seq_id
string
text
string
repo_name
string
sub_path
string
file_name
string
file_ext
string
file_size_in_byte
int64
program_lang
string
lang
string
doc_type
string
stars
int64
dataset
string
pt
string
api
list
24347960900
import numpy as np import os from .image_extraction import extract_images_from_pdf from .images import get_box from PIL import Image from flask import current_app def reference_image(exam_id, page, dpi, widget_area_in=None, padding=0): """Returns a reference image for a specified area The reference image is a flattened image of the problem on the original PDF Parameters ---------- exam_id : int The id of the exam to use page : int The page number to get the reference image for dpi : int The desired DPI of the image widget_area_in : numpy array The widget coordinates as numpy array If None, return the full page padding : float Extra padding to apply in inches Returns ------- image_path : string Location of the image. """ app_config = current_app.config data_directory = app_config["DATA_DIRECTORY"] generated_path = os.path.join(data_directory, f"{exam_id}_data", "blanks", f"{dpi}") if not os.path.exists(generated_path): _extract_reference_images(dpi, exam_id) image_path = os.path.join(generated_path, f"page{page:02d}.jpg") if not os.path.exists(image_path): _extract_reference_images(dpi, exam_id) blank_page = Image.open(image_path) blank_img_array = np.array(blank_page) if widget_area_in is not None: return get_box(blank_img_array, widget_area_in, padding=padding) else: return blank_img_array def _extract_reference_images(dpi, exam_id): """Extract and save reference images for the specified exam Saves the images at: {data_directory}/{exam_id}_data/blanks/{dpi}/page{page}.jpg Parameters ---------- dpi : int The desired DPI for the extracted images exam_id : int The id of the desired exam """ data_directory = current_app.config["DATA_DIRECTORY"] output_directory = os.path.join(data_directory, f"{exam_id}_data") pdf_path = os.path.join(output_directory, "exam.pdf") pages = extract_images_from_pdf(pdf_path, dpi=dpi) for page, (image, _) in enumerate(pages, start=1): _save_image(image, page, dpi, output_directory) def _save_image(image, page, dpi, output_directory): """Save an image at an appropriate location. Saves the images at: {output_directory}/blanks/{dpi}/page{page}.jpg Parameters ---------- image : PIL Image Image data. page : int The corresponding page number, starting at 1. dpi : int The DPI of the image to save. output_directory : path The output directory of the exam the page is from. Returns ------- image_path : string Location of the image. """ submission_path = os.path.join(output_directory, "blanks", f"{dpi}") os.makedirs(submission_path, exist_ok=True) image_path = os.path.join(submission_path, f"page{page-1:02d}.jpg") image.save(image_path) return image_path
zesje/zesje
zesje/blanks.py
blanks.py
py
3,019
python
en
code
9
github-code
6
[ { "api_name": "flask.current_app.config", "line_number": 36, "usage_type": "attribute" }, { "api_name": "flask.current_app", "line_number": 36, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 38, "usage_type": "call" }, { "api_name": "os.path", "line_number": 38, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 40, "usage_type": "call" }, { "api_name": "os.path", "line_number": 40, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 43, "usage_type": "call" }, { "api_name": "os.path", "line_number": 43, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 44, "usage_type": "call" }, { "api_name": "os.path", "line_number": 44, "usage_type": "attribute" }, { "api_name": "PIL.Image.open", "line_number": 47, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 47, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 48, "usage_type": "call" }, { "api_name": "images.get_box", "line_number": 51, "usage_type": "call" }, { "api_name": "flask.current_app.config", "line_number": 69, "usage_type": "attribute" }, { "api_name": "flask.current_app", "line_number": 69, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 70, "usage_type": "call" }, { "api_name": "os.path", "line_number": 70, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 71, "usage_type": "call" }, { "api_name": "os.path", "line_number": 71, "usage_type": "attribute" }, { "api_name": "image_extraction.extract_images_from_pdf", "line_number": 73, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 102, "usage_type": "call" }, { "api_name": "os.path", "line_number": 102, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 103, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 104, "usage_type": "call" }, { "api_name": "os.path", "line_number": 104, "usage_type": "attribute" } ]
10702615749
