ratio[mask] = (x[mask]/2. - np.sin(2.*x[mask])/4.)/(x[mask]**3/3) y = x*x if self.W_k < 0: y = -y ratio[~mask] = 1. + y[~mask]/5. + (2./105.)*y[~mask]*y[~mask] v_cm = ratio*self.dcmr**3/3 self.v_gpc = 4.*math.pi*((1e-3*self.c/self.H_0)**3)*v_cm return self.v_gpc def z_to_d_approx(z, H_0=67.74): """ Calculate distance in Gpc from a redshift. Only holds for z <= 2. Formulas from 'An Introduction to Modern Astrophysics (2nd Edition)' by Bradley W. Carroll, Dale A. Ostlie. (Eq. 27.7) Args: z (float): Redshift H_0 (float, optional): Hubble parameter. Defaults to 67.74 Returns: dist (float): Associated distance [Gpc] """ c = 299792.458 # Velocity of light [km/sec] zsq = (z+1)**2 dist = c/H_0 * (zsq - 1)/(zsq + 1) dist /= 1e3 # Mpc -> Gpc return dist def dist_to_z(dist, H_0=67.74): """ Calculate redshift from a distance in Gpc. Only holds for z <= 2. Formulas from 'An Introduction to Modern Astrophysics (2nd Edition)' by Bradley W. Carroll, Dale A. Ostlie. (Eq. 27.7) Args: dist (float): Distance [Gpc]. H_0 (float, optional): Hubble parameter. Defaults to 67.74 Returns: z (float): Associated redshift """ c = 299792.458 # Velocity of light [km/sec] dist *= 1e3 # Gpc -> Mpc dhc = dist*H_0/c det = math.sqrt(1 - dhc**2) z = -(det + dhc - 1)/(dhc - 1) return z def datetime_to_julian(date): """Convert a datetime object into julian float. See https://aa.usno.navy.mil/faq/docs/JD_Formula.php for more info. Args: date (datetime-object): Date in question Returns: float: Julian calculated datetime. """ # Add support for numpy arrays of datetime64 if np.issubdtype(date.dtype, np.datetime64): date = pd.to_datetime(date) # Define terms y = date.year m = date.month d = date.day h = date.hour min = date.minute sec = date.second # Calculate julian day number jdn = 367*y - ((7*(y + ((m+9)/12).astype(int)))/4).astype(int) jdn += ((275*m)/9).astype(int) + d + 1721013.5 # Add fractional day jd = jdn + h/24 + min/1440 + sec/86400 # Convert to a numpy array if isinstance(jd, pd.Float64Index): jd = jd.values return jd def datetime_to_gmst(date): """Calculate Greenwich Mean Sidereal Time. See https://aa.usno.navy.mil/faq/docs/GAST.php for more info. """ jd = datetime_to_julian(date) return ((18.697374558 + 24.06570982441908*(jd - 2451545))*15) % 360 def random_date(start, end): """Generate a random datetime between two datetime objects.""" delta = end - start int_delta = (delta.days * 24 * 60 * 60) + delta.seconds random_second = random.randrange(int_delta) return start + timedelta(seconds=random_second) def coord_to_offset(xref, yref, x, y): """ Convert point (x, y) to projected offset from reference (xref, yref). Makes use of a gnomonic projection: see both https://github.com/LSSTDESC/Coord/blob/master/coord/celestial.py http://mathworld.wolfram.com/GnomonicProjection.html Args: xref (array): Reference RA or Az [rad] yref (array): Reference Dec or Alt [rad] x (array): Target RA or Az [rad] y (array): Target Dec or Alt [rad] Returns: array, array: x and y offset [rad] """ # Define convenience numbers sinxref = np.sin(xref) sinx = np.sin(x) cosxref = np.cos(xref) cosx = np.cos(x) sinyref = np.sin(yref) siny = np.sin(y) cosyref = np.cos(yref) cosy = np.cos(y) # Sine and cosine of shift in x cosdx = (cosxref * cosx) + (sinxref * sinx) sindx = (cosxref * sinx) - (sinxref * cosx) # Projection effect cosine cosc = sinyref * siny + cosyref * cosy * cosdx # Projected offsets dx = (cosy * sindx) / cosc dy = (cosyref * siny - sinyref * cosy * cosdx) / cosc if isinstance(cosc, np.ndarray): dx[cosc < 0] = np.nan dy[cosc < 0] = np.nan elif cosc < 0: dx, dy = np.nan, np.nan return dx, dy def hadec_to_azalt(ha, dec, lat): """ Convert hour angle and declination to azimuth and altitude. Args: ha (array): Hour angle [rad] dec (array): Declination [rad] lat (float): Latitude [rad] Returns: array, array: az, alt [rad] """ # Ha and dec should be same type assert type(ha) == type(dec) # Altitude sinalt = np.sin(dec) * np.sin(lat) + np.cos(dec) * np.cos(lat) * np.cos(ha) alt = np.arcsin(sinalt) # Azimuth (note this uses altitude) cosaz = (np.sin(dec)-np.sin(alt)*np.sin(lat)) / (np.cos(alt)*np.cos(lat)) convert_to_float = False if isinstance(cosaz, float): cosaz = np.array([cosaz]) convert_to_float = True # Numerical instability can cause cosaz > 1 cosaz[cosaz > 1] = 1 cosaz[cosaz < -1] = -1 az = np.arccos(cosaz) # Sign of azimuth is lost, but can be recovered using the input hour angle mask = np.sin(ha) > 0 az[mask] = 2*np.pi - az[mask] # Convert back to float if input was float if convert_to_float: az = float(az) return az, alt def in_region(ra, dec, gl, gb, ra_min=0, ra_max=360, dec_min=-90, dec_max=90, gl_min=-180, gl_max=180, gb_min=-90, gb_max=90): """ Check if the given frbs are within the survey region. Args: ra, dec, gl, gb (float): Coordinates to check whether in region Returns: array: Boolean mask denoting whether frbs are within survey region """ # Create mask with False mask = np.ones_like(ra, dtype=bool) # Ensure in correct format gl[gl > 180.] -= 360. # Create region masks gl_limits = (gl > gl_max) | (gl < gl_min) gb_limits = (gb > gb_max) | (gb < gb_min) ra_limits = (ra > ra_max) | (ra < ra_min) dec_limits = (dec > dec_max) | (dec < dec_min) mask[gl_limits] = False mask[gb_limits] = False mask[ra_limits] = False mask[dec_limits] = False return mask def calc_sky_radius(area): """Determine the radius [deg] along the sky of an area [sq. degrees].""" # Check whether the full sky if np.allclose(area, 4*np.pi*(180/np.pi)**2): return 180 else: cos_r = (1 - (area*np.pi)/(2*180**2)) # Suppressing warnings when cos_r is invalid (will nan anyway) with np.errstate(invalid='ignore'): return np.rad2deg(np.arccos(cos_r)) def calc_sky_area(radius): """Determine the area [sq. degree] of a radius [deg] along the sky.""" return (1 - np.cos(np.deg2rad(radius)))*(2*180**2)/np.pi
TRASAL/frbpoppy
frbpoppy/galacticops.py
galacticops.py
py
22,052
python
en
code
26
github-code
6
[ { "api_name": "os.path.join", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path", "line_number": 17, "usage_type": "attribute" }, { "api_name": "frbpoppy.paths.paths.models", "line_number": 17, "usage_type": "call" }, { "api_name": "frbpoppy.paths.paths", "line_number": 17, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 18, "usage_type": "call" }, { "api_name": "os.path", "line_number": 18, "usage_type": "attribute" }, { "api_name": "frbpoppy.paths.paths.models", "line_number": 18, "usage_type": "call" }, { "api_name": "frbpoppy.paths.paths", "line_number": 18, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 19, "usage_type": "call" }, { "api_name": "os.path", "line_number": 19, "usage_type": "attribute" }, { "api_name": "ctypes.CDLL", "line_number": 20, "usage_type": "call" }, { "api_name": "ctypes.c_float", "line_number": 21, "usage_type": "attribute" }, { "api_name": "numpy.radians", "line_number": 53, "usage_type": "call" }, { "api_name": "numpy.radians", "line_number": 54, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 56, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 56, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 57, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 58, "usage_type": "call" }, { "api_name": "numpy.radians", "line_number": 85, "usage_type": "call" }, { "api_name": "numpy.radians", "line_number": 86, "usage_type": "call" }, { "api_name": "numpy.radians", "line_number": 89, "usage_type": "call" }, { "api_name": "numpy.radians", "line_number": 90, "usage_type": "call" }, { "api_name": "numpy.radians", "line_number": 91, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 93, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 94, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 95, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 96, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 99, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 100, "usage_type": "call" }, { "api_name": "numpy.arctan2", "line_number": 101, "usage_type": "call" }, { "api_name": "numpy.degrees", "line_number": 102, "usage_type": "call" }, { "api_name": "numpy.arcsin", "line_number": 105, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 105, "usage_type": "call" }, { "api_name": "numpy.degrees", "line_number": 106, "usage_type": "call" }, { "api_name": "numpy.radians", "line_number": 137, "usage_type": "call" }, { "api_name": "numpy.radians", "line_number": 138, "usage_type": "call" }, { "api_name": "numpy.radians", "line_number": 141, "usage_type": "call" }, { "api_name": "numpy.radians", "line_number": 142, "usage_type": "call" }, { "api_name": "numpy.radians", "line_number": 143, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 145, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 146, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 147, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 148, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 151, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 152, "usage_type": "call" }, { "api_name": "numpy.arctan2", "line_number": 153, "usage_type": "call" }, { "api_name": "numpy.degrees", "line_number": 154, "usage_type": "call" }, { "api_name": "numpy.ndarray", "line_number": 157, "usage_type": "attribute" }, { "api_name": "numpy.arcsin", "line_number": 164, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 164, "usage_type": "call" }, { "api_name": "numpy.degrees", "line_number": 165, "usage_type": "call" }, { "api_name": "numpy.ndarray", "line_number": 167, "usage_type": "attribute" }, { "api_name": "numpy.deg2rad", "line_number": 186, "usage_type": "call" }, { "api_name": "numpy.deg2rad", "line_number": 187, "usage_type": "call" }, { "api_name": "numpy.deg2rad", "line_number": 188, "usage_type": "call" }, { "api_name": "numpy.deg2rad", "line_number": 189, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 192, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 193, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 194, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 195, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 196, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 197, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 200, "usage_type": "call" }, { "api_name": "numpy.arctan2", "line_number": 202, "usage_type": "call" }, { "api_name": "numpy.rad2deg", "line_number": 204, "usage_type": "call" }, { "api_name": "ctypes.c_float", "line_number": 228, "usage_type": "call" }, { "api_name": "ctypes.c_float", "line_number": 229, "usage_type": "call" }, { "api_name": "ctypes.c_float", "line_number": 230, "usage_type": "call" }, { "api_name": "ctypes.create_string_buffer", "line_number": 231, "usage_type": "call" }, { "api_name": "ctypes.c_int", "line_number": 232, "usage_type": "call" }, { "api_name": "ctypes.byref", "line_number": 234, "usage_type": "call" }, { "api_name": "ctypes.byref", "line_number": 235, "usage_type": "call" }, { "api_name": "ctypes.byref", "line_number": 236, "usage_type": "call" }, { "api_name": "ctypes.byref", "line_number": 237, "usage_type": "call" }, { "api_name": "ctypes.c_int", "line_number": 237, "usage_type": "call" }, { "api_name": "ctypes.byref", "line_number": 238, "usage_type": "call" }, { "api_name": "ctypes.c_float", "line_number": 238, "usage_type": "call" }, { "api_name": "ctypes.byref", "line_number": 239, "usage_type": "call" }, { "api_name": "ctypes.byref", "line_number": 240, "usage_type": "call" }, { "api_name": "numpy.ones_like", "line_number": 268, "usage_type": "call" }, { "api_name": "numpy.ones_like", "line_number": 269, "usage_type": "call" }, { "api_name": "ctypes.c_float", "line_number": 273, "usage_type": "call" }, { "api_name": "ctypes.c_float", "line_number": 275, "usage_type": "call" }, { "api_name": "math.radians", "line_number": 275, "usage_type": "call" }, { "api_name": "ctypes.c_float", "line_number": 276, "usage_type": "call" }, { "api_name": "math.radians", "line_number": 276, "usage_type": "call" }, { "api_name": "ctypes.c_int", "line_number": 278, "usage_type": "call" }, { "api_name": "ctypes.c_float", "line_number": 279, "usage_type": "call" }, { "api_name": "ctypes.c_float", "line_number": 280, "usage_type": "call" }, { "api_name": "ctypes.create_string_buffer", "line_number": 282, "usage_type": "call" }, { "api_name": "ctypes.c_int", "line_number": 283, "usage_type": "call" }, { "api_name": "ctypes.byref", "line_number": 285, "usage_type": "call" }, { "api_name": "ctypes.byref", "line_number": 286, "usage_type": "call" }, { "api_name": "ctypes.byref", "line_number": 287, "usage_type": "call" }, { "api_name": "ctypes.byref", "line_number": 288, "usage_type": "call" }, { "api_name": "ctypes.c_float", "line_number": 288, "usage_type": "call" }, { "api_name": "ctypes.byref", "line_number": 289, "usage_type": "call" }, { "api_name": "ctypes.byref", "line_number": 290, "usage_type": "call" }, { "api_name": "ctypes.create_string_buffer", "line_number": 290, "usage_type": "call" }, { "api_name": "ctypes.byref", "line_number": 291, "usage_type": "call" }, { "api_name": "ctypes.byref", "line_number": 292, "usage_type": "call" }, { "api_name": "ctypes.byref", "line_number": 293, "usage_type": "call" }, { "api_name": "ctypes.c_float", "line_number": 293, "usage_type": "call" }, { "api_name": "ctypes.byref", "line_number": 294, "usage_type": "call" }, { "api_name": "ctypes.c_float", "line_number": 294, "usage_type": "call" }, { "api_name": "ctypes.byref", "line_number": 295, "usage_type": "call" }, { "api_name": "ctypes.byref", "line_number": 296, "usage_type": "call" }, { "api_name": "numpy.ones_like", "line_number": 325, "usage_type": "call" }, { "api_name": "numpy.ones_like", "line_number": 332, "usage_type": "call" }, { "api_name": "numpy.log10", "line_number": 356, "usage_type": "call" }, { "api_name": "numpy.log10", "line_number": 357, "usage_type": "call" }, { "api_name": "numpy.random.normal", "line_number": 360, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 360, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 380, "usage_type": "call" }, { "api_name": "os.path", "line_number": 380, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 380, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 381, "usage_type": "call" }, { "api_name": "os.path", "line_number": 381, "usage_type": "attribute" }, { "api_name": "numpy.sqrt", "line_number": 443, "usage_type": "call" }, { "api_name": "numpy.ones_like", "line_number": 458, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 459, "usage_type": "call" }, { "api_name": "numpy.exp", "line_number": 464, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 466, "usage_type": "call" }, { "api_name": "numpy.ones_like", "line_number": 485, "usage_type": "call" }, { "api_name": "math.sqrt", "line_number": 486, "usage_type": "call" }, { "api_name": "numpy.exp", "line_number": 491, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 494, "usage_type": "call" }, { "api_name": "math.pi", "line_number": 502, "usage_type": "attribute" }, { "api_name": "math.sqrt", "line_number": 545, "usage_type": "call" }, { "api_name": "numpy.issubdtype", "line_number": 563, "usage_type": "call" }, { "api_name": "numpy.datetime64", "line_number": 563, "usage_type": "attribute" }, { "api_name": "pandas.to_datetime", "line_number": 564, "usage_type": "call" }, { "api_name": "pandas.Float64Index", "line_number": 581, "usage_type": "attribute" }, { "api_name": "random.randrange", "line_number": 600, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 601, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 623, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 624, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 625, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 626, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 628, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 629, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 630, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 631, "usage_type": "call" }, { "api_name": "numpy.ndarray", "line_number": 644, "usage_type": "attribute" }, { "api_name": "numpy.nan", "line_number": 645, "usage_type": "attribute" }, { "api_name": "numpy.nan", "line_number": 646, "usage_type": "attribute" }, { "api_name": "numpy.nan", "line_number": 648, "usage_type": "attribute" }, { "api_name": "numpy.sin", "line_number": 670, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 670, "usage_type": "call" }, { "api_name": "numpy.arcsin", "line_number": 671, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 674, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 674, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 678, "usage_type": "call" }, { "api_name": "numpy.arccos", "line_number": 684, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 687, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 688, "usage_type": "attribute" }, { "api_name": "numpy.ones_like", "line_number": 713, "usage_type": "call" }, { "api_name": "numpy.allclose", "line_number": 735, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 735, "usage_type": "attribute" }, { "api_name": "numpy.pi", "line_number": 738, "usage_type": "attribute" }, { "api_name": "numpy.errstate", "line_number": 740, "usage_type": "call" }, { "api_name": "numpy.rad2deg", "line_number": 741, "usage_type": "call" }, { "api_name": "numpy.arccos", "line_number": 741, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 746, "usage_type": "call" }, { "api_name": "numpy.deg2rad", "line_number": 746, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 746, "usage_type": "attribute" } ]
33371549713
#---!/usr/bin/env python #--- -*- coding: utf-8 -*- # Librerias import re import sys import json import string import random import operator import unicodedata sys.stdout.encoding 'UTF-8' # Libreria NLTK import nltk nltk.download('punkt') nltk.download('stopwords') from nltk.tokenize.toktok import ToktokTokenizer from nltk.metrics.distance import edit_distance from nltk.stem.snowball import SnowballStemmer from nltk.corpus import stopwords # Libreria para Grafo import matplotlib.pyplot as plt import networkx as nx import random # Variables miniparams = [] parametros = [] nombreArchivo = "wikipedia_es_abstracts.txt" # "OWesA.txt" # Stemmer en Español stemmer = SnowballStemmer("spanish") # Recorrer parametros for i in range(len(sys.argv)): # Validar if 0 < i: # Recuperar paramtros parm = str(sys.argv[i].strip().lower()) # Validar asignación if parm not in parametros: # Asignar parametro parametros.append(parm) miniparams.append(stemmer.stem(parm)) # Iniciar Tokenizador toktok = ToktokTokenizer() # Crear Tokenizar de oraciones esTokenizarOraciones = nltk.data.load("tokenizers/punkt/spanish.pickle") # Generar lista de palabras funcionales listPalabrasfuns = stopwords.words("spanish") listPuntuaciones = list(string.punctuation) listPuntuaciones.append("¿") listPuntuaciones.append("¡") listPuntuaciones.append("ja") listPuntuaciones.append("yme") listPuntuaciones.append("yczna") listPuntuaciones.append("así") # Función de tokenización def leer_archivo (archivo, params): # Variables documento = {} # Leer documento with open(archivo, 'r', encoding="utf-8") as myFile: # open(archivo, encoding="latin-1") # Recuperar lineas del texto lins_arch = myFile.readlines() list_temp_parr = [] contador = 0 # Recorrer parrafos del archivo for parrafo in lins_arch: # Dividir por \t list_segmentos = parrafo.split("\t") # Validar tamaño if 2 <= len(list_segmentos): # Variable textoObjetivo = "" # Titulo divido por : list_titulo = list_segmentos[0].split(":") titulo = "" # Validar titulo if 2 <= len(list_titulo): titulo = list_titulo[1].lower() # Titulo divido por \n list_parrafo = list_segmentos[1].split("\n") # Validar parrafo textoObjetivo = "" if 1 <= len(list_parrafo): textoObjetivo = list_parrafo[0].lower() # Validar asginación de parrafo bandera = False for prm in params: if textoObjetivo.find(prm) >= 0: bandera = True # Validar asignación de parrafo if bandera and textoObjetivo not in list_temp_parr: # Agregar el parrafo a la variable documento documento[contador] = { "T": titulo, "P": textoObjetivo} list_temp_parr.append(textoObjetivo) contador = contador + 1 # Cerrar archivo myFile.close() # Regresar json de documentos return documento # Leer archivo listParrafos = leer_archivo(nombreArchivo, miniparams) # Función para buscar palabras objetivo conforme un patron def buscar_coincidencias(list_pals_funs, list_punts, texto, one_pos, final_star_pos, expresion, dicc_de_rel = None): # Validar existencia de diccionario if dicc_de_rel == None: dicc_de_rel = {} # Crear patron patron_exp = re.compile(expresion) # Buscar coincidencias del patron en el texto list_matches = patron_exp.findall(texto) # Recorrer maches for mi_match in list_matches: # Lista de palabras de interes temporal list_of_temp_words = [] # Recorrer palabras de match for temp_i in range(len(mi_match)): # Validar match if (temp_i == one_pos) or (temp_i >= final_star_pos): # Recuperar palabra relacionada temp_word = mi_match[temp_i] temp_word = re.sub(', ', '', temp_word) temp_word = re.sub('y ', '', temp_word) temp_word = temp_word.strip() # Validar resguardo if temp_word != '' and temp_word not in list_pals_funs and temp_word not in list_punts and temp_word not in list_of_temp_words: # Resguardar palabra relacionada list_of_temp_words.append(temp_word) if len(list_of_temp_words) > 1: # Recorrer palabras temporales my_temp_w = list_of_temp_words[0] # Validar existencia de parametro en diccionario if my_temp_w not in dicc_de_rel: # Lista de palabras de interes temporal dicc_de_rel[my_temp_w] = [] # SubRecorrido de palabras temporales for m_sbtmp_w in list_of_temp_words: # Validar existencia en diccionario if m_sbtmp_w not in dicc_de_rel[my_temp_w]: # Guardar palabra temporal dicc_de_rel[my_temp_w].append(m_sbtmp_w) # Regresar resultados return dicc_de_rel # Variable diccionario de relaciones diccDeRel = {} # Recorrer parrafos en diccionario for key,value in listParrafos.items(): # Revisar patrones y actualizar diccionario diccDeRel = buscar_coincidencias(listPalabrasfuns, listPuntuaciones, value["P"], 1, 3, '(las|la|los|el)*(\s*\w+) (son un|son una|es un|es una|fueron un|fueron una|fue un|fue una){1} (\w+)', diccDeRel) diccDeRel = buscar_coincidencias(listPalabrasfuns, listPuntuaciones, value["P"], 0, 2, '(\w+) (tal como|así tambien|así como|como por|por ejemplo|tambien conocida como|tambien conocido como|tal como:|como:|como){1} (\w+)*(,\s*\w+)*(\s*y\s*\w+)*', diccDeRel) diccDeRel = buscar_coincidencias(listPalabrasfuns, listPuntuaciones, value["P"], 0, 4, '(\w+) (es|forma|forman|son){1} (parte){1} (del|de las|de los|de el|de una|de un|de){1} (\w+)', diccDeRel) diccDeRel = buscar_coincidencias(listPalabrasfuns, listPuntuaciones, value["P"], 0, 5, '(\w+)(\s*le|\s*es|\s*son)* (perteneciente(s)*|pertenecen|pertenece|a){1} (la|al|a)* (\w+)', diccDeRel) diccDeRel = buscar_coincidencias(listPalabrasfuns, listPuntuaciones, value["P"], 0, 1, '(\w+)(,\s*\w+)*(\s*y\s*\w+)', diccDeRel) # Variables list_nodos = [] list_aristas = [] # Recorrer diccionario de relaciones for key,arry in diccDeRel.items(): # Validar si agregar nodo if key not in list_nodos: # Agregar nodo list_nodos.append(key) # Recorrer relaciones de la llave for value in arry: # Generar tupla tempTupla = (key, value) # Validar si agregar tupla if tempTupla not in list_aristas: # Agregar nodo list_aristas.append(tempTupla) # Validar si agregar nodo if value not in list_nodos: # Agregar nodo list_nodos.append(value) # Crea grafica Grafico = nx.DiGraph() # Vertices Grafico.add_nodes_from(list_nodos) # Aristas Grafico.add_edges_from(list_aristas) posicion = nx.spring_layout(Grafico) nx.draw_networkx_labels(Grafico, posicion, labels=dict([(nodo, nodo) for nodo in list_nodos])) # Dibuja la gráfica nx.draw(Grafico, posicion) # Muestra en pantalla lo dibujado plt.show()
SoraGefroren/Practicas_relacionadas_al_NLP_utilizando_Python
Práctica_04-Wiki/relaciones.py
relaciones.py
py
6,622
python
es
code
0
github-code
6
[ { "api_name": "sys.stdout", "line_number": 13, "usage_type": "attribute" }, { "api_name": "nltk.download", "line_number": 18, "usage_type": "call" }, { "api_name": "nltk.download", "line_number": 19, "usage_type": "call" }, { "api_name": "nltk.stem.snowball.SnowballStemmer", "line_number": 37, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 40, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 44, "usage_type": "attribute" }, { "api_name": "nltk.tokenize.toktok.ToktokTokenizer", "line_number": 52, "usage_type": "call" }, { "api_name": "nltk.data.load", "line_number": 54, "usage_type": "call" }, { "api_name": "nltk.data", "line_number": 54, "usage_type": "attribute" }, { "api_name": "nltk.corpus.stopwords.words", "line_number": 57, "usage_type": "call" }, { "api_name": "nltk.corpus.stopwords", "line_number": 57, "usage_type": "name" }, { "api_name": "string.punctuation", "line_number": 58, "usage_type": "attribute" }, { "api_name": "re.compile", "line_number": 121, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 134, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 135, "usage_type": "call" }, { "api_name": "networkx.DiGraph", "line_number": 193, "usage_type": "call" }, { "api_name": "networkx.spring_layout", "line_number": 201, "usage_type": "call" }, { "api_name": "networkx.draw_networkx_labels", "line_number": 202, "usage_type": "call" }, { "api_name": "networkx.draw", "line_number": 205, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 208, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 208, "usage_type": "name" } ]
5035337247
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('authentication_module', '0004_auto_20160801_2318'), ] operations = [ migrations.AddField( model_name='customuser', name='tipo_cuenta', field=models.CharField(default=b'C', max_length=1, choices=[(b'C', b'COMERCIANTE'), (b'M', b'MUNICIPIO')]), ), ]
DirectorioTurismoComercio/BackEnd
authentication_module/migrations/0005_customuser_tipo_cuenta.py
0005_customuser_tipo_cuenta.py
py
492
python
en
code
0
github-code
6
[ { "api_name": "django.db.migrations.Migration", "line_number": 7, "usage_type": "attribute" }, { "api_name": "django.db.migrations", "line_number": 7, "usage_type": "name" }, { "api_name": "django.db.migrations.AddField", "line_number": 14, "usage_type": "call" }, { "api_name": "django.db.migrations", "line_number": 14, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 17, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 17, "usage_type": "name" } ]
2732586952
#-_- coding: utf-8 -_- from signature import settings from control.middleware.config import RET_DATA, apple_url from control.middleware.common import get_random_s import re import json import logging import datetime import requests import random import time import jwt logger = logging.getLogger('django') class AppStoreConnectApi(object): ''' 苹果开发者商店 接口 ''' def __init__(self, account, p8, iss, kid): ''' 初始化 个人开发者账号信息 ''' self.__account = account self.__p8 = p8 self.__iss = iss self.__kid = kid self.__ret_data = RET_DATA.copy() self.__timeout = 15 self.__verify = False self.__token = self._get_token() def _get_token(self): ''' 利用 jwt 获取token ''' # 苹果采用的 ES256 编码方式,key是需要分段(\n)的,密钥头尾的"—BEGIN PRIVATE KEY—"也是必须的。之前我一直直接复制privatekey以文本的形式输入,在HS256下正常但是ES256会报错ValueError: Could not deserialize key data。 private_key = "-----BEGIN PRIVATE KEY-----" + self.__p8.replace("-----BEGIN PRIVATE KEY-----", "").replace("-----END PRIVATE KEY-----", "").replace(" ", "\n") + "-----END PRIVATE KEY-----" # payload token_dict = { "exp": time.time() + 20*60, # 时间戳, token 有效时间 20分钟 "iss": self.__iss, "aud": "appstoreconnect-v1" } # headers headers = { "alg": "ES256", # 声明所使用的算法。 "kid": self.__kid, "typ": "JWT", } try: # 使用jwt 获取苹果开发者 接口token jwt_token = jwt.encode(token_dict, private_key, algorithm="ES256", headers=headers) token = str(jwt_token, encoding='utf-8') logger.info(f"{self.__account} : {token}") return token except Exception as e: logger.error(f"获取苹果开发者 {self.__account} 接口token 错误: {str(e)}") return None def create_profile(self, bundleIds, cer_id, device_id): ''' 创建profile ''' # 初始化 req 参数 self.__content = "创建profile" self.__method = "POST" self.__url = f"{apple_url}/profiles" self.__data = { "data": { "type": "profiles", "attributes": { "name": get_random_s(16), "profileType": "IOS_APP_ADHOC" }, "relationships": { "bundleId": { "data": { "id": bundleIds, "type": "bundleIds" } }, "certificates": { "data": [{ "id": cer_id, "type": "certificates" }] }, "devices": { "data": [{ "id": device_id, "type": "devices" }] } } } } self.__headers = {"Content-Type": "application/json"} # 获取接口结果 return self._send_req() def create_devices(self, udid): ''' 创建devices ''' # 初始化 req 参数 self.__content = "创建devices" self.__method = "POST" self.__url = f"{apple_url}/devices" self.__data = { "data": { "type": "devices", "attributes": { "udid": udid, "name": udid, "platform": "IOS", } } } self.__headers = {"Content-Type": "application/json"} # 获取接口结果 return self._send_req() def create_bundleIds(self, bundleId): ''' 创建bundleIds: ''' # 初始化 req 参数 self.__content = "创建bundleIds" self.__method = "POST" self.__url = f"{apple_url}/bundleIds" self.__data = { "data": { "type": "bundleIds", "attributes": { "identifier": bundleId, "name": "AppBundleId", "platform": "IOS", } } } self.__headers = {"Content-Type": "application/json"} # 获取接口结果 return self._send_req() def delete_bundleIds(self, bundleIds): ''' 删除bundleIds ''' # 初始化 req 参数 self.__content = "删除bundleIds" self.__method = "DELETE" self.__url = f"{apple_url}/bundleIds/{bundleIds}" self.__data = {} self.__headers = {"Content-Type": "application/json"} # 获取接口结果 return self._send_req() def get_bundleIds(self): ''' 获取bundleIds ''' # 初始化 req 参数 self.__content = "获取bundleIds" self.__method = "GET" self.__url = f"{apple_url}/bundleIds?limit=200" self.__data = { "platform": "IOS" } self.__headers = {"Content-Type": "application/json"} # 获取接口结果 return self._send_req() def create_cer(self, csr): ''' 创建证书: { "certificateType": "IOS_DISTRIBUTION" } ''' # 初始化 req 参数 self.__content = "创建证书" self.__method = "POST" self.__url = f"{apple_url}/certificates" self.__data = { "data": { "type": "certificates", "attributes": { "csrContent": csr, "certificateType": "IOS_DISTRIBUTION" } } } self.__headers = {"Content-Type": "application/json"} # 获取接口结果 return self._send_req() def delete_cer(self, cer_id): ''' 删除证书: { "certificateType": "IOS_DISTRIBUTION" } ''' # 初始化 req 参数 self.__content = "删除证书" self.__method = "DELETE" self.__url = f"{apple_url}/certificates/{cer_id}" self.__data = {} self.__headers = {"Content-Type": "application/json"} # 获取接口结果 return self._send_req() def get_cer(self): ''' 获取证书: { "certificateType": "IOS_DISTRIBUTION" } ''' # 初始化 req 参数 self.__content = "获取证书" self.__method = "GET" self.__url = f"{apple_url}/certificates?limit=200" self.__data = { "certificateType": "IOS_DISTRIBUTION" # 这个筛选参数是不生效的,filter[certificateType] 这个不清楚怎么加入到参数里进行请求 } self.__headers = {"Content-Type": "application/json"} # 获取接口结果 return self._send_req() def get_devices(self): ''' 获取开发者账号上的已注册设备 GET https://api.appstoreconnect.apple.com/v1/devices ''' # 初始化 req 参数 self.__content = "获取已注册设备信息" self.__method = "GET" self.__url = f"{apple_url}/devices?limit=200" self.__data = {} self.__headers = {"Content-Type": "application/json"} # 获取接口结果 return self._send_req() def _send_req(self): ''' 发送 requests 请求 ''' token = self.__token if not token: # 获取token 失败 self.__ret_data['msg'] = "获取 苹果账号token 失败" self.__ret_data['code'] = 500 return self.__ret_data self.__headers["Authorization"] = f"Bearer {token}" self.__req_id = ''.join(str(random.choice(range(10))) for _ in range(10)) # 对每一次请求,指定一个随机的10位数 logger.info(f"""{self.__content}: # 记录请求参数 req_id: {self.__req_id} method: {self.__method} url: {self.__url} data: {self.__data} headers: {self.__headers} """) s = requests.Session() req = requests.Request(self.__method, self.__url, data=json.dumps(self.__data), headers=self.__headers ) prepped = s.prepare_request(req) try: ret = s.send(prepped, verify=self.__verify, timeout=self.__timeout) # 发起请求 self.__ret_data['code'] = 0 if ret.status_code == 204: # 状态码 204,返回内容为空,例如 DELETE 证书的请求 self.__ret_data['data'] = f"{self.__account}: {self.__content} 成功" logger.info(f"req_id: {self.__req_id} {self.__ret_data['data']}") else: app_ret = ret.json() self.__ret_data['data'] = app_ret self.__ret_data['msg'] = f"{self.__account}: {self.__content} 成功" if "errors" in app_ret.keys(): self.__ret_data['msg'] = f"{self.__account}: {self.__content} 失败" self.__ret_data['code'] = 500 logger.error(f"req_id: {self.__req_id} {self.__ret_data['msg']}: {self.__url} :{str(app_ret)}") else: logger.info(f"req_id: {self.__req_id} {self.__ret_data['msg']}: {self.__url} :{str(app_ret)}") except Exception as e: self.__ret_data['msg'] = f"{self.__account}: {self.__content} 失败: {ret.text}" self.__ret_data['code'] = 500 logger.error(f"req_id: {self.__req_id} {self.__account}: {self.__content} 失败: {self.__url} : {str(e)}。返回错误: {ret.text}") return self.__ret_data def test_connect(self): ''' 测试账号能够正常通过 苹果API 来连接 ''' # 初始化 req 参数 self.__content = "测试连接" self.__method = "GET" self.__url = f"{apple_url}/apps" self.__data = {} self.__headers = {"Content-Type": "application/json"} # 获取接口结果 return self._send_req()
lessknownisland/signature
apple/middleware/api.py
api.py
py
10,781
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 15, "usage_type": "call" }, { "api_name": "control.middleware.config.RET_DATA.copy", "line_number": 29, "usage_type": "call" }, { "api_name": "control.middleware.config.RET_DATA", "line_number": 29, "usage_type": "name" }, { "api_name": "time.time", "line_number": 43, "usage_type": "call" }, { "api_name": "jwt.encode", "line_number": 57, "usage_type": "call" }, { "api_name": "control.middleware.config.apple_url", "line_number": 72, "usage_type": "name" }, { "api_name": "control.middleware.common.get_random_s", "line_number": 77, "usage_type": "call" }, { "api_name": "control.middleware.config.apple_url", "line_number": 114, "usage_type": "name" }, { "api_name": "control.middleware.config.apple_url", "line_number": 137, "usage_type": "name" }, { "api_name": "control.middleware.config.apple_url", "line_number": 160, "usage_type": "name" }, { "api_name": "control.middleware.config.apple_url", "line_number": 174, "usage_type": "name" }, { "api_name": "control.middleware.config.apple_url", "line_number": 193, "usage_type": "name" }, { "api_name": "control.middleware.config.apple_url", "line_number": 218, "usage_type": "name" }, { "api_name": "control.middleware.config.apple_url", "line_number": 235, "usage_type": "name" }, { "api_name": "control.middleware.config.apple_url", "line_number": 252, "usage_type": "name" }, { "api_name": "random.choice", "line_number": 271, "usage_type": "call" }, { "api_name": "requests.Session", "line_number": 280, "usage_type": "call" }, { "api_name": "requests.Request", "line_number": 281, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 282, "usage_type": "call" }, { "api_name": "control.middleware.config.apple_url", "line_number": 321, "usage_type": "name" } ]
35912386575
#coding=utf-8 """ imgcv """ from setuptools import setup from setuptools import find_packages install_requires = [ ] setup( name = "imgcv", version = "1.0.0", description = 'image computer visior', author='Hyxbiao', author_email="[email protected]", packages = find_packages(), entry_points={ 'console_scripts': [ 'imgcv = imgcv.tools.imgcv:main', 'imgbrowser = imgcv.tools.imgbrowser:main', ] }, install_requires = install_requires, zip_safe = False, )
hyxbiao/imgcv
setup.py
setup.py
py
537
python
en
code
0
github-code
6
[ { "api_name": "setuptools.setup", "line_number": 12, "usage_type": "call" }, { "api_name": "setuptools.find_packages", "line_number": 18, "usage_type": "call" } ]
16701006334
import os import sys from xml.etree import ElementTree def isPlaylistUpdated(cmusPlaylistFile, jellyfinMusicPathArray) : cmusMusicPathArray = open(cmusPlaylistFile, 'r').read().splitlines() if len(cmusMusicPathArray) != len(jellyfinMusicPathArray) : return True length = len(cmusMusicPathArray) for i in range(0, length) : if cmusMusicPathArray[i] != jellyfinMusicPathArray[i].text : return True return False def updateFile(cmusPlaylistFile, musicPathArray) : print('updating or creating ' + cmusPlaylistFile) string = '' for path in musicPathArray : string += path.text + '\n' with open(cmusPlaylistFile, 'w') as sw : sw.write(string) JELLYFIN_PLAYLIST_PATH = sys.argv[1] CMUS_PLAYLIST_PATH = sys.argv[2] for playlist in os.listdir(JELLYFIN_PLAYLIST_PATH) : playlistFile = os.path.join(JELLYFIN_PLAYLIST_PATH, playlist) playlistFile = os.path.join(playlistFile, 'playlist.xml') if os.path.isfile(playlistFile) : dom = ElementTree.parse(playlistFile) paths = dom.findall('PlaylistItems/PlaylistItem/Path') cmusPlaylistFile = os.path.join(CMUS_PLAYLIST_PATH, playlist) if (not os.path.isfile(cmusPlaylistFile)) or isPlaylistUpdated(cmusPlaylistFile, paths) : updateFile(cmusPlaylistFile, paths) # checkIfPlaylistUpdated('/home/nate/.config/cmus/playlists/test', None)
nate-1/playlist-jellyfin-cmus-interface
main.py
main.py
py
1,427
python
en
code
0
github-code
6
[ { "api_name": "sys.argv", "line_number": 31, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 32, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 34, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 36, "usage_type": "call" }, { "api_name": "os.path", "line_number": 36, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 37, "usage_type": "call" }, { "api_name": "os.path", "line_number": 37, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 39, "usage_type": "call" }, { "api_name": "os.path", "line_number": 39, "usage_type": "attribute" }, { "api_name": "xml.etree.ElementTree.parse", "line_number": 40, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 40, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 43, "usage_type": "call" }, { "api_name": "os.path", "line_number": 43, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 45, "usage_type": "call" }, { "api_name": "os.path", "line_number": 45, "usage_type": "attribute" } ]
28377193501
import numpy as np from keras.models import Sequential from keras.layers import Dense, Flatten from keras.datasets import mnist from keras.utils import to_categorical import matplotlib.pyplot as plt # 载入MNIST数据集 (x_train, y_train), (x_test, y_test) = mnist.load_data() # 将像素值标准化到 0 到 1 之间 x_train, x_test = x_train / 255.0, x_test / 255.0 # 对标签进行独热编码 y_train = to_categorical(y_train, 10) y_test = to_categorical(y_test, 10) # 显示第一张图片 plt.imshow(x_train[0], cmap='gray') plt.title(f"Label: {np.argmax(y_train[0])}") # 显示标签 plt.show() # 构建模型 model = Sequential() model.add(Flatten(input_shape=(28, 28))) # 将 28x28 的图像展平成一维数组 model.add(Dense(128, activation='relu')) # 具有128个神经元和ReLU激活函数的隐藏层 model.add(Dense(10, activation='softmax')) # 具有10个神经元(用于10个类别)和softmax激活函数的输出层 # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(x_train, y_train, epochs=5, validation_data=(x_test, y_test)) # 在测试集上评估模型 test_loss, test_acc = model.evaluate(x_test, y_test) print(f'测试准确率:{test_acc}')
Ldh88/112-LiDingHui-ShangHai
112-李鼎辉-上海/第八周作业/cv_tensorflow_keras.py
cv_tensorflow_keras.py
py
1,333
python
en
code
null
github-code
6
[ { "api_name": "keras.datasets.mnist.load_data", "line_number": 9, "usage_type": "call" }, { "api_name": "keras.datasets.mnist", "line_number": 9, "usage_type": "name" }, { "api_name": "keras.utils.to_categorical", "line_number": 15, "usage_type": "call" }, { "api_name": "keras.utils.to_categorical", "line_number": 16, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 19, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 19, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 20, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 20, "usage_type": "name" }, { "api_name": "numpy.argmax", "line_number": 20, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 21, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 21, "usage_type": "name" }, { "api_name": "keras.models.Sequential", "line_number": 23, "usage_type": "call" }, { "api_name": "keras.layers.Flatten", "line_number": 24, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 25, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 26, "usage_type": "call" } ]
43344834943
import unittest import mock import time from copy import deepcopy from gorynych.common.domain import events from gorynych.common.exceptions import DomainError from gorynych.info.domain.test.helpers import create_contest from gorynych.info.domain import contest, person, race from gorynych.common.domain.types import Address, Name, Country from gorynych.info.domain.ids import PersonID, RaceID, TrackerID, TransportID class MockedPersonRepository(mock.Mock): ''' Necessary only for tracker assignment. ''' def get_by_id(self, key): person = mock.Mock() person.name = Name('name', 'surname') person.country = Country('RU') if key == 'person1': person.tracker = 'tracker1' elif key == 'person2': person.tracker = 'tracker2' elif key == 'person3': person.tracker = None return person class ContestFactoryTest(unittest.TestCase): def test_contestid_successfull_contest_creation(self): cont = create_contest(1, 2) self.assertIsInstance(cont.address, Address) self.assertEqual(cont.title, 'Hello world') self.assertEqual(cont.country, 'RU') self.assertEqual(cont.timezone, 'Europe/Moscow') self.assertEqual(cont.place, 'Yrupinsk') self.assertEquals((cont.start_time, cont.end_time), (1, 2)) self.assertIsInstance(cont.id, contest.ContestID) self.assertIsNone(cont._id) cont2 = create_contest(3, 4) self.assertNotEqual(cont.id, cont2.id, "Contest with the same id has been created.") def test_str_successfull_contest_creation(self): cont = create_contest(1, 3, id='cnts-130422-12345') self.assertEqual(cont.end_time, 3) self.assertEqual(cont.start_time, 1) self.assertEqual(cont.id, 'cnts-130422-12345') def test_unsuccessfull_contest_creation(self): self.assertRaises(ValueError, create_contest, 3, 1, "Contest can be created with wrong times.") class EventsApplyingTest(unittest.TestCase): def test_ContestRaceCreated(self): cont = create_contest(1, 2) rid = RaceID() ev = events.ContestRaceCreated(cont.id, rid) self.assertRaises(AssertionError, cont.apply, ev) cont.apply([ev]) self.assertEqual(len(cont.race_ids), 1) cont.apply([ev]) self.assertEqual(len(cont.race_ids), 1) rid = RaceID() ev = events.ContestRaceCreated(cont.id, rid) cont.apply([ev]) self.assertEqual(len(cont.race_ids), 2) class ContestTest(unittest.TestCase): @mock.patch('gorynych.common.infrastructure.persistence.event_store') def test_register_paraglider(self, patched): event_store = mock.Mock() patched.return_value = event_store cont = create_contest(1, 2) p1 = person.PersonID() c = cont.register_paraglider(p1, 'mantrA 9', '747') self.assertIsInstance(c, contest.Contest) self.assertEqual(len(cont._participants), 1) self.assertEqual(len(cont.paragliders), 1) self.assertIsInstance(cont.paragliders, dict, "It must be dict.") self.assertEqual(cont._participants[p1]['role'], 'paraglider') self.assertEqual(cont._participants[p1]['glider'], 'mantra') self.assertEqual(cont._participants[p1]['contest_number'], 747) p2 = person.PersonID() cont.register_paraglider(p2, 'mantrA 9', '757') self.assertEqual(len(cont._participants), 2) self.assertEqual(cont._participants[p2]['role'], 'paraglider') self.assertEqual(cont._participants[p2]['glider'], 'mantra') self.assertEqual(cont._participants[p2]['contest_number'], 757) # Check contest numbers uniqueness. self.assertRaises(ValueError, cont.register_paraglider, 'person3', 'mantrA 9', '757') mock_calls = event_store.mock_calls self.assertEqual(len(mock_calls), 2) self.assertEqual(mock_calls[-1], mock.call.persist( events.ParagliderRegisteredOnContest(p2, cont.id))) self.assertEqual(mock_calls[-2], mock.call.persist( events.ParagliderRegisteredOnContest(p1, cont.id))) def test_times_changing(self): cont = create_contest(1, '15') cont.start_time = '2' self.assertEqual(cont.start_time, 2) cont.end_time = '8' self.assertEqual(cont.end_time, 8) self.assertRaises(ValueError, setattr, cont, 'start_time', 8) self.assertRaises(ValueError, setattr, cont, 'start_time', 9) self.assertRaises(ValueError, setattr, cont, 'end_time', 2) self.assertRaises(ValueError, setattr, cont, 'end_time', 1) cont.change_times('10', '16') self.assertEqual((cont.start_time, cont.end_time), (10, 16)) self.assertRaises(ValueError, cont.change_times, '10', '8') def test_change_title(self): cont = create_contest(1, '15') cont.title = ' hello moOn ' self.assertEqual(cont.title, 'hello moOn') def test_change_address(self): cont = create_contest(1, '15') cont.place = 'Severodvinsk' self.assertEqual(cont.place, 'Severodvinsk') cont.country = 'tw' self.assertEqual(cont.country, 'TW') cont.hq_coords = (15, 0) self.assertEqual(cont.hq_coords, (15, 0)) class ContestTestWithRegisteredParagliders(unittest.TestCase): def setUp(self): self.p1_id = person.PersonID() self.p2_id = person.PersonID() self.p3_id = person.PersonID() @mock.patch('gorynych.common.infrastructure.persistence.event_store') def fixture(patched): patched.return_value = mock.Mock() cont = create_contest(1, 15) cont.register_paraglider(self.p2_id, 'mantrA 9', '757') cont.register_paraglider(self.p1_id, 'gIn 9', '747') person1 = cont._participants[self.p1_id] person2 = cont._participants[self.p2_id] return cont, person1, person2 try: self.cont, self.person1, self.person2 = fixture() except: raise unittest.SkipTest("ERROR: need contest with paragliders " "for test.") def tearDown(self): del self.cont del self.person1 del self.person2 def test_correct_change_participant_data(self): self.cont.change_participant_data(self.p1_id, glider='ajAx ', contest_number='0') self.assertEqual(self.person1['glider'], 'ajax') self.assertEqual(self.person1['contest_number'], 0) def test_no_data(self): self.assertRaises(ValueError, self.cont.change_participant_data, 'person2') def test_wrong_parameters(self): self.assertRaises(ValueError, self.cont.change_participant_data, 'person3', contest_number=9, glider='ajax') self.cont.change_participant_data(self.p1_id, cotest_number=9, glider='aJax') self.assertEqual(self.person1['contest_number'], 747) self.assertEqual(self.person1['glider'], 'ajax') def test_violate_invariants(self): self.assertRaises(ValueError, self.cont.change_participant_data, 'person1', contest_number='757') class ParagliderTest(unittest.TestCase): def test_success_creation(self): p_id = PersonID() t_id = TrackerID(TrackerID.device_types[0], '123456789012345') p = race.Paraglider(p_id, Name('Vasya', 'Pupkin'), Country('RU'), 'Mantra 9', 15, t_id) self.assertEqual(p.person_id, p_id) self.assertEqual(p.glider, 'mantra') self.assertEqual(p.contest_number, 15) self.assertEqual(p.tracker_id, t_id) @mock.patch('gorynych.common.infrastructure.persistence.event_store') class ContestServiceTest(unittest.TestCase): def setUp(self): self.cont = create_contest(time.time(), time.time() + 3600) def test_register_paraglider(self, patched): event_store = mock.Mock() patched.return_value = event_store alone_cont = deepcopy(self.cont) pid = PersonID() populated_cont = self.cont.register_paraglider(pid, 'glider', 11) self.assertFalse(alone_cont.paragliders) self.assertTrue(populated_cont.paragliders) pgl = populated_cont.paragliders self.assertEquals(pgl.keys()[0], pid) self.assertEquals(pgl[pid]['role'], 'paraglider') self.assertEquals(pgl[pid]['glider'], 'glider') self.assertEquals(pgl[pid]['contest_number'], 11) def test_add_transport(self, patched): event_store = mock.Mock() patched.return_value = event_store alone_cont = deepcopy(self.cont) tid = TransportID() populated_cont = self.cont.add_transport(tid) self.assertFalse(alone_cont.transport) self.assertIn(tid, populated_cont.transport) def test_change_paraglider(self, patched): event_store = mock.Mock() patched.return_value = event_store pid = PersonID() cont = self.cont.register_paraglider(pid, 'glider', 11) changed_cont = contest.change_participant(cont, dict(glider='noglider', contest_number=21, person_id=pid)) pgl = changed_cont.paragliders self.assertEquals(pgl.keys()[0], pid) self.assertEquals(pgl[pid]['glider'], 'noglider') self.assertEquals(pgl[pid]['contest_number'], 21) def test_add_winddummy(self, patched): event_store = mock.Mock() patched.return_value = event_store pid = PersonID() cont = self.cont.add_winddummy(pid) wdms = cont.winddummies self.assertEquals(wdms, [pid]) def test_get_winddummy(self, patched): event_store = mock.Mock() patched.return_value = event_store pid = PersonID() cont = self.cont.add_winddummy(pid) self.assertEquals(cont.get_winddummy(pid), pid) pid2 = PersonID() self.assertRaises(DomainError, cont.get_winddummy, pid2)
DmitryLoki/gorynych
gorynych/info/domain/test/test_contest.py
test_contest.py
py
10,466
python
en
code
3
github-code
6
[ { "api_name": "mock.Mock", "line_number": 15, "usage_type": "attribute" }, { "api_name": "gorynych.info.domain.person", "line_number": 20, "usage_type": "name" }, { "api_name": "mock.Mock", "line_number": 20, "usage_type": "call" }, { "api_name": "gorynych.info.domain.person.name", "line_number": 21, "usage_type": "attribute" }, { "api_name": "gorynych.info.domain.person", "line_number": 21, "usage_type": "name" }, { "api_name": "gorynych.common.domain.types.Name", "line_number": 21, "usage_type": "call" }, { "api_name": "gorynych.info.domain.person.country", "line_number": 22, "usage_type": "attribute" }, { "api_name": "gorynych.info.domain.person", "line_number": 22, "usage_type": "name" }, { "api_name": "gorynych.common.domain.types.Country", "line_number": 22, "usage_type": "call" }, { "api_name": "gorynych.info.domain.person.tracker", "line_number": 24, "usage_type": "attribute" }, { "api_name": "gorynych.info.domain.person", "line_number": 24, "usage_type": "name" }, { "api_name": "gorynych.info.domain.person.tracker", "line_number": 26, "usage_type": "attribute" }, { "api_name": "gorynych.info.domain.person", "line_number": 26, "usage_type": "name" }, { "api_name": "gorynych.info.domain.person.tracker", "line_number": 28, "usage_type": "attribute" }, { "api_name": "gorynych.info.domain.person", "line_number": 28, "usage_type": "name" }, { "api_name": "gorynych.info.domain.person", "line_number": 29, "usage_type": "name" }, { "api_name": "unittest.TestCase", "line_number": 32, "usage_type": "attribute" }, { "api_name": "gorynych.info.domain.test.helpers.create_contest", "line_number": 35, "usage_type": "call" }, { "api_name": "gorynych.common.domain.types.Address", "line_number": 36, "usage_type": "argument" }, { "api_name": "gorynych.info.domain.contest.ContestID", "line_number": 42, "usage_type": "attribute" }, { "api_name": "gorynych.info.domain.contest", "line_number": 42, "usage_type": "name" }, { "api_name": "gorynych.info.domain.test.helpers.create_contest", "line_number": 45, "usage_type": "call" }, { "api_name": "gorynych.info.domain.test.helpers.create_contest", "line_number": 50, "usage_type": "call" }, { "api_name": "gorynych.info.domain.test.helpers.create_contest", "line_number": 56, "usage_type": "argument" }, { "api_name": "unittest.TestCase", "line_number": 60, "usage_type": "attribute" }, { "api_name": "gorynych.info.domain.test.helpers.create_contest", "line_number": 62, "usage_type": "call" }, { "api_name": "gorynych.info.domain.ids.RaceID", "line_number": 63, "usage_type": "call" }, { "api_name": "gorynych.common.domain.events.ContestRaceCreated", "line_number": 64, "usage_type": "call" }, { "api_name": "gorynych.common.domain.events", "line_number": 64, "usage_type": "name" }, { "api_name": "gorynych.info.domain.ids.RaceID", "line_number": 70, "usage_type": "call" }, { "api_name": "gorynych.common.domain.events.ContestRaceCreated", "line_number": 71, "usage_type": "call" }, { "api_name": "gorynych.common.domain.events", "line_number": 71, "usage_type": "name" }, { "api_name": "unittest.TestCase", "line_number": 76, "usage_type": "attribute" }, { "api_name": "mock.Mock", "line_number": 79, "usage_type": "call" }, { "api_name": "gorynych.info.domain.test.helpers.create_contest", "line_number": 81, "usage_type": "call" }, { "api_name": "gorynych.info.domain.person.PersonID", "line_number": 82, "usage_type": "call" }, { "api_name": "gorynych.info.domain.person", "line_number": 82, "usage_type": "name" }, { "api_name": "gorynych.info.domain.contest.Contest", "line_number": 85, "usage_type": "attribute" }, { "api_name": "gorynych.info.domain.contest", "line_number": 85, "usage_type": "name" }, { "api_name": "gorynych.info.domain.person.PersonID", "line_number": 93, "usage_type": "call" }, { "api_name": "gorynych.info.domain.person", "line_number": 93, "usage_type": "name" }, { "api_name": "mock.call.persist", "line_number": 106, "usage_type": "call" }, { "api_name": "mock.call", "line_number": 106, "usage_type": "attribute" }, { "api_name": "gorynych.common.domain.events.ParagliderRegisteredOnContest", "line_number": 107, "usage_type": "call" }, { "api_name": "gorynych.common.domain.events", "line_number": 107, "usage_type": "name" }, { "api_name": "mock.call.persist", "line_number": 108, "usage_type": "call" }, { "api_name": "mock.call", "line_number": 108, "usage_type": "attribute" }, { "api_name": "gorynych.common.domain.events.ParagliderRegisteredOnContest", "line_number": 109, "usage_type": "call" }, { "api_name": "gorynych.common.domain.events", "line_number": 109, "usage_type": "name" }, { "api_name": "mock.patch", "line_number": 77, "usage_type": "call" }, { "api_name": "gorynych.info.domain.test.helpers.create_contest", "line_number": 113, "usage_type": "call" }, { "api_name": "gorynych.info.domain.test.helpers.create_contest", "line_number": 127, "usage_type": "call" }, { "api_name": "gorynych.info.domain.test.helpers.create_contest", "line_number": 132, "usage_type": "call" }, { "api_name": "unittest.TestCase", "line_number": 141, "usage_type": "attribute" }, { "api_name": "gorynych.info.domain.person.PersonID", "line_number": 144, "usage_type": "call" }, { "api_name": "gorynych.info.domain.person", "line_number": 144, "usage_type": "name" }, { "api_name": "gorynych.info.domain.person.PersonID", "line_number": 145, "usage_type": "call" }, { "api_name": "gorynych.info.domain.person", "line_number": 145, "usage_type": "name" }, { "api_name": "gorynych.info.domain.person.PersonID", "line_number": 146, "usage_type": "call" }, { "api_name": "gorynych.info.domain.person", "line_number": 146, "usage_type": "name" }, { "api_name": "mock.Mock", "line_number": 149, "usage_type": "call" }, { "api_name": "gorynych.info.domain.test.helpers.create_contest", "line_number": 150, "usage_type": "call" }, { "api_name": "mock.patch", "line_number": 147, "usage_type": "call" }, { "api_name": "unittest.SkipTest", "line_number": 159, "usage_type": "call" }, { "api_name": "unittest.TestCase", "line_number": 191, "usage_type": "attribute" }, { "api_name": "gorynych.info.domain.ids.PersonID", "line_number": 193, "usage_type": "call" }, { "api_name": "gorynych.info.domain.ids.TrackerID", "line_number": 194, "usage_type": "call" }, { "api_name": "gorynych.info.domain.ids.TrackerID.device_types", "line_number": 194, "usage_type": "attribute" }, { "api_name": "gorynych.info.domain.race.Paraglider", "line_number": 195, "usage_type": "call" }, { "api_name": "gorynych.info.domain.race", "line_number": 195, "usage_type": "name" }, { "api_name": "gorynych.common.domain.types.Name", "line_number": 195, "usage_type": "call" }, { "api_name": "gorynych.common.domain.types.Country", "line_number": 196, "usage_type": "call" }, { "api_name": "unittest.TestCase", "line_number": 204, "usage_type": "attribute" }, { "api_name": "gorynych.info.domain.test.helpers.create_contest", "line_number": 207, "usage_type": "call" }, { "api_name": "time.time", "line_number": 207, "usage_type": "call" }, { "api_name": "mock.Mock", "line_number": 210, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 213, "usage_type": "call" }, { "api_name": "gorynych.info.domain.ids.PersonID", "line_number": 214, "usage_type": "call" }, { "api_name": "mock.Mock", "line_number": 228, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 231, "usage_type": "call" }, { "api_name": "gorynych.info.domain.ids.TransportID", "line_number": 232, "usage_type": "call" }, { "api_name": "mock.Mock", "line_number": 239, "usage_type": "call" }, { "api_name": "gorynych.info.domain.ids.PersonID", "line_number": 242, "usage_type": "call" }, { "api_name": "gorynych.info.domain.contest.change_participant", "line_number": 246, "usage_type": "call" }, { "api_name": "gorynych.info.domain.contest", "line_number": 246, "usage_type": "name" }, { "api_name": "mock.Mock", "line_number": 257, "usage_type": "call" }, { "api_name": "gorynych.info.domain.ids.PersonID", "line_number": 260, "usage_type": "call" }, { "api_name": "mock.Mock", "line_number": 266, "usage_type": "call" }, { "api_name": "gorynych.info.domain.ids.PersonID", "line_number": 269, "usage_type": "call" }, { "api_name": "gorynych.info.domain.ids.PersonID", "line_number": 272, "usage_type": "call" }, { "api_name": "gorynych.common.exceptions.DomainError", "line_number": 273, "usage_type": "argument" }, { "api_name": "mock.patch", "line_number": 203, "usage_type": "call" } ]
72739113148
from reportlab.lib import colors from reportlab.pdfgen import canvas from reportlab.lib.pagesizes import A4 from reportlab.platypus import Paragraph from reportlab.lib.styles import getSampleStyleSheet from reportlab.lib.enums import TA_JUSTIFY def generate_prescription(patient_name, doctor_name, medicine_list, logo_path, rx_path, signature_path, prescription_no, consultation_no, doctor_email, medconnect_id, reg_no, doctor_location, patient_id, patient_location, date, remarks, doctor_title): # Create a file named after the patient filename = f"{patient_name}_prescription.pdf" c = canvas.Canvas(filename, pagesize=A4, bottomup=1) # MedConnect Logo c.setFillColor(colors.white) c.drawImage(logo_path, 12, 759 - 16, width=169, height=83.12) # Rx logo c.drawImage(rx_path, 595-60-12, 759 - 4, width=60, height=60) # Document Nos. c.setFillColor(colors.black) c.setFont("Courier", 13) c.drawRightString(525, 735 , "Prescription No:") c.setFont("Courier", 13) c.drawRightString(570, 735, f"#{prescription_no}") c.drawRightString(525, 720 , "Consultation No:") c.setFont("Courier", 13) c.drawRightString(570, 720, f"#{consultation_no}") #Doctor Details c.setFillColor(colors.black) c.setFont("Courier", 13) c.drawRightString(570, 680 , "+917738118110") c.drawRightString(570, 665 , f"{doctor_email}") c.drawRightString(450, 650 , "MedConnect Id.: ") c.setFont("Courier", 13) c.drawRightString(570, 650 , f"{medconnect_id}") c.drawRightString(450, 635 , "Reg. No.: ") c.setFont("Courier", 13) c.drawRightString(570, 635 , f"{reg_no}") #Doctor Headers c.setFont("Courier-Bold", 21) c.drawString(12, 680, f"Dr. {doctor_name}") c.setFont("Courier", 13) c.drawString(12, 665 , f"{doctor_location}") # Patient Details c.setFont("Courier", 13) c.drawString(12, 620 , "Patient Id:") c.drawString(100, 620 , f"# {patient_id}") c.drawString(12, 605 , "Patient:") c.setFont("Courier-Bold", 13) c.drawString(100, 605 , f"{patient_name}") c.setFont("Courier", 13) c.drawString(100, 590 , f"{patient_location}") c.drawString(12, 575 , "Date:") c.drawString(100, 575 , f"{date}") c.setFont("Courier-Bold", 18) c.drawString(12, 530 , "Treatment Advised") # Add a table with the medicine list c.setFont("Courier-Bold", 13) c.drawString(12, 500, "Type") c.drawString(97, 500, "Medicine") c.drawString(242, 500, "Power") c.drawString(346, 500, "Frequency") c.drawString(440, 500, "Remarks") c.setStrokeColor(colors.grey) c.line(12, 490, 570, 490) c.setFont("Courier", 13) for i, medicine in enumerate(medicine_list): c.drawString(12, 475 - i * 25, medicine[0]) c.drawString(97, 475 - i * 25, medicine[1]) c.drawString(242, 475 - i * 25, medicine[2]) c.drawString(346, 475 - i * 25, medicine[3]) c.drawString(440, 475 - i * 25, medicine[4]) c.setFont("Courier-Bold", 18) c.drawString(12, 280 , "Next Investigation / Other Remarks") style = getSampleStyleSheet()["Normal"] style.fontName = "Courier" style.fontSize = 12 style.alignment = TA_JUSTIFY p = Paragraph(remarks, style) p.wrapOn(c, 558, 100) p.drawOn(c, 12, 140) c.drawImage(signature_path, 456, 66, width=86, height=39) c.setFont("Courier-Bold", 13) c.drawRightString(570, 47 , f"{doctor_name}") c.setFont("Courier", 10) c.drawRightString(570, 33 , f"{doctor_title}") c.line(12, 18, 570, 18) c.setFont("Courier", 10) c.drawString(12, 5, "Thank you for choosing MedConnect. Have a Healthy Day!") # Save the PDF c.save() medicine_list = [ ("Tablet","Paracetamol", "500 mg", "1-0-1", "-"), ("Tablet","Dolo", "10 mg", "0-1-0", "-"), ] remarks = "Take rest. Do not work more." generate_prescription("Prem Kothawle", "Dr. Shubham Saroj", medicine_list, "medconnect_logo.jpg", "rx_logo.jpg", "Shubham_Sign.jpeg", "1258", "1279", "[email protected]", "86438648464", "123454321234", "Thane, India", "2547", "Nere, India", "10 February 2023", remarks, "M.B.B.S") # patient_name, doctor_name, medicine_list, logo_path, rx_path, signature_path, prescription_no, consultation_no, doctor_email, medconnect_id, reg_no, doctor_location, patient_id, patient_location, date, remarks, doctor_title
kothawleprem/MedConnect
templates/main.py
main.py
py
4,423
python
en
code
0
github-code
6
[ { "api_name": "reportlab.pdfgen.canvas.Canvas", "line_number": 11, "usage_type": "call" }, { "api_name": "reportlab.pdfgen.canvas", "line_number": 11, "usage_type": "name" }, { "api_name": "reportlab.lib.pagesizes.A4", "line_number": 11, "usage_type": "name" }, { "api_name": "reportlab.lib.colors.white", "line_number": 15, "usage_type": "attribute" }, { "api_name": "reportlab.lib.colors", "line_number": 15, "usage_type": "name" }, { "api_name": "reportlab.lib.colors.black", "line_number": 22, "usage_type": "attribute" }, { "api_name": "reportlab.lib.colors", "line_number": 22, "usage_type": "name" }, { "api_name": "reportlab.lib.colors.black", "line_number": 34, "usage_type": "attribute" }, { "api_name": "reportlab.lib.colors", "line_number": 34, "usage_type": "name" }, { "api_name": "reportlab.lib.colors.grey", "line_number": 83, "usage_type": "attribute" }, { "api_name": "reportlab.lib.colors", "line_number": 83, "usage_type": "name" }, { "api_name": "reportlab.lib.styles.getSampleStyleSheet", "line_number": 95, "usage_type": "call" }, { "api_name": "reportlab.lib.enums.TA_JUSTIFY", "line_number": 98, "usage_type": "name" }, { "api_name": "reportlab.platypus.Paragraph", "line_number": 100, "usage_type": "call" } ]
27264200550
""" Plot.py Created 21/12/2021 """ from juzzyPython.generic.Tuple import Tuple from juzzyPython.generalType2zSlices.sets.GenT2MF_Interface import GenT2MF_Interface from juzzyPython.type1.sets.T1MF_Interface import T1MF_Interface from juzzyPython.generalType2zSlices.sets.GenT2MF_Triangular import GenT2MF_Triangular from juzzyPython.intervalType2.sets.IntervalT2MF_Interface import IntervalT2MF_Interface from juzzyPython.generalType2zSlices.sets.GenT2MF_Trapezoidal import GenT2MF_Trapezoidal import numpy as np from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from typing import List plt.rcParams.update({'figure.max_open_warning': 0}) class Plot: """ Class Plot: Uses the matplotlib to plot various graphs Parameters: None Funtions: plotControlSurface show figure title legend discretize plotMF """ def __init__(self) -> None: self.colorList = ['tab:blue','tab:orange','tab:green','tab:red','tab:purple','tab:brown','tab:pink','tab:gray','tab:olive','tab:cyan'] def show(self): """Show all the figures created""" plt.show() def figure(self): """Create a new plot to draw upon""" self.fig = plt.figure() def figure3d(self): """Create a new 3d plot to draw upon""" self.fig, self.ax = plt.subplots(subplot_kw={"projection": "3d"}) def title(self,title: str): """Set the title of the current figure""" plt.title(title) def legend(self): """Add legend to the current figure""" plt.legend(loc='center left', bbox_to_anchor=(1, 0.5)) plt.tight_layout() def plotControlSurface(self,x: List[float],y: List[float],z: List[List[float]],xLabel: str,yLabel: str,zLabel: str) -> None: """Plot a 3D surface showcasing the relationship between input (x,y) and output z""" fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) x,y = np.meshgrid(x,y) ax.plot_surface(np.asarray(x), np.asarray(y),np.asarray(z)) ax.set_xlabel(xLabel) ax.set_ylabel(yLabel) ax.set_zlabel(zLabel) plt.title("Control Surface") def plotMF2(self,xaxis: str,name: str,sets: IntervalT2MF_Interface,xDisc: int,addExtraEndPoints: bool) -> None: x = self.discretize(sets.getSupport(),xDisc) y1 = [0] * xDisc y2 = [0] * xDisc for i in range(xDisc): temp = sets.getFS(x[i]) y1[i] = temp.getRight() y2[i] = temp.getLeft() if addExtraEndPoints: x2 = [0.0] * (len(x)+2) y1b = [0.0] * (len(y1)+2) y2b = [0.0] * (len(y2)+2) x2[0] = sets.getSupport().getLeft() x2[-1] = sets.getSupport().getRight() y1b[0] = 0.0 y1b[len(y1)-1] = 0.0 y2b[0] = 0.0 y2b[len(y2)-1] = 0.0 for i in range(len(x)): x2[i+1] = x[i] y1b[i+1] = y1[i] y2b[i+1] = y2[i] x = x2 y1 = y1b y2 = y2b ax = plt.gca() color = next(ax._get_lines.prop_cycler)['color'] plt.plot(x,y1,label=name+"_upper", color = color) plt.plot(x,y2,label=name+"_lower", color = color, alpha=0.5) #plt.xlim(xAxisRange.getLeft(),xAxisRange.getRight()) #plt.ylim(yAxisRange.getLeft(),yAxisRange.getRight()) plt.ylabel("μ") plt.xlabel(xaxis) def plotMF(self,xaxis: str,name: str,sets: T1MF_Interface,xDisc: int,xAxisRange: Tuple,yAxisRange: Tuple,addExtraEndPoints: bool) -> None: """Plot a membership function on the current figure""" x = self.discretize(sets.getSupport(),xDisc) y = [0] * xDisc for i in range(xDisc): y[i] = sets.getFS(x[i]) if addExtraEndPoints: x2 = [0.0] * (len(x)+2) y2 = [0.0] * (len(y)+2) x2[0] = sets.getSupport().getLeft() x2[-1] = sets.getSupport().getRight() for i in range(len(x)): x2[i+1] = x[i] y2[i+1] = y[i] x = x2 y = y2 plt.plot(x,y,label=name) plt.xlim(xAxisRange.getLeft(),xAxisRange.getRight()) plt.ylim(yAxisRange.getLeft(),yAxisRange.getRight()) plt.ylabel("μ") plt.xlabel(xaxis) def plotMFasLines(self,sets: GenT2MF_Interface,xDisc: int) -> None: self.ax.set_xlabel("x") self.ax.set_ylabel("y") self.ax.set_zlabel("z") x = self.discretize(sets.getSupport(),xDisc) y1 = [[0 for c in range(xDisc)] for r in range(sets.getNumberOfSlices())] y2 = [[0 for c in range(xDisc)] for r in range(sets.getNumberOfSlices())] z1 = [[0 for c in range(xDisc)] for r in range(sets.getNumberOfSlices())] z2 = [[0 for c in range(xDisc)] for r in range(sets.getNumberOfSlices())] for zLevel in range(sets.getNumberOfSlices()): for i in range(xDisc): temp = sets.getZSlice(zLevel).getFS(x[i]) y1[zLevel][i] = temp.getRight() y2[zLevel][i] = temp.getLeft() if zLevel==0: z1[zLevel][i] = 0.0 else: z1[zLevel][i] = sets.getZValue(zLevel-1) z2[zLevel][i] = sets.getZValue(zLevel) for zLevel in range(sets.getNumberOfSlices()): self.ax.plot3D(x,y1[zLevel],z1[zLevel],label=sets.getName()+"_upper",color= self.colorList[zLevel%10]) self.ax.plot3D(x,y2[zLevel],z1[zLevel],label=sets.getName()+"_lower",color= self.colorList[zLevel%10]) self.ax.plot3D(x,y1[zLevel],z2[zLevel],label=sets.getName()+"_upper",color= self.colorList[zLevel%10]) self.ax.plot3D(x,y2[zLevel],z2[zLevel],label=sets.getName()+"_lower",color= self.colorList[zLevel%10]) def turnOnInteraction(self): plt.ion() def closeAllFigures(self): plt.close('all') def plotMFasSurface(self,plotName: str,sets: GenT2MF_Interface,xAxisRange: Tuple,xDisc: int,addExtraPoints: bool): self.ax.set_xlabel("X-Axis") self.ax.set_ylabel("Z-Axis") self.ax.set_zlabel("Y-Axis") if isinstance(sets,GenT2MF_Triangular): for zLevel in range(sets.getNumberOfSlices()): xUpper = [sets.getZSlice(zLevel).getUMF().getStart(), sets.getZSlice(zLevel).getUMF().getPeak(),sets.getZSlice(zLevel).getUMF().getEnd()] zUpper = None yUpper = [[0 for i in range(3)] for j in range(2)] if zLevel == 0: zUpper = [0.0,sets.getZValue(zLevel)] else: zUpper = [sets.getZValue(zLevel-1),sets.getZValue(zLevel)] for xD in range(3): yUpper[0][xD] = sets.getZSlice(zLevel).getFS(xUpper[xD]).getRight() yUpper[1][xD] = yUpper[0][xD] xLower = [sets.getZSlice(zLevel).getLMF().getStart(), sets.getZSlice(zLevel).getLMF().getPeak(),sets.getZSlice(zLevel).getLMF().getEnd()] zLower = None yLower = [[0 for i in range(3)] for j in range(2)] if zLevel == 0: zLower = [0.0,sets.getZValue(zLevel)] else: zLower = [sets.getZValue(zLevel-1),sets.getZValue(zLevel)] for xD in range(3): yLower[0][xD] = sets.getZSlice(zLevel).getFS(xLower[xD]).getLeft() yLower[1][xD] = yLower[0][xD] x,y = np.meshgrid(xUpper,zUpper) self.ax.plot_surface(np.asarray(x), np.asarray(y),np.asarray(yUpper),alpha = 0.5,color=self.colorList[zLevel%10]) x,y = np.meshgrid(xLower,zLower) self.ax.plot_surface(np.asarray(x), np.asarray(y),np.asarray(yLower),alpha = 0.5,color=self.colorList[zLevel%10]) elif isinstance(sets,GenT2MF_Trapezoidal): for zLevel in range(sets.getNumberOfSlices()): xUpper = [sets.getZSlice(zLevel).getUMF().getA(), sets.getZSlice(zLevel).getUMF().getB(),sets.getZSlice(zLevel).getUMF().getC(),sets.getZSlice(zLevel).getUMF().getD()] zUpper = None yUpper = [[0 for i in range(4)] for j in range(2)] if zLevel == 0: zUpper = [0.0,sets.getZValue(zLevel)] else: zUpper = [sets.getZValue(zLevel-1),sets.getZValue(zLevel)] for xD in range(4): yUpper[0][xD] = sets.getZSlice(zLevel).getFS(xUpper[xD]).getRight() yUpper[1][xD] = yUpper[0][xD] xLower = [sets.getZSlice(zLevel).getLMF().getA(), sets.getZSlice(zLevel).getLMF().getB(),sets.getZSlice(zLevel).getLMF().getC(),sets.getZSlice(zLevel).getLMF().getD()] zLower = None yLower = [[0 for i in range(4)] for j in range(2)] if zLevel == 0: zLower = [0.0,sets.getZValue(zLevel)] else: zLower = [sets.getZValue(zLevel-1),sets.getZValue(zLevel)] for xD in range(4): yLower[0][xD] = sets.getZSlice(zLevel).getFS(xLower[xD]).getLeft() yLower[1][xD] = yLower[0][xD] x,y = np.meshgrid(xUpper,zUpper) self.ax.plot_surface(np.asarray(x), np.asarray(y),np.asarray(yUpper),alpha = 0.5,color=self.colorList[zLevel%10]) x,y = np.meshgrid(xLower,zLower) self.ax.plot_surface(np.asarray(x), np.asarray(y),np.asarray(yLower),alpha = 0.5,color=self.colorList[zLevel%10]) else: for zLevel in range(sets.getNumberOfSlices()): xUpper = self.discretize(xAxisRange,xDisc) zUpper = None yUpper = [[0 for i in range(xDisc)] for j in range(2)] if zLevel == 0: zUpper = [0.0,sets.getZValue(zLevel)] else: zUpper = [sets.getZValue(zLevel-1),sets.getZValue(zLevel)] for xD in range(xDisc): yUpper[0][xD] = sets.getZSlice(zLevel).getFS(xUpper[xD]).getRight() yUpper[1][xD] = yUpper[0][xD] xLower = self.discretize(xAxisRange,xDisc) zLower = None yLower = [[0 for i in range(xDisc)] for j in range(2)] if zLevel == 0: zLower = [0.0,sets.getZValue(zLevel)] else: zLower = [sets.getZValue(zLevel-1),sets.getZValue(zLevel)] for xD in range(xDisc): yLower[0][xD] = sets.getZSlice(zLevel).getFS(xLower[xD]).getLeft() yLower[1][xD] = yLower[0][xD] if addExtraPoints: x_upper2 = [0.0] * (len(xUpper) + 2) y_upper2 = [[0.0 for i in range(len(yUpper[0]) + 2)] for j in range(2)] x_Lower2 = [0.0] * (len(xLower) + 2) y_Lower2 = [[0.0 for i in range(len(yLower[0]) + 2)] for j in range(2)] x_upper2[0] = sets.getSupport().getLeft() x_upper2[-1] = sets.getSupport().getRight() x_Lower2[0] = x_upper2[0] x_Lower2[-1] = x_upper2[-1] for i in range(len(xUpper)): x_upper2[i + 1] = xUpper[i] x_Lower2[i + 1] = xLower[i] y_upper2[0][i + 1] = yUpper[0][i] y_Lower2[0][i + 1] = yLower[0][i] y_upper2[1][i + 1] = yUpper[1][i] y_Lower2[1][i + 1] = yLower[1][i] xUpper = x_upper2 xLower = x_Lower2 yUpper = y_upper2 yLower = y_Lower2 x,y = np.meshgrid(xUpper,zUpper) self.ax.plot_surface(np.asarray(x), np.asarray(y),np.asarray(yUpper),alpha = 0.5,color=self.colorList[zLevel%10]) x,y = np.meshgrid(xLower,zLower) self.ax.plot_surface(np.asarray(x), np.asarray(y),np.asarray(yLower),alpha = 0.5,color=self.colorList[zLevel%10]) def discretize(self,support: Tuple,discLevel: int) -> List[float]: """Discretize the support values""" d = [0] * discLevel stepSize = (support.getSize())/(discLevel-1.0) d[0] = support.getLeft() d[-1] = support.getRight() for i in range(1,discLevel-1): d[i] = support.getLeft()+i*stepSize return d
LUCIDresearch/JuzzyPython
juzzyPython/generic/Plot.py
Plot.py
py
12,826
python
en
code
4
github-code
6
[ { "api_name": "matplotlib.pyplot.rcParams.update", "line_number": 16, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 16, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 16, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 40, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 40, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 44, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 44, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 48, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 48, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 52, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 52, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 56, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 56, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 57, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 57, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 59, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 61, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 61, "usage_type": "name" }, { "api_name": "numpy.meshgrid", "line_number": 63, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 64, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.title", "line_number": 68, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 68, "usage_type": "name" }, { "api_name": "juzzyPython.intervalType2.sets.IntervalT2MF_Interface.IntervalT2MF_Interface", "line_number": 70, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.gca", "line_number": 100, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 100, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 102, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 102, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 103, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 103, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 106, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 106, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 107, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 107, "usage_type": "name" }, { "api_name": "juzzyPython.type1.sets.T1MF_Interface.T1MF_Interface", "line_number": 109, "usage_type": "name" }, { "api_name": "juzzyPython.generic.Tuple.Tuple", "line_number": 109, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 126, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 126, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 127, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 127, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 128, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 128, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 129, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 129, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 130, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 130, "usage_type": "name" }, { "api_name": "juzzyPython.generalType2zSlices.sets.GenT2MF_Interface.GenT2MF_Interface", "line_number": 132, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ion", "line_number": 161, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 161, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 164, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 164, "usage_type": "name" }, { "api_name": "juzzyPython.generalType2zSlices.sets.GenT2MF_Interface.GenT2MF_Interface", "line_number": 166, "usage_type": "name" }, { "api_name": "juzzyPython.generic.Tuple.Tuple", "line_number": 166, "usage_type": "name" }, { "api_name": "juzzyPython.generalType2zSlices.sets.GenT2MF_Triangular.GenT2MF_Triangular", "line_number": 171, "usage_type": "argument" }, { "api_name": "numpy.meshgrid", "line_number": 196, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 197, "usage_type": "call" }, { "api_name": "numpy.meshgrid", "line_number": 198, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 199, "usage_type": "call" }, { "api_name": "juzzyPython.generalType2zSlices.sets.GenT2MF_Trapezoidal.GenT2MF_Trapezoidal", "line_number": 200, "usage_type": "argument" }, { "api_name": "numpy.meshgrid", "line_number": 225, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 226, "usage_type": "call" }, { "api_name": "numpy.meshgrid", "line_number": 227, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 228, "usage_type": "call" }, { "api_name": "numpy.meshgrid", "line_number": 279, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 280, "usage_type": "call" }, { "api_name": "numpy.meshgrid", "line_number": 281, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 282, "usage_type": "call" }, { "api_name": "juzzyPython.generic.Tuple.Tuple", "line_number": 284, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 284, "usage_type": "name" } ]
14810439425
import os, sys from os.path import join as ospj import torch import numpy as np from PIL import Image import torch.utils.data as data import kornia import argparse from logger import Logger class PairedImageDataset(data.Dataset): def __init__(self, lr_img_path, lr_filelist_path, hr_img_path, hr_filelist_path, args): self.args=args self.lr_img_path = lr_img_path self.hr_img_path = hr_img_path self.lr_filelist_path = lr_filelist_path self.hr_filelist_path = hr_filelist_path self.lr_img_list = [x.strip() for x in open(self.lr_filelist_path).readlines()] self.hr_img_list = [x.strip() for x in open(self.hr_filelist_path).readlines()] # -85.61112_30.197733_28cm.tif -> -85.61112_30.197733_50cm.png self.paired_lr_img_list = [x.replace("28cm.tif", "50cm.png") for x in self.hr_img_list] def __getitem__(self, item): lr_img_name = self.paired_lr_img_list[item] hr_img_name = self.hr_img_list[item] lr_img = Image.open(ospj(self.lr_img_path, lr_img_name)).convert('RGB') hr_img = Image.open(ospj(self.hr_img_path, hr_img_name)).convert('RGB') lr_img = np.asarray(lr_img) / 255.0 hr_img = np.asarray(hr_img) / 255.0 lr_img = kornia.image_to_tensor(lr_img).squeeze() hr_img = kornia.image_to_tensor(hr_img).squeeze() return lr_img, hr_img def __len__(self): return len(self.hr_img_list) class TVDenoise(torch.nn.Module): def __init__(self, args): super(TVDenoise, self).__init__() self.l2_term = torch.nn.MSELoss(reduction='mean') self.l1_term = torch.nn.L1Loss(reduction='mean') self.psnr = kornia.losses.PSNRLoss(max_val=1.0) self.ssim=kornia.losses.SSIM(5, reduction='mean') self.regularization_term = kornia.losses.TotalVariation() self.args=args self.xyxy = torch.nn.Parameter(data=torch.tensor([[0.], [0.], [713], [713]]), requires_grad=True) self.mem = torch.nn.Parameter(data=torch.tensor( [[1., 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 0, 1]]), requires_grad=False) def forward(self, src_img, dst_img): new_image = self.get_new_image(src_img, dst_img) return new_image def get_new_image(self, src_img, dst_img): self.boxes=torch.matmul(self.mem, self.xyxy).reshape(1, 4, 2) return kornia.crop_and_resize((src_img), self.boxes, dst_img.shape[-2:]) def train(epoch_i, data_loader, network, optimizer, args): num_iters = len(data_loader) loss_list=[] l1loss_list=[] l2loss_list=[] for i, input_tuple in enumerate(data_loader): optimizer.zero_grad() lr_img, hr_img = input_tuple resized_img = network(hr_img, lr_img) l1loss = network.l1_term(resized_img, lr_img) l2loss = network.l2_term(resized_img, lr_img) if args.use_l2_loss: loss = l2loss else: loss = l1loss loss.backward() optimizer.step() loss_list.append(loss.detach().numpy()) l1loss_list.append(l1loss.item()) l2loss_list.append(l2loss.item()) if i % 20 == 0: print("[{:2d}] [{:3d}/{:3d}]: loss {:.5f} l1:{:.5f} l2:{:.5f}". format(epoch_i, i, num_iters, loss.item(), l1loss.item(), l2loss.item()), "crop", network.xyxy.detach().numpy().flatten()) print("Averge loss: %.5f\tl1: %.5f\tl2: %.5f"%(np.mean(loss_list), np.mean(l1loss_list), np.mean(l2loss_list))) def main(): parser = argparse.ArgumentParser(description="Learnable Cropping Images") parser.add_argument('--use_l2_loss', action='store_true') parser.add_argument('--batch_size', type=int, default=32) parser.add_argument('--shuffle', action='store_true') parser.add_argument('--workers', type=int, default=2) parser.add_argument('--not_pin_memory', action='store_true') parser.add_argument('--lr_img_path', type=str, default="../../dataset/satellite_images/") parser.add_argument('--lr_filelist_path', type=str, default="data/satellite_images_filelist.txt") parser.add_argument('--hr_img_path', type=str, default="../../dataset/aerial_images/") parser.add_argument('--hr_filelist_path', type=str, default="data/aerial_images_filelist.txt") parser.add_argument('--num_epochs', type=int, default=25) parser.add_argument('--learning_rate', type=float, default=100.0) parser.add_argument('--exp_name', type=str, default="learncrop") args = parser.parse_args() logger = Logger() exp_dir = ospj("exps", args.exp_name+logger._timestr) os.makedirs(exp_dir, exist_ok=True) logger.create_log(exp_dir) sys.stdout = logger if args.use_l2_loss: print("use l2 loss") else: print("use l1 loss") dataset = PairedImageDataset(args.lr_img_path, args.lr_filelist_path, args.hr_img_path, args.hr_filelist_path, args) data_loader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=args.shuffle, num_workers=args.workers, pin_memory=not args.not_pin_memory, sampler=None, drop_last=False) network = TVDenoise(args) optimizer = torch.optim.SGD(network.parameters(), lr=args.learning_rate, momentum=0.9) for epoch_i in range(args.num_epochs): train(epoch_i, data_loader, network, optimizer, args) if __name__ == "__main__": main()
mengyuest/satellite2aerial
learn_crop.py
learn_crop.py
py
5,572
python
en
code
0
github-code
6
[ { "api_name": "torch.utils.data.Dataset", "line_number": 11, "usage_type": "attribute" }, { "api_name": "torch.utils.data", "line_number": 11, "usage_type": "name" }, { "api_name": "PIL.Image.open", "line_number": 31, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 31, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 31, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 32, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 32, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 32, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 34, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 35, "usage_type": "call" }, { "api_name": "kornia.image_to_tensor", "line_number": 37, "usage_type": "call" }, { "api_name": "kornia.image_to_tensor", "line_number": 38, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 45, "usage_type": "attribute" }, { "api_name": "torch.nn.MSELoss", "line_number": 48, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 48, "usage_type": "attribute" }, { "api_name": "torch.nn.L1Loss", "line_number": 49, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 49, "usage_type": "attribute" }, { "api_name": "kornia.losses.PSNRLoss", "line_number": 50, "usage_type": "call" }, { "api_name": "kornia.losses", "line_number": 50, "usage_type": "attribute" }, { "api_name": "kornia.losses.SSIM", "line_number": 51, "usage_type": "call" }, { "api_name": "kornia.losses", "line_number": 51, "usage_type": "attribute" }, { "api_name": "kornia.losses.TotalVariation", "line_number": 52, "usage_type": "call" }, { "api_name": "kornia.losses", "line_number": 52, "usage_type": "attribute" }, { "api_name": "torch.nn.Parameter", "line_number": 55, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 55, "usage_type": "attribute" }, { "api_name": "torch.tensor", "line_number": 55, "usage_type": "call" }, { "api_name": "torch.nn.Parameter", "line_number": 56, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 56, "usage_type": "attribute" }, { "api_name": "torch.tensor", "line_number": 56, "usage_type": "call" }, { "api_name": "torch.matmul", "line_number": 66, "usage_type": "call" }, { "api_name": "kornia.crop_and_resize", "line_number": 67, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 98, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 101, "usage_type": "call" }, { "api_name": "logger.Logger", "line_number": 117, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 118, "usage_type": "call" }, { "api_name": "logger._timestr", "line_number": 118, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 119, "usage_type": "call" }, { "api_name": "logger.create_log", "line_number": 121, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 122, "usage_type": "attribute" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 129, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 129, "usage_type": "attribute" }, { "api_name": "torch.optim.SGD", "line_number": 133, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 133, "usage_type": "attribute" } ]
27146623453
from UserSimulator.User import User from UserSimulator.user_behavior import calculate_session_length, Devices, load_spotify, playback_decision from datetime import datetime from datetime import timedelta import random import time from json import load import pickle import json import csv import requests from DataPreprocessor.build_user_track_dict import TrainTripletParser from DataPreprocessor.normalize_play_counts import SongRatingNormalizer from DataPreprocessor.create_blc_input import SparseMatGenerator from DataPreprocessor.filter_sparse_songs import SparseSongFilter from DataPreprocessor.build_song_dict import SongDictBuilder from DataPreprocessor.get_top_user_artists import TopUserBuilder from ResultProcessor.process_P import PProcessor from ResultProcessor.build_nym_ratings import NymRatingBuilder from ResultProcessor.get_top_nym_songs import SongListBuilder from ResultProcessor.get_unique_nym_artists import UniqueNymArtistFilter from ResultProcessor.get_nym_artist_variance import ArtistVarianceCalculator from ResultProcessor.NymRatingFormatter import NymRatingFormatter from spotify import SpotifyWrapper from os import path REQ = "https://ec2-52-50-185-176.eu-west-1.compute.amazonaws.com:4400/ratings/update" RATINGS_REQ = "http://localhost:4000/ratings/{}/spotify.com" # pre-selected users just for convenience # contains tuples in the form (nym, user_number) USER_LIST = [ (0,234384), (0,234384), (0,402687), (0,462404), (0,669980), (0,991089), (1,679065), (1,723268), (1,889236), (1,954125), (1,964856), (10,12383), (10,222379), (10,241854), (10,332593), (10,436898), (12,179532), (12,351979), (12,473021), (12,811920), (12,94387), (13,190513), (13,272213), (13,372156), (13,745999), (13,752718), (14,152776), (14,291748), (14,555065), (14,880214), (14,948598), (2,202368), (2,8028), (2,869250), (2,957121), (2,975702), (3,329210), (3,491540), (3,622692), (3,819217), (3,835998), (4,143096), (4,411888), (4,470913), (4,669115), (4,792160), (5,169059), (5,472503), (5,502502), (5,599726), (5,883355), (6,151851), (6,269475), (6,427642), (6,483795), (6,864712), (7,117436), (7,471509), (7,542147), (7,605562), (7,66213), (8,355770), (8,400013), (8,689580), (8,74987), (8,824276), (9,189979), (9,396445), (9,513441), (9,543235), (9,753614) ] config = load(open('config.json')) def make_rating(nym_id, domain, item, score, num_v,): return { "nymRating" : { "numVotes" : num_v, "score": score }, "domain": domain, "item": item, "nym_id": nym_id } def manual_update(details): _, nym, domain, item, rating, num_votes = details new_rating = make_rating(nym, domain, item, rating, num_votes+1) headers = { "content-type": "application/json"} resp = requests.put(REQ, data=json.dumps({'rating' : new_rating}), headers=headers, verify=False) return resp def load_user_nym_pairs(): nym_users_dict = {} user_nym_pairs = [] path_to_P_with_ids = path.join(config["nym_data"]["base"], config["nym_data"]["P_with_ids"]) with open(path_to_P_with_ids) as input_file: for line in input_file: user_nym_pairs.append(map(int, line.split(","))) # Convert list to dict for user, nym in user_nym_pairs: if nym not in nym_users_dict: nym_users_dict[nym] = [] nym_users_dict[nym].append(user) return nym_users_dict def load_user_song_map(): with open(path.join(config["user_data"]["base"], config["user_data"]["user_songs_map"]), 'rb') as input_pickle: return pickle.load(input_pickle) print("Done") def havent_played_song(user,song_id): song = user.song_to_id_dict[song_id] user_songs_map = load_user_song_map() nym_users_dict = load_user_nym_pairs() result = [] for nym, users in nym_users_dict.items(): # print("Building ratings for nym {}".format(nym)) # Iterate through each user in a Nym for user in sorted(users): # For each user get every song they listened to and their play counts found = False for user_song, _ in user_songs_map[user]: if user_song == song: found = True break if not found: result.append((nym, user)) return sorted(result, key=lambda x: x[0]) def update_data(): # Normalize play counts print("Normalizing play counts") song_rating_normalizer = SongRatingNormalizer(config) song_rating_normalizer.load_user_songs_dict() song_rating_normalizer.normalize_data() song_rating_normalizer.write_data_to_disk() print("Done") del song_rating_normalizer # Generate sparse matrix for BLC print("Generating Sparse Matrix") sparse_mat_generator = SparseMatGenerator(config, num_users=40000) sparse_mat_generator.load_data() sparse_mat_generator.generate_sparse_mat() sparse_mat_generator.write_user_data() print("Done") del sparse_mat_generator # Filter sparse songs from matrix print("Filtering Sparse Songs from matrix") sparse_song_filter = SparseSongFilter(config) sparse_song_filter.parse_sparse_mat_files() sparse_song_filter.filter_sparse_songs() sparse_song_filter.write_filtered_matrix() print("Done") del sparse_song_filter # Build dict of song IDs to artist-song tuples print("Building dict of songs") song_dict_builder = SongDictBuilder(config) song_dict_builder.load_track_list() song_dict_builder.write_song_details_to_file() print("Done") del song_dict_builder # Build the top users for dataset print("Outputting top users") top_user_builder = TopUserBuilder(config) top_user_builder.load_data() top_user_builder.get_top_songs() top_user_builder.dump_top_users() del top_user_builder def gen_db_data(): # Map row numbers to users in raw P file print("Processing P") p_processor = PProcessor(config) p_processor.generate_row_user_map() p_processor.map_rows_to_users() del p_processor # Build ratings for nym and write out to nym_ratings directory print("Generating Nym Ratings") nym_rating_builder = NymRatingBuilder(config) nym_rating_builder.load_data() nym_rating_builder.delete_old_ratings() nym_rating_builder.build_ratings() nym_rating_builder.dump_nym_users_map() del nym_rating_builder # Get Top Nym songs based on ratings print("Generating Song Lists") song_list_builder = SongListBuilder(config) song_list_builder.load_data() song_list_builder.load_ratings() song_list_builder.delete_old_songs() song_list_builder.build_song_lists() del song_list_builder # Get artists unique to each nym print("Generating artists unique to each nym") unique_nym_artist_filter = UniqueNymArtistFilter(config) unique_nym_artist_filter.load_songs() unique_nym_artist_filter.delete_old_artists() unique_nym_artist_filter.build_top_nym_artists() unique_nym_artist_filter.filter_unique_artists() del unique_nym_artist_filter print("Calculating Artist Variances") artist_variance_calculator = ArtistVarianceCalculator(config) artist_variance_calculator.load_data() artist_variance_calculator.calculate_variance() del artist_variance_calculator print("Generating ratings for db") nym_rating_formatter = NymRatingFormatter(config) nym_rating_formatter.load_data() nym_rating_formatter.parse_song_rankings() nym_rating_formatter.generate_db_input() del nym_rating_formatter def load_previous_ratings(nym): result = {} with open('Data/DB_Data/ratings-1.csv', 'r') as input_file: ratings = csv.reader(input_file, delimiter=',') for _,nym_r,domain, item,rating,num_v in ratings: if nym_r != "nym" and int(nym_r) == nym: result[item] = [domain,rating,num_v] # sort by item return result def load_new_ratings(nym): result = {} with open('Data/DB_Data/ratings.csv', 'r') as input_file: ratings = csv.reader(input_file, delimiter=',') for _,nym_r,domain, item,rating,num_v in ratings: if nym_r != "nym" and int(nym_r) == nym: result[item] = [domain,rating,num_v] # sort by item return result # Send new ratings to the server def update_server(nym): #ratings_resp = requests.get(RATINGS_REQ.format(nym), verify=False) #current_ratings = ratings_resp.content[:len(ratings_resp.content) - int(ratings_resp.headers["padding-len"])] old_ratings = load_previous_ratings(nym) new_ratings = load_new_ratings(nym) resp = None for k, v in new_ratings.items(): if (not k in old_ratings) or old_ratings[k] != v: domain, rating, num_v = v print("item:{} , rating:{}, num votes:{}".format(k, rating, num_v)) new_rating = { "nymRating" : { "numVotes" : int(num_v), "score": float(rating) }, "domain": domain, "item": k, "nym_id": nym } headers = { "content-type": "application/json"} resp = requests.put(REQ, data=json.dumps({'rating' : new_rating}), headers=headers, verify=False) return resp def listen_to_playlist(nym, user_num): prev_sess = None user = User(nym, user_num, config) start = datetime.now() sess_length = float(calculate_session_length(start, Devices.Mobile)) end = timedelta(seconds=(sess_length * 60)) spotify_obj = load_spotify() decision = 'appload' while sess_length > 0: while datetime.now() < start + end: print("Got here") try: id, nym, domain, uri, rating, num_votes = user.get_next_recommendation() resp = None decision = playback_decision(spotify_obj, uri, decision) if decision == 'trackdone': print("Updating") resp = manual_update([id, nym, domain, uri, rating, int(num_votes)]) elif decision == "clickrow": user.set_recommendation(random.randint(0, len(user.recommendations))) if resp: to_be_added = False print(resp.status_code) print(resp.headers["padding-len"]) while resp.status_code != 200 and not to_be_added: rating = resp.content[:len(resp.content) - int(resp.headers["padding-len"])].decode('utf8') rating = load(rating) if int(rating["nymRating"]["numVotes"]) == 0: to_be_added = True else: num_votes = float(rating["nymRating"]["score"]) num_votes = int(rating["nymRating"]["numVotes"]) resp = manual_update([id, nym, domain, uri, rating, num_votes]) except Exception as e: print(e) prev_sess = sess_length sess_length = calculate_session_length(start, Devices.Mobile, prev_session=prev_sess) print("Session length is {}".format(sess_length)) end = timedelta(seconds=(int(sess_length) * 60)) start = datetime.now() if __name__ == "__main__": start = datetime.now() period = timedelta(hours=3) for _ in range(1): index = random.randint(0, len(USER_LIST) - 1) nym, user_num = USER_LIST[index] print("nym:{}, user:{}".format(0, user_num)) current_hour = datetime.now().hour played = False pick_time = random.uniform(current_hour, current_hour + 1) % 24 print("Picked time is {}".format(pick_time)) while datetime.now() < start + period: if not played and datetime.now().minute >= (pick_time % 1) * 60: listen_to_playlist(nym, user_num) print("finished iteration") played = True if current_hour < datetime.now().hour: current_hour = datetime.now().hour played = False pick_time = random.uniform(current_hour, current_hour + 1) % 24 print("Picked time is {}".format(pick_time))
dyllew3/Timing-Attacks-Against-Opennym
MillionSongDataset/simulate_user.py
simulate_user.py
py
12,732
python
en
code
0
github-code
6
[ { "api_name": "json.load", "line_number": 106, "usage_type": "call" }, { "api_name": "requests.put", "line_number": 125, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 125, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 133, "usage_type": "call" }, { "api_name": "os.path", "line_number": 133, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 147, "usage_type": "call" }, { "api_name": "os.path", "line_number": 147, "usage_type": "name" }, { "api_name": "pickle.load", "line_number": 148, "usage_type": "call" }, { "api_name": "DataPreprocessor.normalize_play_counts.SongRatingNormalizer", "line_number": 175, "usage_type": "call" }, { "api_name": "DataPreprocessor.create_blc_input.SparseMatGenerator", "line_number": 184, "usage_type": "call" }, { "api_name": "DataPreprocessor.filter_sparse_songs.SparseSongFilter", "line_number": 193, "usage_type": "call" }, { "api_name": "DataPreprocessor.build_song_dict.SongDictBuilder", "line_number": 202, "usage_type": "call" }, { "api_name": "DataPreprocessor.get_top_user_artists.TopUserBuilder", "line_number": 210, "usage_type": "call" }, { "api_name": "ResultProcessor.process_P.PProcessor", "line_number": 219, "usage_type": "call" }, { "api_name": "ResultProcessor.build_nym_ratings.NymRatingBuilder", "line_number": 226, "usage_type": "call" }, { "api_name": "ResultProcessor.get_top_nym_songs.SongListBuilder", "line_number": 235, "usage_type": "call" }, { "api_name": "ResultProcessor.get_unique_nym_artists.UniqueNymArtistFilter", "line_number": 244, "usage_type": "call" }, { "api_name": "ResultProcessor.get_nym_artist_variance.ArtistVarianceCalculator", "line_number": 252, "usage_type": "call" }, { "api_name": "ResultProcessor.NymRatingFormatter.NymRatingFormatter", "line_number": 258, "usage_type": "call" }, { "api_name": "csv.reader", "line_number": 268, "usage_type": "call" }, { "api_name": "csv.reader", "line_number": 278, "usage_type": "call" }, { "api_name": "requests.put", "line_number": 306, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 306, "usage_type": "call" }, { "api_name": "UserSimulator.User.User", "line_number": 312, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 313, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 313, "usage_type": "name" }, { "api_name": "UserSimulator.user_behavior.calculate_session_length", "line_number": 314, "usage_type": "call" }, { "api_name": "UserSimulator.user_behavior.Devices.Mobile", "line_number": 314, "usage_type": "attribute" }, { "api_name": "UserSimulator.user_behavior.Devices", "line_number": 314, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 315, "usage_type": "call" }, { "api_name": "UserSimulator.user_behavior.load_spotify", "line_number": 316, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 319, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 319, "usage_type": "name" }, { "api_name": "UserSimulator.user_behavior.playback_decision", "line_number": 324, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 329, "usage_type": "call" }, { "api_name": "json.load", "line_number": 336, "usage_type": "call" }, { "api_name": "UserSimulator.user_behavior.calculate_session_length", "line_number": 347, "usage_type": "call" }, { "api_name": "UserSimulator.user_behavior.Devices.Mobile", "line_number": 347, "usage_type": "attribute" }, { "api_name": "UserSimulator.user_behavior.Devices", "line_number": 347, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 349, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 350, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 350, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 354, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 354, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 355, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 357, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 360, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 360, "usage_type": "name" }, { "api_name": "random.uniform", "line_number": 362, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 364, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 364, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 365, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 365, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 369, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 369, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 370, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 370, "usage_type": "name" }, { "api_name": "random.uniform", "line_number": 372, "usage_type": "call" } ]
7811594670
from qiskit import * from qiskit.visualization import plot_histogram from qiskit.visualization import plot_state_city, plot_bloch_multivector from qiskit.visualization import plot_state_paulivec, plot_state_hinton from qiskit.visualization import plot_state_qsphere # quantum circuit to make a Bell state bell = QuantumCircuit(2, 2) bell.h(0) bell.cx(0, 1) meas = QuantumCircuit(2, 2) meas.measure([0,1], [0,1]) # execute the quantum circuit backend = BasicAer.get_backend('qasm_simulator') # the device to run on circ = bell.compose(meas) result = backend.run(transpile(circ, backend), shots=1000).result() counts = result.get_counts(circ) print(counts) #히스토그램 plot_histogram(counts) #히스토그램 그래프 옵션 # Execute 2-qubit Bell state again second_result = backend.run(transpile(circ, backend), shots=1000).result()#트랜스파일: 서킷(cric)을 벡엔드로 소스코드를 변환한다. second_counts = second_result.get_counts(circ) # Plot results with legend legend = ['First execution', 'Second execution']#히스토그램에 레이블 지정 plot_histogram([counts, second_counts], legend=legend, figsize=(15,12), color=['red', 'blue'], bar_labels=False)#figsize :그래프 사이즈 설정 #마치 건물처럼 표현하는 그래프 backend = BasicAer.get_backend('statevector_simulator') # the device to run on result = backend.run(transpile(bell, backend)).result() psi = result.get_statevector(bell) plot_state_city(psi) #힌튼 plot_state_hinton(psi) #qsphere 상태 벡터의 진폭과 위상이 구체에 그려지는 양자 상태 plot_state_qsphere(psi) #블로흐 구면 plot_bloch_multivector(psi)
xhaeng06x/quantum_computing
codingproject/whatsyoureta/ETA_3Qiskit 시각화하기/ETA-3 여러가지 시각화 도구main.py
ETA-3 여러가지 시각화 도구main.py
py
1,705
python
en
code
0
github-code
6
[ { "api_name": "qiskit.visualization.plot_histogram", "line_number": 23, "usage_type": "call" }, { "api_name": "qiskit.visualization.plot_histogram", "line_number": 31, "usage_type": "call" }, { "api_name": "qiskit.visualization.plot_state_city", "line_number": 38, "usage_type": "call" }, { "api_name": "qiskit.visualization.plot_state_hinton", "line_number": 42, "usage_type": "call" }, { "api_name": "qiskit.visualization.plot_state_qsphere", "line_number": 45, "usage_type": "call" }, { "api_name": "qiskit.visualization.plot_bloch_multivector", "line_number": 48, "usage_type": "call" } ]
2028366431
#Aiswarya Sankar #8/5/2015 import webapp2 import jinja2 import os import logging import hashlib import hmac import re import string import random import time import math import urllib2 import json from google.appengine.ext import db from google.appengine.api import urlfetch from google.appengine.api import memcache template_dir = os.path.join(os.path.dirname(__file__), 'templates') jinja_env = jinja2.Environment(loader = jinja2.FileSystemLoader(template_dir), autoescape=True) USER_RE = re.compile(r"^[a-zA-Z0-9_-]{3,20}$") PASS_RE = re.compile(r"^.{3,20}$") DAYS_OF_WEEK = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday'] EVENT_TYPE = ['Competition', 'Meeting notice', 'Resource', 'Reminder', 'Survey'] ALL_INTERESTS = { 'Mathematics':'http://www.todayifoundout.com/wp-content/uploads/2014/11/mathematics-symbols.jpg', 'Biology': 'http://www.ccny.cuny.edu/biology/images/biologybanner.jpg', 'Chemistry': 'http://www.learnin4livin.com/wp-content/uploads/2014/07/acl2.jpg', 'Physics': 'http://callidolearning.com/wp-content/uploads/2015/07/physics.jpeg', 'Earth Science': 'http://science.nasa.gov/media/medialibrary/2011/03/01/small_earth.jpg', 'History': 'http://xemlasuong.org/wp-content/uploads/2015/01/ebola-virus-history.jpg', 'Computer Science Theory': 'https://upload.wikimedia.org/wikipedia/en/6/64/Theoretical_computer_science.svg', 'Computer Programming' : 'http://static.topyaps.com/wp-content/uploads/2012/12/computer-programming.jpg', 'Law' :'http://nagps.org/wordpress/wp-content/uploads/2014/02/law.jpg', 'Business' : 'http://globe-views.com/dcim/dreams/business/business-01.jpg', 'Economics' : 'http://www.stlawu.edu/sites/default/files/page-images/1economics_1.jpg', 'Finance' : 'http://intraweb.stockton.edu/eyos/hshs/content/images/2013%20Pics/finance.jpg', 'Marketing' : 'http://2z15ag3nu0eh3p41p2jsw3l1.wpengine.netdna-cdn.com/wp-content/uploads/2015/06/Marketing1.jpg', 'Arts' : 'http://bcaarts.org/images/Paint.jpg', 'Medicine' : 'http://ufatum.com/data_images/medicine/medicine5.jpg', 'Theater' : 'http://princetonfestival.org/wp-content/uploads/2015/03/LectureConvo.jpg', 'Dance' : 'http://static.wixstatic.com/media/11c679_bd0d108824a847729f998a7d4cd903de.gif', 'Health' : 'http://www.pacific.edu/Images/administration/finance/hr/healthy-heart.jpg', 'Food' : 'http://www.changefood.org/wp-content/uploads/2013/09/feel-healthier-bodymind-fresh-food-better-than-canned_32.jpg', 'Foreign Language' : 'http://www.scps.nyu.edu/content/scps/academics/departments/foreign-languages/_jcr_content/main_content/component_carousel/image_with_overlay_1.img.jpg/1406040703759.jpg', 'Literature' : 'http://c.tadst.com/gfx/600x400/galician-literature-day-spain.jpg?1', 'Design' : 'http://www.fotosefotos.com/admin/foto_img/foto_big/vetor_em_alta_qualidade_ee11960a4ece46ad67babac86517de82_vetor%20em%20alta%20qualidade.jpg', 'Service' : 'http://www.ycdsb.ca/assets/images/christian-community-service.jpg', 'Engineering' : 'http://cdn1.tnwcdn.com/wp-content/blogs.dir/1/files/2014/03/engineering-blueprint.jpg', 'Environmental Science' : 'http://www.ccny.cuny.edu/enveng/images/essbanner.jpg', 'Speech' : 'http://trullsenglish.weebly.com/uploads/2/5/1/9/25194894/1190544_orig.jpg' } urlfetch.set_default_fetch_deadline(240) secret = 'changetheworld' def render_str(template, **params): t = jinja_env.get_template(template) return t.render(params) def valid_username(username): return username and USER_RE.match(username) def valid_password(password): return password and PASS_RE.match(password) def memcacheClub(): #x = memcache.get('clubs') if x is None: clubQuery = Club.all() if clubQuery is not None: x = clubQuery else: x = [] x.append(a) memcache.set('clubs', x) def memcacheClublist(): y = memcache.get('CLUB_LIST') if y is None: clubNameQuery = db.GqlQuery('Select name from Club') if clubNameQuery is not None: y = clubNameQuery else: y= [] y.append(n) memcache.set('CLUB_LIST', y) #password salting functions def make_salt(): return ''.join(random.choice(string.letters) for x in xrange(5)) def create_salt_pass(name, password, salt=''): if salt == '': salt = make_salt() h = str(hashlib.sha256(name+password+salt).hexdigest()) return '%s,%s' %(salt, h) def check_salt_pass(name, password, h): salt = h.split(',')[0] if h == create_salt_pass(name, password, salt): return True #cookie hashing functions def create_cookie_hash(val): return '%s|%s' %(val, hmac.new(secret, val).hexdigest()) def check_cookie_hash(h): val = h.split('|')[0] if h == create_cookie_hash(val): return val # def topics(): # x = urllib2.urlopen('https://api.coursera.org/api/catalog.v1/categories').read() # j = json.loads(x) # topics = [] # for x in range(0, len(j['elements'])): # topics.append(j['elements'][x]['name']) # memcache.set('topics', topics) # def urls(): # start = 'http://ajax.googleapis.com/ajax/services/search/images?v=1.0&q=' # urlQueries = [] # temp = [] # topics = memcache.get('topics') # logging.info(topics) # for a in topics: # m = a.split(' ') # urlQueries.append('%s%s' % (start, '%20'.join(m))) # for url in urlQueries: # x = urllib2.urlopen(url).read() # j = json.loads(x) # logging.info(j['responseData']['results'][0]['url']) # temp.append( j['responseData']['results'][0]['url']) # memcache.set('urls', temp) ######## # 4 entity kinds here User, Club, Interest and Post ######## class User(db.Model): name = db.StringProperty(required=True) username = db.StringProperty(required=True) idNum = db.StringProperty(required=True) password = db.StringProperty(required=True) interests = db.StringListProperty() class Club(db.Model): name = db.StringProperty(required=True) officers = db.StringListProperty() interests = db.StringListProperty() location = db.StringProperty() days = db.StringListProperty() time = db.StringProperty() #brunch, lunch, after school adviser = db.StringProperty() picUrl = db.StringProperty() def render_new_post(self): global EVENT_TYPE return render_str('newPost.html', eventType = EVENT_TYPE) class Post(db.Model): title = db.StringProperty() content = db.TextProperty() created_time = db.DateTimeProperty(auto_now_add = True) interest = db.StringListProperty() inputter = db.StringProperty() picUrl = db.StringProperty() eventType = db.StringProperty() def render_post(self): return render_str('post.html', p = self) class Interest(db.Model): name = db.StringProperty() picUrl = db.StringProperty() # def members (self): # return Interest.gql("where user = :n", n=self.key()) # def render(self, num=0, int_list=[]): # return render_str("interestTable.html", int_list=int_list, num= num) class Handler(webapp2.RequestHandler): def write(self, *a, **kw): self.response.write(*a, **kw) def render_str(self, template, **params): t = jinja_env.get_template(template) return t.render(params) def render(self, template, **kw): self.write(self.render_str(template, **kw)) def login(self, u): self.set_cookie(val=u.idNum) #cookie functions def set_club_cookie(self, name='', val=''): cookie_hash = str(create_cookie_hash(val)) self.response.headers['Content-Type'] = 'text/plain' self.response.headers.add_header('set-cookie','club_id=%s;Path=/' % cookie_hash) self.response.headers['Content-Type'] = 'text/html' def set_cookie(self, name='', val=''): cookie_hash = str(create_cookie_hash(val)) self.response.headers['Content-Type'] = 'text/plain' self.response.headers.add_header('set-cookie','user_id=%s;Path=/' % cookie_hash) def get_cookie(self, name=''): cookie = self.request.cookies.get(name) if cookie: return check_cookie_hash(cookie) def initialize(self, *a, **kw): webapp2.RequestHandler.initialize(self, *a, **kw) idNum = self.get_cookie('user_id') clubNum = self.get_cookie('club_id') if idNum: self.user = User.get_by_key_name(idNum) else: self.user=None if clubNum: self.club = Club.get_by_id(int(clubNum)) else: self.club=None class LoginHandler(Handler): def get(self): self.render('login.html') def post(self): username= self.request.get('username') password = self.request.get('password') u = User.gql('where username = :n', n=username).get() if u and check_salt_pass(username, password, u.password): self.login(u) self.redirect('/home') else: err1 = 'Please check your username.' self.render('login.html', err1=err1) class EditClubHandler(Handler): def get(self): # top = memcache.get('topics') # if top is None: # topics() # top = memcache.get('topics') top=ALL_INTERESTS.keys() club_id = self.get_cookie('club_id') user_id = self.get_cookie('user_id') if club_id and user_id: cl = Club.get_by_id(int(club_id)) self.render('createClub.html', week=DAYS_OF_WEEK, topic_list= top, name=cl.name, location=cl.location, time=cl.time, days=cl.days, interests=cl.interests, officers=cl.officers, picUrl=cl.picUrl, adviser=cl.adviser) def post(self): n = self.request.get('name') a = self.request.get('adviser') l = self.request.get('location') t = self.request.get('time') d = self.request.get_all('days') i = self.request.get_all('interests') o = self.request.get_all('officers') picUrl = self.request.get('picUrl') if self.club: self.club.name=n self.club.adviser=a self.club.location=l self.club.time=t self.club.days=d for x in self.request.get_all('interests'): if x not in self.club.interests: self.club.interests.append(x) self.club.officers=o self.club.picUrl=picUrl self.club.put() if self.get_cookie('user_id'): self.redirect('/clubHome/%s' % self.get_cookie('club_id')) class ClubHandler(Handler): def get(self): # top = memcache.get('topics') # if top is None: # topics() # top = memcache.get('topics') top=ALL_INTERESTS.keys() club_id = self.get_cookie('club_id') user_id = self.get_cookie('user_id') # if club_id and user_id: # cl = Club.get_by_id(int(club_id)) # self.render('createClub.html', week=DAYS_OF_WEEK, topic_list= top, # name=cl.name, location=cl.location, time=cl.time, days=cl.days, # interests=cl.interests, officers=cl.officers, picUrl=cl.picUrl, # adviser=cl.adviser) # else: self.render('createClub.html', week=DAYS_OF_WEEK, topic_list= top) def post(self): n = self.request.get('name') a = self.request.get('adviser') l = self.request.get('location') t = self.request.get('time') d = self.request.get_all('days') i = self.request.get_all('interests') o = self.request.get_all('officers') picUrl = self.request.get('picUrl') # if self.club: # self.club.name=n # self.club.adviser=a # self.club.location=l # self.club.time=t # self.club.days=d # for x in self.request.get_all('interests'): # if x not in self.club.interests: # self.club.interests.append(x) # self.club.officers=o # self.club.picUrl=picUrl # self.club.put() # logging.info(self.club.location) # else: a = Club(name=n, location=l, time=t, days=d, interests=i, officers=o, picUrl=picUrl, adviser=a) a.put() if self.get_cookie('user_id'): self.redirect('/clubHome/%s' % self.get_cookie('club_id')) elif 'Club' or 'club' in n: self.render('extra.html', name=n, x=True, thanks=True) else: self.render('extra.html', name=n, x=False, thanks=True) class SignUpHandler(Handler): def register(self, u, p, n, i): m = User.gql('where idNum= :n', n=i).get() s = User.gql('where username = :n', n = u).get() if m: self.render('signup.html', err_user = "Student id %s already has an account" %i) elif s: self.render('signup.html', err_user = "That username already exists. Please choose another.") else: password=str(create_salt_pass(u, p)) a = User(key_name= i, username=u, password=password, name=n, idNum=i) a.put() self.set_cookie(name='user_id', val = i) self.redirect('/interest') def get(self): self.render('signup.html') def post(self): logging.info('in post') have_error=False username= self.request.get('username') password = self.request.get('password') name = self.request.get('name') idNum = self.request.get('idNum') params = dict(username = username) if not valid_username(username): params['err_user'] = "That's not a valid username." have_error = True if not valid_password(password): params['err_pass'] = "That's not a valid password." have_error = True if not name: params['err_name'] = "Please enter your name." have_error=True if not idNum: params['err_id'] = "Please enter your id Number." have_error=True if have_error: self.render('signup.html', **params) else: self.register(u=username, p=password, n=name, i=idNum) class InterestHandler(Handler): def get(self): if self.user: global ALL_INTERESTS # vtop = memcache.get('topics') # vurls = memcache.get('urls') # if vtop or vurls is None: # topics() # urls() # vtop = memcache.get('topics') # vurls = memcache.get('urls') # int_list = memcache.get('int_list') # l = [] # if int_list is None: # for x in range(0, len(vtop)): # a = Interest(name=vtop[x], picUrl=vurls[x]) # a.put() # l.append(a) # memcache.set('int_list', l) # int_list = memcache.get('int_list') # length = len(int_list) # self.render('interest.html', int_list = int_list, length=length) self.render('interest.html', ALL_INTERESTS = ALL_INTERESTS) else: self.redirect('/logout') def post(self): for x in self.request.get_all('interests'): if x not in self.user.interests: self.user.interests.append(x) else: logging.info(x) self.user.put() self.redirect('/home') class HomeHandler(Handler): def render_page(self, user): m = [] posts = [] postIds = [] CLUB_LIST= [] clubs = Club.all() for x in clubs: CLUB_LIST.append(x.name) clubIds = [] if clubs: for x in clubs: clubIds.append(str(x.key().id())) length = len(clubIds) for a in user.interests: m.append(a) w = Post.gql("where interest = :c order by created_time desc", c = a) for e in w: if e.key().id() not in postIds: posts.append(e) postIds.append(e.key().id()) self.render('userHome.html', account=True, isClub=False, length = length, clubIds = clubIds, clubs=CLUB_LIST, user=user, posts=posts, intList=m) def get(self): if self.user: self.render_page(self.user) else: self.redirect('/logout') def post(self): clubName = self.request.get('club') clu = Club.gql('where name = :n', n=clubName).get() if clu: idNum = clu.key().id() logging.info('idNum = %s' %idNum) self.redirect('/clubHome/%s' %idNum) class ClubHomeHandler(Handler): def checkOfficers(self, club): vari = self.get_cookie(name='user_id') if vari in club.officers: return True def render_page(self, post_id): userId = self.get_cookie('user_id') if userId: account = True else: account = False CLUB_LIST= [] clubs = Club.all() for x in clubs: CLUB_LIST.append(x.name) club = Club.get_by_id(int(post_id)) clubIds = [] if clubs: for x in clubs: clubIds.append(str(x.key().id())) if club: isOfficer = self.checkOfficers(club) posts = Post.gql("where inputter = :c order by created_time desc", c = post_id) offNames = [] for x in club.officers: if x != '' and User.get_by_key_name(x): offNames.append(User.get_by_key_name(x).name) self.render('clubHome.html', account = account, isClub=True, length=len(clubIds), clubIds = clubIds, clubs=CLUB_LIST, offNames = offNames, club=club, isOfficer=isOfficer, posts=posts) else: self.render('extra.html', thanks=False) def get(self, post_id): #if self.user: self.set_club_cookie(name='club_id', val=post_id) self.render_page(post_id=post_id) #else: # self.redirect('/') def post(self, post_id): if self.request.get('form_name') == 'search': clubName = self.request.get('club') clu = Club.gql('where name = :n', n=clubName).get() if clu: idNum = clu.key().id() logging.info('idNum = %s' %idNum) self.redirect('/clubHome/%s' %idNum) else: club = Club.get_by_id(int(post_id)) content = self.request.get("content") eventType =self.request.get("eventType") interest = club.interests title = "%s posted a %s" % (club.name, eventType) picUrl = club.picUrl inputter = post_id p = Post(eventType=eventType, picUrl = picUrl, title=title, content=content, interest=interest, inputter=inputter) p.put() time.sleep(0.5) self.render_page(post_id=post_id) class LogoutHandler(Handler): def get(self): self.response.headers['Content-Type'] = 'text/plain' var = '' self.response.headers.add_header('set-cookie', 'user_id=%s;Path=/' % var) self.response.headers.add_header('set-cookie', 'club_id=%s;Path=/' % var) self.redirect('/') def post(self): pass class AllClubsHandler(Handler): def get(self): #clubs = memcache.get('clubs') clubs = Club.all() clubIds=[] if clubs: for x in clubs: clubIds.append(str(x.key().id())) if clubs: length = len(clubIds) self.render('allClubs.html', clubIds=clubIds, clubs= clubs, length=length) else: self.response.write("No clubs have been added yet") app = webapp2.WSGIApplication([ ('/login', LoginHandler), ('/createClub', ClubHandler), ('/', SignUpHandler), ('/allClubs', AllClubsHandler), ('/interest', InterestHandler), ('/home', HomeHandler), ('/clubHome/(\w+)', ClubHomeHandler), ('/editClub', EditClubHandler), ('/logout', LogoutHandler) ], debug=True)
aiswaryasankar/mock2
main.py
main.py
py
17,647
python
en
code
0
github-code
6
[ { "api_name": "os.path.join", "line_number": 23, "usage_type": "call" }, { "api_name": "os.path", "line_number": 23, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 23, "usage_type": "call" }, { "api_name": "jinja2.Environment", "line_number": 24, "usage_type": "call" }, { "api_name": "jinja2.FileSystemLoader", "line_number": 24, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 26, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 27, "usage_type": "call" }, { "api_name": "google.appengine.api.urlfetch.set_default_fetch_deadline", "line_number": 62, "usage_type": "call" }, { "api_name": "google.appengine.api.urlfetch", "line_number": 62, "usage_type": "name" }, { "api_name": "google.appengine.api.memcache.set", "line_number": 84, "usage_type": "call" }, { "api_name": "google.appengine.api.memcache", "line_number": 84, "usage_type": "name" }, { "api_name": "google.appengine.api.memcache.get", "line_number": 87, "usage_type": "call" }, { "api_name": "google.appengine.api.memcache", "line_number": 87, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.GqlQuery", "line_number": 89, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 89, "usage_type": "name" }, { "api_name": "google.appengine.api.memcache.set", "line_number": 95, "usage_type": "call" }, { "api_name": "google.appengine.api.memcache", "line_number": 95, "usage_type": "name" }, { "api_name": "random.choice", "line_number": 99, "usage_type": "call" }, { "api_name": "string.letters", "line_number": 99, "usage_type": "attribute" }, { "api_name": "hashlib.sha256", "line_number": 104, "usage_type": "call" }, { "api_name": "hmac.new", "line_number": 114, "usage_type": "call" }, { "api_name": "google.appengine.ext.db.Model", "line_number": 148, "usage_type": "attribute" }, { "api_name": "google.appengine.ext.db", "line_number": 148, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.StringProperty", "line_number": 149, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 149, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.StringProperty", "line_number": 150, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 150, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.StringProperty", "line_number": 151, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 151, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.StringProperty", "line_number": 152, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 152, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.StringListProperty", "line_number": 153, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 153, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.Model", "line_number": 155, "usage_type": "attribute" }, { "api_name": "google.appengine.ext.db", "line_number": 155, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.StringProperty", "line_number": 156, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 156, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.StringListProperty", "line_number": 157, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 157, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.StringListProperty", "line_number": 158, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 158, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.StringProperty", "line_number": 159, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 159, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.StringListProperty", "line_number": 160, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 160, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.StringProperty", "line_number": 161, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 161, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.StringProperty", "line_number": 162, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 162, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.StringProperty", "line_number": 163, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 163, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.Model", "line_number": 170, "usage_type": "attribute" }, { "api_name": "google.appengine.ext.db", "line_number": 170, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.StringProperty", "line_number": 171, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 171, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.TextProperty", "line_number": 172, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 172, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.DateTimeProperty", "line_number": 173, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 173, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.StringListProperty", "line_number": 174, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 174, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.StringProperty", "line_number": 175, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 175, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.StringProperty", "line_number": 176, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 176, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.StringProperty", "line_number": 177, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 177, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.Model", "line_number": 182, "usage_type": "attribute" }, { "api_name": "google.appengine.ext.db", "line_number": 182, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.StringProperty", "line_number": 183, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 183, "usage_type": "name" }, { "api_name": "google.appengine.ext.db.StringProperty", "line_number": 184, "usage_type": "call" }, { "api_name": "google.appengine.ext.db", "line_number": 184, "usage_type": "name" }, { "api_name": "webapp2.RequestHandler", "line_number": 192, "usage_type": "attribute" }, { "api_name": "webapp2.RequestHandler.initialize", "line_number": 224, "usage_type": "call" }, { "api_name": "webapp2.RequestHandler", "line_number": 224, "usage_type": "attribute" }, { "api_name": "logging.info", "line_number": 366, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 422, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 461, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 510, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 522, "usage_type": "call" }, { "api_name": "webapp2.WSGIApplication", "line_number": 550, "usage_type": "call" } ]
35396164763
import codecs import unittest from asyncssh.asn1 import der_encode, der_decode from asyncssh.asn1 import ASN1EncodeError, ASN1DecodeError from asyncssh.asn1 import BitString, IA5String, ObjectIdentifier from asyncssh.asn1 import RawDERObject, TaggedDERObject, PRIVATE class _TestASN1(unittest.TestCase): """Unit tests for ASN.1 module""" tests = [ (None, '0500'), (False, '010100'), (True, '0101ff'), (0, '020100'), (127, '02017f'), (128, '02020080'), (256, '02020100'), (-128, '020180'), (-129, '0202ff7f'), (-256, '0202ff00'), (b'', '0400'), (b'\0', '040100'), (b'abc', '0403616263'), (127*b'\0', '047f' + 127*'00'), (128*b'\0', '048180' + 128*'00'), ('', '0c00'), ('\0', '0c0100'), ('abc', '0c03616263'), ((), '3000'), ((1,), '3003020101'), ((1, 2), '3006020101020102'), (frozenset(), '3100'), (frozenset({1}), '3103020101'), (frozenset({1, 2}), '3106020101020102'), (frozenset({-128, 127}), '310602017f020180'), (BitString(b''), '030100'), (BitString(b'\0', 7), '03020700'), (BitString(b'\x80', 7), '03020780'), (BitString(b'\x80', named=True), '03020780'), (BitString(b'\x81', named=True), '03020081'), (BitString(b'\x81\x00', named=True), '03020081'), (BitString(b'\x80', 6), '03020680'), (BitString(b'\x80'), '03020080'), (BitString(b'\x80\x00', 7), '0303078000'), (BitString(''), '030100'), (BitString('0'), '03020700'), (BitString('1'), '03020780'), (BitString('10'), '03020680'), (BitString('10000000'), '03020080'), (BitString('10000001'), '03020081'), (BitString('100000000'), '0303078000'), (IA5String(b''), '1600'), (IA5String(b'\0'), '160100'), (IA5String(b'abc'), '1603616263'), (ObjectIdentifier('0.0'), '060100'), (ObjectIdentifier('1.2'), '06012a'), (ObjectIdentifier('1.2.840'), '06032a8648'), (ObjectIdentifier('2.5'), '060155'), (ObjectIdentifier('2.40'), '060178'), (TaggedDERObject(0, None), 'a0020500'), (TaggedDERObject(1, None), 'a1020500'), (TaggedDERObject(32, None), 'bf20020500'), (TaggedDERObject(128, None), 'bf8100020500'), (TaggedDERObject(0, None, PRIVATE), 'e0020500'), (RawDERObject(0, b'', PRIVATE), 'c000') ] encode_errors = [ (range, [1]), # Unsupported type (BitString, [b'', 1]), # Bit count with empty value (BitString, [b'', -1]), # Invalid unused bit count (BitString, [b'', 8]), # Invalid unused bit count (BitString, [b'0c0', 7]), # Unused bits not zero (BitString, ['', 1]), # Unused bits with string (BitString, [0]), # Invalid type (ObjectIdentifier, ['']), # Too few components (ObjectIdentifier, ['1']), # Too few components (ObjectIdentifier, ['-1.1']), # First component out of range (ObjectIdentifier, ['3.1']), # First component out of range (ObjectIdentifier, ['0.-1']), # Second component out of range (ObjectIdentifier, ['0.40']), # Second component out of range (ObjectIdentifier, ['1.-1']), # Second component out of range (ObjectIdentifier, ['1.40']), # Second component out of range (ObjectIdentifier, ['1.1.-1']), # Later component out of range (TaggedDERObject, [0, None, 99]), # Invalid ASN.1 class (RawDERObject, [0, None, 99]), # Invalid ASN.1 class ] decode_errors = [ '', # Incomplete data '01', # Incomplete data '0101', # Incomplete data '1f00', # Incomplete data '1f8000', # Incomplete data '1f0001', # Incomplete data '1f80', # Incomplete tag '0180', # Indefinite length '050001', # Unexpected bytes at end '2500', # Constructed null '050100', # Null with content '2100', # Constructed boolean '010102', # Boolean value not 0x00/0xff '2200', # Constructed integer '2400', # Constructed octet string '2c00', # Constructed UTF-8 string '1000', # Non-constructed sequence '1100', # Non-constructed set '2300', # Constructed bit string '03020800', # Invalid unused bit count '3600', # Constructed IA5 string '2600', # Constructed object identifier '0600', # Empty object identifier '06020080', # Invalid component '06020081' # Incomplete component ] def test_asn1(self): """Unit test ASN.1 module""" for value, data in self.tests: data = codecs.decode(data, 'hex') with self.subTest(msg='encode', value=value): self.assertEqual(der_encode(value), data) with self.subTest(msg='decode', data=data): decoded_value = der_decode(data) self.assertEqual(decoded_value, value) self.assertEqual(hash(decoded_value), hash(value)) self.assertEqual(repr(decoded_value), repr(value)) self.assertEqual(str(decoded_value), str(value)) for cls, args in self.encode_errors: with self.subTest(msg='encode error', cls=cls.__name__, args=args): with self.assertRaises(ASN1EncodeError): der_encode(cls(*args)) for data in self.decode_errors: with self.subTest(msg='decode error', data=data): with self.assertRaises(ASN1DecodeError): der_decode(codecs.decode(data, 'hex'))
ronf/asyncssh
tests/test_asn1.py
test_asn1.py
py
7,788
python
en
code
1,408
github-code
6
[ { "api_name": "unittest.TestCase", "line_number": 9, "usage_type": "attribute" }, { "api_name": "asyncssh.asn1.BitString", "line_number": 45, "usage_type": "call" }, { "api_name": "asyncssh.asn1.BitString", "line_number": 46, "usage_type": "call" }, { "api_name": "asyncssh.asn1.BitString", "line_number": 47, "usage_type": "call" }, { "api_name": "asyncssh.asn1.BitString", "line_number": 48, "usage_type": "call" }, { "api_name": "asyncssh.asn1.BitString", "line_number": 49, "usage_type": "call" }, { "api_name": "asyncssh.asn1.BitString", "line_number": 50, "usage_type": "call" }, { "api_name": "asyncssh.asn1.BitString", "line_number": 51, "usage_type": "call" }, { "api_name": "asyncssh.asn1.BitString", "line_number": 52, "usage_type": "call" }, { "api_name": "asyncssh.asn1.BitString", "line_number": 53, "usage_type": "call" }, { "api_name": "asyncssh.asn1.BitString", "line_number": 54, "usage_type": "call" }, { "api_name": "asyncssh.asn1.BitString", "line_number": 55, "usage_type": "call" }, { "api_name": "asyncssh.asn1.BitString", "line_number": 56, "usage_type": "call" }, { "api_name": "asyncssh.asn1.BitString", "line_number": 57, "usage_type": "call" }, { "api_name": "asyncssh.asn1.BitString", "line_number": 58, "usage_type": "call" }, { "api_name": "asyncssh.asn1.BitString", "line_number": 59, "usage_type": "call" }, { "api_name": "asyncssh.asn1.BitString", "line_number": 60, "usage_type": "call" }, { "api_name": "asyncssh.asn1.IA5String", "line_number": 62, "usage_type": "call" }, { "api_name": "asyncssh.asn1.IA5String", "line_number": 63, "usage_type": "call" }, { "api_name": "asyncssh.asn1.IA5String", "line_number": 64, "usage_type": "call" }, { "api_name": "asyncssh.asn1.ObjectIdentifier", "line_number": 66, "usage_type": "call" }, { "api_name": "asyncssh.asn1.ObjectIdentifier", "line_number": 67, "usage_type": "call" }, { "api_name": "asyncssh.asn1.ObjectIdentifier", "line_number": 68, "usage_type": "call" }, { "api_name": "asyncssh.asn1.ObjectIdentifier", "line_number": 69, "usage_type": "call" }, { "api_name": "asyncssh.asn1.ObjectIdentifier", "line_number": 70, "usage_type": "call" }, { "api_name": "asyncssh.asn1.TaggedDERObject", "line_number": 72, "usage_type": "call" }, { "api_name": "asyncssh.asn1.TaggedDERObject", "line_number": 73, "usage_type": "call" }, { "api_name": "asyncssh.asn1.TaggedDERObject", "line_number": 74, "usage_type": "call" }, { "api_name": "asyncssh.asn1.TaggedDERObject", "line_number": 75, "usage_type": "call" }, { "api_name": "asyncssh.asn1.TaggedDERObject", "line_number": 76, "usage_type": "call" }, { "api_name": "asyncssh.asn1.PRIVATE", "line_number": 76, "usage_type": "argument" }, { "api_name": "asyncssh.asn1.RawDERObject", "line_number": 78, "usage_type": "call" }, { "api_name": "asyncssh.asn1.PRIVATE", "line_number": 78, "usage_type": "argument" }, { "api_name": "asyncssh.asn1.BitString", "line_number": 84, "usage_type": "name" }, { "api_name": "asyncssh.asn1.BitString", "line_number": 85, "usage_type": "name" }, { "api_name": "asyncssh.asn1.BitString", "line_number": 86, "usage_type": "name" }, { "api_name": "asyncssh.asn1.BitString", "line_number": 87, "usage_type": "name" }, { "api_name": "asyncssh.asn1.BitString", "line_number": 88, "usage_type": "name" }, { "api_name": "asyncssh.asn1.BitString", "line_number": 89, "usage_type": "name" }, { "api_name": "asyncssh.asn1.ObjectIdentifier", "line_number": 91, "usage_type": "name" }, { "api_name": "asyncssh.asn1.ObjectIdentifier", "line_number": 92, "usage_type": "name" }, { "api_name": "asyncssh.asn1.ObjectIdentifier", "line_number": 93, "usage_type": "name" }, { "api_name": "asyncssh.asn1.ObjectIdentifier", "line_number": 94, "usage_type": "name" }, { "api_name": "asyncssh.asn1.ObjectIdentifier", "line_number": 95, "usage_type": "name" }, { "api_name": "asyncssh.asn1.ObjectIdentifier", "line_number": 96, "usage_type": "name" }, { "api_name": "asyncssh.asn1.ObjectIdentifier", "line_number": 97, "usage_type": "name" }, { "api_name": "asyncssh.asn1.ObjectIdentifier", "line_number": 98, "usage_type": "name" }, { "api_name": "asyncssh.asn1.ObjectIdentifier", "line_number": 99, "usage_type": "name" }, { "api_name": "asyncssh.asn1.TaggedDERObject", "line_number": 101, "usage_type": "name" }, { "api_name": "asyncssh.asn1.RawDERObject", "line_number": 103, "usage_type": "name" }, { "api_name": "codecs.decode", "line_number": 151, "usage_type": "call" }, { "api_name": "asyncssh.asn1.der_encode", "line_number": 154, "usage_type": "call" }, { "api_name": "asyncssh.asn1.der_decode", "line_number": 157, "usage_type": "call" }, { "api_name": "asyncssh.asn1.ASN1EncodeError", "line_number": 165, "usage_type": "argument" }, { "api_name": "asyncssh.asn1.der_encode", "line_number": 166, "usage_type": "call" }, { "api_name": "asyncssh.asn1.ASN1DecodeError", "line_number": 170, "usage_type": "argument" }, { "api_name": "asyncssh.asn1.der_decode", "line_number": 171, "usage_type": "call" }, { "api_name": "codecs.decode", "line_number": 171, "usage_type": "call" } ]
20634168426
from .utils import get_colors def show_help_mess(error: bool = False) -> None: """Usage: pytrash <param> [param[, param ...]] {0}-h, --help{1} Print this help message and exit. {0}-d, --del <path> [path[ path ...]]{1} Move files/dirs to trash (~/.local/share/Trash/). {0}-f, --find <pattern>{1} Search for files and directories in the trash. {0}-r, --restore [pattern]{1} Print list of files/dirs on trash with the possibility of their recovery. If the pattern is specified, then only matches with this pattern are displayed. {0}-c, --clear{1} Clear trash. {0}-s, --size{1} Show the size of the trash. """ colors = get_colors() if error: print(('{0}Wrong parameters.{1} ' '\'pytrash --help\'{2} for help').format(colors['red'], colors['cyan'], colors['reset'])) raise SystemExit # show usage print(str(show_help_mess.__doc__).format(colors['cyan'], colors['reset']))
MyRequiem/pytrash
src/helpmess.py
helpmess.py
py
1,128
python
en
code
1
github-code
6
[ { "api_name": "utils.get_colors", "line_number": 28, "usage_type": "call" } ]
33042404005
"""Helpers for tests.""" import json import pytest from .common import MQTTMessage from tests.async_mock import patch from tests.common import load_fixture @pytest.fixture(name="generic_data", scope="session") def generic_data_fixture(): """Load generic MQTT data and return it.""" return load_fixture("ozw/generic_network_dump.csv") @pytest.fixture(name="light_data", scope="session") def light_data_fixture(): """Load light dimmer MQTT data and return it.""" return load_fixture("ozw/light_network_dump.csv") @pytest.fixture(name="sent_messages") def sent_messages_fixture(): """Fixture to capture sent messages.""" sent_messages = [] with patch( "homeassistant.components.mqtt.async_publish", side_effect=lambda hass, topic, payload: sent_messages.append( {"topic": topic, "payload": json.loads(payload)} ), ): yield sent_messages @pytest.fixture(name="light_msg") async def light_msg_fixture(hass): """Return a mock MQTT msg with a light actuator message.""" light_json = json.loads( await hass.async_add_executor_job(load_fixture, "ozw/light.json") ) message = MQTTMessage(topic=light_json["topic"], payload=light_json["payload"]) message.encode() return message @pytest.fixture(name="switch_msg") async def switch_msg_fixture(hass): """Return a mock MQTT msg with a switch actuator message.""" switch_json = json.loads( await hass.async_add_executor_job(load_fixture, "ozw/switch.json") ) message = MQTTMessage(topic=switch_json["topic"], payload=switch_json["payload"]) message.encode() return message @pytest.fixture(name="sensor_msg") async def sensor_msg_fixture(hass): """Return a mock MQTT msg with a sensor change message.""" sensor_json = json.loads( await hass.async_add_executor_job(load_fixture, "ozw/sensor.json") ) message = MQTTMessage(topic=sensor_json["topic"], payload=sensor_json["payload"]) message.encode() return message @pytest.fixture(name="binary_sensor_msg") async def binary_sensor_msg_fixture(hass): """Return a mock MQTT msg with a binary_sensor change message.""" sensor_json = json.loads( await hass.async_add_executor_job(load_fixture, "ozw/binary_sensor.json") ) message = MQTTMessage(topic=sensor_json["topic"], payload=sensor_json["payload"]) message.encode() return message @pytest.fixture(name="binary_sensor_alt_msg") async def binary_sensor_alt_msg_fixture(hass): """Return a mock MQTT msg with a binary_sensor change message.""" sensor_json = json.loads( await hass.async_add_executor_job(load_fixture, "ozw/binary_sensor_alt.json") ) message = MQTTMessage(topic=sensor_json["topic"], payload=sensor_json["payload"]) message.encode() return message
84KaliPleXon3/home-assistant-core
tests/components/ozw/conftest.py
conftest.py
py
2,850
python
en
code
1
github-code
6
[ { "api_name": "tests.common.load_fixture", "line_number": 15, "usage_type": "call" }, { "api_name": "pytest.fixture", "line_number": 12, "usage_type": "call" }, { "api_name": "tests.common.load_fixture", "line_number": 21, "usage_type": "call" }, { "api_name": "pytest.fixture", "line_number": 18, "usage_type": "call" }, { "api_name": "tests.async_mock.patch", "line_number": 29, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 32, "usage_type": "call" }, { "api_name": "pytest.fixture", "line_number": 24, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 41, "usage_type": "call" }, { "api_name": "tests.common.load_fixture", "line_number": 42, "usage_type": "argument" }, { "api_name": "common.MQTTMessage", "line_number": 44, "usage_type": "call" }, { "api_name": "pytest.fixture", "line_number": 38, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 52, "usage_type": "call" }, { "api_name": "tests.common.load_fixture", "line_number": 53, "usage_type": "argument" }, { "api_name": "common.MQTTMessage", "line_number": 55, "usage_type": "call" }, { "api_name": "pytest.fixture", "line_number": 49, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 63, "usage_type": "call" }, { "api_name": "tests.common.load_fixture", "line_number": 64, "usage_type": "argument" }, { "api_name": "common.MQTTMessage", "line_number": 66, "usage_type": "call" }, { "api_name": "pytest.fixture", "line_number": 60, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 74, "usage_type": "call" }, { "api_name": "tests.common.load_fixture", "line_number": 75, "usage_type": "argument" }, { "api_name": "common.MQTTMessage", "line_number": 77, "usage_type": "call" }, { "api_name": "pytest.fixture", "line_number": 71, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 85, "usage_type": "call" }, { "api_name": "tests.common.load_fixture", "line_number": 86, "usage_type": "argument" }, { "api_name": "common.MQTTMessage", "line_number": 88, "usage_type": "call" }, { "api_name": "pytest.fixture", "line_number": 82, "usage_type": "call" } ]
3919536002
# standard python libs import os import re import html import json import random import hashlib import lxml.html import lxml.etree import unicodedata import urllib.request from datetime import datetime from urllib.parse import urlparse from urllib.parse import urlsplit # non-standard libs which must be installed from textstat.textstat import textstat import lxml.html # custom webxray classes from webxray.ParseURL import ParseURL from webxray.Utilities import Utilities class OutputStore: """ This class receives data from the browser, processes it, and stores it in the db """ def __init__(self, db_name, db_engine): self.db_name = db_name self.utilities = Utilities() self.url_parser = ParseURL() self.debug = False if db_engine == 'sqlite': from webxray.SQLiteDriver import SQLiteDriver self.sql_driver = SQLiteDriver(self.db_name) elif db_engine == 'postgres': from webxray.PostgreSQLDriver import PostgreSQLDriver self.sql_driver = PostgreSQLDriver(self.db_name) else: print('INVALID DB ENGINE FOR %s, QUITTING!' % db_engine) quit() self.config = self.sql_driver.get_config() # __init__ def close(self): """ Just to make sure we close the db connection. """ self.sql_driver.close() # close def store_scan(self, params): """ This function pre-processes data from the browser, inserts it into database, and handles linking various entries across tables. """ # unpack params browser_output = params['browser_output'] client_id = params['client_id'] crawl_id = params['crawl_id'] crawl_timestamp = params['crawl_timestamp'] crawl_sequence = params['crawl_sequence'] # client_ip is optional if 'client_ip' in params: client_ip = params['client_ip'] else: client_ip = None if self.debug: print('going to store scan %s' % browser_output['start_url']) # keep track of domains page_3p_cookie_domains = set() page_3p_dom_storage_domains = set() page_3p_request_domains = set() page_3p_response_domains = set() page_3p_websocket_domains = set() # convert from timestamp to datetime object that will go to the db accessed = datetime.fromtimestamp(browser_output['accessed']) # first make sure we don't have it already if self.sql_driver.page_exists(browser_output['start_url'],accessed): return {'success': False, 'result': 'exists in db already'} # if we have no responses the page didn't load at all and we skip # unless we are using basic driver and then it's ok if len(browser_output['responses']) == 0 and browser_output['browser_type'] != 'basic': return {'success': False, 'result': 'no responses received'} # ignore any malformed unicode characters page_source = browser_output['page_source'].encode('utf-8', 'ignore').decode() # store source if self.config['store_source']: if self.debug: print('going to store source %s' % browser_output['start_url']) page_source_md5 = self.store_file(page_source, False, 'page_source') else: page_source_md5 = None # store readability_html if self.config['store_page_text'] and browser_output['page_text']: if self.debug: print('going to store readability_html') # ignore any malformed unicode characters readability_html = browser_output['readability_html'].encode('utf-8', 'ignore').decode().strip() readability_source_md5 = self.store_file(readability_html, False, 'readability_html') # store_page_text handles some addition operations if self.debug: print('going to store page_text') page_text_id = self.store_page_text(readability_html,readability_source_md5) else: page_text_id = None # process info on the start_url domain if self.debug: print('going to parse start/final_url %s' % browser_output['start_url']) start_url = browser_output['start_url'] start_url_domain_info = self.url_parser.get_parsed_domain_info(start_url) if start_url_domain_info['success'] == False: err_msg = 'unable to parse start_url_domain_info info for %s with error %s' % (browser_output['start_url'], start_url_domain_info['result']) if self.debug: print(err_msg) self.sql_driver.log_error({ 'client_id' : client_id, 'target' : start_url, 'task' : 'output_store', 'msg' : err_msg }) return {'success': False, 'result': 'could not parse start_url'} else: # needed for comparisons later on start_url_domain = start_url_domain_info['result']['domain'] # add start_url domain and get id start_url_domain_id = self.sql_driver.add_domain(start_url_domain_info['result']) # process info on the final_url domain # note: we use the final_url domain as the benchmark for determine 1p/3p final_url = browser_output['final_url'] final_url_domain_info = self.url_parser.get_parsed_domain_info(final_url) if final_url_domain_info['success'] == False: err_msg = 'unable to parse final_url_domain_info info for %s with error %s' % (browser_output['final_url'], final_url_domain_info['result']) if self.debug: print(err_msg) self.sql_driver.log_error({ 'client_id' : client_id, 'target' : start_url, 'task' : 'output_store', 'msg' : err_msg }) return {'success': False, 'result': 'could not parse final_url'} else: final_url_domain = final_url_domain_info['result']['domain'] # self.sql_driver.add_domain both stores the new domain and returns its db row id # if it is already in db just return the existing id final_url_domain_id = self.sql_driver.add_domain(final_url_domain_info['result']) # check if the page has redirected to a new domain if start_url_domain != final_url_domain: page_domain_redirect = True else: page_domain_redirect = False # this is semi-redundant but ensures that any config changes made while # a result is queued are followed if self.config['client_reject_redirects'] and page_domain_redirect: return {'success': False, 'result': 'rejecting redirect'} # if the final page is https (often after a redirect), mark it appropriately if browser_output['final_url'][:5] == 'https': page_is_ssl = True else: page_is_ssl = False # (optionally) process and store links, this allows us to go back later and do deeper scans # as well as do more with policies # links starts as empty list links = [] # keep track of link counts as helpful for filtering pages link_count_internal = 0 link_count_external = 0 if self.config['store_links']: if self.debug: print('going to process links %s' % browser_output['start_url']) # we use the list of policy_link_terms to flag that a link *might* # be for a policy, we check if it actually is policy in PolicyCollector.py policy_link_terms = self.utilities.get_policy_link_terms() # process links, duplicates get ignored by db for link in browser_output['all_links']: # skip if href not valid if not self.utilities.is_url_valid(link['href']): continue # unpack values and catch any unicode errors link_text = link['text'].encode('utf-8', 'ignore').decode() link_url = link['href'].encode('utf-8', 'ignore').decode() # get rid of trailing # and / if link_url.strip()[-1:] == '#': link_url = link_url.strip()[:-1] if link_url.strip()[-1:] == '/': link_url = link_url.strip()[:-1] # sometimes the text will be a dict (very rarely) # so we convert to string link_text = str(link_text).strip() # clean up white space and remove line breaks link_text = re.sub('\n|\r|\t|\s+',' ',link_text.strip()) link_url = re.sub('\n|\r|\t|\s+',' ',link_url.strip()) # catch nulls link_text = link_text.replace('\x00','NULL_REPLACED_FOR_PSQL') link_url = link_url.replace('\x00','NULL_REPLACED_FOR_PSQL') # update counts if link['internal']: link_count_internal += 1 else: link_count_external += 1 # flag links that could be policies, default False link_is_policy = False # determine if a policy term appears in the link for policy_term in policy_link_terms: if policy_term in link_text.lower(): link_is_policy = True break link_domain_info = self.url_parser.get_parsed_domain_info(link_url) if link_domain_info['success'] == False: # don't bother with storing errors link_domain_id = None else: # self.sql_driver.add_domain both stores the new domain and returns its db row id # if it is already in db just return the existing id link_domain_id = self.sql_driver.add_domain(link_domain_info['result']) links.append({ 'url' : link_url, 'text' : link_text, 'is_internal' : link['internal'], 'is_policy' : link_is_policy, 'domain_id' : link_domain_id }) # if we got the screen shot we get the hash and store it to the file table screen_shot_md5 = None if browser_output['screen_shot'] and self.config['store_screen_shot']: if self.debug: print('going to store screen shot %s' % browser_output['start_url']) # store file to get md5 screen_shot_md5 = self.store_file(browser_output['screen_shot'],True,'screen_shot') # if we have timestamp it is also an 'accessed' field from # a page load so we convert that as well if crawl_timestamp: crawl_timestamp = datetime.fromtimestamp(crawl_timestamp) # ignore any malformed unicode characters if browser_output['title']: browser_output['title'] = browser_output['title'].encode('utf-8', 'ignore').decode() if browser_output['meta_desc']: browser_output['meta_desc'] = browser_output['meta_desc'].encode('utf-8', 'ignore').decode() if browser_output['lang']: browser_output['lang'] = browser_output['lang'].encode('utf-8', 'ignore').decode() # now we know link counts we can store the page if self.debug: print('going to store page %s' % browser_output['start_url']) page_id = self.sql_driver.add_page({ 'accessed' : accessed, 'browser_type' : browser_output['browser_type'], 'browser_version' : browser_output['browser_version'], 'browser_prewait' : browser_output['prewait'], 'browser_no_event_wait' : browser_output['no_event_wait'], 'browser_max_wait' : browser_output['max_wait'], 'page_load_strategy' : browser_output['page_load_strategy'], 'title' : browser_output['title'], 'meta_desc' : browser_output['meta_desc'], 'lang' : browser_output['lang'], 'start_url' : browser_output['start_url'], 'final_url' : browser_output['final_url'], 'is_ssl' : page_is_ssl, 'page_domain_redirect' : page_domain_redirect, 'link_count_internal' : link_count_internal, 'link_count_external' : link_count_external, 'load_time' : browser_output['load_time'], 'start_url_domain_id' : start_url_domain_id, 'final_url_domain_id' : final_url_domain_id, 'client_id' : client_id, 'client_timezone' : browser_output['client_timezone'], 'client_ip' : client_ip, 'page_text_id' : page_text_id, 'screen_shot_md5' : screen_shot_md5, 'page_source_md5' : page_source_md5, 'crawl_id' : crawl_id, 'crawl_timestamp' : crawl_timestamp, 'crawl_sequence' : crawl_sequence }) # STORE LINKS if self.config['store_links']: if self.debug: print('going to store links %s' % browser_output['start_url']) for link in links: link_id = self.sql_driver.add_link(link) if link_id: self.sql_driver.join_link_to_page(page_id,link_id) # PROCESS DOM_STORAGE if self.config['store_dom_storage']: if self.debug: print('going to process dom storage %s' % browser_output['start_url']) for dom_storage in browser_output['dom_storage']: # parse domain from the security_origin, which is equivalent to a url domain_info = self.url_parser.get_parsed_domain_info(dom_storage['security_origin']) if domain_info['success'] == False: err_msg = 'unable to parse domain info for %s with error %s' % (dom_storage['security_origin'], domain_info['result']) if self.debug: print(err_msg) self.sql_driver.log_error({ 'client_id' : client_id, 'target' : start_url, 'task' : 'output_store', 'msg' : err_msg }) continue else: # self.sql_driver.add_domain both stores the new domain and returns its db row id # if it is already in db just return the existing id dom_storage['domain_id'] = self.sql_driver.add_domain(domain_info['result']) # mark if third-party storage if final_url_domain != domain_info['result']['domain']: dom_storage['is_3p'] = True else: dom_storage['is_3p'] = False # key to page dom_storage['page_id'] = page_id # replace null b/c postgres will die otherwise dom_storage['key'] = dom_storage['key'].replace('\x00','NULL_REPLACED_FOR_PSQL') dom_storage['value'] = dom_storage['value'].replace('\x00','NULL_REPLACED_FOR_PSQL') # there types of illegal utf-8 characters that psql doesn't like, eg trying to store # '\uded5' gives this error when storing in psql: # 'UnicodeEncodeError: 'utf-8' codec can't encode character '\uded5' in position 0: surrogates not allowed' # # to overcome the above, we use python's backslashreplace to keep the original data in # a way that won't cause our queries to die # see https://docs.python.org/3/library/codecs.html#error-handlers dom_storage['key'] = dom_storage['key'].encode('utf-8','backslashreplace') dom_storage['value'] = dom_storage['value'].encode('utf-8','backslashreplace') # now that we've encoded with backslashes we decode to get the semi-original data dom_storage['key'] = dom_storage['key'].decode('utf-8') dom_storage['value'] = dom_storage['value'].decode('utf-8') # all done with this item self.sql_driver.add_dom_storage(dom_storage) # update domains if dom_storage['is_3p']: page_3p_dom_storage_domains.add((domain_info['result']['domain'],domain_info['result']['domain_owner_id'])) # PROCESS LOAD FINISH if self.debug: print('going to process load finish data %s' % browser_output['start_url']) load_finish_data = {} for load_finish_event in browser_output['load_finish_events']: load_finish_data[load_finish_event['request_id']] = load_finish_event['encoded_data_length'] # RESPONSE EXTRA HEADERS if self.debug: print('going to process response extra header data %s' % browser_output['start_url']) http_cookies = [] internal_id_to_resp_ex_headers = {} for response_extra_header in browser_output['response_extra_headers']: response_extra_header['page_id'] = page_id response_extra_header['cookies_set'] = None # to check for domain leakage in headers we make a big string keyed to the internal id if response_extra_header['request_id'] not in internal_id_to_resp_ex_headers: internal_id_to_resp_ex_headers[response_extra_header['request_id']] = str(response_extra_header['headers']) else: internal_id_to_resp_ex_headers[response_extra_header['request_id']] += str(response_extra_header['headers']) for item in response_extra_header['headers']: if item.lower() == 'set-cookie': response_extra_header['cookies_set'] = response_extra_header['headers'][item] # when we add cookies later on we mark those that came from response headers, # note we try/pass on this in case we can't parse for cookie in response_extra_header['cookies_set'].split('\n'): if 'domain' in cookie.lower(): try: name = re.match('^(.+?)=',cookie)[0][:-1] domain = re.match('^.+domain=(.+?)(;|$)',cookie.lower())[1] if domain[0] == '.': domain = domain[1:] http_cookies.append((domain,name)) except: pass if self.config['store_response_xtra_headers']: self.sql_driver.add_response_extra_header(response_extra_header) # PROCESS RESPONSES response_received_req_ids = [] if self.debug: print('going to process response data %s' % browser_output['start_url']) for response in browser_output['responses']: # defaut values that may get over-written response['file_md5'] = None response['is_data'] = False response['is_3p'] = None response['is_ssl'] = None response['page_domain_in_headers'] = False # first handle non-http urls and optionally store content if re.match('^(data|about|chrome|blob|javascript).+', response['url']): if 'base64' in response['url'].lower() or 'image' in response['type'].lower(): is_base64 = True else: is_base64 = False # store_file follows the config as far as actually storing the file goes # and will either return the md5 or None # make sure we're following our configuration if self.config['store_files'] and (self.config['store_base64'] or is_base64 == False): response['file_md5'] = self.store_file(response['url'],is_base64,response['type']) else: response['file_md5'] = None response['url'] = None response['is_data'] = True response['domain_id'] = None else: # parse, store, and get id of domain; if fails skip domain_info = self.url_parser.get_parsed_domain_info(response['url']) if domain_info['success'] == False: err_msg = 'unable to parse domain info for %s with error %s' % (response['url'], domain_info['result']) if self.debug: print(err_msg) self.sql_driver.log_error({ 'client_id' : client_id, 'target' : start_url, 'task' : 'output_store', 'msg' : err_msg }) continue else: response_domain = domain_info['result']['domain'] response['domain_id'] = self.sql_driver.add_domain(domain_info['result']) # now add ip if response['remote_ip_address']: self.sql_driver.add_domain_ip_addr(response['domain_id'],response['remote_ip_address']) # mark third-party responses based on final_url domain if response_domain != final_url_domain: response['is_3p'] = True else: response['is_3p'] = False # determine if encrypted if response['url'][:5] == 'https' or response['url'][:3] == 'wss': response['is_ssl'] = True else: response['is_ssl'] = False # keep track of the request ids of each reponse to mark as received response_received_req_ids.append(response['request_id']) # we do no more processing at this point if not self.config['store_responses']: continue # lower case the type, simplifies db queries response['type'] = response['type'].lower() # store the security details if they exist if response['security_details'] and self.config['store_security_details']: response['security_details_id'] = self.sql_driver.add_security_details(response['security_details']) else: response['security_details_id'] = None # store the size of the request if response['request_id'] in load_finish_data: response['final_data_length'] = load_finish_data[response['request_id']] else: response['final_data_length'] = None # parse off args/etc # consider anything before the "?" to be the element_url try: response['base_url'] = re.search('^(.+?)\?.+$', response['url']).group(1) except: response['base_url'] = response['url'] # attempt to parse off the extension try: response['extension'] = re.search('\.([0-9A-Za-z]+)$', response['base_url']).group(1).lower() except: response['extension'] = None # First see if this request_id is present in response_bodies, and if # the entry is not None, then we store it to the db if config says to. if response['request_id'] in browser_output['response_bodies']: if browser_output['response_bodies'][response['request_id']]: # make sure we're following our configuration is_base64 = browser_output['response_bodies'][response['request_id']]['is_base64'] if self.config['store_files'] and (self.config['store_base64'] or is_base64 == False): response['file_md5'] = self.store_file( browser_output['response_bodies'][response['request_id']]['body'], is_base64, response['type'] ) else: response['file_md5'] = None # link to page response['page_id'] = page_id # parse data headers, accounts for upper/lower case variations (eg 'set-cookie', 'Set-Cookie') response['content_type'] = None response['cookies_set'] = None for item in response['response_headers']: if item.lower() == 'content-type': response['content_type'] = response['response_headers'][item] if item.lower() == 'set-cookie': response['cookies_set'] = response['response_headers'][item] # if we have request_headers look for cookies sent response['cookies_sent'] = None if response['request_headers']: for item in response['request_headers']: if item.lower() == 'cookie': response['cookies_sent'] = response['request_headers'][item] # parse referer header response['referer'] = None for item in response['response_headers']: if item.lower() == 'referer': response['referer'] = response['response_headers'][item] # check if domain leaked in referer if response['request_id'] in internal_id_to_resp_ex_headers: if final_url_domain in internal_id_to_resp_ex_headers[response['request_id']]: response['page_domain_in_headers'] = True # convert from timestamp to datetime object that will go to the db response['timestamp'] = datetime.fromtimestamp(response['timestamp']) # store self.sql_driver.add_response(response) # update domains if response['is_3p']: page_3p_response_domains.add((domain_info['result']['domain'],domain_info['result']['domain_owner_id'])) # REQUEST EXTRA HEADERS if self.debug: print('going to process request extra headers data %s' % browser_output['start_url']) internal_id_to_req_ex_headers = {} for request_extra_header in browser_output['request_extra_headers']: request_extra_header['page_id'] = page_id request_extra_header['cookies_sent'] = None # to check for domain leakage in headers we make a big string keyed to the internal id if request_extra_header['request_id'] not in internal_id_to_req_ex_headers: internal_id_to_req_ex_headers[request_extra_header['request_id']] = str(request_extra_header['headers']) else: internal_id_to_req_ex_headers[request_extra_header['request_id']] += str(request_extra_header['headers']) for item in request_extra_header['headers']: if item.lower() == 'cookie': request_extra_header['cookies_sent'] = request_extra_header['headers'][item] if self.config['store_request_xtra_headers']: self.sql_driver.add_request_extra_header(request_extra_header) # PROCESS REQUESTS if self.config['store_requests']: if self.debug: print('going to process request data %s' % browser_output['start_url']) for request in browser_output['requests']: # defaut values that may get over-written request['file_md5'] = None request['is_data'] = False request['is_3p'] = None request['is_ssl'] = None request['page_domain_in_headers'] = False # first handle non-http urls and optionally store content if re.match('^(data|about|chrome|blob|javascript).+', request['url']): if 'base64' in request['url'].lower() or 'image' in request['url'].lower(): is_base64 = True else: is_base64 = False # store_file follows the config as far as actually storing the file goes # and will either return the md5 or None # make sure we're following our configuration if self.config['store_files'] and (self.config['store_base64'] or is_base64 == False): request['file_md5'] = self.store_file(request['url'],is_base64,request['type']) else: request['file_md5'] = None request['url'] = None request['is_data'] = True request['domain_id'] = None else: # parse, store, and get id of domain; if fails skip domain_info = self.url_parser.get_parsed_domain_info(request['url']) if domain_info['success'] == False: err_msg = 'unable to parse domain info for %s with error %s' % (request['url'], domain_info['result']) if self.debug: print(err_msg) self.sql_driver.log_error({ 'client_id' : client_id, 'target' : start_url, 'task' : 'output_store', 'msg' : err_msg }) continue else: request_domain = domain_info['result']['domain'] request['domain_id'] = self.sql_driver.add_domain(domain_info['result']) # mark third-party requests based on final_url domain if request_domain != final_url_domain: request['is_3p'] = True else: request['is_3p'] = False # determine if encrypted if request['url'][:5] == 'https' or request['url'][:3] == 'wss': request['is_ssl'] = True else: request['is_ssl'] = False # replace null b/c postgres will die otherwise if request['post_data']: request['post_data'] = request['post_data'].replace('\x00','NULL_REPLACED_FOR_PSQL') # consider anything after the "?" to be the GET data try: get_string = re.search('^.+\?(.+)$', request['url']).group(1) get_string = get_string.replace('\x00','NULL_REPLACED_FOR_PSQL') get_data = {} for key_val in get_string.split('&'): get_data[key_val.split('=')[0]] = key_val.split('=')[1] request['get_data'] = json.dumps(get_data) except: request['get_data'] = None # mark if response received if request['request_id'] in response_received_req_ids: request['response_received'] = True else: request['response_received'] = None # mark if the loading finished if request['request_id'] in load_finish_data: request['load_finished'] = True else: request['load_finished'] = None # lower case the type, simplifies db queries if request['type']: request['type'] = request['type'].lower() # parse off args/etc # consider anything before the "?" to be the element_url try: request['base_url'] = re.search('^(.+?)\?.+$', request['url']).group(1) except: request['base_url'] = request['url'] # attempt to parse off the extension try: request['extension'] = re.search('\.([0-9A-Za-z]+)$', request['base_url']).group(1).lower() except: request['extension'] = None # link to page request['page_id'] = page_id # parse referer header request['referer'] = None for item in request['headers']: if item.lower() == 'referer': request['referer'] = request['headers'][item] # check if domain leaked in headers if request['request_id'] in internal_id_to_req_ex_headers: if final_url_domain in internal_id_to_req_ex_headers[request['request_id']]: request['page_domain_in_headers'] = True # convert from timestamp to datetime object that will go to the db request['timestamp'] = datetime.fromtimestamp(request['timestamp']) # all done self.sql_driver.add_request(request) # update domains if request['is_3p']: page_3p_request_domains.add((domain_info['result']['domain'],domain_info['result']['domain_owner_id'])) # PROCESS WEBSOCKETS if self.config['store_websockets']: if self.debug: print('going to process websocket data %s' % browser_output['start_url']) ws_id_map = {} for websocket in browser_output['websockets']: domain_info = self.url_parser.get_parsed_domain_info(websocket['url']) if domain_info['success'] == False: err_msg = 'unable to parse domain info for %s with error %s' % (websocket['url'], domain_info['result']) if self.debug: print(err_msg) self.sql_driver.log_error({ 'client_id' : client_id, 'target' : start_url, 'task' : 'output_store', 'msg' : err_msg }) continue else: # self.sql_driver.add_domain both stores the new domain and returns its db row id # if it is already in db just return the existing id websocket['domain_id'] = self.sql_driver.add_domain(domain_info['result']) # mark if third-party connection if final_url_domain != domain_info['result']['domain']: websocket['is_3p'] = True else: websocket['is_3p'] = False websocket['page_id'] = page_id this_websocket_id = self.sql_driver.add_websocket(websocket) # update domains if websocket['is_3p']: page_3p_websocket_domains.add((domain_info['result']['domain'],domain_info['result']['domain_owner_id'])) if websocket['request_id'] not in ws_id_map: ws_id_map[websocket['request_id']] = this_websocket_id else: print('ERROR WS_REQ_ID ALREADY IN MAP') # PROCESS WEBSOCKET EVENTS if self.config['store_websockets'] and self.config['store_websocket_events']: for websocket_event in browser_output['websocket_events']: websocket_event['page_id'] = page_id if websocket_event['request_id'] in ws_id_map: websocket_event['websocket_id'] = ws_id_map[websocket_event['request_id']] else: websocket_event['websocket_id'] = None # convert from timestamp to datetime object that will go to the db websocket_event['timestamp'] = datetime.fromtimestamp(websocket_event['timestamp']) self.sql_driver.add_websocket_event(websocket_event) # PROCESS EVENT SOURCE MSGS if self.config['store_event_source_msgs']: if self.debug: print('going to process event source data %s' % browser_output['start_url']) for event_source_msg in browser_output['event_source_msgs']: event_source_msg['page_id'] = page_id # convert from timestamp to datetime object that will go to the db event_source_msg['timestamp'] = datetime.fromtimestamp(event_source_msg['timestamp']) self.sql_driver.add_event_source_msg(event_source_msg) # PROCESS COOKIES if self.config['store_cookies']: if self.debug: print('going to process cookies %s' % browser_output['start_url']) for cookie in browser_output['cookies']: # get the ip, fqdn, domain, pubsuffix, and tld # we need the domain to figure out if cookies/elements are third-party # note: # url_parser fails on non-http, we should fix this, right now a lame hack is to prepend http:// # parse domain from the security_origin, which is equivalent to a url domain_info = self.url_parser.get_parsed_domain_info('http://'+cookie['domain']) if domain_info['success'] == False: err_msg = 'unable to parse domain info for %s with error %s' % (cookie['domain'], domain_info['result']) if self.debug: print(err_msg) self.sql_driver.log_error({ 'client_id' : client_id, 'target' : start_url, 'task' : 'output_store', 'msg' : err_msg }) continue else: # self.sql_driver.add_domain both stores the new domain and returns its db row id # if it is already in db just return the existing id cookie['domain_id'] = self.sql_driver.add_domain(domain_info['result']) # mark if third-party cookie if final_url_domain != domain_info['result']['domain']: cookie['is_3p'] = True else: cookie['is_3p'] = False # key to page cookie['page_id'] = page_id # fix var names cookie['http_only'] = cookie['httpOnly'] # attempt to convert cookie expiry from timestamp to datetime object, note we # need try/except as python datetime object cannot have year > 9999 and some # cookies do that cookie['expires_timestamp'] = None if cookie['expires']: try: cookie['expires_timestamp'] = datetime.fromtimestamp(cookie['expires']) except: pass # this is optional, do fall-back if 'sameSite' in cookie: cookie['same_site'] = cookie['sameSite'] else: cookie['same_site'] = None # see if this cookie was set via http response if cookie['domain'][0] == '.': cookie_tuple = (cookie['domain'][1:],cookie['name']) else: cookie_tuple = (cookie['domain'],cookie['name']) if cookie_tuple in http_cookies: cookie['is_set_by_response'] = True else: cookie['is_set_by_response'] = False # all done with this cookie self.sql_driver.add_cookie(cookie) # update domains if cookie['is_3p']: page_3p_cookie_domains.add((domain_info['result']['domain'],domain_info['result']['domain_owner_id'])) if self.debug: print('done storing scan %s' % browser_output['start_url']) return { 'success' : True, 'page_id' : page_id, 'page_3p_request_domains' : page_3p_request_domains, 'page_3p_response_domains' : page_3p_response_domains, 'page_3p_websocket_domains' : page_3p_websocket_domains, 'page_3p_dom_storage_domains' : page_3p_dom_storage_domains, 'page_3p_cookie_domains' : page_3p_cookie_domains } # store_scan def store_file(self,body,is_base64,type): """ Hashes and stores file, returns file_md5. """ # in theory we shouldn't get here if it is base64, so this is a fail-safe check if not self.config['store_base64']: if is_base64 or type.lower()=='image': return None # note hash is on original data, which we modify to remove \x00 before we store file_md5 = hashlib.md5(body.encode()).hexdigest() # store to db, note query will be ignored on conflict # but since we calculate the md5 as above that is fine self.sql_driver.add_file({ 'md5' : file_md5, 'body' : body.replace('\x00','NULL_REPLACED_FOR_PSQL'), 'type' : type.lower(), 'is_base64' : is_base64 }) return file_md5 # store_file def store_policy(self, browser_output, client_id, client_ip=None): """ We attempt to figure out if the text provided is a policy, if so we store it to the database. """ # keep values in a dict here policy = {} # attempt to get_policy was a success, extract data from # dict, since postgres cannot handle '\x00' we convert to # string for several fields and use .replace('\x00',' ') to # clean the input policy['client_id'] = client_id policy['client_ip'] = client_ip policy['browser_type'] = browser_output['browser_type'] policy['browser_version'] = browser_output['browser_version'] policy['browser_prewait'] = browser_output['prewait'] policy['start_url'] = browser_output['start_url'] policy['final_url'] = browser_output['final_url'] policy['title'] = browser_output['title'] policy['meta_desc'] = browser_output['meta_desc'] policy['lang'] = browser_output['lang'] policy['fk_score'] = None policy['fre_score'] = None policy['word_count'] = None policy['type'] = None policy['match_term'] = None policy['match_text'] = None policy['match_text_type'] = None policy['confidence'] = None policy['page_text_id'] = None policy['page_source_md5'] = None # if readability failed we bail if not browser_output['readability_html'] or not browser_output['page_text']: self.sql_driver.close() return { 'success' : False, 'result' : 'No readability result' } # ignore any malformed unicode characters readability_html = browser_output['readability_html'].encode('utf-8', 'ignore').decode().strip() page_text = browser_output['page_text'].encode('utf-8', 'ignore').decode().strip() page_source = browser_output['page_source'].encode('utf-8', 'ignore').decode() # bail on empty text if len(page_text) == 0: self.sql_driver.close() return { 'success' : False, 'result' : 'Empty page text' } # load the source into lxml so we can do additional processing, # if we fail we bail try: lxml_doc = lxml.html.fromstring(readability_html) except: return ({ 'success': False, 'result': 'Could not parse readability_html with lxml' }) # if the text is less than 500 words we ignore it if len(page_text.split(' ')) < 500: self.sql_driver.close() return { 'success' : False, 'result' : 'Page text < 500 words' } # once we have the text we figure out if it is # a policy, start false, override on match is_policy = False # first look for matches on page title # we give this confidence of 100 as it is # definitely a match if policy['title']: policy_type_result = self.determine_policy_type_from_text(policy['title']) if policy_type_result['success'] == True: is_policy = True policy['type'] = policy_type_result['result']['policy_type'] policy['match_term'] = policy_type_result['result']['match_term'] policy['match_text'] = policy_type_result['result']['match_text'] policy['match_text_type'] = 'title' policy['confidence'] = 100 # deep checks may generate false positives so # they have confidence of 0 until they can # be verified, note we may do this here # or later on deep_checks = True if deep_checks: policy['confidence'] = 0 # convert the url path to a sentence by replacing # common delimiters with spaces and attempt matches if self.debug: print('going to do checks on url path') if not is_policy: url_path_string = re.sub('[-|_|/|\.]',' ',urlsplit(policy['start_url']).path) if len(url_path_string) > 0: policy_type_result = self.determine_policy_type_from_text(url_path_string) if policy_type_result['success'] == True: is_policy = True policy['type'] = policy_type_result['result']['policy_type'] policy['match_term'] = policy_type_result['result']['match_term'] policy['match_text'] = policy_type_result['result']['match_text'] policy['match_text_type'] = 'url_path' if self.debug: print('going to do checks on meta desc') if not is_policy and policy['meta_desc']: policy_type_result = self.determine_policy_type_from_text(policy['meta_desc']) if policy_type_result['success'] == True: is_policy = True policy['type'] = policy_type_result['result']['policy_type'] policy['match_term'] = policy_type_result['result']['match_term'] policy['match_text'] = policy_type_result['result']['match_text'] policy['match_text_type'] = 'meta_desc' # iterate over all types of heading tags to extract text # and check for policy matches. note we go in order of # importance (eg h1->h7->span,etc) if self.debug: print('going to do checks on heading tags') if not is_policy: for tag_type in ['h1','h2','h3','h4','h5','h6','h7','span','strong','em']: if is_policy: break tags = lxml_doc.cssselect(tag_type) if len(tags) > 0: for tag in tags: tag_text = tag.text_content() # if it is > 15 words it is likely not a heading if len(tag_text.split(' ')) > 15: break policy_type_result = self.determine_policy_type_from_text(tag_text) if policy_type_result['success'] == True: is_policy = True policy['type'] = policy_type_result['result']['policy_type'] policy['match_term'] = policy_type_result['result']['match_term'] policy['match_text'] = policy_type_result['result']['match_text'] policy['match_text_type'] = tag_type # if it is a policy we do additional processing # before storing in db, otherwise we fail # gracefully if is_policy: if self.debug: print('going to store readability_html') readability_source_md5 = self.store_file(readability_html, False, 'readability_html') if self.debug: print('going to store page_text') # store_page_text handles some addition operations if self.debug: print('going to store page_text') policy['page_text_id'] = self.store_page_text(readability_html, readability_source_md5) if self.debug: print(f"page_text_id is {policy['page_text_id']}") if self.debug: print('going to store page_source') policy['page_source_md5'] = self.store_file(page_source, False, 'page_source') if self.debug: print('going to do reading ease scores') # get readability scores, scores below zero are # invalid so we null them policy['fre_score'] = textstat.flesch_reading_ease(page_text) if policy['fre_score'] <= 0: policy['fre_score'] = None policy['fk_score'] = textstat.flesch_kincaid_grade(page_text) if policy['fk_score'] <= 0: policy['fk_score'] = None if self.debug: print('going to store policy') # add to db and get id for this policy policy_id = self.sql_driver.add_policy(policy) if self.debug: print('going to link policy to pages') # attach policy to all links with this url, not we can filter # do only do internal links for page_id, crawl_id in self.sql_driver.get_page_ids_from_link_url(policy['start_url'],internal_links_only=True): self.sql_driver.attach_policy_to_page(policy_id,page_id) self.sql_driver.attach_policy_to_crawl(policy_id,crawl_id) if self.debug: print(f'\t� Success: {policy["start_url"]}') self.sql_driver.close() return {'success': True} else: if self.debug: print(f'\t👎 Fail: {policy["start_url"]}') self.sql_driver.close() return { 'success': False, 'result': 'Not policy' } # store_policy def determine_policy_type_from_text(self, text): """ Determine if a given text fragment indicates a given type of policy. Returns dict. """ # clear whitespace text = re.sub('\s+',' ',text) # retrieve values from policy_terms.json policy_verification_terms = self.utilities.get_policy_verification_terms() policy_type_keys = [] for key in policy_verification_terms: policy_type_keys.append(key) # randomize the order we do our checks random.shuffle(policy_type_keys) # look for matches against verification terms for policy_type in policy_type_keys: for term in policy_verification_terms[policy_type]: if term in text.lower(): return({ 'success': True, 'result' :{ 'policy_type': policy_type, 'match_term': term, 'match_text': text } }) # no match return ({'success': False}) # determine_policy_type_from_text def store_page_text(self,readability_html,readability_source_md5): # the actual 'page_text' output from readability doesn't properly seperate words # that use markup as a space. eg '<h3>this</h3><p>that</p>' becomes 'thisthat' # whereas 'this that' is what a user would see in the browser # to overcome the above issue we have to manually strip out html and do some # cleaning of our own. page_text = re.sub('<!--.+-->',' ', readability_html) page_text = re.sub('<svg.+</svg>',' ', page_text) page_text = re.sub('<.+?>', ' ', page_text) page_text = re.sub('[\n|\r]', ' ', page_text) page_text = re.sub('\s+', ' ', page_text) page_text = unicodedata.normalize('NFKD',html.unescape(page_text.strip())) # postgres can't handle nulls page_text = page_text.replace('\x00','NULL_REPLACED_FOR_PSQL') # return the id return self.sql_driver.add_page_text({ 'text' : page_text.replace('\x00',' '), 'word_count' : len(page_text.split()), 'readability_source_md5' : readability_source_md5 }) # store_page_text # OutputStore
thezedwards/webXray
webxray/OutputStore.py
OutputStore.py
py
43,016
python
en
code
1
github-code
6
[ { "api_name": "webxray.Utilities.Utilities", "line_number": 31, "usage_type": "call" }, { "api_name": "webxray.ParseURL.ParseURL", "line_number": 32, "usage_type": "call" }, { "api_name": "webxray.SQLiteDriver.SQLiteDriver", "line_number": 36, "usage_type": "call" }, { "api_name": "webxray.PostgreSQLDriver.PostgreSQLDriver", "line_number": 39, "usage_type": "call" }, { "api_name": "datetime.datetime.fromtimestamp", "line_number": 82, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 82, "usage_type": "name" }, { "api_name": "re.sub", "line_number": 210, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 211, "usage_type": "call" }, { "api_name": "datetime.datetime.fromtimestamp", "line_number": 259, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 259, "usage_type": "name" }, { "api_name": "re.match", "line_number": 395, "usage_type": "call" }, { "api_name": "re.match", "line_number": 396, "usage_type": "call" }, { "api_name": "re.match", "line_number": 420, "usage_type": "call" }, { "api_name": "re.search", "line_number": 497, "usage_type": "call" }, { "api_name": "re.search", "line_number": 503, "usage_type": "call" }, { "api_name": "datetime.datetime.fromtimestamp", "line_number": 555, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 555, "usage_type": "name" }, { "api_name": "re.match", "line_number": 596, "usage_type": "call" }, { "api_name": "re.search", "line_number": 648, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 653, "usage_type": "call" }, { "api_name": "re.search", "line_number": 676, "usage_type": "call" }, { "api_name": "re.search", "line_number": 682, "usage_type": "call" }, { "api_name": "datetime.datetime.fromtimestamp", "line_number": 701, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 701, "usage_type": "name" }, { "api_name": "datetime.datetime.fromtimestamp", "line_number": 759, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 759, "usage_type": "name" }, { "api_name": "datetime.datetime.fromtimestamp", "line_number": 770, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 770, "usage_type": "name" }, { "api_name": "datetime.datetime.fromtimestamp", "line_number": 819, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 819, "usage_type": "name" }, { "api_name": "hashlib.md5", "line_number": 870, "usage_type": "call" }, { "api_name": "lxml.html.html.fromstring", "line_number": 942, "usage_type": "call" }, { "api_name": "lxml.html.html", "line_number": 942, "usage_type": "attribute" }, { "api_name": "lxml.html", "line_number": 942, "usage_type": "name" }, { "api_name": "re.sub", "line_number": 985, "usage_type": "call" }, { "api_name": "urllib.parse.urlsplit", "line_number": 985, "usage_type": "call" }, { "api_name": "textstat.textstat.textstat.flesch_reading_ease", "line_number": 1047, "usage_type": "call" }, { "api_name": "textstat.textstat.textstat", "line_number": 1047, "usage_type": "name" }, { "api_name": "textstat.textstat.textstat.flesch_kincaid_grade", "line_number": 1051, "usage_type": "call" }, { "api_name": "textstat.textstat.textstat", "line_number": 1051, "usage_type": "name" }, { "api_name": "re.sub", "line_number": 1090, "usage_type": "call" }, { "api_name": "random.shuffle", "line_number": 1100, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 1125, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 1126, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 1127, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 1128, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 1129, "usage_type": "call" }, { "api_name": "unicodedata.normalize", "line_number": 1130, "usage_type": "call" }, { "api_name": "html.unescape", "line_number": 1130, "usage_type": "call" } ]
26625288006
from decimal import Decimal from django import template from livesettings import config_value from product.utils import calc_discounted_by_percentage, find_best_auto_discount from tax.templatetags import satchmo_tax register = template.Library() def sale_price(product): """Returns the sale price, including tax if that is the default.""" if config_value('TAX', 'DEFAULT_VIEW_TAX'): return taxed_sale_price(product) else: return untaxed_sale_price(product) register.filter('sale_price', sale_price) def untaxed_sale_price(product): """Returns the product unit price with the best auto discount applied.""" discount = find_best_auto_discount(product) price = product.unit_price if discount and discount.valid_for_product(product): price = calc_discounted_by_percentage(price, discount.percentage) return price register.filter('untaxed_sale_price', untaxed_sale_price) def taxed_sale_price(product): """Returns the product unit price with the best auto discount applied and taxes included.""" taxer = satchmo_tax._get_taxprocessor() price = untaxed_sale_price(product) price = price + taxer.by_price(product.taxClass, price) return price register.filter('taxed_sale_price', taxed_sale_price) def discount_cart_total(cart, discount): """Returns the discounted total for this cart, with tax if that is the default.""" if config_value('TAX', 'DEFAULT_VIEW_TAX'): return taxed_discount_cart_total(cart, discount) else: return untaxed_discount_cart_total(cart, discount) register.filter('discount_cart_total', discount_cart_total) def untaxed_discount_cart_total(cart, discount): """Returns the discounted total for this cart""" total = Decimal('0.00') for item in cart: total += untaxed_discount_line_total(item, discount) return total register.filter('untaxed_discount_cart_total', untaxed_discount_cart_total) def taxed_discount_cart_total(cart, discount): """Returns the discounted total for this cart with taxes included""" total = Decimal('0.00') for item in cart: total += taxed_discount_line_total(item, discount) return total register.filter('taxed_discount_cart_total', taxed_discount_cart_total) def discount_line_total(cartitem, discount): """Returns the discounted line total for this cart item, including tax if that is the default.""" if config_value('TAX', 'DEFAULT_VIEW_TAX'): return taxed_discount_line_total(cartitem, discount) else: return untaxed_discount_line_total(cartitem, discount) register.filter('discount_line_total', discount_line_total) def untaxed_discount_line_total(cartitem, discount): """Returns the discounted line total for this cart item""" price = cartitem.line_total if discount and discount.valid_for_product(cartitem.product): price = calc_discounted_by_percentage(price, discount.percentage) return price register.filter('untaxed_discount_line_total', untaxed_discount_line_total) def taxed_discount_line_total(cartitem, discount): """Returns the discounted line total for this cart item with taxes included.""" price = untaxed_discount_line_total(cartitem, discount) taxer = satchmo_tax._get_taxprocessor() price = price + taxer.by_price(cartitem.product.taxClass, price) return price register.filter('taxed_discount_line_total', taxed_discount_line_total) def discount_price(product, discount): """Returns the product price with the discount applied, including tax if that is the default. Ex: product|discount_price:sale """ if config_value('TAX', 'DEFAULT_VIEW_TAX'): return taxed_discount_price(product, discount) else: return untaxed_discount_price(product, discount) register.filter('discount_price', discount_price) def untaxed_discount_price(product, discount): """Returns the product price with the discount applied. Ex: product|discount_price:sale """ up = product.unit_price if discount and discount.valid_for_product(product): pcnt = calc_discounted_by_percentage(up, discount.percentage) return pcnt else: return up register.filter('untaxed_discount_price', untaxed_discount_price) def taxed_discount_price(product, discount): """Returns the product price with the discount applied, and taxes included. Ex: product|discount_price:sale """ price = untaxed_discount_price(product, discount) taxer = satchmo_tax._get_taxprocessor() return price + taxer.by_price(product.taxClass, price) register.filter('taxed_discount_price', taxed_discount_price) def discount_ratio(discount): """Returns the discount as a ratio, making sure that the percent is under 1""" pcnt = discount.percentage if pcnt > 1: pcnt = pcnt/100 return 1-pcnt register.filter('discount_ratio', discount_ratio) def discount_saved(product, discount): """Returns the amount saved by the discount, including tax if that is the default.""" if config_value('TAX', 'DEFAULT_VIEW_TAX'): return taxed_discount_saved(product, discount) else: return untaxed_discount_saved(product, discount) register.filter('discount_saved', discount_saved) def untaxed_discount_saved(product, discount): """Returns the amount saved by the discount""" if discount and discount.valid_for_product(product): price = product.unit_price discounted = untaxed_discount_price(product, discount) saved = price - discounted cents = Decimal("0.01") return saved.quantize(cents) else: return Decimal('0.00') register.filter('untaxed_discount_saved', untaxed_discount_saved) def taxed_discount_saved(product, discount): """Returns the amount saved by the discount, after applying taxes.""" if discount and discount.valid_for_product(product): price = product.unit_price discounted = taxed_discount_price(product, discount) saved = price - discounted cents = Decimal("0.01") return saved.quantize(cents) else: return Decimal('0.00') register.filter('taxed_discount_saved', taxed_discount_saved)