# pylint: disable=E0401 import js import functools from pyodide.ffi import create_once_callable, create_proxy from enum import Enum from typing import Callable, TypedDict, Sequence, MutableMapping, Union State = MutableMapping[str, Union[str, int, dict, list, None]] Actions = dict[str, Callable] Attributes = dict[str, Union[str, int, tuple[str]]] class VDom(TypedDict): node_name: str attributes: Attributes children: Sequence[Union[str, "VDom"]] def p( node_name: str, attributes: Attributes, children: Sequence[Union[str, "VDom"]] ) -> VDom: if not isinstance(children, Sequence): return { "node_name": node_name, "attributes": attributes, "children": [children], } return {"node_name": node_name, "attributes": attributes, "children": children} class App: def __init__( self, selector: str, state: State, view: Callable[[State, Actions], VDom], actions: Actions, ): def dispatch_action(action, state, data): action(state, data) self.resolve_node() self.view = view self.state = state self.actions = { name: functools.partial(dispatch_action, action) for name, action in actions.items() } self.skip_render = False self.new_node = None self.current_node = None self.dom_manager = DomManager(selector) self.resolve_node() def resolve_node(self): self.new_node = self.view(self.state, self.actions) self.schedule_render() def render(self, _): self.dom_manager.render(self.new_node) self.skip_render = False def schedule_render(self): if not self.skip_render: self.skip_render = True js.requestAnimationFrame(create_once_callable(self.render)) class DomManager: def __init__(self, selector: str) -> None: self.element = js.document.querySelector(selector) self.element.innerHTML = "" self.v_current_node = None class ChangeType(Enum): NONE = 1 TYPE = 2 TEXT = 3 NODE = 4 VALUE = 5 ATTR = 6 def render(self, v_new_node): if self.v_current_node: self.update_element(self.element, self.v_current_node, v_new_node) else: self.element.appendChild(self.create_element(v_new_node)) self.v_current_node = v_new_node def create_element(self, v_node): if not self.is_v_node(v_node): return js.document.createTextNode(str(v_node)) element = js.document.createElement(v_node["node_name"]) self.set_attributes(element, v_node["attributes"]) for child in v_node["children"]: element.appendChild(self.create_element(child)) return element def set_attributes(self, element, attributes): for attr, value in attributes.items(): if self.is_event_attr(attr): element.addEventListener(attr[2:].lower(), create_proxy(value)) else: element.setAttribute(str(attr), value) def update_element( self, parent_node, v_current_node, v_new_node, current_node_index=0 ): if not v_current_node: parent_node.appendChild(self.create_element(v_new_node)) return current_node = ( parent_node.childNodes[current_node_index] if len(parent_node.childNodes) > current_node_index else parent_node.childNodes[-1] ) if not v_new_node: parent_node.removeChild(current_node) return change_type = self.change_type(v_current_node, v_new_node) if change_type in [ self.ChangeType.TYPE, self.ChangeType.TEXT, self.ChangeType.NODE, ]: parent_node.replaceChild(self.create_element(v_new_node), current_node) if change_type == self.ChangeType.VALUE: current_node.value = v_new_node["attributes"].get("value") if change_type == self.ChangeType.ATTR: self.update_attributes( current_node, v_current_node["attributes"], v_new_node["attributes"] ) if not self.is_v_node(v_current_node) or not self.is_v_node(v_new_node): return for i in range( max([len(v_current_node["children"]), len(v_new_node["children"])]) ): v_current_node_child = ( v_current_node["children"][i] if i < len(v_current_node["children"]) else None ) v_new_node_child = ( v_new_node["children"][i] if i < len(v_new_node["children"]) else None ) self.update_element(current_node, v_current_node_child, v_new_node_child, i) def update_attributes(self, target_node, current_attributes, new_attributes): for attr in list(set(current_attributes.keys()) - set(new_attributes)): if self.is_event_attr(str(attr)): continue target_node.removeAttribute(str(attr)) for attr, value in new_attributes.items(): if ( self.is_event_attr(str(attr)) or current_attributes.get(str(attr)) == value ): continue target_node.setAttribute(str(attr), value) def change_type(self, a, b): if a.__class__.__name__ != b.__class__.__name__: return self.ChangeType.TYPE if not self.is_v_node(a) and a != b: return self.ChangeType.TEXT if self.is_v_node(a) and self.is_v_node(b): if a["node_name"] != b["node_name"]: return self.ChangeType.NODE if a["attributes"].get("value") != b["attributes"].get("value"): return self.ChangeType.VALUE if a["attributes"] != b["attributes"]: return self.ChangeType.ATTR return self.ChangeType.NONE def is_v_node(self, node): return isinstance(node, dict) def is_event_attr(self, attr: str): return attr.startswith("on")
harehare/python-wasm-vdom
vdom.py
vdom.py
py
6,230
python
en
code
0
github-code
6