dokterbob/satchmo
satchmo/apps/product/templatetags/satchmo_discounts.py
satchmo_discounts.py
py
6,222
python
en
code
30
github-code
6
[ { "api_name": "django.template.Library", "line_number": 7, "usage_type": "call" }, { "api_name": "django.template", "line_number": 7, "usage_type": "name" }, { "api_name": "livesettings.config_value", "line_number": 11, "usage_type": "call" }, { "api_name": "product.utils", "line_number": 12, "usage_type": "argument" }, { "api_name": "product.utils", "line_number": 14, "usage_type": "argument" }, { "api_name": "product.utils.find_best_auto_discount", "line_number": 20, "usage_type": "call" }, { "api_name": "product.utils", "line_number": 20, "usage_type": "argument" }, { "api_name": "product.utils.unit_price", "line_number": 21, "usage_type": "attribute" }, { "api_name": "product.utils", "line_number": 21, "usage_type": "name" }, { "api_name": "product.utils", "line_number": 23, "usage_type": "argument" }, { "api_name": "product.utils.calc_discounted_by_percentage", "line_number": 24, "usage_type": "call" }, { "api_name": "tax.templatetags.satchmo_tax._get_taxprocessor", "line_number": 32, "usage_type": "call" }, { "api_name": "tax.templatetags.satchmo_tax", "line_number": 32, "usage_type": "name" }, { "api_name": "product.utils", "line_number": 33, "usage_type": "argument" }, { "api_name": "product.utils.taxClass", "line_number": 34, "usage_type": "attribute" }, { "api_name": "product.utils", "line_number": 34, "usage_type": "name" }, { "api_name": "livesettings.config_value", "line_number": 41, "usage_type": "call" }, { "api_name": "decimal.Decimal", "line_number": 50, "usage_type": "call" }, { "api_name": "decimal.Decimal", "line_number": 60, "usage_type": "call" }, { "api_name": "livesettings.config_value", "line_number": 71, "usage_type": "call" }, { "api_name": "product.utils.calc_discounted_by_percentage", "line_number": 83, "usage_type": "call" }, { "api_name": "tax.templatetags.satchmo_tax._get_taxprocessor", "line_number": 92, "usage_type": "call" }, { "api_name": "tax.templatetags.satchmo_tax", "line_number": 92, "usage_type": "name" }, { "api_name": "livesettings.config_value", "line_number": 104, "usage_type": "call" }, { "api_name": "product.utils", "line_number": 105, "usage_type": "argument" }, { "api_name": "product.utils", "line_number": 107, "usage_type": "argument" }, { "api_name": "product.utils.unit_price", "line_number": 117, "usage_type": "attribute" }, { "api_name": "product.utils", "line_number": 117, "usage_type": "name" }, { "api_name": "product.utils", "line_number": 118, "usage_type": "argument" }, { "api_name": "product.utils.calc_discounted_by_percentage", "line_number": 119, "usage_type": "call" }, { "api_name": "product.utils", "line_number": 131, "usage_type": "argument" }, { "api_name": "tax.templatetags.satchmo_tax._get_taxprocessor", "line_number": 132, "usage_type": "call" }, { "api_name": "tax.templatetags.satchmo_tax", "line_number": 132, "usage_type": "name" }, { "api_name": "product.utils.taxClass", "line_number": 133, "usage_type": "attribute" }, { "api_name": "product.utils", "line_number": 133, "usage_type": "name" }, { "api_name": "livesettings.config_value", "line_number": 149, "usage_type": "call" }, { "api_name": "product.utils", "line_number": 150, "usage_type": "argument" }, { "api_name": "product.utils", "line_number": 152, "usage_type": "argument" }, { "api_name": "product.utils", "line_number": 160, "usage_type": "argument" }, { "api_name": "product.utils.unit_price", "line_number": 161, "usage_type": "attribute" }, { "api_name": "product.utils", "line_number": 161, "usage_type": "name" }, { "api_name": "product.utils", "line_number": 162, "usage_type": "argument" }, { "api_name": "decimal.Decimal", "line_number": 164, "usage_type": "call" }, { "api_name": "decimal.Decimal", "line_number": 167, "usage_type": "call" }, { "api_name": "product.utils", "line_number": 174, "usage_type": "argument" }, { "api_name": "product.utils.unit_price", "line_number": 175, "usage_type": "attribute" }, { "api_name": "product.utils", "line_number": 175, "usage_type": "name" }, { "api_name": "product.utils", "line_number": 176, "usage_type": "argument" }, { "api_name": "decimal.Decimal", "line_number": 178, "usage_type": "call" }, { "api_name": "decimal.Decimal", "line_number": 181, "usage_type": "call" } ]
45636612723
import pytest from page_objects.sign_in_page_object import SignInPage from utils.read_excel import ExcelReader @pytest.mark.usefixtures("setup") class TestRegistration(): @pytest.mark.parametrize("reg_data", ExcelReader.get_reg_data()) def test_registration_initial_form(self, reg_data): sign_in_page = SignInPage(self.driver) sign_in_page.open_sign_in_page() sign_in_page.open_registration_form(reg_data.email) assert sign_in_page.is_register_button() # def test_registration_main_form(self):
mcwilk/Selenium_automation
tests/registration_test.py
registration_test.py
py
544
python
en
code
0
github-code
6
[ { "api_name": "page_objects.sign_in_page_object.SignInPage", "line_number": 14, "usage_type": "call" }, { "api_name": "pytest.mark.parametrize", "line_number": 11, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 11, "usage_type": "attribute" }, { "api_name": "utils.read_excel.ExcelReader.get_reg_data", "line_number": 11, "usage_type": "call" }, { "api_name": "utils.read_excel.ExcelReader", "line_number": 11, "usage_type": "name" }, { "api_name": "pytest.mark.usefixtures", "line_number": 8, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 8, "usage_type": "attribute" } ]
16294942824
import functools import os import re import requests import csv import sys from datetime import time, timedelta import argparse #print(response.json()) class event_type: GOAL = 0 PENALTY = 1 ASSIST = 2 class game_event: def toPeriod(self, int_period): int_period = int(int_period) if int_period == 1: return str(int_period) + 'st' elif int_period == 2: return str(int_period) + 'nd' elif int_period == 3: return str(int_period) + 'rd' else: return str(int_period) + 'th' def __init__(self, id, name, start_time, end_time, period, participant, partNumber, event_type, penalty_duration = 0, event_subtype = ''): self.id = id self.name = name self.participant = participant self.partNumber = partNumber self.start_time = start_time self.end_time = end_time self.period = self.toPeriod(period) self.event_type = event_type self.event_subtype = event_subtype self.penalty_duration = penalty_duration def score_sort(item1, item2): if(item1.period < item2.period or (item1.period == item2.period and item1.start_time >= item2.start_time)): return -1 else: return 1 class score_track: def __init__(self): self.scores_ = [] def add_score(self, score): self.scores_.append(score) self.scores_ = sorted(self.scores_, key=functools.cmp_to_key(score_sort)) def score_str(self, period, time, team1, team2): dict = {team1: 0, team2: 0} for score in filter(lambda x: x.event_type == event_type.GOAL, self.scores_): if score.period > period or (score.period == period and score.start_time < time): continue dict[score.name] += 1 vals = list(dict.values()) return '' + str(vals[0]) + ' -- ' + str(vals[1]) def collectGameTime(dateObj): return timedelta(minutes=int(dateObj['minutes']), seconds=int(dateObj['seconds'])) def computePenalty(start, dur): if start.seconds <= dur.seconds: return timedelta(minutes=0, seconds=0) return start - dur def obtainGoalCode(dict): if dict['isPowerplay']: return 'PPG' elif dict['isShorthanded']: return 'SHG' elif dict['isEmptyNet']: return 'ENG' elif dict['isPenaltyShot']: return 'PSG' else: return 'REG' def writeGameToFile(hockey_csv, response, date): rj = response.json() idTeamName = {} out_writer = csv.writer(hockey_csv) for team in rj['teams']: idTeamName[team['id']] = team['name'] teamNames = list(idTeamName.values()) scores = score_track() for goal in rj['goals']: scores.add_score(game_event(goal['teamId'], idTeamName[goal['teamId']], collectGameTime(goal['gameTime']), collectGameTime(goal['gameTime']), goal['gameTime']['period'], goal['participant']['fullName'], goal['participant']['number'], event_type.GOAL, 0, obtainGoalCode(goal))) for assist in goal['assists']: scores.add_score(game_event(goal['teamId'], idTeamName[goal['teamId']], collectGameTime(goal['gameTime']), collectGameTime(goal['gameTime']), goal['gameTime']['period'], assist['fullName'], assist['number'], event_type.ASSIST, 0, obtainGoalCode(goal))) for pen in rj['penalties']: pen_period = int(pen['gameTime']['period']) pen_starttime = collectGameTime(pen['gameTime']) pen_endtime = pen_starttime pen_duration = 0 if 'description' in pen['duration']: pen_duration = int(re.findall("\d+", pen['duration']['description'])[0]) pen_endtime = computePenalty(collectGameTime(pen['gameTime']), timedelta(minutes=pen_duration)) scores.add_score(game_event(pen['teamId'], idTeamName[pen['teamId']], pen_starttime, pen_endtime , pen_period, pen['participant']['fullName'], pen['participant']['number'], event_type.PENALTY, pen_duration, pen['infraction'])) if pen_starttime.total_seconds() < pen_duration * 60 and pen_period < 3: carryover_start = timedelta(minutes=20, seconds=0) carryover_duration = timedelta(minutes=pen_duration) - pen_starttime carryover_endtime = carryover_start - carryover_duration scores.add_score(game_event(pen['teamId'], idTeamName[pen['teamId']], carryover_start, carryover_endtime, pen_period + 1, pen['participant']['fullName'], pen['participant']['number'], event_type.PENALTY, pen_duration, pen['infraction'])) for score in scores.scores_: if score.event_type == event_type.GOAL: out_writer.writerow([teamNames[0], teamNames[1], date, 'GOAL', score.event_subtype, score.participant, score.partNumber, score.name, score.start_time, score.end_time, score.period, 0, scores.score_str(score.period, score.start_time, teamNames[0], teamNames[1])]) if score.event_type == event_type.ASSIST: out_writer.writerow([teamNames[0], teamNames[1], date, 'ASSIST', score.event_subtype, score.participant, score.partNumber, score.name, score.start_time, score.end_time, score.period, 0, scores.score_str(score.period, score.start_time, teamNames[0], teamNames[1])]) if score.event_type == event_type.PENALTY: out_writer.writerow([teamNames[0], teamNames[1], date, 'PENALTY', score.event_subtype, score.participant, score.partNumber, score.name, score.start_time, score.end_time, score.period, score.penalty_duration, scores.score_str(score.period, score.start_time, teamNames[0], teamNames[1])]) def main(): parser = argparse.ArgumentParser('Collect data from VIAHA webpage and dump to csv spreadsheets.') parser.add_argument('-s','--separate', dest='separate', action='store_const', const=True, default=False, help='If enabled, games will be split into separate files.') parser.add_argument('scheduleId', type=int, nargs='?', help='Provide the ID of the schedule for the games you want to collect.') parser.add_argument('teamId', type=int, nargs='?', help='Provide the team you are interested in from the provided schedule') args=parser.parse_args() if args.scheduleId is None or args.teamId is None: raise Exception('Cannot run script without a schedule and team ID') gameId = sys.argv[1] scheduleUrl = 'https://api.hisports.app/api/games' paramStr = '?filter={{"where":{{"and":[{{"scheduleId":{}}},{{"or":[{{"homeTeamId":{}}},{{"awayTeamId":{}}}]}}]}},"include":["arena","schedule","group","teamStats"],"order":["startTime ASC","id DESC"],"limit":null,"skip":null}}'.format(args.scheduleId, args.teamId, args.teamId) headers = {'authorization' : 'API-Key f75fa549e81421f19dc929bc91f88820b6d09421'} sess = requests.Session() req = requests.Request('GET', scheduleUrl, headers=headers) prep = req.prepare() prep.url += paramStr resp = sess.send(prep) collectfilename = 'games-season-{}-{}-{}.csv'.format(resp.json()[0]['seasonId'], args.scheduleId, args.teamId) if args.separate == False: if os.path.isfile(collectfilename): os.remove(collectfilename) with open(collectfilename, 'a') as file: out_writer = csv.writer(file) out_writer.writerow(['Home Team', 'Away Team', 'Date', 'Event', 'Event Type', 'Player Name', 'Player Number', 'Player Team', 'Start Time', 'End Time', 'Period', 'Penalty Mins', 'Score']) for game in resp.json(): gameUrl = 'https://api.hisports.app/api/games/{}/boxScore'.format(game['id']) req = requests.Request('GET', gameUrl, headers=headers) resp = sess.send(req.prepare()) if args.separate: with open('game-{}-{}-{}.csv'.format(game['date'], args.scheduleId, args.teamId), 'w+') as file: out_writer = csv.writer(file) out_writer.writerow(['Home Team', 'Away Team', 'Date', 'Event', 'Event Type', 'Player Name', 'Player Number', 'Player Team', 'Start Time', 'End Time', 'Period', 'Penalty Mins', 'Score']) writeGameToFile(file, resp, game['date']) else: with open(collectfilename, 'a') as file: writeGameToFile(file, resp, game['date']) if __name__ == '__main__': main()
SolidSnackDrive/hockepy_viaha
hockey.py
hockey.py
py
8,307
python
en
code
0
github-code
6
[ { "api_name": "functools.cmp_to_key", "line_number": 53, "usage_type": "call" }, { "api_name": "datetime.time", "line_number": 57, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 64, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 68, "usage_type": "call" }, { "api_name": "csv.writer", "line_number": 87, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 103, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 104, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 108, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 109, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 124, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 134, "usage_type": "attribute" }, { "api_name": "requests.Session", "line_number": 138, "usage_type": "call" }, { "api_name": "requests.Request", "line_number": 139, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 146, "usage_type": "call" }, { "api_name": "os.path", "line_number": 146, "usage_type": "attribute" }, { "api_name": "os.remove", "line_number": 147, "usage_type": "call" }, { "api_name": "csv.writer", "line_number": 149, "usage_type": "call" }, { "api_name": "requests.Request", "line_number": 155, "usage_type": "call" }, { "api_name": "csv.writer", "line_number": 159, "usage_type": "call" } ]
20859673703
import pymunk import pymunk.pygame_util import pygame from classes.ammo.ammo_box import AmmoBox from classes.coin.coin import Coin import os import random import math from functions.math import get_xys, get_distance class Enemy: def __init__(self, game, space, radius, pos): self.game = game self.body = pymunk.Body() self.body.position = pos self.radius = 20 self.image = pygame.transform.scale(self.original_image, (radius * 2, radius * 2)) self.rect = self.image.get_rect() self.shape = pymunk.Circle(self.body, radius) self.shape.collision_type = game.collision_types["ENEMY"] self.shape.elasticity = 0.8 self.shape.friction = 1 self.shape.mass = radius / 10 self.shape.color = self.color space.add(self.body, self.shape) self.health_bar = pygame.surface.Surface((120, 30)) self.health_bar_size = (120, 30) self.s = 3 # IMPLEMENTING PATH FINDING # self.graph = graph self.game.graph.A_star( self.game.graph.map[round(self.body.position[0] // self.game.TILE_SIZE)][ round(self.body.position[1] // self.game.TILE_SIZE)], self.game.graph.map[round(self.game.player.body.position[0] // self.game.TILE_SIZE)][ round(self.game.player.body.position[1] // self.game.TILE_SIZE)] ) # print(self.game.graph.A_star( # self.game.graph.map[round(self.body.position[0] // self.game.TILE_SIZE)][ # round(self.body.position[1] // self.game.TILE_SIZE)], # self.game.graph.map[round(self.game.player.body.position[0] // self.game.TILE_SIZE)][ # round(self.game.player.body.position[1] // self.game.TILE_SIZE)] # )[self.game.graph.map[round(self.body.position[0] // self.game.TILE_SIZE)][ # round(self.body.position[1] // self.game.TILE_SIZE)]]) self.path = [] self.create_path() # print(len(self.path)) def create_path(self): routes = self.game.graph.A_star( self.game.graph.map[round(self.body.position[0] // self.game.TILE_SIZE)][ round(self.body.position[1] // self.game.TILE_SIZE)], self.game.graph.map[round(self.game.player.body.position[0] // self.game.TILE_SIZE)][ round(self.game.player.body.position[1] // self.game.TILE_SIZE)] ) node = routes[self.game.graph.map[round(self.game.player.body.position[0] // self.game.TILE_SIZE)][ round(self.game.player.body.position[1] // self.game.TILE_SIZE)]] while node is not None: self.path.append(node) node = routes[node] self.path.pop() def move(self): # for item in self.path: # x,y = self.game.get_position_by_player((item.x * self.game.TILE_SIZE, # item.y * self.game.TILE_SIZE)) # pygame.draw.rect(self.game.window, (0, 255, 0), # (round(x), round(y), self.game.TILE_SIZE, self.game.TILE_SIZE)) self.create_path() if len(self.path) <= 0: return xy = (self.path[-1].x * self.game.TILE_SIZE + self.game.TILE_SIZE / 2, self.path[-1].y * self.game.TILE_SIZE + self.game.TILE_SIZE / 2) xs, ys = get_xys(self.body.position, xy) self.body.position = (self.body.position.x + xs * self.s, self.body.position.y + ys * self.s) if get_distance(self.body.position, xy) < self.radius: self.path.pop() def update(self, game): self.rect.center = game.get_position_by_player(self.body.position) new_rect = self.image.get_rect(center=self.rect.center) game.window.blit(self.image, new_rect) def show_hp(self, game): pygame.draw.rect(self.health_bar, (0, 0, 0), (0, 0, self.health_bar_size[0], self.health_bar_size[1])) pygame.draw.rect(self.health_bar, (35, 189, 26), (2, 2, (self.health_bar_size[0] - 4) * (self.hp / self.max_hp), self.health_bar_size[1] - 4)) x, y = game.get_position_by_player(self.body.position) game.window.blit(self.health_bar, (x - 60, y - self.radius * 2 - 10)) # Call on delete def __del__(self): if random.random() > 0.6: ammo_type = ["light", "medium"][random.randrange(2)] self.game.ground_items.append(AmmoBox(self.game, self.body.position, ammo_type, random.randrange(1, 6))) for i in range(2): self.game.coins.append(Coin(self.game, (self.body.position.x + 100 * (random.random() - 0.5), self.body.position.y + (100 * random.random() * 0.5)))) self.game.space.remove(self.body, self.shape) def special_attack(self): pass class BasicEnemy(Enemy): color = (255, 250, 0, 100) original_image = pygame.image.load(os.path.join("imgs", "basic.png")) collision_damage = 5 spawn_cost = 2 def __init__(self, game, space, radius, pos): super().__init__(game, space, radius, pos) self.max_hp = 15 self.hp = 15
matej-kotrba/python-survival-game
classes/enemies/basic.py
basic.py
py
5,383
python
en
code
3
github-code
6
[ { "api_name": "pymunk.Body", "line_number": 15, "usage_type": "call" }, { "api_name": "pygame.transform.scale", "line_number": 18, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 18, "usage_type": "attribute" }, { "api_name": "pymunk.Circle", "line_number": 20, "usage_type": "call" }, { "api_name": "pygame.surface.Surface", "line_number": 28, "usage_type": "call" }, { "api_name": "pygame.surface", "line_number": 28, "usage_type": "attribute" }, { "api_name": "functions.math.get_xys", "line_number": 76, "usage_type": "call" }, { "api_name": "functions.math.get_distance", "line_number": 78, "usage_type": "call" }, { "api_name": "pygame.draw.rect", "line_number": 87, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 87, "usage_type": "attribute" }, { "api_name": "pygame.draw.rect", "line_number": 88, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 88, "usage_type": "attribute" }, { "api_name": "random.random", "line_number": 95, "usage_type": "call" }, { "api_name": "random.randrange", "line_number": 96, "usage_type": "call" }, { "api_name": "classes.ammo.ammo_box.AmmoBox", "line_number": 97, "usage_type": "call" }, { "api_name": "random.randrange", "line_number": 97, "usage_type": "call" }, { "api_name": "classes.coin.coin.Coin", "line_number": 99, "usage_type": "call" }, { "api_name": "random.random", "line_number": 100, "usage_type": "call" }, { "api_name": "random.random", "line_number": 101, "usage_type": "call" }, { "api_name": "pygame.image.load", "line_number": 109, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 109, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 109, "usage_type": "call" }, { "api_name": "os.path", "line_number": 109, "usage_type": "attribute" } ]
35987738740
import torch from tsf_baselines.modeling import build_network ALGORITHMS = [ 'BasicTransformerEncoderDecoder' ] def get_algorithm_class(algorithm_name): """Return the algorithm class with the given name.""" if algorithm_name not in globals(): raise NotImplementedError("Algorithm not found: {}".format(algorithm_name)) print('algorithm_name = {}'.format(algorithm_name)) return globals()[algorithm_name] def build_algorithm(cfg): algorithm = get_algorithm_class(cfg.ALGORITHM.NAME)(cfg) return algorithm class Algorithm(torch.nn.Module): """ A subclass of Algorithm implements a time series forecasting algorithm. Subclasses should implement the following: - update() - predict() """ def __init__(self, cfg): super(Algorithm, self).__init__() self.cfg = cfg self.device = self._acquire_device() def _acquire_device(self): # print('self.cfg = {}'.format(self.cfg)) if self.cfg.MODEL.USE_GPU: # os.environ["CUDA_VISIBLE_DEVICES"] = str(self.cfg.MODEL.DEVICE) if not self.args.use_multi_gpu else self.args.devices device = torch.device('cuda:{}'.format(self.cfg.MODEL.DEVICE)) print('Use GPU: cuda:{}'.format(self.cfg.MODEL.DEVICE)) else: device = torch.device('cpu') print('Use CPU') return device def update(self, minibatches): """ Perform one update step, given a list of (x, y) tuples for all environments. """ raise NotImplementedError def predict(self, x): raise NotImplementedError class BasicTransformerEncDec(Algorithm): def __init__(self, cfg): super(BasicTransformerEncDec, self).__init__(cfg) self.cfg = cfg # Backbone self.model = build_network(cfg) # Loss function self.loss_mse = torch.nn.MSELoss() # Optimizer self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.cfg.SOLVER.BASE_LR) # other declarations pass def _process_one_batch(self, dataset_object, batch_x, batch_y, batch_x_mark, batch_y_mark): batch_x = batch_x.float().to(self.device) batch_y = batch_y.float() batch_x_mark = batch_x_mark.float().to(self.device) batch_y_mark = batch_y_mark.float().to(self.device) # decoder input if self.cfg.DATASETS.PADDING == 0: dec_inp = torch.zeros([batch_y.shape[0], self.cfg.MODEL.PRED_LEN, batch_y.shape[-1]]).float() elif self.DATASETS.PADDING == 1: dec_inp = torch.ones([batch_y.shape[0], self.cfg.MODEL.PRED_LEN, batch_y.shape[-1]]).float() dec_inp = torch.cat([batch_y[:, :self.cfg.MODEL.LABEL_LEN, :], dec_inp], dim=1).float().to(self.device) # encoder - decoder if self.cfg.MODEL.OUTPUT_ATTENTION: outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0] else: outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark) if self.cfg.DATASETS.INVERSE: outputs = dataset_object.inverse_transform(outputs) f_dim = -1 if self.cfg.DATASETS.FEATURES == 'MS' else 0 batch_y = batch_y[:, -self.cfg.MODEL.PRED_LEN:, f_dim:].to(self.device) return outputs, batch_y def update(self, dataset_object, batch_x, batch_y, batch_x_mark, batch_y_mark): outputs, batch_y = self._process_one_batch(dataset_object, batch_x, batch_y, batch_x_mark, batch_y_mark) loss = self.loss_mse(outputs, batch_y) self.optimizer.zero_grad() loss.backward() self.optimizer.step() return {'loss': loss.item()} def predict(self, dataset_object, batch_x, batch_y, batch_x_mark, batch_y_mark): outputs, batch_y = self._process_one_batch(dataset_object, batch_x, batch_y, batch_x_mark, batch_y_mark) return outputs, batch_y
zhaoyang10/time-series-forecasting-baselines
tsf_baselines/algorithm/build.py
build.py
py
3,942
python
en
code
3
github-code
6
[ { "api_name": "torch.nn", "line_number": 20, "usage_type": "attribute" }, { "api_name": "torch.device", "line_number": 36, "usage_type": "call" }, { "api_name": "torch.device", "line_number": 39, "usage_type": "call" }, { "api_name": "tsf_baselines.modeling.build_network", "line_number": 59, "usage_type": "call" }, { "api_name": "torch.nn.MSELoss", "line_number": 62, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 62, "usage_type": "attribute" }, { "api_name": "torch.optim.Adam", "line_number": 65, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 65, "usage_type": "attribute" }, { "api_name": "torch.zeros", "line_number": 79, "usage_type": "call" }, { "api_name": "torch.ones", "line_number": 81, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 82, "usage_type": "call" } ]
69894678589
import configparser from datetime import datetime import os from pyspark.sql import SparkSession from pyspark.sql.functions import udf, col, monotonically_increasing_id from pyspark.sql.functions import year, month, dayofmonth, hour, weekofyear, date_format from pyspark.sql import types as t # reading in the AWS config information from the dl.cfg file config = configparser.ConfigParser() config.read('dl.cfg') os.environ['AWS_ACCESS_KEY_ID'] =config['AWS']['AWS_ACCESS_KEY_ID'] os.environ['AWS_SECRET_ACCESS_KEY'] =config['AWS']['AWS_SECRET_ACCESS_KEY'] print(os.environ['AWS_ACCESS_KEY_ID'] ) print(os.environ['AWS_SECRET_ACCESS_KEY'] ) #def create_spark_session(): # spark = SparkSession \ # .builder \ # .config("spark.jars.packages", "org.apache.hadoop:hadoop-aws:2.7.0") \ # .getOrCreate() # print("spark session created") # return spark def create_spark_session(): """ This creates a Spark session, specifying the hadoop package to use, the S3 buckets and reads in the AWS ID and key as environment variables Parameters: None Returns: Spark session object """ spark = SparkSession \ .builder \ .config("spark.jars.packages", "org.apache.hadoop:hadoop-aws:2.7.0") \ .config("spark.hadoop.fs.s3a.impl","org.apache.hadoop.fs.s3a.S3AFileSystem") \ .config("spark.hadoop.fs.s3a.awsAccessKeyId", os.environ['AWS_ACCESS_KEY_ID']) \ .config("spark.hadoop.fs.s3a.awsSecretAccessKey", os.environ['AWS_SECRET_ACCESS_KEY']) \ .getOrCreate() print("spark session created") return spark def process_song_data(spark, input_data, output_data): """ This reads in song and artist data as csv files from the udacity s3 bucket as a spark dataframe and then uses spark_sql to insert select columns into a parquet file format back into the user-generated S3 bucket Parameters: spark: A spark session object input_data: A string representing the udacity-generated s3 bucket root output_data: A string representing the user-generated s3 bucket root Output: No output returned: but two parquet files written to user-generated s3 bucket """ # get filepath to song data file song_data = input_data +"song_data/*/*/*/*.json" print(song_data) # read song data file print("reading in song data") df = spark.read.json(song_data) # extract columns to create songs table df.createOrReplaceTempView("songs_table_df") songs_table = spark.sql(""" SELECT song_id, title, artist_id,year, duration FROM songs_table_df ORDER by song_id """) # write songs table to parquet files partitioned by year and artist songs_table_path = output_data + "songs_table.parquet" print("read to songs table to parquet format") songs_table.write.mode("overwrite").partitionBy("year","artist_id").parquet(songs_table_path) # extract columns to create artists table df.createOrReplaceTempView("artist_table_df") artists_table = spark.sql( """ SELECT artist_id AS artist_id, artist_name AS name, artist_location AS location, artist_latitude AS latitude, artist_longitute AS longitude FROM artist_table_df """) # write artists table to parquet files artists_table_path = output_data + "artists_table.parquet" print("write to artist table") artists_table.write.mode("overwrite").parquet(artist_table_path) def process_log_data(spark, input_data, output_data): """ This reads in log_data from the udacity-generated s3 bucket, where the data relates to songs played, and this is written to a parquet file. It then takes a subset of the log_data, creates time- and date- stamps by using a udf with lambdas, and this is written to a parquet file. Song data is then read into a data frame and joined with log data to create a joined table, which is written to a parquet file. Parameters: spark: A spark session object input_data: A string representing the udacity-generated s3 bucket root output_data: A string representing the user-generated s3 bucket root Returns: users_table: A spark dataframe holding user information time_table: A spark dataframe holding time information songplays_table: A spark dataframe holding songplay information """ # get filepath to log data file log_data = input_data + "log_data/*.json" print("reading in log data") # read log data file df_log = spark.read.json(log_data) # filter by actions for song plays df_log = df_log.filter(df.page == 'NextSong') # extract columns for users table df_log.createOrReplaceTempView("users_table_df") users_table = spark.sql(""" SELECT DISTINCT userId AS userid, firstName AS first_name, lastName AS last_name, gender, level FROM users_table_df ORDER BY last_name """) print("writing to parquet format") # write users table to parquet files users_table_path = output_data + "users_table.parquet" users_table.write.mode("overwrite").parquet(users_table_path) # create timestamp column from original timestamp column get_timestamp = udf(lambda x: datetime.fromtimestamp((x/1000.0)),TimestampType()) df_log = df_log.withColumn("timestamp", gettimestamp("ts")) # create datetime column from original timestamp column get_datetime = udf(lambda x: datetime.fromtimestamp(ts/1000.0).strfrmtime('%Y-%m-%d %H:%M:%S')) df_log = df_log.withColumn("datetime",get_datetime("ts")) # extract columns to create time table df_log.createOrReplaceTempView("time_table_df") time_table = spark.sql("""SELECT DISTINCT datetime as start_time, hour(timestamp) as hour, day(timestamp) as day, weekofyear(timestamp) as week, month(timestamp) as month, year(timestamp) as year, dayofweek(timestamp) as weekday FROM time_table_df ORDER BY start_time """) # write time table to parquet files partitioned by year and month time_table_path = output_data + "time_table.parquet" time_table.write.mode("overwrite").partitionBy("year","month").parquet(time_table_path) # read in song data to use for songplays table song_df = spark.read.json(song_data) #join log and song df together df_log_song_df_joined = df_log_filtered.join(df_song, (df_log_filtered.artist == df_song.artist_name) & (df_log_filtered.song == df_song.title)) # extract columns from joined song and log datasets to create songplays table df_log_song_df_joined.createOrReplaceTempView("songplays_table_df") songplays_table = spark.sql(""" SELECT songplay_id AS songplay_id, timestamp AS start_time, userId AS user_id, level AS level, song_id AS song_id, artist_id AS artist_id, sessionId AS session_id, location AS location, userAgent AS user_agent FROM songplays_table_DF ORDER BY (user_id, session_id) """) # write songplays table to parquet files partitioned by year and month songplays_table_path = output_data + "songplays_table.parquet" songplays_table.write.mode("overwrite").partitionBy("year","month").parquet(songplays_table_path) return users_table, time_table, songplays_table def main(): """ Main function for the code. It creates a spark session, defines the paths of the input and ouput buckets, and call the two functions process_song_data and process_log_data """ spark = create_spark_session() input_data = "s3a://udacity-dend/" output_data = "s3a://udacity-lake/output_data/" process_song_data(spark, input_data, output_data) process_log_data(spark, input_data, output_data) if __name__ == "__main__": main()
greggwilliams58/data-lake
etl.py
etl.py
py
8,843
python
en
code
0
github-code
6
[ { "api_name": "configparser.ConfigParser", "line_number": 10, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 13, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 14, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 16, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 17, "usage_type": "attribute" }, { "api_name": "pyspark.sql.SparkSession.builder.config", "line_number": 37, "usage_type": "call" }, { "api_name": "pyspark.sql.SparkSession.builder", "line_number": 37, "usage_type": "attribute" }, { "api_name": "pyspark.sql.SparkSession", "line_number": 37, "usage_type": "name" }, { "api_name": "os.environ", "line_number": 41, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 42, "usage_type": "attribute" }, { "api_name": "pyspark.sql.functions.udf", "line_number": 151, "usage_type": "call" }, { "api_name": "datetime.datetime.fromtimestamp", "line_number": 151, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 151, "usage_type": "name" }, { "api_name": "pyspark.sql.functions.udf", "line_number": 155, "usage_type": "call" }, { "api_name": "datetime.datetime.fromtimestamp", "line_number": 155, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 155, "usage_type": "name" } ]
44137255205
#pip3 install wikiepdia-api #pip3 install elasticsearch #pip3 install nltk #pip3 install gensim #pip3 install pandas #pip3 install tabulate import pickle import wikipediaapi from model.WikiPage import WikiPage from elasticsearch import Elasticsearch import json from time import sleep import gensim from gensim import corpora, models import nltk from nltk.stem import WordNetLemmatizer, SnowballStemmer import pandas as pd from tabulate import tabulate nltk.download('stopwords') nltk.download('wordnet') wiki = wikipediaapi.Wikipedia('en', extract_format=wikipediaapi.ExtractFormat.WIKI) index = "ir_project" es = Elasticsearch() ################################################# PAGES DOWNLOAD AND INDEXING ########################################## def getPagesfromCategory(category, limit): pages = [] count = 0 for el in wiki.page(category).categorymembers.values(): if el.namespace == wikipediaapi.Namespace.MAIN: pages.append(WikiPage(el)) count += 1 print("{}) {} ".format(count, el)) if count >= limit: break print(category + ": download DONE") return pages def setNormalizedCitations(pages): numbers = [] for page in pages: numbers.append(page.citations) maximum = max(numbers) for page in pages: page.setCitationsNorm( round((page.citations - 0) / (maximum - 0), 4) ) return pages def getAllPages(limit): actors = getPagesfromCategory("Category:Golden Globe Award-winning producers", limit) guitar_companies = getPagesfromCategory("Category:Guitar manufacturing companies of the United States", limit) bands = getPagesfromCategory("Category:Grammy Lifetime Achievement Award winners", limit) pages = setNormalizedCitations(actors + guitar_companies + bands) # write collection to files pages_json = [] for page in pages: pages_json.append(dict(page)) with open('pages.json', 'w') as f: json.dump(pages_json, f, indent=4) def createIndex(data): # read index config from json file with open('index-config.json') as f: client_body = json.load(f) # wipe and create index if es.indices.exists(index): es.indices.delete(index=index) es.indices.create(index=index, ignore=400, body=client_body) for page in data: es.index(index=index, id=page["url"].replace(" ", "_"), body=page) ############################################## TOPIC MODELING ########################################################## def lemmatize_stemming(text): stemmer = SnowballStemmer('english') return stemmer.stem(WordNetLemmatizer().lemmatize(text, pos='v')) def preprocess(text): result = [] for token in gensim.utils.simple_preprocess(text): if token not in gensim.parsing.preprocessing.STOPWORDS and len(token) > 3: result.append(lemmatize_stemming(token)) return result def getTopics(recalculate): with open("pages.json", "r") as read_file: data = json.load(read_file) corpus = [] # list of strings: list of docs for page in data: corpus.append(page["abstract"]) processed_docs = [] # list of lists: list of tokenized docs for doc in corpus: processed_docs.append(preprocess(doc)) dictionary = gensim.corpora.Dictionary(processed_docs) dictionary.filter_extremes(no_below=5, keep_n=100000) if recalculate: print("Recalculating topics...") bow_corpus = [dictionary.doc2bow(doc) for doc in processed_docs] lda_model = gensim.models.LdaMulticore(bow_corpus, num_topics=3, id2word=dictionary, passes=2, workers=2) with open("lda_model.pk", 'wb') as pickle_file: pickle.dump(lda_model, pickle_file) else: with open("lda_model.pk", 'rb') as pickle_file: lda_model = pickle.load(pickle_file) # calculates topic for each document final_docs = [] for page in data: document = dictionary.doc2bow(preprocess(page["abstract"])) index, score = sorted(lda_model[document], key=lambda tup: -1 * tup[1])[0] page["topic"] = index final_docs.append(page) return(lda_model, final_docs) ################################################## SEARCH ################################################################ def print_results(results): df = pd.DataFrame(columns=['score', 'title', "citations", "citations_norm", "topic", "url"]) for hit in results['hits']['hits']: df.loc[len(df)] =[hit['_score'], hit['_source']['title'], hit['_source']['citations'],hit['_source']['citations_norm'], hit['_source']['topic'], hit['_source']['url']] print(tabulate(df, headers='keys', tablefmt='psql', showindex=False)) def search(query=None): results = es.search(index=index, body={ "from" : 0, "size" : 12, "query": {"match": query}}) print_results(results) def search_phrase(query=None): results = es.search(index=index, body={"query": {"match_phrase": query}}) print_results(results) def search_fuzzy(query): results = es.search(index=index, body={"query": {"fuzzy": query}}) print_results(results) def search_boolean(query): results = es.search(index=index, body={"query": {"bool": query}}) print_results(results) def search_with_topic(query, topic): results = es.search(index=index, body={"query": {"bool": {"must": { "match": query }, "filter": {"term": {"topic": topic}}}}}) print_results(results) def queries_samples(): print("\nquery: {query: {match: {abstract:is an american pianist}}}") print("Notes: it returns both alive and dead pianists (is/was) due to the analyzer") search(query={"abstract":"is an american pianist"}) print("\n\nquery: {query: {match_phrase: {text:was an american pianist}}}") print("Notes: it returns only dead pianist") search_phrase(query={"text":"was an american pianist"}) print("\n\nquery: {query: {match_phrase: {text:is an american pianist}}}") print("Notes: it returns only alive pianist") search_phrase(query={"text":"is an american pianist"}) print("\n\nquery: {query: {fuzzy: {title: {value: batles}}}}") print("Notes: it returns \"The Beatles\" despite the misspelling ") search_fuzzy(query={"title": {"value": "batles"}}) print("\n\nquery: {query: {bool: {must: {match: {abstract: guitarist}},must_not: [{match: {abstract: company}}, {match: {abstract: manufacturer}}],must: {range: {citations_norm: {gt: 0.500}}}}}}") print("Notes: it return only guitarists that have a lot of citations in wikiepdia") search_boolean(query={"must": {"match": {"abstract": "guitarist"}}, "must_not": [{"match": {"abstract": "company"}}, {"match": {"abstract": "manufacturer"}}], "must": {"range": {"citations_norm": {"gt": "0.500"}}} } ) print("\n\nquery: {query: {bool: {must: {match: {abstract: guitarist}},must: {match: {text: drugs}}}}}") print("Notes: it returns all the guitarists that have a relation with drugs") search_boolean(query={"must": {"match": {"abstract": "guitarist"}}, "must": {"match": {"text": "drugs"}} } ) print("\n\nquery: { query: {match: {abstract: philanthropist}}}") print("Notes: it returns all the philantropist from the corpus. They are all producers") search(query={"abstract": "philanthropist"}) print("\n\nquery: {query: {match_phrase: {text: philanthropist}}}") print("Notes: Since i intentionally declare \"philanthropist\" as synonym of \"rock\" in the text_analyzer filter, this query returns rock stars ") search_phrase(query={"text": "philanthropist"}) print("\n\n") def menu(): while True: for idx, topic in model.print_topics(-1): print('Topic {}: {}'.format(idx, topic)) print("\ninsert a keyword") q = input() print("insert topic id") topic = input() search_with_topic(query={"abstract": q}, topic=topic) print("\n\n") if __name__ == '__main__': # getAllPages(100) print("please wait for indexing...") model, docs = getTopics(False) createIndex(docs) sleep(5) queries_samples() menu()
rAlvaPrincipe/wikipedia-search-engine
Wiki.py
Wiki.py
py
8,334
python
en
code
0
github-code
6
[ { "api_name": "nltk.download", "line_number": 19, "usage_type": "call" }, { "api_name": "nltk.download", "line_number": 20, "usage_type": "call" }, { "api_name": "wikipediaapi.Wikipedia", "line_number": 22, "usage_type": "call" }, { "api_name": "wikipediaapi.ExtractFormat", "line_number": 22, "usage_type": "attribute" }, { "api_name": "elasticsearch.Elasticsearch", "line_number": 24, "usage_type": "call" }, { "api_name": "wikipediaapi.Namespace", "line_number": 32, "usage_type": "attribute" }, { "api_name": "model.WikiPage.WikiPage", "line_number": 33, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 68, "usage_type": "call" }, { "api_name": "json.load", "line_number": 74, "usage_type": "call" }, { "api_name": "nltk.stem.SnowballStemmer", "line_number": 88, "usage_type": "call" }, { "api_name": "nltk.stem.WordNetLemmatizer", "line_number": 89, "usage_type": "call" }, { "api_name": "gensim.utils.simple_preprocess", "line_number": 94, "usage_type": "call" }, { "api_name": "gensim.utils", "line_number": 94, "usage_type": "attribute" }, { "api_name": "gensim.parsing", "line_number": 95, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 102, "usage_type": "call" }, { "api_name": "gensim.corpora.Dictionary", "line_number": 112, "usage_type": "call" }, { "api_name": "gensim.corpora", "line_number": 112, "usage_type": "attribute" }, { "api_name": "gensim.models.LdaMulticore", "line_number": 118, "usage_type": "call" }, { "api_name": "gensim.models", "line_number": 118, "usage_type": "attribute" }, { "api_name": "pickle.dump", "line_number": 120, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 123, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 140, "usage_type": "call" }, { "api_name": "tabulate.tabulate", "line_number": 143, "usage_type": "call" }, { "api_name": "model.WikiPage.print_topics", "line_number": 216, "usage_type": "call" }, { "api_name": "model.WikiPage", "line_number": 216, "usage_type": "name" }, { "api_name": "model.WikiPage", "line_number": 229, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 231, "usage_type": "call" } ]
38520392642
#!/usr/bin/python """ This is the code to accompany the Lesson 1 (Naive Bayes) mini-project. Use a Naive Bayes Classifier to identify emails by their authors authors and labels: Sara has label 0 Chris has label 1 """ import sys import time sys.path.append("../tools/") from email_preprocess import preprocess #imports from sklearn.naive_bayes import GaussianNB from sklearn.metrics import accuracy_score ### features_train and features_test are the features for the training ### and testing datasets, respectively ### labels_train and labels_test are the corresponding item labels ######################################################### ### your code goes here ### sample_size_list = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] ##Loop to change sample Size for j in sample_size_list: features_train, features_test, labels_train, labels_test = preprocess("../tools/word_data_unix.pkl","../tools/email_authors.pkl",j) loop = [0,1,2,3,4,5,6,7,8,9] print("Test sample Size:",features_train.size) ##Loop to change the var_smoothing for i in loop: num=1/(10)**i gnb = GaussianNB(var_smoothing=num) time0=time.time() pred = gnb.fit(features_train, labels_train).predict(features_test) time1=time.time() acc=accuracy_score(labels_test,pred) print("Test sample_Size: ",j," Accuracy for ",num,": ", acc,"Ellapsed time: ",time1-time0) i=i+1 j=1+1 #########################################################
Vkadel/machineLearningNB
nb_author_id.py
nb_author_id.py
py
1,524
python
en
code
0
github-code
6
[ { "api_name": "sys.path.append", "line_number": 16, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 16, "usage_type": "attribute" }, { "api_name": "email_preprocess.preprocess", "line_number": 34, "usage_type": "call" }, { "api_name": "sklearn.naive_bayes.GaussianNB", "line_number": 40, "usage_type": "call" }, { "api_name": "time.time", "line_number": 41, "usage_type": "call" }, { "api_name": "time.time", "line_number": 43, "usage_type": "call" }, { "api_name": "sklearn.metrics.accuracy_score", "line_number": 44, "usage_type": "call" } ]
18132721237
from flask import Flask, redirect, render_template, request, url_for, session, flash from datetime import timedelta from flask_sqlalchemy import SQLAlchemy app = Flask(__name__) app.secret_key = "hello" app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///users.sqlite3' # Things you have to set up before creating a database app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False app.permanent_session_lifetime = timedelta(minutes=5) # Deciding the session time db = SQLAlchemy(app) # creating a database class users(db.Model): _id = db.Column("id", db.Integer, primary_key=True) name = db.Column(db.String(100)) email = db.Column(db.String(100)) def __init__(self, name, email): self.name = name self.email = email @app.route('/') def home(): return render_template("Home.html") @app.route("/login", methods=["POST",'GET']) def login(): if request.method == "POST": session.permanent = True user = request.form['nm'] session['user'] = user # 先以名字進行查詢 found_user = users.query.filter_by(name=user).first() #如果有的話就把user的email加進去session list裡面, 如果沒有的話就加入一筆新資料到資料庫 if found_user: flash(f"Welcome back {user}!") session['email'] = found_user.email else: flash(f"Hello {user}!, Nice to meet you!!") usr = users(user ,"") db.session.add(usr) db.session.commit() return redirect(url_for('user_page')) else: if "user" in session: flash("Already Logged in!") return redirect(url_for('user_page')) return render_template("login.html") @app.route('/logout') def logout(): if 'user' in session: user = session['user'] flash(f"You have been logged out, {user}!", "info") session.pop('user', None) session.pop('email', None) return redirect(url_for('login') ) @app.route('/user', methods=["POST",'GET']) def user_page(): email = None if 'user' in session: user = session['user'] if request.method == "POST": email = request.form['email'] # 使用者輸入的email session['email'] = email #也建立一個session found_user = users.query.filter_by(name=user).first() # 找到user之後要做的事情 found_user.email = email # 更新使用者新輸入的email db.session.commit() # 每次更新完就要儲存 commit 一次 flash("Email was saved!!") else: if "email" in session: email = session['email'] return render_template("user_page.html",content=user, email=email) else: flash("You are not logged in! ") return redirect(url_for('login')) @app.route("/view") def view(): return render_template("view.html", values=users.query.all()) if __name__ == '__main__': with app.app_context(): db.create_all() app.run(debug=True)
JayChen1060920909/Projects
Login-Logout.py
Login-Logout.py
py
3,056
python
en
code
1
github-code
6
[ { "api_name": "flask.Flask", "line_number": 6, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 10, "usage_type": "call" }, { "api_name": "flask_sqlalchemy.SQLAlchemy", "line_number": 12, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 25, "usage_type": "call" }, { "api_name": "flask.request.method", "line_number": 29, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 29, "usage_type": "name" }, { "api_name": "flask.session.permanent", "line_number": 30, "usage_type": "attribute" }, { "api_name": "flask.session", "line_number": 30, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 31, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 31, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 33, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 40, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 41, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 43, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 48, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 48, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 50, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 51, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 52, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 52, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 53, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 57, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 58, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 59, "usage_type": "call" }, { "api_name": "flask.session.pop", "line_number": 60, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 60, "usage_type": "name" }, { "api_name": "flask.session.pop", "line_number": 61, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 61, "usage_type": "name" }, { "api_name": "flask.redirect", "line_number": 62, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 62, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 68, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 69, "usage_type": "name" }, { "api_name": "flask.request.method", "line_number": 71, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 71, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 72, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 72, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 73, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 78, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 81, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 82, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 83, "usage_type": "call" }, { "api_name": "flask.flash", "line_number": 85, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 86, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 86, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 90, "usage_type": "call" } ]
42940796937
from typing import List, Tuple import networkx as nx import numpy as np from matplotlib import pyplot as plt import time import copy from node import Node def get_graph(node: Node) -> Tuple[nx.Graph, List, List]: board_size = node.state.shape[0] G = nx.grid_2d_graph(board_size, board_size) diagonals = [] for x,y in G: x2 = x-1 y2 = y+1 if y2 >= board_size or x2 < 0: continue edge = ((x, y), (x2,y2)) diagonals.append(edge) G.add_edges_from(diagonals) pos = {} colour_map = [] theta = -(1/4) * np.pi costheta = np.cos(theta) sintheta = np.sin(theta) rotation_matrix = np.array([ [costheta, -sintheta], [sintheta, costheta] ]) for x,y in G: coords = (x,y) pos[coords] = np.dot(rotation_matrix, (y,-x)) if node.state[coords] == 1: colour_map.append("red") elif node.state[coords] == -1: colour_map.append("blue") else: colour_map.append("grey") return G, pos, colour_map def visualize_hex_node_state(node: Node, done: bool=False) -> None: G, pos, colour_map = get_graph(node) nx.draw(G, pos=pos, node_color=colour_map, with_labels=True, node_size=600) plt.draw() plt.pause(0.001) if done: plt.close() if __name__ == "__main__": plt.figure(figsize=(5,5)) plt.ion() plt.show() test_state = np.zeros(shape=(7,7)) test_state[0, 1] = 1 test_node = Node(state=test_state) visualize_hex_node_state(test_node) new_node = copy.copy(test_node) new_node.state[0,2] = -1 visualize_hex_node_state(new_node)
Mathipe98/IT3105-Projects
Project 2/visualizer.py
visualizer.py
py
1,707
python
en
code
0
github-code
6
[ { "api_name": "node.Node", "line_number": 10, "usage_type": "name" }, { "api_name": "node.state", "line_number": 11, "usage_type": "attribute" }, { "api_name": "networkx.grid_2d_graph", "line_number": 12, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 24, "usage_type": "attribute" }, { "api_name": "numpy.cos", "line_number": 25, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 26, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 27, "usage_type": "call" }, { "api_name": "numpy.dot", "line_number": 33, "usage_type": "call" }, { "api_name": "node.state", "line_number": 34, "usage_type": "attribute" }, { "api_name": "node.state", "line_number": 36, "usage_type": "attribute" }, { "api_name": "typing.Tuple", "line_number": 10, "usage_type": "name" }, { "api_name": "networkx.Graph", "line_number": 10, "usage_type": "attribute" }, { "api_name": "typing.List", "line_number": 10, "usage_type": "name" }, { "api_name": "node.Node", "line_number": 44, "usage_type": "name" }, { "api_name": "networkx.draw", "line_number": 46, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.draw", "line_number": 50, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 50, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.pause", "line_number": 51, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 51, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 53, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 53, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 56, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 56, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ion", "line_number": 57, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 57, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 58, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 58, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 59, "usage_type": "call" }, { "api_name": "node.Node", "line_number": 61, "usage_type": "call" }, { "api_name": "copy.copy", "line_number": 63, "usage_type": "call" } ]
70835728188
import json fs = open("G:\python\Analysis"+"\\"+'score.json', encoding='utf-8') ft = open("G:\python\Analysis"+"\\"+'template.json', encoding='utf-8') res1 = fs.read() data = json.loads(res1) res2 = ft.read() template = json.loads(res2) scoreKey = [] templateKey = template.keys() goal = {} for key in data: user_id = str(key) cases = data[key]['cases'] cid = [] res = [] for case in cases: if case["score"] == 100: cid.append(case['case_id']) for i in templateKey: if i in cid: res.append(1) else: res.append(0) goal[user_id] = res json_str = json.dumps(goal, indent=4, ensure_ascii=False) with open("G:\python\Analysis"+"\\"+"flag.json", 'w', encoding='utf-8') as json_file: json_file.write(json_str)
nju161250023/Analysis
createFlag.py
createFlag.py
py
803
python
en
code
0
github-code
6
[ { "api_name": "json.loads", "line_number": 7, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 9, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 33, "usage_type": "call" } ]
6056862050
from datetime import datetime import csv def logReceivedGossip(file,gossipID,spreader,audience,awardedSP,targetCitizensSP,receivingAudienceKnownRumours,citizen_list,rumourTarget,sentiment): now = datetime.now() date_time = now.strftime("%m/%d/%Y %H:%M:%S:%f") # get total rumour count for key in citizen_list: kt = sum(len(x['knownRumours']) for x in citizen_list.values() if x) #'time,key,id,spreader,audience,sp,originalsp,audienceKnownRumours,totalRumours,' with open(file, 'a', newline='') as csvfile: writer = csv.writer(csvfile) writer.writerow([str(date_time),str(gossipID),spreader,audience,str(awardedSP),str(targetCitizensSP),str(len(receivingAudienceKnownRumours)),rumourTarget,sentiment,kt]) def logUpdateMessage(message,file,action='a'): f = open(file, action) f.write(message) f.close()
murchie85/gossipSimulator
game/functions/logging.py
logging.py
py
822
python
en
code
25
github-code
6
[ { "api_name": "datetime.datetime.now", "line_number": 6, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 6, "usage_type": "name" }, { "api_name": "csv.writer", "line_number": 15, "usage_type": "call" } ]
33062234730
#!/usr/local/bin/python # -*- coding: utf-8 -* import requests class MetrikaAPI(object): def __init__(self, counter_id, token, host='https://api-metrika.yandex.ru'): self.counter_id = counter_id self.token = token self.host = host def _get_url(self, url='/stat/v1/data', params=None, data=None, method='GET'): req = requests.request( method=method, url=self.host + url, params=params, data=data, headers={'Authorization': 'OAuth ' + self.token}, ) try: req.raise_for_status() except requests.exceptions.HTTPError: print(req.content) raise except Exception: print("Unexpected exception") raise return req def get_sources_visits(self): req = self._get_url(params=dict( metrics='ym:s:visits', id=self.counter_id, )) return req.json() def get_sources_users(self): req = self._get_url(params=dict( metrics='ym:s:users', id=self.counter_id, )) return req.json() def get_sources_pageviews(self): req = self._get_url(params=dict( metrics='ym:s:pageviews', id=self.counter_id, )) return req.json() def main(): d = MetrikaAPI(44138734, 'тут мог бы быть токен') vis = d.get_sources_visits() us = d.get_sources_users() view = d.get_sources_pageviews() print('Всего визитов: {}'.format(vis['data'][0]['metrics'])) print('Всего посетителей: {}'.format(us['data'][0]['metrics'])) print('Всего просмотров: {}'.format(view['data'][0]['metrics'])) if __name__ == '__main__': main()
swetlanka/py3
3-5/3-5.py
3-5.py
py
1,824
python
en
code
0
github-code
6
[ { "api_name": "requests.request", "line_number": 15, "usage_type": "call" }, { "api_name": "requests.exceptions", "line_number": 24, "usage_type": "attribute" } ]
17953524197
# -*- coding: utf-8 -*- import numpy as np import torch import torch.nn as nn from lichee import plugin from lichee import config @plugin.register_plugin(plugin.PluginType.MODULE_LOSS, 'mse_loss') class MSELoss: @classmethod def build(cls, cfg): return nn.MSELoss() @plugin.register_plugin(plugin.PluginType.MODULE_LOSS, 'cross_entropy') class CrossEntropyLoss: @classmethod def build(cls, cfg): return nn.CrossEntropyLoss() @plugin.register_plugin(plugin.PluginType.MODULE_LOSS, 'neg_log_likelihood') class NLLLoss: @classmethod def build(cls, cfg): return nn.NLLLoss() @plugin.register_plugin(plugin.PluginType.MODULE_LOSS, 'binary_cross_entropy') class BinaryCrossEntropyLoss: @classmethod def build(cls, cfg): return nn.BCEWithLogitsLoss() @plugin.register_plugin(plugin.PluginType.MODULE_LOSS, 'binary_focal_loss') class BinaryFocalLoss(nn.Module): """ This is a implementation of Focal Loss with smooth label cross entropy supported which is proposed in 'Focal Loss for Dense Object Detection. (https://arxiv.org/abs/1708.02002)' Focal_Loss= -1*alpha*(1-pt)*log(pt) :param num_class: :param alpha: (tensor) 3D or 4D the scalar factor for this criterion :param gamma: (float,double) gamma > 0 reduces the relative loss for well-classified examples (p>0.5) putting more focus on hard misclassified example :param reduction: `none`|`mean`|`sum` :param **kwargs balance_index: (int) balance class index, should be specific when alpha is float """ def __init__(self, alpha=[1.0, 1.0], gamma=2, ignore_index=None, reduction='mean'): super(BinaryFocalLoss, self).__init__() if alpha is None: alpha = [0.25, 0.75] self.alpha = alpha self.gamma = gamma self.smooth = 1e-6 self.ignore_index = ignore_index self.reduction = reduction assert self.reduction in ['none', 'mean', 'sum'] if self.alpha is None: self.alpha = torch.ones(2) elif isinstance(self.alpha, (list, np.ndarray)): self.alpha = np.asarray(self.alpha) self.alpha = np.reshape(self.alpha, (2)) assert self.alpha.shape[0] == 2, \ 'the `alpha` shape is not match the number of class' elif isinstance(self.alpha, (float, int)): self.alpha = np.asarray([self.alpha, 1.0 - self.alpha], dtype=np.float).view(2) else: raise TypeError('{} not supported'.format(type(self.alpha))) self.one_hot_eye = None @classmethod def set_config_default(cls, cfg): d_c = {'loss_alpha': [1.0, 1.0], 'loss_gamma': 2, 'loss_ignore_index': None, 'loss_reduction': 'mean'} for key, value in d_c.items(): if key not in cfg.PARAM: cfg.PARAM[key] = value @classmethod def build(cls, cfg): cls.set_config_default(cfg) return cls(alpha=cfg.PARAM["loss_alpha"], gamma=cfg.PARAM["loss_gamma"], ignore_index=cfg.PARAM["loss_ignore_index"], reduction=cfg.PARAM["loss_reduction"]) def forward(self, output, target): prob = torch.sigmoid(output) prob = torch.clamp(prob, self.smooth, 1.0 - self.smooth) if self.one_hot_eye == None: self.one_hot_eye = torch.eye(2).cuda(target.device.index) target = self.one_hot_eye[target] pos_mask = (target == 1).float() neg_mask = (target == 0).float() pos_loss = -self.alpha[0] * torch.pow(torch.sub(1.0, prob), self.gamma) * torch.log(prob) * pos_mask neg_loss = -self.alpha[1] * torch.pow(prob, self.gamma) * \ torch.log(torch.sub(1.0, prob)) * neg_mask neg_loss = neg_loss.sum() pos_loss = pos_loss.sum() num_pos = pos_mask.view(pos_mask.size(0), -1).sum() num_neg = neg_mask.view(neg_mask.size(0), -1).sum() if num_pos == 0: loss = neg_loss else: loss = pos_loss / num_pos + neg_loss / num_neg return loss @plugin.register_plugin(plugin.PluginType.MODULE_LOSS, 'focal_loss') class FocalLoss(nn.Module): """ This is a implementation of Focal Loss with smooth label cross entropy supported which is proposed in 'Focal Loss for Dense Object Detection. (https://arxiv.org/abs/1708.02002)' Focal_Loss= -1*alpha*(1-pt)*log(pt) :param num_class: :param alpha: (tensor) 3D or 4D the scalar factor for this criterion :param gamma: (float,double) gamma > 0 reduces the relative loss for well-classified examples (p>0.5) putting more focus on hard misclassified example :param smooth: (float,double) smooth value when cross entropy :param size_average: (bool, optional) By default, the losses are averaged over each loss element in the batch. """ def __init__(self, num_class, alpha=[0.25, 0.75], gamma=2, balance_index=-1, size_average=True): super(FocalLoss, self).__init__() self.num_class = num_class self.alpha = alpha self.gamma = gamma self.size_average = size_average self.eps = 1e-6 if isinstance(self.alpha, (list, tuple)): assert len(self.alpha) == self.num_class self.alpha = torch.Tensor(list(self.alpha)) elif isinstance(self.alpha, (float, int)): assert 0 < self.alpha < 1.0, 'alpha should be in `(0,1)`)' assert balance_index > -1 alpha = torch.ones((self.num_class)) alpha *= 1 - self.alpha alpha[balance_index] = self.alpha self.alpha = alpha elif isinstance(self.alpha, torch.Tensor): self.alpha = self.alpha else: raise TypeError('Not support alpha type, expect `int|float|list|tuple|torch.Tensor`') @classmethod def set_config_default(cls, cfg): d_c = {'loss_alpha': [0.25, 0.75], 'loss_gamma': 2, 'loss_balance_index': -1, 'loss_size_average': True} for key, value in d_c.items(): if key not in cfg.PARAM: cfg.PARAM[key] = value @classmethod def build(cls, cfg): cls.set_config_default(cfg) return cls(num_class=config.get_cfg().DATASET.CONFIG.NUM_CLASS, alpha=cfg.PARAM["loss_alpha"], gamma=cfg.PARAM["loss_gamma"], balance_index=cfg.PARAM["loss_balance_index"], size_average=cfg.PARAM["loss_size_average"]) def forward(self, logit, target): if logit.dim() > 2: # N,C,d1,d2 -> N,C,m (m=d1*d2*...) logit = logit.view(logit.size(0), logit.size(1), -1) logit = logit.transpose(1, 2).contiguous() # [N,C,d1*d2..] -> [N,d1*d2..,C] logit = logit.view(-1, logit.size(-1)) # [N,d1*d2..,C]-> [N*d1*d2..,C] target = target.view(-1, 1) # [N,d1,d2,...]->[N*d1*d2*...,1] # -----------legacy way------------ # idx = target.cpu().long() # one_hot_key = torch.FloatTensor(target.size(0), self.num_class).zero_() # one_hot_key = one_hot_key.scatter_(1, idx, 1) # if one_hot_key.device != logit.device: # one_hot_key = one_hot_key.to(logit.device) # pt = (one_hot_key * logit).sum(1) + epsilon # ----------memory saving way-------- pt = logit.gather(1, target).view(-1) + self.eps # avoid apply logpt = pt.log() if self.alpha.device != logpt.device: alpha = self.alpha.to(logpt.device) alpha_class = alpha.gather(0, target.view(-1)) logpt = alpha_class * logpt loss = -1 * torch.pow(torch.sub(1.0, pt), self.gamma) * logpt if self.size_average: loss = loss.mean() else: loss = loss.sum() return loss
Tencent/Lichee
lichee/module/torch/loss/loss.py
loss.py
py
8,023
python
en
code
295
github-code
6
[ { "api_name": "torch.nn.MSELoss", "line_number": 15, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 15, "usage_type": "name" }, { "api_name": "lichee.plugin.register_plugin", "line_number": 10, "usage_type": "call" }, { "api_name": "lichee.plugin", "line_number": 10, "usage_type": "name" }, { "api_name": "lichee.plugin.PluginType", "line_number": 10, "usage_type": "attribute" }, { "api_name": "torch.nn.CrossEntropyLoss", "line_number": 23, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 23, "usage_type": "name" }, { "api_name": "lichee.plugin.register_plugin", "line_number": 18, "usage_type": "call" }, { "api_name": "lichee.plugin", "line_number": 18, "usage_type": "name" }, { "api_name": "lichee.plugin.PluginType", "line_number": 18, "usage_type": "attribute" }, { "api_name": "torch.nn.NLLLoss", "line_number": 31, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 31, "usage_type": "name" }, { "api_name": "lichee.plugin.register_plugin", "line_number": 26, "usage_type": "call" }, { "api_name": "lichee.plugin", "line_number": 26, "usage_type": "name" }, { "api_name": "lichee.plugin.PluginType", "line_number": 26, "usage_type": "attribute" }, { "api_name": "torch.nn.BCEWithLogitsLoss", "line_number": 39, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 39, "usage_type": "name" }, { "api_name": "lichee.plugin.register_plugin", "line_number": 34, "usage_type": "call" }, { "api_name": "lichee.plugin", "line_number": 34, "usage_type": "name" }, { "api_name": "lichee.plugin.PluginType", "line_number": 34, "usage_type": "attribute" }, { "api_name": "torch.nn.Module", "line_number": 43, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 43, "usage_type": "name" }, { "api_name": "torch.ones", "line_number": 70, "usage_type": "call" }, { "api_name": "numpy.ndarray", "line_number": 71, "usage_type": "attribute" }, { "api_name": "numpy.asarray", "line_number": 72, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 73, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 77, "usage_type": "call" }, { "api_name": "numpy.float", "line_number": 77, "usage_type": "attribute" }, { "api_name": "torch.sigmoid", "line_number": 103, "usage_type": "call" }, { "api_name": "torch.clamp", "line_number": 104, "usage_type": "call" }, { "api_name": "torch.eye", "line_number": 107, "usage_type": "call" }, { "api_name": "torch.pow", "line_number": 113, "usage_type": "call" }, { "api_name": "torch.sub", "line_number": 113, "usage_type": "call" }, { "api_name": "torch.log", "line_number": 113, "usage_type": "call" }, { "api_name": "torch.pow", "line_number": 114, "usage_type": "call" }, { "api_name": "torch.log", "line_number": 115, "usage_type": "call" }, { "api_name": "torch.sub", "line_number": 115, "usage_type": "call" }, { "api_name": "lichee.plugin.register_plugin", "line_number": 42, "usage_type": "call" }, { "api_name": "lichee.plugin", "line_number": 42, "usage_type": "name" }, { "api_name": "lichee.plugin.PluginType", "line_number": 42, "usage_type": "attribute" }, { "api_name": "torch.nn.Module", "line_number": 130, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 130, "usage_type": "name" }, { "api_name": "torch.Tensor", "line_number": 153, "usage_type": "call" }, { "api_name": "torch.ones", "line_number": 157, "usage_type": "call" }, { "api_name": "torch.Tensor", "line_number": 161, "usage_type": "attribute" }, { "api_name": "lichee.config.get_cfg", "line_number": 179, "usage_type": "call" }, { "api_name": "lichee.config", "line_number": 179, "usage_type": "name" }, { "api_name": "torch.pow", "line_number": 210, "usage_type": "call" }, { "api_name": "torch.sub", "line_number": 210, "usage_type": "call" }, { "api_name": "lichee.plugin.register_plugin", "line_number": 129, "usage_type": "call" }, { "api_name": "lichee.plugin", "line_number": 129, "usage_type": "name" }, { "api_name": "lichee.plugin.PluginType", "line_number": 129, "usage_type": "attribute" } ]
28400031595
import os import time from datetime import datetime import torch from torch import nn from torch.utils.tensorboard import SummaryWriter import torch.nn.functional as F from torch.autograd import Variable import pandas as pd import warnings warnings.filterwarnings("ignore") import random import numpy as np import utils.config as config import matplotlib.pyplot as plt import os, psutil import functools from skimage.measure import label as sk_label from skimage.measure import regionprops as sk_regions from skimage.transform import resize # let all of print can be flush = ture print = functools.partial(print, flush=True) #-------- Dataloder -------- # After augmnetation with resize, crop spleen area and than transofermer class BoxCrop(object): ''' Croping image by bounding box label after augmentation input: keys=["image", "label"] label: [[x1,y1,x2,y2,z1,z2,class]...] image: [1,x,y,z] output dictionary add im_info: [x,y,z,scale_x_y,scale_z] num_box: 1 (All is one in our data) ''' def __init__(self,keys): self.keys = keys def __call__(self, data): d = dict(data) image = d['image'] label = d['label'] # only one label if type(label) == type(np.array([])): label_list = label.tolist() else: # more than one label # select the first label label_list = eval(label)[0] if label_list[1]>=label_list[3] or label_list[0]>=label_list[2] or label_list[4]>=label_list[5]: raise RuntimeError(f"{d['image_meta_dict']['filename_or_obj']} bounding box error") #print(f"{d['image_meta_dict']['filename_or_obj']} bounding box error ") out_image = image[0, int(label_list[1]):int(label_list[3]), int(label_list[0]):int(label_list[2]), int(label_list[4]):int(label_list[5])] d['image'] = np.expand_dims(out_image,axis=0) d['label'] = label_list[6] #print(d['image'].shape) return d # Dulicated dataset by num_samples class Dulicated(object): ''' Dulicated data for augmnetation ''' def __init__(self, keys, num_samples: int = 1): self.keys = keys self.num_samples = num_samples def __call__(self, data): d = dict(data) image = d['image'] label = d['label'] results: List[Dict[Hashable, np.ndarray]] = [dict(data) for _ in range(self.num_samples)] for key in data.keys(): for i in range(self.num_samples): results[i][key] = data[key] return results #return d # True label class Annotate(object): ''' transform mask to bounding box label after augmentation check the image shape to know scale_x_y, scale_z input: keys=["image", "label"] output dictionary add im_info: [x,y,z,scale_x_y,scale_z] num_box: 1 (All is one in our data) ''' def __init__(self,keys): self.keys = keys def __call__(self, data): d = dict(data) #image = d[self.keys[0]] #label = d[self.keys[1]] image = d['image'] label = d['label'] label = label.squeeze(0) annotations = np.zeros((1, 7)) annotation = mask2boundingbox(label) if annotation == 0: annotation = annotations raise ValueError('Dataloader data no annotations') #print("Dataloader data no annotations") else: # add class label cls = d['class'] annotation = np.array(annotation) annotation = np.append(annotation, cls) #annotation = np.expand_dims(annotation,0) #print(annotation.shape) #print(image.shape) d['label'] = annotation return d def mask2boundingbox(label): if torch.is_tensor(label): label = label.numpy() sk_mask = sk_label(label) regions = sk_regions(label.astype(np.uint8)) #global top, left, low, bottom, right, height #print(regions) # check regions is empty if not regions: return 0 for region in regions: # print('[INFO]bbox: ', region.bbox) # region.bbox (x1,y1,z1,x2,y2,z2) # top, left, low, bottom, right, height = region.bbox y1, x1, z1, y2, x2, z2 = region.bbox # return left, top, right, bottom, low, height return x1, y1, x2, y2, z1, z2 #-------- Running setting -------- ''' def adjust_learning_rate_by_step(optimizer, epoch, init_lr, decay_rate=.5 ,lr_decay_epoch=40): #Sets the learning rate to initial LR decayed by e^(-0.1*epochs) lr = init_lr * (decay_rate ** (epoch // lr_decay_epoch)) for param_group in optimizer.param_groups: #param_group['lr'] = param_group['lr'] * math.exp(-decay_rate*epoch) param_group['lr'] = lr #lr = init_lr * (0.1**(epoch // lr_decay_epoch)) #print('LR is set to {}'.format(param_group['lr'])) return optimizer , lr def adjust_learning_rate(optimizer, epoch, init_lr, decay_rate=.5): #Sets the learning rate to initial LR decayed by e^(-0.1*epochs) lr = init_lr * decay_rate for param_group in optimizer.param_groups: #param_group['lr'] = param_group['lr'] * math.exp(-decay_rate*epoch) param_group['lr'] = lr #lr = init_lr * (0.1**(epoch // lr_decay_epoch)) #print('LR is set to {}'.format(param_group['lr'])) return optimizer , lr ''' def train(model, device, data_num, epochs, optimizer, loss_function, train_loader, valid_loader, early_stop, scheduler, check_path): # Let ini config file can be writted #global best_metric #global best_metric_epoch #val_interval = 2 best_metric = -1 best_metric_epoch = -1 trigger_times = 0 #epoch_loss_values = list() writer = SummaryWriter() for epoch in range(epochs): print("-" * 10) print(f"epoch {epoch + 1}/{epochs}") # record ram memory used process = psutil.Process(os.getpid()) print(f'RAM used:{process.memory_info().rss/ 1024 ** 3} GB') model.train() epoch_loss = 0 step = 0 for batch_data in train_loader: step += 1 inputs, labels = batch_data['image'].to(device), batch_data['label'].long().to(device) optimizer.zero_grad() #inputs, labels = Variable(inputs), Variable(labels) outputs = model(inputs) #print(f'outputs:{outputs.size()}') #print(f'labels:{labels.size()}') loss = loss_function(outputs, labels) loss.backward() optimizer.step() epoch_loss += loss.item() epoch_len = data_num // train_loader.batch_size print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}") writer.add_scalar("train_loss", loss.item(), epoch_len * epoch + step) epoch_loss /= step config.epoch_loss_values.append(epoch_loss) print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}") # Early stopping & save best weights by using validation metric = validation(model, valid_loader, device) scheduler.step(metric) # checkpoint setting if metric > best_metric: # reset trigger_times trigger_times = 0 best_metric = metric best_metric_epoch = epoch + 1 torch.save(model.state_dict(), f"{check_path}/{best_metric}.pth") print('trigger times:', trigger_times) print("saved new best metric model") else: trigger_times += 1 print('trigger times:', trigger_times) # Save last 3 epoch weight if early_stop - trigger_times <= 3 or epochs - epoch <= 3: torch.save(model.state_dict(), f"{check_path}/{metric}_last.pth") print("save last metric model") print( "current epoch: {} current accuracy: {:.4f} best accuracy: {:.4f} at epoch {}".format( epoch + 1, metric, best_metric, best_metric_epoch ) ) writer.add_scalar("val_accuracy", metric, epoch + 1) # early stop if trigger_times >= early_stop: print('Early stopping!\nStart to test process.') print(f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}") return model print(f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}") config.best_metric = best_metric config.best_metric_epoch = best_metric_epoch writer.close() #print(f'training_torch best_metric:{best_metric}',flush =True) #print(f'training_torch config.best_metric:{config.best_metric}',flush =True) return model class AngleLoss_predict(nn.Module): def __init__(self, gamma=0): super(AngleLoss_predict, self).__init__() self.gamma = gamma self.it = 1 self.LambdaMin = 5.0 self.LambdaMax = 1500.0 self.lamb = 1500.0 def forward(self, input, target): cos_theta, phi_theta = input target = target.view(-1, 1) # size=(B,1) index = cos_theta.data * 0.0 # size=(B, Classnum) # index = index.scatter(1, target.data.view(-1, 1).long(), 1) #index = index.byte() index = index.bool() index = Variable(index) # index = Variable(torch.randn(1,2)).byte() self.lamb = max(self.LambdaMin, self.LambdaMax / (1 + 0.1 * self.it)) output = cos_theta * 1.0 # size=(B,Classnum) output1 = output.clone() # output1[index1] = output[index] - cos_theta[index] * (1.0 + 0) / (1 + self.lamb) # output1[index1] = output[index] + phi_theta[index] * (1.0 + 0) / (1 + self.lamb) output[index] = output1[index]- cos_theta[index] * (1.0 + 0) / (1 + self.lamb)+ phi_theta[index] * (1.0 + 0) / (1 + self.lamb) return(output) def validation(model, val_loader, device): #metric_values = list() model.eval() with torch.no_grad(): num_correct = 0.0 metric_count = 0 for val_data in val_loader: val_images, val_labels = val_data['image'].to(device), val_data['label'].to(device) val_outputs = model(val_images) # base on AngleLoss if isinstance(val_outputs, tuple): val_outputs = AngleLoss_predict()(val_outputs,val_labels) value = torch.eq(val_outputs.argmax(dim=1), val_labels) metric_count += len(value) num_correct += value.sum().item() metric = num_correct / metric_count config.metric_values.append(metric) #print(f'validation metric:{config.metric_values}',flush =True) return metric def plot_loss_metric(epoch_loss_values,metric_values,save_path): plt.figure("train", (12, 6)) plt.subplot(1, 2, 1) plt.title("Epoch Average Loss") x = [i + 1 for i in range(len(epoch_loss_values))] y = epoch_loss_values plt.xlabel("epoch") plt.plot(x, y) plt.subplot(1, 2, 2) plt.title("Val Accuracy") x = [i + 1 for i in range(len(metric_values))] y = metric_values plt.xlabel("epoch") plt.plot(x, y) plt.savefig(f'{save_path}/train_loss_metric.png') def kfold_split(file, kfold, seed, type, fold): if type == 'pos': d = {} file_list = ['file'] file_list.extend([f'pos_split_df_{i}' for i in range(kfold)]) d['file'] = file for i in range(kfold): d[f'test_pos_df_{i}'] = d[file_list[i]].groupby(["gender","age_range","spleen_injury_class"],group_keys=False).apply(lambda x: x.sample(frac=1/(kfold-i),random_state=1)) d[f'pos_split_df_{i}'] = d[file_list[i]].drop(d[f'test_pos_df_{i}'].index.to_list()) output_file = d[f'test_pos_df_{fold}'] elif type == 'neg': file_list = [f'neg_split_df_{i}' for i in range(kfold)] file_list = np.array_split(file.sample(frac=1,random_state=seed), kfold) output_file = file_list[fold] return output_file def Data_progressing(pos_file, neg_file, box_df, imbalance_data_ratio, data_split_ratio, seed, fold, save_file = False, cropping = True): # Pos data progress for index, row in pos_file.iterrows(): if row['OIS']==row['OIS']: pos_file.loc[index,'spleen_injury_grade'] = row['OIS'] else: pos_file.loc[index,'spleen_injury_grade'] = row['R_check'] new_col= 'age_range' new_col_2 = 'spleen_injury_class' bins = [0,30,100] bins_2 = [0,2,5] label_2 = ['OIS 1,2','OIS 3,4,5'] pos_file[new_col] = pd.cut(x=pos_file.age, bins=bins) pos_file[new_col_2] = pd.cut(x=pos_file.spleen_injury_grade, bins=bins_2, labels=label_2) # positive need select column and split in kfold test_pos_df = kfold_split(pos_file, int(1/data_split_ratio[2]), seed, 'pos', fold) train_pos_file = pos_file.drop(test_pos_df.index.to_list()) valid_pos_df = train_pos_file.groupby(['gender','age_range','spleen_injury_class'],group_keys=False).apply(lambda x: x.sample(frac=data_split_ratio[1]/(1-data_split_ratio[2]),random_state=seed)) train_pos_df = train_pos_file.drop(valid_pos_df.index.to_list()) # negative only need split in kfold neg_sel_df = neg_file.sample(n=len(pos_file),random_state=seed) test_neg_df = kfold_split(neg_sel_df, int(1/data_split_ratio[2]), seed, 'neg', fold) train_neg_file = neg_file.drop(test_neg_df.index.to_list()) valid_neg_df = train_neg_file.sample(n=len(valid_pos_df),random_state=seed) train_neg_df = train_neg_file.drop(valid_neg_df.index.to_list()).sample(n=len(train_pos_df)*imbalance_data_ratio,random_state=seed) train_df = pd.concat([train_neg_df,train_pos_df]) valid_df = pd.concat([valid_neg_df,valid_pos_df]) test_df = pd.concat([test_neg_df,test_pos_df]) train_data = box_df[box_df.Path.isin(train_df.source.to_list())] valid_data = box_df[box_df.Path.isin(valid_df.source.to_list())] test_data = box_df[box_df.Path.isin(test_df.source.to_list())] train_df['spleen_injury'] = np.array([0 if i else 1 for i in train_df.spleen_injury_class.isna().tolist()]) valid_df['spleen_injury'] = np.array([0 if i else 1 for i in valid_df.spleen_injury_class.isna().tolist()]) test_df['spleen_injury'] = np.array([0 if i else 1 for i in test_df.spleen_injury_class.isna().tolist()]) if save_file: test_df_output = pd.merge(test_data.loc[:,['ID','Path','BBox','Posibility']],test_df,left_on='Path',right_on='source',suffixes = ['','_x']) valid_df_output = pd.merge(test_data.loc[:,['ID','Path','BBox','Posibility']],test_df,left_on='Path',right_on='source',suffixes = ['','_x']) test_df_output = test_df_output.drop(['ID_x'],axis=1) valid_df_output = valid_df_output.drop(['ID_x'],axis=1) test_df_output = test_df_output.loc[:,test_df_output.columns[~test_df_output.columns.str.contains('Unnamed')]] valid_df_output = valid_df_output.loc[:,valid_df_output.columns[~valid_df_output.columns.str.contains('Unnamed')]] valid_df_output.to_csv(f'{save_file}/fold{fold}_valid.csv',index = False) test_df_output.to_csv(f'{save_file}/fold{fold}_test.csv',index = False) if cropping: train_data_dicts = [] for index,row in train_data.iterrows(): image = row['Path'] label = row['BBox'] train_data_dicts.append({'image':image,'label':label}) valid_data_dicts = [] for index,row in valid_data.iterrows(): image = row['Path'] label = row['BBox'] valid_data_dicts.append({'image':image,'label':label}) test_data_dicts = [] for index,row in test_data.iterrows(): image = row['Path'] label = row['BBox'] test_data_dicts.append({'image':image,'label':label}) else: train_data_dicts =[ {"image": image_name, "label": label_name} for image_name, label_name in zip([i for i in train_df.source.tolist()], [i for i in train_df.spleen_injury.tolist()] ) ] valid_data_dicts =[ {"image": image_name, "label": label_name} for image_name, label_name in zip([i for i in valid_df_output.source.tolist()], [i for i in valid_df_output.spleen_injury.tolist()] ) ] test_data_dicts =[ {"image": image_name, "label": label_name} for image_name, label_name in zip([i for i in test_df_output.source.tolist()], [i for i in test_df_output.spleen_injury.tolist()] ) ] return train_data_dicts, valid_data_dicts, test_data_dicts class FocalLoss(nn.Module): def __init__(self, class_num, alpha=None, gamma=2, size_average=True): """ focal_loss损失函数, -α(1-yi)**γ *ce_loss(xi,yi) 步骤详细的实现了 focal_loss损失函数. :param alpha: 阿尔法α,类别权重. 当α是列表时,为各类别权重,当α为常数时,类别权重为[α, 1-α, 1-α, ....],常用于 目标检测算法中抑制背景类 , retainnet中设置为0.25 :param gamma: 伽马γ,难易样本调节参数. retainnet中设置为2 :param num_classes: 类别数量 :param size_average: 损失计算方式,默认取均值 """ super(FocalLoss, self).__init__() if alpha is None: # alpha 是平衡因子 self.alpha = Variable(torch.ones(class_num, 1)) else: if isinstance(alpha, list): self.alpha = torch.Tensor(alpha) else: self.alpha = torch.zeros(class_num) self.alpha[0] += alpha self.alpha[1:] += (1-alpha) self.gamma = gamma # 指数 self.class_num = class_num # 类别数目 self.size_average = size_average # 返回的loss是否需要mean一下 def forward(self, preds, labels): """ focal_loss损失计算 :param preds: 预测类别. size:[B,N,C] or [B,C] 分别对应与检测与分类任务, B 批次, N检测框数, C类别数 :param labels: 实际类别. size:[B,N] or [B] :return: """ # assert preds.dim()==2 and labels.dim()==1 preds = preds.view(-1,preds.size(-1)) self.alpha = self.alpha.to(preds.device) preds_softmax = F.softmax(preds, dim=1) # 这里并没有直接使用log_softmax, 因为后面会用到softmax的结果(当然你也可以使用log_softmax,然后进行exp操作) preds_softmax = preds_softmax.clamp(min=0.0001,max=1.0) # 避免數值過小 進log後 loss 為nan preds_logsoft = torch.log(preds_softmax) preds_softmax = preds_softmax.gather(1,labels.view(-1,1)) # 这部分实现nll_loss ( crossempty = log_softmax + nll ) preds_logsoft = preds_logsoft.gather(1,labels.view(-1,1)) self.alpha = self.alpha.gather(0,labels.view(-1)) loss = -torch.mul(torch.pow((1-preds_softmax), self.gamma), preds_logsoft) # torch.pow((1-preds_softmax), self.gamma) 为focal loss中 (1-pt)**γ loss = torch.mul(self.alpha, loss.t()) if self.size_average: loss = loss.mean() else: loss = loss.sum() return loss
houhsein/Spleen_injury_detection
classification/utils/training_torch_utils.py
training_torch_utils.py
py
19,509
python
en
code
1
github-code
6
[ { "api_name": "warnings.filterwarnings", "line_number": 11, "usage_type": "call" }, { "api_name": "functools.partial", "line_number": 22, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 46, "usage_type": "call" }, { "api_name": "numpy.expand_dims", "line_number": 56, "usage_type": "call" }, { "api_name": "numpy.ndarray", "line_number": 76, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 104, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 113, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 114, "usage_type": "call" }, { "api_name": "torch.is_tensor", "line_number": 122, "usage_type": "call" }, { "api_name": "skimage.measure.label", "line_number": 124, "usage_type": "call" }, { "api_name": "skimage.measure.regionprops", "line_number": 125, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 125, "usage_type": "attribute" }, { "api_name": "torch.utils.tensorboard.SummaryWriter", "line_number": 174, "usage_type": "call" }, { "api_name": "psutil.Process", "line_number": 179, "usage_type": "call" }, { "api_name": "os.getpid", "line_number": 179, "usage_type": "call" }, { "api_name": "utils.config.epoch_loss_values.append", "line_number": 201, "usage_type": "call" }, { "api_name": "utils.config.epoch_loss_values", "line_number": 201, "usage_type": "attribute" }, { "api_name": "utils.config", "line_number": 201, "usage_type": "name" }, { "api_name": "torch.save", "line_number": 214, "usage_type": "call" }, { "api_name": "torch.save", "line_number": 222, "usage_type": "call" }, { "api_name": "utils.config.best_metric", "line_number": 238, "usage_type": "attribute" }, { "api_name": "utils.config", "line_number": 238, "usage_type": "name" }, { "api_name": "utils.config.best_metric_epoch", "line_number": 239, "usage_type": "attribute" }, { "api_name": "utils.config", "line_number": 239, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 245, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 245, "usage_type": "name" }, { "api_name": "torch.autograd.Variable", "line_number": 261, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 275, "usage_type": "call" }, { "api_name": "torch.eq", "line_number": 284, "usage_type": "call" }, { "api_name": "utils.config.metric_values.append", "line_number": 288, "usage_type": "call" }, { "api_name": "utils.config.metric_values", "line_number": 288, "usage_type": "attribute" }, { "api_name": "utils.config", "line_number": 288, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 294, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 294, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 295, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 295, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 296, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 296, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 299, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 299, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 300, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 300, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 301, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 301, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 302, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 302, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 305, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 305, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 306, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 306, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 307, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 307, "usage_type": "name" }, { "api_name": "numpy.array_split", "line_number": 322, "usage_type": "call" }, { "api_name": "pandas.cut", "line_number": 340, "usage_type": "call" }, { "api_name": "pandas.cut", "line_number": 341, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 356, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 357, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 358, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 364, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 365, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 366, "usage_type": "call" }, { "api_name": "pandas.merge", "line_number": 369, "usage_type": "call" }, { "api_name": "pandas.merge", "line_number": 370, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 412, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 412, "usage_type": "name" }, { "api_name": "torch.autograd.Variable", "line_number": 424, "usage_type": "call" }, { "api_name": "torch.ones", "line_number": 424, "usage_type": "call" }, { "api_name": "torch.Tensor", "line_number": 427, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 429, "usage_type": "call" }, { "api_name": "torch.nn.functional.softmax", "line_number": 446, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 446, "usage_type": "name" }, { "api_name": "torch.log", "line_number": 448, "usage_type": "call" }, { "api_name": "torch.mul", "line_number": 452, "usage_type": "call" }, { "api_name": "torch.pow", "line_number": 452, "usage_type": "call" }, { "api_name": "torch.mul", "line_number": 453, "usage_type": "call" } ]
25760579432
from opencage.geocoder import OpenCageGeocode import xlrd import xlwt from xlwt import Workbook import pandas as pd key ="fd4f682cf2014f3fbd321ab141454138" # get api key from: https://opencagedata.com geocoder = OpenCageGeocode(key) loc = ("/Users/ashwinisriram/Documents/Lat long/corrected.xlsx") wb = xlrd.open_workbook(loc) sheet = wb.sheet_by_index(0) sheet.cell_value(0, 0) # Workbook is created wb = Workbook() # add_sheet is used to create sheet. sheet1 = wb.add_sheet('Sheet 1') # Define a dictionary containing data data={'Customer_code':[],'City':[],'State':[]} branch_district = "" for r in range(4000,4500): customer_code=str(sheet.cell_value(r, 0)) # sheet1.write(i, 1, sheet.cell_value(r, 1)) # sheet1.write(i, 2, sheet.cell_value(r, 2)) branch = str(sheet.cell_value(r, 1)) district= str(sheet.cell_value(r, 2)) data['Customer_code'].append(customer_code) data['City'].append(branch) data['State'].append(district) df=pd.DataFrame(data) # Convert the dictionary into DataFrame # Observe the result print(df) list_lat = [] # create empty lists list_long = [] link=[] for index, row in df.iterrows(): # iterate over rows in dataframe City = row['City'] State = row['State'] query = str(City)+','+str(State) results = geocoder.geocode(query) try: lat = results[0]['geometry']['lat'] long = results[0]['geometry']['lng'] list_lat.append(lat) list_long.append(long) link.append("http://www.google.com/maps/place/"+str(lat)+','+str(long)) except IndexError: list_lat.append('Nan') list_long.append('Nan') link.append("link unavailable") # create new columns from lists df['lat'] = list_lat df['lon'] = list_long df['link']=link # function to find the coordinate # of a given city print(df) # create excel writer object writer = pd.ExcelWriter('output2.xlsx') # write dataframe to excel df.to_excel(writer,'sheet2') # save the excel writer.save() print('DataFrame is written successfully to Excel File.')
Ashwini-Sriram/Latlong
alter.py
alter.py
py
2,116
python
en
code
0
github-code
6
[ { "api_name": "opencage.geocoder.OpenCageGeocode", "line_number": 12, "usage_type": "call" }, { "api_name": "xlrd.open_workbook", "line_number": 21, "usage_type": "call" }, { "api_name": "xlwt.Workbook", "line_number": 26, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 48, "usage_type": "call" }, { "api_name": "pandas.ExcelWriter", "line_number": 103, "usage_type": "call" } ]
22525757483
""" Author: Matthew Smith (45326242) Date: 15/04/2021 Title: AERO4450 Design Report Progress Check """ import numpy as np import matplotlib.pyplot as plt import math import scipy.sparse as sps import scipy.sparse.linalg as splinalg # Parameters M_N2 = 28 # g/mol M_F2 = 44 # g/mol M_O2 = 32 # g/mol mdot_a = 900 # g/s mdot_f = 30 # g/s T_in = 800 # K T_act = 40000 # K A = 5*10**11 # (1/s) T_ref = 298.15 # K # Thermodynamic Properties (formation enthalpy,Cp) P = {'F2': (0,2000), 'FO2': (-12,2200), 'O2': (0,1090), 'N2': (0,1170) } # Preliminaries # Task 1 b = (0.77*M_O2)/(0.23*M_N2) m_air = 2*M_O2/0.23 Zst = M_F2/(M_F2 + m_air) AFst = m_air/M_F2 Zavg = mdot_f/(mdot_a + mdot_f) AFavg = mdot_a/mdot_f print("Zst =",Zst) print("AFst =",AFst) print("Zavg =",Zavg) print("AFavg =",AFavg) # Task 2 Y_pc_max = 2*(M_F2/2 + M_O2)/(2*b*M_N2 + 2*(M_F2/2 + M_O2)) # Define the piecewise function Ypc(Z) def Y_pc(Z): if Z <= Zst: grad = Y_pc_max/Zst c = 0 Y = grad*Z + c if Z > Zst: grad = -Y_pc_max/(1-Zst) c = -grad Y = grad*Z + c return Y # Plot Y_pc(Z) plt.figure(figsize=(10,8)) plt.plot([0,Zst],[0,Y_pc_max],'b-') plt.plot([Zst,1],[Y_pc_max,0],'b-') plt.plot([0,Zst],[Y_pc_max,Y_pc_max],'r--') plt.plot([Zst,Zst],[0,Y_pc_max],'r--') plt.xticks([0.0,0.137,0.2,0.4,0.6,0.8,1.0]) plt.yticks([0.0,0.2,0.335,0.4,0.6,0.8,1.0]) plt.xlabel("Mixture Fraction (Z)") plt.ylabel("Mass Fraction (Y)") plt.title("Mass Fraction of FO2 vs. Mixture Fraction") plt.xlim(0,1) plt.ylim(0,1) plt.show() print("Ymax =",Y_pc_max) # Task 4 # Find ao and af ao = M_O2/(M_F2/2 + M_O2) af = 0.5*M_F2/(M_F2/2 + M_O2) print("ao =",ao) print("af =",af) def Y_O2(Z,Y_FO2): Y = 0.23*(1-Z) - ao*Y_FO2 # Ensure that Y is non-negative if Y < 0: return 0 else: return Y def Y_F2(Z,Y_FO2): Y = Z - af*Y_FO2 # Ensure that Y is non-negative if Y < 0: return 0 else: return Y # YN2 is a conserved scalar def Y_N2(Z): return 0.77*(1-Z) # Sum of all Y's should be 1 def Y_Total(Z,Y_FO2): return Y_O2(Z,Y_FO2) + Y_N2(Z) + Y_F2(Z,Y_FO2) + Y_FO2 # Create lists for all mass fractions Zs = np.linspace(0,1,200) O2 = [Y_O2(Z,Y_pc(Z)) for Z in Zs] F2 = [Y_F2(Z,Y_pc(Z)) for Z in Zs] N2 = [Y_N2(Z) for Z in Zs] FO2 = [Y_pc(Z) for Z in Zs] Total = [Y_Total(Z,Y_pc(Z)) for Z in Zs] # Plot the mass fractions vs. Z plt.figure(figsize=(10,8)) plt.plot(Zs,O2,'c-',label='O2') plt.plot(Zs,F2,'m-',label='F2') plt.plot(Zs,N2,'g-',label='N2') plt.plot(Zs,Total,'k-',label='Sum') plt.plot(Zs,FO2,'b-',label='FO2') plt.plot([Zst,Zst],[0,1],'r--',label='Zst') plt.xlabel("Mixture Fraction (Z)") plt.ylabel("Mass Fraction (Y)") plt.xlim(0,1) plt.ylim(0,1.1) plt.yticks([0.0,0.2,0.23,0.4,0.6,0.77,0.8,1.0]) plt.legend() plt.show() # Task 5 def phi(prop,Z,c): # Y_FO2 depends on combustion progress Y_FO2 = c*Y_pc(Z) # Define formation enthalpy if prop == 'h_f': val = (P['F2'][0]*Y_F2(Z,Y_FO2) + P['FO2'][0]*Y_FO2 + P['O2'][0]*Y_O2(Z,Y_FO2) + P['N2'][0]*Y_N2(Z))*10**6 # Define heat capacity if prop == 'Cp': val = (P['F2'][1]*Y_F2(Z,Y_FO2) + P['FO2'][1]*Y_FO2 + P['O2'][1]*Y_O2(Z,Y_FO2) + P['N2'][1]*Y_N2(Z)) # Define total enthalpy if prop == 'h': val = phi('h_f',Z,c)*Y_FO2 + (T_in - T_ref)*phi('Cp',Z,c) return val # Task 6 # TotaL enthalpy is a conserved scalar def h(Z,c): return phi('h',0,c) + Z*(phi('h',1,c) - phi('h',0,c)) def T(Z,c): return T_ref + (h(Z,c) - phi('h_f',Z,c))/phi('Cp',Z,c) def W(Z,c): Y_FO2 = c*Y_pc(Z) return Y_F2(Z,Y_FO2)*Y_O2(Z,Y_FO2)*A*np.exp(-T_act/T(Z,c)) # Task 7 Zs = np.linspace(0,1,500) # Plot the temperature vs. Z for different combustion progresses plot1 = [] plot2 = [] plot3 = [] plot4 = [] for z in Zs: for c in [0,1/3,2/3,1]: if c == 1/3: plot1.append(T(z,c)) if c == 2/3: plot2.append(T(z,c)) if c == 0: plot3.append(T(z,c)) if c == 1: plot4.append(T(z,c)) plt.figure(figsize=(10,8)) plt.plot(Zs,plot1,'r-',label='c = 1/3') plt.plot(Zs,plot2,'b-',label='c = 2/3') plt.plot(Zs,plot3,'g-',label='c = 0') plt.plot(Zs,plot4,'m-',label='c = 1') plt.title('Temperature vs. Z for Different c Values') plt.xlabel('Mixture Fraction (Z)') plt.ylabel('Temperature (K)') plt.xlim(0,1) plt.ylim(500,3500) plt.yticks([500,800,1000,1500,2000,2500,3000,3500]) plt.legend() plt.show() # Plot the reaction rate vs. Z for different combustion progresses plot1 = [] plot2 = [] for z in Zs: for c in [1/3,2/3]: if c == 1/3: plot1.append(W(z,c)) if c == 2/3: plot2.append(W(z,c)) plt.figure(figsize=(10,8)) plt.plot(Zs,plot1,'r-',label='c = 1/3') plt.plot(Zs,plot2,'b-',label='c = 2/3') plt.title('Reaction Rate vs. Z for Different c Values') plt.xlabel('Mixture Fraction (Z)') plt.ylabel('W (1/s)') plt.xlim(0,1) plt.legend() plt.show() # Flamelet Model # Task 1 nZ = 101 dZ = 1/(nZ-1) Z_values = np.linspace(0,1,nZ) # Define flamelet model that output the steady-state mass fractions for a given # Nst def flamelet_model(Nst): W_max = 500 # Set time-step and CFL number dt = 0.01/W_max CFL = dt*Nst/(dZ**2) t = 0 # Initial conditions current_Y = np.array([Y_pc(z) for z in Z_values]) # Initial reaction rates current_W = np.zeros(nZ) for i in range(1,nZ-1): c = current_Y[i]/Y_pc(i*dZ) current_W[i] = W(i*dZ,c) # Define implicit coefficient matrix implicit_matrix = ((1+2*CFL) * sps.eye(nZ, k=0) -CFL * sps.eye(nZ, k=-1) -CFL * sps.eye(nZ, k=+1)) # Dirichlet boundary conditions B = implicit_matrix.tolil() B[0,:], B[nZ-1,:] = 0, 0 B[0,0], B[nZ-1,nZ-1] = 1, 1 implicit_matrix = B.tocsr() # Begin general updates until steady-state solution is achieved or FO2 goes # extinct previous_Y = np.zeros(nZ) while abs(np.amax(current_Y) - np.amax(previous_Y)) > 1*10**-7: t += dt previous_Y = current_Y.copy() # Use sparse matrix solver current_Y = splinalg.spsolve(implicit_matrix,(previous_Y+current_W*dt)) # Update reaction rates for i in range(1,nZ-1): c = current_Y[i]/Y_pc(i*dZ) current_W[i] = W(i*dZ,c) print('Number of time steps used =', t/dt) return current_Y # Task 2 # Show steady-state solution for Nst = 30 (subcritical) Y_ss = flamelet_model(30) Ypc = [Y_pc(Z) for Z in Z_values] plt.figure(figsize=(10,8)) plt.plot(Z_values,Y_ss,'b-',label='Steady-State Solution') plt.plot(Z_values,Ypc,'r--',label='Y_pc(Z)') plt.title('Mass Fraction of FO2 vs. Mixture Fraction for Nst = 30') plt.xlabel('Mixture Fraction (Z)') plt.ylabel('Mass Fraction (Y)') plt.xlim(0,1) plt.ylim(0,0.4) plt.legend() plt.show() # Task 3 # Golden ratio gr = (math.sqrt(5) + 1) / 2 # Define Golden-Section Search function def gss(f, a, b, tol=0.01): # Find initial c and d values c = b - (b - a) / gr d = a + (b - a) / gr while abs(b - a) > tol: # If f(c) goes to extinction, return 100 if np.amax(f(c)) < 10**-3: x = 100 # If f(c) reaches steady-state, return max Y_FO2 else: x = np.amax(f(c)) # If f(d) goes to extinction, return 100 if np.amax(f(d)) < 10**-3: y = 100 # If f(d) reaches steady-state, return max Y_FO2 else: y = np.amax(f(d)) # When f(c) and f(d) go to extinction, a = a, b = c if x and y == 100: b = c c = b - (b - a) / gr d = a + (b - a) / gr continue # When f(c) and f(d) both have a steady solution, a = d, b = b if x and y > 10**-3: a = d c = b - (b - a) / gr d = a + (b - a) / gr continue # If f(c) < f(d), b = d, a = a if x < y: b = d else: a = c c = b - (b - a) / gr d = a + (b - a) / gr return (b + a) / 2 #print(gss(flamelet_model,50.5,51,tol=0.01)) # ^^ uncomment this if you want to see the golden search result # It takes roughly 5 mins to run though # Critical value found form golden search Ncr = 50.64387 print('Ncr =',Ncr) # Plot critical solution Y_ss = flamelet_model(Ncr) Ypc = [Y_pc(Z) for Z in Z_values] plt.figure(figsize=(10,8)) plt.plot(Z_values,Y_ss,'b-',label='Steady-State Solution') plt.plot(Z_values,Ypc,'r--',label='Y_pc(Z)') plt.title('Mass Fration of FO2 vs. Mixture Fraction for Ncr') plt.xlabel('Mixture Fraction (Z)') plt.ylabel('Mass Fraction (Y)') plt.xlim(0,1) plt.ylim(0,0.4) plt.legend() plt.show() # Plot critical temperatures Temps = np.zeros(nZ) Temps[0] = T(0,0) Temps[nZ-1] = T(1,0) for i in range(1,nZ-1): c = Y_ss[i]/Y_pc(i*dZ) Temps[i] = T(i*dZ,c) T_a = np.amax(Temps) plt.figure(figsize=(10,8)) plt.plot(Z_values,Temps,'b-') plt.plot([0,1],[T_a,T_a],'r--') plt.title('Temperature vs. Mixture Fraction') plt.xlabel('Mixture Fraction (Z)') plt.ylabel('Temperature (K)') plt.xlim(0,1) plt.ylim(750,3000) plt.yticks([750,1000,1250,1500,1750,2000,2250,2500,2750,2812.34,3000]) plt.show() print('Adiabatic Temp =',T_a) # Task 4 # Find residence time t_res = (Zavg - Zavg**2)/(2*Ncr) print('Residence Time =',t_res)
msmit677/AERO4450
AERO4450_Combustion_Modelling.py
AERO4450_Combustion_Modelling.py
py
9,866
python
en
code
0
github-code
6
[ { "api_name": "matplotlib.pyplot.figure", "line_number": 64, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 64, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 65, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 65, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 66, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 66, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 67, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 67, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 68, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 68, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 69, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 69, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 70, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 70, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 71, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 71, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 72, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 72, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 73, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 73, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 74, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 74, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 75, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 75, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 76, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 76, "usage_type": "name" }, { "api_name": "numpy.linspace", "line_number": 112, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 120, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 120, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 121, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 121, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 122, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 122, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 123, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 123, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 124, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 124, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 125, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 125, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 126, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 126, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 127, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 127, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 128, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 128, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 129, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 129, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 130, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 130, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 131, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 131, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 132, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 132, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 133, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 133, "usage_type": "name" }, { "api_name": "numpy.exp", "line_number": 164, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 168, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 185, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 185, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 186, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 186, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 187, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 187, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 188, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 188, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 189, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 189, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 190, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 190, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 191, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 191, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 192, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 192, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 193, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 193, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 194, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 194, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 195, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 195, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 196, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 196, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 197, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 197, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 208, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 208, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 209, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 209, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 210, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 210, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 211, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 211, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 212, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 212, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 213, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 213, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 214, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 214, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 215, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 215, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 216, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 216, "usage_type": "name" }, { "api_name": "numpy.linspace", "line_number": 224, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 237, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 240, "usage_type": "call" }, { "api_name": "scipy.sparse.eye", "line_number": 246, "usage_type": "call" }, { "api_name": "scipy.sparse", "line_number": 246, "usage_type": "name" }, { "api_name": "scipy.sparse.eye", "line_number": 247, "usage_type": "call" }, { "api_name": "scipy.sparse", "line_number": 247, "usage_type": "name" }, { "api_name": "scipy.sparse.eye", "line_number": 248, "usage_type": "call" }, { "api_name": "scipy.sparse", "line_number": 248, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 260, "usage_type": "call" }, { "api_name": "numpy.amax", "line_number": 261, "usage_type": "call" }, { "api_name": "scipy.sparse.linalg.spsolve", "line_number": 265, "usage_type": "call" }, { "api_name": "scipy.sparse.linalg", "line_number": 265, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 279, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 279, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 280, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 280, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 281, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 281, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 282, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 282, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 283, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 283, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 284, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 284, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 285, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 285, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 286, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 286, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 287, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 287, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 288, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 288, "usage_type": "name" }, { "api_name": "math.sqrt", "line_number": 293, "usage_type": "call" }, { "api_name": "numpy.amax", "line_number": 302, "usage_type": "call" }, { "api_name": "numpy.amax", "line_number": 306, "usage_type": "call" }, { "api_name": "numpy.amax", "line_number": 308, "usage_type": "call" }, { "api_name": "numpy.amax", "line_number": 312, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 348, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 348, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 349, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 349, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 350, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 350, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 351, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 351, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 352, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 352, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 353, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 353, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 354, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 354, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 355, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 355, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 356, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 356, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 357, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 357, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 360, "usage_type": "call" }, { "api_name": "numpy.amax", "line_number": 366, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 367, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 367, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 368, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 368, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 369, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 369, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 370, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 370, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 371, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 371, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 372, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 372, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 373, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 373, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 374, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 374, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 375, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 375, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 376, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 376, "usage_type": "name" } ]
14188272016
from fastapi import FastAPI app = FastAPI() COLUMN_NAME = "name" COLUMN_ID = "id" FAKE_DB = [ {"id": 1, "name": "Vladimir"}, {"id": 2, "name": "Polina"}, {"id": 3, "name": "Aleksander"} ] def find_friend_name(friend_id, db_name): for row in db_name: if row.get(COLUMN_ID) == friend_id: return row.get(COLUMN_NAME) return None @app.get("/friends/{friend_id}") async def get_friend_name(friend_id: int): friend_name = find_friend_name(friend_id, FAKE_DB) if friend_name is None: return {"error": f"No such friend with id {friend_id}"} return {"friend_name": friend_name} @app.get("/") async def root(): return {"message": "Hello world!"}
DanilaLabydin/Python-tasks-solving-practice
app/main.py
main.py
py
715
python
en
code
0
github-code
6
[ { "api_name": "fastapi.FastAPI", "line_number": 4, "usage_type": "call" } ]
74281365627
from __future__ import annotations import re from dataclasses import asdict, dataclass from typing import Optional, Sized, TypeVar import torch import torchinfo from accelerate.utils.random import set_seed from torch.utils.data import DataLoader from simpletrainer.utils.common import pretty_repr T = TypeVar('T') set_seed = set_seed @dataclass class DataInfo: batch_size: int batch_size_per_device: int num_sampels: Optional[int] num_batches_per_epoch: Optional[int] def __repr__(self) -> str: return pretty_repr(asdict(self), self.__class__.__name__) def get_batch_size_from_dataloader(dataloader: DataLoader) -> int: if dataloader.batch_size is None: try: return dataloader.batch_sampler.batch_size # type: ignore except AttributeError: raise ValueError( 'Can not get batch size from dataloader, does not support `BatchSampler` with varying batch size yet.' ) else: return dataloader.batch_size def get_num_samples_from_dataloader(dataloader: DataLoader) -> Optional[int]: if isinstance(dataloader.dataset, Sized): return len(dataloader.dataset) elif isinstance(dataloader.sampler, Sized): return len(dataloader.sampler) else: sampler = getattr(dataloader.batch_sampler, 'sampler') if isinstance(sampler, Sized): return len(sampler) else: return def get_data_info(dataloader: DataLoader, world_size: int = 1) -> DataInfo: num_samples = get_num_samples_from_dataloader(dataloader) try: num_batches_per_epoch = len(dataloader) except: num_batches_per_epoch = None batch_size_per_device = get_batch_size_from_dataloader(dataloader) batch_size = batch_size_per_device * world_size return DataInfo( batch_size=batch_size, batch_size_per_device=batch_size_per_device, num_sampels=num_samples, num_batches_per_epoch=num_batches_per_epoch, ) def get_model_info( model: torch.nn.Module, input_data: Optional[torchinfo.torchinfo.INPUT_DATA_TYPE] = None, device: Optional[torch.device] = None, ) -> torchinfo.ModelStatistics: try: model_statistics = torchinfo.summary(model, input_data=input_data, verbose=0, device=device) except Exception: model_statistics = torchinfo.summary(model, verbose=0, device=device) return model_statistics def get_parameter_id_group_map( optimizer: torch.optim.Optimizer, ) -> dict[int, str]: parameter_id_group_map = {} for group, params in enumerate(optimizer.param_groups): for param in params['params']: parameter_id_group_map[id(param)] = str(group) return parameter_id_group_map def get_params_with_pattern(model: torch.nn.Module, pattern: re.Pattern): params = [] for name, param in model.named_parameters(): if pattern.search(name): params.append(param) return params def get_module_learning_rate_summary(module: torch.nn.Module, optimizer: torch.optim.Optimizer): lr_dict: dict[str, float] = {} names = {param: name for name, param in module.named_parameters()} for group in optimizer.param_groups: if 'lr' not in group: continue lr = group['lr'] for param in group['params']: if param.requires_grad: lr_dict[names[param]] = lr else: lr_dict[names[param]] = 0.0 return lr_dict def get_module_parameter_summary(model: torch.nn.Module): parameter_mean: dict[str, float] = {} parameter_std: dict[str, float] = {} for name, param in model.named_parameters(): if param.data.numel() > 0: parameter_mean[name] = float(param.data.mean().item()) if param.data.numel() > 1: parameter_std[name] = float(param.data.std().item()) return parameter_mean, parameter_std def get_module_gradient_summary(model: torch.nn.Module): gradient_mean: dict[str, float] = {} gradient_std: dict[str, float] = {} for name, param in model.named_parameters(): if param.grad is not None: if param.grad.is_sparse: grad_data = param.grad.data._values() else: grad_data = param.grad.data # skip empty gradients if torch.prod(torch.tensor(grad_data.shape)).item() > 0: gradient_mean[name] = float(grad_data.mean().item()) if grad_data.numel() > 1: gradient_std[name] = float(grad_data.std().item()) return gradient_mean, gradient_std
Moka-AI/simpletrainer
simpletrainer/utils/torch.py
torch.py
py
4,653
python
en
code
3
github-code
6
[ { "api_name": "typing.TypeVar", "line_number": 14, "usage_type": "call" }, { "api_name": "accelerate.utils.random.set_seed", "line_number": 15, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 22, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 23, "usage_type": "name" }, { "api_name": "simpletrainer.utils.common.pretty_repr", "line_number": 26, "usage_type": "call" }, { "api_name": "dataclasses.asdict", "line_number": 26, "usage_type": "call" }, { "api_name": "dataclasses.dataclass", "line_number": 18, "usage_type": "name" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 29, "usage_type": "name" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 41, "usage_type": "name" }, { "api_name": "typing.Sized", "line_number": 42, "usage_type": "argument" }, { "api_name": "typing.Sized", "line_number": 44, "usage_type": "argument" }, { "api_name": "typing.Sized", "line_number": 48, "usage_type": "argument" }, { "api_name": "typing.Optional", "line_number": 41, "usage_type": "name" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 54, "usage_type": "name" }, { "api_name": "torch.nn", "line_number": 74, "usage_type": "attribute" }, { "api_name": "typing.Optional", "line_number": 75, "usage_type": "name" }, { "api_name": "torchinfo.torchinfo", "line_number": 75, "usage_type": "attribute" }, { "api_name": "typing.Optional", "line_number": 76, "usage_type": "name" }, { "api_name": "torch.device", "line_number": 76, "usage_type": "attribute" }, { "api_name": "torchinfo.summary", "line_number": 79, "usage_type": "call" }, { "api_name": "torchinfo.summary", "line_number": 81, "usage_type": "call" }, { "api_name": "torchinfo.ModelStatistics", "line_number": 77, "usage_type": "attribute" }, { "api_name": "torch.optim", "line_number": 86, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 95, "usage_type": "attribute" }, { "api_name": "re.Pattern", "line_number": 95, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 103, "usage_type": "attribute" }, { "api_name": "torch.optim", "line_number": 103, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 118, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 130, "usage_type": "attribute" }, { "api_name": "torch.prod", "line_number": 142, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 142, "usage_type": "call" } ]
34214358930
import json # Set file paths basePath = 'D:\\NTCIR-12_MathIR_arXiv_Corpus\\' inputPath = basePath + "output_FeatAna\\" index_file = 'inverse_semantic_index_formula_catalog(physics_all).json' #basePath = 'D:\\NTCIR-12_MathIR_Wikipedia_Corpus\\' #inputPath = basePath + "output_RE\\" #index_file = 'inverse_semantic_index_formula_catalog(Wikipedia).json' # Load inverse index with open(inputPath + index_file,'r',encoding='utf8') as f: formula_index = json.load(f) # Load example queries with open('../examples_list/formula_examples.json', 'r', encoding='utf8') as f: example_queries = json.load(f) results = {} for example_query in example_queries: GoldID = example_query['GoldID'] FormulaName = example_query['formula_name'] # retrieve only results that are common in all query word results common_results = {} for query_word in FormulaName.split(): try: for formula in formula_index[query_word].items(): try: common_results[formula[0]] += 1 except: common_results[formula[0]] = 1 except: pass ranking = {} for common_result in common_results.items(): if True: #common_result[1] == len(FormulaName.split()): for query_word in FormulaName.split(): try: ranking[common_result[0]] += formula_index[query_word][common_result[0]] except: try: ranking[common_result[0]] = formula_index[query_word][common_result[0]] except: pass result = {k: v for k, v in sorted(ranking.items(), key=lambda item: item[1],reverse=True)} results[GoldID] = (FormulaName,result) # output to csv csv_list = [] csv_list.append("GoldID\tName\tFormula\t(Score,Rank)\tDCG\tnDCG\n") for result in results.items(): # display only first hits or ranking cutoff displayed = False counter = 0 for formula in result[1][1].items(): if counter < 10: # True: #displayed == False: csv_list.append(result[0] + "\t" + result[1][0] + "\t" + formula[0].replace("\t","").replace("\n","") + "\t\t\t\n") displayed = True counter += 1 with open("inverse_formula_index_results.csv", 'w', encoding='utf8') as f: f.writelines(csv_list) print("end")
pratyushshukla19/Minor-Project-2
semanticsearch/modes13-15/evaluate_inverse_formula_index.py
evaluate_inverse_formula_index.py
py
2,411
python
en
code
0
github-code
6
[ { "api_name": "json.load", "line_number": 13, "usage_type": "call" }, { "api_name": "json.load", "line_number": 17, "usage_type": "call" } ]
41149275833
""" Internet Validators - ValidateEmail - ValidateIP - ValidateURL """ import socket import re from email_validator import validate_email, EmailNotValidError from flask_validator import Validator class ValidateEmail(Validator): """ Validate Email type. Check if the new value is a valid e-mail. Using this library to validate https://github.com/JoshData/python-email-validator Args: field: SQLAlchemy column to validate allow_null: (bool) Allow null values allow_smtputf8: (bool) Set to False to prohibit internationalized addresses that would require the SMTPUTF8. check_deliverability: (bool) Set to False to skip the domain name resolution check. allow_empty_local (bool) Set to True to allow an empty local part (i.e. @example.com), e.g. for validating Postfix aliases. allow_null: (bool) Allow null values throw_exception: (bool) Throw a ValidateError if the validation fails """ allow_smtputf8 = True check_deliverability = True allow_empty_local = False def __init__(self, field, allow_smtputf8=True,check_deliverability=True, allow_empty_local=False, allow_null=True, throw_exception=False, message=None): self.allow_smtputf8 = allow_smtputf8 self.check_deliverability = check_deliverability self.allow_empty_local = allow_empty_local Validator.__init__(self, field, allow_null, throw_exception, message) def check_value(self, value): try: validate_email(value, allow_smtputf8=self.allow_smtputf8, check_deliverability=self.check_deliverability, allow_empty_local=self.allow_empty_local) return True except EmailNotValidError: return False class ValidateIP(Validator): """ Validate Regex Compare a value against a regular expresion Args: field: SQLAlchemy column to validate ipv6: Match against IPV6 allow_null: (bool) Allow null values throw_exception: (bool) Throw a ValidateError if the validation fails """ ipv6 = None def __init__(self, field, ipv6=False, allow_null=True, throw_exception=False, message=None): self.ipv6 = ipv6 Validator.__init__(self, field, allow_null, throw_exception, message) def check_value(self, value): try: if not self.ipv6: socket.inet_pton(socket.AF_INET, value) else: socket.inet_pton(socket.AF_INET6, value) return True except socket.error: return False class ValidateURL(Validator): """ Validate URL Check if the values is a valid URL Args: field: SQLAlchemy column to validate allow_null: (bool) Allow null values. Default True throw_exception: (bool) Throw a ValidateError if the validation fails """ regex = r'^[a-z]+://(?P<host>[^/:]+)(?P<port>:[0-9]+)?(?P<path>\/.*)?$' def check_value(self, value): if re.match(self.regex, value): return True else: return False
xeBuz/Flask-Validator
flask_validator/constraints/internet.py
internet.py
py
3,190
python
en
code
28
github-code
6
[ { "api_name": "flask_validator.Validator", "line_number": 14, "usage_type": "name" }, { "api_name": "flask_validator.Validator.__init__", "line_number": 43, "usage_type": "call" }, { "api_name": "flask_validator.Validator", "line_number": 43, "usage_type": "name" }, { "api_name": "email_validator.validate_email", "line_number": 47, "usage_type": "call" }, { "api_name": "email_validator.EmailNotValidError", "line_number": 52, "usage_type": "name" }, { "api_name": "flask_validator.Validator", "line_number": 56, "usage_type": "name" }, { "api_name": "flask_validator.Validator.__init__", "line_number": 72, "usage_type": "call" }, { "api_name": "flask_validator.Validator", "line_number": 72, "usage_type": "name" }, { "api_name": "socket.inet_pton", "line_number": 77, "usage_type": "call" }, { "api_name": "socket.AF_INET", "line_number": 77, "usage_type": "attribute" }, { "api_name": "socket.inet_pton", "line_number": 79, "usage_type": "call" }, { "api_name": "socket.AF_INET6", "line_number": 79, "usage_type": "attribute" }, { "api_name": "socket.error", "line_number": 82, "usage_type": "attribute" }, { "api_name": "flask_validator.Validator", "line_number": 86, "usage_type": "name" }, { "api_name": "re.match", "line_number": 101, "usage_type": "call" } ]
5005445920
from __future__ import annotations from pathlib import Path from typing import Any, cast import _testutils import pytest from lxml.html import ( HtmlElement as HtmlElement, find_class, find_rel_links, iterlinks, make_links_absolute, parse, resolve_base_href, rewrite_links, ) reveal_type = getattr(_testutils, "reveal_type_wrapper") def test_input_content_type(h_filepath: Path) -> None: fio = open(h_filepath, "rb") tree = parse(h_filepath) for bad_input in [h_filepath, fio, tree]: with pytest.raises( AttributeError, match="object has no attribute 'find_rel_links'" ): _ = find_rel_links(cast(Any, bad_input), "stylesheet") fio.close() links = find_rel_links(str(h_filepath), "stylesheet") reveal_type(links) assert links == find_rel_links(tree.getroot(), "stylesheet") assert links == find_rel_links(h_filepath.read_text(), "stylesheet") assert links == find_rel_links(h_filepath.read_bytes(), "stylesheet") def test_find_class(h_filepath: Path) -> None: elems = find_class(h_filepath.read_text(), "single") reveal_type(elems) for e in elems: reveal_type(e) def test_iterlinks(h_filepath: Path) -> None: results = iterlinks(h_filepath.read_text()) reveal_type(results) for r in results: assert len(r) == 4 reveal_type(r[0]) reveal_type(r[1]) reveal_type(r[2]) reveal_type(r[3]) class TestOutputType: BASE = "http://dummy.link" def test_make_links_absolute(self, h_filepath: Path) -> None: in_data1 = h_filepath.read_bytes() with pytest.raises( TypeError, match="No base_url given, and the document has no base_url" ): out_data1 = make_links_absolute(in_data1) out_data1 = make_links_absolute(in_data1, self.BASE) assert type(in_data1) == type(out_data1) in_data2 = h_filepath.read_text() with pytest.raises(TypeError, match="Cannot mix str and non-str"): out_data2 = make_links_absolute( in_data2, cast(Any, self.BASE.encode("ascii")) ) out_data2 = make_links_absolute(in_data2, self.BASE) assert type(in_data2) == type(out_data2) tree = parse(h_filepath) in_data3 = tree.getroot() out_data3 = make_links_absolute(in_data3, self.BASE) assert type(in_data3) == type(out_data3) def test_resolve_base_href(self, h_filepath: Path) -> None: in_data1 = h_filepath.read_bytes() out_data1 = resolve_base_href(in_data1) assert type(in_data1) == type(out_data1) in_data2 = h_filepath.read_text() out_data2 = resolve_base_href(in_data2) assert type(in_data2) == type(out_data2) tree = parse(h_filepath) in_data3 = tree.getroot() out_data3 = resolve_base_href(in_data3) assert type(in_data3) == type(out_data3) def test_rewrite_links(self, h_filepath: Path) -> None: in_data1 = h_filepath.read_bytes() out_data1 = rewrite_links(in_data1, lambda _: self.BASE) assert type(in_data1) == type(out_data1) in_data2 = h_filepath.read_text() with pytest.raises(TypeError, match="can only concatenate str"): out_data2 = rewrite_links( in_data2, lambda _: cast(Any, self.BASE.encode("ASCII")) ) out_data2 = rewrite_links(in_data2, lambda _: self.BASE) assert type(in_data2) == type(out_data2) tree = parse(h_filepath) in_data3 = tree.getroot() out_data3 = rewrite_links(in_data3, lambda _: None) assert type(in_data3) == type(out_data3)
abelcheung/types-lxml
test-rt/test_html_link_funcs.py
test_html_link_funcs.py
py
3,706
python
en
code
23
github-code
6
[ { "api_name": "pathlib.Path", "line_number": 22, "usage_type": "name" }, { "api_name": "lxml.html.parse", "line_number": 24, "usage_type": "call" }, { "api_name": "pytest.raises", "line_number": 26, "usage_type": "call" }, { "api_name": "lxml.html.find_rel_links", "line_number": 29, "usage_type": "call" }, { "api_name": "typing.cast", "line_number": 29, "usage_type": "call" }, { "api_name": "typing.Any", "line_number": 29, "usage_type": "argument" }, { "api_name": "lxml.html.find_rel_links", "line_number": 32, "usage_type": "call" }, { "api_name": "lxml.html.find_rel_links", "line_number": 34, "usage_type": "call" }, { "api_name": "lxml.html.find_rel_links", "line_number": 35, "usage_type": "call" }, { "api_name": "lxml.html.find_rel_links", "line_number": 36, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 39, "usage_type": "name" }, { "api_name": "lxml.html.find_class", "line_number": 40, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 46, "usage_type": "name" }, { "api_name": "lxml.html.iterlinks", "line_number": 47, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 60, "usage_type": "name" }, { "api_name": "pytest.raises", "line_number": 62, "usage_type": "call" }, { "api_name": "lxml.html.make_links_absolute", "line_number": 65, "usage_type": "call" }, { "api_name": "lxml.html.make_links_absolute", "line_number": 66, "usage_type": "call" }, { "api_name": "pytest.raises", "line_number": 69, "usage_type": "call" }, { "api_name": "lxml.html.make_links_absolute", "line_number": 70, "usage_type": "call" }, { "api_name": "typing.cast", "line_number": 71, "usage_type": "call" }, { "api_name": "typing.Any", "line_number": 71, "usage_type": "argument" }, { "api_name": "lxml.html.make_links_absolute", "line_number": 73, "usage_type": "call" }, { "api_name": "lxml.html.parse", "line_number": 75, "usage_type": "call" }, { "api_name": "lxml.html.make_links_absolute", "line_number": 77, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 80, "usage_type": "name" }, { "api_name": "lxml.html.resolve_base_href", "line_number": 82, "usage_type": "call" }, { "api_name": "lxml.html.resolve_base_href", "line_number": 85, "usage_type": "call" }, { "api_name": "lxml.html.parse", "line_number": 87, "usage_type": "call" }, { "api_name": "lxml.html.resolve_base_href", "line_number": 89, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 92, "usage_type": "name" }, { "api_name": "lxml.html.rewrite_links", "line_number": 94, "usage_type": "call" }, { "api_name": "pytest.raises", "line_number": 97, "usage_type": "call" }, { "api_name": "lxml.html.rewrite_links", "line_number": 98, "usage_type": "call" }, { "api_name": "typing.cast", "line_number": 99, "usage_type": "call" }, { "api_name": "typing.Any", "line_number": 99, "usage_type": "argument" }, { "api_name": "lxml.html.rewrite_links", "line_number": 101, "usage_type": "call" }, { "api_name": "lxml.html.parse", "line_number": 103, "usage_type": "call" }, { "api_name": "lxml.html.rewrite_links", "line_number": 105, "usage_type": "call" } ]
77938817
""" file structure: flip_labels_and_scans.py scan_directrory - raw scans folder label_directrory - labels folder save_dir_scan - flipped scans folder (where they will be saved) save_dir_labels - flipped labels folder (where they will be saved) This script flips nii (nifti) labels and scans along the sagittal plane. The plane flipping occurs on can be modified by changing the transformation matrix in the flip3dlabel and flip3dscan functions. This script assumes the following file naming conventions: scans: "scanIdentifier_somesuffix.nii" labels: "scanIdentifier_50um_segmentation_IE-label.nii", the suffix can be modified by altering "label_name" in the "scan_flip_iterator" function. note that scanIdentifier should be unique. """ #imports import numpy as np import SimpleITK as sitk import os #specify directory of scans you would like to flip scan_directrory = 'scan_154um' #specify directory of where labelmaps are label_directrory = 'lab' #specify directory where you want to save flipped scans save_dir_scan = 'scan_save' #specify directory where you want to save flipped labels save_dir_labels = 'lab_save' def get_center(img): """ This function returns the physical center point of a 3d sitk image :param img: The sitk image we are trying to find the center of :return: The physical center point of the image """ width, height, depth = img.GetSize() return img.TransformIndexToPhysicalPoint((int(np.ceil(width/2)), int(np.ceil(height/2)), int(np.ceil(depth/2)))) def flip3dlabel(img): """ This function flips the sitk label passeed to it with NN interpolation :param img: An sitk labelmap :return: The flipped label """ affineTrans = sitk.AffineTransform(3) image_center = get_center(img) affineTrans.SetMatrix([-1,0,0,0,1,0,0,0,1]) affineTrans.SetCenter(image_center) flipped = sitk.Resample(img, affineTrans,sitk.sitkNearestNeighbor) return flipped def flip3dscan(img,lab): """ This function flips the sitk image passeed to it with BSpline interpolation :param img: An sitk image :param lab: An sitk label associated with the given image - used to maintain alignment :return: The flipped image """ affineTrans = sitk.AffineTransform(3) image_center = get_center(lab) affineTrans.SetMatrix([-1,0,0,0,1,0,0,0,1]) affineTrans.SetCenter(image_center) interpolator = sitk.sitkBSpline flipped = sitk.Resample(img, img, affineTrans, interpolator, -2000) return flipped def label_flip_iterator(file): """ This function is called each time a label is flipped. Naming and saving is done here. :param file: filename of label """ prefix = file.split("_")[0] #get the sample prefix IE '1932L' name_without_filetype = file.split(".nii")[0] #file name before the extension (.nii) newname = name_without_filetype+"_flipped.nii" lab = sitk.ReadImage(label_directrory+'/'+file) flipped_lab = flip3dlabel(lab) sitk.WriteImage(flipped_lab,save_dir_labels+"/"+newname)#labels are saved with _flipped appended to their original names def scan_flip_iterator(file): """ This function is called each time a scan is flipped. Naming and saving is done here. :param file: filename of scan """ prefix = file.split("_")[0] #get the scan prefix IE '1932L' name_without_filetype = file.split(".nii")[0] #everything before the extension (.nii) newname = name_without_filetype+"_flipped.nii" label_name = prefix+"_50um_segmentation_IE-label_flipped.nii" #labels corresponding to scans need this naming convention following prefix im = sitk.ReadImage(scan_directrory+"/"+file) lab = sitk.ReadImage(save_dir_labels+'/'+label_name) flipped_im = flip3dscan(im,lab) #flip the image with respect to its already flipped label sitk.WriteImage(flipped_im,save_dir_scan+"/"+newname) #scans are saved with _flipped appended to their original names dir=os.listdir(label_directrory) for i in range(0,len(dir)): #iterate through the directory of labels label_flip_iterator(dir[i]) dir=os.listdir(scan_directrory) for i in range(0,len(dir)): #iterate through the directory of raw scans scan_flip_iterator(dir[i])
kylerioux/python_ML_scripts
3d_image_preprocessing/flip_scans_and_labels.py
flip_scans_and_labels.py
py
4,139
python
en
code
0
github-code
6
[ { "api_name": "numpy.ceil", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.ceil", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.ceil", "line_number": 44, "usage_type": "call" }, { "api_name": "SimpleITK.AffineTransform", "line_number": 53, "usage_type": "call" }, { "api_name": "SimpleITK.Resample", "line_number": 57, "usage_type": "call" }, { "api_name": "SimpleITK.sitkNearestNeighbor", "line_number": 57, "usage_type": "attribute" }, { "api_name": "SimpleITK.AffineTransform", "line_number": 68, "usage_type": "call" }, { "api_name": "SimpleITK.sitkBSpline", "line_number": 72, "usage_type": "attribute" }, { "api_name": "SimpleITK.Resample", "line_number": 73, "usage_type": "call" }, { "api_name": "SimpleITK.ReadImage", "line_number": 87, "usage_type": "call" }, { "api_name": "SimpleITK.WriteImage", "line_number": 89, "usage_type": "call" }, { "api_name": "SimpleITK.ReadImage", "line_number": 102, "usage_type": "call" }, { "api_name": "SimpleITK.ReadImage", "line_number": 103, "usage_type": "call" }, { "api_name": "SimpleITK.WriteImage", "line_number": 105, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 108, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 112, "usage_type": "call" } ]
73083659707
import numpy as np from scipy.spatial.distance import cdist import matplotlib.pyplot as plt def has_converged(centers, new_centers): return set([tuple(a) for a in centers]) == set([tuple(a) for a in new_centers]) def kmeans(X, K): # centroids = X[np.random.choice(X.shape[0], K, replace=False)] centroids = np.array([[1.0, 1.0], [5.0, 7.0]]) it = 0 while True: it += 1 D = cdist(X, centroids) labels = np.argmin(D, axis=1) new_centroids = np.zeros((K, X.shape[1])) for k in range(K): new_centroids[k, :] = np.mean(X[labels == k, :], axis=0) display(X, K, labels) plt.show() if has_converged(centroids, new_centroids): break centroids = new_centroids return labels, centroids def display(X, K, labels): for i in range(K): X0 = X[labels == i, :] plt.plot(X0[:, 0], X0[:, 1], '.') def error(X, K, labels): sum = 0 for i in range(K): X0 = X[labels == i, :] sum += np.std(X0) print(sum / K) def random_data(): for i in range(6): mean = 200 * np.random.random_sample((1, 2)) X0 = np.random.multivariate_normal(mean[0], [[10, 0], [0, 10]], np.random.randint(20, 50)) if i == 0: X = X0 else: X = np.concatenate((X, X0)) return X from sklearn.cluster import KMeans A = np.array([[1.0, 1.5, 3.0, 5.0, 3.5, 4.5, 3.5]]) B = np.array([[1.0, 2.0, 4.0, 7.0, 5.0, 5.0, 4.5]]) X = np.append(A.T, B.T, axis=1) # X = random_data() for K in range(2, 10): (labels, centroids) = kmeans(X, K) display(X, K, labels) plt.show() error(X, K, labels) cls = KMeans(n_clusters=K, random_state=0) cls.fit(X) lbl = cls.labels_ display(X, K, lbl) plt.show()
cuongdd2/cs582
lab6/prob4.py
prob4.py
py
1,807
python
en
code
0
github-code
6
[ { "api_name": "numpy.array", "line_number": 12, "usage_type": "call" }, { "api_name": "scipy.spatial.distance.cdist", "line_number": 16, "usage_type": "call" }, { "api_name": "numpy.argmin", "line_number": 17, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 20, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 22, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 22, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 34, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 34, "usage_type": "name" }, { "api_name": "numpy.std", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.random.random_sample", "line_number": 47, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 47, "usage_type": "attribute" }, { "api_name": "numpy.random.multivariate_normal", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 48, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 52, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 57, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 58, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 59, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 64, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 64, "usage_type": "name" }, { "api_name": "sklearn.cluster.KMeans", "line_number": 66, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 70, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 70, "usage_type": "name" } ]
74732381948
import numpy as np import tensorflow as tf import cv2 def colormap_jet(img): color_image = cv2.applyColorMap(np.uint8(img), cv2.COLORMAP_JET) return color_image def color_disparity(disparity): with tf.variable_scope('color_disparity'): batch_size = disparity.shape[0] color_maps = [] for i in range(batch_size): color_disp = tf.py_func(colormap_jet, [-disparity[i]], tf.uint8) color_maps.append(color_disp) color_batch = tf.stack(color_maps, axis=0) return color_batch def count_text_lines(file_path): f = open(file_path, 'r') lines = f.readlines() f.close() return len(lines)
fabiotosi92/monoResMatch-Tensorflow
utils.py
utils.py
py
677
python
en
code
117
github-code
6
[ { "api_name": "cv2.applyColorMap", "line_number": 7, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 7, "usage_type": "call" }, { "api_name": "cv2.COLORMAP_JET", "line_number": 7, "usage_type": "attribute" }, { "api_name": "tensorflow.variable_scope", "line_number": 12, "usage_type": "call" }, { "api_name": "tensorflow.py_func", "line_number": 16, "usage_type": "call" }, { "api_name": "tensorflow.uint8", "line_number": 16, "usage_type": "attribute" }, { "api_name": "tensorflow.stack", "line_number": 18, "usage_type": "call" } ]
14098998919
#!/usr/bin/env python # -*- coding: utf-8 -*- """ =================================== Timer --- Create a timer decorator. =================================== Largely this module was simply practice on writing decorators. Might need to review logging best practices. I don't want the logger from this module to emit anything, but it seems tedious to place that burden on any module that imports from here. .. seealso:: :mod:`cProfile` :mod:`pstats` :mod:`timeit` :magic:`timeit` """ import datetime import functools import logging from os import scandir from runpy import run_path import time from timeit import Timer from IPython.core.getipython import get_ipython # noinspection PyProtectedMember from IPython.core.magics.execution import _format_time as format_delta logging.basicConfig(level=logging.INFO) def timer(func): """Print the runtime of the decorated function. Utilizes `time.perf_counter`. .. todo:: Begin using the :mod:`timeit` module. There are more specialized ways of profiling things in other modules; however, this works for a rough estimate. Parameters ---------- func : function Function to profile Returns ------- value : float Output of function :func:`time.perf_counter()`. """ @functools.wraps(func) def wrapper_timer(*args, **kwargs): start_time = time.perf_counter() value = func(*args, **kwargs) end_time = time.perf_counter() run_time = end_time - start_time logging.info(f"Finished {func.__name__!r} in {run_time:.4f} secs") return value return wrapper_timer # class ModuleTimer() # I mean while we're practicing decorators throw this in the mix def debug(func): """Print the function signature and return value""" @functools.wraps(func) def wrapper_debug(*args, **kwargs): args_repr = [repr(a) for a in args] # 1 kwargs_repr = [f"{k}={v!r}" for k, v in kwargs.items()] # 2 signature = ", ".join(args_repr + kwargs_repr) # 3 print(f"Calling {func.__name__}({signature})") value = func(*args, **kwargs) print(f"{func.__name__!r} returned {value!r}") # 4 return value return wrapper_debug def exc_timer(statement, setup=None): """A non-decorator implementation that uses `timeit`.""" t = Timer(stmt=statement, setup=setup) # outside the try/except try: return t.timeit() except Exception: # noqa E722 t.print_exc() class ArgReparser: """Class decorator that echoes out the arguments a function was called with.""" def __init__(self, func): """Initialize the reparser with the function it wraps.""" self.func = func def __call__(self, *args, **kwargs): print("entering function " + self.func.__name__) i = 0 for arg in args: print("arg {0}: {1}".format(i, arg)) i = i + 1 return self.func(*args, **kwargs) def time_dir(directory=None): """How long does it take to exec(compile(file)) every file in the startup dir?""" if directory is None: directory = get_ipython().startup_dir result = [] for i in scandir("."): if i.name.endswith(".py"): file = i.name print(file) print(time.time()) start_time = time.time() exec(compile(open(file).read(), "timer", "exec")) end = time.time() diff = end - start_time print(f"{diff}") result.append((file, diff)) return result class LineWatcher: """Class that implements a basic timer. Registers the `start` and `stop` methods with the IPython events API. """ def __init__(self): """Define the classes start_time parameter.""" self.start_time = self.start() def start(self): """Return `time.time`.""" return time.time() def __repr__(self): return f"{self.__class__.__name__} {self.start_time}" def stop(self): """Determine the difference between start time and end time.""" stop_time = time.time() diff = abs(stop_time - self.start_time) print("time: {}".format(format_delta(diff))) return diff def load_ipython_extension(ip=None, line_watcher=None): """Initialize a `LineWatcher` and register start and stop with IPython.""" if ip is None: ip = get_ipython() if ip is None: return if line_watcher is None: line_watcher = LineWatcher() ip.events.register("pre_run_cell", line_watcher.start) ip.events.register("post_run_cell", line_watcher.stop) def unload_ipython_extension(ip=None, line_watcher=None): if ip is None: ip = get_ipython() if ip is None: return if line_watcher is None: line_watcher = LineWatcher() ip.events.unregister("pre_run_cell", line_watcher.start) ip.events.unregister("post_run_cell", line_watcher.stop)
farisachugthai/dynamic_ipython
default_profile/util/timer.py
timer.py
py
5,023
python
en
code
7
github-code
6
[ { "api_name": "logging.basicConfig", "line_number": 35, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 35, "usage_type": "attribute" }, { "api_name": "time.perf_counter", "line_number": 62, "usage_type": "call" }, { "api_name": "time.perf_counter", "line_number": 64, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 66, "usage_type": "call" }, { "api_name": "functools.wraps", "line_number": 60, "usage_type": "call" }, { "api_name": "functools.wraps", "line_number": 77, "usage_type": "call" }, { "api_name": "timeit.Timer", "line_number": 92, "usage_type": "call" }, { "api_name": "IPython.core.getipython.get_ipython", "line_number": 119, "usage_type": "call" }, { "api_name": "os.scandir", "line_number": 121, "usage_type": "call" }, { "api_name": "time.time", "line_number": 125, "usage_type": "call" }, { "api_name": "time.time", "line_number": 126, "usage_type": "call" }, { "api_name": "time.time", "line_number": 128, "usage_type": "call" }, { "api_name": "time.time", "line_number": 148, "usage_type": "call" }, { "api_name": "time.time", "line_number": 155, "usage_type": "call" }, { "api_name": "IPython.core.magics.execution._format_time", "line_number": 158, "usage_type": "call" }, { "api_name": "IPython.core.getipython.get_ipython", "line_number": 165, "usage_type": "call" }, { "api_name": "IPython.core.getipython.get_ipython", "line_number": 177, "usage_type": "call" } ]
26436839942
from PIL import Image imgx = 512 imgy = 512 image = Image.new("RGB",(imgx,imgy)) for x in range(imgx): for y in range(imgy): if ((x//64)%2 == 1) or ((x//64)%2 == 2) and (y//64)%2 == 1 or ((y//64)%2 == 2): image.putpixel ((x,y), (0,0,0) ) else: image.putpixel ((x,y), (250,0,0) ) image.save("demo_image.png", "PNG")
gbroady19/CS550
intropil.py
intropil.py
py
334
python
en
code
0
github-code
6
[ { "api_name": "PIL.Image.new", "line_number": 6, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 6, "usage_type": "name" } ]
13563263971
import requests import time import json from hoshino import aiorequests apiroot = 'https://help.tencentbot.top' async def getprofile(viewer_id: int, interval: int = 1, full: bool = False) -> dict: reqid = json.loads(await aiorequests.get(f'{apiroot}/enqueue?full={full}&target_viewer_id={viewer_id}').content.decode('utf8'))['reqeust_id'] if reqid is None: return "id err" while True: query = json.loads(await aiorequests.get(f'{apiroot}/query?request_id={reqid}').content.decode('utf8')) status = query['status'] if status == 'done': return query['data'] elif status == 'queue': time.sleep(interval) else: # notfound or else return "queue" async def queryarena(defs: list, page: int) -> dict: return json.loads(await aiorequests.get(f'{apiroot}/arena?def={",".join([str(x) for x in defs])}&page={page}').content.decode('utf8'))
pcrbot/arena_query_push
queryapi.py
queryapi.py
py
933
python
en
code
7
github-code
6
[ { "api_name": "json.loads", "line_number": 9, "usage_type": "call" }, { "api_name": "hoshino.aiorequests.get", "line_number": 9, "usage_type": "call" }, { "api_name": "hoshino.aiorequests", "line_number": 9, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 15, "usage_type": "call" }, { "api_name": "hoshino.aiorequests.get", "line_number": 15, "usage_type": "call" }, { "api_name": "hoshino.aiorequests", "line_number": 15, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 20, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 25, "usage_type": "call" }, { "api_name": "hoshino.aiorequests.get", "line_number": 25, "usage_type": "call" }, { "api_name": "hoshino.aiorequests", "line_number": 25, "usage_type": "name" } ]
12646834769
import matplotlib.pyplot as plt import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression df = pd.read_csv('dividedsamples/training.csv') dfval = pd.read_csv('dividedsamples/testing.csv') train_features = df.copy() test_features = dfval.copy() train_labels = train_features.pop('price') test_labels = test_features.pop('price') regressor = LinearRegression() regressor.fit(train_features, train_labels) coeff_df = pd.DataFrame(regressor.coef_, train_features.columns, columns=['Coefficient']) print(coeff_df) y_pred = regressor.predict(test_features) boi = pd.DataFrame({'Actual': test_labels, 'Predicted': y_pred}) print(boi)
WayneFerrao/autofocus
linreg.py
linreg.py
py
717
python
en
code
2
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 7, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 8, "usage_type": "call" }, { "api_name": "sklearn.linear_model.LinearRegression", "line_number": 16, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 18, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 22, "usage_type": "call" } ]
40527670685
from django import forms from django.forms import TextInput, SplitDateTimeWidget class NumberInput(TextInput): """ HTML5 Number input Left for backwards compatibility """ input_type = 'number' class AdminDateWidget(forms.DateInput): @property def media(self): js = ["calendar.js", "admin/DateTimeShortcuts.js"] return forms.Media(js=["admin/js/%s" % path for path in js]) def __init__(self, attrs=None, format=None): final_attrs = {'class': 'form-control datepicker', 'size': '10', 'type': 'date'} if attrs is not None: final_attrs.update(attrs) super(AdminDateWidget, self).__init__(attrs=final_attrs, format=format) class AdminTimeWidget(forms.TimeInput): @property def media(self): js = ["calendar.js", "admin/DateTimeShortcuts.js"] return forms.Media(js=["admin/js/%s" % path for path in js]) def __init__(self, attrs=None, format=None): final_attrs = {'class': 'form-control timepicker', 'size': '8', 'type': 'time'} if attrs is not None: final_attrs.update(attrs) super(AdminTimeWidget, self).__init__(attrs=final_attrs, format=format) class LteAdminSplitDateTime (forms.SplitDateTimeWidget): #template_name = 'admin/widgets/split_datetime.html' def __init__(self, attrs=None): widgets = [AdminDateWidget, AdminTimeWidget] # Note that we're calling MultiWidget, not SplitDateTimeWidget, because # we want to define widgets. forms.MultiWidget.__init__(self, widgets, attrs)
ricardochaves/django-adminlte
adminlte/widgets.py
widgets.py
py
1,631
python
en
code
1
github-code
6
[ { "api_name": "django.forms.TextInput", "line_number": 6, "usage_type": "name" }, { "api_name": "django.forms.DateInput", "line_number": 14, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 14, "usage_type": "name" }, { "api_name": "django.forms.Media", "line_number": 19, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 19, "usage_type": "name" }, { "api_name": "django.forms.TimeInput", "line_number": 30, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 30, "usage_type": "name" }, { "api_name": "django.forms.Media", "line_number": 35, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 35, "usage_type": "name" }, { "api_name": "django.forms.SplitDateTimeWidget", "line_number": 46, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 46, "usage_type": "name" }, { "api_name": "django.forms.MultiWidget.__init__", "line_number": 54, "usage_type": "call" }, { "api_name": "django.forms.MultiWidget", "line_number": 54, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 54, "usage_type": "name" } ]
4041441314
__author__ = 'yueli' import numpy as np import matplotlib.pyplot as plt from config.config import * mrList = np.linspace(1, 13, 13) negativeList = [-1, -1, -10, -10, -1, -1, -1, -10 ,-1, -1, -1, -10, -10] noMapReplyList = np.linspace(0, 0, 13) rlocSet1 = [-10, 1, 1, 1, -10, -10, 1, 1, 1, -10, 1, 1, 1] rlocSet2 = [-10, 2, 2, 2, 2, 2, 2, 2, 2, -10, 2, 2, 2] rlocSet3 = [-10, -10, 3, 3, -10, -10, -10, 3, -10, -10, -10, 3, 3] plt.xlim(0.5, 13.5) plt.ylim(-1.5, 3.5) plt.scatter(mrList,negativeList, color = 'blue') plt.scatter(mrList,noMapReplyList, color = 'yellow') plt.scatter(mrList,rlocSet1, color = 'purple') plt.scatter(mrList,rlocSet2, color = 'red') plt.scatter(mrList,rlocSet3, color = 'green') plt.xlabel("13 different Map Resolvers") plt.ylabel("Responses from MRs") plt.title("Responses from 13 MRs for EID-153.16.49.112 at liege(by MR)") plt.xticks(mrList, ['MR1', 'MR2', 'MR3', 'MR4', 'MR5', 'MR6', 'MR7', 'MR8', 'MR9', 'MR10', 'MR11', 'MR12', 'MR13', 'MR14', 'MR15']) plt.yticks([-1, 0, 1, 2, 3], ['Negative Reply', 'No Map Reply', '82.121.231.67', '192.168.1.66', '132.227.85.231']) # plt.savefig( # os.path.join(PLOT_DIR, 'Plot_variable_MR', 'Plot_variable_MR.eps'), # dpi=300, # transparent=True # ) plt.show()
hansomesong/TracesAnalyzer
Plot/Plot_variable_MR/Plot_variable_MR.py
Plot_variable_MR.py
py
1,248
python
en
code
1
github-code
6
[ { "api_name": "numpy.linspace", "line_number": 6, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 8, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 13, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 13, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 14, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 14, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 16, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 16, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 17, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 17, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 18, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 18, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 19, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 19, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 20, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 20, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 22, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 22, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 23, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 23, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 24, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 24, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 25, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 25, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 26, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 26, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 34, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 34, "usage_type": "name" } ]
14400394656
#!/usr/bin/env python3.8 def missing_element(arr1, arr2): arr1.sort() arr2.sort() for num1, num2 in zip(arr1, arr2): if num1 != num2: return num1 return -1 def missing_element1(arr1, arr2): count = {} output = [] for i in arr1: if i in count: count[i] += 1 else: count[i] = 1 for i in arr2: if i in count: count[i] -= 1 else: count[i] = -1 for k in count: if count[k] > 0: output.append(k) return output import collections def missing_element2(arr1, arr2): count = collections.defaultdict(int) output = [] for i in arr2: count[i] += 1 for i in arr1: if count[i] == 0: output.append(i) else: count[i] -= 1 return output def missing_element3(arr1, arr2): return sum(arr1) - sum(arr2) def missing_element4(arr1, arr2): result = 0 for num in arr1+arr2: result ^= num return result arr1 = [5,5,7,7] arr2 = [5,7,7] print(missing_element4(arr1,arr2)) print( ord("A")^ord("A"))
dnootana/Python
concepts/arrays/find_missing_element.py
find_missing_element.py
py
950
python
en
code
0
github-code
6
[ { "api_name": "collections.defaultdict", "line_number": 36, "usage_type": "call" } ]
32644908087
"""Guide Eye 01 module""" from functools import partial from mgear.shifter.component import guide from mgear.core import transform, pyqt from mgear.vendor.Qt import QtWidgets, QtCore from maya.app.general.mayaMixin import MayaQWidgetDockableMixin from maya.app.general.mayaMixin import MayaQDockWidget from . import settingsUI as sui # guide info AUTHOR = "Jeremie Passerin, Miquel Campos" URL = ", www.miquletd.com" EMAIL = ", " VERSION = [1, 0, 0] TYPE = "eye_01" NAME = "eye" DESCRIPTION = "eye control rig" ########################################################## # CLASS ########################################################## class Guide(guide.ComponentGuide): """Component Guide Class""" compType = TYPE compName = NAME description = DESCRIPTION author = AUTHOR url = URL email = EMAIL version = VERSION def postInit(self): """Initialize the position for the guide""" self.save_transform = ["root", "look"] def addObjects(self): """Add the Guide Root, blade and locators""" # eye guide self.root = self.addRoot() vTemp = transform.getOffsetPosition(self.root, [0, 0, 1]) self.look = self.addLoc("look", self.root, vTemp) centers = [self.root, self.look] self.dispcrv = self.addDispCurve("crv", centers) def addParameters(self): """Add the configurations settings""" self.pUpVDir = self.addEnumParam( "upVectorDirection", ["X", "Y", "Z"], 1) self.pIkRefArray = self.addParam("ikrefarray", "string", "") self.pUseIndex = self.addParam("useIndex", "bool", False) self.pParentJointIndex = self.addParam( "parentJointIndex", "long", -1, None, None) ########################################################## # Setting Page ########################################################## class settingsTab(QtWidgets.QDialog, sui.Ui_Form): """The Component settings UI""" def __init__(self, parent=None): super(settingsTab, self).__init__(parent) self.setupUi(self) class componentSettings(MayaQWidgetDockableMixin, guide.componentMainSettings): """Create the component setting window""" def __init__(self, parent=None): self.toolName = TYPE # Delete old instances of the componet settings window. pyqt.deleteInstances(self, MayaQDockWidget) super(self.__class__, self).__init__(parent=parent) self.settingsTab = settingsTab() self.setup_componentSettingWindow() self.create_componentControls() self.populate_componentControls() self.create_componentLayout() self.create_componentConnections() def setup_componentSettingWindow(self): self.mayaMainWindow = pyqt.maya_main_window() self.setObjectName(self.toolName) self.setWindowFlags(QtCore.Qt.Window) self.setWindowTitle(TYPE) self.resize(350, 350) def create_componentControls(self): return def populate_componentControls(self): """Populate Controls Populate the controls values from the custom attributes of the component. """ # populate tab self.tabs.insertTab(1, self.settingsTab, "Component Settings") # populate component settings self.settingsTab.upVectorDirection_comboBox.setCurrentIndex( self.root.attr("upVectorDirection").get()) ikRefArrayItems = self.root.attr("ikrefarray").get().split(",") for item in ikRefArrayItems: self.settingsTab.ikRefArray_listWidget.addItem(item) def create_componentLayout(self): self.settings_layout = QtWidgets.QVBoxLayout() self.settings_layout.addWidget(self.tabs) self.settings_layout.addWidget(self.close_button) self.setLayout(self.settings_layout) def create_componentConnections(self): cBox = self.settingsTab.upVectorDirection_comboBox cBox.currentIndexChanged.connect( partial(self.updateComboBox, self.settingsTab.upVectorDirection_comboBox, "upVectorDirection")) self.settingsTab.ikRefArrayAdd_pushButton.clicked.connect( partial(self.addItem2listWidget, self.settingsTab.ikRefArray_listWidget, "ikrefarray")) self.settingsTab.ikRefArrayRemove_pushButton.clicked.connect( partial(self.removeSelectedFromListWidget, self.settingsTab.ikRefArray_listWidget, "ikrefarray")) self.settingsTab.ikRefArray_listWidget.installEventFilter(self) def eventFilter(self, sender, event): if event.type() == QtCore.QEvent.ChildRemoved: if sender == self.settingsTab.ikRefArray_listWidget: self.updateListAttr(sender, "ikrefarray") return True else: return QtWidgets.QDialog.eventFilter(self, sender, event) def dockCloseEventTriggered(self): pyqt.deleteInstances(self, MayaQDockWidget)
mgear-dev/mgear4
release/scripts/mgear/shifter_classic_components/eye_01/guide.py
guide.py
py
5,095
python
en
code
209
github-code
6
[ { "api_name": "mgear.shifter.component.guide.ComponentGuide", "line_number": 28, "usage_type": "attribute" }, { "api_name": "mgear.shifter.component.guide", "line_number": 28, "usage_type": "name" }, { "api_name": "mgear.core.transform.getOffsetPosition", "line_number": 49, "usage_type": "call" }, { "api_name": "mgear.core.transform", "line_number": 49, "usage_type": "name" }, { "api_name": "mgear.vendor.Qt.QtWidgets.QDialog", "line_number": 72, "usage_type": "attribute" }, { "api_name": "mgear.vendor.Qt.QtWidgets", "line_number": 72, "usage_type": "name" }, { "api_name": "maya.app.general.mayaMixin.MayaQWidgetDockableMixin", "line_number": 80, "usage_type": "name" }, { "api_name": "mgear.shifter.component.guide.componentMainSettings", "line_number": 80, "usage_type": "attribute" }, { "api_name": "mgear.shifter.component.guide", "line_number": 80, "usage_type": "name" }, { "api_name": "mgear.core.pyqt.deleteInstances", "line_number": 86, "usage_type": "call" }, { "api_name": "maya.app.general.mayaMixin.MayaQDockWidget", "line_number": 86, "usage_type": "argument" }, { "api_name": "mgear.core.pyqt", "line_number": 86, "usage_type": "name" }, { "api_name": "mgear.core.pyqt.maya_main_window", "line_number": 98, "usage_type": "call" }, { "api_name": "mgear.core.pyqt", "line_number": 98, "usage_type": "name" }, { "api_name": "mgear.vendor.Qt.QtCore.Qt", "line_number": 101, "usage_type": "attribute" }, { "api_name": "mgear.vendor.Qt.QtCore", "line_number": 101, "usage_type": "name" }, { "api_name": "mgear.vendor.Qt.QtWidgets.QVBoxLayout", "line_number": 128, "usage_type": "call" }, { "api_name": "mgear.vendor.Qt.QtWidgets", "line_number": 128, "usage_type": "name" }, { "api_name": "functools.partial", "line_number": 138, "usage_type": "call" }, { "api_name": "functools.partial", "line_number": 143, "usage_type": "call" }, { "api_name": "functools.partial", "line_number": 148, "usage_type": "call" }, { "api_name": "mgear.vendor.Qt.QtCore.QEvent", "line_number": 155, "usage_type": "attribute" }, { "api_name": "mgear.vendor.Qt.QtCore", "line_number": 155, "usage_type": "name" }, { "api_name": "mgear.vendor.Qt.QtWidgets.QDialog.eventFilter", "line_number": 160, "usage_type": "call" }, { "api_name": "mgear.vendor.Qt.QtWidgets.QDialog", "line_number": 160, "usage_type": "attribute" }, { "api_name": "mgear.vendor.Qt.QtWidgets", "line_number": 160, "usage_type": "name" }, { "api_name": "mgear.core.pyqt.deleteInstances", "line_number": 163, "usage_type": "call" }, { "api_name": "maya.app.general.mayaMixin.MayaQDockWidget", "line_number": 163, "usage_type": "argument" }, { "api_name": "mgear.core.pyqt", "line_number": 163, "usage_type": "name" } ]
3344378919
import logging import sys from loguru import logger from starlette.config import Config from starlette.datastructures import Secret from app.core.logger import InterceptHandler config = Config(".env") API_PREFIX = "/api" VERSION = "0.1.0" DEBUG: bool = config("DEBUG", cast=bool, default=False) MAX_CONNECTIONS_COUNT: int = config("MAX_CONNECTIONS_COUNT", cast=int, default=10) MIN_CONNECTIONS_COUNT: int = config("MIN_CONNECTIONS_COUNT", cast=int, default=10) HOST: str = config("HOST", cast=str, default="0.0.0.0") PORT: int = config("PORT", cast=int, default=35100) SECRET_KEY: Secret = config("SECRET_KEY", cast=Secret, default="") PROJECT_NAME: str = config("PROJECT_NAME", default="augmentation") # logging configuration LOGGING_LEVEL = logging.DEBUG if DEBUG else logging.INFO logging.basicConfig( handlers=[InterceptHandler(level=LOGGING_LEVEL)], level=LOGGING_LEVEL ) logger.configure(handlers=[{"sink": sys.stderr, "level": LOGGING_LEVEL}]) FASTTEXT_PATH = config("FASTTEXT_PATH", default="./model/cc.vi.300.vec") PHOBERT_PATH = config("PHOBERT_PATH", default="./model/PhoBERT_base_fairseq") STOPWORD_PATH = config("STOPWORD_PATH", default="./data/vietnamese-stopwords.txt") IRRELEVANT_WORD_PATH = config("IRRELEVANT_WORD_PATH", default="./data/irrelevant_words.txt") EDIT_DISTANCE_PATH = config("EDIT_DISTANCE_PATH", default="./data/edit_distance.txt") MAX_CACHE_SIZE = config("MAX_CACHE_SIZE", cast=int, default=1000) PHO_NLP_URL = config("PHO_NLP_URL", default="http://172.29.13.23:20217/") VN_CORE_PATH = config("VN_CORE_PATH", default="http://172.29.13.23") VN_CORE_PORT = config("VN_CORE_PORT", cast=int, default=20215)
hieunt2501/text-augmentation
app/core/config.py
config.py
py
1,648
python
en
code
0
github-code
6
[ { "api_name": "starlette.config.Config", "line_number": 11, "usage_type": "call" }, { "api_name": "starlette.datastructures.Secret", "line_number": 20, "usage_type": "name" }, { "api_name": "logging.DEBUG", "line_number": 25, "usage_type": "attribute" }, { "api_name": "logging.INFO", "line_number": 25, "usage_type": "attribute" }, { "api_name": "logging.basicConfig", "line_number": 26, "usage_type": "call" }, { "api_name": "app.core.logger.InterceptHandler", "line_number": 27, "usage_type": "call" }, { "api_name": "loguru.logger.configure", "line_number": 29, "usage_type": "call" }, { "api_name": "loguru.logger", "line_number": 29, "usage_type": "name" }, { "api_name": "sys.stderr", "line_number": 29, "usage_type": "attribute" } ]
14712079581
from typing import List, Optional from fastapi import APIRouter, Header from fastapi.exceptions import HTTPException from server.models.subscription import ( ExchangeKlineSubscriptionRequest, ExchangeSubscription, ExchangeSubscriptionType, ) router = APIRouter() @router.get("/") async def list(x_connection_id: str = Header()) -> List[ExchangeSubscription]: return await ExchangeSubscription.find( ExchangeSubscription.type == ExchangeSubscriptionType.KLINE, ExchangeSubscription.connection == x_connection_id, ).to_list() @router.get("/{symbol:path}/interval/{interval:path}/") async def retrieve( symbol: str, interval: str, x_connection_id: str = Header(), ) -> Optional[ExchangeSubscription]: try: return await ExchangeSubscription.find_one( ExchangeSubscription.type == ExchangeSubscriptionType.KLINE, ExchangeSubscription.symbol == symbol, ExchangeSubscription.interval == interval, ExchangeSubscription.connection == x_connection_id, ) except Exception as e: raise HTTPException(status_code=400, detail=str(e)) @router.get("/{symbol:path}/") async def list_symbol( symbol: str, x_connection_id: str = Header(), ) -> List[ExchangeSubscription]: try: return await ExchangeSubscription.find( ExchangeSubscription.type == ExchangeSubscriptionType.KLINE, ExchangeSubscription.symbol == symbol, ExchangeSubscription.connection == x_connection_id, ).to_list() except Exception as e: raise HTTPException(status_code=400, detail=str(e)) @router.post("/") async def create( request: ExchangeKlineSubscriptionRequest, x_connection_id: str = Header() ) -> ExchangeSubscription: try: existing_subscription = await ExchangeSubscription.find_one( ExchangeSubscription.type == ExchangeSubscriptionType.KLINE, ExchangeSubscription.symbol == request.symbol, ExchangeSubscription.interval == request.interval, ExchangeSubscription.connection == x_connection_id, ) if existing_subscription: return existing_subscription subscription = ExchangeSubscription( type=ExchangeSubscriptionType.KLINE, interval=request.interval, connection=x_connection_id, symbol=request.symbol, ) return await subscription.create() except Exception as e: raise HTTPException(status_code=400, detail=str(e)) @router.delete("/") async def destroy( request: ExchangeKlineSubscriptionRequest, x_connection_id: str = Header() ): try: item = await ExchangeSubscription.find_one( ExchangeSubscription.type == ExchangeSubscriptionType.KLINE, ExchangeSubscription.interval == request.interval, ExchangeSubscription.connection == x_connection_id, ExchangeSubscription.symbol == request.symbol, ) if not item: raise HTTPException(status_code=400, detail="subscription not found") await ExchangeSubscription.delete(item) except Exception as e: raise HTTPException(status_code=400, detail=str(e))
masked-trader/raccoon-exchange-service
src/server/routes/subscription/kline.py
kline.py
py
3,263
python
en
code
0
github-code
6
[ { "api_name": "fastapi.APIRouter", "line_number": 12, "usage_type": "call" }, { "api_name": "fastapi.Header", "line_number": 16, "usage_type": "call" }, { "api_name": "server.models.subscription.ExchangeSubscription.find", "line_number": 17, "usage_type": "call" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 17, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscription.type", "line_number": 18, "usage_type": "attribute" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 18, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscriptionType.KLINE", "line_number": 18, "usage_type": "attribute" }, { "api_name": "server.models.subscription.ExchangeSubscriptionType", "line_number": 18, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscription.connection", "line_number": 19, "usage_type": "attribute" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 19, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 16, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 16, "usage_type": "name" }, { "api_name": "fastapi.Header", "line_number": 27, "usage_type": "call" }, { "api_name": "server.models.subscription.ExchangeSubscription.find_one", "line_number": 30, "usage_type": "call" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 30, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscription.type", "line_number": 31, "usage_type": "attribute" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 31, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscriptionType.KLINE", "line_number": 31, "usage_type": "attribute" }, { "api_name": "server.models.subscription.ExchangeSubscriptionType", "line_number": 31, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscription.symbol", "line_number": 32, "usage_type": "attribute" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 32, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscription.interval", "line_number": 33, "usage_type": "attribute" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 33, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscription.connection", "line_number": 34, "usage_type": "attribute" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 34, "usage_type": "name" }, { "api_name": "fastapi.exceptions.HTTPException", "line_number": 38, "usage_type": "call" }, { "api_name": "typing.Optional", "line_number": 28, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 28, "usage_type": "name" }, { "api_name": "fastapi.Header", "line_number": 44, "usage_type": "call" }, { "api_name": "server.models.subscription.ExchangeSubscription.find", "line_number": 47, "usage_type": "call" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 47, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscription.type", "line_number": 48, "usage_type": "attribute" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 48, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscriptionType.KLINE", "line_number": 48, "usage_type": "attribute" }, { "api_name": "server.models.subscription.ExchangeSubscriptionType", "line_number": 48, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscription.symbol", "line_number": 49, "usage_type": "attribute" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 49, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscription.connection", "line_number": 50, "usage_type": "attribute" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 50, "usage_type": "name" }, { "api_name": "fastapi.exceptions.HTTPException", "line_number": 54, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 45, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 45, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeKlineSubscriptionRequest", "line_number": 59, "usage_type": "name" }, { "api_name": "fastapi.Header", "line_number": 59, "usage_type": "call" }, { "api_name": "server.models.subscription.ExchangeSubscription.find_one", "line_number": 62, "usage_type": "call" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 62, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscription.type", "line_number": 63, "usage_type": "attribute" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 63, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscriptionType.KLINE", "line_number": 63, "usage_type": "attribute" }, { "api_name": "server.models.subscription.ExchangeSubscriptionType", "line_number": 63, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscription.symbol", "line_number": 64, "usage_type": "attribute" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 64, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscription.interval", "line_number": 65, "usage_type": "attribute" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 65, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscription.connection", "line_number": 66, "usage_type": "attribute" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 66, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 72, "usage_type": "call" }, { "api_name": "server.models.subscription.ExchangeSubscriptionType.KLINE", "line_number": 73, "usage_type": "attribute" }, { "api_name": "server.models.subscription.ExchangeSubscriptionType", "line_number": 73, "usage_type": "name" }, { "api_name": "fastapi.exceptions.HTTPException", "line_number": 82, "usage_type": "call" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 60, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeKlineSubscriptionRequest", "line_number": 87, "usage_type": "name" }, { "api_name": "fastapi.Header", "line_number": 87, "usage_type": "call" }, { "api_name": "server.models.subscription.ExchangeSubscription.find_one", "line_number": 90, "usage_type": "call" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 90, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscription.type", "line_number": 91, "usage_type": "attribute" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 91, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscriptionType.KLINE", "line_number": 91, "usage_type": "attribute" }, { "api_name": "server.models.subscription.ExchangeSubscriptionType", "line_number": 91, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscription.interval", "line_number": 92, "usage_type": "attribute" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 92, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscription.connection", "line_number": 93, "usage_type": "attribute" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 93, "usage_type": "name" }, { "api_name": "server.models.subscription.ExchangeSubscription.symbol", "line_number": 94, "usage_type": "attribute" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 94, "usage_type": "name" }, { "api_name": "fastapi.exceptions.HTTPException", "line_number": 98, "usage_type": "call" }, { "api_name": "server.models.subscription.ExchangeSubscription.delete", "line_number": 100, "usage_type": "call" }, { "api_name": "server.models.subscription.ExchangeSubscription", "line_number": 100, "usage_type": "name" }, { "api_name": "fastapi.exceptions.HTTPException", "line_number": 103, "usage_type": "call" } ]
74866931066