[ { "api_name": "typing.MutableMapping", "line_number": 9, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 9, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 10, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 12, "usage_type": "name" }, { "api_name": "typing.TypedDict", "line_number": 15, "usage_type": "name" }, { "api_name": "typing.Sequence", "line_number": 18, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 18, "usage_type": "name" }, { "api_name": "typing.Sequence", "line_number": 22, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 22, "usage_type": "name" }, { "api_name": "typing.Sequence", "line_number": 24, "usage_type": "argument" }, { "api_name": "typing.Callable", "line_number": 39, "usage_type": "name" }, { "api_name": "functools.partial", "line_number": 49, "usage_type": "call" }, { "api_name": "js.requestAnimationFrame", "line_number": 70, "usage_type": "call" }, { "api_name": "pyodide.ffi.create_once_callable", "line_number": 70, "usage_type": "call" }, { "api_name": "js.document.querySelector", "line_number": 75, "usage_type": "call" }, { "api_name": "js.document", "line_number": 75, "usage_type": "attribute" }, { "api_name": "enum.Enum", "line_number": 79, "usage_type": "name" }, { "api_name": "js.document.createTextNode", "line_number": 97, "usage_type": "call" }, { "api_name": "js.document", "line_number": 97, "usage_type": "attribute" }, { "api_name": "js.document.createElement", "line_number": 99, "usage_type": "call" }, { "api_name": "js.document", "line_number": 99, "usage_type": "attribute" }, { "api_name": "pyodide.ffi.create_proxy", "line_number": 110, "usage_type": "call" } ]
2785515345
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import re import logging as log from time import sleep from html import escape import requests class FloodException(Exception): pass def send(config, post): # prepare config c = {'token': '', 'chat': '', 'maxlength': 1000, 'skip': [], 'censor': []} c.update(config) if not c['token'] or not c['chat']: raise Exception('[Telegram] missing parameter') # check key words if any((x in post['title']) for x in c['skip']): log.info('[Telegram] skip word hit') return if any((x in post['content']) for x in c['censor']): log.info('[Telegram] censor word hit') post['content'] = '' # fixes email addresses and links post['content'] = re.sub(r'([!-~]+\@[!-~]+)', ' \\1 ', post['content']) post['content'] = re.sub(r'(https?://[!-~]+)', '\\1 ', post['content']) # form message html = f'<b>{escape(post["title"])}</b>\n' html += f'{post["time"]} #{post["dept"]}\n' html += f'<a href="{post["linkLAN"]}">校内链接</a> <a href="{post["linkVPN"]}">VPN链接</a>\n\n' html += f'{escape(post["content"])}' if len(html) > c['maxlength']: html = html[:c['maxlength']] + '...' log.debug(f'[Telegram] html: {html}') # call HTTP API while True: try: r = requests.post('https://api.telegram.org/bot'+c['token']+'/sendMessage', json={ 'chat_id': c['chat'], 'text': html, 'parse_mode': 'HTML', 'disable_web_page_preview': True }, timeout=5) log.debug(f'[Telegram] response: {r.text}') if not r.json()['ok']: if r.json()['error_code'] == 429: raise FloodException() else: raise Exception(r.json()['error_code']) break except FloodException: log.warning('[Telegram] hit rate limit!') sleep(30) except requests.exceptions.RequestException as e: log.info('[Telegram] network error') log.info(repr(e)) sleep(5) except Exception as e: log.error('[Telegram] unknown error') log.error(repr(e)) sleep(60)
TechCiel/Reachee
sender/telegram.py
telegram.py
py
2,274
python
en
code
11
github-code
6
[ { "api_name": "logging.info", "line_number": 21, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 24, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 28, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 29, "usage_type": "call" }, { "api_name": "html.escape", "line_number": 32, "usage_type": "call" }, { "api_name": "html.escape", "line_number": 35, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 37, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 42, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 48, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 56, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 57, "usage_type": "call" }, { "api_name": "requests.exceptions", "line_number": 58, "usage_type": "attribute" }, { "api_name": "logging.info", "line_number": 59, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 60, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 61, "usage_type": "call" }, { "api_name": "logging.error", "line_number": 63, "usage_type": "call" }, { "api_name": "logging.error", "line_number": 64, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 65, "usage_type": "call" } ]
26676860635
from flask import Flask, render_template, request, redirect from flask_wtf import FlaskForm from wtforms import StringField, HiddenField, RadioField from wtforms.validators import Length, ValidationError import phonenumbers import random import json import os app = Flask(__name__) app.secret_key = 'Secret!' hours = {"1-2": "1-2 часа", "3-5": "3-5 часов", "5-7": "5-7 часов", "7-10": "7-10 часов"} days = {"mon": "Понедельник", "tue": "Вторник", "wed": "Среда", "thu": "Четверг", "fri": "Пятница", "sat": "Суббота", "sun": "Воскресенье"} week = {'sun': 'sunday', 'mon': 'monday', 'tue': 'tuesday', 'wed': 'wednesday', 'thu': 'thursday', 'fri': 'friday', 'sat': 'saturday'} def get_data(): with open("data.txt", "r") as d: data = json.load(d) return data def check_phone(form, field): number = form.clientPhone.data print(number) try: if not phonenumbers.is_valid_number(phonenumbers.parse(number, 'RU')): raise phonenumbers.NumberParseException(None, None) except phonenumbers.NumberParseException: raise ValidationError('Пожалуйста укажите номер телефона полностью (+7ХХХХХХХХХХ)') def convert_day(day): for key, value in week.items(): if value == day: return key # эта функция для добавления цели def add_goal(id_list, new_goal_eng, new_goal_ru, new_goal_pic): data = get_data() data['goals'].update({new_goal_eng: new_goal_ru}) data['emodji'].update({new_goal_eng: new_goal_pic}) for gid in id_list: if new_goal_eng not in data['teachers'][gid]['goals']: data['teachers'][gid]['goals'].append(new_goal_eng) out = {'goals': data['goals'], 'teachers': data['teachers'], 'emodji': data['emodji']} with open("data.txt", "w") as f: json.dump(out, f) def add_callback(name, phone, goal, time): records = [] if os.path.isfile('request.json'): with open('request.json', 'r') as r: records = json.load(r) records.append({'name': name, 'phone': phone, 'goal': goal, 'time': time}) with open('request.json', 'w') as w: json.dump(records, w) def add_record(name, phone, teacher_id, day, time): records = [] if os.path.isfile('booking.json'): with open('booking.json', 'r') as r: records = json.load(r) records.append({'name': name, 'phone': phone, 'teacher': teacher_id, 'weekday': day, 'time': time}) with open('booking.json', 'w') as w: json.dump(records, w) class RequestForm(FlaskForm): data = get_data() clientName = StringField('Вас зовут', [Length(min=2, message='Пожалуйста укажите ваше имя')]) clientPhone = StringField('Ваш телефон', [check_phone]) time = RadioField('Сколько времени есть?', choices=[(key, value) for key, value in hours.items()], default='1-2') goals = RadioField('Какая цель занятий?', choices=[(key, value) for key, value in data['goals'].items()], default='travel') class BookingForm(FlaskForm): clientName = StringField('Вас зовут', [Length(min=2, message='Пожалуйста укажите ваше имя')]) clientPhone = StringField('Ваш телефон', [check_phone]) clientWeekday = HiddenField() clientTime = HiddenField() clientTeacher = HiddenField() @app.route('/') def main(): # add_goal((8, 9, 10, 11), 'programming', 'Для программирования', '🖥') #<- Так добавлял цель data = get_data() random_teachers_ids = [] while len(random_teachers_ids) < 6: i = random.randint(0, len(data['teachers'])-1) if i not in random_teachers_ids: random_teachers_ids.append(i) return render_template('index.html', teachers=data['teachers'], ids=random_teachers_ids, pic=data['emodji'], goals=data['goals']) @app.route('/all/') def all_teachers(): data = get_data() return render_template('index.html', teachers=data['teachers'], ids=[i for i in range(len(data['teachers']))], pic=data['emodji'], goals=data['goals']) @app.route('/goals/<goal>/') def show_goals(goal): data = get_data() sorted_list = [] for teacher in data['teachers']: if goal in teacher['goals']: sorted_list.append(teacher) return render_template("goal.html", teachers=sorted_list, goals=data['goals'], goal=goal, pic=data['emodji']) @app.route('/profiles/<int:teacher_id>/') def show_profile(teacher_id): data = get_data() return render_template("profile.html", teacher=data['teachers'][teacher_id], goals=data['goals'], days=days, week=week) @app.route('/request/') def make_request(): form = RequestForm() return render_template("request.html", form=form) @app.route('/request_done/', methods=['POST', 'GET']) def request_done(): form = RequestForm() data = get_data() if request.method == 'POST': if form.validate_on_submit(): name = form.clientName.data phone = form.clientPhone.data goal = form.goals.data time = form.time.data add_callback(name, phone, goal, time) return render_template("request_done.html", name=name, phone=phone, goal=data['goals'].get(goal), time=hours.get(time)) else: return render_template("request.html", form=form) else: return render_template("request.html", form=form) @app.route('/booking/<int:teacher_id>/<day>/<time>/') def booking(teacher_id, day, time): data = get_data() what_day = convert_day(day) time = time + ":00" form = BookingForm(clientTime=time, clientWeekday=what_day, clientTeacher=teacher_id) return render_template("booking.html", teacher=data['teachers'][teacher_id], day=what_day, time=time, days=days, form=form) @app.route('/booking_done/', methods=['POST', 'GET']) def booking_save(): data = get_data() form = BookingForm() if request.method == 'POST': name = form.clientName.data phone = form.clientPhone.data day = form.clientWeekday.data time = form.clientTime.data teacher_id = int(form.clientTeacher.data) if form.validate_on_submit(): add_record(name, phone, teacher_id, day, time) return render_template("booking_done.html", name=name, phone=phone, day=days.get(day), time=time, teacher_id=teacher_id) else: return render_template("booking.html", teacher=data['teachers'][teacher_id], day=day, time=time, days=days, form=form) else: return redirect('/') if __name__ == '__main__': app.run()
maksimKnz/flask-project2
app.py
app.py
py
6,791