import datetime as dt import matplotlib.pyplot as plt import numpy as np import os class HobsHeader(object): sim_head = '"SIMULATED EQUIVALENT"' obs_head = '"OBSERVED VALUE"' obs_name = '"OBSERVATION NAME"' date = 'DATE' dyear = 'DECIMAL_YEAR' header = {sim_head: None, obs_head: None, obs_name: None, date: None, dyear: None} class HobsOut(dict): """ Reads output data from Hobs file and prepares it for post processing. Class sets observations to an ordered dictionary based on observation name If observation name is consistant for a site, a time series is created for plotting! Parameters ---------- filename : str hobs filename strip_after : str flag to indicate a character to strip the hobs label after for grouping wells. Example: OBS_1 OBS_2 strip_after could be set to "_" and then all OBS observations will be stored under the OBS key. This is extremely useful for plotting and calculating statistics """ def __init__(self, filename, strip_after=""): super(HobsOut, self).__init__() self.name = filename self._strip_after = strip_after self._dataframe = None self.__read_hobs_output() def __read_hobs_output(self): """ Method to read a hobs output file. Dynamically sets header information and reads associated values. Sets values to HobsOut dictionary """ with open(self.name) as hobout: for ix, line in enumerate(hobout): if ix == 0: self.__set_header(line) else: self.__set_dictionary_values(line) def __set_dictionary_values(self, line): """ Method to set incoming hobs line to dictionary data values Args: line: (str) """ t = line.strip().split() obsname = t[HobsHeader.header[HobsHeader.obs_name]] dict_name = obsname if self._strip_after: dict_name = obsname.split(self._strip_after)[0] simval = float(t[HobsHeader.header[HobsHeader.sim_head]]) obsval = float(t[HobsHeader.header[HobsHeader.obs_head]]) residual = simval - obsval date = self.__set_datetime_object(t[HobsHeader.header[HobsHeader.date]]) decimal_date = float(t[HobsHeader.header[HobsHeader.dyear]]) if dict_name in self: self[dict_name]['simval'].append(simval) self[dict_name]['obsval'].append(obsval) self[dict_name]['date'].append(date) self[dict_name]['decimal_date'].append(decimal_date) self[dict_name]['residual'].append(residual) self[dict_name]["obsname"].append(obsname) else: self[dict_name] = {"obsname": [obsname], "date": [date], "decimal_date": [decimal_date], "simval": [simval], "obsval": [obsval], "residual": [residual]} def __set_header(self, line): """ Reads header line and sets header index Parameters ---------- line : str first line of the HOB file """ n = 0 s = "" for i in line: s += i if s in HobsHeader.header: HobsHeader.header[s] = n n += 1 s = "" elif s in (" ", "\t", "\n"): s = "" else: pass for key, value in HobsHeader.header.items(): if value is None: raise AssertionError("HobsHeader headings must be updated") def __set_datetime_object(self, s): """ Reformats a string of YYYY-mm-dd to a datetime object Parameters ---------- s : str string of YYYY-mm-dd Returns ------- datetime.date """ return dt.datetime.strptime(s, "%Y-%m-%d") def __get_date_string(self, date): """ Parmaeters ---------- date: datetime.datetime object Returns ------- string """ return date.strftime("%Y/%m/%d") @property def obsnames(self): """ Return a list of obsnames from the HobsOut dictionary """ return self.keys() def to_dataframe(self): """ Method to get a pandas dataframe object of the HOBs data. Returns ------- pd.DataFrame """ import pandas as pd if self._dataframe is None: df = None for hobsname, d in self.items(): t = pd.DataFrame(d) if df is None: df = t else: df = pd.concat([df, t], ignore_index=True) self._dataframe = df return self._dataframe def get_sum_squared_errors(self, obsname): """ Returns the sum of squared errors from the residual Parameters ---------- obsname : str observation name Returns ------- float: sum of square error """ return sum([i**2 for i in self[obsname]['residual']]) def get_rmse(self, obsname): """ Returns the RMSE from the residual Parameters ---------- obsname : str observation name Returns ------- float: rmse """ return np.sqrt(np.mean([i**2 for i in self[obsname]['residual']])) def get_number_observations(self, obsname): """ Returns the number of observations for an obsname Parameters ---------- obsname : str observation name Returns ------- int """ return len(self[obsname]['simval']) def get_maximum_residual(self, obsname): """ Returns the datetime.date and maximum residual value Parameters ---------- obsname : str observation name Returns ------- tuple: (datetime.date, residual) """ data = self[obsname]['residual'] index = data.index(max(data)) date = self[obsname]['date'][index] return date, max(data) def get_minimum_residual(self, obsname): """ Returns the datetime.date, minimum residual value Parameters ---------- obsname : str observation name Returns ------- tuple: (datetime.date, residual) """ data = self[obsname]['residual'] index = data.index(min(data)) date = self[obsname]['date'][index] return date, min(data) def get_mean_residual(self, obsname): """ Returns the datetime.date, minimum residual value Parameters ---------- obsname : str observation name Returns ------- tuple: (datetime.date, residual) """ data = self[obsname]['residual'] return np.mean(data) def get_median_residual(self, obsname): """ Returns the datetime.date, minimum residual value Parameters ---------- obsname : str observation name Returns ------- tuple: (datetime.date, residual) """ data = self[obsname]['residual'] return np.median(data) def get_maximum_residual_heads(self, obsname): """ Returns the datetime.date, simulated, and observed heads at the maximum residual value Parameters ---------- obsname : str observation name Returns ------- tuple: (datetime.date, simulated head, observed head) """ resid = self[obsname]['residual'] index = resid.index(max(resid)) observed = self[obsname]['obsval'][index] simulated = self[obsname]['simval'][index] date = self[obsname]['date'][index] return date, simulated, observed def get_minimum_residual_heads(self, obsname): """ Returns the datetime.date, simulated, and observed heads at the maximum residual value Parameters ---------- obsname : str observation name Returns ------- tuple: (datetime.date, simulated head, observed head) """ resid = self[obsname]['residual'] index = resid.index(min(resid)) observed = self[obsname]['obsval'][index] simulated = self[obsname]['simval'][index] date = self[obsname]['date'][index] return date, simulated, observed def get_residual_bias(self, filter=None): """ Method to determine the bias of measurements +- by checking the residual. Returns fraction of residuals > 0. Parameters ---------- filter: (str, list, tuple, or function) filtering criteria for writing statistics. Function must return True for filter out, false to use Returns ------- (float) fraction of residuals greater than zero """ nobs = 0. ngreaterzero = 0. for obsname, meta_data in self.items(): if self.__filter(obsname, filter): continue residual = np.array(meta_data['residual']) rgreaterzero = sum((residual > 0)) nobs += residual.size ngreaterzero += rgreaterzero try: bias = ngreaterzero / nobs except ZeroDivisionError: raise ZeroDivisionError("No observations found!") return bias def write_dbf(self, dbfname, filter=None): """ Method to write a dbf file from a the HOBS dictionary Parameters ---------- dbfname : str dbf file name filter: (str, list, tuple, or function) filtering criteria for writing statistics. Function must return True for filter out, false for write to file """ import shapefile data = [] for obsname, meta_data in self.items(): if self.__filter(obsname, filter): continue for ix, val in enumerate(meta_data['simval']): data.append([obsname, self.__get_date_string(meta_data['date'][ix]), val, meta_data['obsval'][ix], meta_data['residual'][ix]]) try: # traps for pyshp 1 vs. pyshp 2 w = shapefile.Writer(dbf=dbfname) except Exception: w = shapefile.Writer() w.field("HOBSNAME", fieldType="C") w.field("HobsDate", fieldType="D") w.field("HeadSim", fieldType='N', decimal=8) w.field("HeadObs", fieldType="N", decimal=8) w.field("Residual", fieldType="N", decimal=8) for rec in data: w.record(*rec) try: w.save(dbf=dbfname) except AttributeError: w.close() def write_min_max_residual_dbf(self, dbfname, filter=None): """ Method to write a dbf of transient observations using observation statistics Parameters ---------- dbfname : str dbf file name filter: (str, list, tuple, or function) filtering criteria for writing statistics. Function must return True for filter out, false for write to file """ import shapefile data = [] for obsname, meta_data in self.items(): if self.__filter(obsname, filter): continue max_date, resid_max = self.get_maximum_residual(obsname) min_date, resid_min = self.get_minimum_residual(obsname) simval_max, obsval_max = self.get_maximum_residual_heads(obsname)[1:] simval_min, obsval_min = self.get_minimum_residual_heads(obsname)[1:] data.append([obsname, self.get_number_observations(obsname), self.__get_date_string(max_date), resid_max, self.__get_date_string(min_date), resid_min, simval_max, obsval_max, simval_min, obsval_min]) try: # traps for pyshp 1 vs. pyshp 2 w = shapefile.Writer(dbf=dbfname) except Exception: w = shapefile.Writer() w.field("HOBSNAME", fieldType="C") w.field("FREQUENCY", fieldType="N") w.field("MaxDate", fieldType="C") w.field("MaxResid", fieldType='N', decimal=8) w.field("MinDate", fieldType="C", decimal=8) w.field("MinResid", fieldType="N", decimal=8) w.field("MaxHeadSim", fieldType="N", decimal=8) w.field("MaxHeadObs", fieldType="N", decimal=8) w.field("MinHeadSim", fieldType="N", decimal=8) w.field("MinHeadObs", fieldType="N", decimal=8) for rec in data: w.record(*rec) try: w.save(dbf=dbfname) except AttributeError: w.close() def __filter(self, obsname, filter): """ Boolean filetering method, checks if observation name is in the filter. Parameters ---------- obsname : str observation name filter: (str, list, tuple, or function) filtering criteria for writing statistics. Function must return True for filter out, false for write to file Returns ------- bool: True if obsname in filter """ if filter is None: return False elif isinstance(filter, list) or isinstance(filter, tuple): if obsname in list: return True elif isinstance(filter, str): if obsname == filter: return True elif callable(filter): if filter(obsname): return True else: raise Exception("Filter is not an appropriate type") return False def write_summary_statistics_csv(self, csvname, filter=None): """ Method to write summary calibration statistics to a CSV file for analysis and reports Parameters ---------- csvname : str csv file name filter: (str, list, tuple, or function) filtering criteria for writing statistics. Function must return True for filter out, false for write to file """ data = [] header = ["Well name", "Average", "Median", "Minimum", "Maximum", "RMSE ft", "Frequency"] for obsname, meta_data in sorted(self.items()): if self.__filter(obsname, filter): continue resid_mean = self.get_mean_residual(obsname) resid_median = self.get_median_residual(obsname) resid_max = self.get_maximum_residual(obsname)[-1] resid_min = self.get_minimum_residual(obsname)[-1] rmse = self.get_rmse(obsname) frequency = self.get_number_observations(obsname) data.append((obsname, resid_mean, resid_median, resid_min, resid_max, rmse, frequency)) data = np.array(data, dtype=[('id', 'O'), ('mean', float), ('med', float), ('min', float), ('max', float), ('rmse', float), ('num', np.int)]) with open(csvname, "w") as foo: foo.write(",".join(header) + "\n") np.savetxt(foo, data, fmt="%15s,%.2f,%2f,%2f,%2f,%2f,%d") def plot(self, obsname, *args, **kwargs): """ Plotting functionality from the hobs dictionary Parameters ---------- obsname: str hobs package observation name *args: matplotlib args **kwargs: matplotlib kwargs Returns ------- matplotlib.pyplot.axes object """ simulated = True if "observed" in kwargs: simulated = False kwargs.pop('observed') observed = True if "simulated" in kwargs: observed = False kwargs.pop('simulated') if obsname not in self: raise AssertionError("Obsname {}: not valid".format(obsname)) axes = False if 'ax' in kwargs: ax = kwargs.pop('ax') axes = True if not axes: ax = plt.subplot(111) obsval = self[obsname]['obsval'] simval = self[obsname]['simval'] date = self[obsname]['date'] if observed: kwargs['label'] = "Observed" kwargs['color'] = 'r' ax.plot(date, obsval, *args, **kwargs) if simulated: kwargs['label'] = "Simulated" kwargs['color'] = 'b' ax.plot(date, simval, *args, **kwargs) return ax def plot_measured_vs_simulated(self, filter=None, **kwargs): """ Plots measured vs. simulated data along a 1:1 profile. Parameters ---------- filter: (str, list, tuple, or function) filtering criteria for writing statistics. Function must return True for filter out, false for write to file **kwargs: matplotlib.pyplot plotting kwargs Returns ------- matplotlib.pyplot.axes object """ axes = plt.subplot(111) for obsname, meta_data in self.items(): if self.__filter(obsname, filter): continue simulated = meta_data['simval'] observed = meta_data['obsval'] axes.plot(observed, simulated, 'bo', markeredgecolor='k') return axes def plot_simulated_vs_residual(self, filter=None, histogram=False, **kwargs): """ Creates a matplotlib plot of simulated heads vs residual Parameters ---------- filter: (str, list, tuple, or function) filtering criteria for writing statistics. Function must return True for filter out, false for write to file histogram: (bool) Boolean variable that defines either a scatter plot (False) or a histogram (True) of residuals **kwargs: matplotlib.pyplot plotting kwargs Returns ------- matplotlib.pyplot.axes object """ axes = plt.subplot(111) if not histogram: for obsname, meta_data in self.items(): if self.__filter(obsname, filter): continue residual = meta_data['residual'] observed = meta_data['obsval'] axes.plot(observed, residual, 'bo', markeredgecolor="k") else: bins = np.arange(-25, 26, 5) d = {} for ix, abin in enumerate(bins): frequency = 0 for obsname, meta_data in self.items(): if self.__filter(obsname, filter): continue for residual in meta_data['residual']: if ix == 0: if residual < abin: frequency += 1 elif ix == (len(bins) - 1): if residual > abin: frequency += 1 else: if bins[ix - 1] <= residual < abin: frequency += 1 if ix == 0: name = "Less than {}".format(abin) elif ix == (len(bins) - 1): name = "Greater than {}".format(abin) else: name = "{} to {}".format(bins[ix - 1] + 1, abin) d[ix + 1] = {'name': name, 'frequency': frequency} tick_num = [] tick_name = [] for index, meta_data in sorted(d.items()): axes.bar(index, meta_data['frequency'], width=0.8, **kwargs) tick_num.append(index) tick_name.append(meta_data['name']) plt.xticks(tick_num, tick_name, rotation=45, fontsize=10) plt.xlim([0.5, len(tick_num) + 1]) plt.subplots_adjust(left=0.12, bottom=0.22, right=0.90, top=0.90, wspace=0.20, hspace=0.20) plt.ylabel("Frequency") return axes if __name__ == "__main__": ws = r'C:\Users\jlarsen\Desktop\Lucerne\Lucerne_OWHM\V0_initial_from_MODOPTIM\output' hobs_name = "hobs.out" tmp = HobsOut(os.path.join(ws, hobs_name)) tmp.plot("04N01W01R04S", "o-") plt.legend(loc=0, numpoints=1) plt.show() print('break')
jlarsen-usgs/HydrographTools
hobs_output.py
hobs_output.py
py
22,180
python
en
code
1
github-code
6
[ { "api_name": "datetime.datetime.strptime", "line_number": 143, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 143, "usage_type": "attribute" }, { "api_name": "pandas.DataFrame", "line_number": 180, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 184, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 217, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 217, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 284, "usage_type": "call" }, { "api_name": "numpy.median", "line_number": 300, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 367, "usage_type": "call" }, { "api_name": "shapefile.Writer", "line_number": 409, "usage_type": "call" }, { "api_name": "shapefile.Writer", "line_number": 411, "usage_type": "call" }, { "api_name": "shapefile.Writer", "line_number": 460, "usage_type": "call" }, { "api_name": "shapefile.Writer", "line_number": 462, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 553, "usage_type": "call" }, { "api_name": "numpy.int", "line_number": 556, "usage_type": "attribute" }, { "api_name": "numpy.savetxt", "line_number": 560, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 597, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 597, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 633, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 633, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 668, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 668, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 682, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 724, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 724, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 725, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 725, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots_adjust", "line_number": 726, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 726, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 729, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 729, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 738, "usage_type": "call" }, { "api_name": "os.path", "line_number": 738, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 740, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 740, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 741, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 741, "usage_type": "name" } ]
18660136090
import os import sys try: from dreamberd import interprete except ModuleNotFoundError: sys.exit("Use -m keyword.") from argparse import ArgumentParser parser = ArgumentParser( prog="DreamBerd Interpreter (Python)", description="The perfect programming language.", ) parser.add_argument("content", help="The file or code to run.") args = parser.parse_args() if os.path.exists(args.content): with open(args.content, "r", encoding="utf-8") as file: content: str = file.read() else: content = args.content interprete(content)
AWeirdScratcher/dreamberd-interpreter
dreamberd/__main__.py
__main__.py
py
559
python
en
code
0
github-code
6
[ { "api_name": "sys.exit", "line_number": 7, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 11, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 18, "usage_type": "call" }, { "api_name": "os.path", "line_number": 18, "usage_type": "attribute" }, { "api_name": "dreamberd.interprete", "line_number": 24, "usage_type": "call" } ]
10233608865
from __future__ import annotations import re from typing import TYPE_CHECKING from twitchio import User, PartialUser, Chatter, PartialChatter, Channel, Clip from .errors import BadArgument if TYPE_CHECKING: from .core import Context __all__ = ( "convert_Chatter", "convert_Clip", "convert_Channel", "convert_PartialChatter", "convert_PartialUser", "convert_User", ) async def convert_Chatter(ctx: Context, arg: str) -> Chatter: """ Converts the argument into a chatter in the chat. If the chatter is not found, BadArgument is raised. """ arg = arg.lstrip("@") resp = [x for x in filter(lambda c: c.name == arg, ctx.chatters or tuple())] if not resp: raise BadArgument(f"The user '{arg}' was not found in {ctx.channel.name}'s chat.") return resp[0] async def convert_PartialChatter(ctx: Context, arg: str) -> PartialChatter: """ Converts the argument into a chatter in the chat. As opposed to Chatter converter, this will return a PartialChatter regardless of the cache state. """ return PartialChatter(ctx._ws, name=arg.lstrip("@"), channel=ctx.channel, message=None) async def convert_Clip(ctx: Context, arg: str) -> Clip: finder = re.search(r"(https://clips.twitch.tv/)?(?P<slug>.*)", arg) if not finder: raise RuntimeError( "regex failed to match" ) # this should never ever raise, but its here to make type checkers happy slug = finder.group("slug") clips = await ctx.bot.fetch_clips([slug]) if not clips: raise BadArgument(f"Clip '{slug}' was not found") return clips[0] async def convert_User(ctx: Context, arg: str) -> User: """ Similar to convert_Chatter, but fetches from the twitch API instead, returning a :class:`twitchio.User` instead of a :class:`twitchio.Chatter`. To use this, you most have a valid client id and API token or client secret """ arg = arg.lstrip("@") user = await ctx.bot.fetch_users(names=[arg]) if not user: raise BadArgument(f"User '{arg}' was not found.") return user[0] async def convert_PartialUser(ctx: Context, arg: str) -> User: """ This is simply a shorthand to :ref:`~convert_User`, as fetching from the api will return a full user model """ return await convert_User(ctx, arg) async def convert_Channel(ctx: Context, arg: str) -> Channel: if arg not in ctx.bot._connection._cache: raise BadArgument(f"Not connected to channel '{arg}'") return ctx.bot.get_channel(arg) _mapping = { User: convert_User, PartialUser: convert_PartialUser, Channel: convert_Channel, Chatter: convert_Chatter, PartialChatter: convert_PartialChatter, Clip: convert_Clip, }
PythonistaGuild/TwitchIO
twitchio/ext/commands/builtin_converter.py
builtin_converter.py
py
2,755
python
en
code
714
github-code
6
[ { "api_name": "typing.TYPE_CHECKING", "line_number": 8, "usage_type": "name" }, { "api_name": "core.Context", "line_number": 22, "usage_type": "name" }, { "api_name": "errors.BadArgument", "line_number": 29, "usage_type": "call" }, { "api_name": "twitchio.Chatter", "line_number": 22, "usage_type": "name" }, { "api_name": "core.Context", "line_number": 34, "usage_type": "name" }, { "api_name": "twitchio.PartialChatter", "line_number": 38, "usage_type": "call" }, { "api_name": "twitchio.PartialChatter", "line_number": 34, "usage_type": "name" }, { "api_name": "core.Context", "line_number": 41, "usage_type": "name" }, { "api_name": "re.search", "line_number": 42, "usage_type": "call" }, { "api_name": "errors.BadArgument", "line_number": 51, "usage_type": "call" }, { "api_name": "twitchio.Clip", "line_number": 41, "usage_type": "name" }, { "api_name": "core.Context", "line_number": 56, "usage_type": "name" }, { "api_name": "errors.BadArgument", "line_number": 65, "usage_type": "call" }, { "api_name": "twitchio.User", "line_number": 56, "usage_type": "name" }, { "api_name": "core.Context", "line_number": 69, "usage_type": "name" }, { "api_name": "twitchio.User", "line_number": 69, "usage_type": "name" }, { "api_name": "core.Context", "line_number": 76, "usage_type": "name" }, { "api_name": "errors.BadArgument", "line_number": 78, "usage_type": "call" }, { "api_name": "twitchio.Channel", "line_number": 76, "usage_type": "name" }, { "api_name": "twitchio.User", "line_number": 84, "usage_type": "name" }, { "api_name": "twitchio.PartialUser", "line_number": 85, "usage_type": "name" }, { "api_name": "twitchio.Channel", "line_number": 86, "usage_type": "name" }, { "api_name": "twitchio.Chatter", "line_number": 87, "usage_type": "name" }, { "api_name": "twitchio.PartialChatter", "line_number": 88, "usage_type": "name" }, { "api_name": "twitchio.Clip", "line_number": 89, "usage_type": "name" } ]
27094902824
from typing import Any, Callable, Dict from torchvision import transforms as T from rikai.types.vision import Image """ Adapted from https://github.com/pytorch/pytorch.github.io/blob/site/assets/hub/pytorch_vision_resnet.ipynb """ # noqa E501 def pre_processing(options: Dict[str, Any]) -> Callable: """ All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB images of shape (3 x H x W), where H and W are expected to be at least 224. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. """ return T.Compose( [ T.Resize(256), T.CenterCrop(224), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ] ) def post_processing(options: Dict[str, Any]) -> Callable: def post_process_func(batch): results = [] for result in batch: results.append(result.detach().cpu().tolist()) return results return post_process_func OUTPUT_SCHEMA = "array<float>"
World-shi/rikai
python/rikai/contrib/torchhub/pytorch/vision/resnet.py
resnet.py
py
1,166
python
en
code
null
github-code
6
[ { "api_name": "typing.Dict", "line_number": 12, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 12, "usage_type": "name" }, { "api_name": "torchvision.transforms.Compose", "line_number": 20, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 20, "usage_type": "name" }, { "api_name": "torchvision.transforms.Resize", "line_number": 22, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 22, "usage_type": "name" }, { "api_name": "torchvision.transforms.CenterCrop", "line_number": 23, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 23, "usage_type": "name" }, { "api_name": "torchvision.transforms.ToTensor", "line_number": 24, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 24, "usage_type": "name" }, { "api_name": "torchvision.transforms.Normalize", "line_number": 25, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 25, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 12, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 30, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 30, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 30, "usage_type": "name" } ]
3574016217
"""Python module for common workflows and library methods. Authors: Prasad Hegde """ import os import json import pathlib import inspect import random import string class Workflows(): """ Common Workflows and library methods """ def get_config_data(self, test_method): """ This routine retuns the config data specific to the test case :param test_method: Name of the test method :return: tuple containing global_config and test_args """ path = pathlib.Path(inspect.getfile(self.__class__)).parent.absolute() config_path = os.path.join(path, "config.json") with open(config_path) as f_in: config_data = json.load(f_in) return config_data["global_config"], config_data["test_args"][self.__class__.__name__]\ [test_method] @staticmethod def generate_new_email(length=16, suffix=None): """ This routine generates a new email id :param length: Length of the email(int) :param suffix: domain(str) :return: email id (str) """ retval = ''.join(random.choice(string.ascii_lowercase + string.digits) \ for i in range(length)) return retval + suffix if suffix else retval @staticmethod def verify_response_header(expected_header, actual_header): """ This routine is used to validate expected response header against actual :param expected_header: dict :param actual_header: dict :return: Boolean """ if not any(item in actual_header.items() for item in expected_header.items()): return False return True @staticmethod def verify_response_time(expected_response_time, actual_response_time): """ This routine is used to verify response time of api call :param actual_response_time: sec :return: Boolean """ if actual_response_time <= expected_response_time: return True return False @staticmethod def update_user_details(test_args, **kwargs): """ This Routine is used to build user details :param test_args: test args of the test method :param kwargs: first_name, last_name, dob, image_url, email_id :return: user data (dict) """ first_name = kwargs.get('first_name', test_args["updated_user_details"]["first_name"]) last_name = kwargs.get('last_name', test_args["updated_user_details"]["last_name"]) dob = kwargs.get('dob', test_args["updated_user_details"]["dob"]) image_url = kwargs.get('image_url', test_args["updated_user_details"]["image_url"]) email = kwargs.get('email_id', None) user_data = {"first_name": first_name, "last_name": last_name, "date_of_birth": dob, "image_url": image_url} if email: user_data["email"] = email return user_data
prasadhegde60/showoff.ie
workflows/workflows.py
workflows.py
py
3,021
python
en
code
0
github-code
6
[ { "api_name": "pathlib.Path", "line_number": 24, "usage_type": "call" }, { "api_name": "inspect.getfile", "line_number": 24, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 25, "usage_type": "call" }, { "api_name": "os.path", "line_number": 25, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 27, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 39, "usage_type": "call" }, { "api_name": "string.ascii_lowercase", "line_number": 39, "usage_type": "attribute" }, { "api_name": "string.digits", "line_number": 39, "usage_type": "attribute" } ]
23515271400
# First Solution: 58476KB / 200ms / 674B def BS(array,start,end): while start<=end: mid = (start+end)//2 if array[mid][1] == 1 and array[mid-1][1]==2: return mid elif array[mid][1] == 2: start = mid+1 else: end = mid-1 return None def Solution(data): data = sorted(data.items(), key=lambda x:(-x[1],x[0])) midpoint = BS(data,0,N+M-1) if midpoint == None: print(0) else: print(midpoint) stdout.write('\n'.join(map(str,dict(data[:midpoint]).keys()))) from sys import stdin,stdout from collections import Counter N, M = map(int, stdin.readline().split()) data = Counter([stdin.readline().rstrip() for _ in range(N+M)]) Solution(data) # --------------------------------------------------------- # More Advanced Solution: 41884KB / 124ms / 272B from sys import stdin,stdout N, M = map(int, stdin.readline().split()) hear = set([stdin.readline().rstrip() for _ in range(N)]) see = set([stdin.readline().rstrip() for _ in range(M)]) common = sorted(list(hear & see)) print(len(common)) stdout.write('\n'.join(common))
Soohee410/Algorithm-in-Python
BOJ/Silver/1764.py
1764.py
py
1,094
python
en
code
6
github-code
6
[ { "api_name": "sys.stdin.readline", "line_number": 23, "usage_type": "call" }, { "api_name": "sys.stdin", "line_number": 23, "usage_type": "name" }, { "api_name": "collections.Counter", "line_number": 24, "usage_type": "call" }, { "api_name": "sys.stdin.readline", "line_number": 24, "usage_type": "call" }, { "api_name": "sys.stdin", "line_number": 24, "usage_type": "name" }, { "api_name": "sys.stdin.readline", "line_number": 33, "usage_type": "call" }, { "api_name": "sys.stdin", "line_number": 33, "usage_type": "name" }, { "api_name": "sys.stdin.readline", "line_number": 34, "usage_type": "call" }, { "api_name": "sys.stdin", "line_number": 34, "usage_type": "name" }, { "api_name": "sys.stdin.readline", "line_number": 35, "usage_type": "call" }, { "api_name": "sys.stdin", "line_number": 35, "usage_type": "name" }, { "api_name": "sys.stdout.write", "line_number": 39, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 39, "usage_type": "name" } ]
38703775254
import json def getAdminAccount(): with open("./Data/admins.json", "r") as file: JSON = file.read() accounts = json.loads(JSON) return accounts def getAccount(): with open("./Data/accounts.json", "r") as file: JSON = file.read() accounts = json.loads(JSON) return accounts
Coincoin008/DrawPlz-localhost-version-
getAccounts.py
getAccounts.py
py
333
python
en
code
0
github-code
6
[ { "api_name": "json.loads", "line_number": 8, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 18, "usage_type": "call" } ]
72067617789
import math as ma import multiprocessing as mp import time def first_test(n): """ test naïf de primalité retourne True si l'entier est premier, et inversement n : un entier naturel """ for a in range(2, int(ma.sqrt(n) + 1)): if n % a == 0: return False return True def pi(x): """retourne le nombre de premiers inférieurs à x X : un réel """ cpt = 0 for n in range(1, int(x)): if first_test(n): cpt += 1 return cpt def gen_carmichael(t): """retourne tous les nombres de Carmichael inférieurs à x t : un réel """ res = [] for x in range(3, int(t), 2): # les nombres de Carmichael sont impairs valid = False for y in range(2, x): if ma.gcd(x, y) == 1: if pow(y, x-1, x) != 1: valid = False break else: valid = True if valid: res.append(x) return res def worker_proc(x): valid = False for y in range(2, x): if ma.gcd(x, y) == 1: if pow(y, x - 1, x) != 1: return else: valid = True if valid: print(x) def gen_carmichael_mp(t): """retourne tous les nombres de Carmichael inférieurs à t version multiprocess t : un réel """ pool = mp.Pool(processes=mp.cpu_count()) pool.map(worker_proc, range(3, int(t), 2)) def gen_carmichael_3(k): """ genère les nombres de Carmicheal de longueur binaire k à partir de trois diviseurs premiers k : un entier """ # t = int(t) prime = [] for n in range(3, 2 ** k, 2): if first_test(n): prime.append(n) res = [] for i_a, a in enumerate(prime): for i_b, b in enumerate(prime[:i_a]): ab = a * b for c in prime[:i_b]: # on a obtenu 3 premiers, on teste si leur produit est Carmichael # worker_proc(a * b * c) tst = ab * c - 1 if tst.bit_length() != k: continue if tst % 2 == 0 and tst % (a - 1) == 0 and tst % (b - 1) == 0 and tst % (c - 1) == 0 and a % (b * c) != 0: res.append(tst + 1) return sorted(res) def gen_carmichael_3_all(t): """ genère un nombre de Carmicheal inférieur t à partir de trois diviseurs premiers version sans contrainte de taille """ t = int(t) prime = [] for n in range(3, t, 2): if first_test(n): prime.append(n) res = [] for i_a, a in enumerate(prime): for i_b, b in enumerate(prime[:i_a]): ab = a * b for c in prime[:i_b]: tst = ab * c - 1 if tst % 2 == 0 and tst % (a - 1) == 0 and tst % (b - 1) == 0 and tst % (c - 1) == 0 and a % (b * c) != 0: res.append(tst + 1) return sorted(res) def gen_carmichael_2(p): """retourne tous les nombre de carmichael de la forme pqr pour un p donné""" prime = [] for n in range(3, 2 * p * (p ** 2 + 1), 2): if n == p: continue if first_test(n): prime.append(n) res = [] for i_r, r in enumerate(prime): for q in prime[:i_r]: tst = p * q * r - 1 if tst % 2 == 0 and tst % (p - 1) == 0 and tst % (q - 1) == 0 and tst % (r - 1) == 0 and r % (p * q) != 0: res.append(tst + 1) return sorted(res) if __name__ == '__main__': t = time.time() gen_carmichael_mp(10000) print("mt : ", str(time.time() - t)) t = time.time() print(gen_carmichael(64000)) print("naif : ", str(time.time() - t)) t = time.time() print(gen_carmichael_3_all(100)) print("3 : ", str(time.time() - t))
BasileLewan/ProjetCOMPLEX
Ex2.py
Ex2.py
py
3,830
python
fr
code
0
github-code
6
[ { "api_name": "math.sqrt", "line_number": 11, "usage_type": "call" }, { "api_name": "math.gcd", "line_number": 36, "usage_type": "call" }, { "api_name": "math.gcd", "line_number": 51, "usage_type": "call" }, { "api_name": "multiprocessing.Pool", "line_number": 65, "usage_type": "call" }, { "api_name": "multiprocessing.cpu_count", "line_number": 65, "usage_type": "call" }, { "api_name": "time.time", "line_number": 131, "usage_type": "call" }, { "api_name": "time.time", "line_number": 133, "usage_type": "call" }, { "api_name": "time.time", "line_number": 134, "usage_type": "call" }, { "api_name": "time.time", "line_number": 136, "usage_type": "call" }, { "api_name": "time.time", "line_number": 137, "usage_type": "call" }, { "api_name": "time.time", "line_number": 139, "usage_type": "call" } ]
650432757
import os import luigi import json import z5py import numpy as np from ..cluster_tasks import WorkflowBase from ..relabel import RelabelWorkflow from ..relabel import find_uniques as unique_tasks from ..node_labels import NodeLabelWorkflow from ..features import RegionFeaturesWorkflow from .. import write as write_tasks from . import size_filter_blocks as size_filter_tasks from . import background_size_filter as bg_tasks from . import filling_size_filter as filling_tasks from . import filter_blocks as filter_tasks from . import id_filter as id_tasks from . import orphan_assignments as orphan_tasks from . import graph_watershed_assignments as gws_tasks from . import graph_connected_components as cc_tasks class SizeFilterWorkflow(WorkflowBase): input_path = luigi.Parameter() input_key = luigi.Parameter() output_path = luigi.Parameter() output_key = luigi.Parameter() size_threshold = luigi.IntParameter() hmap_path = luigi.Parameter(default='') hmap_key = luigi.Parameter(default='') relabel = luigi.BoolParameter(default=True) preserve_zeros = luigi.BoolParameter(default=False) def _bg_filter(self, dep): filter_task = getattr(bg_tasks, self._get_task_name('BackgroundSizeFilter')) dep = filter_task(tmp_folder=self.tmp_folder, max_jobs=self.max_jobs, config_dir=self.config_dir, input_path=self.input_path, input_key=self.input_key, output_path=self.output_path, output_key=self.output_key, dependency=dep) return dep def _ws_filter(self, dep): filter_task = getattr(filling_tasks, self._get_task_name('FillingSizeFilter')) dep = filter_task(tmp_folder=self.tmp_folder, max_jobs=self.max_jobs, config_dir=self.config_dir, input_path=self.input_path, input_key=self.input_key, output_path=self.output_path, output_key=self.output_key, hmap_path=self.hmap_path, hmap_key=self.hmap_key, preserve_zeros=self.preserve_zeros, dependency=dep) return dep def requires(self): un_task = getattr(unique_tasks, self._get_task_name('FindUniques')) dep = un_task(tmp_folder=self.tmp_folder, max_jobs=self.max_jobs, config_dir=self.config_dir, input_path=self.input_path, input_key=self.input_key, return_counts=True, dependency=self.dependency, prefix='size_filter') sf_task = getattr(size_filter_tasks, self._get_task_name('SizeFilterBlocks')) dep = sf_task(tmp_folder=self.tmp_folder, max_jobs=self.max_jobs, config_dir=self.config_dir, input_path=self.input_path, input_key=self.input_key, size_threshold=self.size_threshold, dependency=dep) if self.hmap_path == '' or self.hmap_path is None: assert self.hmap_key == '' or self.hmap_key is None dep = self._bg_filter(dep) else: assert self.hmap_key != '' dep = self._ws_filter(dep) if self.relabel: dep = RelabelWorkflow(tmp_folder=self.tmp_folder, max_jobs=self.max_jobs, config_dir=self.config_dir, target=self.target, input_path=self.output_path, input_key=self.output_key, assignment_path=self.output_path, assignment_key='relabel_size_filter', prefix='size_filter', dependency=dep) return dep @staticmethod def get_config(): configs = super(SizeFilterWorkflow, SizeFilterWorkflow).get_config() configs.update({'size_filter_blocks': size_filter_tasks.SizeFilterBlocksLocal.default_task_config(), 'background_size_filter': bg_tasks.BackgroundSizeFilterLocal.default_task_config(), 'filling_size_filter': filling_tasks.FillingSizeFilterLocal.default_task_config(), **RelabelWorkflow.get_config()}) return configs class FilterLabelsWorkflow(WorkflowBase): input_path = luigi.Parameter() input_key = luigi.Parameter() label_path = luigi.Parameter() label_key = luigi.Parameter() node_label_path = luigi.Parameter() node_label_key = luigi.Parameter() output_path = luigi.Parameter() output_key = luigi.Parameter() filter_labels = luigi.ListParameter() def requires(self): dep = NodeLabelWorkflow(tmp_folder=self.tmp_folder, config_dir=self.config_dir, target=self.target, max_jobs=self.max_jobs, ws_path=self.input_path, ws_key=self.input_key, input_path=self.label_path, input_key=self.label_key, output_path=self.node_label_path, output_key=self.node_label_key, prefix='filter_labels', max_overlap=True, dependency=self.dependency) id_task = getattr(id_tasks, self._get_task_name('IdFilter')) id_filter_path = os.path.join(self.output_path, 'filtered_ids.json') dep = id_task(tmp_folder=self.tmp_folder, config_dir=self.config_dir, dependency=dep, max_jobs=self.max_jobs, node_label_path=self.node_label_path, node_label_key=self.node_label_key, output_path=id_filter_path, filter_labels=self.filter_labels) filter_task = getattr(filter_tasks, self._get_task_name('FilterBlocks')) dep = filter_task(tmp_folder=self.tmp_folder, config_dir=self.config_dir, dependency=dep, max_jobs=self.max_jobs, input_path=self.input_path, input_key=self.input_key, filter_path=id_filter_path, output_path=self.output_path, output_key=self.output_key) return dep @staticmethod def get_config(): configs = super(FilterLabelsWorkflow, FilterLabelsWorkflow).get_config() configs.update({'id_filter': id_tasks.IdFilterLocal.default_task_config(), 'filter_blocks': filter_tasks.FilterBlocksLocal.default_task_config(), **NodeLabelWorkflow.get_config()}) return configs class ApplyThreshold(luigi.Task): feature_path = luigi.Parameter() feature_key = luigi.Parameter() out_path = luigi.Parameter() threshold = luigi.FloatParameter() threshold_mode = luigi.Parameter(default='less') dependency = luigi.TaskParameter() threshold_modes = ('less', 'greater', 'equal') def requires(self): return self.dependency def run(self): f = z5py.File(self.feature_path) ds = f[self.feature_key] feats = ds[:, 0] assert self.threshold_mode in self.threshold_modes if self.threshold_mode == 'less': filter_ids = feats < self.threshold elif self.threshold_mode == 'greater': filter_ids = feats > self.threshold elif self.threshold_mode == 'equal': filter_ids = feats == self.threshold filter_ids = np.where(filter_ids)[0].tolist() with open(self.out_path, 'w') as f: json.dump(filter_ids, f) def output(self): return luigi.LocalTarget(self.out_path) class FilterByThresholdWorkflow(WorkflowBase): input_path = luigi.Parameter() input_key = luigi.Parameter() seg_in_path = luigi.Parameter() seg_in_key = luigi.Parameter() seg_out_path = luigi.Parameter() seg_out_key = luigi.Parameter() threshold = luigi.FloatParameter() relabel = luigi.BoolParameter(default=True) def requires(self): # calculate the region features feat_path = os.path.join(self.tmp_folder, 'reg_feats.n5') feat_key = 'feats' dep = RegionFeaturesWorkflow(tmp_folder=self.tmp_folder, max_jobs=self.max_jobs, target=self.target, config_dir=self.config_dir, input_path=self.input_path, input_key=self.input_key, labels_path=self.seg_in_path, labels_key=self.seg_in_key, output_path=feat_path, output_key=feat_key) # apply threshold to get the ids to filter out id_filter_path = os.path.join(self.tmp_folder, 'filtered_ids.json') dep = ApplyThreshold(feature_path=feat_path, feature_key=feat_key, out_path=id_filter_path, threshold=self.threshold, dependency=dep) # filter all blocks filter_task = getattr(filter_tasks, self._get_task_name('FilterBlocks')) dep = filter_task(tmp_folder=self.tmp_folder, config_dir=self.config_dir, dependency=dep, max_jobs=self.max_jobs, input_path=self.seg_in_path, input_key=self.seg_in_key, filter_path=id_filter_path, output_path=self.seg_out_path, output_key=self.seg_out_key) if self.relabel: dep = RelabelWorkflow(tmp_folder=self.tmp_folder, max_jobs=self.max_jobs, config_dir=self.config_dir, target=self.target, input_path=self.seg_out_path, input_key=self.seg_out_key, assignment_path=self.seg_out_path, assignment_key='assignments/relabel_filter', prefix='pp_filter_by_threshold', dependency=dep) return dep @staticmethod def get_config(): configs = super(FilterByThresholdWorkflow, FilterByThresholdWorkflow).get_config() configs.update({'filter_blocks': filter_tasks.FilterBlocksLocal.default_task_config(), **RegionFeaturesWorkflow.get_config()}) return configs class FilterOrphansWorkflow(WorkflowBase): graph_path = luigi.Parameter() graph_key = luigi.Parameter() path = luigi.Parameter() segmentation_key = luigi.Parameter() assignment_key = luigi.Parameter() output_path = luigi.Parameter() assignment_out_key = luigi.Parameter() output_key = luigi.Parameter(default=None) relabel = luigi.BoolParameter(default=False) def requires(self): assert False, "FIXME not debugged yet" dep = self.dependency orphan_task = getattr(orphan_tasks, self._get_task_name('OrphanAssignments')) dep = orphan_task(tmp_folder=self.tmp_folder, max_jobs=self.max_jobs, config_dir=self.config_dir, dependency=dep, graph_path=self.graph_path, graph_key=self.graph_key, assignment_path=self.path, assignment_key=self.assignment_key, output_path=self.path, output_key=self.assignment_out_key, relabel=self.relabel) if self.output_key is not None: write_task = getattr(write_tasks, self._get_task_name('Write')) dep = write_task(tmp_folder=self.tmp_folder, max_jobs=self.max_jobs, config_dir=self.config_dir, dependency=dep, input_path=self.path, input_key=self.segmentation_key, output_path=self.path, output_key=self.output_key, assignment_path=self.output_path, assignment_key=self.assignment_out_key, identifier='filter-orphans') return dep @staticmethod def get_config(): configs = super(FilterOrphansWorkflow, FilterOrphansWorkflow).get_config() configs.update({'orphan_assignments': orphan_tasks.OrphanAssignmentsLocal.default_task_config(), 'write': write_tasks.WriteLocal.default_task_config()}) return configs class ConnectedComponentsWorkflow(WorkflowBase): problem_path = luigi.Parameter() graph_key = luigi.Parameter() assignment_path = luigi.Parameter() assignment_key = luigi.Parameter() output_path = luigi.Parameter() assignment_out_key = luigi.Parameter() output_key = luigi.Parameter(default='') path = luigi.Parameter(default='') fragments_key = luigi.Parameter(default='') def requires(self): cc_task = getattr(cc_tasks, self._get_task_name('GraphConnectedComponents')) dep = cc_task(max_jobs=self.max_jobs, tmp_folder=self.tmp_folder, config_dir=self.config_dir, problem_path=self.problem_path, graph_key=self.graph_key, assignment_path=self.assignment_path, assignment_key=self.assignment_key, output_path=self.output_path, output_key=self.assignment_out_key, dependency=self.dependency) if self.output_key != '': write_task = getattr(write_tasks, self._get_task_name('Write')) assert self.fragments_key != '' and self.path != '' dep = write_task(tmp_folder=self.tmp_folder, max_jobs=self.max_jobs, config_dir=self.config_dir, dependency=dep, input_path=self.path, input_key=self.fragments_key, output_path=self.output_path, output_key=self.output_key, assignment_path=self.output_path, assignment_key=self.assignment_out_key, identifier='graph-connected-components') return dep @staticmethod def get_config(): configs = super(ConnectedComponentsWorkflow, ConnectedComponentsWorkflow).get_config() configs.update({'graph_connected_components': cc_tasks.GraphConnectedComponentsLocal.default_task_config(), 'write': write_tasks.WriteLocal.default_task_config()}) return configs class SizeFilterAndGraphWatershedWorkflow(WorkflowBase): problem_path = luigi.Parameter() graph_key = luigi.Parameter() features_key = luigi.Parameter() # path = luigi.Parameter() # path to the merged segmentation segmentation_key = luigi.Parameter() # path to the underlying fragments fragments_key = luigi.Parameter(default='') # path to the fragment segment assignment assignment_key = luigi.Parameter() # the size filter threshold size_threshold = luigi.IntParameter(default=None) target_number = luigi.IntParameter(default=None) relabel = luigi.BoolParameter(default=False) from_costs = luigi.BoolParameter(default=False) output_path = luigi.Parameter() assignment_out_key = luigi.Parameter() output_key = luigi.Parameter(default='') def find_sizes(self, dep): # find segemnts that should be merged according to the size filter un_task = getattr(unique_tasks, self._get_task_name('FindUniques')) dep = un_task(tmp_folder=self.tmp_folder, max_jobs=self.max_jobs, config_dir=self.config_dir, input_path=self.path, input_key=self.segmentation_key, return_counts=True, dependency=dep, prefix='size-filter-and-graph-watershed') sf_task = getattr(size_filter_tasks, self._get_task_name('SizeFilterBlocks')) dep = sf_task(tmp_folder=self.tmp_folder, max_jobs=self.max_jobs, config_dir=self.config_dir, input_path=self.path, input_key=self.segmentation_key, size_threshold=self.size_threshold, target_number=self.target_number, dependency=dep) return dep def requires(self): assert (self.size_threshold is None) != (self.target_number is None) dep = self.dependency # find the sizes for all segments dep = self.find_sizes(dep) # run graph watershed to merge in all small segments filter_path = os.path.join(self.tmp_folder, 'discard_ids.npy') gws_task = getattr(gws_tasks, self._get_task_name('GraphWatershedAssignments')) dep = gws_task(tmp_folder=self.tmp_folder, max_jobs=self.max_jobs, config_dir=self.config_dir, dependency=dep, problem_path=self.problem_path, graph_key=self.graph_key, features_key=self.features_key, assignment_path=self.path, assignment_key=self.assignment_key, output_path=self.output_path, output_key=self.assignment_out_key, filter_nodes_path=filter_path, relabel=self.relabel, from_costs=self.from_costs) if self.output_key != '': assert self.fragments_key != '' write_task = getattr(write_tasks, self._get_task_name('Write')) dep = write_task(tmp_folder=self.tmp_folder, max_jobs=self.max_jobs, config_dir=self.config_dir, dependency=dep, input_path=self.path, input_key=self.fragments_key, output_path=self.output_path, output_key=self.output_key, assignment_path=self.output_path, assignment_key=self.assignment_out_key, identifier='size-filter-graph-ws') return dep @staticmethod def get_config(): configs = super(SizeFilterAndGraphWatershedWorkflow, SizeFilterAndGraphWatershedWorkflow).get_config() configs.update({'size_filter_blocks': size_filter_tasks.SizeFilterBlocksLocal.default_task_config(), 'graph_watershed_assignments': gws_tasks.GraphWatershedAssignmentsLocal.default_task_config(), 'write': write_tasks.WriteLocal.default_task_config()}) return configs
constantinpape/cluster_tools
cluster_tools/postprocess/postprocess_workflow.py
postprocess_workflow.py
py
19,543
python
en
code
32
github-code
6
[ { "api_name": "cluster_tasks.WorkflowBase", "line_number": 24, "usage_type": "name" }, { "api_name": "luigi.Parameter", "line_number": 25, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 26, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 27, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 28, "usage_type": "call" }, { "api_name": "luigi.IntParameter", "line_number": 29, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 30, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 31, "usage_type": "call" }, { "api_name": "luigi.BoolParameter", "line_number": 32, "usage_type": "call" }, { "api_name": "luigi.BoolParameter", "line_number": 33, "usage_type": "call" }, { "api_name": "relabel.find_uniques", "line_number": 65, "usage_type": "argument" }, { "api_name": "relabel.RelabelWorkflow", "line_number": 93, "usage_type": "call" }, { "api_name": "relabel.RelabelWorkflow.get_config", "line_number": 111, "usage_type": "call" }, { "api_name": "relabel.RelabelWorkflow", "line_number": 111, "usage_type": "name" }, { "api_name": "cluster_tasks.WorkflowBase", "line_number": 115, "usage_type": "name" }, { "api_name": "luigi.Parameter", "line_number": 116, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 117, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 118, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 119, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 120, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 121, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 122, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 123, "usage_type": "call" }, { "api_name": "luigi.ListParameter", "line_number": 124, "usage_type": "call" }, { "api_name": "node_labels.NodeLabelWorkflow", "line_number": 127, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 137, "usage_type": "call" }, { "api_name": "os.path", "line_number": 137, "usage_type": "attribute" }, { "api_name": "node_labels.NodeLabelWorkflow.get_config", "line_number": 160, "usage_type": "call" }, { "api_name": "node_labels.NodeLabelWorkflow", "line_number": 160, "usage_type": "name" }, { "api_name": "luigi.Task", "line_number": 164, "usage_type": "attribute" }, { "api_name": "luigi.Parameter", "line_number": 165, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 166, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 167, "usage_type": "call" }, { "api_name": "luigi.FloatParameter", "line_number": 168, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 169, "usage_type": "call" }, { "api_name": "luigi.TaskParameter", "line_number": 170, "usage_type": "call" }, { "api_name": "z5py.File", "line_number": 178, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 190, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 192, "usage_type": "call" }, { "api_name": "luigi.LocalTarget", "line_number": 195, "usage_type": "call" }, { "api_name": "cluster_tasks.WorkflowBase", "line_number": 198, "usage_type": "name" }, { "api_name": "luigi.Parameter", "line_number": 199, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 200, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 201, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 202, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 203, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 204, "usage_type": "call" }, { "api_name": "luigi.FloatParameter", "line_number": 205, "usage_type": "call" }, { "api_name": "luigi.BoolParameter", "line_number": 206, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 210, "usage_type": "call" }, { "api_name": "os.path", "line_number": 210, "usage_type": "attribute" }, { "api_name": "features.RegionFeaturesWorkflow", "line_number": 212, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 219, "usage_type": "call" }, { "api_name": "os.path", "line_number": 219, "usage_type": "attribute" }, { "api_name": "relabel.RelabelWorkflow", "line_number": 233, "usage_type": "call" }, { "api_name": "features.RegionFeaturesWorkflow.get_config", "line_number": 249, "usage_type": "call" }, { "api_name": "features.RegionFeaturesWorkflow", "line_number": 249, "usage_type": "name" }, { "api_name": "cluster_tasks.WorkflowBase", "line_number": 253, "usage_type": "name" }, { "api_name": "luigi.Parameter", "line_number": 255, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 256, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 258, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 259, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 260, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 262, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 263, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 264, "usage_type": "call" }, { "api_name": "luigi.BoolParameter", "line_number": 265, "usage_type": "call" }, { "api_name": "cluster_tasks.WorkflowBase", "line_number": 297, "usage_type": "name" }, { "api_name": "luigi.Parameter", "line_number": 298, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 299, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 301, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 302, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 304, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 305, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 307, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 308, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 309, "usage_type": "call" }, { "api_name": "cluster_tasks.WorkflowBase", "line_number": 344, "usage_type": "name" }, { "api_name": "luigi.Parameter", "line_number": 346, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 347, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 348, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 351, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 353, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 355, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 357, "usage_type": "call" }, { "api_name": "luigi.IntParameter", "line_number": 360, "usage_type": "call" }, { "api_name": "luigi.IntParameter", "line_number": 361, "usage_type": "call" }, { "api_name": "luigi.BoolParameter", "line_number": 362, "usage_type": "call" }, { "api_name": "luigi.BoolParameter", "line_number": 363, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 365, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 366, "usage_type": "call" }, { "api_name": "luigi.Parameter", "line_number": 367, "usage_type": "call" }, { "api_name": "relabel.find_uniques", "line_number": 371, "usage_type": "argument" }, { "api_name": "os.path.join", "line_number": 401, "usage_type": "call" }, { "api_name": "os.path", "line_number": 401, "usage_type": "attribute" } ]
24698015874
## # The model uses elements from both the Transformer Encoder as introduced in # “Attention is All You Need” (https://arxiv.org/pdf/1706.03762.pdf) and the # Message Passing Neural Network (MPNN) as described in "Neural Message Passing # for Quantum Chemistry" paper (https://arxiv.org/pdf/1704.01212.pdf) . # # The overall architecture most closely resembles the Transformer Encoder with # stacked encoder blocks and layers connected through residual connections with # layer norm. In this case however the encoder blocks are build up of two # message passing layers, followed by three different types of attention layers # with a final pointwise feed-forward network. # # Both message passing layers use a slightly modified version of the edge # networks as detailed in the MPNN paper. The first layer allows message passing # between bonded atoms, whereas the second layer does so for the atom pairs for # which we need to predict the scalar coupling constant. Unlike the attention # layers the message passing layers' parameters are tied across blocks. # # The three attention layers are: # 1. distance based gaussian attention # 2. graph distance based attention # 3. scaled dot product self attention # # Although the final layers in the block resemble the encoder blocks of the # Transformer model, there are several additional layers designed specifically # to capture the structure and relationships among atoms in a molecule. # # Much of the code is adopted from the annotated version of the Transformer # paper, which can be found here # (http://nlp.seas.harvard.edu/2018/04/03/attention.html). import math import copy import torch import torch.nn as nn import torch.nn.functional as F from fcnet import FullyConnectedNet, hidden_layer from scatter import scatter_mean from layernorm import LayerNorm def clones(module, N): """Produce N identical layers.""" return torch.nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) class SublayerConnection(nn.Module): """ A residual connection followed by a layer norm. Note for code simplicity the norm is first as opposed to last. """ def __init__(self, size, dropout): super().__init__() self.norm = LayerNorm(size) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer): """Apply residual connection to any sublayer with the same size.""" return x + self.dropout(sublayer(self.norm(x))) def _gather_nodes(x, idx, sz_last_dim): idx = idx.unsqueeze(-1).expand(-1, -1, sz_last_dim) return x.gather(1, idx) class ENNMessage(nn.Module): """ The edge network message passing function from the MPNN paper. Optionally adds and additional cosine angle based attention mechanism over incoming messages. """ PAD_VAL = -999 def __init__(self, d_model, d_edge, kernel_sz, enn_args={}, ann_args=None): super().__init__() assert kernel_sz <= d_model self.d_model, self.kernel_sz = d_model, kernel_sz self.enn = FullyConnectedNet(d_edge, d_model*kernel_sz, **enn_args) if ann_args: self.ann = FullyConnectedNet(1, d_model, **ann_args) else: self.ann = None def forward(self, x, edges, pairs_idx, angles=None, angles_idx=None, t=0): """Note that edges and pairs_idx raw inputs are for a unidirectional graph. They are expanded to allow bidirectional message passing.""" if t==0: self.set_a_mat(edges) if self.ann: self.set_attn(angles) # concat reversed pairs_idx for bidirectional message passing self.pairs_idx = torch.cat([pairs_idx, pairs_idx[:,:,[1,0]]], dim=1) return self.add_message(torch.zeros_like(x), x, angles_idx) def set_a_mat(self, edges): n_edges = edges.size(1) a_vect = self.enn(edges) a_vect = a_vect / (self.kernel_sz ** .5) # rescale mask = edges[:,:,0,None].expand(a_vect.size())==self.PAD_VAL a_vect = a_vect.masked_fill(mask, 0.0) self.a_mat = a_vect.view(-1, n_edges, self.d_model, self.kernel_sz) # concat a_mats for bidirectional message passing self.a_mat = torch.cat([self.a_mat, self.a_mat], dim=1) def set_attn(self, angles): angles = angles.unsqueeze(-1) self.attn = self.ann(angles) mask = angles.expand(self.attn.size())==self.PAD_VAL self.attn = self.attn.masked_fill(mask, 0.0) def add_message(self, m, x, angles_idx=None): """Add message for atom_{i}: m_{i} += sum_{j}[attn_{ij} A_{ij}x_{j}].""" # select the 'x_{j}' feeding into the 'm_{i}' x_in = _gather_nodes(x, self.pairs_idx[:,:,1], self.d_model) # do the matrix multiplication 'A_{ij}x_{j}' if self.kernel_sz==self.d_model: # full matrix multiplcation ax = (x_in.unsqueeze(-2) @ self.a_mat).squeeze(-2) else: # do a convolution x_padded = F.pad(x_in, self.n_pad) x_unfolded = x_padded.unfold(-1, self.kernel_sz, 1) ax = (x_unfolded * self.a_mat).sum(-1) # apply atttention if self.ann: n_pairs = self.pairs_idx.size(1) # average all attn(angle_{ijk}) per edge_{ij}. # i.e.: attn_{ij} = sum_{k}[attn(angle_{ijk})] / n_angles_{ij} ave_att = scatter_mean(self.attn, angles_idx, num=n_pairs, dim=1, out=torch.ones_like(ax)) ax = ave_att * ax # sum up all 'A_{ij}h_{j}' per node 'i' idx_0 = self.pairs_idx[:,:,0,None].expand(-1, -1, self.d_model) return m.scatter_add(1, idx_0, ax) @property def n_pad(self): k = self.kernel_sz return (k // 2, k // 2 - int(k % 2 == 0)) class MultiHeadedDistAttention(nn.Module): """Generalizes the euclidean and graph distance based attention layers.""" def __init__(self, h, d_model): super().__init__() self.d_model, self.d_k, self.h = d_model, d_model // h, h self.attn = None self.linears = clones(nn.Linear(d_model, d_model), 2) def forward(self, dists, x, mask): batch_size = x.size(0) x = self.linears[0](x).view(batch_size, -1, self.h, self.d_k) x, self.attn = self.apply_attn(dists, x, mask) x = x.view(batch_size, -1, self.h * self.d_k) return self.linears[-1](x) def apply_attn(self, dists, x, mask): attn = self.create_raw_attn(dists, mask) attn = attn.transpose(-2,-1).transpose(1, 2) x = x.transpose(1, 2) x = torch.matmul(attn, x) x = x.transpose(1, 2).contiguous() return x, attn def create_raw_attn(self, dists, mask): pass class MultiHeadedGraphDistAttention(MultiHeadedDistAttention): """Attention based on an embedding of the graph distance matrix.""" MAX_GRAPH_DIST = 10 def __init__(self, h, d_model): super().__init__(h, d_model) self.embedding = nn.Embedding(self.MAX_GRAPH_DIST+1, h) def create_raw_attn(self, dists, mask): emb_dists = self.embedding(dists) mask = mask.unsqueeze(-1).expand(emb_dists.size()) emb_dists = emb_dists.masked_fill(mask==0, -1e9) return F.softmax(emb_dists, dim=-2).masked_fill(mask==0, 0) class MultiHeadedEuclDistAttention(MultiHeadedDistAttention): """Attention based on a parameterized normal pdf taking a molecule's euclidean distance matrix as input.""" def __init__(self, h, d_model): super().__init__(h, d_model) self.log_prec = nn.Parameter(torch.Tensor(1, 1, 1, h)) self.locs = nn.Parameter(torch.Tensor(1, 1, 1, h)) nn.init.normal_(self.log_prec, mean=0.0, std=0.1) nn.init.normal_(self.locs, mean=0.0, std=1.0) def create_raw_attn(self, dists, mask): dists = dists.unsqueeze(-1).expand(-1, -1, -1, self.h) z = torch.exp(self.log_prec) * (dists - self.locs) pdf = torch.exp(-0.5 * z ** 2) return pdf / pdf.sum(dim=-2, keepdim=True).clamp(1e-9) def attention(query, key, value, mask=None, dropout=None): """Compute 'Scaled Dot Product Attention'.""" d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k) if mask is not None: scores = scores.masked_fill(mask==0, -1e9) p_attn = F.softmax(scores, dim=-1).masked_fill(mask==0, 0) if dropout is not None: p_attn = dropout(p_attn) return torch.matmul(p_attn, value), p_attn class MultiHeadedSelfAttention(nn.Module): """Applies self-attention as described in the Transformer paper.""" def __init__(self, h, d_model, dropout=0.1): super().__init__() self.d_model, self.d_k, self.h = d_model, d_model // h, h self.attn = None self.linears = clones(nn.Linear(d_model, d_model), 4) self.dropout = nn.Dropout(p=dropout) if dropout > 0.0 else None def forward(self, x, mask): # Same mask applied to all h heads. mask = mask.unsqueeze(1) batch_size = x.size(0) # 1) Do all the linear projections in batch from d_model => h x d_k query, key, value = [ l(x).view(batch_size, -1, self.h, self.d_k).transpose(1, 2) for l in self.linears[:3] ] # 2) Apply attention on all the projected vectors in batch. x, self.attn = attention(query, key, value, mask, self.dropout) # 3) "Concat" using a view and apply a final linear. x = x.transpose(1, 2).contiguous() x = x.view(batch_size, -1, self.d_model) return self.linears[-1](x) class AttendingLayer(nn.Module): """Stacks the three attention layers and the pointwise feedforward net.""" def __init__(self, size, eucl_dist_attn, graph_dist_attn, self_attn, ff, dropout): super().__init__() self.eucl_dist_attn = eucl_dist_attn self.graph_dist_attn = graph_dist_attn self.self_attn = self_attn self.ff = ff self.subconns = clones(SublayerConnection(size, dropout), 4) self.size = size def forward(self, x, eucl_dists, graph_dists, mask): eucl_dist_sub = lambda x: self.eucl_dist_attn(eucl_dists, x, mask) x = self.subconns[0](x, eucl_dist_sub) graph_dist_sub = lambda x: self.graph_dist_attn(graph_dists, x, mask) x = self.subconns[1](x, graph_dist_sub) self_sub = lambda x: self.self_attn(x, mask) x = self.subconns[2](x, self_sub) return self.subconns[3](x, self.ff) class MessagePassingLayer(nn.Module): """Stacks the bond and scalar coupling pair message passing layers.""" def __init__(self, size, bond_mess, sc_mess, dropout, N): super().__init__() self.bond_mess = bond_mess self.sc_mess = sc_mess self.linears = clones(nn.Linear(size, size), 2*N) self.subconns = clones(SublayerConnection(size, dropout), 2*N) def forward(self, x, bond_x, sc_pair_x, angles, mask, bond_idx, sc_idx, angles_idx, t=0): bond_sub = lambda x: self.linears[2*t]( self.bond_mess(x, bond_x, bond_idx, angles, angles_idx, t)) x = self.subconns[2*t](x, bond_sub) sc_sub = lambda x: self.linears[(2*t)+1]( self.sc_mess(x, sc_pair_x, sc_idx, t=t)) return self.subconns[(2*t)+1](x, sc_sub) class Encoder(nn.Module): """Encoder stacks N attention layers and one message passing layer.""" def __init__(self, mess_pass_layer, attn_layer, N): super().__init__() self.mess_pass_layer = mess_pass_layer self.attn_layers = clones(attn_layer, N) self.norm = LayerNorm(attn_layer.size) def forward(self, x, bond_x, sc_pair_x, eucl_dists, graph_dists, angles, mask, bond_idx, sc_idx, angles_idx): """Pass the inputs (and mask) through each block in turn. Note that for each block the same message passing layer is used.""" for t, attn_layer in enumerate(self.attn_layers): x = self.mess_pass_layer(x, bond_x, sc_pair_x, angles, mask, bond_idx, sc_idx, angles_idx, t) x = attn_layer(x, eucl_dists, graph_dists, mask) return self.norm(x) # After N blocks of message passing and attending, the encoded atom states are # transferred to the head of the model: a customized feed-forward net for # predicting the scalar coupling (sc) constant. # First the relevant pairs of atom states for each sc constant in the batch # are selected, concatenated and stacked. Also concatenated to the encoded # states are a set of raw molecule and sc pair specific features. These states # are fed into a residual block comprised of a dense layer followed by a type # specific dense layer of dimension 'd_ff' (the same as the dimension used for # the pointwise feed-forward net). # The processed states are passed through to a relatively small feed-forward # net, which predicts each sc contribution seperately plus a residual. # Ultimately, the predictions of these contributions and the residual are summed # to predict the sc constant. def create_contrib_head(d_in, d_ff, act, dropout=0.0, layer_norm=True): layers = hidden_layer(d_in, d_ff, False, dropout, layer_norm, act) layers += hidden_layer(d_ff, 1, False, 0.0) # output layer return nn.Sequential(*layers) class ContribsNet(nn.Module): """The feed-forward net used for the sc contribution and final sc constant predictions.""" N_CONTRIBS = 5 CONTIB_SCALES = [1, 250, 45, 35, 500] # scales used to make the 5 predictions of similar magnitude def __init__(self, d_in, d_ff, vec_in, act, dropout=0.0, layer_norm=True): super().__init__() contrib_head = create_contrib_head(d_in, d_ff, act, dropout, layer_norm) self.blocks = clones(contrib_head, self.N_CONTRIBS) def forward(self, x): ys = torch.cat( [b(x)/s for b,s in zip(self.blocks, self.CONTIB_SCALES)], dim=-1) return torch.cat([ys[:,:-1], ys.sum(dim=-1, keepdim=True)], dim=-1) class MyCustomHead(nn.Module): """Joins the sc type specific residual block with the sc contribution feed-forward net.""" PAD_VAL = -999 N_TYPES = 8 def __init__(self, d_input, d_ff, d_ff_contribs, pre_layers=[], post_layers=[], act=nn.ReLU(True), dropout=3*[0.], norm=False): super().__init__() fc_pre = hidden_layer(d_input, d_ff, False, dropout[0], norm, act) self.preproc = nn.Sequential(*fc_pre) fc_type = hidden_layer(d_ff, d_input, False, dropout[1], norm, act) self.types_net = clones(nn.Sequential(*fc_type), self.N_TYPES) self.contribs_net = ContribsNet( d_input, d_ff_contribs, d_ff, act, dropout[2], layer_norm=norm) def forward(self, x, sc_types): # stack inputs with a .view for easier processing x, sc_types = x.view(-1, x.size(-1)), sc_types.view(-1) mask = sc_types != self.PAD_VAL x, sc_types = x[mask], sc_types[mask] x_ = self.preproc(x) x_types = torch.zeros_like(x) for i in range(self.N_TYPES): t_idx = sc_types==i if torch.any(t_idx): x_types[t_idx] = self.types_net[i](x_[t_idx]) else: x_types = x_types + 0.0 * self.types_net[i](x_) # fake call (only necessary for distributed training - to make sure all processes have gradients for all parameters) x = x + x_types return self.contribs_net(x) class Transformer(nn.Module): """Molecule transformer with message passing.""" def __init__(self, d_atom, d_bond, d_sc_pair, d_sc_mol, N=6, d_model=512, d_ff=2048, d_ff_contrib=128, h=8, dropout=0.1, kernel_sz=128, enn_args={}, ann_args={}): super().__init__() assert d_model % h == 0 self.d_model = d_model c = copy.deepcopy bond_mess = ENNMessage(d_model, d_bond, kernel_sz, enn_args, ann_args) sc_mess = ENNMessage(d_model, d_sc_pair, kernel_sz, enn_args) eucl_dist_attn = MultiHeadedEuclDistAttention(h, d_model) graph_dist_attn = MultiHeadedGraphDistAttention(h, d_model) self_attn = MultiHeadedSelfAttention(h, d_model, dropout) ff = FullyConnectedNet(d_model, d_model, [d_ff], dropout=[dropout]) message_passing_layer = MessagePassingLayer( d_model, bond_mess, sc_mess, dropout, N) attending_layer = AttendingLayer( d_model, c(eucl_dist_attn), c(graph_dist_attn), c(self_attn), c(ff), dropout ) self.projection = nn.Linear(d_atom, d_model) self.encoder = Encoder(message_passing_layer, attending_layer, N) self.write_head = MyCustomHead( 2 * d_model + d_sc_mol, d_ff, d_ff_contrib, norm=True) def forward(self, atom_x, bond_x, sc_pair_x, sc_mol_x, eucl_dists, graph_dists, angles, mask, bond_idx, sc_idx, angles_idx, sc_types): x = self.encoder( self.projection(atom_x), bond_x, sc_pair_x, eucl_dists, graph_dists, angles, mask, bond_idx, sc_idx, angles_idx ) # for each sc constant in the batch select and concat the relevant pairs # of atom states. x = torch.cat( [_gather_nodes(x, sc_idx[:,:,0], self.d_model), _gather_nodes(x, sc_idx[:,:,1], self.d_model), sc_mol_x], dim=-1 ) return self.write_head(x, sc_types)
robinniesert/kaggle-champs
model.py
model.py
py
17,738
python
en
code
48
github-code
6
[ { "api_name": "torch.nn.ModuleList", "line_number": 44, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 44, "usage_type": "attribute" }, { "api_name": "copy.deepcopy", "line_number": 44, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 46, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 46, "usage_type": "name" }, { "api_name": "layernorm.LayerNorm", "line_number": 53, "usage_type": "call" }, { "api_name": "torch.nn.Dropout", "line_number": 54, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 54, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 64, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 64, "usage_type": "name" }, { "api_name": "fcnet.FullyConnectedNet", "line_number": 76, "usage_type": "call" }, { "api_name": "fcnet.FullyConnectedNet", "line_number": 77, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 87, "usage_type": "call" }, { "api_name": "torch.zeros_like", "line_number": 88, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 98, "usage_type": "call" }, { "api_name": "torch.nn.functional.pad", "line_number": 115, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 115, "usage_type": "name" }, { "api_name": "scatter.scatter_mean", "line_number": 124, "usage_type": "call" }, { "api_name": "torch.ones_like", "line_number": 125, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 137, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 137, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 143, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 143, "usage_type": "name" }, { "api_name": "torch.matmul", "line_number": 156, "usage_type": "call" }, { "api_name": "torch.nn.Embedding", "line_number": 168, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 168, "usage_type": "name" }, { "api_name": "torch.nn.functional.softmax", "line_number": 174, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 174, "usage_type": "name" }, { "api_name": "torch.nn.Parameter", "line_number": 181, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 181, "usage_type": "name" }, { "api_name": "torch.Tensor", "line_number": 181, "usage_type": "call" }, { "api_name": "torch.nn.Parameter", "line_number": 182, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 182, "usage_type": "name" }, { "api_name": "torch.Tensor", "line_number": 182, "usage_type": "call" }, { "api_name": "torch.nn.init.normal_", "line_number": 183, "usage_type": "call" }, { "api_name": "torch.nn.init", "line_number": 183, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 183, "usage_type": "name" }, { "api_name": "torch.nn.init.normal_", "line_number": 184, "usage_type": "call" }, { "api_name": "torch.nn.init", "line_number": 184, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 184, "usage_type": "name" }, { "api_name": "torch.exp", "line_number": 188, "usage_type": "call" }, { "api_name": "torch.exp", "line_number": 189, "usage_type": "call" }, { "api_name": "torch.matmul", "line_number": 195, "usage_type": "call" }, { "api_name": "math.sqrt", "line_number": 195, "usage_type": "call" }, { "api_name": "torch.nn.functional.softmax", "line_number": 197, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 197, "usage_type": "name" }, { "api_name": "torch.matmul", "line_number": 199, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 201, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 201, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 207, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 207, "usage_type": "name" }, { "api_name": "torch.nn.Dropout", "line_number": 208, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 208, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 229, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 229, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 250, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 250, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 256, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 256, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 269, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 269, "usage_type": "name" }, { "api_name": "layernorm.LayerNorm", "line_number": 275, "usage_type": "call" }, { "api_name": "fcnet.hidden_layer", "line_number": 304, "usage_type": "call" }, { "api_name": "fcnet.hidden_layer", "line_number": 305, "usage_type": "call" }, { "api_name": "torch.nn.Sequential", "line_number": 306, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 306, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 308, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 308, "usage_type": "name" }, { "api_name": "torch.cat", "line_number": 320, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 322, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 324, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 324, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 331, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 331, "usage_type": "name" }, { "api_name": "fcnet.hidden_layer", "line_number": 333, "usage_type": "call" }, { "api_name": "torch.nn.Sequential", "line_number": 334, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 334, "usage_type": "name" }, { "api_name": "fcnet.hidden_layer", "line_number": 335, "usage_type": "call" }, { "api_name": "torch.nn.Sequential", "line_number": 336, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 336, "usage_type": "name" }, { "api_name": "torch.zeros_like", "line_number": 347, "usage_type": "call" }, { "api_name": "torch.any", "line_number": 350, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 355, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 355, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 363, "usage_type": "attribute" }, { "api_name": "fcnet.FullyConnectedNet", "line_number": 369, "usage_type": "call" }, { "api_name": "torch.nn.Linear", "line_number": 378, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 378, "usage_type": "name" }, { "api_name": "torch.cat", "line_number": 392, "usage_type": "call" } ]
4755956537
import argparse import os import sys import time import json import pickle from nltk.corpus import wordnet as wn import numpy as np import torch import random from aligner import Aligner import log logger = log.get_logger('root') logger.propagate = False def get_print_result(sample_group: dict, sample_result: dict, nonce_word): candidates = sample_group['candidates'] info = sample_group['common_ancestor_info'] print_str = "\n===============================================================================================\n" print_str += f'Number of Candidates: {len(candidates)}\n\n' print_str += f"\nCommon {info['relation']} synset: {info['ancestor_name']}\n{wn.synset(info['ancestor_name']).definition()}\n\n" # Use the line below for CoDA5 # print_str += f"\nCommon {info['relation']} synset: {info['ancestor_synset']}\n{info['ancestor_definition']}\n\n" for candidate_no, candidate in enumerate(candidates): print_str += f"\n{candidate_no+1}) Synset: {candidate['synset_name']} ({candidate['words_in_contexts'][0]})\n" print_str += f"Definition: {candidate['definition']}\n" print_str += f"Context: {candidate['contexts'][0]}\n" print_str += "\n\n" print_str += f"Predicted alignment: {sample_result['predicted_alignment']}\n" print_str += f"Alignment Score: {sample_result['alignment_score']}\n" return print_str if __name__ == '__main__': parser = argparse.ArgumentParser() # file parameters parser.add_argument('--output_folder', default=None, type=str, required=True) parser.add_argument('--data_file', default=None, type=str, required=True) # parameters for the model to generate definitions parser.add_argument('--model_cls', choices=['bert','roberta','gpt-2'], default='gpt-2') parser.add_argument('--model_name', type=str, default='gpt2-medium') parser.add_argument('--word_type', choices=['n','v'], default='n') parser.add_argument('--nonce_word', type=str, default='bkatuhla') parser.add_argument('--max_def_len', type=int, default=48, help='maximum definition length after tokenization') parser.add_argument('--max_batch_size', type=int, default=48, help='maximum batch size') parser.add_argument('--gpu_id', type=int, default=0, help='id of the gpu that will be used during evaluations') parser.add_argument('--seed', type=int, default=42, help='seed for selecting random train samples for one of few shot evaluation') args = parser.parse_args() random.seed(args.seed) with open(args.data_file, 'r') as handle: CoDA = json.load(handle) data = args.data_file.split("/")[-1][:-5] # don't take .json print_file = f'{args.model_name}_on_{data}_{args.word_type}_nonce_{args.nonce_word}_some_results.txt' save_file = f'{args.model_name}_on_{data}_{args.word_type}_nonce_{args.nonce_word}_results.pickle' if not os.path.exists(args.output_folder): os.mkdir(args.output_folder) f_out = open(os.path.join(args.output_folder, print_file), "w", encoding='UTF-8') f_out.close() aligner = Aligner( model_cls=args.model_cls, pretrained_model=args.model_name, gpu_id=args.gpu_id, max_def_len=args.max_def_len, max_batch_size=args.max_batch_size, nonce_word=args.nonce_word, word_type=args.word_type ) sample_result = {} sample_result[''] = [] sample_result['target_scores'] = [] sample_result['predicted_alignment'] = [] sample_result['alignment_score'] = [] all_results = [] sample_groups = CoDA[args.word_type] for group_no, sample_group in enumerate(sample_groups): target_scores, predicted_alignment, aligment_score = aligner.align(sample_group) sample_result = {} sample_result['target_scores'] = target_scores sample_result['predicted_alignment'] = predicted_alignment sample_result['alignment_score'] = aligment_score all_results.append(sample_result) if (group_no+1) % 25 == 0: logger.info(f'{group_no+1}/{len(sample_groups)} synset groups processed') if (group_no+1) % (len(sample_groups) // 20) == 0: with open(os.path.join(args.output_folder, print_file), "a", encoding='UTF-8') as f_out: f_out.write(get_print_result(sample_group, sample_result, args.nonce_word)) with open(os.path.join(args.output_folder, save_file), "wb") as handle: pickle.dump(all_results, handle) with open(os.path.join(args.output_folder, save_file), "wb") as handle: pickle.dump(all_results, handle)
lksenel/CoDA21
Evaluation/evaluate_PLMs.py
evaluate_PLMs.py
py
4,847
python
en
code
2
github-code
6
[ { "api_name": "log.get_logger", "line_number": 17, "usage_type": "call" }, { "api_name": "nltk.corpus.wordnet.synset", "line_number": 27, "usage_type": "call" }, { "api_name": "nltk.corpus.wordnet", "line_number": 27, "usage_type": "name" }, { "api_name": "argparse.ArgumentParser", "line_number": 43, "usage_type": "call" }, { "api_name": "random.seed", "line_number": 67, "usage_type": "call" }, { "api_name": "json.load", "line_number": 70, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 77, "usage_type": "call" }, { "api_name": "os.path", "line_number": 77, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 78, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 79, "usage_type": "call" }, { "api_name": "os.path", "line_number": 79, "usage_type": "attribute" }, { "api_name": "aligner.Aligner", "line_number": 82, "usage_type": "call" }, { "api_name": "aligner.align", "line_number": 101, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 114, "usage_type": "call" }, { "api_name": "os.path", "line_number": 114, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 117, "usage_type": "call" }, { "api_name": "os.path", "line_number": 117, "usage_type": "attribute" }, { "api_name": "pickle.dump", "line_number": 118, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 120, "usage_type": "call" }, { "api_name": "os.path", "line_number": 120, "usage_type": "attribute" }, { "api_name": "pickle.dump", "line_number": 121, "usage_type": "call" } ]
29528497286
#!/usr/bin/python3 import html import re import random import json import requests from bs4 import BeautifulSoup PATTERN = re.compile(r'/video(\d+)/.*') def _fetch_page(page_number): url = 'https://www.xvideos.com/porn/portugues/' + str(page_number) res = requests.get(url) if res.status_code != 200: raise Exception('Response Error: ' + str(res.status_code)) return BeautifulSoup(res.text, 'html.parser') def _find_videos(soup): for element in soup.select('.thumb-block > .thumb-under > p > a'): try: reference = PATTERN.match(element['href']).group(1) except AttributeError: pass yield element['title'], reference, element['href'] def _get_comments(video_ref): url_mask = 'https://www.xvideos.com/threads/video-comments/get-posts/top/{0}/0/0' url = url_mask.format(video_ref) res = requests.post(url) if res.status_code != 200: raise Exception('Response Error: ' + str(res.status_code)) json_obj = json.loads(res.text)['posts'] json_obj = json_obj['posts'] try: for attr, val in json_obj.items(): content = html.unescape(val['message']) author = html.unescape(val['name']) if '<a href=' not in content: yield author, content except (AttributeError, IndexError) as e: raise IndexError def choose_random_porn_comment(): for _ in range(10): page = _fetch_page(random.randint(1, 40)) videos = _find_videos(page) try: title, reference, url = random.choice(list(videos)) comments = _get_comments(reference) author, content = random.choice(list(comments)) except IndexError: continue return author, content, title, url raise Exception('Too hard') def _fetch_tag_page(page_number, tag): if tag is not None: url = 'https://www.xvideos.com/?k='+ str(tag) +'&p=' + str(page_number) else: url = 'https://www.xvideos.com/new/' + str(page_number) res = requests.get(url) if res.status_code != 200: raise Exception('Response Error: ' + str(res.status_code)) return BeautifulSoup(res.text, 'html.parser') def choose_random_video(tag=None): for _ in range(10): page = _fetch_tag_page(random.randint(1, 4), tag) videos = _find_videos(page) try: title, reference, url = random.choice(list(videos)) url = 'https://xvideos.com'+url return url except IndexError: raise Exception('Response Error: Bad search term') raise Exception('Too hard') def main(): # comment = choose_random_porn_comment() # print(*comment, sep='\n') video = choose_random_video() print(video, sep='\n') if __name__ == '__main__': main()
marquesgabriel/bot-xvideos-telegram
xvideos.py
xvideos.py
py
2,846
python
en
code
2
github-code
6
[ { "api_name": "re.compile", "line_number": 10, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 14, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 19, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 33, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 38, "usage_type": "call" }, { "api_name": "html.unescape", "line_number": 43, "usage_type": "call" }, { "api_name": "html.unescape", "line_number": 44, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 52, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 56, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 58, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 72, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 76, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 80, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 84, "usage_type": "call" } ]
71455581947
import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score, roc_auc_score, roc_curve import matplotlib.pyplot as plt from pathlib import Path from sklearn.model_selection import train_test_split from sklearn.preprocessing import RobustScaler class ClassifierComparison: def __init__(self, dataset_path): self.dataset_path = dataset_path self.data = None self.data_test = None self.target_test = None self.target = None self.model_lr = None self.model_knn = None self.model_mlp = None def load_data(self): df = pd.read_csv(self.dataset_path) df1 = df.copy(deep=True) # making a copy of the dataframe to protect original data # define the columns to be encoded and scaled categorical_columns = ['sex', 'exng', 'caa', 'cp', 'fbs', 'restecg', 'slp', 'thall'] continious_columns = ["age", "trtbps", "chol", "thalachh", "oldpeak"] # encoding the categorical columns df1 = pd.get_dummies(df1, columns=categorical_columns, drop_first=True) # %% # # defining the features and target X = df1.drop(['output'], axis=1) y = df1[['output']] # # instantiating the scaler scaler = RobustScaler() # # scaling the continuous featuree X[continious_columns] = scaler.fit_transform( X[continious_columns]) # Transform the continious column to have unit variance and zero mean X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) self.data = X_train self.target = y_train self.data_test = X_test self.target_test = y_test def train_models(self): self.model_lr = LogisticRegression() self.model_lr.fit(self.data, self.target) self.model_knn = KNeighborsClassifier() self.model_knn.fit(self.data, self.target) self.model_mlp = MLPClassifier() self.model_mlp.fit(self.data.astype(float), self.target) def predict(self): lr_predictions = self.model_lr.predict(self.data_test) knn_predictions = self.model_knn.predict(self.data_test) mlp_predictions = self.model_mlp.predict(self.data_test) return lr_predictions, knn_predictions, mlp_predictions def compare_metrics(self): lr_predictions, knn_predictions, mlp_predictions = self.predict() lr_accuracy = accuracy_score(self.target_test, lr_predictions) knn_accuracy = accuracy_score(self.target_test, knn_predictions) mlp_accuracy = accuracy_score(self.target_test, mlp_predictions) print(f"Logistic Regression Accuracy: {lr_accuracy:.4f}") print(f"KNN Accuracy: {knn_accuracy:.4f}") print(f"MLP Accuracy: {mlp_accuracy:.4f}") def plot_roc_auc_curves(self): lr_probabilities = self.model_lr.predict_proba(self.data_test)[:, 1] knn_probabilities = self.model_knn.predict_proba(self.data_test)[:, 1] mlp_probabilities = self.model_mlp.predict_proba(self.data_test)[:, 1] lr_auc = roc_auc_score(self.target_test, lr_probabilities) knn_auc = roc_auc_score(self.target_test, knn_probabilities) mlp_auc = roc_auc_score(self.target_test, mlp_probabilities) fpr_lr, tpr_lr, _ = roc_curve(self.target_test, lr_probabilities) fpr_knn, tpr_knn, _ = roc_curve(self.target_test, knn_probabilities) fpr_mlp, tpr_mlp, _ = roc_curve(self.target_test, mlp_probabilities) plt.figure(figsize=(6, 3)) plt.plot(fpr_lr, tpr_lr, label=f"Logistic Regression (AUC = {lr_auc:.2f})") plt.plot(fpr_knn, tpr_knn, label=f"KNN (AUC = {knn_auc:.2f})") plt.plot(fpr_mlp, tpr_mlp, label=f"MLP (AUC = {mlp_auc:.2f})") plt.plot([0, 1], [0, 1], linestyle='--', color='black') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC Curves') plt.legend() plt.tight_layout() plt.show() # Usage Example cc = ClassifierComparison(Path('/Users/anmolgorakshakar/Downloads/heart.csv')) cc.load_data() cc.train_models() cc.compare_metrics() cc.plot_roc_auc_curves()