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 11, "usage_type": "call" }, { "api_name": "json.load", "line_number": 20, "usage_type": "call" }, { "api_name": "phonenumbers.is_valid_number", "line_number": 28, "usage_type": "call" }, { "api_name": "phonenumbers.parse", "line_number": 28, "usage_type": "call" }, { "api_name": "phonenumbers.NumberParseException", "line_number": 29, "usage_type": "call" }, { "api_name": "phonenumbers.NumberParseException", "line_number": 30, "usage_type": "attribute" }, { "api_name": "wtforms.validators.ValidationError", "line_number": 31, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 50, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 55, "usage_type": "call" }, { "api_name": "os.path", "line_number": 55, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 57, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 60, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 65, "usage_type": "call" }, { "api_name": "os.path", "line_number": 65, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 67, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 70, "usage_type": "call" }, { "api_name": "flask_wtf.FlaskForm", "line_number": 73, "usage_type": "name" }, { "api_name": "wtforms.StringField", "line_number": 75, "usage_type": "call" }, { "api_name": "wtforms.validators.Length", "line_number": 75, "usage_type": "call" }, { "api_name": "wtforms.StringField", "line_number": 76, "usage_type": "call" }, { "api_name": "wtforms.RadioField", "line_number": 77, "usage_type": "call" }, { "api_name": "wtforms.RadioField", "line_number": 78, "usage_type": "call" }, { "api_name": "flask_wtf.FlaskForm", "line_number": 81, "usage_type": "name" }, { "api_name": "wtforms.StringField", "line_number": 82, "usage_type": "call" }, { "api_name": "wtforms.validators.Length", "line_number": 82, "usage_type": "call" }, { "api_name": "wtforms.StringField", "line_number": 83, "usage_type": "call" }, { "api_name": "wtforms.HiddenField", "line_number": 84, "usage_type": "call" }, { "api_name": "wtforms.HiddenField", "line_number": 85, "usage_type": "call" }, { "api_name": "wtforms.HiddenField", "line_number": 86, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 95, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 98, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 103, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 112, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 119, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 125, "usage_type": "call" }, { "api_name": "flask.request.method", "line_number": 132, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 132, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 139, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 141, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 143, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 152, "usage_type": "call" }, { "api_name": "flask.request.method", "line_number": 159, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 159, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 167, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 169, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 171, "usage_type": "call" } ]
7176555609
import functools from typing import ( Any, Callable, TypeVar, cast, ) import warnings TFunc = TypeVar("TFunc", bound=Callable[..., Any]) def deprecate_method(func: TFunc, message: str = None) -> TFunc: @functools.wraps(func) def deprecated_func(*args: Any, **kwargs: Any) -> Any: warnings.warn( category=DeprecationWarning, message=( message or f"{func.__name__} is deprecated. " "A breaking change is expected in a future release." ), stacklevel=2, ) func(*args, **kwargs) return cast(TFunc, deprecated_func)
ethereum/py-evm
eth/tools/_utils/deprecation.py
deprecation.py
py
662
python
en
code
2,109
github-code
6
[ { "api_name": "typing.TypeVar", "line_number": 10, "usage_type": "call" }, { "api_name": "typing.Callable", "line_number": 10, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 10, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 15, "usage_type": "name" }, { "api_name": "warnings.warn", "line_number": 16, "usage_type": "call" }, { "api_name": "functools.wraps", "line_number": 14, "usage_type": "call" }, { "api_name": "typing.cast", "line_number": 27, "usage_type": "call" } ]
70073356027
from asyncio import coroutine, get_event_loop from time import time import requests import json class IngestaoDadosDogs: def __init__(self, urls, dir): self.urls = urls self.dir = dir @coroutine def collect(self): start = time() loop = get_event_loop() scrape_list = [loop.run_in_executor(None, requests.get, url) for url in self.urls] for i, scrape in enumerate(scrape_list): resp = yield from scrape arquive = resp.json() print(f'{i+1}: {resp.ok}') with open(dir+f'{i+1}_File.json', 'w+') as file: json.dump(arquive, file) termino = time() - start print(f'Fim da Operação: {termino:.2f} s') # API que busca aleatoriamente imagem de cachorros na internet! url_list = ['https://dog.ceo/api/breeds/image/random' for n in range(0,10)] # Diretorio onda ira salvar o arquivo JSON dir = "C:/Users/BlueShift/Desktop/Gustavo/Gustavo/MentoramaPythonPRO/MentoramaPythonPRO_MOD9/mod9pro/JsonConcorrentes/" Dados = IngestaoDadosDogs(url_list, dir).collect() loop = get_event_loop() loop.run_until_complete(Dados)
gustavo-duarte-silva/MentoramaPythonPRO_MOD9
mod9pro/ScriptsAssincronos/scriptConcorrente.py
scriptConcorrente.py
py
1,155
python
en
code
0
github-code
6
[ { "api_name": "time.time", "line_number": 13, "usage_type": "call" }, { "api_name": "asyncio.get_event_loop", "line_number": 14, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 15, "usage_type": "attribute" }, { "api_name": "json.dump", "line_number": 21, "usage_type": "call" }, { "api_name": "time.time", "line_number": 22, "usage_type": "call" }, { "api_name": "asyncio.coroutine", "line_number": 11, "usage_type": "name" }, { "api_name": "asyncio.get_event_loop", "line_number": 31, "usage_type": "call" } ]
27773589780
import os import asyncio from telepyrobot.setclient import TelePyroBot from pyrogram import filters from pyrogram.types import Message from telepyrobot import COMMAND_HAND_LER from telepyrobot.utils.pyrohelpers import ReplyCheck __PLUGIN__ = os.path.basename(__file__.replace(".py", "")) __help__ = f""" `{COMMAND_HAND_LER}sdmsg <message> | <time in seconds>` The command will automatically destruct the message after specified time. """ @TelePyroBot.on_message(filters.command("sdmsg", COMMAND_HAND_LER) & filters.me) async def self_destruct(c: TelePyroBot, m: Message): input_str = m.text.split(None, 1)[1] rm = await m.edit_text("`Meking self-destruct msg...`") ttl = 0 if input_str: if "=" in input_str: msg, ttl = input_str.split("|") else: await m.reply_text("__Check help to know how to use__") return sd_msg = await m.reply_text(f"{msg}", reply_to_message_id=ReplyCheck(m)) await rm.delete() await asyncio.sleep(int(ttl)) await sd_msg.delete() else: await m.edit_text("__Check help to know how to use__") return
Divkix/TelePyroBot
telepyrobot/plugins/self_destruct.py
self_destruct.py
py
1,145
python
en
code
40
github-code
6
[ { "api_name": "os.path.basename", "line_number": 9, "usage_type": "call" }, { "api_name": "os.path", "line_number": 9, "usage_type": "attribute" }, { "api_name": "telepyrobot.COMMAND_HAND_LER", "line_number": 12, "usage_type": "name" }, { "api_name": "telepyrobot.setclient.TelePyroBot", "line_number": 19, "usage_type": "name" }, { "api_name": "pyrogram.types.Message", "line_number": 19, "usage_type": "name" }, { "api_name": "telepyrobot.utils.pyrohelpers.ReplyCheck", "line_number": 29, "usage_type": "call" }, { "api_name": "asyncio.sleep", "line_number": 31, "usage_type": "call" }, { "api_name": "telepyrobot.setclient.TelePyroBot.on_message", "line_number": 18, "usage_type": "call" }, { "api_name": "telepyrobot.setclient.TelePyroBot", "line_number": 18, "usage_type": "name" }, { "api_name": "pyrogram.filters.command", "line_number": 18, "usage_type": "call" }, { "api_name": "telepyrobot.COMMAND_HAND_LER", "line_number": 18, "usage_type": "argument" }, { "api_name": "pyrogram.filters", "line_number": 18, "usage_type": "name" }, { "api_name": "pyrogram.filters.me", "line_number": 18, "usage_type": "attribute" } ]
32185442685
import logging import flask import time import signal import sys import socket from flask import Flask from flask_api import status from os import environ from kubernetes import client, config log = logging.getLogger() log.addHandler(logging.StreamHandler()) log.setLevel(logging.INFO) app = Flask(__name__) try: config.load_incluster_config() v1 = client.CoreV1Api() except Exception as e: log.exception("K8s config not loaded") @app.route('/') def hello(): return f"Hello World!: {flask.request.remote_addr}, handler: {socket.gethostname()}" @app.route('/health') def health(): log.info(f"health check from: {flask.request.remote_addr}") return "OK" @app.route('/broken') def sick(): return "BAD", status.HTTP_404_NOT_FOUND @app.route('/slow/<leng>') def broken(leng): time.sleep(int(leng)) return "slow", status.HTTP_200_OK @app.route('/pods') def k8sapi(): # with open("/var/run/secrets/kubernetes.io/serviceaccount/namespace", 'r') as f: # ns = f.readline() # log.info(f"Reading PODs in ns: {ns}") return [i for i in v1.list_pod_for_all_namespaces(watch=False).items] def sigterm_handler(signum, frame): log.info("SIGTERM received, stopping") sys.exit() if __name__ == '__main__': if environ.get('FLASK_SETTINGS') is not None: log.info("Found flask config") app.config.from_envvar('FLASK_SETTINGS') log.info(f"config: {app.config}") signal.signal(signal.SIGTERM, sigterm_handler) app.run(host="0.0.0.0")
kiemlicz/util
dockerfiles/experiments/web.py
web.py
py
1,526
python
en
code
20