anmol6536/binder_project
hw6_comparing_models.py
hw6_comparing_models.py
py
4,387
python
en
code
0
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 25, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 34, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.RobustScaler", "line_number": 42, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 47, "usage_type": "call" }, { "api_name": "sklearn.linear_model.LogisticRegression", "line_number": 54, "usage_type": "call" }, { "api_name": "sklearn.neighbors.KNeighborsClassifier", "line_number": 57, "usage_type": "call" }, { "api_name": "sklearn.neural_network.MLPClassifier", "line_number": 60, "usage_type": "call" }, { "api_name": "sklearn.metrics.accuracy_score", "line_number": 73, "usage_type": "call" }, { "api_name": "sklearn.metrics.accuracy_score", "line_number": 74, "usage_type": "call" }, { "api_name": "sklearn.metrics.accuracy_score", "line_number": 75, "usage_type": "call" }, { "api_name": "sklearn.metrics.roc_auc_score", "line_number": 86, "usage_type": "call" }, { "api_name": "sklearn.metrics.roc_auc_score", "line_number": 87, "usage_type": "call" }, { "api_name": "sklearn.metrics.roc_auc_score", "line_number": 88, "usage_type": "call" }, { "api_name": "sklearn.metrics.roc_curve", "line_number": 90, "usage_type": "call" }, { "api_name": "sklearn.metrics.roc_curve", "line_number": 91, "usage_type": "call" }, { "api_name": "sklearn.metrics.roc_curve", "line_number": 92, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 93, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 93, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 94, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 94, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 95, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 95, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 96, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 96, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 98, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 98, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 99, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 99, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 100, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 100, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 101, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 101, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 102, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 102, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 103, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 103, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 104, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 104, "usage_type": "name" }, { "api_name": "pathlib.Path", "line_number": 108, "usage_type": "call" } ]
21881567037
# app.py from fastapi import FastAPI, HTTPException from pydantic import BaseModel from fastapi.middleware.cors import CORSMiddleware from sklearn.feature_extraction.text import CountVectorizer from sklearn.naive_bayes import MultinomialNB import pandas as pd import uvicorn app = FastAPI() # This middleware is required in order to accept requests from other domains such as a React app running on 'localhost:3000' origins = ["*"] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) df = pd.read_csv('./sentiment140/training.1600000.processed.noemoticon.csv', names=['score', 'id', 'date', 'col4', 'author', 'tweet']) # Load your trained model model = MultinomialNB() vectorizer = CountVectorizer() # Assuming df is your DataFrame from which you trained the model X_train_vectorized = vectorizer.fit_transform(df['tweet']) y_train = df['score'].astype(str) model.fit(X_train_vectorized, y_train) class SentimentRequest(BaseModel): text: str class SentimentResponse(BaseModel): prediction: int @app.post("/predict_sentiment", response_model=SentimentResponse) def predict_sentiment(request: SentimentRequest): global df # declare df as global so we can use it in this endpoint text = request.text # Vectorize the input text text_vectorized = vectorizer.transform([text]) # Make prediction prediction = model.predict(text_vectorized)[0] # Append this prediction to the model new_entry = pd.DataFrame({'score': [prediction], 'tweet': [text]}) df = pd.concat([df, new_entry], ignore_index=True) df.to_csv('./sentiment140/training.1600000.processed.noemoticon.csv', index=False) return {"prediction": prediction} @app.get("/get_last_5") def get_last_5(): global df last_5_entries = df.tail(5) last_5_entries_trimmed = last_5_entries[['score', 'tweet']].to_dict(orient='records') return last_5_entries_trimmed if __name__ == "__main__": uvicorn.run("app:app", port=8000, reload=True)
pnavab/tweet-sentiment-NLP
app.py
app.py
py
2,079
python
en
code
0
github-code
6
[ { "api_name": "fastapi.FastAPI", "line_number": 10, "usage_type": "call" }, { "api_name": "fastapi.middleware.cors.CORSMiddleware", "line_number": 15, "usage_type": "argument" }, { "api_name": "pandas.read_csv", "line_number": 22, "usage_type": "call" }, { "api_name": "sklearn.naive_bayes.MultinomialNB", "line_number": 26, "usage_type": "call" }, { "api_name": "sklearn.feature_extraction.text.CountVectorizer", "line_number": 27, "usage_type": "call" }, { "api_name": "pydantic.BaseModel", "line_number": 34, "usage_type": "name" }, { "api_name": "pydantic.BaseModel", "line_number": 37, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 52, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 53, "usage_type": "call" }, { "api_name": "uvicorn.run", "line_number": 67, "usage_type": "call" } ]
33837428124
import array import struct import sys from collections import namedtuple import plotly.express as px import numpy as np from scipy.ndimage import uniform_filter1d from statsmodels.nonparametric.smoothers_lowess import lowess import matplotlib.pyplot as plt from math import degrees, atan import scipy.signal TYPE_DIGITAL = 0 TYPE_ANALOG = 1 expected_version = 0 AnalogData = namedtuple('AnalogData', ('begin_time', 'sample_rate', 'downsample', 'num_samples', 'samples')) def parse_analog(f): # Parse header identifier = f.read(8) if identifier != b"<SALEAE>": raise Exception("Not a saleae file") version, datatype = struct.unpack('=ii', f.read(8)) if version != expected_version or datatype != TYPE_ANALOG: raise Exception("Unexpected data type: {}".format(datatype)) # Parse analog-specific data begin_time, sample_rate, downsample, num_samples = struct.unpack('=dqqq', f.read(32)) # Parse samples samples = array.array("f") samples.fromfile(f, num_samples) return AnalogData(begin_time, sample_rate, downsample, num_samples, samples) if __name__ == '__main__': times = [] volts = [] anchor = 0 filename = sys.argv[1] print("Opening " + filename) with open(filename, 'rb') as f: data = parse_analog(f) # Print out all analog data print("Begin time: {}".format(data.begin_time)) print("Sample rate: {}".format(data.sample_rate)) print("Downsample: {}".format(data.downsample)) print("Number of samples: {}".format(data.num_samples)) j = 0 for idx, voltage in enumerate(data.samples): sample_num = idx * data.downsample #thing/(thing/sec) = thing*(sec/thing) = sec time = data.begin_time + (float(sample_num) / data.sample_rate) times.append(time) volts.append(min(voltage,1.3345)) j = j + 1 volts = scipy.ndimage.median_filter(volts, int((data.sample_rate/data.downsample)*.002)+1) #volts = uniform_filter1d(volts, size=int((data.sample_rate/data.downsample)*.002)) """ filtered = lowess(volts, times, frac=0.0005) plt.plot(filtered[:, 0], filtered[:, 1], 'r-', linewidth=3) plt.show() """ upper_bound = lower_bound = volts[0] for i in range(0,int(data.num_samples*.2)): upper_bound = max(upper_bound, volts[i]) lower_bound = min(lower_bound, volts[i]) v_noise = .0 sample_size = .3 slope_range = int(data.num_samples*.05) temp_threshold = 0.0 angle_threshold = 30.0 tslope_range = 10 """ for s in range(100,11000,100): i = 0 while i < int(data.num_samples*sample_size): l_b = max(i-s,0) r_b = min(i+s,data.num_samples) v_noise = volts[r_b] - volts[l_b] if temp_threshold <= abs(degrees(atan(v_noise/((times[r_b]-times[l_b]))))): temp_threshold = abs(degrees(atan(v_noise/((times[r_b]-times[l_b]))))) print("({},{})({},{})".format(times[l_b], volts[l_b], times[r_b], volts[r_b])) i = i + 1 print("Temp Threshold: {}".format(temp_threshold)) if temp_threshold < angle_threshold: angle_threshold = temp_threshold slope_range = s """ print("Angle Threshold: {}".format(angle_threshold)) start = 0 state = 0 #red is horizontal, b is rise, green is fall colors = ['r','b','g'] i = 1 angle_threshold = 1 slope_range = int(data.num_samples*.002) while i < data.num_samples: l_b = max(i-slope_range,0) r_b = min(i+slope_range,data.num_samples-1) v_noise = volts[r_b] - volts[l_b] angle = degrees(atan(v_noise/((times[r_b]-times[l_b])))) if abs(angle) <= angle_threshold and state != 0: #print("Horizontal line detected: {}\n".format(angle)) plt.plot(times[start:i], volts[start:i], colors[state]) state = 0 start = i elif angle > angle_threshold and state != 1: #print("Rise detected: {}\n".format(angle)) plt.plot(times[start:i], volts[start:i], colors[state]) state = 1 start = i elif angle < -angle_threshold and state != 2: #print("Descent detected: {}\n".format(angle)) plt.plot(times[start:i], volts[start:i], colors[state]) state = 2 start = i i = i + 1 plt.plot(times[start:i], volts[start:i], colors[state]) #plt.plot(times, volts) plt.show()
nkelly1322/analog_analysis
AnalogAnalysis.py
AnalogAnalysis.py
py
4,559
python
en
code
0
github-code
6
[ { "api_name": "collections.namedtuple", "line_number": 18, "usage_type": "call" }, { "api_name": "struct.unpack", "line_number": 26, "usage_type": "call" }, { "api_name": "struct.unpack", "line_number": 32, "usage_type": "call" }, { "api_name": "array.array", "line_number": 35, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 45, "usage_type": "attribute" }, { "api_name": "scipy.ndimage.ndimage.median_filter", "line_number": 65, "usage_type": "call" }, { "api_name": "scipy.ndimage.ndimage", "line_number": 65, "usage_type": "attribute" }, { "api_name": "scipy.ndimage", "line_number": 65, "usage_type": "name" }, { "api_name": "math.degrees", "line_number": 117, "usage_type": "call" }, { "api_name": "math.atan", "line_number": 117, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 120, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 120, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 125, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 125, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 130, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 130, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 135, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 135, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 137, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 137, "usage_type": "name" } ]
5569399042
"""Display image captured from image sensor""" import numpy as np import cv2 import socket import tkinter import pandas as pd import datetime import time import os class ImageGUI(object): def __init__(self): #self.buffer_size = 128 * 128 * 3 # picture size self.buffer_size = (16384 * 2 + 2048 * 2) # picture size self.img_buf_index = 0 self.img_buf_size = 3 self.img_buf = np.array([[[0] * 128] * 128] * self.img_buf_size) self.array_buf = np.array([[0]*(128*128)]*3) self.array_out_buf = np.array([[0]*(4*8*64)]*2) self.array_out_shape = np.array([[[0] * 64] * 32] * 2) self.array_pod_out = np.array([[0] * 64] * 32) # udp must send bytes object self.enquire_command = bytes([int('0x55', 16), 1]) # 0x55, 0x01 self.start_command = bytes([int('0x55', 16), 2]) self.stop_command = bytes([int('0x55', 16), 3]) self.stop_reply = bytes([int('0xaa', 16), int('0xf3', 16)]) # 创建主窗口,用于容纳其它组件 self.root = tkinter.Tk() # 给主窗口设置标题内容 self.root.title("University of Macau AMSV Image Sensor Control") self.root.geometry('500x300') # 创建一个输入框,并设置尺寸 self.input_ip = tkinter.Entry(self.root,width=50) # 创建一个回显列表 self.display_info = tkinter.Listbox(self.root, width=50) # 创建按钮 #self.result_button = tkinter.Button(self.root, command = self.find_position, text = "查询") self.connect_button = tkinter.Button(self.root, command = self.connect_fun, text = "Connect") self.image_start_button = tkinter.Button(self.root, command = self.trans_start, text = "Start") self.image_stop_button = tkinter.Button(self.root, command = self.image_save_stop, text = "Save") # 完成布局 def gui_arrang(self): self.input_ip.pack() self.connect_button.place(x=100,y=220,height=50,width=100) self.image_start_button.place(x=200,y=220,height=50,width=100) self.image_stop_button.place(x=300,y=220,height=50,width=100) self.display_info.pack() def connect_fun(self, print_en = 1): self.ip_addr = self.input_ip.get() self.udp_server_ip_addr = self.ip_addr # target IP address self.udp_port = 7 # port self.soc=socket.socket() self.soc.connect((self.udp_server_ip_addr, self.udp_port)) if(print_en == 1): self.display_info.insert(0,"Connect successfully") self.soc.close() def trans_start(self): # This function will be executed when 'Start' button is clicked ## 为回显列表赋值 #self.display_info.insert(0,input_str) #end=self.soc.send(self.start_command) # send 'start' command while True: t1_init = time.perf_counter() self.connect_fun(0) #for mean_cnt in range(10): #buf_index = 0 #print('Tcp send') self.soc.send(self.start_command) # send 'start' command int_dat = [] cmd_dat = [] cmd_rec = [] ############## receive data and cmd ############### #print('Tcp receive') cmd_rec = self.soc.recv(self.buffer_size) for i in cmd_rec[:]: # transform bytes into int cmd_dat.append(int(i)) if (int(cmd_dat[0]) == int('0x55', 16)) and (int(cmd_dat[1]) == int('0', 16)): int_dat = cmd_dat[2:] total_len = len(int_dat) #print('Tcp receive num:', total_len) while total_len < (16384 * 2 + 2048 * 2): #if total_len > 36000: # break tcp_dat = self.soc.recv(self.buffer_size) # receive data again for i in tcp_dat[:]: # transform bytes into int int_dat.append(int(i)) total_len = len(int_dat) #print('Tcp receive num:', total_len) #if total_len < (16384 * 2 + 2048 * 2): # print('TCP data lost! Receive Num:', total_len) # self.soc.close() # self.connect_fun() # continue self.array_buf[0][:] = np.array(int_dat[0:16384]) # 曝光前 Pod 数据 self.array_buf[1][:] = np.array(int_dat[16384:32768]) array_out_temp1 = np.array(int_dat[32768: (32768 + 2048)]) array_out_temp2 = np.array(int_dat[(32768 + 2048) : (32768 + 4096)]) # 曝光后 Pod 数据 # change the 8bit array_out_buf data into 64 bit array_shape_temp1 = array_out_temp1.reshape((32, 64), order = 'F') array_shape_temp2 = array_out_temp2.reshape((32, 64), order = 'F') self.array_out_shape[0] = array_shape_temp1 # FPGA输出的 OUTR OUTL OUTU OUTD 数据 # self.array_out_shape[1] = array_shape_temp2 # Chip输出的 OUTR OUTL OUTU OUTD 数据 self.array_pod_out = array_shape_temp2 # Chip输出的 OUT 对应的Pod数据 self.array_buf[2] = self.array_buf[0] - self.array_buf[1] self.img_buf[0] = self.tcp_data2mat(self.array_buf[2]) # reform bytes data into picture structure img = np.mat(self.img_buf[0].astype(np.uint8)) # transform img_data into uint8 matrix x, y = img.shape[0:2] img_test1 = cv2.resize(img, (int(y * 6), int(x * 6))) # picture reshape (scaling) #print('Open-CV show picture') cv2.imshow('frame', img_test1) if cv2.waitKey(1) & 0xFF == ord('c'): #self.buf_img = img #self.buf_tcp_dat = before_array return 0 else: print('Frame lost! ERROR_code:' + str(cmd_dat[:2])) continue self.soc.close() frame_rate = 1/(time.perf_counter() - t1_init) print('Frame Rate:%5.3f' % frame_rate, '/s') def tcp_data2mat(self, int_dat): #temp = np.array(int_dat) #self.img_buf_index = (self.img_buf_index + 1) % self.img_buf_size t1 = int_dat.reshape(-1, 16) t2 = int_dat.reshape(-1, 16).T t3 = t2[0][:].reshape(64,4,2,2) pic = np.array([[0]*128]*128) # generate a 128x128 zero array for i in range(16): for j in range(64): for k in range(4): pic[2*j ][8*i+2*k ] = t2[i][0+4*k+16*j] pic[2*j ][8*i+2*k+1] = t2[i][1+4*k+16*j] pic[2*j+1][8*i+2*k+1] = t2[i][2+4*k+16*j] pic[2*j+1][8*i+2*k ] = t2[i][3+4*k+16*j] return pic def image_save_stop(self): # stop transfer self.connect_fun(0) end=self.soc.send(self.stop_command) image_dat = self.soc.recv(10) # create folder folder_name = "./Pic_data/" + time.strftime("%Y%m%d%H%M%S") dir_exist = os.path.isdir(folder_name) if not dir_exist: os.makedirs(folder_name) #time_info = time.strftime("%Y%m%d%H%M%S") # save data save = pd.DataFrame(self.img_buf[0]) save.to_csv(folder_name + '/img_data.csv') save = pd.DataFrame(self.array_buf[0]) save.to_csv(folder_name + '/before_exposure.csv') save = pd.DataFrame(self.array_buf[1]) save.to_csv(folder_name + '/after_exposure.csv') save = pd.DataFrame(self.array_buf[2]) save.to_csv(folder_name + '/sub_data.csv') #save = pd.DataFrame(self.array_out_buf[0]) #save.to_csv(folder_name + '/out_chip_data.csv') save = pd.DataFrame(self.array_out_shape[0]) save.to_csv(folder_name + '/out_fpga_data.csv') #save = pd.DataFrame(self.array_out_shape[1]) #save.to_csv(folder_name + '/out_chip_data.csv') save = pd.DataFrame(self.array_pod_out) save.to_csv(folder_name + '/out_pod_data.csv') #save = pd.DataFrame(self.array_out_buf[1]) #save.to_csv(folder_name + '/out_fpga_data.csv') if(image_dat == self.stop_reply): self.display_info.insert(0,'Stop and Save successfully!') def image_show(self): # Image show cap = cv2.VideoCapture(0) cap.open(0) while True: ret, frame = cap.read() if not ret: print("Can't receive frame (stream end?). Exiting ...") break gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) cv2.imshow('frame', gray) if cv2.waitKey(1) == ord('q'): break cap.release() cv2.destroyAllWindows() def main(): # 初始化对象 FL = ImageGUI() # 进行布局 FL.gui_arrang() # 主程序执行 tkinter.mainloop() pass if __name__ == "__main__": main() ########### UDP client Transfer ######### #from socket import * #HOST = '192.168.1.10' #PORT = 8080 #BUFSIZ = 1024 #ADDRESS = (HOST, PORT) #udpClientSocket = socket(AF_INET, SOCK_DGRAM) # #while True: # data = bytes([int('0xFE', 16), 0,2,0,1]) # if not data: # break # # # 发送数据 # udpClientSocket.sendto(data, ADDRESS) # # 接收数据 # data, ADDR = udpClientSocket.recvfrom(BUFSIZ) # if not data: # break # print("服务器端响应:", data) # #udpClientSocket.close() ######## TCP Client Transfer ######### #client_sock = socket.socket() #client_sock.connect(('192.168.1.10', 7)) ## 发送个连接信息 #stop_command = bytes([int('0x55', 16), 3]) # udp must send bytes object #client_sock.send(stop_command) #while 1: # recv_dat = client_sock.recv(1024) # print(recv_dat) # # 有关输入的 # aa = input("echo >>:") # if aa == 'exit': # break # while not aa: # aa = input("echo >>:") # # 重点就是上下两句 # client_sock.send(aa.encode('utf-8')) #client_sock.close()
yg99992/Image_transfer_open_source
python_code/Image_show.py
Image_show.py
py
10,237
python
en
code
6
github-code
6
[ { "api_name": "numpy.array", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 19, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 20, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 22, "usage_type": "call" }, { "api_name": "tkinter.Tk", "line_number": 32, "usage_type": "call" }, { "api_name": "tkinter.Entry", "line_number": 38, "usage_type": "call" }, { "api_name": "tkinter.Listbox", "line_number": 41, "usage_type": "call" }, { "api_name": "tkinter.Button", "line_number": 45, "usage_type": "call" }, { "api_name": "tkinter.Button", "line_number": 46, "usage_type": "call" }, { "api_name": "tkinter.Button", "line_number": 47, "usage_type": "call" }, { "api_name": "socket.socket", "line_number": 61, "usage_type": "call" }, { "api_name": "time.perf_counter", "line_number": 73, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 110, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 111, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 112, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 113, "usage_type": "call" }, { "api_name": "numpy.mat", "line_number": 126, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 126, "usage_type": "attribute" }, { "api_name": "cv2.resize", "line_number": 128, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 131, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 132, "usage_type": "call" }, { "api_name": "time.perf_counter", "line_number": 141, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 153, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 172, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 173, "usage_type": "call" }, { "api_name": "os.path", "line_number": 173, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 175, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 179, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 181, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 183, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 185, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 190, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 195, "usage_type": "call" }, { "api_name": "cv2.VideoCapture", "line_number": 206, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 213, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 213, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 214, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 215, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 218, "usage_type": "call" }, { "api_name": "tkinter.mainloop", "line_number": 226, "usage_type": "call" } ]
12746754821
import requests from bs4 import BeautifulSoup as bs import smtplib URL = "https://www.amazon.in/9500-15-6-inch-i7-10750H-NVIDIA1650-Graphics/dp/B08BZPRWR5/ref=sr_1_4?dchild=1&keywords=Dell+XPS+15&qid=1602254565&sr=8-4" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.121 Safari/537.36", } def check_price(): """Check Price of Product""" page = requests.get(URL, headers=headers) soup = bs(page.content, 'html.parser') title = soup.find(id="productTitle").get_text() price = soup.find(id="priceblock_ourprice").get_text() price.replace("₹", "") price.replace(",", "") price.replace(" ", "") price.replace("\\xa;", "") converted_price = float(price[0:5]) if (converted_price < 2000000.00): send_mail() print(converted_price) def send_mail(): server = smtplib.SMTP("smtp.gmail.com", 587) server.ehlo() server.starttls() server.ehlo() server.login("[email protected]", "Baahubali") subject = "Price went down for DELL XPS 15" body = ("Check it out: https://www.amazon.de/Dell-Generation-i7-10750H-N18P-G62-DDR4-2933MHz/dp/B088TWQ1V8/ref=sr_1_1?__mk_de_DE=%C3%85M%C3%85%C5%BD%C3%95%C3%91&crid=1QODNEAOK4F7R&dchild=1&keywords=dell+xps+15&qid=1602067797&quartzVehicle=93-295&replacementKeywords=dell+xps&sprefix=Dell+XPS+%2Caps%2C281&sr=8-1") msg = f"Subject: {subject} \n\n {body}" server.sendmail( "[email protected]", "[email protected]", msg ) print("Email sent") server.quit() check_price()
Programmer-X31/PythonProjects
Project Amazon Scraper/main.py
main.py
py
1,679
python
en
code
0
github-code
6
[ { "api_name": "requests.get", "line_number": 13, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 14, "usage_type": "call" }, { "api_name": "smtplib.SMTP", "line_number": 30, "usage_type": "call" } ]
6018276646
# https://pypi.org/project/emoji/ from PIL import Image, ImageDraw, ImageFont import emoji print(emoji.demojize('Python 👍')) print(emoji.emojize("Python :thumbs_up:")) # 创建一个空白的RGBA模式图像 img = Image.new('RGBA', (200, 200), color='white') # 获取Emoji字符的Unicode字符串 emoji_unicode = emoji.emojize(':thumbs_up:') # 获取绘制对象和字体 draw = ImageDraw.Draw(img) font_path = r'H:\Snippets\Program-Learning\Python\modules\utils\SourceHanSansCN-Medium.otf' emoji_font_path = r'H:\Snippets\Program-Learning\Python\modules\utils\SEGUIEMJ.TTF' font = ImageFont.truetype(font_path, 24, encoding='unic') emoji_font = ImageFont.truetype(emoji_font_path, 24) # 创建图像和绘图对象 image = Image.new("RGB", (200, 200), (255, 255, 255)) draw = ImageDraw.Draw(image) # 绘制文本 text = "Hello, 世界 👍" x, y = 50, 50 for char in text: # 如果是 emoji if char.encode('unicode_escape').decode('utf-8').startswith('\\U'): draw.text((x, y+8), char, font=emoji_font, fill=None, embedded_color=True) size = draw.textlength(char, font=emoji_font) else: draw.text((x, y), char, font=font, fill=(0, 0, 0)) size = draw.textlength(char, font=font) x += size # 显示图像 # image.show() original_list = ['❤❤️'] new_list = ["".join([char for char in string if char.encode( 'unicode_escape').decode('utf-8') != '\\ufe0f']) for string in original_list] print(new_list)
Yuelioi/Program-Learning
Python/modules/utils/_emoji.py
_emoji.py
py
1,542
python
en
code
0
github-code
6
[ { "api_name": "emoji.demojize", "line_number": 5, "usage_type": "call" }, { "api_name": "emoji.emojize", "line_number": 6, "usage_type": "call" }, { "api_name": "PIL.Image.new", "line_number": 10, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 10, "usage_type": "name" }, { "api_name": "emoji.emojize", "line_number": 13, "usage_type": "call" }, { "api_name": "PIL.ImageDraw.Draw", "line_number": 16, "usage_type": "call" }, { "api_name": "PIL.ImageDraw", "line_number": 16, "usage_type": "name" }, { "api_name": "PIL.ImageFont.truetype", "line_number": 21, "usage_type": "call" }, { "api_name": "PIL.ImageFont", "line_number": 21, "usage_type": "name" }, { "api_name": "PIL.ImageFont.truetype", "line_number": 22, "usage_type": "call" }, { "api_name": "PIL.ImageFont", "line_number": 22, "usage_type": "name" }, { "api_name": "PIL.Image.new", "line_number": 25, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 25, "usage_type": "name" }, { "api_name": "PIL.ImageDraw.Draw", "line_number": 26, "usage_type": "call" }, { "api_name": "PIL.ImageDraw", "line_number": 26, "usage_type": "name" } ]
30502016476
from django.urls import path from . import views app_name = 'home' urlpatterns = [ path('', views.index, name='index'), path('login/', views.login_view, name='login'), path('registration/', views.registration, name='registration'), path('logout/', views.logout_view, name='logout'), path('profile/', views.profile_view, name='profile'), path('profile/edit/', views.edit_profile_view, name='profile_edit') ]
Arctik124/tekken_league
home/urls.py
urls.py
py
434
python
en
code
0
github-code
6
[ { "api_name": "django.urls.path", "line_number": 7, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 8, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 9, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 10, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 11, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 12, "usage_type": "call" } ]
39485139620
#!/usr/bin/env python3 """lc3_achi.py -- achivements module""" import time import dataset from flask import session lc3_achivements = [{'id': 0, 'hidden': False, 'title': 'Sleepless', 'desc': 'Submit a correct flag at night'}, {'id': 3, 'hidden': False, 'title': 'CTF Initiate', 'desc': 'Solve one problem'} ] def check_and_set(dbfile, id): db = dataset.connect('sqlite:///ctf.db') achis = db.query('''select a.achi_id from achivements a where a.user_id = :user_id''', user_id=session['user_id']) achi = [a['achi_id'] for a in list(achis)] if id in achi: db.executable.close() return False else: new_achi = dict(achi_id=id, user_id=session['user_id']) db['achivements'].insert(new_achi) db.executable.close() return True def chkachi(dbfile, action, **kw): new_achi = False return new_achi
Himanshukr000/CTF-DOCKERS
lc3ctf/examples/lc3achi/lc3achi.py
lc3achi.py
py
922
python
en
code
25
github-code
6
[ { "api_name": "dataset.connect", "line_number": 14, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 16, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 22, "usage_type": "name" } ]
6018330446
from playwright.sync_api import sync_playwright def test_props(): with sync_playwright() as p: browser = p.chromium.launch(headless=False) page = browser.new_page() page.goto("https://image.baidu.com/") # 上传文件 file_path = r"C:/Users/yl/Desktop/1.png" page.locator("input[type=file]").set_input_files(file_path) # # 填充 # page.fill("#username", "yuellili") # # 点击 # page.click("#submit") # # 获取 iframe 元素 # page.frame_locator("iframe") # 获取classs属性 # page.get_attribute(selector=".video-title.tit", name="class") # 设置下拉列表 page.select_option(".province", label="湖南省") page.select_option(".city", value="长沙市") def main(): # test_xpath() # test_css() # test_playwright_selector() test_props() if __name__ == "__main__": main()
Yuelioi/Program-Learning
Python/modules/web/Playwright/元素操作.py
元素操作.py
py
987
python
en
code
0
github-code
6
[ { "api_name": "playwright.sync_api.sync_playwright", "line_number": 5, "usage_type": "call" } ]
21833663632
from flask import Flask, render_template, request from werkzeug.utils import redirect from scrapper import weather_search app = Flask("Weather Scrapper") @app.route("/") def home(): area = request.args.get('area') if area: weather_element = weather_search(area) print(weather_element) return render_template("index.html", searchingBy=area, today_temp=weather_element[0], high_temp=weather_element[3], low_temp=weather_element[2]) app.run ('0.0.0.0', port=5000)
Sunggjinn/weather-closet
app.py
app.py
py
509
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 5, "usage_type": "call" }, { "api_name": "flask.request.args.get", "line_number": 10, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 10, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 10, "usage_type": "name" }, { "api_name": "scrapper.weather_search", "line_number": 12, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 14, "usage_type": "call" } ]
35940096218
import pygame import random from typing import Callable from pygame import Vector2, Rect, Color, Surface pygame.init() class Signal: def __init__(self): self.handlers = [] def connect(self, handler: callable) -> None: self.handlers.append(handler) def disconnect(self, handler: callable) -> None: self.handlers.remove(handler) def disconnect_all(self) -> None: self.handlers.clear() def emit(self, *args, **kwargs) -> None: for handler in self.handlers: handler(*args, **kwargs) class Buff: def __init__(self): self.name = "Buff" self.desc = "" def __str__(self) -> str: return f"{self.name}({self.desc})" def use(self, player: "Player") -> None: pass class HealthBuff(Buff): def __init__(self, value: int): super().__init__() self.name = "勇往直前" self.desc = f"恢复{value}点生命值." self.value = value def use(self, player: "Player") -> None: player.health += self.value class BulletDamage(Buff): def __init__(self, value: int): super().__init__() self.name = "血脉觉醒" self.desc = f"每颗子弹增加{value}点伤害." self.value = value def use(self, player: "Player") -> None: player.gun.bullet_damage += self.value class BulletSpeed(Buff): def __init__(self, value: int): super().__init__() self.name = "速战速决" self.desc = f"子弹速度增加{value}点." self.value = value def use(self, player: "Player") -> None: player.gun.bullet_speed += self.value class FireRateBuff(Buff): def __init__(self, value: int): super().__init__() self.name = "唯快不破" self.desc = f"枪的射速增加{value}点." self.value = value def use(self, player: "Player") -> None: player.gun.firing_rate += self.value class FireBulletCountBuff(Buff): def __init__(self, value: int): super().__init__() self.name = "火力覆盖" self.desc = f"发射子弹的颗数增加{value}颗." self.value = value def use(self, player: "Player") -> None: player.gun.fire_bullet_count += self.value class BulletKnockbackForce(Buff): def __init__(self, value: int): super().__init__() self.name = "大力出奇迹" self.desc = f"击退力度增加{value}点." self.value = value def use(self, player: "Player") -> None: player.gun.bullet_knockback_force += self.value Buffs = [ (HealthBuff, 5, 15), (BulletDamage, 1, 30), (BulletSpeed, 20, 100), (FireRateBuff, 1, 2), (FireBulletCountBuff, 1, 2), (BulletKnockbackForce, 1, 5) ] class Node2D: def __init__(self, parent: "Node2D", pos: Vector2, size: Vector2, z_index: int = 0): self.parent = parent self.pos = pos self.size = size self.collision_rect = Rect(pos, size) self.z_index = z_index self.visible = True self.can_paused = True self.children = [] self.can_collide = False self.has_collided_signal = Signal() self.set_parent(parent) def update(self, delta: float) -> None: pass def draw(self, surface: Surface) -> None: if not self.visible: return def set_parent(self, parent: "Node2D") -> None: self.parent = parent if parent is None: return if not self in parent.children: parent.children.append(self) def add_child(self, child: "Node2D") -> None: self.children.append(child) child.set_parent(self) def remove_child(self, child: "Node2D") -> None: if child not in self.children: return self.children.remove(child) child.set_parent(None) def remove_all_children(self) -> None: for child in self.children[:]: self.children.remove(child) child.set_parent(None) def remove(self) -> None: if self.parent is None: return self.parent.remove_child(self) self.parent = None def get_all_children(self) -> list: all_children = [] for child in self.children: all_children.append(child) all_children.extend(child.get_all_children()) return all_children def get_root(self) -> "Root": if isinstance(self, Root): return self if isinstance(self.parent, Root): return self.parent return self.parent.get_root() def get_rect(self) -> Rect: return Rect(self.pos, self.size) def add_in_group(self, name: str) -> None: root = self.get_root() if root is None: return group = root.groups.get(name) if group is None: group = [] root.groups[name] = group group.append(self) class Root(Node2D): instance = None def __new__(cls, *args, **kwargs): if cls.instance is None: cls.instance = super().__new__(cls) return cls.instance def __init__(self): super().__init__(None, Vector2(0, 0), Vector2(pygame.display.get_surface().get_size())) self.groups = {} self.delta = 0.0 self.clear_color = Color(0, 0, 0) self.mouse_pos = Vector2(0, 0) self.__pause_time = 0 self.__pause_duration = 0 self.__is_paused = False def update(self, delta: float) -> None: self.delta = delta self.mouse_pos = pygame.mouse.get_pos() def get_nodes_in_group(self, name: str) -> list: group = self.groups.get(name) if group is None: return [] return group def get_first_node_in_group(self, name: str) -> Node2D: group = self.groups.get(name) if group is None: return None return group[0] def pause(self, value: bool) -> None: self.__is_paused = value if value: self.__pause_time = pygame.time.get_ticks() else: self.__pause_duration += pygame.time.get_ticks() - self.__pause_time def is_paused(self) -> bool: return self.__is_paused def get_ticks(self, offset: int = 0) -> int: return pygame.time.get_ticks() - self.__pause_duration + offset class Sprite2D(Node2D): def __init__(self, parent: Node2D, pos: Vector2, image: Surface): super().__init__(parent, pos, Vector2(image.get_size())) self.image = image self.size = Vector2(image.get_size()) def draw(self, surface: Surface) -> None: super().draw(surface) surface.blit(self.image, self.pos) class HealthBar(Sprite2D): def __init__(self, parent: Node2D, max_health: int, pos: Vector2, size: Vector2, border: int = 1): super().__init__(parent, pos, Surface(size)) self.max_health = max_health self.health = max_health self.border = border self.border_color = Color(255, 255, 255) self.value_color = Color(255, 0, 0) self.z_index = 5 self.image.set_colorkey((0, 0, 0)) def draw(self, surface: Surface) -> None: self.image.fill((0, 0, 0)) pygame.draw.rect(self.image, self.border_color, (0, 0, self.size.x, self.size.y), self.border) pygame.draw.rect(self.image, self.value_color, (self.border, self.border, (self.size.x - self.border * 2) * self.health * 1.0 / self.max_health, self.size.y - self.border * 2)) super().draw(surface) class Bullet(Sprite2D): def __init__(self, parent: Node2D, pos: Vector2, direction: Vector2): super().__init__(parent, pos, Surface((10, 10))) self.speed = 800 self.damage = 5 self.knockback_force = 5 self.can_penetrate = False self.direction = direction self.z_index = 2 self.image.set_colorkey((0, 0, 0)) self.can_collide = True self.pos -= self.size / 2 def update(self, delta: float) -> None: self.pos += self.speed * self.direction * delta self.collision_rect.topleft = self.pos rect = pygame.display.get_surface().get_rect() if self.pos.x < 0 or self.pos.x > rect.width or self.pos.y < 0 or self.pos.y > rect.height: self.remove() def draw(self, surface: Surface) -> None: pygame.draw.circle(self.image, (0, 255, 0), self.size / 2, self.size.x / 2) super().draw(surface) class Gun(Node2D): def __init__(self, parent: Node2D): super().__init__(parent, Vector2(parent.get_rect().center), Vector2()) self.z_index = 3 self.__laste_fire_time = 0 self.firing_rate = 3 self.bullet_damage = 5 self.bullet_speed = 800 self.bullet_knockback_force = 5 self.bullet_can_penetrate = False self.fire_bullet_count = 1 def _create_bullet(self, direction: Vector2) -> None: bullet = Bullet(self, self.pos.copy(), direction) bullet.can_penetrate = self.bullet_can_penetrate bullet.damage = self.bullet_damage bullet.speed = self.bullet_speed bullet.knockback_force = self.bullet_knockback_force def _create_multiple_bullets(self, count: int, base_direction: Vector2, rotate_angle: float) -> None: for i in range(1, count + 1): angle = base_direction if self.fire_bullet_count % 2 == 0: if i == 1: angle = base_direction.rotate(rotate_angle / 2) else: angle = base_direction.rotate((i-1) * rotate_angle + rotate_angle / 2) else: angle = base_direction.rotate(i * rotate_angle) self._create_bullet(angle) def fire(self, direction: Vector2) -> None: if self.get_root().get_ticks() - self.__laste_fire_time < 1000.0 / self.firing_rate: return half = self.fire_bullet_count // 2 self._create_multiple_bullets(half, direction, 5) if not self.fire_bullet_count % 2 == 0: self._create_bullet(direction) self._create_multiple_bullets(half, direction, -5) self.__laste_fire_time = self.get_root().get_ticks() class Player(Sprite2D): def __init__(self, parent: Node2D, pos: Vector2): super().__init__(parent, pos, Surface(Vector2(60, 60))) self.speed = 500 self.z_index = 1 self.can_collide = True self.image.fill((255, 0, 0)) self.limit_rect = Rect(pygame.display.get_surface().get_rect()) self.died_signal = Signal() self.max_health = 100 self.health = self.max_health self.score = 0 self.kill_count = 0 self.add_in_group("player") self.gun = Gun(self) self.gun.bullet_damage = 50 self.gun.firing_rate = 5 self.gun.bullet_speed = 650 self.gun.bullet_knockback_force = 5 self.gun.fire_bullet_count = 1 # self.gun.bullet_can_penetrate = True self._init_data = self._get_init_data() def __str__(self) -> str: return f"""Player( bullet_damage: {self.gun.bullet_damage}, firing_rate: {self.gun.firing_rate}, bullet_speed: {self.gun.bullet_speed}, bullet_knockback_force: {self.gun.bullet_knockback_force}, fire_bullet_count: {self.gun.fire_bullet_count}, health: {self.health}, )""" def update(self, delta: float) -> None: keys = pygame.key.get_pressed() direction = Vector2() if keys[pygame.K_w]: direction.y = -1 if keys[pygame.K_s]: direction.y = 1 if keys[pygame.K_a]: direction.x = -1 if keys[pygame.K_d]: direction.x = 1 pos = self.pos direction = direction.normalize() if direction.length() != 0 else direction pos += direction * self.speed * delta if pos.x < self.limit_rect.left: pos.x = self.limit_rect.left if pos.x > self.limit_rect.right - self.size.x: pos.x = self.limit_rect.right - self.size.x if pos.y < self.limit_rect.top: pos.y = self.limit_rect.top if pos.y > self.limit_rect.bottom - self.size.y: pos.y = self.limit_rect.bottom - self.size.y self.pos = pos self.collision_rect.topleft = self.pos self.gun.pos = Vector2(self.get_rect().center) shoot_direction = Vector2(pygame.mouse.get_pos()) - self.get_rect().center shoot_direction = shoot_direction.normalize() if shoot_direction.length()!= 0 else shoot_direction # if pygame.mouse.get_pressed()[0]: self.gun.fire(shoot_direction) def set_health(self, health: int) -> None: self.health = pygame.math.clamp(health, 0, self.max_health) if self.health <= 0: self.died_signal.emit() def _get_init_data(self) -> dict: return { "pos": self.pos.copy(), "speed": self.speed, "health": self.health, "score": self.score, "kill_count": self.kill_count, "max_health": self.max_health, "bullet_can_penetrate": self.gun.bullet_can_penetrate, "bullet_damage": self.gun.bullet_damage, "firing_rate": self.gun.firing_rate, "bullet_speed": self.gun.bullet_speed, "bullet_knockback_force": self.gun.bullet_knockback_force, "fire_bullet_count": self.gun.fire_bullet_count, } def restore_init_data(self) -> None: self.pos = self._init_data["pos"] self.speed = self._init_data["speed"] self.health = self._init_data["health"] self.score = self._init_data["score"] self.kill_count = self._init_data["kill_count"] self.max_health = self._init_data["max_health"] self.gun.bullet_can_penetrate = self._init_data["bullet_can_penetrate"] self.gun.bullet_damage = self._init_data["bullet_damage"] self.gun.firing_rate = self._init_data["firing_rate"] self.gun.bullet_speed = self._init_data["bullet_speed"] self.gun.bullet_knockback_force = self._init_data["bullet_knockback_force"] self.gun.fire_bullet_count = self._init_data["fire_bullet_count"] class Cursor(Sprite2D): def __init__(self, parent: Node2D): super().__init__(parent, Vector2(0, 0), Surface((12, 12))) self.z_index = 9999 self.thickness = 2 self.color = Color((0, 255, 0)) self.image.set_colorkey((0, 0, 0)) self.can_paused = False pygame.mouse.set_visible(False) def update(self, delta: float) -> None: self.pos = pygame.mouse.get_pos() def draw(self, surface: Surface) -> None: pygame.draw.line(self.image, self.color, Vector2(self.size.x / 2 - self.thickness / 2, 0), Vector2(self.size.x / 2 - self.thickness / 2, self.size.y), self.thickness) pygame.draw.line(self.image, self.color, Vector2(0, self.size.y / 2 - self.thickness / 2), Vector2(self.size.x, self.size.y / 2 - self.thickness / 2), self.thickness) super().draw(surface) class Enemy(Sprite2D): init_data = {} def __init__(self, parent: Node2D, pos: Vector2): super().__init__(parent, pos, Surface((30, 30))) self.speed = 80 self.z_index = 0 self.image.fill((255, 255, 255)) self.can_collide = True self.player = self.get_root().get_first_node_in_group("player") self.max_health = 500 self.health = self.max_health Enemy.init_data = self._get_init_data() self.health_bar = HealthBar(self, self.max_health, Vector2(self.pos.x, self.pos.y - 15), Vector2(self.size.x, 8), 2) self.has_collided_signal.connect(self._on_has_collided_signal) def update(self, delta: float) -> None: self.collision_rect.topleft = self.pos self.health_bar.pos = Vector2(self.pos.x, self.pos.y - 15) direction = Vector2(self.player.get_rect().center) - Vector2(self.get_rect().center) if direction.length()!= 0: direction = direction.normalize() self.pos += direction * self.speed * delta def draw(self, surface: Surface) -> None: pygame.draw.circle(self.image, (255, 0, 0), self.size / 2, 7.5) super().draw(surface) def _get_init_data(self) -> dict: return { "speed": self.speed, "health": self.health, "max_health": self.max_health, } def _on_has_collided_signal(self, node: Node2D) -> None: if isinstance(node, Bullet): self.health -= node.damage self.health_bar.health = self.health self.pos += node.direction * node.knockback_force if self.health <= 0: self.player.score += 5 self.player.kill_count += 1 self.remove() if not node.can_penetrate: node.remove() if isinstance(node, Player): self.player.score -= 10 self.player.set_health(self.player.health - 10) self.player.kill_count += 1 self.remove() class Lable(Node2D): def __init__(self, parent: Node2D, pos: Vector2, text: str = ""): super().__init__(parent, pos, Vector2()) self.font = pygame.font.SysFont("SimHei", 30) self.font_color = Color(255, 255, 255) self.text_surfaces = [] self.__text = text self.set_text(text) def update(self, delta: float) -> None: self.text_surfaces.clear() lines = self.__text.split("\n") line_height = self.font.get_linesize() y = self.pos.y max_width = 0 for line in lines: text_surface = self.font.render(line, True, self.font_color) self.text_surfaces.append((text_surface, Vector2(self.pos.x, y))) y += line_height if text_surface.get_width() > max_width: max_width = text_surface.get_width() self.size = Vector2(max_width, len(lines) * line_height) def draw(self, surface: Surface) -> None: for text_surface, pos in self.text_surfaces: surface.blit(text_surface, pos) def set_text(self, text: str) -> None: self.__text = text # self.text_surfaces.clear() # lines = self.__text.split("\n") # line_height = self.font.get_linesize() # y = self.pos.y # max_width = 0 # for line in lines: # text_surface = self.font.render(line, True, self.font_color) # self.text_surfaces.append((text_surface, Vector2(self.pos.x, y))) # y += line_height # if text_surface.get_width() > max_width: # max_width = text_surface.get_width() # self.size = Vector2(max_width, len(lines) * line_height) def get_text(self) -> str: return self.__text class Button(Node2D): def __init__(self, parent: Node2D, pos: Vector2, text: str): super().__init__(parent, pos, Vector2()) self.padding = Vector2(10) self.is_pressed = False self.text_lbl = Lable(self, pos + self.padding, text) self.bg_color = Color(0, 0, 0) self.border_color = Color(255, 255, 255) self.border_width = 3 self.hot_keys = [] self.hot_key_pressed = False self.set_text(text) self.pressed_singal = Signal() def update(self, delta: float) -> None: self.size = Vector2(self.text_lbl.size) + self.padding * 2 self.text_lbl.pos = self.pos + self.padding self.text_lbl.z_index = self.z_index self.text_lbl.can_paused = self.can_paused self.text_lbl.visible = self.visible if self.visible: if pygame.mouse.get_pressed()[0] and self.get_rect().collidepoint(pygame.mouse.get_pos()) and not self.is_pressed: self.pressed_singal.emit() self.is_pressed = True if not pygame.mouse.get_pressed()[0]: self.is_pressed = False keys = pygame.key.get_pressed() for key in self.hot_keys: if keys[key]: if self.hot_key_pressed: break self.pressed_singal.emit() self.hot_key_pressed = True break else: self.hot_key_pressed = False def draw(self, surface: Surface) -> None: pygame.draw.rect(surface, self.bg_color, Rect(self.pos.x, self.pos.y, self.size.x, self.size.y)) pygame.draw.rect(surface, self.border_color, Rect(self.pos.x, self.pos.y, self.size.x, self.size.y), self.border_width) def set_text(self, text: str) -> None: self.text_lbl.set_text(text) self.size = Vector2(self.text_lbl.size) + self.padding * 2 def get_text(self) -> str: return self.text_lbl.get_text() class BuffPanel(Sprite2D): def __init__(self, parent: Node2D): super().__init__(parent, Vector2(0, 0), Surface(pygame.display.get_surface().get_size(), pygame.SRCALPHA)) self.image.fill(Color(0, 0, 0, 100)) self.buff_btns = [] self.buff_btn1 = Button(self, Vector2(10, 10), "buff1") self.buff_btn2 = Button(self, Vector2(120, 10), "buff2") self.buff_btn3 = Button(self, Vector2(230, 10), "buff3") self.buff_btns.append(self.buff_btn1) self.buff_btns.append(self.buff_btn2) self.buff_btns.append(self.buff_btn3) self.player = self.get_root().get_first_node_in_group("player") self.visible = False self.can_paused = False for btn in self.buff_btns: btn.can_paused = self.can_paused def update(self, delta: float) -> None: width = 0 max_height = 0 for btn in self.buff_btns: btn.z_index = self.z_index width += btn.size.x if btn.size.y > max_height: max_height = btn.size.y pos = Vector2((self.size.x - width - 2 * 20) / 2, (self.size.y - max_height) / 2) for btn in self.buff_btns: btn.pos = pos.copy() pos.x += btn.size.x + 20 btn.visible = self.visible def draw(self, surface: Surface) -> None: super().draw(surface) def _on_buff_btn_pressed(self, buff: Buff) -> None: buff.use(self.player) self.visible = False self.get_root().pause(not self.get_root().is_paused()) def _bind_buff(self, btn: Button) -> None: b = random.choice(Buffs) buff = b[0](random.randint(b[1], b[2])) btn.set_text(f"{buff.name}\n{buff.desc}") btn.pressed_singal.disconnect_all() btn.pressed_singal.connect(lambda: self._on_buff_btn_pressed(buff)) def display(self) -> None: for btn in self.buff_btns: self._bind_buff(btn) self.visible = True class GameOverPanel(Sprite2D): def __init__(self, parent: Node2D): super().__init__(parent, Vector2(0, 0), Surface(pygame.display.get_surface().get_size(), pygame.SRCALPHA)) self.image.fill(Color(0, 0, 0, 100)) self.z_index = 99 self.can_paused = False self.visible = False self.lbl = Lable(self, Vector2(), "游戏结束") self.lbl.font_color = Color(255, 0, 0) self.lbl.font = pygame.font.SysFont("SimHei", 50) self.lbl.can_paused = False self.restart_bnt = Button(self, Vector2(10, 10), "重新开始") self.restart_bnt.can_paused = False def update(self, delta: float) -> None: self.lbl.visible = self.visible self.restart_bnt.visible = self.visible self.lbl.z_index = self.z_index self.restart_bnt.z_index = self.z_index self.lbl.pos = (self.size - self.lbl.size) / 2 self.lbl.pos.y -= 100 self.restart_bnt.pos = (self.size - self.restart_bnt.size) / 2 self.restart_bnt.pos.y += self.lbl.size.y class TopUI(Node2D): def __init__(self, parent: Node2D): super().__init__(parent, Vector2(0, 0), Vector2(pygame.display.get_surface().get_size())) self.z_index = 99 self.add_in_group("top_ui") self.player = self.get_root().get_first_node_in_group("player") self.player_health_bar = HealthBar(self, self.player.max_health, Vector2(), Vector2(400, 20), 3) self.player_health_bar.z_index = self.z_index self.player_health_bar.pos.x = (self.size.x - self.player_health_bar.size.x) / 2 self.player_health_bar.pos.y = self.size.y - self.player_health_bar.size.y - 10 self.player_health_lbl = Lable(self, Vector2(10, 10)) self.player_health_lbl.z_index = self.z_index self.player_health_lbl.pos.y = self.player_health_bar.pos.y - self.player_health_lbl.size.y - 5 self.score_lbl = Lable(self, Vector2(10, 10)) self.score_lbl.z_index = self.z_index self.timer_lbl = Lable(self, Vector2(10, 10)) self.timer_lbl.z_index = self.z_index self.kill_count_lbl = Lable(self, Vector2(10, 10)) self.kill_count_lbl.z_index = self.z_index self.buff_panel = BuffPanel(self) self.buff_panel.z_index = self.z_index + 1 self.buff_panel.visible = False pause_btn = Button(self, Vector2(10, 10), "暂停") pause_btn.visible = False pause_btn.can_paused = False pause_btn.hot_keys.append(pygame.K_ESCAPE) def _on_pause_btn_pressed(): if self.over_panel.visible: return if self.buff_panel.visible: return self.get_root().pause(not self.get_root().is_paused()) pause_btn.pressed_singal.connect(_on_pause_btn_pressed) self.over_panel = GameOverPanel(self) self.over_panel.z_index = self.z_index + 1 def update(self, delta: float) -> None: self.player_health_bar.health = self.player.health lbl_text = f"{self.player.health}/{self.player.max_health}" self.player_health_lbl.set_text(lbl_text) self.player_health_lbl.pos.x = (self.size.x - self.player_health_lbl.size.x) / 2 self.score_lbl.set_text(f"分数: {self.player.score}") self.timer_lbl.pos.x = (self.size.x - self.timer_lbl.size.x) / 2 self.kill_count_lbl.pos.x = self.size.x - self.kill_count_lbl.size.x - 10 self.kill_count_lbl.set_text(f"击杀: {self.player.kill_count}") def _convert_time(self, time: int) -> str: minutes = time // 60 seconds = time % 60 return f"{minutes:02}:{seconds:02}" def update_timer_lbl(self, offset: int) -> None: self.timer_lbl.set_text(f"{self._convert_time(int(self.get_root().get_ticks(offset) / 1000))}") class MainScene(Node2D): def __init__(self, root: Root): super().__init__(root, Vector2(0, 0), Vector2(pygame.display.get_surface().get_size())) self.z_index = 0 self.max_enemy_count = 10 self.create_enemies_range = 100 self.update_buff_time = 10 self.enemy_health = 500 self.enemy_speed = 80 Cursor(self) self.player = Player(self, self.size / 2) self.enemies = Node2D(self, Vector2(0, 0), Vector2(0, 0)) self.top_ui = TopUI(self) self.player.died_signal.connect(self.game_over) self.top_ui.over_panel.restart_bnt.pressed_singal.connect(self._on_game_over_btn_pressed) self.start_time = self.get_root().get_ticks() self.over_time = 0 def update(self, delta: float) -> None: self.top_ui.update_timer_lbl(-self.over_time) if len(self.enemies.children) < self.max_enemy_count: pos = Vector2() flag = random.randrange(0, 4) if flag == 0: pos = Vector2(random.randint(0, self.size.x), random.randint(-self.create_enemies_range, 0)) elif flag == 1: pos = Vector2(random.randint(0, self.size.x), random.randint(self.size.y, self.size.y + self.create_enemies_range)) elif flag == 2: pos = Vector2(random.randint(-self.create_enemies_range, 0), random.randint(0, self.size.y)) else: pos = Vector2(random.randint(self.size.x, self.size.x + self.create_enemies_range), random.randint(0, self.size.y)) enemy = Enemy(self.enemies, pos) enemy.max_health = self.enemy_health enemy.health = self.enemy_health enemy.speed = self.enemy_speed for enemy in self.enemies.children[:]: if enemy.health <= 0: self.enemies.remove_child(enemy) if self.get_root().get_ticks() - self.start_time >= self.update_buff_time * 1000: if int((self.get_root().get_ticks() - self.start_time) / 1000) % self.update_buff_time == 0: self.get_root().pause(True) self.top_ui.buff_panel.display() self.enemy_health += 100 self.enemy_speed += 5 self.start_time = self.get_root().get_ticks() def game_over(self) -> None: self.get_root().pause(True) self.top_ui.over_panel.visible = True self.over_time = self.get_root().get_ticks() def _on_game_over_btn_pressed(self) -> None: self.get_root().pause(False) self.player.restore_init_data() self.enemy_health = Enemy.init_data["health"] self.enemy_speed = Enemy.init_data["speed"] self.enemies.remove_all_children() self.player.gun.remove_all_children() self.top_ui.over_panel.visible = False self.start_time = self.get_root().get_ticks() class Game: def __init__(self): self.screen = pygame.display.set_mode((1280, 720)) self.clock = pygame.time.Clock() self.running = True self.root = Root() self.root.clear_color = Color(47, 47, 47) MainScene(self.root) def run(self) -> None: while self.running: self.clock.tick(120) for event in pygame.event.get(): if event.type == pygame.QUIT: self.running = False self.screen.fill(self.root.clear_color) delta = self.clock.get_time() / 1000 self.root.update(delta) for node in sorted(self.root.get_all_children(), key=lambda node: node.z_index): if self.root.is_paused() and node.can_paused: if node.visible: node.draw(self.screen) continue node.update(delta) if node.visible: node.draw(self.screen) if isinstance(node, Bullet): for other_node in self.root.get_all_children(): if node.parent == other_node: continue if not isinstance(other_node, Enemy): continue if node.collision_rect.colliderect(other_node.collision_rect): other_node.has_collided_signal.emit(node) if not node.can_penetrate: break if isinstance(node, Player): for other_node in self.root.get_all_children(): if not isinstance(other_node, Enemy): continue if node.collision_rect.colliderect(other_node.collision_rect): other_node.has_collided_signal.emit(node) pygame.display.flip() pygame.quit() Game().run()
cliegc/simple-roguelike-game
main.py
main.py
py
32,075
python
en
code
0
github-code
6
[ { "api_name": "pygame.init", "line_number": 8, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 130, "usage_type": "name" }, { "api_name": "pygame.Rect", "line_number": 134, "usage_type": "call" }, { "api_name": "pygame.Surface", "line_number": 149, "usage_type": "name" }, { "api_name": "pygame.Rect", "line_number": 204, "usage_type": "call" }, { "api_name": "pygame.Rect", "line_number": 203, "usage_type": "name" }, { "api_name": "pygame.Vector2", "line_number": 229, "usage_type": "call" }, { "api_name": "pygame.display.get_surface", "line_number": 229, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 229, "usage_type": "attribute" }, { "api_name": "pygame.Color", "line_number": 232, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 233, "usage_type": "call" }, { "api_name": "pygame.mouse.get_pos", "line_number": 242, "usage_type": "call" }, { "api_name": "pygame.mouse", "line_number": 242, "usage_type": "attribute" }, { "api_name": "pygame.time.get_ticks", "line_number": 262, "usage_type": "call" }, { "api_name": "pygame.time", "line_number": 262, "usage_type": "attribute" }, { "api_name": "pygame.time.get_ticks", "line_number": 264, "usage_type": "call" }, { "api_name": "pygame.time", "line_number": 264, "usage_type": "attribute" }, { "api_name": "pygame.time.get_ticks", "line_number": 272, "usage_type": "call" }, { "api_name": "pygame.time", "line_number": 272, "usage_type": "attribute" }, { "api_name": "pygame.Vector2", "line_number": 278, "usage_type": "name" }, { "api_name": "pygame.Surface", "line_number": 278, "usage_type": "name" }, { "api_name": "pygame.Vector2", "line_number": 279, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 281, "usage_type": "call" }, { "api_name": "pygame.Surface", "line_number": 283, "usage_type": "name" }, { "api_name": "pygame.Vector2", "line_number": 290, "usage_type": "name" }, { "api_name": "pygame.Surface", "line_number": 291, "usage_type": "call" }, { "api_name": "pygame.Color", "line_number": 295, "usage_type": "call" }, { "api_name": "pygame.Color", "line_number": 296, "usage_type": "call" }, { "api_name": "pygame.Surface", "line_number": 300, "usage_type": "name" }, { "api_name": "pygame.draw.rect", "line_number": 302, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 302, "usage_type": "attribute" }, { "api_name": "pygame.draw.rect", "line_number": 303, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 303, "usage_type": "attribute" }, { "api_name": "pygame.Vector2", "line_number": 309, "usage_type": "name" }, { "api_name": "pygame.Surface", "line_number": 310, "usage_type": "call" }, { "api_name": "pygame.display.get_surface", "line_number": 326, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 326, "usage_type": "attribute" }, { "api_name": "pygame.Surface", "line_number": 331, "usage_type": "name" }, { "api_name": "pygame.draw.circle", "line_number": 332, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 332, "usage_type": "attribute" }, { "api_name": "pygame.Vector2", "line_number": 339, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 351, "usage_type": "name" }, { "api_name": "pygame.Vector2", "line_number": 359, "usage_type": "name" }, { "api_name": "pygame.Vector2", "line_number": 373, "usage_type": "name" }, { "api_name": "pygame.Vector2", "line_number": 391, "usage_type": "name" }, { "api_name": "pygame.Surface", "line_number": 392, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 392, "usage_type": "call" }, { "api_name": "pygame.Rect", "line_number": 397, "usage_type": "call" }, { "api_name": "pygame.display.get_surface", "line_number": 397, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 397, "usage_type": "attribute" }, { "api_name": "pygame.key.get_pressed", "line_number": 430, "usage_type": "call" }, { "api_name": "pygame.key", "line_number": 430, "usage_type": "attribute" }, { "api_name": "pygame.Vector2", "line_number": 431, "usage_type": "call" }, { "api_name": "pygame.K_w", "line_number": 432, "usage_type": "attribute" }, { "api_name": "pygame.K_s", "line_number": 434, "usage_type": "attribute" }, { "api_name": "pygame.K_a", "line_number": 436, "usage_type": "attribute" }, { "api_name": "pygame.K_d", "line_number": 438, "usage_type": "attribute" }, { "api_name": "pygame.Vector2", "line_number": 456, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 458, "usage_type": "call" }, { "api_name": "pygame.mouse.get_pos", "line_number": 458, "usage_type": "call" }, { "api_name": "pygame.mouse", "line_number": 458, "usage_type": "attribute" }, { "api_name": "pygame.math.clamp", "line_number": 464, "usage_type": "call" }, { "api_name": "pygame.math", "line_number": 464, "usage_type": "attribute" }, { "api_name": "pygame.Vector2", "line_number": 502, "usage_type": "call" }, { "api_name": "pygame.Surface", "line_number": 502, "usage_type": "call" }, { "api_name": "pygame.Color", "line_number": 505, "usage_type": "call" }, { "api_name": "pygame.mouse.set_visible", "line_number": 508, "usage_type": "call" }, { "api_name": "pygame.mouse", "line_number": 508, "usage_type": "attribute" }, { "api_name": "pygame.mouse.get_pos", "line_number": 512, "usage_type": "call" }, { "api_name": "pygame.mouse", "line_number": 512, "usage_type": "attribute" }, { "api_name": "pygame.Surface", "line_number": 514, "usage_type": "name" }, { "api_name": "pygame.draw.line", "line_number": 515, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 515, "usage_type": "attribute" }, { "api_name": "pygame.Vector2", "line_number": 515, "usage_type": "call" }, { "api_name": "pygame.draw.line", "line_number": 516, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 516, "usage_type": "attribute" }, { "api_name": "pygame.Vector2", "line_number": 516, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 524, "usage_type": "name" }, { "api_name": "pygame.Surface", "line_number": 525, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 538, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 544, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 546, "usage_type": "call" }, { "api_name": "pygame.Surface", "line_number": 552, "usage_type": "name" }, { "api_name": "pygame.draw.circle", "line_number": 553, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 553, "usage_type": "attribute" }, { "api_name": "pygame.Vector2", "line_number": 585, "usage_type": "name" }, { "api_name": "pygame.Vector2", "line_number": 586, "usage_type": "call" }, { "api_name": "pygame.font.SysFont", "line_number": 587, "usage_type": "call" }, { "api_name": "pygame.font", "line_number": 587, "usage_type": "attribute" }, { "api_name": "pygame.Color", "line_number": 588, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 602, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 607, "usage_type": "call" }, { "api_name": "pygame.Surface", "line_number": 610, "usage_type": "name" }, { "api_name": "pygame.Vector2", "line_number": 638, "usage_type": "name" }, { "api_name": "pygame.Vector2", "line_number": 639, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 640, "usage_type": "call" }, { "api_name": "pygame.Color", "line_number": 643, "usage_type": "call" }, { "api_name": "pygame.Color", "line_number": 644, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 652, "usage_type": "call" }, { "api_name": "pygame.mouse.get_pressed", "line_number": 659, "usage_type": "call" }, { "api_name": "pygame.mouse", "line_number": 659, "usage_type": "attribute" }, { "api_name": "pygame.mouse.get_pos", "line_number": 659, "usage_type": "call" }, { "api_name": "pygame.mouse.get_pressed", "line_number": 662, "usage_type": "call" }, { "api_name": "pygame.mouse", "line_number": 662, "usage_type": "attribute" }, { "api_name": "pygame.key.get_pressed", "line_number": 665, "usage_type": "call" }, { "api_name": "pygame.key", "line_number": 665, "usage_type": "attribute" }, { "api_name": "pygame.Surface", "line_number": 677, "usage_type": "name" }, { "api_name": "pygame.draw.rect", "line_number": 678, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 678, "usage_type": "attribute" }, { "api_name": "pygame.Rect", "line_number": 678, "usage_type": "call" }, { "api_name": "pygame.draw.rect", "line_number": 679, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 679, "usage_type": "attribute" }, { "api_name": "pygame.Rect", "line_number": 679, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 684, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 695, "usage_type": "call" }, { "api_name": "pygame.Surface", "line_number": 695, "usage_type": "call" }, { "api_name": "pygame.display.get_surface", "line_number": 695, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 695, "usage_type": "attribute" }, { "api_name": "pygame.SRCALPHA", "line_number": 695, "usage_type": "attribute" }, { "api_name": "pygame.Color", "line_number": 696, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 699, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 700, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 701, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 723, "usage_type": "call" }, { "api_name": "pygame.Surface", "line_number": 730, "usage_type": "name" }, { "api_name": "random.choice", "line_number": 740, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 741, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 756, "usage_type": "call" }, { "api_name": "pygame.Surface", "line_number": 756, "usage_type": "call" }, { "api_name": "pygame.display.get_surface", "line_number": 756, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 756, "usage_type": "attribute" }, { "api_name": "pygame.SRCALPHA", "line_number": 756, "usage_type": "attribute" }, { "api_name": "pygame.Color", "line_number": 757, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 762, "usage_type": "call" }, { "api_name": "pygame.Color", "line_number": 763, "usage_type": "call" }, { "api_name": "pygame.font.SysFont", "line_number": 764, "usage_type": "call" }, { "api_name": "pygame.font", "line_number": 764, "usage_type": "attribute" }, { "api_name": "pygame.Vector2", "line_number": 767, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 789, "usage_type": "call" }, { "api_name": "pygame.display.get_surface", "line_number": 789, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 789, "usage_type": "attribute" }, { "api_name": "pygame.Vector2", "line_number": 795, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 800, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 804, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 807, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 810, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 817, "usage_type": "call" }, { "api_name": "pygame.K_ESCAPE", "line_number": 820, "usage_type": "attribute" }, { "api_name": "pygame.Vector2", "line_number": 860, "usage_type": "call" }, { "api_name": "pygame.display.get_surface", "line_number": 860, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 860, "usage_type": "attribute" }, { "api_name": "pygame.Vector2", "line_number": 870, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 883, "usage_type": "call" }, { "api_name": "random.randrange", "line_number": 884, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 886, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 886, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 888, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 888, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 890, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 890, "usage_type": "call" }, { "api_name": "pygame.Vector2", "line_number": 892, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 892, "usage_type": "call" }, { "api_name": "pygame.display.set_mode", "line_number": 932, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 932, "usage_type": "attribute" }, { "api_name": "pygame.time.Clock", "line_number": 933, "usage_type": "call" }, { "api_name": "pygame.time", "line_number": 933, "usage_type": "attribute" }, { "api_name": "pygame.Color", "line_number": 936, "usage_type": "call" }, { "api_name": "pygame.event.get", "line_number": 945, "usage_type": "call" }, { "api_name": "pygame.event", "line_number": 945, "usage_type": "attribute" }, { "api_name": "pygame.QUIT", "line_number": 946, "usage_type": "attribute" }, { "api_name": "pygame.display.flip", "line_number": 979, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 979, "usage_type": "attribute" }, { "api_name": "pygame.quit", "line_number": 981, "usage_type": "call" } ]
2794147606
#ENTRENAMIENTO DE RED CONVOLUCIONAL 2D - CLASIFICACION HSI #Se utiliza PCA para reduccion dimensional y estraccion de caracteristicas espectrales. A la red convolucional se introduce #una ventana sxs de la imagen original para la generacion de caracteristicas espaciales a partir de la convolucion. #Se utiliza como capa de salida un clasificador tipo Multinomial logistic regression. Todas las capas utilizan entrenamiento supervisado. import warnings warnings.filterwarnings('ignore') from package.cargarHsi import CargarHsi from package.prepararDatos import PrepararDatos from package.PCA import princiapalComponentAnalysis from package.MorphologicalProfiles import morphologicalProfiles from package.dataLogger import DataLogger from keras import layers from keras import models from keras import regularizers from keras import backend as K import matplotlib.pyplot as plt import numpy as np import os #CARGAR IMAGEN HSI Y GROUND TRUTH numTest = 10 dataSet = 'Urban' test = 'pcaCNN2D' # pcaCNN2D eapCNN2D fe_eap = False # false for PCA, true for EAP ventana = 9 #VENTANA 2D de PROCESAMIENTO data = CargarHsi(dataSet) imagen = data.imagen groundTruth = data.groundTruth #CREAR FICHERO DATA LOGGER logger = DataLogger(fileName = dataSet, folder = test, save = True) #ANALISIS DE COMPONENTES PRINCIPALES pca = princiapalComponentAnalysis() #imagenFE = pca.pca_calculate(imagen, varianza=0.95) imagenFE = pca.pca_calculate(imagen, componentes=18) print(imagenFE.shape) #ESTIMACIÓN DE EXTENDED ATTRIBUTE PROFILES if fe_eap: mp = morphologicalProfiles() imagenFE = mp.EAP(imagenFE, num_thresholds=6) ##################### print(imagenFE.shape) OA = 0 vectOA = np.zeros(numTest) for i in range(0, numTest): #PREPARAR DATOS PARA ENTRENAMIENTO preparar = PrepararDatos(imagenFE, groundTruth, False) datosEntrenamiento, etiquetasEntrenamiento, datosValidacion, etiquetasValidacion = preparar.extraerDatos2D(50,30,ventana) datosPrueba, etiquetasPrueba = preparar.extraerDatosPrueba2D(ventana) #DEFINICION RED CONVOLUCIONAL model = models.Sequential() model.add(layers.Conv2D(48, (5, 5), kernel_regularizer=regularizers.l2(0.001),activation='relu', input_shape=(datosEntrenamiento.shape[1],datosEntrenamiento.shape[2],datosEntrenamiento.shape[3]))) #model.add(layers.MaxPooling2D((2,2), data_format='channels_last', strides=(1,1), padding='same')) model.add(layers.Conv2D(96, (3, 3), kernel_regularizer=regularizers.l2(0.001),activation='relu')) #model.add(layers.MaxPooling2D((2,2), data_format='channels_last', strides=(1,1), padding='same')) model.add(layers.Conv2D(96, (3, 3), kernel_regularizer=regularizers.l2(0.001),activation='relu')) #model.add(layers.MaxPooling2D((2,2), data_format='channels_last', strides=(1,1), padding='same')) #CAPA FULLY CONNECTED model.add(layers.Flatten()) model.add(layers.Dropout(0.5)) model.add(layers.Dense(1024, kernel_regularizer=regularizers.l2(0.001), activation='relu')) model.add(layers.Dropout(0.5)) model.add(layers.Dense(1024, kernel_regularizer=regularizers.l2(0.001), activation='relu')) #AÑADE UN CLASIFICADOR MLR EN EL TOPE DE LA CONVNET model.add(layers.Dense(groundTruth.max()+1, activation='softmax')) print(model.summary()) #ENTRENAMIENTO DE LA RED CONVOLUCIONAL model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(datosEntrenamiento,etiquetasEntrenamiento,epochs=35,batch_size=512,validation_data=(datosValidacion, etiquetasValidacion)) #EVALUAR MODELO test_loss, test_acc = model.evaluate(datosPrueba, etiquetasPrueba) vectOA[i] = test_acc OA = OA+test_acc #LOGGER DATOS DE ENTRENAMIENTO logger.savedataTrain(history) #GUARDAR MODELO DE RED CONVOLUCIONAL model.save(os.path.join(logger.path,test+str(i)+'.h5')) #GENERAR MAPA FINAL DE CLASIFICACIÓN print('dataOA = '+ str(vectOA)) print('OA = '+ str(OA/numTest)) datosSalida = model.predict(datosPrueba) datosSalida = preparar.predictionToImage(datosSalida) #GRAFICAS data.graficarHsi_VS(groundTruth, datosSalida) data.graficar_history(history) K.clear_session() logger.close()
davidruizhidalgo/unsupervisedRemoteSensing
2_Redes Supervisadas/hsi_CNN2D.py
hsi_CNN2D.py
py
4,213
python
es
code
13
github-code
6
[ { "api_name": "warnings.filterwarnings", "line_number": 6, "usage_type": "call" }, { "api_name": "package.cargarHsi.CargarHsi", "line_number": 28, "usage_type": "call" }, { "api_name": "package.dataLogger.DataLogger", "line_number": 33, "usage_type": "call" }, { "api_name": "package.PCA.princiapalComponentAnalysis", "line_number": 36, "usage_type": "call" }, { "api_name": "package.MorphologicalProfiles.morphologicalProfiles", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 48, "usage_type": "call" }, { "api_name": "package.prepararDatos.PrepararDatos", "line_number": 51, "usage_type": "call" }, { "api_name": "keras.models.Sequential", "line_number": 56, "usage_type": "call" }, { "api_name": "keras.models", "line_number": 56, "usage_type": "name" }, { "api_name": "keras.layers.Conv2D", "line_number": 57, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 57, "usage_type": "name" }, { "api_name": "keras.regularizers.l2", "line_number": 57, "usage_type": "call" }, { "api_name": "keras.regularizers", "line_number": 57, "usage_type": "name" }, { "api_name": "keras.layers.Conv2D", "line_number": 59, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 59, "usage_type": "name" }, { "api_name": "keras.regularizers.l2", "line_number": 59, "usage_type": "call" }, { "api_name": "keras.regularizers", "line_number": 59, "usage_type": "name" }, { "api_name": "keras.layers.Conv2D", "line_number": 61, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 61, "usage_type": "name" }, { "api_name": "keras.regularizers.l2", "line_number": 61, "usage_type": "call" }, { "api_name": "keras.regularizers", "line_number": 61, "usage_type": "name" }, { "api_name": "keras.layers.Flatten", "line_number": 64, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 64, "usage_type": "name" }, { "api_name": "keras.layers.Dropout", "line_number": 65, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 65, "usage_type": "name" }, { "api_name": "keras.layers.Dense", "line_number": 66, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 66, "usage_type": "name" }, { "api_name": "keras.regularizers.l2", "line_number": 66, "usage_type": "call" }, { "api_name": "keras.regularizers", "line_number": 66, "usage_type": "name" }, { "api_name": "keras.layers.Dropout", "line_number": 67, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 67, "usage_type": "name" }, { "api_name": "keras.layers.Dense", "line_number": 68, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 68, "usage_type": "name" }, { "api_name": "keras.regularizers.l2", "line_number": 68, "usage_type": "call" }, { "api_name": "keras.regularizers", "line_number": 68, "usage_type": "name" }, { "api_name": "keras.layers.Dense", "line_number": 70, "usage_type": "call" }, { "api_name": "keras.layers", "line_number": 70, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 84, "usage_type": "call" }, { "api_name": "os.path", "line_number": 84, "usage_type": "attribute" }, { "api_name": "keras.backend.clear_session", "line_number": 94, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 94, "usage_type": "name" } ]
26053689790
from itertools import permutations vowels = ["о", "а"] consonants = ["в", "т", "р"] result = set() for index, i in enumerate(permutations("авторота")): correct = True for symbol_index in range(0, len(i) - 1): if (i[symbol_index] in vowels and i[symbol_index + 1] in vowels) or \ (i[symbol_index] in consonants and i[symbol_index + 1] in consonants): correct = False break if correct: result.add(i) print(len(result))
Woolfer0097/UGE_IT
8 task/236.py
236.py
py
501
python
en
code
0
github-code
6
[ { "api_name": "itertools.permutations", "line_number": 7, "usage_type": "call" } ]
30297740447
# Seq2Seq model with attention import torch import torch.nn as nn import torch.nn.functional as F import random from copy import copy def init_weights(m): for name, param in m.named_parameters(): if 'weight' in name: nn.init.normal_(param.data, mean=0, std=0.01) else: nn.init.constant_(param.data, 0) def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def train_an_epoch(model, iterator, optimizer, criterion, clip, device, scheduler, tf_ratio=1.): model.train() epoch_loss = 0 for i, batch in enumerate(iterator): src = batch[0].float().to(device) trg = copy(batch[0]).float().to(device) optimizer.zero_grad() output = model(src, trg, tf_ratio).permute(1, 0, 2) loss = criterion(output, trg) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), clip) optimizer.step() scheduler.step() epoch_loss += loss.item() return epoch_loss / len(iterator) def evaluate(model, iterator, criterion, device): model.eval() epoch_loss = 0 with torch.no_grad(): for i, batch in enumerate(iterator): src = batch[0].float().to(device) trg = copy(batch[0]).float().to(device) output = model(src, trg, 0).permute(1, 0, 2) #turn off teacher forcing loss = criterion(output, trg) epoch_loss += loss.item() return epoch_loss / len(iterator) def epoch_time(start_time, end_time): elapsed_time = end_time - start_time elapsed_mins = int(elapsed_time / 60) elapsed_secs = int(elapsed_time - (elapsed_mins * 60)) return elapsed_mins, elapsed_secs class Encoder(nn.Module): def __init__(self, num_layers=2, input_dim=10, emb_dim=64, enc_hid_dim=128, dec_hid_dim=128, dropout=0.5): super().__init__() self.embedding = nn.Linear(input_dim, emb_dim) self.norm = nn.LayerNorm(emb_dim) self.rnn = nn.GRU(emb_dim, enc_hid_dim, bidirectional = True, batch_first = True, num_layers=num_layers) self.dropout = nn.Dropout(dropout) self.fc = nn.Linear(enc_hid_dim * 2, dec_hid_dim) def forward(self, src): embedded = self.dropout(self.embedding(src)) embedded = self.norm(embedded) #embedded = [batch size, n_time_steps, emb dim] outputs, hidden = self.rnn(embedded) #outputs = [batch size, n_time_steps, hid dim * num directions] #hidden = [n layers * num directions, batch size, hid dim] hidden = torch.tanh(self.fc(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1))) #hidden is stacked [forward_1, backward_1, forward_2, backward_2, ...] #outputs are always from the last layer #hidden = [batch size, dec hid dim] return outputs, hidden class Attention(nn.Module): def __init__(self, enc_hid_dim, dec_hid_dim): super().__init__() self.norm = nn.LayerNorm((enc_hid_dim * 2) + dec_hid_dim) self.attn = nn.Linear((enc_hid_dim * 2) + dec_hid_dim, dec_hid_dim) self.v = nn.Linear(dec_hid_dim, 1, bias = False) def forward(self, hidden, encoder_outputs): #hidden = [batch size, dec hid dim] #encoder_outputs = [batch size, src len, enc hid dim * 2] src_len = encoder_outputs.shape[1] #repeat decoder hidden state src_len times hidden = hidden.unsqueeze(1).repeat(1, src_len, 1) #hidden = [batch size, src len, dec hid dim] #encoder_outputs = [batch size, src len, enc hid dim * 2] energy = torch.tanh(self.attn(self.norm(torch.cat((hidden, encoder_outputs), dim = 2)))) #energy = [batch size, src len, dec hid dim] attention = self.v(energy).squeeze(2) #attention= [batch size, src len] return F.softmax(attention, dim=1) class Decoder(nn.Module): def __init__(self, attention, num_layer=1, output_dim=10, emb_dim=64, enc_hid_dim=128, dec_hid_dim=128, dropout=0.5): super().__init__() self.output_dim = output_dim self.attention = attention self.embedding = nn.Linear(output_dim, emb_dim) self.norm = nn.LayerNorm(emb_dim) self.rnn = nn.GRU((enc_hid_dim * 2) + emb_dim, dec_hid_dim, num_layers=num_layer) self.fc_out = nn.Linear((enc_hid_dim * 2) + dec_hid_dim + emb_dim, output_dim) self.dropout = nn.Dropout(dropout) def forward(self, input, hidden, encoder_outputs, dec_hid=None): #input = [batch size, n_features] #hidden = [batch size, dec hid dim] #encoder_outputs = [batch size, n_time_steps, enc hid dim * 2] input = input.unsqueeze(1) #input = [batch size, 1, n_features] embedded = self.dropout(self.embedding(input)).permute(1, 0, 2) embedded = self.norm(embedded) #embedded = [1, batch_size, emb dim] a = self.attention(hidden, encoder_outputs) #a = [batch size, src len] a = a.unsqueeze(1) #a = [batch size, 1, src len] weighted = torch.bmm(a, encoder_outputs) #weighted = [batch size, 1, enc hid dim * 2] weighted = weighted.permute(1, 0, 2) #weighted = [1, batch size, enc hid dim * 2] rnn_input = torch.cat((embedded, weighted), dim = 2) #rnn_input = [1, batch size, (enc hid dim * 2) + emb dim] if dec_hid == None: output, dec_hid = self.rnn(rnn_input) else: output, dec_hid = self.rnn(rnn_input, dec_hid) embedded = embedded.squeeze(0) output = output.squeeze(0) weighted = weighted.squeeze(0) prediction = self.fc_out(torch.cat((output, weighted, embedded), dim = 1)) #prediction = [batch size, output dim] return prediction, dec_hid class Seq2Seq(nn.Module): def __init__(self, encoder, decoder, device): super().__init__() self.encoder = encoder self.decoder = decoder self.device = device def forward(self, src, trg, teacher_forcing_ratio = 0.5): #teacher_forcing_ratio is probability to use teacher forcing #e.g. if teacher_forcing_ratio is 0.75 we use teacher forcing 75% of the time batch_size = src.shape[0] trg_len = trg.shape[1] trg_vocab_size = self.decoder.output_dim #tensor to store decoder outputs outputs = torch.zeros(trg_len, batch_size, trg_vocab_size).to(self.device) #encoder_outputs is all hidden states of the input sequence, back and forwards #hidden is the final forward and backward hidden states, passed through a linear layer encoder_outputs, hidden = self.encoder(src) #first input to the decoder (start token = [0, ..., 0]) input = torch.zeros_like(trg[:, 0, :]).to(self.device) dec_hid = None for t in range(0, trg_len-1): #insert input token embedding, previous hidden state and all encoder hidden states #receive output tensor (predictions) and new hidden state output, dec_hid = self.decoder(input, hidden, encoder_outputs, dec_hid) #place predictions in a tensor holding predictions for each token outputs[t] = output hidden = dec_hid[-1, ...] #decide if we are going to use teacher forcing or not teacher_force = random.random() < teacher_forcing_ratio #if teacher forcing, use actual next token as next input #if not, use predicted token input = trg[:, t, :] if teacher_force else output return outputs
three0-s/KT-ETRI
model.py
model.py
py
7,755
python
en
code
0
github-code
6
[ { "api_name": "torch.nn.init.normal_", "line_number": 11, "usage_type": "call" }, { "api_name": "torch.nn.init", "line_number": 11, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 11, "usage_type": "name" }, { "api_name": "torch.nn.init.constant_", "line_number": 13, "usage_type": "call" }, { "api_name": "torch.nn.init", "line_number": 13, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 13, "usage_type": "name" }, { "api_name": "copy.copy", "line_number": 23, "usage_type": "call" }, { "api_name": "torch.nn.utils.clip_grad_norm_", "line_number": 30, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 30, "usage_type": "attribute" }, { "api_name": "torch.no_grad", "line_number": 40, "usage_type": "call" }, { "api_name": "copy.copy", "line_number": 43, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 55, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 55, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 58, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 58, "usage_type": "name" }, { "api_name": "torch.nn.LayerNorm", "line_number": 59, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 59, "usage_type": "name" }, { "api_name": "torch.nn.GRU", "line_number": 60, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 60, "usage_type": "name" }, { "api_name": "torch.nn.Dropout", "line_number": 61, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 61, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 62, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 62, "usage_type": "name" }, { "api_name": "torch.tanh", "line_number": 71, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 71, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 78, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 78, "usage_type": "name" }, { "api_name": "torch.nn.LayerNorm", "line_number": 81, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 81, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 82, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 82, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 83, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 83, "usage_type": "name" }, { "api_name": "torch.tanh", "line_number": 94, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 94, "usage_type": "call" }, { "api_name": "torch.nn.functional.softmax", "line_number": 98, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 98, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 102, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 102, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 109, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 109, "usage_type": "name" }, { "api_name": "torch.nn.LayerNorm", "line_number": 110, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 110, "usage_type": "name" }, { "api_name": "torch.nn.GRU", "line_number": 111, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 111, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 112, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 112, "usage_type": "name" }, { "api_name": "torch.nn.Dropout", "line_number": 113, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 113, "usage_type": "name" }, { "api_name": "torch.bmm", "line_number": 129, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 133, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 144, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 149, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 149, "usage_type": "name" }, { "api_name": "torch.zeros", "line_number": 164, "usage_type": "call" }, { "api_name": "torch.zeros_like", "line_number": 171, "usage_type": "call" }, { "api_name": "random.random", "line_number": 182, "usage_type": "call" } ]
31698964136
import pytorch_lightning as pl import torch from src.training_class import CFG, BertModule if __name__ == "__main__": torch.cuda.empty_cache() model = BertModule() trainer = pl.Trainer( accelerator="gpu", devices=1, max_epochs=CFG.epochs, precision=32, gradient_clip_val=1e-1, fast_dev_run=False, profiler=None, accumulate_grad_batches=4, callbacks=None, ) trainer.fit(model) trainer.validate(model)
ArturYasnov/Quora-Insincere-Questions-using-BERT
train.py
train.py
py
500
python
en
code
0
github-code
6
[ { "api_name": "torch.cuda.empty_cache", "line_number": 7, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 7, "usage_type": "attribute" }, { "api_name": "src.training_class.BertModule", "line_number": 8, "usage_type": "call" }, { "api_name": "pytorch_lightning.Trainer", "line_number": 10, "usage_type": "call" }, { "api_name": "src.training_class.CFG.epochs", "line_number": 13, "usage_type": "attribute" }, { "api_name": "src.training_class.CFG", "line_number": 13, "usage_type": "name" } ]
6907369998