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 13, "usage_type": "call" }, { "api_name": "logging.StreamHandler", "line_number": 14, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 15, "usage_type": "attribute" }, { "api_name": "flask.Flask", "line_number": 17, "usage_type": "call" }, { "api_name": "kubernetes.config.load_incluster_config", "line_number": 19, "usage_type": "call" }, { "api_name": "kubernetes.config", "line_number": 19, "usage_type": "name" }, { "api_name": "kubernetes.client.CoreV1Api", "line_number": 20, "usage_type": "call" }, { "api_name": "kubernetes.client", "line_number": 20, "usage_type": "name" }, { "api_name": "flask.request", "line_number": 27, "usage_type": "attribute" }, { "api_name": "socket.gethostname", "line_number": 27, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 31, "usage_type": "attribute" }, { "api_name": "flask_api.status.HTTP_404_NOT_FOUND", "line_number": 36, "usage_type": "attribute" }, { "api_name": "flask_api.status", "line_number": 36, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 40, "usage_type": "call" }, { "api_name": "flask_api.status.HTTP_200_OK", "line_number": 41, "usage_type": "attribute" }, { "api_name": "flask_api.status", "line_number": 41, "usage_type": "name" }, { "api_name": "sys.exit", "line_number": 53, "usage_type": "call" }, { "api_name": "os.environ.get", "line_number": 56, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 56, "usage_type": "name" }, { "api_name": "signal.signal", "line_number": 61, "usage_type": "call" }, { "api_name": "signal.SIGTERM", "line_number": 61, "usage_type": "attribute" } ]
39620185683
# Importa e define oque for nescessário para o código import pygame import random WIDTH = 880 HEIGHT = 660 from config import GAME, QUIT def init_screen(screen): # Variável para o ajuste de velocidade clock = pygame.time.Clock() # Carrega o fundo da tela inicial background = pygame.image.load('Flying_Fox_Game/assets/img/tela de inicio final.png').convert() background = pygame.transform.scale(background, (WIDTH, HEIGHT)) background_rect = background.get_rect() running = True while running: # Ajusta a velocidade do jogo. clock.tick(60) # Processa os eventos (mouse, teclado, botão, etc). for event in pygame.event.get(): # Verifica se foi fechado. if event.type == pygame.QUIT: state = QUIT running = False if event.type == pygame.KEYUP: state = GAME running = False # A cada loop, redesenha o fundo e os sprites #screen.fill(BLACK) screen.blit(background, background_rect) # Depois de desenhar tudo, inverte o display. pygame.display.flip() return state
RodrigoAnciaes/Flying_Fox_game
Flying_Fox_Game/first_screen.py
first_screen.py
py
1,182
python
pt
code
0
github-code
6
[ { "api_name": "pygame.time.Clock", "line_number": 12, "usage_type": "call" }, { "api_name": "pygame.time", "line_number": 12, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 15, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 15, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 16, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 16, "usage_type": "attribute" }, { "api_name": "pygame.event.get", "line_number": 26, "usage_type": "call" }, { "api_name": "pygame.event", "line_number": 26, "usage_type": "attribute" }, { "api_name": "pygame.QUIT", "line_number": 28, "usage_type": "attribute" }, { "api_name": "config.QUIT", "line_number": 29, "usage_type": "name" }, { "api_name": "pygame.KEYUP", "line_number": 32, "usage_type": "attribute" }, { "api_name": "config.GAME", "line_number": 33, "usage_type": "name" }, { "api_name": "pygame.display.flip", "line_number": 41, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 41, "usage_type": "attribute" } ]
10422651353
from __future__ import annotations import copy from dataclasses import dataclass from enum import Enum from typing import TYPE_CHECKING, Self from randovania.bitpacking import bitpacking from randovania.bitpacking.bitpacking import BitPackDecoder, BitPackEnum, BitPackValue from randovania.bitpacking.type_enforcement import DataclassPostInitTypeCheck from randovania.game_description import default_database from randovania.game_description.db.dock import DockType, DockWeakness from randovania.games.game import RandovaniaGame from randovania.lib import enum_lib if TYPE_CHECKING: from collections.abc import Iterator from randovania.game_description.db.dock import DockWeaknessDatabase class DockRandoMode(BitPackEnum, Enum): long_name: str description: str VANILLA = "vanilla" DOCKS = "docks" WEAKNESSES = "weaknesses" enum_lib.add_long_name( DockRandoMode, { DockRandoMode.VANILLA: "Vanilla", DockRandoMode.DOCKS: "Doors", DockRandoMode.WEAKNESSES: "Types", }, ) enum_lib.add_per_enum_field( DockRandoMode, "description", { DockRandoMode.VANILLA: "Original door locks", DockRandoMode.DOCKS: "Randomize the type of each door individually", DockRandoMode.WEAKNESSES: "Randomizes all doors by type, turning all of one type into another", }, ) @dataclass(frozen=True) class DockTypeState(BitPackValue, DataclassPostInitTypeCheck): game: RandovaniaGame dock_type_name: str can_change_from: set[DockWeakness] can_change_to: set[DockWeakness] @staticmethod def _get_weakness_database(game: RandovaniaGame) -> DockWeaknessDatabase: return default_database.game_description_for(game).dock_weakness_database @property def weakness_database(self) -> DockWeaknessDatabase: return self._get_weakness_database(self.game) @property def dock_type(self) -> DockType: return self.weakness_database.find_type(self.dock_type_name) @property def can_shuffle(self) -> bool: return len(self.can_change_from) > 0 @property def as_json(self) -> dict: return { "can_change_from": sorted(weakness.name for weakness in self.can_change_from), "can_change_to": sorted(weakness.name for weakness in self.can_change_to), } @classmethod