from flask import Flask, request, redirect from twilio.twiml.messaging_response import MessagingResponse from firebase import firebase # from flask_cors import CORS from twilio.rest import Client import pyrebase config = { "apiKey": "AIzaSyAEEO1frXfzyL6MCkRvgGz7qURfsTLajRc", "authDomain" : "covid-19-fake-news-detector.firebaseapp.com", "databaseURL" : "https://covid-19-fake-news-detector.firebaseio.com", "projectId" : "covid-19-fake-news-detector", "storageBucket" : "covid-19-fake-news-detector.appspot.com", "messagingSenderId" : "401417810179", "appId" : "1:401417810179:web:b5c7dac2f172bfdc11f936", "measurementId" : "G-59YT063WPN" } fb = pyrebase.initialize_app(config) db = fb.database() app = Flask(__name__) app.config.from_object(__name__) firebase = firebase.FirebaseApplication("https://covid-19-fake-news-detector.firebaseio.com/", None) @app.route("/status", methods=['POST']) def sms_status(key): update = firebase.get('/Incoming/'+key['name'],'status') from_whatsapp_no = 'whatsapp:+14155238886' to_whatsapp_no = 'whatsapp:+9189********' account = "ACa0b9328e73aae3240844*******" token = "cdd6da1ea1baf8050d20005d*******" client = Client(account,token) return str(client.messages.create(body= update, from_ =from_whatsapp_no, to = to_whatsapp_no)) @app.route("/sms", methods=['POST']) def sms_reply(): # Fetch the message usrid = request.form.get('From') print(usrid) msg = request.form.get('Body') #json format for firebase data = { "userid": usrid, "news": msg, "status": "Wait, we are processing your request" } print("coming") #Create db key = firebase.post('/Incoming', data) print(key['name']) #read db update = firebase.get('/Incoming/'+key['name'],'status') print(update) # Create reply resp = MessagingResponse() resp.message(update) return str(resp) # else: # default = "Wait, we are processing your request" # return (default) if __name__ == "__main__": app.run(debug=True)
mayankchauhan96/Fake-news-detector
app.py
app.py
py
2,112
python
en
code
1
github-code
6
[ { "api_name": "pyrebase.initialize_app", "line_number": 19, "usage_type": "call" }, { "api_name": "flask.Flask", "line_number": 23, "usage_type": "call" }, { "api_name": "firebase.firebase", "line_number": 26, "usage_type": "name" }, { "api_name": "firebase.firebase.FirebaseApplication", "line_number": 26, "usage_type": "call" }, { "api_name": "firebase.firebase.get", "line_number": 31, "usage_type": "call" }, { "api_name": "firebase.firebase", "line_number": 31, "usage_type": "name" }, { "api_name": "twilio.rest.Client", "line_number": 36, "usage_type": "call" }, { "api_name": "flask.request.form.get", "line_number": 44, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 44, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 44, "usage_type": "name" }, { "api_name": "flask.request.form.get", "line_number": 48, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 48, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 48, "usage_type": "name" }, { "api_name": "firebase.firebase.post", "line_number": 59, "usage_type": "call" }, { "api_name": "firebase.firebase", "line_number": 59, "usage_type": "name" }, { "api_name": "firebase.firebase.get", "line_number": 63, "usage_type": "call" }, { "api_name": "firebase.firebase", "line_number": 63, "usage_type": "name" }, { "api_name": "twilio.twiml.messaging_response.MessagingResponse", "line_number": 67, "usage_type": "call" } ]
28509751362
# coding: utf-8 """ Messente API [Messente](https://messente.com) is a global provider of messaging and user verification services. * Send and receive SMS, Viber, WhatsApp and Telegram messages. * Manage contacts and groups. * Fetch detailed info about phone numbers. * Blacklist phone numbers to make sure you're not sending any unwanted messages. Messente builds [tools](https://messente.com/documentation) to help organizations connect their services to people anywhere in the world. # noqa: E501 The version of the OpenAPI document: 2.0.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import inspect import pprint import re # noqa: F401 import six from messente_api.configuration import Configuration class DeliveryReportResponse(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'statuses': 'list[DeliveryResult]', 'to': 'str', 'omnimessage_id': 'str' } attribute_map = { 'statuses': 'statuses', 'to': 'to', 'omnimessage_id': 'omnimessage_id' } def __init__(self, statuses=None, to=None, omnimessage_id=None, local_vars_configuration=None): # noqa: E501 """DeliveryReportResponse - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._statuses = None self._to = None self._omnimessage_id = None self.discriminator = None self.statuses = statuses self.to = to self.omnimessage_id = omnimessage_id @property def statuses(self): """Gets the statuses of this DeliveryReportResponse. # noqa: E501 Contains the delivery reports for each channel, ordered by send order # noqa: E501 :return: The statuses of this DeliveryReportResponse. # noqa: E501 :rtype: list[DeliveryResult] """ return self._statuses @statuses.setter def statuses(self, statuses): """Sets the statuses of this DeliveryReportResponse. Contains the delivery reports for each channel, ordered by send order # noqa: E501 :param statuses: The statuses of this DeliveryReportResponse. # noqa: E501 :type statuses: list[DeliveryResult] """ if self.local_vars_configuration.client_side_validation and statuses is None: # noqa: E501 raise ValueError("Invalid value for `statuses`, must not be `None`") # noqa: E501 self._statuses = statuses @property def to(self): """Gets the to of this DeliveryReportResponse. # noqa: E501 Phone number in e.164 format # noqa: E501 :return: The to of this DeliveryReportResponse. # noqa: E501 :rtype: str """ return self._to @to.setter def to(self, to): """Sets the to of this DeliveryReportResponse. Phone number in e.164 format # noqa: E501 :param to: The to of this DeliveryReportResponse. # noqa: E501 :type to: str """ if self.local_vars_configuration.client_side_validation and to is None: # noqa: E501 raise ValueError("Invalid value for `to`, must not be `None`") # noqa: E501 self._to = to @property def omnimessage_id(self): """Gets the omnimessage_id of this DeliveryReportResponse. # noqa: E501 Unique identifier for the omnimessage # noqa: E501 :return: The omnimessage_id of this DeliveryReportResponse. # noqa: E501 :rtype: str """ return self._omnimessage_id @omnimessage_id.setter def omnimessage_id(self, omnimessage_id): """Sets the omnimessage_id of this DeliveryReportResponse. Unique identifier for the omnimessage # noqa: E501 :param omnimessage_id: The omnimessage_id of this DeliveryReportResponse. # noqa: E501 :type omnimessage_id: str """ if self.local_vars_configuration.client_side_validation and omnimessage_id is None: # noqa: E501 raise ValueError("Invalid value for `omnimessage_id`, must not be `None`") # noqa: E501 self._omnimessage_id = omnimessage_id def to_dict(self, serialize=False): """Returns the model properties as a dict""" result = {} def convert(x): if hasattr(x, "to_dict"): args = inspect.getargspec(x.to_dict).args if len(args) == 1: return x.to_dict() else: return x.to_dict(serialize) else: return x for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) attr = self.attribute_map.get(attr, attr) if serialize else attr if isinstance(value, list): result[attr] = list(map( lambda x: convert(x), value )) elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], convert(item[1])), value.items() )) else: result[attr] = convert(value) return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DeliveryReportResponse): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, DeliveryReportResponse): return True return self.to_dict() != other.to_dict()
messente/messente-api-python
messente_api/models/delivery_report_response.py
delivery_report_response.py
py
6,393
python
en
code
0
github-code
6
[ { "api_name": "messente_api.configuration.Configuration", "line_number": 51, "usage_type": "call" }, { "api_name": "inspect.getargspec", "line_number": 144, "usage_type": "call" }, { "api_name": "six.iteritems", "line_number": 152, "usage_type": "call" }, { "api_name": "pprint.pformat", "line_number": 172, "usage_type": "call" } ]
71889450427
# -*- coding: utf-8 -*- from django.conf import settings from django.views.generic import CreateView from levangersundet.forms import DeltagerForm from post_office import mail class TestCreateView(CreateView): form_class = DeltagerForm template_name = 'test.html' def get_success_url(self): return '/nb/%s/' % self.testtype def form_valid(self, form): response = super(TestCreateView, self).form_valid(form) mail.send( [self.object.epost], settings.SERVER_EMAIL, template=self.testtype, context={'deltager': self.object}, priority='now' ) mail.send( [settings.TEST_NOTIFY_EMAIL], settings.SERVER_EMAIL, template='%s_notify' % self.testtype, context={'deltager': self.object}, priority='now' ) return response def dispatch(self, *args, **kwargs): self.testtype = kwargs.get('testtype', False) return super(TestCreateView, self).dispatch(*args, **kwargs)
fivethreeo/jsdev
mainapp/views.py
views.py
py
1,070
python
en
code
0
github-code
6
[ { "api_name": "django.views.generic.CreateView", "line_number": 8, "usage_type": "name" }, { "api_name": "levangersundet.forms.DeltagerForm", "line_number": 9, "usage_type": "name" }, { "api_name": "post_office.mail.send", "line_number": 17, "usage_type": "call" }, { "api_name": "post_office.mail", "line_number": 17, "usage_type": "name" }, { "api_name": "django.conf.settings.SERVER_EMAIL", "line_number": 19, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 19, "usage_type": "name" }, { "api_name": "post_office.mail.send", "line_number": 24, "usage_type": "call" }, { "api_name": "post_office.mail", "line_number": 24, "usage_type": "name" }, { "api_name": "django.conf.settings.TEST_NOTIFY_EMAIL", "line_number": 25, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 25, "usage_type": "name" }, { "api_name": "django.conf.settings.SERVER_EMAIL", "line_number": 26, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 26, "usage_type": "name" } ]
14018247881
import cv2 import numpy as np def motion_detector(videofile): window_raw = "Raw video" window_preprocessed = "Preprocessed video" window_motion = "Video motion" window_finished = "Thermal Video" window_test1 = "Test1" cv2.namedWindow(window_raw) cv2.namedWindow(window_preprocessed) cv2.namedWindow(window_motion) cv2.namedWindow(window_finished) cv2.namedWindow(window_test1) cv2.moveWindow(window_raw, 0, 0) cv2.moveWindow(window_preprocessed, 320, 0) cv2.moveWindow(window_motion, 0, 265) cv2.moveWindow(window_finished, 320, 265) cv2.moveWindow(window_test1, 640, 0) # Setup video windows so that they don't overlap # Load video file if videofile is None: print("Could not find video file") return previous_frame = None frame_width = int(videofile.get(3)) frame_height = int(videofile.get(4)) size = (frame_width, frame_height) outer_bounds = [frame_width, 0, frame_height, 0] #[xmin, xmax, ymin, ymax] result = cv2.VideoWriter('Results/Gas_detection.mp4',cv2.VideoWriter_fourcc(*'MP4V'), 18, size) high_activity_areas = [outer_bounds] activity_percentage = 0.8 activity_area_pixel_margin = 50 while True: # 1. Load image ret, frame = videofile.read() if ret: cv2.imshow(window_raw, frame) # # 2. Prepare image; grayscale and blur prepared_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) prepared_frame = cv2.GaussianBlur(src=prepared_frame, ksize=(7,7), sigmaX=0) cv2.imshow(window_preprocessed, prepared_frame) # 3. Set previous frame and continue if there is None if (previous_frame is None): previous_frame = prepared_frame continue # calculate difference and update previous frame diff_frame = cv2.absdiff(src1=previous_frame, src2=prepared_frame) previous_frame = prepared_frame # 4. Dilute the image a bit to make differences more seeable; more suitable for contour detection kernel = np.ones((1, 1)) diff_frame = cv2.dilate(diff_frame, kernel, 1) # 5. Only take different areas that are different enough (>20 / 255) thresh_frame = cv2.threshold(src=diff_frame, thresh=3, maxval=255, type=cv2.THRESH_BINARY)[1] cv2.imshow(window_motion, thresh_frame) finished_frame = frame contours, _ = cv2.findContours(image=thresh_frame, mode=cv2.RETR_EXTERNAL, method=cv2.CHAIN_APPROX_SIMPLE) for contour in contours: if cv2.contourArea(contour) < 5: # too small: skip! continue (x, y, w, h) = cv2.boundingRect(contour) cv2.rectangle(img=finished_frame, pt1=(x, y), pt2=(x + w, y + h), color=(0, 255, 0), thickness=2) cv2.imshow(window_finished, finished_frame) result.write(finished_frame) #---------------------------------------------------------------------------- # for contour in contours: # contour_placed_in_area = False # if cv2.contourArea(contour) < 5: # # too small: skip! # continue # [x, y, w, h] = cv2.boundingRect(contour) # contour_border = [x, x+w, y, y+h] # for area_border in high_activity_areas: # # for i in range(0, 4): # # if(abs(contour_border[i]-area_border[i])>activity_area_pixel_margin): # # continue # cont = cv2.drawContours(frame, area_border, -1, (255,0,0), 1) # if(cv2.pointPolygonTest(cont, (x,y), True)): # continue # area_border = [min(area_border[0], contour_border[0]), max(area_border[1], contour_border[1]), min(area_border[2], contour_border[2]), max(area_border[3], contour_border[3])] # cv2.rectangle(img=frame, pt1=(outer_bounds[0], outer_bounds[2]), pt2=(outer_bounds[1], outer_bounds[3]), color=(0, 0, 255), thickness=2) # cv2.imshow(window_test1, frame) #---------------------------------------------------------------------------- else: break # press escape to exit if (cv2.waitKey(30) == 27): return 0 cv2.destroyAllWindows() # videofile.release() # result.release() return 1 # def main(): # cap = cv2.VideoCapture('/Users/MORFRE/Pictures/Mongstad/Flir dataset nov 2022/112ppm hydrogen/Leak/MOV_1669.mp4') # motion_detector(cap)
Christdej/gas-analysis
src/gas_analysis/gas_detection.py
gas_detection.py
py
4,763
python
en
code
null
github-code
6
[ { "api_name": "cv2.namedWindow", "line_number": 11, "usage_type": "call" }, { "api_name": "cv2.namedWindow", "line_number": 12, "usage_type": "call" }, { "api_name": "cv2.namedWindow", "line_number": 13, "usage_type": "call" }, { "api_name": "cv2.namedWindow", "line_number": 14, "usage_type": "call" }, { "api_name": "cv2.namedWindow", "line_number": 15, "usage_type": "call" }, { "api_name": "cv2.moveWindow", "line_number": 16, "usage_type": "call" }, { "api_name": "cv2.moveWindow", "line_number": 17, "usage_type": "call" }, { "api_name": "cv2.moveWindow", "line_number": 18, "usage_type": "call" }, { "api_name": "cv2.moveWindow", "line_number": 19, "usage_type": "call" }, { "api_name": "cv2.moveWindow", "line_number": 20, "usage_type": "call" }, { "api_name": "cv2.VideoWriter", "line_number": 35, "usage_type": "call" }, { "api_name": "cv2.VideoWriter_fourcc", "line_number": 35, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 49, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 52, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 52, "usage_type": "attribute" }, { "api_name": "cv2.GaussianBlur", "line_number": 53, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 54, "usage_type": "call" }, { "api_name": "cv2.absdiff", "line_number": 62, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 66, "usage_type": "call" }, { "api_name": "cv2.dilate", "line_number": 67, "usage_type": "call" }, { "api_name": "cv2.threshold", "line_number": 70, "usage_type": "call" }, { "api_name": "cv2.THRESH_BINARY", "line_number": 70, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 71, "usage_type": "call" }, { "api_name": "cv2.findContours", "line_number": 74, "usage_type": "call" }, { "api_name": "cv2.RETR_EXTERNAL", "line_number": 74, "usage_type": "attribute" }, { "api_name": "cv2.CHAIN_APPROX_SIMPLE", "line_number": 74, "usage_type": "attribute" }, { "api_name": "cv2.contourArea", "line_number": 76, "usage_type": "call" }, { "api_name": "cv2.boundingRect", "line_number": 79, "usage_type": "call" }, { "api_name": "cv2.rectangle", "line_number": 80, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 82, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 119, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 122, "usage_type": "call" } ]
28220979750
#Import Necessary Packages import numpy as np import matplotlib.pyplot as plt from scipy import stats import seaborn as sns import ruptures as rpt from statistics import stdev import pandas as pd def load_rms(path, sect, ref): raw_string = open('../../' + path + '/rmsd_' + sect + '_ref_' + ref + '.txt').readlines() #Convert data to fload raw = np.zeros(len(raw_string)) for i in range(len(raw_string)): raw[i] = float(raw_string[i])*10 return raw def plot_compare(RMSD_mean, RMSD_err, Label, sect, n, ref): rmsd_n = RMSD_mean[:,n] rmsd_err_n = RMSD_err[:,n] section = sect[n] # bar_color = ['gray', 'gray', 'pink', 'blue', 'pink', 'red', 'red'] num = np.linspace(1, len(Label)+1, num = len(Label)) fig = plt.figure(figsize=(18,10)) ax1 = fig.add_subplot(111) ax1.set_title("RMSD for " + section + ' to ' + ref) ax1.set_ylabel(r'RMSD($\AA$)') ax1.bar(num, rmsd_n) plt.xticks(num, Label, fontsize=14) plt.errorbar(num, rmsd_n, yerr= rmsd_err_n, fmt='o', color='black') fig.savefig('RMSD_compare_' + section + '_' + ref + '.png') plt.close(fig) def plot_kernel_mut(df, sect_name, sect_file, xmin, xmax): ax = sns.kdeplot(data = df, fill=True, alpha=0.5, common_grid = True) plt.setp(ax.get_legend().get_texts(), fontsize='12') # for legend text plt.xlabel(r'RMSD($\AA$)', fontsize = 14) plt.xlim(xmin, xmax) plt.xticks(fontsize = 13) plt.yticks(fontsize = 13) plt.ylabel(r'Normalized Density', fontsize = 14) plt.title(str(sect_name) + r' RMSD Relative to WT Closed', fontsize = 15) plt.savefig('mutate_RMSD_' + str(sect_file) + '.png') plt.close() def plot_kernel_cmpr_lig(apo_df, AD_df, BBR_df, mut, sect, n): df = pd.concat([apo_df, AD_df, BBR_df]) sns.kdeplot(data = df, fill=True, alpha=0.5, common_norm = True, common_grid = True) plt.xlabel(r'RMSD($\AA$)', fontsize = 14) plt.ylabel(r'Normalized Density', fontsize = 14) plt.title(sect + ' RMSD Compared to WT Closed', fontsize = 15) plt.savefig('mutate_RMSD_' + sect + '_' + mut + '.png') plt.close() def rmsd_sect(sect, file_path_close, file_path_close_AD, file_path_close_BBR, ref, n): rmsd_1sug = load_rms(file_path_close[0], sect, ref[n]) rmsd_apo = load_rms(file_path_close[1], sect, ref[n]) rmsd_L192F = load_rms(file_path_close[2], sect, ref[n]) rmsd_E276F = load_rms(file_path_close[3], sect, ref[n]) rmsd_F280Y = load_rms(file_path_close[4], sect, ref[n]) rmsd_L195F = load_rms(file_path_close[5], sect, ref[n]) rmsd_F196A = load_rms(file_path_close[6], sect, ref[n]) rmsd_V287T = load_rms(file_path_close[7], sect, ref[n]) rmsd_L192F_AD = load_rms(file_path_close_AD[0], sect, ref[n]) rmsd_L192F_BBR = load_rms(file_path_close_BBR[0], sect, ref[n]) rmsd_E276F_AD = load_rms(file_path_close_AD[1], sect, ref[n]) rmsd_E276F_BBR = load_rms(file_path_close_BBR[1], sect, ref[n]) rmsd_F280Y_AD = load_rms(file_path_close_AD[2], sect, ref[n]) rmsd_F280Y_BBR = load_rms(file_path_close_BBR[2], sect, ref[n]) rmsd_L195F_AD = load_rms(file_path_close_AD[3], sect, ref[n]) rmsd_L195F_BBR = load_rms(file_path_close_BBR[3], sect, ref[n]) rmsd_F196A_AD = load_rms(file_path_close_AD[4], sect, ref[n]) rmsd_F196A_BBR = load_rms(file_path_close_BBR[4], sect, ref[n]) rmsd_V287T_AD = load_rms(file_path_close_AD[4], sect, ref[n]) rmsd_V287T_BBR = load_rms(file_path_close_BBR[4], sect, ref[n]) return rmsd_1sug, rmsd_apo, rmsd_L192F, rmsd_E276F, rmsd_F280Y, rmsd_L195F, rmsd_F196A, rmsd_V287T, rmsd_L192F_AD, rmsd_E276F_AD, rmsd_F280Y_AD, rmsd_L195F_AD, rmsd_F196A_AD, rmsd_V287T_AD, rmsd_L192F_BBR, rmsd_E276F_BBR, rmsd_F280Y_BBR, rmsd_L195F_BBR, rmsd_F196A_BBR, rmsd_V287T_BBR #File paths for all input files file_path = ['../Apo_dis/analysis', 'L192F/Apo/analysis', 'E276F/Apo/analysis', 'F280Y/Apo/analysis', 'L195F/Apo/analysis', 'F196A/Apo/analysis', 'V287T/Apo/analysis'] #Indices to rank in order of closest activity to WT to Furthest file_path_close = ['../Apo_1SUG/analysis/1sug', '../Apo_dis/analysis', 'L192F/Apo/analysis', 'E276F/Apo/analysis', 'F280Y/Apo/analysis', 'L195F/Apo/analysis', 'F196A/Apo/analysis', 'V287T/Apo/analysis'] file_path_close_AD = ['L192F/AD/analysis', 'E276F/AD/analysis', 'F280Y/AD/analysis', 'L195F/AD/analysis', 'F196A/AD/analysis', 'V287T/AD/analysis'] file_path_close_BBR = ['L192F/BBR/analysis', 'E276F/BBR/analysis', 'F280Y/BBR/analysis', 'L195F/BBR/analysis', 'F196A/BBR/analysis', 'V287T/BBR/analysis'] sections = ['WPD', 'WPD_a3', 'SBL', 'beg', 'P', 'CYS', 'a3', 'a3_top', 'a4', 'a5', 'a6', 'a6_bot', 'a7', 'Q'] ref = ['open', 'closed', 'self', 'F196A', 'V287T'] #open all files RMSD_mean = np.zeros((len(file_path), len(sections))) #Mean for reference open RMSD_err = np.zeros((len(file_path), len(sections))) #SEM for reference open RMSD_mean_close = np.zeros((len(file_path_close), len(sections))) #Mean for reference closed RMSD_err_close = np.zeros((len(file_path_close), len(sections))) #SEM for reference closed RMSD_mean_close_AD = np.zeros((len(file_path_close_AD), len(sections))) #Mean for reference closed RMSD_err_close_AD = np.zeros((len(file_path_close_AD), len(sections))) #SEM for reference closed RMSD_mean_close_BBR = np.zeros((len(file_path_close_BBR), len(sections))) #Mean for reference closed RMSD_err_close_BBR = np.zeros((len(file_path_close_BBR), len(sections))) #SEM for reference closed #Save all rmsd values for a3_top, a4_top, and a6 helix rmsd_a3_1sug, rmsd_a3_apo, rmsd_a3_L192F, rmsd_a3_E276F, rmsd_a3_F280Y, rmsd_a3_L195F, rmsd_a3_F196A, rmsd_a3_V287T, rmsd_a3_L192F_AD, rmsd_a3_E276F_AD, rmsd_a3_F280Y_AD, rmsd_a3_L195F_AD, rmsd_a3_F196A_AD, rmsd_a3_V287T_AD, rmsd_a3_L192F_BBR, rmsd_a3_E276F_BBR, rmsd_a3_F280Y_BBR, rmsd_a3_L195F_BBR, rmsd_a3_F196A_BBR, rmsd_a3_V287T_BBR = rmsd_sect('a3', file_path_close, file_path_close_AD, file_path_close_BBR, ref, 1) rmsd_a3_top_1sug, rmsd_a3_top_apo, rmsd_a3_top_L192F, rmsd_a3_top_E276F, rmsd_a3_top_F280Y, rmsd_a3_top_L195F, rmsd_a3_top_F196A, rmsd_a3_top_V287T, rmsd_a3_top_L192F_AD, rmsd_a3_top_E276F_AD, rmsd_a3_top_F280Y_AD, rmsd_a3_top_L195F_AD, rmsd_a3_top_F196A_AD, rmsd_a3_top_V287T_AD, rmsd_a3_top_L192F_BBR, rmsd_a3_top_E276F_BBR, rmsd_a3_top_F280Y_BBR, rmsd_a3_top_L195F_BBR, rmsd_a3_top_F196A_BBR, rmsd_a3_top_V287T_BBR = rmsd_sect('a3_top', file_path_close, file_path_close_AD, file_path_close_BBR, ref, 1) rmsd_a4_1sug, rmsd_a4_apo, rmsd_a4_L192F, rmsd_a4_E276F, rmsd_a4_F280Y, rmsd_a4_L195F, rmsd_a4_F196A, rmsd_a4_V287T, rmsd_a4_L192F_AD, rmsd_a4_E276F_AD, rmsd_a4_F280Y_AD, rmsd_a4_L195F_AD, rmsd_a4_F196A_AD, rmsd_a4_V287T_AD, rmsd_a4_L192F_BBR, rmsd_a4_E276F_BBR, rmsd_a4_F280Y_BBR, rmsd_a4_L195F_BBR, rmsd_a4_F196A_BBR, rmsd_a4_V287T_BBR = rmsd_sect('a4', file_path_close, file_path_close_AD, file_path_close_BBR, ref, 1) rmsd_a6_1sug, rmsd_a6_apo, rmsd_a6_L192F, rmsd_a6_E276F, rmsd_a6_F280Y, rmsd_a6_L195F, rmsd_a6_F196A, rmsd_a6_V287T, rmsd_a6_L192F_AD, rmsd_a6_E276F_AD, rmsd_a6_F280Y_AD, rmsd_a6_L195F_AD, rmsd_a6_F196A_AD, rmsd_a6_V287T_AD, rmsd_a6_L192F_BBR, rmsd_a6_E276F_BBR, rmsd_a6_F280Y_BBR, rmsd_a6_L195F_BBR, rmsd_a6_F196A_BBR, rmsd_a6_V287T_BBR = rmsd_sect('a6', file_path_close, file_path_close_AD, file_path_close_BBR, ref, 1) rmsd_a6_bot_1sug, rmsd_a6_bot_apo, rmsd_a6_bot_L192F, rmsd_a6_bot_E276F, rmsd_a6_bot_F280Y, rmsd_a6_bot_L195F, rmsd_a6_bot_F196A, rmsd_a6_bot_V287T, rmsd_a6_bot_L192F_AD, rmsd_a6_bot_E276F_AD, rmsd_a6_bot_F280Y_AD, rmsd_a6_bot_L195F_AD, rmsd_a6_bot_F196A_AD, rmsd_a6_bot_V287T_AD, rmsd_a6_bot_L192F_BBR, rmsd_a6_bot_E276F_BBR, rmsd_a6_bot_F280Y_BBR, rmsd_a6_bot_L195F_BBR, rmsd_a6_bot_F196A_BBR, rmsd_a6_bot_V287T_BBR = rmsd_sect('a6_bot', file_path_close, file_path_close_AD, file_path_close_BBR, ref, 1) rmsd_CYS_1sug, rmsd_CYS_apo, rmsd_CYS_L192F, rmsd_CYS_E276F, rmsd_CYS_F280Y, rmsd_CYS_L195F, rmsd_CYS_F196A, rmsd_CYS_V287T, rmsd_CYS_L192F_AD, rmsd_CYS_E276F_AD, rmsd_CYS_F280Y_AD, rmsd_CYS_L195F_AD, rmsd_CYS_F196A_AD, rmsd_CYS_V287T_AD, rmsd_CYS_L192F_BBR, rmsd_CYS_E276F_BBR, rmsd_CYS_F280Y_BBR, rmsd_CYS_L195F_BBR, rmsd_CYS_F196A_BBR, rmsd_CYS_V287T_BBR = rmsd_sect('CYS', file_path_close, file_path_close_AD, file_path_close_BBR, ref, 1) rmsd_beg_1sug, rmsd_beg_apo, rmsd_beg_L192F, rmsd_beg_E276F, rmsd_beg_F280Y, rmsd_beg_L195F, rmsd_beg_F196A, rmsd_beg_V287T, rmsd_beg_L192F_AD, rmsd_beg_E276F_AD, rmsd_beg_F280Y_AD, rmsd_beg_L195F_AD, rmsd_beg_F196A_AD, rmsd_beg_V287T_AD, rmsd_beg_L192F_BBR, rmsd_beg_E276F_BBR, rmsd_beg_F280Y_BBR, rmsd_beg_L195F_BBR, rmsd_beg_F196A_BBR, rmsd_beg_V287T_BBR = rmsd_sect('beg', file_path_close, file_path_close_AD, file_path_close_BBR, ref, 1) for i in range(len(file_path_close)): for j in range(len(sections)): #Load Data for reference open rmsd_Apo = load_rms(file_path_close[i], sections[j], ref[1]) #Mean and SEM for each trajectory RMSD_mean_close[i][j] = np.mean(rmsd_Apo) RMSD_err_close[i][j] = stats.sem(rmsd_Apo) for i in range(len(file_path)): #Load Data for reference open rmsd = load_rms(file_path[i], sections[j], ref[0]) #Mean and SEM for each trajectory RMSD_mean[i][j] = np.mean(rmsd) RMSD_err[i][j] = stats.sem(rmsd) for i in range(len(file_path_close_AD)): #Load Data for reference open rmsd_AD = load_rms(file_path_close_AD[i], sections[j], ref[1]) RMSD_mean_close_AD[i][j] = np.mean(rmsd_AD) RMSD_err_close_AD[i][j] = stats.sem(rmsd_AD) rmsd_BBR = load_rms(file_path_close_BBR[i], sections[j], ref[1]) RMSD_mean_close_BBR[i][j] = np.mean(rmsd_BBR) RMSD_err_close_BBR[i][j] = stats.sem(rmsd_BBR) #Name Labels Label = ['WT', 'L192F', 'E276F', 'F280Y', 'L195F', 'F196A', 'V287T'] Label_close = ['WT Close', 'WT Open', 'L192F', 'E276F', 'F280Y', 'L195F', 'F196A', 'V287T'] Labels_mut = ['L192F', 'E276F', 'F280Y', 'L195F', 'F196A', 'V287T'] #Plot all compared to WT Open for i in range(len(sections)): plot_compare(RMSD_mean, RMSD_err, Label, sections, i, ref[0]) plot_compare(RMSD_mean_close, RMSD_err_close, Label_close, sections, i, ref[1]) #Determine % difference from WT RMSD_diff = np.zeros((len(sections), len(Labels_mut))) for i in range(1, len(Label)): n = i-1 for j in range(len(sections)): WT = RMSD_mean[0][j] Mut = RMSD_mean[i][j] RMSD_diff[j][n] = ((Mut-WT)/((Mut+WT)/2)) * 100 #Plot table comparing residue interactions to WT ax = plt.figure(figsize=(12, 6), frameon=False) # no visible frame ax = sns.heatmap(RMSD_diff, annot=False, cmap = 'jet', cbar = True, cbar_kws={'label': 'Percentage Difference from WT'}, vmin = 0, vmax = 150, xticklabels = Labels_mut, yticklabels = sections) #ax.add_artist(lines.Line2D([0, 20], [7, 7], color = 'black', linestyle= '--', linewidth = 4)) plt.title('Section RMSD Compared to WT') plt.savefig('mutate_RMSD_Apo.png') plt.close() RMSD_mean_mut = np.zeros((len(Label_close), len(sections))) #Mean for reference open RMSD_err_mut = np.zeros((len(Label_close), len(sections))) #SEM for reference open #Plot self and two references for i in [0, 2, 3, 4]: for j in range(len(sections)): #Load Data RMSD_mean_mut[0][j] = RMSD_mean_close[0][j] RMSD_err_mut[0][j] = RMSD_err_close[0][j] for k in range(1, len(Label_close)): rmsd = load_rms(file_path_close[k], sections[j], ref[i]) RMSD_mean_mut[k][j] = np.mean(rmsd) RMSD_err_mut[k][j] = stats.sem(rmsd) plot_compare(RMSD_mean_mut, RMSD_err_mut, Label_close, sections, j, ref[i]) #Plot Kernel DEnsity Estimate Plot #Compare a3_top for L192F, E276F, L195F, V287T a3_top_Apo_open_df = pd.DataFrame({'Apo Open':rmsd_a3_top_apo}) a3_top_Apo_close_df = pd.DataFrame({'Apo Closed': rmsd_a3_top_1sug}) a3_top_L192F_df = pd.DataFrame({'L192F': rmsd_a3_top_L192F}) a3_top_L195F_df = pd.DataFrame({'L195F': rmsd_a3_top_L195F}) a3_top_F280Y_df = pd.DataFrame({'F280Y': rmsd_a3_top_F280Y}) a3_top_E276F_df = pd.DataFrame({'E276F': rmsd_a3_top_E276F}) a3_top_F196A_df = pd.DataFrame({'F196A': rmsd_a3_top_F196A}) a3_top_V287T_df = pd.DataFrame({'V287T': rmsd_a3_top_V287T}) a3_top_L192F_AD_df = pd.DataFrame({'L192F AD': rmsd_a3_top_L192F_AD}) a3_top_L195F_AD_df = pd.DataFrame({'L195F AD': rmsd_a3_top_L195F_AD}) a3_top_F280Y_AD_df = pd.DataFrame({'F280Y AD': rmsd_a3_top_F280Y_AD}) a3_top_E276F_AD_df = pd.DataFrame({'E276F AD': rmsd_a3_top_E276F_AD}) a3_top_F196A_AD_df = pd.DataFrame({'F196A AD': rmsd_a3_top_F196A_AD}) a3_top_V287T_AD_df = pd.DataFrame({'V287T AD': rmsd_a3_top_V287T_AD}) a3_top_L192F_BBR_df = pd.DataFrame({'L192F BBR': rmsd_a3_top_L192F_BBR}) a3_top_L195F_BBR_df = pd.DataFrame({'L195F BBR': rmsd_a3_top_L195F_BBR}) a3_top_F280Y_BBR_df = pd.DataFrame({'F280Y BBR': rmsd_a3_top_F280Y_BBR}) a3_top_E276F_BBR_df = pd.DataFrame({'E276F BBR': rmsd_a3_top_E276F_BBR}) a3_top_F196A_BBR_df = pd.DataFrame({'F196A BBR': rmsd_a3_top_F196A_BBR}) a3_top_V287T_BBR_df = pd.DataFrame({'V287T BBR': rmsd_a3_top_V287T_BBR}) df = pd.concat([a3_top_Apo_open_df, a3_top_Apo_close_df, a3_top_L192F_df, a3_top_E276F_df, a3_top_V287T_df, a3_top_F196A_df, a3_top_F280Y_df, a3_top_L195F_df]) plot_kernel_mut(df, r'Top of $\alpha$3', 'a3_top_all', 0, 2) df = pd.concat([a3_top_L192F_df, a3_top_E276F_df, a3_top_V287T_df, a3_top_F196A_df, a3_top_F280Y_df, a3_top_L195F_df]) plot_kernel_mut(df, r'Top of $\alpha$3', 'a3_top_mut_all', 0, 2) df = pd.concat([a3_top_Apo_open_df, a3_top_Apo_close_df, a3_top_V287T_df, a3_top_F280Y_df]) plot_kernel_mut(df, r'Top of $\alpha$3', 'a3_top_extr', 0, 2) plot_kernel_cmpr_lig(a3_top_L192F_df, a3_top_L192F_AD_df, a3_top_L192F_BBR_df, 'L192F', sections[7], 7) plot_kernel_cmpr_lig(a3_top_L195F_df, a3_top_L195F_AD_df, a3_top_L195F_BBR_df, 'L195F', sections[7], 7) plot_kernel_cmpr_lig(a3_top_E276F_df, a3_top_E276F_AD_df, a3_top_E276F_BBR_df, 'E276F', sections[7], 7) plot_kernel_cmpr_lig(a3_top_V287T_df, a3_top_V287T_AD_df, a3_top_V287T_BBR_df, 'V287T', sections[7], 7) #Compare a3_top for L192F, E276F, L195F, V287T a3_Apo_open_df = pd.DataFrame({'Apo Open':rmsd_a3_apo}) a3_Apo_close_df = pd.DataFrame({'Apo Closed': rmsd_a3_1sug}) a3_L192F_df = pd.DataFrame({'L192F': rmsd_a3_L192F}) a3_L195F_df = pd.DataFrame({'L195F': rmsd_a3_L195F}) a3_F280Y_df = pd.DataFrame({'F280Y': rmsd_a3_F280Y}) a3_E276F_df = pd.DataFrame({'E276F': rmsd_a3_E276F}) a3_F196A_df = pd.DataFrame({'F196A': rmsd_a3_F196A}) a3_V287T_df = pd.DataFrame({'V287T': rmsd_a3_V287T}) a3_L192F_AD_df = pd.DataFrame({'L192F AD': rmsd_a3_L192F_AD}) a3_L195F_AD_df = pd.DataFrame({'L195F AD': rmsd_a3_L195F_AD}) a3_F280Y_AD_df = pd.DataFrame({'F280Y AD': rmsd_a3_F280Y_AD}) a3_E276F_AD_df = pd.DataFrame({'E276F AD': rmsd_a3_E276F_AD}) a3_F196A_AD_df = pd.DataFrame({'F196A AD': rmsd_a3_F196A_AD}) a3_V287T_AD_df = pd.DataFrame({'V287T AD': rmsd_a3_V287T_AD}) a3_L192F_BBR_df = pd.DataFrame({'L192F BBR': rmsd_a3_L192F_BBR}) a3_L195F_BBR_df = pd.DataFrame({'L195F BBR': rmsd_a3_L195F_BBR}) a3_F280Y_BBR_df = pd.DataFrame({'F280Y BBR': rmsd_a3_F280Y_BBR}) a3_E276F_BBR_df = pd.DataFrame({'E276F BBR': rmsd_a3_E276F_BBR}) a3_F196A_BBR_df = pd.DataFrame({'F196A BBR': rmsd_a3_F196A_BBR}) a3_V287T_BBR_df = pd.DataFrame({'V287T BBR': rmsd_a3_V287T_BBR}) df = pd.concat([a3_Apo_open_df, a3_Apo_close_df, a3_L192F_df, a3_E276F_df, a3_V287T_df, a3_F196A_df, a3_F280Y_df, a3_L195F_df]) plot_kernel_mut(df, r'$\alpha$3', 'a3_all', 0, 2) df = pd.concat([a3_L192F_df, a3_E276F_df, a3_V287T_df, a3_F196A_df, a3_F280Y_df, a3_L195F_df]) plot_kernel_mut(df, r'$\alpha$3', 'a3_mut_all', 0, 2) df = pd.concat([a3_Apo_open_df, a3_Apo_close_df, a3_V287T_df, a3_F280Y_df]) plot_kernel_mut(df, r'$\alpha$3', 'a3_mut_extr', 0, 2) plot_kernel_cmpr_lig(a3_L192F_df, a3_L192F_AD_df, a3_L192F_BBR_df, 'L192F', sections[6], 6) plot_kernel_cmpr_lig(a3_L195F_df, a3_L195F_AD_df, a3_L195F_BBR_df, 'L195F', sections[6], 6) plot_kernel_cmpr_lig(a3_E276F_df, a3_E276F_AD_df, a3_E276F_BBR_df, 'E276F', sections[6], 6) plot_kernel_cmpr_lig(a3_V287T_df, a3_V287T_AD_df, a3_V287T_BBR_df, 'V287T', sections[6], 6) #Compare a4 for L192F, E276F, L195F, V287T a4_Apo_open_df = pd.DataFrame({'Apo Open':rmsd_a4_apo}) a4_Apo_close_df = pd.DataFrame({'Apo Closed': rmsd_a4_1sug}) a4_L192F_df = pd.DataFrame({'L192F': rmsd_a4_L192F}) a4_L195F_df = pd.DataFrame({'L195F': rmsd_a4_L195F}) a4_F280Y_df = pd.DataFrame({'F280Y': rmsd_a4_F280Y}) a4_E276F_df = pd.DataFrame({'E276F': rmsd_a4_E276F}) a4_F196A_df = pd.DataFrame({'F196A': rmsd_a4_F196A}) a4_V287T_df = pd.DataFrame({'V287T': rmsd_a4_V287T}) a4_L192F_AD_df = pd.DataFrame({'L192F AD': rmsd_a4_L192F_AD}) a4_L195F_AD_df = pd.DataFrame({'L195F AD': rmsd_a4_L195F_AD}) a4_F280Y_AD_df = pd.DataFrame({'F280Y AD': rmsd_a4_F280Y_AD}) a4_E276F_AD_df = pd.DataFrame({'E276F AD': rmsd_a4_E276F_AD}) a4_F196A_AD_df = pd.DataFrame({'F196A AD': rmsd_a4_F196A_AD}) a4_V287T_AD_df = pd.DataFrame({'V287T AD': rmsd_a4_V287T_AD}) a4_L192F_BBR_df = pd.DataFrame({'L192F BBR': rmsd_a4_L192F_BBR}) a4_L195F_BBR_df = pd.DataFrame({'L195F BBR': rmsd_a4_L195F_BBR}) a4_F280Y_BBR_df = pd.DataFrame({'F280Y BBR': rmsd_a4_F280Y_BBR}) a4_E276F_BBR_df = pd.DataFrame({'E276F BBR': rmsd_a4_E276F_BBR}) a4_F196A_BBR_df = pd.DataFrame({'F196A BBR': rmsd_a4_F196A_BBR}) a4_V287T_BBR_df = pd.DataFrame({'V287T BBR': rmsd_a4_V287T_BBR}) df = pd.concat([a4_Apo_open_df, a4_Apo_close_df, a4_L192F_df, a4_E276F_df, a4_V287T_df, a4_F196A_df, a4_F280Y_df, a4_L195F_df]) plot_kernel_mut(df, r'$\alpha$4', 'a4_all', 0, 1.5) df = pd.concat([a4_L192F_df, a4_E276F_df, a4_V287T_df, a4_F196A_df, a4_F280Y_df, a4_L195F_df]) plot_kernel_mut(df, r'$\alpha$4', 'a4_mut_all',0, 1.5) df = pd.concat([a4_Apo_open_df, a4_Apo_close_df, a4_V287T_df, a4_F196A_df, a4_F280Y_df]) plot_kernel_mut(df, r'$\alpha$4', 'a4', 0, 1.5) plot_kernel_cmpr_lig(a4_F196A_df, a4_F196A_AD_df, a4_F196A_BBR_df, 'F196A', sections[8], 8) plot_kernel_cmpr_lig(a4_F280Y_df, a4_F280Y_AD_df, a4_F280Y_BBR_df, 'F280Y', sections[8], 8) #a4_Apo_open_df = pd.DataFrame({'Apo Open':rmsd_a4_apo_rapo}) #a4_Apo_close_df = pd.DataFrame({'Apo Closed': rmsd_a4_1sug_rapo}) #a4_F196A_df = pd.DataFrame({'F196A': rmsd_a4_F196A_rapo}) #a4_F196A_AD_df = pd.DataFrame({'F196A AD': rmsd_a4_F196A_AD_rapo}) #a4_F196A_BBR_df = pd.DataFrame({'F196A BBR': rmsd_a4_F196A_BBR_rapo}) #df = pd.concat([a4_Apo_open_df, a4_Apo_close_df, a4_F196A_df, a4_F196A_AD_df, a4_F196A_BBR_df]) #ax = plt.figure(figsize=(12, 6), frameon=False) # no visible frame #sns.kdeplot(data = df, fill=True, alpha=0.5, common_norm = True, common_grid = True) #plt.xlabel(r'RMSD($\AA$)') #plt.ylabel(r'Normalized Density') #plt.title(r'$\alpha$-4 RMSD Compared to Apo F196A') #plt.savefig('mutate_RMSD_a4_ref_F196A.png') #plt.close() #a6 comparison a6_Apo_open_df = pd.DataFrame({'Apo Open':rmsd_a6_apo}) a6_Apo_close_df = pd.DataFrame({'Apo Closed': rmsd_a6_1sug}) a6_L192F_df = pd.DataFrame({'L192F': rmsd_a6_L192F}) a6_L195F_df = pd.DataFrame({'L195F': rmsd_a6_L195F}) a6_F280Y_df = pd.DataFrame({'F280Y': rmsd_a6_F280Y}) a6_E276F_df = pd.DataFrame({'E276F': rmsd_a6_E276F}) a6_F196A_df = pd.DataFrame({'F196A': rmsd_a6_F196A}) a6_V287T_df = pd.DataFrame({'V287T': rmsd_a6_V287T}) a6_L192F_AD_df = pd.DataFrame({'L192F AD': rmsd_a6_L192F_AD}) a6_L195F_AD_df = pd.DataFrame({'L195F AD': rmsd_a6_L195F_AD}) a6_F280Y_AD_df = pd.DataFrame({'F280Y AD': rmsd_a6_F280Y_AD}) a6_E276F_AD_df = pd.DataFrame({'E276F AD': rmsd_a6_E276F_AD}) a6_F196A_AD_df = pd.DataFrame({'F196A AD': rmsd_a6_F196A_AD}) a6_V287T_AD_df = pd.DataFrame({'V287T AD': rmsd_a6_V287T_AD}) a6_L192F_BBR_df = pd.DataFrame({'L192F BBR': rmsd_a6_L192F_BBR}) a6_L195F_BBR_df = pd.DataFrame({'L195F BBR': rmsd_a6_L195F_BBR}) a6_F280Y_BBR_df = pd.DataFrame({'F280Y BBR': rmsd_a6_F280Y_BBR}) a6_E276F_BBR_df = pd.DataFrame({'E276F BBR': rmsd_a6_E276F_BBR}) a6_F196A_BBR_df = pd.DataFrame({'F196A BBR': rmsd_a6_F196A_BBR}) a6_V287T_BBR_df = pd.DataFrame({'V287T BBR': rmsd_a6_V287T_BBR}) df = pd.concat([a6_Apo_open_df, a6_Apo_close_df, a6_L192F_df, a6_E276F_df, a6_V287T_df, a6_F196A_df, a6_F280Y_df, a6_L195F_df]) plot_kernel_mut(df, r'$\alpha$6', 'a6_all', 0, 2) df = pd.concat([a6_L192F_df, a6_E276F_df, a6_V287T_df, a6_F196A_df, a6_F280Y_df, a6_L195F_df]) plot_kernel_mut(df, r'$\alpha$6', 'a6_mut_all', 0, 2) plot_kernel_cmpr_lig(a6_L192F_df, a6_L192F_AD_df, a6_L192F_BBR_df, 'L192F', sections[11], 11) plot_kernel_cmpr_lig(a6_L195F_df, a6_L195F_AD_df, a6_L195F_BBR_df, 'L195F', sections[11], 11) plot_kernel_cmpr_lig(a6_E276F_df, a6_E276F_AD_df, a6_E276F_BBR_df, 'E276F', sections[11], 11) plot_kernel_cmpr_lig(a6_V287T_df, a6_V287T_AD_df, a6_V287T_BBR_df, 'V287T', sections[11], 11) #Just CYS215 cys_Apo_open_df = pd.DataFrame({'Apo Open':rmsd_CYS_apo}) cys_Apo_close_df = pd.DataFrame({'Apo Closed': rmsd_CYS_1sug}) cys_L192F_df = pd.DataFrame({'L192F': rmsd_CYS_L192F}) cys_L195F_df = pd.DataFrame({'L195F': rmsd_CYS_L195F}) cys_F280Y_df = pd.DataFrame({'F280Y': rmsd_CYS_F280Y}) cys_E276F_df = pd.DataFrame({'E276F': rmsd_CYS_E276F}) cys_F196A_df = pd.DataFrame({'F196A': rmsd_CYS_F196A}) cys_V287T_df = pd.DataFrame({'V287T': rmsd_CYS_V287T}) df = pd.concat([cys_Apo_open_df, cys_Apo_close_df, cys_L192F_df, cys_E276F_df, cys_V287T_df, cys_F196A_df, cys_F280Y_df, cys_L195F_df]) plot_kernel_mut(df, 'CYS215', 'cys_all', 0, 1) df = pd.concat([cys_L192F_df, cys_E276F_df, cys_V287T_df, cys_F196A_df, cys_F280Y_df, cys_L195F_df]) plot_kernel_mut(df, 'CYS215', 'cys_mut_all', 0, 1) rmsd_cys = [rmsd_CYS_1sug, rmsd_CYS_apo, rmsd_CYS_F196A] ax = plt.figure(figsize=(12, 6), frameon=False) # no visible frame sns.kdeplot(data = rmsd_cys, fill=True, alpha=0.5) plt.title('CYS215 RMSD Compared to WT Closed') plt.savefig('mutate_RMSD_cys_F196A.png') plt.close() #BEG loop (L1) beg_Apo_open_df = pd.DataFrame({'Apo Open':rmsd_beg_apo}) beg_Apo_close_df = pd.DataFrame({'Apo Closed': rmsd_beg_1sug}) beg_L192F_df = pd.DataFrame({'L192F': rmsd_beg_L192F}) beg_L195F_df = pd.DataFrame({'L195F': rmsd_beg_L195F}) beg_F280Y_df = pd.DataFrame({'F280Y': rmsd_beg_F280Y}) beg_E276F_df = pd.DataFrame({'E276F': rmsd_beg_E276F}) beg_F196A_df = pd.DataFrame({'F196A': rmsd_beg_F196A}) beg_V287T_df = pd.DataFrame({'V287T': rmsd_beg_V287T}) df = pd.concat([beg_Apo_open_df, beg_Apo_close_df, beg_L192F_df, beg_E276F_df, beg_V287T_df, beg_F196A_df, beg_F280Y_df, beg_L195F_df]) plot_kernel_mut(df, 'L1', 'beg_all', 0, 4) df = pd.concat([beg_L192F_df, beg_E276F_df, beg_V287T_df, beg_F196A_df, beg_F280Y_df, beg_L195F_df]) plot_kernel_mut(df, 'L1', 'beg_mut_all', 0, 4) #Determine p-values for each of the sections of focus file_p = open('p_values_mut.txt', 'w') p = np.zeros((5, 7)) st, p[0,0] = stats.ttest_ind(rmsd_a3_top_apo, rmsd_a3_top_L192F, equal_var = False) #Welch's t-test st, p[0,1] = stats.ttest_ind(rmsd_a3_top_apo, rmsd_a3_top_E276F, equal_var = False) #Welch's t-test st, p[0,2] = stats.ttest_ind(rmsd_a3_top_apo, rmsd_a3_top_F280Y, equal_var = False) #Welch's t-test st, p[0,3] = stats.ttest_ind(rmsd_a3_top_apo, rmsd_a3_top_L195F, equal_var = False) #Welch's t-test st, p[0,4] = stats.ttest_ind(rmsd_a3_top_apo, rmsd_a3_top_F196A, equal_var = False) #Welch's t-test st, p[0,5] = stats.ttest_ind(rmsd_a3_top_apo, rmsd_a3_top_V287T, equal_var = False) #Welch's t-test st, p[0,6] = stats.ttest_ind(rmsd_a3_top_apo, rmsd_a3_top_1sug, equal_var = False) #Welch's t-test st, p[1,0] = stats.ttest_ind(rmsd_a3_apo, rmsd_a3_L192F, equal_var = False) #Welch's t-test st, p[1,1] = stats.ttest_ind(rmsd_a3_apo, rmsd_a3_E276F, equal_var = False) #Welch's t-test st, p[1,2] = stats.ttest_ind(rmsd_a3_apo, rmsd_a3_F280Y, equal_var = False) #Welch's t-test st, p[1,3] = stats.ttest_ind(rmsd_a3_apo, rmsd_a3_L195F, equal_var = False) #Welch's t-test st, p[1,4] = stats.ttest_ind(rmsd_a3_apo, rmsd_a3_F196A, equal_var = False) #Welch's t-test st, p[1,5] = stats.ttest_ind(rmsd_a3_apo, rmsd_a3_V287T, equal_var = False) #Welch's t-test st, p[1,6] = stats.ttest_ind(rmsd_a3_apo, rmsd_a3_1sug, equal_var = False) #Welch's t-test st, p[1,0] = stats.ttest_ind(rmsd_a4_apo, rmsd_a4_L192F, equal_var = False) #Welch's t-test st, p[1,1] = stats.ttest_ind(rmsd_a4_apo, rmsd_a4_E276F, equal_var = False) #Welch's t-test st, p[1,2] = stats.ttest_ind(rmsd_a4_apo, rmsd_a4_F280Y, equal_var = False) #Welch's t-test st, p[1,3] = stats.ttest_ind(rmsd_a4_apo, rmsd_a4_L195F, equal_var = False) #Welch's t-test st, p[1,4] = stats.ttest_ind(rmsd_a4_apo, rmsd_a4_F196A, equal_var = False) #Welch's t-test st, p[1,5] = stats.ttest_ind(rmsd_a4_apo, rmsd_a4_V287T, equal_var = False) #Welch's t-test st, p[1,6] = stats.ttest_ind(rmsd_a4_apo, rmsd_a4_1sug, equal_var = False) #Welch's t-test st, p[2,0] = stats.ttest_ind(rmsd_a6_bot_apo, rmsd_a6_bot_L192F, equal_var = False) #Welch's t-test st, p[2,1] = stats.ttest_ind(rmsd_a6_bot_apo, rmsd_a6_bot_E276F, equal_var = False) #Welch's t-test st, p[2,2] = stats.ttest_ind(rmsd_a6_bot_apo, rmsd_a6_bot_F280Y, equal_var = False) #Welch's t-test st, p[2,3] = stats.ttest_ind(rmsd_a6_bot_apo, rmsd_a6_bot_L195F, equal_var = False) #Welch's t-test st, p[2,4] = stats.ttest_ind(rmsd_a6_bot_apo, rmsd_a6_bot_F196A, equal_var = False) #Welch's t-test st, p[2,5] = stats.ttest_ind(rmsd_a6_bot_apo, rmsd_a6_bot_V287T, equal_var = False) #Welch's t-test st, p[2,6] = stats.ttest_ind(rmsd_a6_bot_apo, rmsd_a6_bot_1sug, equal_var = False) #Welch's t-test st, p[3,0] = stats.ttest_ind(rmsd_CYS_apo, rmsd_CYS_L192F, equal_var = False) #Welch's t-test st, p[3,1] = stats.ttest_ind(rmsd_CYS_apo, rmsd_CYS_E276F, equal_var = False) #Welch's t-test st, p[3,2] = stats.ttest_ind(rmsd_CYS_apo, rmsd_CYS_F280Y, equal_var = False) #Welch's t-test st, p[3,3] = stats.ttest_ind(rmsd_CYS_apo, rmsd_CYS_L195F, equal_var = False) #Welch's t-test st, p[3,4] = stats.ttest_ind(rmsd_CYS_apo, rmsd_CYS_F196A, equal_var = False) #Welch's t-test st, p[3,5] = stats.ttest_ind(rmsd_CYS_apo, rmsd_CYS_V287T, equal_var = False) #Welch's t-test st, p[3,6] = stats.ttest_ind(rmsd_CYS_apo, rmsd_CYS_1sug, equal_var = False) #Welch's t-test sections_mini = ['a3_top', 'a3', 'a4', 'a6_bot'] Labels_mut = ['L192F', 'E276F', 'F280Y', 'L195F', 'F196A', 'V287T', 'Apo Closed'] file_p.write('P values of RMSD with Apo closed reference structure Relative to Apo Open \n') for i in range(len(sections_mini)): file_p.write(str(sections_mini[i]) + '\n') for j in range(len(Labels_mut)): file_p.write(Labels_mut[j] + ': ' + str(p[i,j]) + '\n') p = np.zeros((5, 12)) st, p[0,0] = stats.ttest_ind(rmsd_a3_top_L192F, rmsd_a3_top_L192F_AD, equal_var = False) #Welch's t-test st, p[0,1] = stats.ttest_ind(rmsd_a3_top_E276F, rmsd_a3_top_E276F_AD, equal_var = False) #Welch's t-test st, p[0,2] = stats.ttest_ind(rmsd_a3_top_F280Y, rmsd_a3_top_F280Y_AD, equal_var = False) #Welch's t-test st, p[0,3] = stats.ttest_ind(rmsd_a3_top_L195F, rmsd_a3_top_L195F_AD, equal_var = False) #Welch's t-test st, p[0,4] = stats.ttest_ind(rmsd_a3_top_F196A, rmsd_a3_top_F196A_AD, equal_var = False) #Welch's t-test st, p[0,5] = stats.ttest_ind(rmsd_a3_top_V287T, rmsd_a3_top_V287T_AD, equal_var = False) #Welch's t-test st, p[0,6] = stats.ttest_ind(rmsd_a3_top_L192F, rmsd_a3_top_L192F_BBR, equal_var = False) #Welch's t-test st, p[0,7] = stats.ttest_ind(rmsd_a3_top_E276F, rmsd_a3_top_E276F_BBR, equal_var = False) #Welch's t-test st, p[0,8] = stats.ttest_ind(rmsd_a3_top_F280Y, rmsd_a3_top_F280Y_BBR, equal_var = False) #Welch's t-test st, p[0,9] = stats.ttest_ind(rmsd_a3_top_L195F, rmsd_a3_top_L195F_BBR, equal_var = False) #Welch's t-test st, p[0,10] = stats.ttest_ind(rmsd_a3_top_F196A, rmsd_a3_top_F196A_BBR, equal_var = False) #Welch's t-test st, p[0,11] = stats.ttest_ind(rmsd_a3_top_V287T, rmsd_a3_top_V287T_BBR, equal_var = False) #Welch's t-test st, p[1,0] = stats.ttest_ind(rmsd_a3_L192F, rmsd_a3_L192F_AD, equal_var = False) #Welch's t-test st, p[1,1] = stats.ttest_ind(rmsd_a3_E276F, rmsd_a3_E276F_AD, equal_var = False) #Welch's t-test st, p[1,2] = stats.ttest_ind(rmsd_a3_F280Y, rmsd_a3_F280Y_AD, equal_var = False) #Welch's t-test st, p[1,3] = stats.ttest_ind(rmsd_a3_L195F, rmsd_a3_L195F_AD, equal_var = False) #Welch's t-test st, p[1,4] = stats.ttest_ind(rmsd_a3_F196A, rmsd_a3_F196A_AD, equal_var = False) #Welch's t-test st, p[1,5] = stats.ttest_ind(rmsd_a3_V287T, rmsd_a3_V287T_AD, equal_var = False) #Welch's t-test st, p[1,6] = stats.ttest_ind(rmsd_a3_L192F, rmsd_a3_L192F_BBR, equal_var = False) #Welch's t-test st, p[1,7] = stats.ttest_ind(rmsd_a3_E276F, rmsd_a3_E276F_BBR, equal_var = False) #Welch's t-test st, p[1,8] = stats.ttest_ind(rmsd_a3_F280Y, rmsd_a3_F280Y_BBR, equal_var = False) #Welch's t-test st, p[1,9] = stats.ttest_ind(rmsd_a3_L195F, rmsd_a3_L195F_BBR, equal_var = False) #Welch's t-test st, p[1,10] = stats.ttest_ind(rmsd_a3_F196A, rmsd_a3_F196A_BBR, equal_var = False) #Welch's t-test st, p[1,11] = stats.ttest_ind(rmsd_a3_V287T, rmsd_a3_V287T_BBR, equal_var = False) #Welch's t-test st, p[2,0] = stats.ttest_ind(rmsd_a4_L192F, rmsd_a4_L192F_AD, equal_var = False) #Welch's t-test st, p[2,1] = stats.ttest_ind(rmsd_a4_E276F, rmsd_a4_E276F_AD, equal_var = False) #Welch's t-test st, p[2,2] = stats.ttest_ind(rmsd_a4_F280Y, rmsd_a4_F280Y_AD, equal_var = False) #Welch's t-test st, p[2,3] = stats.ttest_ind(rmsd_a4_L195F, rmsd_a4_L195F_AD, equal_var = False) #Welch's t-test st, p[2,4] = stats.ttest_ind(rmsd_a4_F196A, rmsd_a4_F196A_AD, equal_var = False) #Welch's t-test st, p[2,5] = stats.ttest_ind(rmsd_a4_V287T, rmsd_a4_V287T_AD, equal_var = False) #Welch's t-test st, p[2,6] = stats.ttest_ind(rmsd_a4_L192F, rmsd_a4_L192F_BBR, equal_var = False) #Welch's t-test st, p[2,7] = stats.ttest_ind(rmsd_a4_E276F, rmsd_a4_E276F_BBR, equal_var = False) #Welch's t-test st, p[2,8] = stats.ttest_ind(rmsd_a4_F280Y, rmsd_a4_F280Y_BBR, equal_var = False) #Welch's t-test st, p[2,9] = stats.ttest_ind(rmsd_a4_L195F, rmsd_a4_L195F_BBR, equal_var = False) #Welch's t-test st, p[2,10] = stats.ttest_ind(rmsd_a4_F196A, rmsd_a4_F196A_BBR, equal_var = False) #Welch's t-test st, p[2,11] = stats.ttest_ind(rmsd_a4_V287T, rmsd_a4_V287T_BBR, equal_var = False) #Welch's t-test sections_mini = ['a3_top', 'a3', 'a4'] Labels_mut = ['L192F', 'E276F', 'F280Y', 'L195F', 'F196A', 'V287T'] file_p.write('P values of RMSD with Apo closed reference structure Relative to Apo Mut \n') for i in range(len(sections_mini)): file_p.write(str(sections_mini[i]) + '\n') for j in range(len(Labels_mut)): n = j+6 file_p.write(Labels_mut[j] + ' AD: ' + str(p[i,j]) + '\n') file_p.write(Labels_mut[j] + ' BBR: ' + str(p[i,n]) + '\n')
ajfriedman22/PTP1B
compare_mutant_scripts/rmsd_mut_compare.py
rmsd_mut_compare.py
py
30,484
python
en
code
0
github-code
6
[ { "api_name": "numpy.zeros", "line_number": 13, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 25, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 26, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 26, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 31, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 31, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.errorbar", "line_number": 32, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 32, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 34, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 34, "usage_type": "name" }, { "api_name": "seaborn.kdeplot", "line_number": 37, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.setp", "line_number": 38, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 38, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 39, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 39, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 40, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 40, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 41, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 41, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 42, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 42, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 43, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 43, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 44, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 44, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 45, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 45, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 46, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 46, "usage_type": "name" }, { "api_name": "pandas.concat", "line_number": 49, "usage_type": "call" }, { "api_name": "seaborn.kdeplot", "line_number": 51, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 52, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 52, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 53, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 53, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 54, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 54, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 55, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 55, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 56, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 56, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 94, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 95, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 96, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 97, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 98, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 99, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 100, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 101, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 124, "usage_type": "call" }, { "api_name": "scipy.stats.sem", "line_number": 125, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 125, "usage_type": "name" }, { "api_name": "numpy.mean", "line_number": 131, "usage_type": "call" }, { "api_name": "scipy.stats.sem", "line_number": 132, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 132, "usage_type": "name" }, { "api_name": "numpy.mean", "line_number": 137, "usage_type": "call" }, { "api_name": "scipy.stats.sem", "line_number": 138, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 138, "usage_type": "name" }, { "api_name": "numpy.mean", "line_number": 141, "usage_type": "call" }, { "api_name": "scipy.stats.sem", "line_number": 142, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 142, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 155, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 164, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 164, "usage_type": "name" }, { "api_name": "seaborn.heatmap", "line_number": 165, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.title", "line_number": 167, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 167, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 168, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 168, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 169, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 169, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 171, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 172, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 182, "usage_type": "call" }, { "api_name": "scipy.stats.sem", "line_number": 183, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 183, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 188, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 189, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 190, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 191, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 192, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 193, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 194, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 195, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 196, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 197, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 198, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 199, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 200, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 201, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 202, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 203, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 204, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 205, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 206, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 207, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 209, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 212, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 215, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 224, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 225, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 226, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 227, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 228, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 229, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 230, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 231, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 232, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 233, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 234, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 235, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 236, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 237, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 238, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 239, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 240, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 241, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 242, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 243, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 245, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 248, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 251, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 260, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 261, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 262, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 263, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 264, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 265, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 266, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 267, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 268, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 269, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 270, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 271, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 272, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 273, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 274, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 275, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 276, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 277, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 278, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 279, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 281, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 284, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 287, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 310, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 311, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 312, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 313, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 314, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 315, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 316, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 317, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 318, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 319, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 320, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 321, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 322, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 323, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 324, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 325, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 326, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 327, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 328, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 329, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 331, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 334, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 343, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 344, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 345, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 346, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 347, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 348, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 349, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 350, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 352, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 355, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 359, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 359, "usage_type": "name" }, { "api_name": "seaborn.kdeplot", "line_number": 360, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.title", "line_number": 361, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 361, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 362, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 362, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 363, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 363, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 366, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 367, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 368, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 369, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 370, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 371, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 372, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 373, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 375, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 378, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 383, "usage_type": "call" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 384, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 384, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 385, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 385, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 386, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 386, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 387, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 387, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 388, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 388, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 389, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 389, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 390, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 390, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 392, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 392, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 393, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 393, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 394, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 394, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 395, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 395, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 396, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 396, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 397, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 397, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 398, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 398, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 400, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 400, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 401, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 401, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 402, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 402, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 403, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 403, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 404, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 404, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 405, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 405, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 406, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 406, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 408, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 408, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 409, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 409, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 410, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 410, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 411, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 411, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 412, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 412, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 413, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 413, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 414, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 414, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 416, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 416, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 417, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 417, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 418, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 418, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 419, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 419, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 420, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 420, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 421, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 421, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 422, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 422, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 432, "usage_type": "call" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 433, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 433, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 434, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 434, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 435, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 435, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 436, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 436, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 437, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 437, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 438, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 438, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 439, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 439, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 440, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 440, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 441, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 441, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 442, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 442, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 443, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 443, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 444, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 444, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 446, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 446, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 447, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 447, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 448, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 448, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 449, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 449, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 450, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 450, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 451, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 451, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 452, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 452, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 453, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 453, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 454, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 454, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 455, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 455, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 456, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 456, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 457, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 457, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 459, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 459, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 460, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 460, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 461, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 461, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 462, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 462, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 463, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 463, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 464, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 464, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 465, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 465, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 466, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 466, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 467, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 467, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 468, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 468, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 469, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 469, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 470, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 470, "usage_type": "name" } ]
8266532966
import logging import shutil import sys import click from cekit.cache.artifact import ArtifactCache from cekit.config import Config from cekit.crypto import SUPPORTED_HASH_ALGORITHMS from cekit.descriptor.resource import create_resource from cekit.log import setup_logging from cekit.tools import Map from cekit.version import __version__ setup_logging() LOGGER = logging.getLogger("cekit") CONFIG = Config() @click.group(context_settings=dict(max_content_width=100)) @click.option("-v", "--verbose", help="Enable verbose output.", is_flag=True) @click.option( "--config", metavar="PATH", help="Path to configuration file.", default="~/.cekit/config", show_default=True, ) @click.option( "--work-dir", metavar="PATH", help="Location of the working directory.", default="~/.cekit", show_default=True, ) @click.version_option(message="%(version)s", version=__version__) def cli(config, verbose, work_dir): pass @cli.command(name="ls", short_help="List cached artifacts") def ls(): CacheCli.prepare().ls() @cli.command(name="add", short_help="Add artifact to cache") @click.argument("location", metavar="LOCATION") @click.option("--md5", metavar="CHECKSUM", help="The md5 checksum of the artifact.") @click.option("--sha1", metavar="CHECKSUM", help="The sha1 checksum of the artifact.") @click.option( "--sha256", metavar="CHECKSUM", help="The sha256 checksum of the artifact." ) @click.option( "--sha512", metavar="CHECKSUM", help="The sha512 checksum of the artifact." ) def add(location, md5, sha1, sha256, sha512): if not (md5 or sha1 or sha256 or sha512): raise click.UsageError("At least one checksum must be provided") CacheCli.prepare().add(location, md5, sha1, sha256, sha512) @cli.command(name="rm", short_help="Remove artifact from cache") @click.argument("uuid", metavar="UUID") def rm(uuid): CacheCli.prepare().rm(uuid) @cli.command(name="clear", short_help="Remove all artifacts from the cache") def clear(): CacheCli.prepare().clear() class CacheCli: @staticmethod def prepare(): """Returns an initialized object of CacheCli""" return CacheCli(Map(click.get_current_context().parent.params)) def __init__(self, args): # TODO: logging is used only when adding the artifact, we need to find out if it would be possible to do it better if args.verbose: LOGGER.setLevel(logging.DEBUG) else: LOGGER.setLevel(logging.INFO) CONFIG.configure(args.config, {"work_dir": args.work_dir}) def add(self, location, md5, sha1, sha256, sha512): artifact_cache = ArtifactCache() resource = {} resource["url"] = location if md5: resource["md5"] = md5 if sha1: resource["sha1"] = sha1 if sha256: resource["sha256"] = sha256 if sha512: resource["sha512"] = sha512 artifact = create_resource(resource) cached = artifact_cache.cached(artifact) if cached: click.echo("Artifact {} is already cached!".format(location)) sys.exit(0) try: artifact_id = artifact_cache.add(artifact) click.echo( "Artifact {} cached with UUID '{}'".format(location, artifact_id) ) except Exception as ex: click.secho( "Cannot cache artifact {}: {}".format(location, str(ex)), fg="red" ) sys.exit(1) def ls(self): artifact_cache = ArtifactCache() artifacts = artifact_cache.list() if artifacts: for artifact_filename, artifact in artifacts.items(): click.echo( "\n{}:".format( click.style( artifact_filename.split(".")[0], fg="green", bold=True ) ) ) for alg in SUPPORTED_HASH_ALGORITHMS: if alg in artifact and artifact[alg]: click.echo( " {}: {}".format( click.style(alg, bold=True), artifact[alg] ) ) if artifact["names"]: click.echo(" {}:".format(click.style("names", bold=True))) for name in artifact["names"]: click.echo(" - %s" % name) else: click.echo("No artifacts cached!") def rm(self, uuid: str): artifact_cache = ArtifactCache() try: artifact_cache.delete(uuid) click.echo("Artifact with UUID '{}' removed".format(uuid)) except Exception: click.secho( "Artifact with UUID '{}' doesn't exists in the cache".format(uuid), fg="yellow", ) sys.exit(1) def clear(self): """ Removes the artifact cache directory with all artifacts. Use with caution! """ artifact_cache = ArtifactCache() if not click.confirm( "Are you sure to remove all artifacts from cache?", show_default=True ): return try: shutil.rmtree(artifact_cache.cache_dir) click.echo("Artifact cache cleared!") except Exception: click.secho( "An error occurred while removing the artifact cache directory '{}'".format( artifact_cache.cache_dir ), fg="red", ) sys.exit(1) if __name__ == "__main__": cli()
cekit/cekit
cekit/cache/cli.py
cli.py
py
5,730
python
en
code
70
github-code
6
[ { "api_name": "cekit.log.setup_logging", "line_number": 15, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 16, "usage_type": "call" }, { "api_name": "cekit.config.Config", "line_number": 17, "usage_type": "call" }, { "api_name": "click.group", "line_number": 20, "usage_type": "call" }, { "api_name": "click.option", "line_number": 21, "usage_type": "call" }, { "api_name": "click.option", "line_number": 22, "usage_type": "call" }, { "api_name": "click.option", "line_number": 29, "usage_type": "call" }, { "api_name": "click.version_option", "line_number": 36, "usage_type": "call" }, { "api_name": "cekit.version.__version__", "line_number": 36, "usage_type": "name" }, { "api_name": "click.UsageError", "line_number": 58, "usage_type": "call" }, { "api_name": "click.argument", "line_number": 47, "usage_type": "call" }, { "api_name": "click.option", "line_number": 48, "usage_type": "call" }, { "api_name": "click.option", "line_number": 49, "usage_type": "call" }, { "api_name": "click.option", "line_number": 50, "usage_type": "call" }, { "api_name": "click.option", "line_number": 53, "usage_type": "call" }, { "api_name": "click.argument", "line_number": 64, "usage_type": "call" }, { "api_name": "cekit.tools.Map", "line_number": 78, "usage_type": "call" }, { "api_name": "click.get_current_context", "line_number": 78, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 83, "usage_type": "attribute" }, { "api_name": "logging.INFO", "line_number": 85, "usage_type": "attribute" }, { "api_name": "cekit.cache.artifact.ArtifactCache", "line_number": 90, "usage_type": "call" }, { "api_name": "cekit.descriptor.resource.create_resource", "line_number": 107, "usage_type": "call" }, { "api_name": "click.echo", "line_number": 112, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 113, "usage_type": "call" }, { "api_name": "click.echo", "line_number": 117, "usage_type": "call" }, { "api_name": "click.secho", "line_number": 121, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 124, "usage_type": "call" }, { "api_name": "cekit.cache.artifact.ArtifactCache", "line_number": 127, "usage_type": "call" }, { "api_name": "click.echo", "line_number": 131, "usage_type": "call" }, { "api_name": "click.style", "line_number": 133, "usage_type": "call" }, { "api_name": "cekit.crypto.SUPPORTED_HASH_ALGORITHMS", "line_number": 138, "usage_type": "name" }, { "api_name": "click.echo", "line_number": 140, "usage_type": "call" }, { "api_name": "click.style", "line_number": 142, "usage_type": "call" }, { "api_name": "click.echo", "line_number": 147, "usage_type": "call" }, { "api_name": "click.style", "line_number": 147, "usage_type": "call" }, { "api_name": "click.echo", "line_number": 149, "usage_type": "call" }, { "api_name": "click.echo", "line_number": 151, "usage_type": "call" }, { "api_name": "cekit.cache.artifact.ArtifactCache", "line_number": 154, "usage_type": "call" }, { "api_name": "click.echo", "line_number": 158, "usage_type": "call" }, { "api_name": "click.secho", "line_number": 160, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 164, "usage_type": "call" }, { "api_name": "cekit.cache.artifact.ArtifactCache", "line_number": 172, "usage_type": "call" }, { "api_name": "click.confirm", "line_number": 174, "usage_type": "call" }, { "api_name": "shutil.rmtree", "line_number": 180, "usage_type": "call" }, { "api_name": "click.echo", "line_number": 181, "usage_type": "call" }, { "api_name": "click.secho", "line_number": 183, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 189, "usage_type": "call" } ]
25549591929
import logging import os import sys def configLogger(): root = logging.getLogger() root.setLevel(logging.DEBUG) file_handler = logging.FileHandler(_get_logfile_name()) file_handler.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') file_handler.setFormatter(formatter) root.addHandler(file_handler) def _get_logfile_name(): executable_name = os.path.basename(sys.argv[0]).split('.')[0] return '/tmp/logs/%s.log' % executable_name
cipriantruica/news_diffusion
news-spreading-master/logger/logger.py
logger.py
py
529
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 7, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 8, "usage_type": "attribute" }, { "api_name": "logging.FileHandler", "line_number": 10, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 11, "usage_type": "attribute" }, { "api_name": "logging.Formatter", "line_number": 12, "usage_type": "call" }, { "api_name": "os.path.basename", "line_number": 18, "usage_type": "call" }, { "api_name": "os.path", "line_number": 18, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 18, "usage_type": "attribute" } ]
1918587531
import sys import datetime import csv from os import path """" This section describes all functions called when the program is started. """ def startup(): create_date_file() create_bought_file() create_sold_file() def create_date_file(): """Check if there is already a file present containing the date set as current date. If not: create one.""" if path.exists('date.txt') == False: date = str(datetime.date.today()) file = open('date.txt', 'w') file.write(date) file.close() def create_bought_file(): """Check if there is already a bought.csv file present. If not: create one""" if path.exists('bought.csv') == False: with open('bought.csv', 'w', newline='') as csvfile: bought_creation = csv.writer(csvfile) bought_creation.writerow(['id', 'product_name', 'buy_date', 'buy_price', 'expiration_date']) def create_sold_file(): """Check if there is already a sold.csv file present. If not: create one""" if path.exists('sold.csv') == False: with open('sold.csv', 'w', newline='') as csvfile: sold_creation = csv.writer(csvfile) sold_creation.writerow(['id', 'bought_id', 'sell_date', 'sell_price'])
YorrickvB/SuperpyV2
startup.py
startup.py
py
1,282
python
en
code
0
github-code
6
[ { "api_name": "os.path.exists", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path", "line_number": 16, "usage_type": "name" }, { "api_name": "datetime.date.today", "line_number": 17, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 17, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 24, "usage_type": "call" }, { "api_name": "os.path", "line_number": 24, "usage_type": "name" }, { "api_name": "csv.writer", "line_number": 26, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 31, "usage_type": "call" }, { "api_name": "os.path", "line_number": 31, "usage_type": "name" }, { "api_name": "csv.writer", "line_number": 33, "usage_type": "call" } ]
10176346880
import requests import re import warnings import json class NHGIS: '''API wrapper for the IPUMS NHGIS API. API Documentation: https://developer.ipums.org/docs/get-started/ Arguments: api_key: Authorization key required for use of the IPUMS API. *Required* API keys can be obtained here: https://account.ipums.org/api_keys ''' def __init__(self, api_key): NHGIS.header = {"Authorization": api_key} self.documentation_link = 'https://developer.ipums.org/docs/get-started/' self.geographic_extent_options = {"010": "Nation", "020": "Region", "030": "Division2", "040": "State", "050": "State-County", "140": "State-County-Census Tract", "155": "State-Place-County", "160": "State-Place", "250": "American Indian Area/Alaska Native Area Hawaiian Home Land", "310": "Metropolitan Statistical Area/Micropolitan Statistical Area", "500": "State-Congressional District"} self.dataset = Dataset self.time_series = TimeSeries def dataset_metadata(self, dataset=None, data_table=None): ''' Returns metadata for IPUMS datasets. Arguments: dataset: Default: None. If None, metadata for all available datasets is returned. If the name of a a dataset is given, metadata for the specified dataset is returned. data_table: Default: None. Data table can only be specified when `dataset` != None. If specified, metadata for the specified table is returned. ''' if not dataset and not data_table: url = "https://api.ipums.org/metadata/nhgis/datasets?version=v1" elif dataset and not data_table: url = f"https://api.ipums.org/metadata/nhgis/datasets/{dataset}?version=v1" elif dataset and data_table: url = f"https://api.ipums.org/metadata/nhgis/datasets/{dataset}/data_tables/{data_table}?version=v1" elif not dataset and data_table: raise ValueError('A dataset must be provided when data_table != None') response = requests.get(url, headers=self.header) return self._validate_response(response) def time_series_metadata(self, data_table=None): ''' Returns metadata for available time-series tables. Arguments: data_table: Default: None. If None, metadata for all data tables is returned. If specified, metadata for the specified table is returned. ''' if not data_table: url = "https://api.ipums.org/metadata/nhgis/time_series_tables?version=v1" else: url = f"https://api.ipums.org/metadata/nhgis/time_series_tables/{data_table}?version=v1" response = requests.get(url, self.header) return self._validate_response(response) def shapefile_metadata(self): ''' Returns metadata for available shapefiles. Arguments: No arguments are available for this method. ''' url = "https://api.ipums.org/metadata/nhgis/shapefiles?version=v1" response = requests.get(url, self.header) return self._validate_response(response) def _validate_response(self, response): if response.status_code == 200: return response.json() else: raise ValueError(f'''A {response.status_code} error code was returned.\n The following reason was given: {response.reason} API Keys can be obtained here: https://account.ipums.org/api_keys API documentation is here: {self.documentation_link} If need be, api error code documentation can be found here https://developer.mozilla.org/en-US/docs/Web/HTTP/Status''') def _validate_shapefiles(self, shapefiles): supported_files = [file['name'] for file in self.shapefile_metadata()] for file in shapefiles: if file not in supported_files: raise ValueError(f'Shapefile: {file} could not be found.') def _create_payload(self, datasets=None, time_series_tables=None, shapefiles=None, data_format='csv_no_header', breakdown_and_data_type_layout='separate_files', time_series_table_layout=None, geographic_extents=None, description=None): ''' Receives Dataset class objects and returns a json payload formatted according to the specifications of the IPUMS API. ''' payload = {} if datasets: if isinstance(datasets, list): payload['datasets'] = {} for dataset in datasets: if isinstance(dataset, Dataset): if dataset.extent_required and not geographic_extents: warnings.warn(f''' Geographic extent is required for Dataset {dataset.dataset} with the provided geographic levels. It is recommended that this extent be provided. By default, all geo extents are requested. Geograpghic extent options can be accessed with the NHGIS.geographic_extent_options attribute.''') geographic_extents = ['*'] payload['datasets'].update(dataset.to_payload()) elif isinstance(dataset, dict): payload['datasets'].update(dataset) warnings.warn('''Validation is not provided for dictionary inputs. Use of NHGIS.dataset is recommended.''') else: raise ValueError(f'datasets cannot be datatype: {type(dataset)}') if time_series_tables: payload['time_series_tables'] = {} if isinstance(time_series_tables, list): for table in time_series_tables: if isinstance(table, TimeSeries): payload['time_series_tables'].update(table.to_payload()) elif isinstance(table, dict): payload['time_series_tables'].update(table) warnings.warn('''Validation is not provided for dictionary inputs. Use of NHGIS.time_series is recommended.''') else: raise ValueError(f'time_series_tables cannot be datatype: {type(table)}') elif isinstance(time_series_tables, TimeSeries): payload['time_series_tables'].update(time_series_tables.to_payload()) else: raise ValueError('time_series_tables must be a list or a TimeSeries instance.') if shapefiles: payload['shapefiles'] = shapefiles if time_series_tables: payload['time_series_table_layout'] = time_series_table_layout if geographic_extents: payload['geographic_extents'] = geographic_extents payload['data_format'] = data_format if description: payload['description'] = description else: payload['description'] = 'ipumspy extract' if breakdown_and_data_type_layout: payload['breakdown_and_data_type_layout'] = breakdown_and_data_type_layout payload_json = json.dumps(payload) payload_json = json.loads(payload_json) return payload_json def create_extract(self, datasets=None, time_series_tables=None, shapefiles=None, data_format='csv_no_header', breakdown_and_data_type_layout='separate_files', time_series_table_layout=None, geographic_extents=None, description=None): ''' Submit a data extract request to the IPUMS NHGIS API. Currently, the IPUMS API does not support downloading directly from the API. An email notification will be received confirming your extract request. ''' url = "https://api.ipums.org/extracts/?product=nhgis&version=v1" if shapefiles: self._validate_shapefiles(shapefiles) payload = self._create_payload(datasets=datasets, time_series_tables=time_series_tables, shapefiles=shapefiles, data_format=data_format, breakdown_and_data_type_layout=breakdown_and_data_type_layout, time_series_table_layout=time_series_table_layout, geographic_extents=geographic_extents, description=description) result = requests.post(url, headers=self.header, json=payload).json() if 'number' in result: self.extract_number = result['number'] return result def extract_status(self, status_only = True): ''' Returns that status of the most recent data extract request. ''' url = f"https://api.ipums.org/extracts/{self.extract_number}?product=nhgis&version=v1" response = requests.get(url, headers=self.header) if status_only: return response.json()['status'] else: return response.json() class Dataset(NHGIS): '''A wrapper for creating validating requests to the IPUMS NHGIS API. This class is used to format the json data structure for the NHGIS class.''' def __init__(self, dataset, data_tables, geog_levels, years=None, breakdowns=[]): self._validate(dataset, data_tables, geog_levels, years=years, breakdowns=breakdowns) self.dataset = dataset self.data_tables = data_tables self.geog_levels = geog_levels self.breakdowns = breakdowns def _validate(self, dataset, data_tables, geog_levels, years=None, breakdowns=[]): self.validate_types(dataset, data_tables, geog_levels, years, breakdowns) metadata = self.dataset_metadata(dataset=dataset) self.validate_data_tables(metadata, data_tables) self.validate_geog_levels(metadata, geog_levels) self.validate_years(metadata, years) self.validate_breakdowns(metadata, breakdowns) def validate_data_tables(self, metadata, data_tables): supported_tables = [value['name'] for value in metadata['data_tables']] for table in data_tables: if table not in supported_tables: raise ValueError(f'''Data Table: {table} is not supported for dataset: {metadata["name"]}''') def validate_geog_levels(self, metadata, geog_levels): supported_levels = [value['name'] for value in metadata['geog_levels']] for level in geog_levels: if level not in supported_levels: raise ValueError(f'''Geo level: {level} is not supported for dataset: {metadata["name"]}''') self.extent_required = False for level in metadata['geog_levels']: if level['name'] in geog_levels: if level['has_geog_extent_selection']: warnings.warn(f""" Geographic level: '{level['name']}' for Dataset: '{metadata['name']}' requires geog_extent selection when extraction is made. Available geographic extent options can be accessed with the `NHGIS.geographic_extent_options` attribute. The `NHGIS.create_extract` method has a default geog_extent of ['*'] """) self.extent_required = True def validate_breakdowns(self, metadata, breakdowns): if breakdowns: if not 'breakdowns' in metadata: raise ValueError(f'Breakdowns are not supported for {metadata["name"]}') supported_breakdowns_list = metadata['breakdowns'] supported_breakdowns = [] for entry in supported_breakdowns_list: supported_breakdowns += [value['name'] for value in entry['breakdown_values']] for breakdown in breakdowns: if breakdown not in supported_breakdowns: raise ValueError(f'''Breakdown: {breakdown} is not supported for dataset: {metadata["name"]}''') def is_multiyear(self, metadata): year_count = re.findall('(\d{4})', metadata['name']) if year_count: count = len(set(year_count)) else: count = 1 if count > 1: return True def year_range(self, metadata): years = re.findall('(\d{4})', metadata['name']) if years: years = [int(year) for year in years] return [year for year in range(years[0], years[1] + 1)] def validate_years(self, metadata, years): multiyear = self.is_multiyear(metadata) if multiyear and not years: raise ValueError(f'{metadata["name"]} has multiple years. `years` cannot be set to `None`.') if multiyear and years: supported_years = self.year_range(metadata) for year in years: if year not in supported_years: raise ValueError(f'''Year: {year} is not support for dataset: {metadata["name"]}.''') if not multiyear and years: if len(years) > 1: raise ValueError(f'Dataset: {metadata["name"]} is not a multi year dataset, but multiple years were given.') supported_year = int(re.findall('(\d{4})', metadata["name"])[0]) if not supported_year == years[0]: raise ValueError(f'Dataset: {metadata["name"]} supports the year {supported_year}, but {years[0]} was given.') if not multiyear and not years: self.years = [] self.years = years def validate_types(self, dataset, data_tables, geog_levels, years, breakdowns): if type(dataset) != str: raise ValueError('dataset variable must be string.') if not type(data_tables) == list: raise ValueError('data_tables variable must be a list.') if not all(isinstance(item, str) for item in data_tables): raise ValueError('data_tables variable must be a list of strings.') if not type(geog_levels) == list: raise ValueError('geog_levels variable must be a list.') if not all(isinstance(item, str) for item in geog_levels): raise ValueError('geog_levels variable must be a list of strings.') if years: if type(years) != list: raise ValueError('year variable must be a list for multi year datasets.') if not all(isinstance(item, int) for item in years): raise ValueError('year variable must be a list of integers for multi year datasets.') if breakdowns: if type(breakdowns) != list: raise ValueError('If breakdowns != None, the variable must be a list.') if not all(isinstance(item, str) for item in breakdowns): raise ValueError('If breakdowns != None, the variable must be a list of strings.') def __repr__(self): return f'''Dataset(dataset: {self.dataset}, Number of tables: {len(self.data_tables)}, Number of geographies: {len(self.geog_levels)}, Number of breakdowns: {len(self.breakdowns) if self.breakdowns else self.breakdowns}, years: {self.years})''' def to_payload(self): payload = {self.dataset: { "years": [str(year) for year in self.years] if self.years else [], "breakdown_values": self.breakdowns, "data_tables": self.data_tables, "geog_levels": self.geog_levels }} return payload class TimeSeries(NHGIS): '''A wrapper for creating validating requests to the IPUMS NHGIS API. This class is used to format the json data structure for the NHGIS class.''' def __init__(self, data_table, geog_levels='macro'): self.validate(data_table, geog_levels) def validate(self, data_table, geog_levels): self.validate_types(data_table, geog_levels) metadata = self.time_series_metadata(data_table=data_table) self.data_table = data_table self.validate_geog_levels(metadata, geog_levels) def validate_types(self, data_table, geog_levels): if type(data_table) != str: raise ValueError('`data_table` variable must be a string.') if geog_levels != 'macro': if type(geog_levels) != list: raise ValueError('If `geog_levels` != "macro" `geog_levels` must be a list.') if not all(isinstance(item, str) for item in geog_levels): raise ValueError('If `geog_levels` != "macro" `geog_levels` must be a list of strings.') def validate_geog_levels(self, metadata, geog_levels): if geog_levels == 'macro': self.geog_levels = [metadata['geog_levels'][0]['name']] else: supported_levels = [value['name'] for value in metadata['geog_levels']] for level in geog_levels: if level not in supported_levels: raise ValueError(f'Time Series {metadata["name"]} does not support geo level: "{level}"') self.geog_levels = geog_levels def to_payload(self): payload = {self.data_table: { 'geog_levels': self.geog_levels}} return payload
joelsewhere/ipumspy
ipumspy.py
ipumspy.py
py
18,512
python
en
code
0
github-code
6
[ { "api_name": "requests.get", "line_number": 53, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 71, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 84, "usage_type": "call" }, { "api_name": "warnings.warn", "line_number": 123, "usage_type": "call" }, { "api_name": "warnings.warn", "line_number": 135, "usage_type": "call" }, { "api_name": "warnings.warn", "line_number": 150, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 179, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 180, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 201, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 212, "usage_type": "call" }, { "api_name": "warnings.warn", "line_number": 256, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 282, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 291, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 309, "usage_type": "call" } ]
73996523069
import torch from torch import nn, optim from torch.utils.data import DataLoader import matplotlib.pyplot as plt import random import os import glob import sys import wandb import gru_models import build_vocab device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # TODO: Get rid of these, just pass them in to dataset. BATCH_SIZE=16 TRAIN_TOKEN_LEN=256 #from vocab_building impor t load_tokenized_file, load_vocab, decode_vocab, nlp, get_vocab_indx_vector def find_files(path): return glob.glob(path) class RNN_Dataset_multiple_sources(torch.utils.data.Dataset): def __init__( self, sequence_length, type ): folder = "../vocabs_and_tokens/" + type + "/" data_folder = "../data/" + type + "/" vocab_file = folder + "*.pt" token_files = folder + "*.pkl" self.sequence_length = sequence_length self.all_categories, self.n_categories = self.setup_categories(data_folder) self.load_words(vocab_file, token_files) self.uniq_words = len(self.vocab) # data_folder needs to be like '../data/reviews/' def setup_categories(self, data_folder): all_categories = [] for filename in find_files(data_folder + '*.txt'): category = os.path.splitext(os.path.basename(filename))[0] all_categories.append(category) n_categories = len(all_categories) if n_categories == 0: raise RuntimeError('Data not found.') print('# categories:', n_categories, all_categories) #all_categories.remove('garden') #all_categories.remove('music') #all_categories.remove('small_combined') #n_categories_languages = len(all_categories) #print('# categories:', n_categories_languages, all_categories) return all_categories, n_categories def load_words(self, vocab_file, token_files): # We want the vocab to be constructed from all sources, but we need the raw token sets for each seperately. # The category vector can just be a simple index vector. self.vocab = build_vocab.load_vocab(find_files(vocab_file)[0]) token_files = find_files(token_files) # This is only setup to handle two different categories right now self.raw_tokens_1 = build_vocab.load_tokenized_file(token_files[0]) self.raw_tokens_2 = build_vocab.load_tokenized_file(token_files[1]) self.num_samples_1 = len(self.raw_tokens_1) self.num_samples_2 = len(self.raw_tokens_2) # This is iffy, because we aren't actually going through all of the "samples" self.num_samples = max(1, ((self.num_samples_1 + self.num_samples_2) // TRAIN_TOKEN_LEN)) # Split raw tokens into groups of TRAIN_TOKEN_LEN self.num_batches = max(1, self.num_samples // BATCH_SIZE) print('Number of raw_tokens: ', len(self.raw_tokens_1 + self.raw_tokens_2)) print('Number of samples in a batch: ', self.num_samples) print('Number of batches: ', self.num_batches) return 1 def random_choice(self, l): return l[random.randint(0, len(l)-1)] def category_tensor(self, category): li = self.all_categories.index(category) if li == 0: tensor = torch.zeros(self.sequence_length).to(device).long() else: tensor = torch.ones(self.sequence_length).to(device).long() return tensor, li def __len__(self): return self.num_samples def __getitem__(self, index): # This should pick a random source, grab it's category, and then grab a sequence associated with it. # Pick random category string_category= self.random_choice(self.all_categories) category, category_index = self.category_tensor(string_category) # Pick the right token samples based on the category if category_index == 0: current_sample = self.raw_tokens_1 else: current_sample = self.raw_tokens_2 # We cut off the potential of it being too long random_index = random.randint(0, len(current_sample) - (self.sequence_length + 1)) end_index = random_index + self.sequence_length return ( # might break if it gets the very end? torch.tensor(current_sample[random_index:end_index]).to(device), # x torch.tensor(current_sample[random_index+1:end_index+1]).to(device), # y category ) def train(dataset, model, max_epochs, batch_size, cat = False): train_losses = [] model.train() dataloader = DataLoader(dataset, batch_size=batch_size, drop_last=True) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) for epoch in range(max_epochs): total_loss = 0 for batch, (x, y, category) in enumerate(dataloader): hidden_states = model.init_hidden(batch_size) #print('x size: ', x.size()) # 16, 256 #print('category size: ', category.size()) # 16, 256 optimizer.zero_grad() if cat: y_pred, hidden_states = model(x, hidden_states, batch_size, category) else: y_pred, hidden_states = model(x, hidden_states, batch_size) #print('y_pred size: ', y_pred.size()) # [16, 4822] for cells, [16, 256, 4822] normal #print('y_pred transposed size: ', y_pred.transpose(1, 2).size()) # [16, 4822, 256] loss = criterion(y_pred.transpose(1, 2), y) total_loss += loss.item() loss.backward() optimizer.step() print({ 'epoch': epoch, 'batch': batch, 'loss': loss.item() }) wandb.log({"loss":loss.item()}) batch_loss = total_loss/batch_size train_losses.append(batch_loss) wandb.log({"batch_loss":batch_loss}) return train_losses def predict_with_category(dataset, model, text, category, next_words=100): model.eval() prediction = build_vocab.get_vocab_indx_vector(dataset.vocab, build_vocab.load_spacy, text) tokens = torch.tensor(prediction).to(device) # Get category tensor li = dataset.all_categories.index(category) if li == 0: category = torch.zeros(len(prediction)).to(device).long() else: category = torch.ones(len(prediction)).to(device).long() print('cat size: ', category.size()) print('prediction size: ', tokens.size()) state_h = model.init_hidden(1) # num_layers, batch_size, lstm_size # Prime generation by feeding in initial input: for p in range(len(tokens)-1): _, state_h = model(tokens[p].view(1,-1), state_h, 1, category[p].view(1,-1)) #print('state_h size: ', state_h.size()) last_token = tokens[-1] for i in range(0, next_words): y_pred, state_h = model(last_token.view(1,-1), state_h, 1, category[0].view(1,-1)) #print('y_pred size: ', y_pred.size()) # [16, 256, 12923], should be [1, 1, 12923] #print('y_pred[0][-1] size: ', y_pred[0][-1].size()) last_word_logits = y_pred[0][-1] # These are the probabilities p = torch.nn.functional.softmax(last_word_logits, dim=0) word_index = torch.multinomial(p, 1)[0] top_values = torch.topk(p, 5) #top_words = top_values.indices #top_probs = top_values.values #print('word index: ', word_index) #print('top_words: ', top_words.tolist()) #top_word_pred = decode_vocab(dataset.vocab, [word_index]) #top_words_pred = decode_vocab(dataset.vocab, top_words.tolist()) #print('The top word predicted was: ', top_word_pred) #print('The top five predictions were: ', top_words_pred) #print('Their probabilites are: ', top_probs) prediction.append(word_index) last_token = torch.tensor([word_index]).to(device) final_prediction = build_vocab.decode_vocab(dataset.vocab, prediction) return final_prediction def train_wrapper(type, hidden_size, num_epochs): # Create dataset dataset = RNN_Dataset_multiple_sources(TRAIN_TOKEN_LEN, type) input_size = dataset.uniq_words # Should be size of vocab? n_layers = 3 print('----------------------') print('Original GRU') run = wandb.init(name='Original GRU', project='controllableRNN', config={ 'dataset':type, 'epochs':num_epochs, 'hidden_size':hidden_size }, reinit=True ) # Model with normal pytorch GRU category_model = gru_models.GRU_category(input_size, hidden_size, input_size, n_layers).to(device) file_path = f"gru_trained_cat_" + type + ".pt" losses_cat = train(dataset, category_model, num_epochs, BATCH_SIZE, cat=True) torch.save(category_model.state_dict(), file_path) run.finish() """print('----------------------') print('Original GRU with cells') # Model with GRU Cells cells_category_model = gru_models.GRU_with_cells_category(input_size, hidden_size, input_size, n_layers).to(device) file_path = f"gru_trained_cat_cells_" + type + ".pt" losses_cat_cells = train(dataset, cells_category_model, num_epochs, BATCH_SIZE, True) torch.save(cells_category_model.state_dict(), file_path)""" print('----------------------') print('Edited GRU') run = wandb.init(name='Edited GRU', project='controllableRNN', config={ 'dataset':type, 'epochs':num_epochs, 'hidden_size':hidden_size }, reinit=True ) # Model with edited GRU Cells cells_category_edited_model = gru_models.GRU_with_cells_category_edited(input_size, hidden_size, input_size, n_layers).to(device) file_path = f"gru_trained_cat_cells_edited_" + type + ".pt" losses_cat_cells_edited = train(dataset, cells_category_edited_model, num_epochs, BATCH_SIZE, True) torch.save(cells_category_edited_model.state_dict(), file_path) run.finish() # Create loss graph and save """fig = plt.figure() ax = fig.add_subplot(111) ax.plot(range(len(losses_cat)), losses_cat, label="original") #ax.plot(range(len(losses_cat_cells)), losses_cat_cells, label="original with cells") ax.plot(range(len(losses_cat_cells_edited)), losses_cat_cells_edited, label="edited") plt.title("Loss over time") plt.xlabel("Time") plt.ylabel("Loss") plt.legend() plt.savefig('loss_' + str(type) + "_" + str(num_epochs) + "_" + str(hidden_size) + '.png')""" def main(): wandb.login() # login to wandb # Uncomment these to use arguments #arguments = sys.argv[1:] #type, num_epochs, hidden_size = arguments #num_epochs = int(num_epochs) #hidden_size = int(hidden_size) print('TRAINING LANGUAGES- HIDDEN_SIZE-256 NUM_EPOCHS-300') train_wrapper(type='books', hidden_size=256, num_epochs=50) print('TRAINING LANGUAGES- HIDDEN_SIZE-512 NUM_EPOCHS-300') train_wrapper(type='books', hidden_size=512, num_epochs=50) print('TRAINING LANGUAGES- HIDDEN_SIZE-1024 NUM_EPOCHS-300') train_wrapper(type='books', hidden_size=1024, num_epochs=50) if __name__ == "__main__": main()
JayOrten/controllableRNN
scripts/train_gru.py
train_gru.py
py
11,462
python
en
code
0
github-code
6
[ { "api_name": "torch.device", "line_number": 14, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 14, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 14, "usage_type": "attribute" }, { "api_name": "glob.glob", "line_number": 22, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 24, "usage_type": "attribute" }, { "api_name": "os.path.splitext", "line_number": 45, "usage_type": "call" }, { "api_name": "os.path", "line_number": 45, "usage_type": "attribute" }, { "api_name": "os.path.basename", "line_number": 45, "usage_type": "call" }, { "api_name": "build_vocab.load_vocab", "line_number": 65, "usage_type": "call" }, { "api_name": "build_vocab.load_tokenized_file", "line_number": 69, "usage_type": "call" }, { "api_name": "build_vocab.load_tokenized_file", "line_number": 70, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 86, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 91, "usage_type": "call" }, { "api_name": "torch.ones", "line_number": 93, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 112, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 115, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 116, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 126, "usage_type": "call" }, { "api_name": "torch.nn.CrossEntropyLoss", "line_number": 127, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 127, "usage_type": "name" }, { "api_name": "torch.optim.Adam", "line_number": 128, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 128, "usage_type": "name" }, { "api_name": "wandb.log", "line_number": 157, "usage_type": "call" }, { "api_name": "wandb.log", "line_number": 161, "usage_type": "call" }, { "api_name": "build_vocab.get_vocab_indx_vector", "line_number": 168, "usage_type": "call" }, { "api_name": "build_vocab.load_spacy", "line_number": 168, "usage_type": "attribute" }, { "api_name": "torch.tensor", "line_number": 169, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 174, "usage_type": "call" }, { "api_name": "torch.ones", "line_number": 176, "usage_type": "call" }, { "api_name": "torch.nn.functional.softmax", "line_number": 197, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 197, "usage_type": "attribute" }, { "api_name": "torch.multinomial", "line_number": 198, "usage_type": "call" }, { "api_name": "torch.topk", "line_number": 199, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 214, "usage_type": "call" }, { "api_name": "build_vocab.decode_vocab", "line_number": 216, "usage_type": "call" }, { "api_name": "wandb.init", "line_number": 228, "usage_type": "call" }, { "api_name": "gru_models.GRU_category", "line_number": 239, "usage_type": "call" }, { "api_name": "torch.save", "line_number": 245, "usage_type": "call" }, { "api_name": "wandb.init", "line_number": 264, "usage_type": "call" }, { "api_name": "gru_models.GRU_with_cells_category_edited", "line_number": 275, "usage_type": "call" }, { "api_name": "torch.save", "line_number": 281, "usage_type": "call" }, { "api_name": "wandb.login", "line_number": 298, "usage_type": "call" } ]
14177953222
"""Holds environmental variables, sets up custom logger.""" import logging import os log = logging.getLogger(name="log") # declare environment constants COSMOSDB_CONNECTION_STRING: str = os.environ["COSMOSDB_CONNECTION_STRING"] COSMOSDB_DATABASE_ID: str = os.environ["COSMOSDB_DATABASE_ID"] COSMOSDB_CONTAINER_ID: str = os.environ["COSMOSDB_CONTAINER_ID"] BLOB_SERVICE_CONNECTION_STRING: str = os.environ["BLOB_CONNECTION_STRING"] BLOB_CONTAINER_NAME: str = os.environ["BLOB_CONTAINER_NAME"] def logger( logging_format: str = "%(levelname)s, %(name)s.%(funcName)s: %(message)s", level: int = logging.INFO, ) -> None: """ Sets up custom logger. Parameters: format (str, optional): Logging format. Defaults to "%(name)s%(funcName)s: %(message)s". level (int, optional): Logging level. Defaults to logging.INFO. Returns: None """ log.debug(msg="Setting up custom logger.") log.setLevel(level=level) handler = logging.StreamHandler(stream=None) formatter = logging.Formatter(fmt=logging_format) handler.setFormatter(fmt=formatter) if log.hasHandlers(): log.handlers.clear() log.addHandler(handler)
wieczorekgrzegorz/ksef-krportal-communication
utilities/setup.py
setup.py
py
1,194
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 6, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 9, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 10, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 11, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 12, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 13, "usage_type": "attribute" }, { "api_name": "logging.INFO", "line_number": 18, "usage_type": "attribute" }, { "api_name": "logging.StreamHandler", "line_number": 34, "usage_type": "call" }, { "api_name": "logging.Formatter", "line_number": 36, "usage_type": "call" } ]
16413370006
import json import os import pygame from pprint import pformat from pyggui.core import TRANSPARENT pygame.font.init() _DEFAULT_THEME_PATH = 'assets/themes/default_theme.json' _DEFAULT_THEME_PATH = os.path.join(os.path.dirname(__file__), _DEFAULT_THEME_PATH) NULL_THEME_DEFAULTS = { "col": TRANSPARENT, "width": 0, "padding": [0, 0], "radius": 0, "font": { "name": "calibri", "size": 32 } } class Theme: def __init__(self, file=None): self.file = file if self.file is None: self.file = _DEFAULT_THEME_PATH self.changed = False self._all_styles = self._load_theme_json(self.file) self._top_level_theme = self._all_styles.get("*") self._styles = self._top_level_theme.copy() @staticmethod def _load_theme_json(file): with open(file, mode='r') as theme_file: themes = json.load(theme_file) return themes def get_widget_theme(self, widget=None): widget_theme = self._top_level_theme.copy() if widget is None: return widget_theme widget_type = widget.__class__.__name__.lower() # Update the widget theme with the widget type level attributes widget_type_theme = self._all_styles.get(widget_type, {}) widget_theme |= widget_type_theme new_theme = Theme() new_theme._styles = widget_theme.copy() return new_theme def __getitem__(self, item): value = self._styles.get(item, None) if value is None and any(key in item for key in NULL_THEME_DEFAULTS.keys()): value = [v for k, v in NULL_THEME_DEFAULTS.items() if k == item or k in item][0] return value def __setitem__(self, item, value): old_styles = self._styles.copy() if item in self._styles: self._styles["bg-col"] = value self.changed = self.changed or old_styles != self._styles def __repr__(self): return pformat(self._styles) @property def font(self): font_dict = self['font'] name = font_dict.get('name') size = font_dict.get('size') try: font_ = pygame.font.Font(name, size) except FileNotFoundError: font_ = pygame.font.SysFont(name, size) font_.set_bold(font_dict.get('bold', False)) font_.set_italic(font_dict.get('italic', False)) font_.set_underline(font_dict.get('underline', False)) return font_ def copy(self): copy = Theme() copy._styles = self._styles.copy() return copy if __name__ == '__main__': theme = Theme() print(theme)
sam57719/PygGUI
pyggui/theme.py
theme.py
py
2,672
python
en
code
0
github-code
6
[ { "api_name": "pygame.font.init", "line_number": 8, "usage_type": "call" }, { "api_name": "pygame.font", "line_number": 8, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 11, "usage_type": "call" }, { "api_name": "os.path", "line_number": 11, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 11, "usage_type": "call" }, { "api_name": "pyggui.core.TRANSPARENT", "line_number": 14, "usage_type": "name" }, { "api_name": "json.load", "line_number": 40, "usage_type": "call" }, { "api_name": "pprint.pformat", "line_number": 76, "usage_type": "call" }, { "api_name": "pygame.font.Font", "line_number": 85, "usage_type": "call" }, { "api_name": "pygame.font", "line_number": 85, "usage_type": "attribute" }, { "api_name": "pygame.font.SysFont", "line_number": 87, "usage_type": "call" }, { "api_name": "pygame.font", "line_number": 87, "usage_type": "attribute" } ]
41685726399
import boto3 import sys import time # input value 'ansible-controller' while running the instance #import json ec2_client = boto3.client('ec2', region_name = "us-east-1") instances = ec2_client.describe_instances() for reservation in instances['Reservations']: for instance in reservation["Instances"]: if instance["Tags"][0]["Value"] == sys.argv[1]: response = ec2_client.start_instances(InstanceIds=[instance["InstanceId"]]) istance_id = instance["InstanceId"] while True: print('checking the status........') time.sleep(3) status_value = ec2_client.describe_instance_status(InstanceIds=[istance_id]) if len(status_value['InstanceStatuses']) != 0: if status_value['InstanceStatuses'][0]['InstanceState']['Name'] == 'running': print(f"{sys.argv[1]} EC2 Instance got:- {status_value['InstanceStatuses'][0]['InstanceState']['Name']}") break print ("Press Enter to continue ..." ) input()
sudhann92/project-repo
aws-python/aws-boto-start-instance.py
aws-boto-start-instance.py
py
979
python
en
code
0
github-code
6
[ { "api_name": "boto3.client", "line_number": 6, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 10, "usage_type": "attribute" }, { "api_name": "time.sleep", "line_number": 16, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 20, "usage_type": "attribute" } ]
72137353787
import logging import json from discord import Interaction, app_commands, Role from discord.app_commands import Choice from discord.ext.commands import Bot, Cog logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) with open("config.json") as cfg_json: cfg = json.loads(cfg_json.read()) owner_id = cfg["owner_id"] async def log_reply(ctx: Interaction, response: str, ephemeral=True): log = f"From {ctx.user}: {response}" if ctx.guild: log = f"From {ctx.user} in {ctx.guild.name}: {response}" logger.info(log) await ctx.response.send_message(response, ephemeral=ephemeral) async def is_owner(ctx: Interaction) -> bool: if ctx.user.id != owner_id: await log_reply(ctx, f"**Error:** Only my owner can use this command") return False return True class CommandError(Exception): def __init__(self, msg: str): self.msg = msg super().__init__(msg) @classmethod async def send_err(cls, ctx: Interaction, msg: str): self = cls(msg) await log_reply(ctx, self.msg) return self class OwnerCog(Cog): """Commands that can only be used by the bot's owner""" def __init__(self, bot: Bot): self.bot = bot @app_commands.command(name="sync") @app_commands.check(is_owner) async def sync_commands(self, ctx: Interaction): """(Owner only) Syncs app command info with Discord""" await self.bot.tree.sync() await log_reply(ctx, "Synced command tree with Discord") emote = app_commands.Group( name="emote", description=("(Owner only) Modify DGG emote translations"), ) @emote.command(name="add") @app_commands.describe( dgg_version="The emote as it's used in DGG", disc_version="The emote as it's used in Discord", ) @app_commands.check(is_owner) async def add_emote(self, ctx: Interaction, dgg_version: str, disc_version: str): """(Owner only) Add or modify a DGG emote translation""" self.bot.emotes[dgg_version] = disc_version self.bot.save_cfg() await log_reply(ctx, f"Translating {dgg_version} to {str(disc_version)}") @emote.command(name="remove") @app_commands.describe(dgg_version="The emote to remove (in DGG format)") @app_commands.check(is_owner) async def remove_emote(self, ctx: Interaction, dgg_version: str): """(Owner only) Remove a DGG emote translation""" if dgg_version in self.bot.emotes.keys(): removed_emote = self.bot.emotes.pop(dgg_version) self.bot.save_cfg() await log_reply(ctx, f"Removed {removed_emote} from emotes") else: await log_reply(ctx, f"Couldn't find emote {dgg_version}") config = app_commands.Group( name="config", description=("(Owner only) Modify the bot's config file"), ) @config.command(name="remove") @app_commands.choices( mode=[ Choice(name="phrase", value="phrase"), Choice(name="relay", value="relay"), ] ) @app_commands.check(is_owner) async def config_remove(self, ctx: Interaction, mode: str, value: str): """Remove a relay or phrase from the config file""" if mode == "phrase" and value in self.bot.phrases: del self.bot.phrases[value] self.bot.save_cfg() await log_reply(ctx, f"Removed '{value}' from phrases", ephemeral=False) elif mode == "relay" and value in self.bot.relays: del self.bot.relays[value] self.bot.save_cfg() await log_reply(ctx, f"Removed '{value}' from relays", ephemeral=False) else: await log_reply(ctx, f"Couldn't find '{value}' in {mode}s") class PublicCog(Cog): """Commands that can be used by anybody""" def __init__(self, bot: Bot): self.bot = bot async def get_relay_channel(self, ctx: Interaction) -> int: if not ctx.guild: err = "**Error:** This command is only usable in servers" raise await CommandError(err).send_err(ctx, err) if "dgg-relay-mod" not in (role.name for role in ctx.user.roles): err = "**Error:** This command requires the 'dgg-relay-mod' role" raise await CommandError(err).send_err(ctx, err) relay_channel = None for channel in ctx.guild.channels: if channel.name == "dgg-relay": relay_channel = channel.id break if not relay_channel: err = f"**Error:** No '#dgg-relay' channel found in '{ctx.guild.name}'" raise await CommandError(err).send_err(ctx, err) return relay_channel relay = app_commands.Group( name="relay", description="Relays DGG messages to servers", ) @relay.command(name="add") @app_commands.describe(dgg_username="The DGG user you want to relay messages from") async def relay_add(self, ctx: Interaction, dgg_username: str): """Add a DGG user whose messages get forwarded to this server (case sensitive!)""" relay_channel = await self.get_relay_channel(ctx) if dgg_username not in self.bot.relays: self.bot.relays[dgg_username] = [] logger.info(f"Added new relay list '{dgg_username}'") if relay_channel not in self.bot.relays[dgg_username]: self.bot.relays[dgg_username].append(relay_channel) response = ( f"Messages from '{dgg_username}' will be relayed to '{ctx.guild.name}'" ) else: response = f"**Error:** '{dgg_username}' is already being relayed to '{ctx.guild.name}'" self.bot.save_cfg() await log_reply(ctx, response, ephemeral=False) @relay.command(name="remove") @app_commands.describe(dgg_username="The DGG user you want to stop relaying") async def relay_remove(self, ctx: Interaction, dgg_username: str): """Remove a DGG user's relay from this server""" relay_channel = await self.get_relay_channel(ctx) response = None if dgg_username in self.bot.relays.keys(): if relay_channel in self.bot.relays[dgg_username]: self.bot.relays[dgg_username].remove(relay_channel) response = f"Removed '{dgg_username}' relay from '{ctx.guild.name}'" if not self.bot.relays[dgg_username]: self.bot.relays.pop(dgg_username) logger.info(f"Removed empty relay list for '{dgg_username}'") self.bot.save_cfg() if not response: response = ( f"**Error:** '{dgg_username}' isn't being relayed to '{ctx.guild.name}'" " (try the '/relay list' command)" ) await log_reply(ctx, response, ephemeral=False) @relay.command(name="list") async def relay_list(self, ctx: Interaction): """Lists DGG users currently being relayed to this server.""" relay_channel = await self.get_relay_channel(ctx) relays = [] for nickname in self.bot.relays: for channel in self.bot.relays[nickname]: if channel == relay_channel: relays.append(nickname) relays = "', '".join(relays) response = f"This server gets messages from: '{relays}'" if not relays: response = "No relays are active for this server." await log_reply(ctx, response, ephemeral=False) live_notifications = app_commands.Group( name="live-notifications", description="Configure live notifications for Destiny", ) @live_notifications.command(name="on") async def live_notifications_on(self, ctx: Interaction): """Enable live notifications for this server""" relay_channel = await self.get_relay_channel(ctx) if relay_channel not in self.bot.live["channels"].keys(): self.bot.live["channels"][relay_channel] = {"role": None} self.bot.live["channels"][relay_channel]["enabled"] = True self.bot.save_cfg() response = f"Live notifications enabled for {ctx.guild.name}" await log_reply(ctx, response, ephemeral=False) @live_notifications.command(name="off") async def live_notifications_off(self, ctx: Interaction): """Disable live notifications for this server""" relay_channel = await self.get_relay_channel(ctx) if relay_channel not in self.bot.live["channels"].keys(): self.bot.live["channels"][relay_channel] = {"role": None} self.bot.live["channels"][relay_channel]["enabled"] = False self.bot.save_cfg() response = f"Live notifications disabled for {ctx.guild.name}" await log_reply(ctx, response, ephemeral=False) @live_notifications.command(name="role") @app_commands.describe(role="The role that will be pinged") async def live_notifications_role(self, ctx: Interaction, role: Role): """Set a role that gets pinged for live notifications""" relay_channel = await self.get_relay_channel(ctx) if relay_channel not in self.bot.live["channels"].keys(): self.bot.live["channels"][relay_channel] = {"enabled": True} self.bot.live["channels"][relay_channel]["role"] = role.id self.bot.save_cfg() response = ( f'"<@&{role.id}>" will be pinged for live notifications in {ctx.guild.name}' ) await log_reply(ctx, response, ephemeral=False) def check_prefs(self, disc_user): if disc_user not in self.bot.user_prefs.keys(): self.bot.user_prefs[disc_user] = {"detect_presence": False, "ignores": []} logger.info(f"Added new user '{disc_user}' to preferences list") phrase = app_commands.Group( name="phrase", description="Relays DGG messages to users", ) @phrase.command(name="add") @app_commands.describe( phrase="The phrase you want forwarded to you (most likely your DGG username)" ) async def phrase_add(self, ctx: Interaction, phrase: str): """Add a phrase (usually a username) that will be forwarded to you when it's used in DGG (case insensitive)""" self.check_prefs(ctx.user.id) if phrase not in self.bot.phrases: self.bot.phrases[phrase] = [] logger.info(f"Added new phrase list for '{phrase}'") if ctx.user.id not in self.bot.phrases[phrase]: self.bot.phrases[phrase].append(ctx.user.id) response = f"Forwarding '{phrase}' to {ctx.user}" else: response = f"**Error:** '{phrase}' is already being forwarded to {ctx.user}" self.bot.save_cfg() await log_reply(ctx, response) @phrase.command(name="remove") @app_commands.describe(phrase="The phrase you want to stop being forwarded") async def phrase_remove(self, ctx: Interaction, phrase: str): """Stop a phrase from being forwarded to you""" self.check_prefs(ctx.user.id) response = None if phrase in self.bot.phrases: if ctx.user.id in self.bot.phrases[phrase]: self.bot.phrases[phrase].remove(ctx.user.id) response = f"No longer forwarding '{phrase}' to {ctx.user}" if not self.bot.phrases[phrase]: self.bot.phrases.pop(phrase) logger.info(f"Removed empty phrase list '{phrase}'") self.bot.save_cfg() if not response: response = ( f"**Error:** '{phrase}' isn't being forwarded to {ctx.user}" " (try the '/phrase list' command)" ) await log_reply(ctx, response) @phrase.command(name="list") async def phrase_list(self, ctx: Interaction): """List the phrases currently being forwarded to you""" disc_user = ctx.user.id user_phrases = [] for phrase in self.bot.phrases: for user_id in self.bot.phrases[phrase]: if user_id == disc_user: user_phrases.append(phrase) user_phrases = "', '".join(user_phrases) response = f"Your phrases: '{user_phrases}'" if not user_phrases: response = "No phrases are being forwarded to you." await log_reply(ctx, response) @phrase.command(name="detect-dgg-presence") @app_commands.describe(mode="Set to True to detect DGG presence. Default is False.") async def detect_dgg_presence(self, ctx: Interaction, mode: bool): """Change behavior of the /phrase command by controlling when the bot messages you.""" self.check_prefs(ctx.user.id) self.bot.user_prefs[ctx.user.id]["detect_presence"] = mode self.bot.save_cfg() word = "enabled" if mode else "disabled" response = f"Presence detection {word} for {ctx.user.name}" await log_reply(ctx, response) ignore = app_commands.Group( name="ignore", description="Configure your DGG Relay ignore list", ) @ignore.command(name="add") @app_commands.describe(dgg_username="The user in DGG you want to ignore") async def add_ignore(self, ctx: Interaction, dgg_username: str): """Ignore messages from a DGG user""" self.check_prefs(ctx.user.id) ignores = self.bot.user_prefs[ctx.user.id]["ignores"] ignores.append(dgg_username) self.bot.user_prefs[ctx.user.id]["ignores"] = list(set(ignores)) self.bot.save_cfg() response = f"'{dgg_username}' added to your ignore list" await log_reply(ctx, response) @ignore.command(name="remove") @app_commands.describe(dgg_username="The user in DGG you want to unignore") async def add_ignore(self, ctx: Interaction, dgg_username: str): """Remove someone from your ignore list""" self.check_prefs(ctx.user.id) ignores = self.bot.user_prefs[ctx.user.id]["ignores"] if dgg_username not in ignores: await log_reply(ctx, f"'{dgg_username}' is not in your ignore list") return self.bot.user_prefs[ctx.user.id]["ignores"].remove(dgg_username) self.bot.save_cfg() response = f"'{dgg_username}' removed from your ignore list" await log_reply(ctx, response)
tenacious210/dgg-relay
cogs.py
cogs.py
py
14,701
python
en
code
2
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 8, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 9, "usage_type": "attribute" }, { "api_name": "json.loads", "line_number": 12, "usage_type": "call" }, { "api_name": "discord.Interaction", "line_number": 17, "usage_type": "name" }, { "api_name": "discord.Interaction", "line_number": 25, "usage_type": "name" }, { "api_name": "discord.Interaction", "line_number": 38, "usage_type": "name" }, { "api_name": "discord.ext.commands.Cog", "line_number": 44, "usage_type": "name" }, { "api_name": "discord.ext.commands.Bot", "line_number": 47, "usage_type": "name" }, { "api_name": "discord.Interaction", "line_number": 52, "usage_type": "name" }, { "api_name": "discord.app_commands.command", "line_number": 50, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 50, "usage_type": "name" }, { "api_name": "discord.app_commands.check", "line_number": 51, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 51, "usage_type": "name" }, { "api_name": "discord.app_commands.Group", "line_number": 57, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 57, "usage_type": "name" }, { "api_name": "discord.Interaction", "line_number": 68, "usage_type": "name" }, { "api_name": "discord.app_commands.describe", "line_number": 63, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 63, "usage_type": "name" }, { "api_name": "discord.app_commands.check", "line_number": 67, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 67, "usage_type": "name" }, { "api_name": "discord.Interaction", "line_number": 77, "usage_type": "name" }, { "api_name": "discord.app_commands.describe", "line_number": 75, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 75, "usage_type": "name" }, { "api_name": "discord.app_commands.check", "line_number": 76, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 76, "usage_type": "name" }, { "api_name": "discord.app_commands.Group", "line_number": 86, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 86, "usage_type": "name" }, { "api_name": "discord.Interaction", "line_number": 99, "usage_type": "name" }, { "api_name": "discord.app_commands.choices", "line_number": 92, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 92, "usage_type": "name" }, { "api_name": "discord.app_commands.Choice", "line_number": 94, "usage_type": "call" }, { "api_name": "discord.app_commands.Choice", "line_number": 95, "usage_type": "call" }, { "api_name": "discord.app_commands.check", "line_number": 98, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 98, "usage_type": "name" }, { "api_name": "discord.ext.commands.Cog", "line_number": 113, "usage_type": "name" }, { "api_name": "discord.ext.commands.Bot", "line_number": 116, "usage_type": "name" }, { "api_name": "discord.Interaction", "line_number": 119, "usage_type": "name" }, { "api_name": "discord.app_commands.Group", "line_number": 136, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 136, "usage_type": "name" }, { "api_name": "discord.Interaction", "line_number": 143, "usage_type": "name" }, { "api_name": "discord.app_commands.describe", "line_number": 142, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 142, "usage_type": "name" }, { "api_name": "discord.Interaction", "line_number": 161, "usage_type": "name" }, { "api_name": "discord.app_commands.describe", "line_number": 160, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 160, "usage_type": "name" }, { "api_name": "discord.Interaction", "line_number": 182, "usage_type": "name" }, { "api_name": "discord.app_commands.Group", "line_number": 196, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 196, "usage_type": "name" }, { "api_name": "discord.Interaction", "line_number": 202, "usage_type": "name" }, { "api_name": "discord.Interaction", "line_number": 213, "usage_type": "name" }, { "api_name": "discord.Interaction", "line_number": 225, "usage_type": "name" }, { "api_name": "discord.Role", "line_number": 225, "usage_type": "name" }, { "api_name": "discord.app_commands.describe", "line_number": 224, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 224, "usage_type": "name" }, { "api_name": "discord.app_commands.Group", "line_number": 242, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 242, "usage_type": "name" }, { "api_name": "discord.Interaction", "line_number": 251, "usage_type": "name" }, { "api_name": "discord.app_commands.describe", "line_number": 248, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 248, "usage_type": "name" }, { "api_name": "discord.Interaction", "line_number": 268, "usage_type": "name" }, { "api_name": "discord.app_commands.describe", "line_number": 267, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 267, "usage_type": "name" }, { "api_name": "discord.Interaction", "line_number": 288, "usage_type": "name" }, { "api_name": "discord.Interaction", "line_number": 304, "usage_type": "name" }, { "api_name": "discord.app_commands.describe", "line_number": 303, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 303, "usage_type": "name" }, { "api_name": "discord.app_commands.Group", "line_number": 313, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 313, "usage_type": "name" }, { "api_name": "discord.Interaction", "line_number": 320, "usage_type": "name" }, { "api_name": "discord.app_commands.describe", "line_number": 319, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 319, "usage_type": "name" }, { "api_name": "discord.Interaction", "line_number": 332, "usage_type": "name" }, { "api_name": "discord.app_commands.describe", "line_number": 331, "usage_type": "call" }, { "api_name": "discord.app_commands", "line_number": 331, "usage_type": "name" } ]
12300903394
import numpy as np from sklearn.datasets import make_classification import pytest from pygbm.binning import BinMapper from pygbm.grower import TreeGrower from pygbm import GradientBoostingRegressor from pygbm import GradientBoostingClassifier X, y = make_classification(n_samples=150, n_classes=2, n_features=5, n_informative=3, n_redundant=0, random_state=0) def test_plot_grower(tmpdir): pytest.importorskip('graphviz') from pygbm.plotting import plot_tree X_binned = BinMapper().fit_transform(X) gradients = np.asarray(y, dtype=np.float32).copy() hessians = np.ones(1, dtype=np.float32) grower = TreeGrower(X_binned, gradients, hessians, max_leaf_nodes=5) grower.grow() filename = tmpdir.join('plot_grower.pdf') plot_tree(grower, view=False, filename=filename) assert filename.exists() def test_plot_estimator(tmpdir): pytest.importorskip('graphviz') from pygbm.plotting import plot_tree n_trees = 3 est = GradientBoostingRegressor(max_iter=n_trees) est.fit(X, y) for i in range(n_trees): filename = tmpdir.join('plot_predictor.pdf') plot_tree(est, tree_index=i, view=False, filename=filename) assert filename.exists() def test_plot_estimator_and_lightgbm(tmpdir): pytest.importorskip('graphviz') lightgbm = pytest.importorskip('lightgbm') from pygbm.plotting import plot_tree n_classes = 3 X, y = make_classification(n_samples=150, n_classes=n_classes, n_features=5, n_informative=3, n_redundant=0, random_state=0) n_trees = 3 est_pygbm = GradientBoostingClassifier(max_iter=n_trees, n_iter_no_change=None) est_pygbm.fit(X, y) est_lightgbm = lightgbm.LGBMClassifier(n_estimators=n_trees) est_lightgbm.fit(X, y) n_total_trees = n_trees * n_classes for i in range(n_total_trees): filename = tmpdir.join('plot_mixed_predictors.pdf') plot_tree(est_pygbm, est_lightgbm=est_lightgbm, tree_index=i, view=False, filename=filename) assert filename.exists()
ogrisel/pygbm
tests/test_plotting.py
test_plotting.py
py
2,201
python
en
code
175
github-code
6
[ { "api_name": "sklearn.datasets.make_classification", "line_number": 9, "usage_type": "call" }, { "api_name": "pytest.importorskip", "line_number": 15, "usage_type": "call" }, { "api_name": "pygbm.binning.BinMapper", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 19, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 19, "usage_type": "attribute" }, { "api_name": "numpy.ones", "line_number": 20, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 20, "usage_type": "attribute" }, { "api_name": "pygbm.grower.TreeGrower", "line_number": 21, "usage_type": "call" }, { "api_name": "pygbm.plotting.plot_tree", "line_number": 24, "usage_type": "call" }, { "api_name": "pytest.importorskip", "line_number": 29, "usage_type": "call" }, { "api_name": "pygbm.GradientBoostingRegressor", "line_number": 33, "usage_type": "call" }, { "api_name": "pygbm.plotting.plot_tree", "line_number": 37, "usage_type": "call" }, { "api_name": "pytest.importorskip", "line_number": 42, "usage_type": "call" }, { "api_name": "pytest.importorskip", "line_number": 43, "usage_type": "call" }, { "api_name": "sklearn.datasets.make_classification", "line_number": 47, "usage_type": "call" }, { "api_name": "pygbm.GradientBoostingClassifier", "line_number": 52, "usage_type": "call" }, { "api_name": "pygbm.plotting.plot_tree", "line_number": 61, "usage_type": "call" } ]
38958617780
from unittest import mock from django.test import TestCase from django.urls import resolve, reverse from nltk import word_tokenize from .models import ScrapeHistory from .views import WordCountView class ScrapeTest(TestCase): def _mock_response( self, status=200, content="CONTENT", json_data=None, raise_for_status=None): mock_resp = mock.Mock() # mock raise_for_status call w/optional error mock_resp.raise_for_status = mock.Mock() if raise_for_status: mock_resp.raise_for_status.side_effect = raise_for_status # set status code and content mock_resp.status_code = status mock_resp.content = content # add json data if provided if json_data: mock_resp.json = mock.Mock( return_value=json_data ) return mock_resp def setUp(self): self.url = reverse("wordcount") self.post_params = { "word": "fit", "url": "https://www.virtusize.jp/" } def test_wordcount_url_resolves(self): self.assertEqual(resolve(self.url).func.view_class, WordCountView) def test_missing_param(self): params = { "word": "ABC" } response = self.client.post( self.url, params, content_type='application/json') self.assertEqual(response.status_code, 400) def test_invalid_link_value(self): params = { "word": "WORd", "url": "https://virtuse" } response = self.client.post( self.url, params, content_type='application/json') self.assertEqual(response.status_code, 500) @mock.patch("scrape.views.requests.get") def test_wordcount_request_to_url(self, m): mock_resp = self._mock_response( content="<html><body>this is fit</body></html>") m.return_value = mock_resp response = WordCountView.scrap_url_and_word_count(self, "fit", "https://www.virtusize.jp/") self.assertEqual(response, 1) @mock.patch("scrape.views.WordCountView.scrap_url_and_word_count", return_value=1) def test_wordcount_success_result(self, m): response = self.client.post( self.url, self.post_params, content_type='application/json') result = response.json() test_content = { "status": "ok", "count": 1 } self.assertEqual(result, test_content) @mock.patch("scrape.views.WordCountView.scrap_url_and_word_count", return_value=1) def test_save_to_db(self, m): _ = ScrapeHistory.objects.create( url="https://www.virtusize.jp/", word="fit", word_count=1 ) _ = self.client.post( self.url, self.post_params, content_type='application/json') self.assertEqual(ScrapeHistory.objects.last().word_count, 1) self.assertNotEqual(ScrapeHistory.objects.last().word_count, 13) def test_word_tokenize(self): txt = "<html><body>Virtusize works for innovative idea. <'new idea'> idea-ly Although there are lot of new ideas but it focuses e-commerce</body></html>" words = word_tokenize(txt) self.assertEqual(words.count("idea"), 2) self.assertNotEqual(words.count("idea"), 1)
iqbalalo/word_counter
src/scrape/tests.py
tests.py
py
3,441
python
en
code
0
github-code
6
[ { "api_name": "django.test.TestCase", "line_number": 11, "usage_type": "name" }, { "api_name": "unittest.mock.Mock", "line_number": 20, "usage_type": "call" }, { "api_name": "unittest.mock", "line_number": 20, "usage_type": "name" }, { "api_name": "unittest.mock.Mock", "line_number": 23, "usage_type": "call" }, { "api_name": "unittest.mock", "line_number": 23, "usage_type": "name" }, { "api_name": "unittest.mock.Mock", "line_number": 33, "usage_type": "call" }, { "api_name": "unittest.mock", "line_number": 33, "usage_type": "name" }, { "api_name": "django.urls.reverse", "line_number": 39, "usage_type": "call" }, { "api_name": "views.WordCountView", "line_number": 46, "usage_type": "argument" }, { "api_name": "django.urls.resolve", "line_number": 46, "usage_type": "call" }, { "api_name": "views.WordCountView.scrap_url_and_word_count", "line_number": 76, "usage_type": "call" }, { "api_name": "views.WordCountView", "line_number": 76, "usage_type": "name" }, { "api_name": "unittest.mock.patch", "line_number": 69, "usage_type": "call" }, { "api_name": "unittest.mock", "line_number": 69, "usage_type": "name" }, { "api_name": "unittest.mock.patch", "line_number": 81, "usage_type": "call" }, { "api_name": "unittest.mock", "line_number": 81, "usage_type": "name" }, { "api_name": "models.ScrapeHistory.objects.create", "line_number": 97, "usage_type": "call" }, { "api_name": "models.ScrapeHistory.objects", "line_number": 97, "usage_type": "attribute" }, { "api_name": "models.ScrapeHistory", "line_number": 97, "usage_type": "name" }, { "api_name": "models.ScrapeHistory.objects.last", "line_number": 106, "usage_type": "call" }, { "api_name": "models.ScrapeHistory.objects", "line_number": 106, "usage_type": "attribute" }, { "api_name": "models.ScrapeHistory", "line_number": 106, "usage_type": "name" }, { "api_name": "models.ScrapeHistory.objects.last", "line_number": 108, "usage_type": "call" }, { "api_name": "models.ScrapeHistory.objects", "line_number": 108, "usage_type": "attribute" }, { "api_name": "models.ScrapeHistory", "line_number": 108, "usage_type": "name" }, { "api_name": "unittest.mock.patch", "line_number": 95, "usage_type": "call" }, { "api_name": "unittest.mock", "line_number": 95, "usage_type": "name" }, { "api_name": "nltk.word_tokenize", "line_number": 113, "usage_type": "call" } ]
7661449629
import numpy as np import netCDF4 from datetime import datetime, timedelta from glob import glob import os, sys """ This program is used to read input data. """ #****************************************** # Edit here (input file directories) #------------------------------------------ slpbasedir = "/mnt/nas02/data/CMIP6" tabasedir = "/mnt/nas02/data/CMIP6" uabasedir = "/mnt/nas02/data/CMIP6" vabasedir = "/mnt/nas02/data/CMIP6" tsbasedir = "/mnt/nas02/data/CMIP6" topobasedir= "/mnt/nas02/data/CMIP6" landbasedir= "/mnt/nas02/data/CMIP6" prbasedir = "/mnt/nas02/data/CMIP6" # not used for detection #****************************************** dbasedir = { "slp":slpbasedir, "ta" :tabasedir, "ua" :uabasedir, "va" :vabasedir, "sst":tsbasedir, "topo":topobasedir, "land":landbasedir, "pr" :prbasedir, # not used for detection } dvar = { "slp":"psl", "ta" :"ta", "ua" :"ua", "va" :"va", "sst":"ts", "topo":"orog", "land":"sftlf", "pr" :"pr", # not used for detection } def ret_lats(model): return np.load(slpbasedir + "/%s/lat.npy"%(model)) # MIROC6: -88.92773535 ~ 88.92773535, d=~1.4007664 def ret_lons(model): return np.load(slpbasedir + "/%s/lon.npy"%(model)) # MIROC6: 0 ~ 358.59375, d=1.40625 def ret_ny(model): return len(ret_lats(model)) def ret_nx(model): return len(ret_lons(model)) # MIROC6: (128, 256) def ret_miss(model): modelname = model.split(".")[0] if modelname=="MIROC6": miss_in= 9.969209968386869e+36 elif modelname=="MRI-ESM2-0": miss_in= 9.969209968386869e+36 elif modelname=="MPI-ESM1-2-HR":miss_in= 9.969209968386869e+36 return miss_in def Load_6hrPlev(model, var, DTime, plev): modelname, expr, ens = model.split(".") vname = dvar[var] iplev = [850, 500, 250].index(plev) # Search file srcdir = dbasedir[var] + "/%s"%(model) ssearch = srcdir + "/%s_6hrPlev*.nc"%(vname) lsrcpath = glob(ssearch) for srcpath in lsrcpath: stime = os.path.basename(srcpath).split("_")[6].split(".")[0] stime0, stime1 = stime.split("-") dtime0 = datetime.strptime(stime0, "%Y%m%d%H%M") dtime1 = datetime.strptime(stime1, "%Y%m%d%H%M") if (dtime0<=DTime)&(DTime<=dtime1): break nc = netCDF4.Dataset(srcpath) #print(nc.variables) #print(srcpath) # Find time index basetime = { ("MIROC6","piControl"): datetime(3200,1,1), ("MRI-ESM2-0","piControl"): datetime(1850,1,1), ("MRI-ESM2-0","historical"): datetime(1850,1,1), ("MPI-ESM1-2-HR","piControl"): datetime(1850,1,1), }[modelname,expr] dtime0 = basetime + timedelta(days=float(nc.variables["time"][0])) idxtime = int((DTime - dtime0).total_seconds()/21600) # 6-hour = 21600 sec #print(DTime, dtime0) #print(idxtime) return nc.variables[vname][idxtime, iplev] def Load_6hrSfc(model, var, DTime): modelname, expr, ens = model.split(".") vname = dvar[var] # Search file srcdir = dbasedir[var] + "/%s"%(model) ssearch = srcdir + "/%s_6hrPlev*.nc"%(vname) lsrcpath = np.sort(glob(ssearch)) for srcpath in lsrcpath: stime = os.path.basename(srcpath).split("_")[6].split(".")[0] stime0, stime1 = stime.split("-") dtime0 = datetime.strptime(stime0, "%Y%m%d%H%M") dtime1 = datetime.strptime(stime1, "%Y%m%d%H%M") if (dtime0<=DTime)&(DTime<=dtime1): break nc = netCDF4.Dataset(srcpath) #print(nc.variables) #print(srcpath) # Find time index basetime = { ("MIROC6","piControl"): datetime(3200,1,1), ("MRI-ESM2-0","piControl"): datetime(1850,1,1), ("MRI-ESM2-0","historical"): datetime(1850,1,1), }[modelname,expr] dtime0 = basetime + timedelta(days=float(nc.variables["time"][0])) idxtime = int((DTime - dtime0).total_seconds()/21600) # 6-hour = 21600 sec return nc.variables[vname][idxtime] #return nc.variables[vname].shape def Load_monSfc(model, var, Year, Mon): modelname, expr, ens = model.split(".") vname = dvar[var] DTime = datetime(Year,Mon,1) # Search file srcdir = dbasedir[var] + "/%s"%(model) ssearch = srcdir + "/%s_Amon*.nc"%(vname) lsrcpath = np.sort(glob(ssearch)) for srcpath in lsrcpath: stime = os.path.basename(srcpath).split("_")[6].split(".")[0] stime0, stime1 = stime.split("-") dtime0 = datetime.strptime(stime0, "%Y%m") dtime1 = datetime.strptime(stime1, "%Y%m") if (dtime0<=DTime)&(DTime<=dtime1): break nc = netCDF4.Dataset(srcpath) #print(nc.variables) #print(srcpath) #print(nc.variables["time"][:]) #print(len(nc.variables["time"][:])) # Find time index Year0,Mon0 = dtime0.timetuple()[:2] Year1,Mon1 = dtime1.timetuple()[:2] idxtime = int(Year-Year0)*12 -Mon0 + Mon #print(idxtime) return nc.variables[vname][idxtime] def Load_const(model, var): vname = dvar[var] srcdir = dbasedir[var] + "/%s"%(model) ssearch = srcdir + "/%s_*.nc"%(vname) lsrcpath= glob(ssearch) srcpath = lsrcpath[0] nc = netCDF4.Dataset(srcpath) #print(nc.variables) return nc.variables[vname][:]
nbykutsumi/wsd
dataloader_CMIP6.py
dataloader_CMIP6.py
py
5,339
python
en
code
1
github-code
6
[ { "api_name": "numpy.load", "line_number": 47, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 51, "usage_type": "call" }, { "api_name": "glob.glob", "line_number": 75, "usage_type": "call" }, { "api_name": "os.path.basename", "line_number": 77, "usage_type": "call" }, { "api_name": "os.path", "line_number": 77, "usage_type": "attribute" }, { "api_name": "datetime.datetime.strptime", "line_number": 80, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 80, "usage_type": "name" }, { "api_name": "datetime.datetime.strptime", "line_number": 81, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 81, "usage_type": "name" }, { "api_name": "netCDF4.Dataset", "line_number": 84, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 90, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 92, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 93, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 95, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 98, "usage_type": "call" }, { "api_name": "numpy.sort", "line_number": 112, "usage_type": "call" }, { "api_name": "glob.glob", "line_number": 112, "usage_type": "call" }, { "api_name": "os.path.basename", "line_number": 114, "usage_type": "call" }, { "api_name": "os.path", "line_number": 114, "usage_type": "attribute" }, { "api_name": "datetime.datetime.strptime", "line_number": 117, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 117, "usage_type": "name" }, { "api_name": "datetime.datetime.strptime", "line_number": 118, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 118, "usage_type": "name" }, { "api_name": "netCDF4.Dataset", "line_number": 121, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 127, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 128, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 129, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 132, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 141, "usage_type": "call" }, { "api_name": "numpy.sort", "line_number": 145, "usage_type": "call" }, { "api_name": "glob.glob", "line_number": 145, "usage_type": "call" }, { "api_name": "os.path.basename", "line_number": 147, "usage_type": "call" }, { "api_name": "os.path", "line_number": 147, "usage_type": "attribute" }, { "api_name": "datetime.datetime.strptime", "line_number": 150, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 150, "usage_type": "name" }, { "api_name": "datetime.datetime.strptime", "line_number": 151, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 151, "usage_type": "name" }, { "api_name": "netCDF4.Dataset", "line_number": 154, "usage_type": "call" }, { "api_name": "glob.glob", "line_number": 174, "usage_type": "call" }, { "api_name": "netCDF4.Dataset", "line_number": 176, "usage_type": "call" } ]
18266500320
"""This is Slate's Linear Algebra Compiler. This module is responsible for generating C++ kernel functions representing symbolic linear algebra expressions written in Slate. This linear algebra compiler uses both Firedrake's form compiler, the Two-Stage Form Compiler (TSFC) and COFFEE's kernel abstract syntax tree (AST) optimizer. TSFC provides this compiler with appropriate kernel functions (in C) for evaluating integral expressions (finite element variational forms written in UFL). COFFEE's AST base helps with the construction of code blocks throughout the kernel returned by: `compile_expression`. The Eigen C++ library (http://eigen.tuxfamily.org/) is required, as all low-level numerical linear algebra operations are performed using this templated function library. """ from coffee import base as ast from firedrake.constant import Constant from firedrake.tsfc_interface import SplitKernel, KernelInfo from firedrake.slate.slac.kernel_builder import LocalKernelBuilder from firedrake import op2 from itertools import chain from pyop2.utils import get_petsc_dir from pyop2.datatypes import as_cstr from tsfc.parameters import SCALAR_TYPE import firedrake.slate.slate as slate import numpy as np __all__ = ['compile_expression'] PETSC_DIR = get_petsc_dir() cell_to_facets_dtype = np.dtype(np.int8) def compile_expression(slate_expr, tsfc_parameters=None): """Takes a Slate expression `slate_expr` and returns the appropriate :class:`firedrake.op2.Kernel` object representing the Slate expression. :arg slate_expr: a :class:'TensorBase' expression. :arg tsfc_parameters: an optional `dict` of form compiler parameters to be passed onto TSFC during the compilation of ufl forms. Returns: A `tuple` containing a `SplitKernel(idx, kinfo)` """ if not isinstance(slate_expr, slate.TensorBase): raise ValueError("Expecting a `TensorBase` object, not %s" % type(slate_expr)) # TODO: Get PyOP2 to write into mixed dats if slate_expr.is_mixed: raise NotImplementedError("Compiling mixed slate expressions") if len(slate_expr.ufl_domains()) > 1: raise NotImplementedError("Multiple domains not implemented.") # If the expression has already been symbolically compiled, then # simply reuse the produced kernel. if slate_expr._metakernel_cache is not None: return slate_expr._metakernel_cache # Create a builder for the Slate expression builder = LocalKernelBuilder(expression=slate_expr, tsfc_parameters=tsfc_parameters) # Keep track of declared temporaries declared_temps = {} statements = [] # Declare terminal tensor temporaries terminal_declarations = terminal_temporaries(builder, declared_temps) statements.extend(terminal_declarations) # Generate assembly calls for tensor assembly subkernel_calls = tensor_assembly_calls(builder) statements.extend(subkernel_calls) # Create coefficient temporaries if necessary if builder.action_coefficients: coefficient_temps = coefficient_temporaries(builder, declared_temps) statements.extend(coefficient_temps) # Create auxiliary temporaries if necessary if builder.aux_exprs: aux_temps = auxiliary_temporaries(builder, declared_temps) statements.extend(aux_temps) # Generate the kernel information with complete AST kinfo = generate_kernel_ast(builder, statements, declared_temps) # Cache the resulting kernel idx = tuple([0]*slate_expr.rank) kernel = (SplitKernel(idx, kinfo),) slate_expr._metakernel_cache = kernel return kernel def generate_kernel_ast(builder, statements, declared_temps): """Glues together the complete AST for the Slate expression contained in the :class:`LocalKernelBuilder`. :arg builder: The :class:`LocalKernelBuilder` containing all relevant expression information. :arg statements: A list of COFFEE objects containing all assembly calls and temporary declarations. :arg declared_temps: A `dict` containing all previously declared temporaries. Return: A `KernelInfo` object describing the complete AST. """ slate_expr = builder.expression if slate_expr.rank == 0: # Scalars are treated as 1x1 MatrixBase objects shape = (1,) else: shape = slate_expr.shape # Now we create the result statement by declaring its eigen type and # using Eigen::Map to move between Eigen and C data structs. statements.append(ast.FlatBlock("/* Map eigen tensor into C struct */\n")) result_sym = ast.Symbol("T%d" % len(declared_temps)) result_data_sym = ast.Symbol("A%d" % len(declared_temps)) result_type = "Eigen::Map<%s >" % eigen_matrixbase_type(shape) result = ast.Decl(SCALAR_TYPE, ast.Symbol(result_data_sym, shape)) result_statement = ast.FlatBlock("%s %s((%s *)%s);\n" % (result_type, result_sym, SCALAR_TYPE, result_data_sym)) statements.append(result_statement) # Generate the complete c++ string performing the linear algebra operations # on Eigen matrices/vectors statements.append(ast.FlatBlock("/* Linear algebra expression */\n")) cpp_string = ast.FlatBlock(metaphrase_slate_to_cpp(slate_expr, declared_temps)) statements.append(ast.Incr(result_sym, cpp_string)) # Generate arguments for the macro kernel args = [result, ast.Decl("%s **" % SCALAR_TYPE, builder.coord_sym)] # Orientation information if builder.oriented: args.append(ast.Decl("int **", builder.cell_orientations_sym)) # Coefficient information expr_coeffs = slate_expr.coefficients() for c in expr_coeffs: if isinstance(c, Constant): ctype = "%s *" % SCALAR_TYPE else: ctype = "%s **" % SCALAR_TYPE args.extend([ast.Decl(ctype, csym) for csym in builder.coefficient(c)]) # Facet information if builder.needs_cell_facets: args.append(ast.Decl("%s *" % as_cstr(cell_to_facets_dtype), builder.cell_facet_sym)) # NOTE: We need to be careful about the ordering here. Mesh layers are # added as the final argument to the kernel. if builder.needs_mesh_layers: args.append(ast.Decl("int", builder.mesh_layer_sym)) # Macro kernel macro_kernel_name = "compile_slate" stmts = ast.Block(statements) macro_kernel = ast.FunDecl("void", macro_kernel_name, args, stmts, pred=["static", "inline"]) # Construct the final ast kernel_ast = ast.Node(builder.templated_subkernels + [macro_kernel]) # Now we wrap up the kernel ast as a PyOP2 kernel and include the # Eigen header files include_dirs = builder.include_dirs include_dirs.extend(["%s/include/eigen3/" % d for d in PETSC_DIR]) op2kernel = op2.Kernel(kernel_ast, macro_kernel_name, cpp=True, include_dirs=include_dirs, headers=['#include <Eigen/Dense>', '#define restrict __restrict']) # Send back a "TSFC-like" SplitKernel object with an # index and KernelInfo kinfo = KernelInfo(kernel=op2kernel, integral_type=builder.integral_type, oriented=builder.oriented, subdomain_id="otherwise", domain_number=0, coefficient_map=tuple(range(len(expr_coeffs))), needs_cell_facets=builder.needs_cell_facets, pass_layer_arg=builder.needs_mesh_layers) return kinfo def auxiliary_temporaries(builder, declared_temps): """Generates statements for assigning auxiliary temporaries for nodes in an expression with "high" reference count. Expressions which require additional temporaries are provided by the :class:`LocalKernelBuilder`. :arg builder: The :class:`LocalKernelBuilder` containing all relevant expression information. :arg declared_temps: A `dict` containing all previously declared temporaries. This dictionary is updated as auxiliary expressions are assigned temporaries. """ statements = [ast.FlatBlock("/* Auxiliary temporaries */\n")] results = [ast.FlatBlock("/* Assign auxiliary temps */\n")] for exp in builder.aux_exprs: if exp not in declared_temps: t = ast.Symbol("auxT%d" % len(declared_temps)) result = metaphrase_slate_to_cpp(exp, declared_temps) tensor_type = eigen_matrixbase_type(shape=exp.shape) statements.append(ast.Decl(tensor_type, t)) statements.append(ast.FlatBlock("%s.setZero();\n" % t)) results.append(ast.Assign(t, result)) declared_temps[exp] = t statements.extend(results) return statements def coefficient_temporaries(builder, declared_temps): """Generates coefficient temporary statements for assigning coefficients to vector temporaries. :arg builder: The :class:`LocalKernelBuilder` containing all relevant expression information. :arg declared_temps: A `dict` keeping track of all declared temporaries. This dictionary is updated as coefficients are assigned temporaries. Action computations require creating coefficient temporaries to compute the matrix-vector product. The temporaries are created by inspecting the function space of the coefficient to compute node and dof extents. The coefficient is then assigned values by looping over both the node extent and dof extent (double FOR-loop). A double FOR-loop is needed for each function space (if the function space is mixed, then a loop will be constructed for each component space). The general structure of each coefficient loop will be: FOR (i1=0; i1<node_extent; i1++): FOR (j1=0; j1<dof_extent; j1++): wT0[offset + (dof_extent * i1) + j1] = w_0_0[i1][j1] wT1[offset + (dof_extent * i1) + j1] = w_1_0[i1][j1] . . . where wT0, wT1, ... are temporaries for coefficients sharing the same node and dof extents. The offset is computed based on whether the function space is mixed. The offset is always 0 for non-mixed coefficients. If the coefficient is mixed, then the offset is incremented by the total number of nodal unknowns associated with the component spaces of the mixed space. """ statements = [ast.FlatBlock("/* Coefficient temporaries */\n")] i_sym = ast.Symbol("i1") j_sym = ast.Symbol("j1") loops = [ast.FlatBlock("/* Loops for coefficient temps */\n")] for (nodes, dofs), cinfo_list in builder.action_coefficients.items(): # Collect all coefficients which share the same node/dof extent assignments = [] for cinfo in cinfo_list: fs_i = cinfo.space_index offset = cinfo.offset_index c_shape = cinfo.shape actee = cinfo.coefficient if actee not in declared_temps: # Declare and initialize coefficient temporary c_type = eigen_matrixbase_type(shape=c_shape) t = ast.Symbol("wT%d" % len(declared_temps)) statements.append(ast.Decl(c_type, t)) statements.append(ast.FlatBlock("%s.setZero();\n" % t)) declared_temps[actee] = t # Assigning coefficient values into temporary coeff_sym = ast.Symbol(builder.coefficient(actee)[fs_i], rank=(i_sym, j_sym)) index = ast.Sum(offset, ast.Sum(ast.Prod(dofs, i_sym), j_sym)) coeff_temp = ast.Symbol(t, rank=(index,)) assignments.append(ast.Assign(coeff_temp, coeff_sym)) # Inner-loop running over dof extent inner_loop = ast.For(ast.Decl("unsigned int", j_sym, init=0), ast.Less(j_sym, dofs), ast.Incr(j_sym, 1), assignments) # Outer-loop running over node extent loop = ast.For(ast.Decl("unsigned int", i_sym, init=0), ast.Less(i_sym, nodes), ast.Incr(i_sym, 1), inner_loop) loops.append(loop) statements.extend(loops) return statements def tensor_assembly_calls(builder): """Generates a block of statements for assembling the local finite element tensors. :arg builder: The :class:`LocalKernelBuilder` containing all relevant expression information and assembly calls. """ statements = [ast.FlatBlock("/* Assemble local tensors */\n")] # Cell integrals are straightforward. Just splat them out. statements.extend(builder.assembly_calls["cell"]) if builder.needs_cell_facets: # The for-loop will have the general structure: # # FOR (facet=0; facet<num_facets; facet++): # IF (facet is interior): # *interior calls # ELSE IF (facet is exterior): # *exterior calls # # If only interior (exterior) facets are present, # then only a single IF-statement checking for interior # (exterior) facets will be present within the loop. The # cell facets are labelled `1` for interior, and `0` for # exterior. statements.append(ast.FlatBlock("/* Loop over cell facets */\n")) int_calls = list(chain(*[builder.assembly_calls[it_type] for it_type in ("interior_facet", "interior_facet_vert")])) ext_calls = list(chain(*[builder.assembly_calls[it_type] for it_type in ("exterior_facet", "exterior_facet_vert")])) # Compute the number of facets to loop over domain = builder.expression.ufl_domain() if domain.cell_set._extruded: num_facets = domain.ufl_cell()._cells[0].num_facets() else: num_facets = domain.ufl_cell().num_facets() if_ext = ast.Eq(ast.Symbol(builder.cell_facet_sym, rank=(builder.it_sym,)), 0) if_int = ast.Eq(ast.Symbol(builder.cell_facet_sym, rank=(builder.it_sym,)), 1) body = [] if ext_calls: body.append(ast.If(if_ext, (ast.Block(ext_calls, open_scope=True),))) if int_calls: body.append(ast.If(if_int, (ast.Block(int_calls, open_scope=True),))) statements.append(ast.For(ast.Decl("unsigned int", builder.it_sym, init=0), ast.Less(builder.it_sym, num_facets), ast.Incr(builder.it_sym, 1), body)) if builder.needs_mesh_layers: # In the presence of interior horizontal facet calls, an # IF-ELIF-ELSE block is generated using the mesh levels # as conditions for which calls are needed: # # IF (layer == bottom_layer): # *bottom calls # ELSE IF (layer == top_layer): # *top calls # ELSE: # *top calls # *bottom calls # # Any extruded top or bottom calls for extruded facets are # included within the appropriate mesh-level IF-blocks. If # no interior horizontal facet calls are present, then # standard IF-blocks are generated for exterior top/bottom # facet calls when appropriate: # # IF (layer == bottom_layer): # *bottom calls # # IF (layer == top_layer): # *top calls # # The mesh level is an integer provided as a macro kernel # argument. # FIXME: No variable layers assumption statements.append(ast.FlatBlock("/* Mesh levels: */\n")) num_layers = builder.expression.ufl_domain().topological.layers - 1 int_top = builder.assembly_calls["interior_facet_horiz_top"] int_btm = builder.assembly_calls["interior_facet_horiz_bottom"] ext_top = builder.assembly_calls["exterior_facet_top"] ext_btm = builder.assembly_calls["exterior_facet_bottom"] bottom = ast.Block(int_top + ext_btm, open_scope=True) top = ast.Block(int_btm + ext_top, open_scope=True) rest = ast.Block(int_btm + int_top, open_scope=True) statements.append(ast.If(ast.Eq(builder.mesh_layer_sym, 0), (bottom, ast.If(ast.Eq(builder.mesh_layer_sym, num_layers - 1), (top, rest))))) return statements def terminal_temporaries(builder, declared_temps): """Generates statements for assigning auxiliary temporaries for nodes in an expression with "high" reference count. Expressions which require additional temporaries are provided by the :class:`LocalKernelBuilder`. :arg builder: The :class:`LocalKernelBuilder` containing all relevant expression information. :arg declared_temps: A `dict` keeping track of all declared temporaries. This dictionary is updated as terminal tensors are assigned temporaries. """ statements = [ast.FlatBlock("/* Declare and initialize */\n")] for exp in builder.temps: t = builder.temps[exp] statements.append(ast.Decl(eigen_matrixbase_type(exp.shape), t)) statements.append(ast.FlatBlock("%s.setZero();\n" % t)) declared_temps[exp] = t return statements def parenthesize(arg, prec=None, parent=None): """Parenthesizes an expression.""" if prec is None or parent is None or prec >= parent: return arg return "(%s)" % arg def metaphrase_slate_to_cpp(expr, temps, prec=None): """Translates a Slate expression into its equivalent representation in the Eigen C++ syntax. :arg expr: a :class:`slate.TensorBase` expression. :arg temps: a `dict` of temporaries which map a given expression to its corresponding representation as a `coffee.Symbol` object. :arg prec: an argument dictating the order of precedence in the linear algebra operations. This ensures that parentheticals are placed appropriately and the order in which linear algebra operations are performed are correct. Returns This function returns a `string` which represents the C/C++ code representation of the `slate.TensorBase` expr. """ # If the tensor is terminal, it has already been declared. # Coefficients in action expressions will have been declared by now, # as well as any other nodes with high reference count. if expr in temps: return temps[expr].gencode() elif isinstance(expr, slate.Transpose): tensor, = expr.operands return "(%s).transpose()" % metaphrase_slate_to_cpp(tensor, temps) elif isinstance(expr, slate.Inverse): tensor, = expr.operands return "(%s).inverse()" % metaphrase_slate_to_cpp(tensor, temps) elif isinstance(expr, slate.Negative): tensor, = expr.operands result = "-%s" % metaphrase_slate_to_cpp(tensor, temps, expr.prec) return parenthesize(result, expr.prec, prec) elif isinstance(expr, (slate.Add, slate.Sub, slate.Mul)): op = {slate.Add: '+', slate.Sub: '-', slate.Mul: '*'}[type(expr)] A, B = expr.operands result = "%s %s %s" % (metaphrase_slate_to_cpp(A, temps, expr.prec), op, metaphrase_slate_to_cpp(B, temps, expr.prec)) return parenthesize(result, expr.prec, prec) elif isinstance(expr, slate.Action): tensor, = expr.operands c, = expr.actee result = "(%s) * %s" % (metaphrase_slate_to_cpp(tensor, temps, expr.prec), temps[c]) return parenthesize(result, expr.prec, prec) else: raise NotImplementedError("Type %s not supported.", type(expr)) def eigen_matrixbase_type(shape): """Returns the Eigen::Matrix declaration of the tensor. :arg shape: a tuple of integers the denote the shape of the :class:`slate.TensorBase` object. Returns: Returns a string indicating the appropriate declaration of the `slate.TensorBase` object in the appropriate Eigen C++ template library syntax. """ if len(shape) == 0: rows = 1 cols = 1 elif len(shape) == 1: rows = shape[0] cols = 1 else: if not len(shape) == 2: raise NotImplementedError( "%d-rank tensors are not supported." % len(shape) ) rows = shape[0] cols = shape[1] if cols != 1: order = ", Eigen::RowMajor" else: order = "" return "Eigen::Matrix<double, %d, %d%s>" % (rows, cols, order)
hixio-mh/firedrake
firedrake/slate/slac/compiler.py
compiler.py
py
22,060
python
en
code
null
github-code
6
[ { "api_name": "pyop2.utils.get_petsc_dir", "line_number": 38, "usage_type": "call" }, { "api_name": "numpy.dtype", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.int8", "line_number": 40, "usage_type": "attribute" }, { "api_name": "firedrake.slate.slate.TensorBase", "line_number": 54, "usage_type": "attribute" }, { "api_name": "firedrake.slate.slate", "line_number": 54, "usage_type": "name" }, { "api_name": "firedrake.slate.slac.kernel_builder.LocalKernelBuilder", "line_number": 70, "usage_type": "call" }, { "api_name": "firedrake.tsfc_interface.SplitKernel", "line_number": 100, "usage_type": "call" }, { "api_name": "coffee.base.FlatBlock", "line_number": 128, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 128, "usage_type": "name" }, { "api_name": "coffee.base.Symbol", "line_number": 129, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 129, "usage_type": "name" }, { "api_name": "coffee.base.Symbol", "line_number": 130, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 130, "usage_type": "name" }, { "api_name": "coffee.base.Decl", "line_number": 132, "usage_type": "call" }, { "api_name": "tsfc.parameters.SCALAR_TYPE", "line_number": 132, "usage_type": "argument" }, { "api_name": "coffee.base", "line_number": 132, "usage_type": "name" }, { "api_name": "coffee.base.Symbol", "line_number": 132, "usage_type": "call" }, { "api_name": "coffee.base.FlatBlock", "line_number": 133, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 133, "usage_type": "name" }, { "api_name": "tsfc.parameters.SCALAR_TYPE", "line_number": 135, "usage_type": "name" }, { "api_name": "coffee.base.FlatBlock", "line_number": 141, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 141, "usage_type": "name" }, { "api_name": "coffee.base.FlatBlock", "line_number": 142, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 142, "usage_type": "name" }, { "api_name": "coffee.base.Incr", "line_number": 144, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 144, "usage_type": "name" }, { "api_name": "coffee.base.Decl", "line_number": 147, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 147, "usage_type": "name" }, { "api_name": "tsfc.parameters.SCALAR_TYPE", "line_number": 147, "usage_type": "name" }, { "api_name": "coffee.base.Decl", "line_number": 151, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 151, "usage_type": "name" }, { "api_name": "firedrake.constant.Constant", "line_number": 156, "usage_type": "argument" }, { "api_name": "tsfc.parameters.SCALAR_TYPE", "line_number": 157, "usage_type": "name" }, { "api_name": "tsfc.parameters.SCALAR_TYPE", "line_number": 159, "usage_type": "name" }, { "api_name": "coffee.base.Decl", "line_number": 160, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 160, "usage_type": "name" }, { "api_name": "coffee.base.Decl", "line_number": 164, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 164, "usage_type": "name" }, { "api_name": "pyop2.datatypes.as_cstr", "line_number": 164, "usage_type": "call" }, { "api_name": "coffee.base.Decl", "line_number": 170, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 170, "usage_type": "name" }, { "api_name": "coffee.base.Block", "line_number": 174, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 174, "usage_type": "name" }, { "api_name": "coffee.base.FunDecl", "line_number": 175, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 175, "usage_type": "name" }, { "api_name": "coffee.base.Node", "line_number": 179, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 179, "usage_type": "name" }, { "api_name": "firedrake.op2.Kernel", "line_number": 185, "usage_type": "call" }, { "api_name": "firedrake.op2", "line_number": 185, "usage_type": "name" }, { "api_name": "firedrake.tsfc_interface.KernelInfo", "line_number": 194, "usage_type": "call" }, { "api_name": "coffee.base.FlatBlock", "line_number": 219, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 219, "usage_type": "name" }, { "api_name": "coffee.base.FlatBlock", "line_number": 220, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 220, "usage_type": "name" }, { "api_name": "coffee.base.Symbol", "line_number": 223, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 223, "usage_type": "name" }, { "api_name": "coffee.base.Decl", "line_number": 226, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 226, "usage_type": "name" }, { "api_name": "coffee.base.FlatBlock", "line_number": 227, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 227, "usage_type": "name" }, { "api_name": "coffee.base.Assign", "line_number": 228, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 228, "usage_type": "name" }, { "api_name": "coffee.base.FlatBlock", "line_number": 270, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 270, "usage_type": "name" }, { "api_name": "coffee.base.Symbol", "line_number": 271, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 271, "usage_type": "name" }, { "api_name": "coffee.base.Symbol", "line_number": 272, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 272, "usage_type": "name" }, { "api_name": "coffee.base.FlatBlock", "line_number": 273, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 273, "usage_type": "name" }, { "api_name": "coffee.base.Symbol", "line_number": 286, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 286, "usage_type": "name" }, { "api_name": "coffee.base.Decl", "line_number": 287, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 287, "usage_type": "name" }, { "api_name": "coffee.base.FlatBlock", "line_number": 288, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 288, "usage_type": "name" }, { "api_name": "coffee.base.Symbol", "line_number": 292, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 292, "usage_type": "name" }, { "api_name": "coffee.base.Sum", "line_number": 294, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 294, "usage_type": "name" }, { "api_name": "coffee.base.Sum", "line_number": 295, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 295, "usage_type": "name" }, { "api_name": "coffee.base.Prod", "line_number": 295, "usage_type": "call" }, { "api_name": "coffee.base.Symbol", "line_number": 296, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 296, "usage_type": "name" }, { "api_name": "coffee.base.Assign", "line_number": 297, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 297, "usage_type": "name" }, { "api_name": "coffee.base.For", "line_number": 300, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 300, "usage_type": "name" }, { "api_name": "coffee.base.Decl", "line_number": 300, "usage_type": "call" }, { "api_name": "coffee.base.Less", "line_number": 301, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 301, "usage_type": "name" }, { "api_name": "coffee.base.Incr", "line_number": 302, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 302, "usage_type": "name" }, { "api_name": "coffee.base.For", "line_number": 306, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 306, "usage_type": "name" }, { "api_name": "coffee.base.Decl", "line_number": 306, "usage_type": "call" }, { "api_name": "coffee.base.Less", "line_number": 307, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 307, "usage_type": "name" }, { "api_name": "coffee.base.Incr", "line_number": 308, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 308, "usage_type": "name" }, { "api_name": "coffee.base.FlatBlock", "line_number": 326, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 326, "usage_type": "name" }, { "api_name": "coffee.base.FlatBlock", "line_number": 346, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 346, "usage_type": "name" }, { "api_name": "itertools.chain", "line_number": 347, "usage_type": "call" }, { "api_name": "itertools.chain", "line_number": 350, "usage_type": "call" }, { "api_name": "coffee.base.Eq", "line_number": 361, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 361, "usage_type": "name" }, { "api_name": "coffee.base.Symbol", "line_number": 361, "usage_type": "call" }, { "api_name": "coffee.base.Eq", "line_number": 363, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 363, "usage_type": "name" }, { "api_name": "coffee.base.Symbol", "line_number": 363, "usage_type": "call" }, { "api_name": "coffee.base.If", "line_number": 367, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 367, "usage_type": "name" }, { "api_name": "coffee.base.Block", "line_number": 367, "usage_type": "call" }, { "api_name": "coffee.base.If", "line_number": 370, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 370, "usage_type": "name" }, { "api_name": "coffee.base.Block", "line_number": 370, "usage_type": "call" }, { "api_name": "coffee.base.For", "line_number": 373, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 373, "usage_type": "name" }, { "api_name": "coffee.base.Decl", "line_number": 373, "usage_type": "call" }, { "api_name": "coffee.base.Less", "line_number": 375, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 375, "usage_type": "name" }, { "api_name": "coffee.base.Incr", "line_number": 376, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 376, "usage_type": "name" }, { "api_name": "coffee.base.FlatBlock", "line_number": 407, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 407, "usage_type": "name" }, { "api_name": "coffee.base.Block", "line_number": 414, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 414, "usage_type": "name" }, { "api_name": "coffee.base.Block", "line_number": 415, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 415, "usage_type": "name" }, { "api_name": "coffee.base.Block", "line_number": 416, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 416, "usage_type": "name" }, { "api_name": "coffee.base.If", "line_number": 417, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 417, "usage_type": "name" }, { "api_name": "coffee.base.Eq", "line_number": 417, "usage_type": "call" }, { "api_name": "coffee.base.If", "line_number": 419, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 419, "usage_type": "name" }, { "api_name": "coffee.base.Eq", "line_number": 419, "usage_type": "call" }, { "api_name": "coffee.base.FlatBlock", "line_number": 438, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 438, "usage_type": "name" }, { "api_name": "coffee.base.Decl", "line_number": 441, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 441, "usage_type": "name" }, { "api_name": "coffee.base.FlatBlock", "line_number": 442, "usage_type": "call" }, { "api_name": "coffee.base", "line_number": 442, "usage_type": "name" }, { "api_name": "firedrake.slate.slate.Transpose", "line_number": 477, "usage_type": "attribute" }, { "api_name": "firedrake.slate.slate", "line_number": 477, "usage_type": "name" }, { "api_name": "firedrake.slate.slate.Inverse", "line_number": 481, "usage_type": "attribute" }, { "api_name": "firedrake.slate.slate", "line_number": 481, "usage_type": "name" }, { "api_name": "firedrake.slate.slate.Negative", "line_number": 485, "usage_type": "attribute" }, { "api_name": "firedrake.slate.slate", "line_number": 485, "usage_type": "name" }, { "api_name": "firedrake.slate.slate.Add", "line_number": 490, "usage_type": "attribute" }, { "api_name": "firedrake.slate.slate", "line_number": 490, "usage_type": "name" }, { "api_name": "firedrake.slate.slate.Sub", "line_number": 490, "usage_type": "attribute" }, { "api_name": "firedrake.slate.slate.Mul", "line_number": 490, "usage_type": "attribute" }, { "api_name": "firedrake.slate.slate.Add", "line_number": 491, "usage_type": "attribute" }, { "api_name": "firedrake.slate.slate", "line_number": 491, "usage_type": "name" }, { "api_name": "firedrake.slate.slate.Sub", "line_number": 492, "usage_type": "attribute" }, { "api_name": "firedrake.slate.slate", "line_number": 492, "usage_type": "name" }, { "api_name": "firedrake.slate.slate.Mul", "line_number": 493, "usage_type": "attribute" }, { "api_name": "firedrake.slate.slate", "line_number": 493, "usage_type": "name" }, { "api_name": "firedrake.slate.slate.Action", "line_number": 501, "usage_type": "attribute" }, { "api_name": "firedrake.slate.slate", "line_number": 501, "usage_type": "name" } ]