def from_json(cls, value: dict, game: RandovaniaGame, dock_type_name: str) -> DockTypeState: weakness_database = cls._get_weakness_database(game) return cls( game=game, dock_type_name=dock_type_name, can_change_from={ weakness_database.get_by_weakness(dock_type_name, weakness) for weakness in value["can_change_from"] }, can_change_to={ weakness_database.get_by_weakness(dock_type_name, weakness) for weakness in value["can_change_to"] }, ) def bit_pack_encode(self, metadata) -> Iterator[tuple[int, int]]: yield from bitpacking.pack_sorted_array_elements( sorted(self.can_change_from), sorted(self.possible_change_from), ) yield from bitpacking.pack_sorted_array_elements( sorted(self.can_change_to), sorted(self.possible_change_to), ) @classmethod def bit_pack_unpack(cls, decoder: BitPackDecoder, metadata) -> DockTypeState: reference: DockTypeState = metadata["reference"] ref_change_from = sorted(cls._possible_change_from(reference.game, reference.dock_type_name)) ref_change_to = sorted(cls._possible_change_to(reference.game, reference.dock_type_name)) return cls( game=reference.game, dock_type_name=reference.dock_type_name, can_change_from=set(bitpacking.decode_sorted_array_elements(decoder, ref_change_from)), can_change_to=set(bitpacking.decode_sorted_array_elements(decoder, ref_change_to)), ) @staticmethod def _possible_change_from(game: RandovaniaGame, dock_type_name: str) -> Iterator[DockWeakness]: weakness_database = DockTypeState._get_weakness_database(game) yield from weakness_database.dock_rando_params[weakness_database.find_type(dock_type_name)].change_from @property def possible_change_from(self) -> Iterator[DockWeakness]: yield from self._possible_change_from(self.game, self.dock_type_name) @staticmethod def _possible_change_to(game: RandovaniaGame, dock_type_name: str) -> Iterator[DockWeakness]: weakness_database = DockTypeState._get_weakness_database(game) yield from weakness_database.dock_rando_params[weakness_database.find_type(dock_type_name)].change_to @property def possible_change_to(self) -> Iterator[DockWeakness]: yield from self._possible_change_to(self.game, self.dock_type_name) @dataclass(frozen=True) class DockRandoConfiguration(BitPackValue, DataclassPostInitTypeCheck): game: RandovaniaGame mode: DockRandoMode types_state: dict[DockType, DockTypeState] @staticmethod def _get_weakness_database(game: RandovaniaGame) -> DockWeaknessDatabase: return default_database.game_description_for(game).dock_weakness_database @property def weakness_database(self) -> DockWeaknessDatabase: return self._get_weakness_database(self.game) @property def as_json(self) -> dict: return { "mode": self.mode.value, "types_state": { dock_type.short_name: type_state.as_json for dock_type, type_state in self.types_state.items() }, } @classmethod def from_json(cls, value: dict, game: RandovaniaGame) -> Self: weakness_database = cls._get_weakness_database(game) return cls( game=game, mode=DockRandoMode(value["mode"]), types_state={ weakness_database.find_type(dock_type): DockTypeState.from_json(type_state, game, dock_type) for dock_type, type_state in value["types_state"].items() }, ) def bit_pack_encode(self, metadata) -> Iterator[tuple[int, int]]: reference: DockRandoConfiguration = metadata["reference"] yield from self.mode.bit_pack_encode(None) modified_types = sorted( dock_type for dock_type, type_state in self.types_state.items() if type_state != reference.types_state[dock_type] ) yield from bitpacking.pack_sorted_array_elements(modified_types, sorted(self.weakness_database.dock_types)) for dock_type in modified_types: yield from self.types_state[dock_type].bit_pack_encode({"reference": reference.types_state[dock_type]}) @classmethod def bit_pack_unpack(cls, decoder: BitPackDecoder, metadata) -> Self: reference: DockRandoConfiguration = metadata["reference"] mode = DockRandoMode.bit_pack_unpack(decoder, None) modified_types = bitpacking.decode_sorted_array_elements( decoder, sorted(reference.weakness_database.dock_types) ) types_state = copy.copy(reference.types_state) for dock_type in modified_types: types_state[dock_type] = DockTypeState.bit_pack_unpack( decoder, {"reference": reference.types_state[dock_type]} ) return cls( game=reference.game, mode=mode, types_state=types_state, ) def is_enabled(self) -> bool: return self.mode != DockRandoMode.VANILLA def can_shuffle(self, dock_type: DockType) -> bool: return dock_type in self.weakness_database.dock_rando_params and self.types_state[dock_type].can_shuffle def settings_incompatible_with_multiworld(self) -> list[str]: danger = [] if self.mode == DockRandoMode.DOCKS: danger.append(f"{self.mode.long_name}: {self.mode.description}") return danger
randovania/randovania
randovania/layout/base/dock_rando_configuration.py
dock_rando_configuration.py
py
8,008
python
en
code
165
github-code
6
[ { "api_name": "typing.TYPE_CHECKING", "line_number": 16, "usage_type": "name" }, { "api_name": "randovania.bitpacking.bitpacking.BitPackEnum", "line_number": 22, "usage_type": "name" }, { "api_name": "enum.Enum", "line_number": 22, "usage_type": "name" }, { "api_name": "randovania.lib.enum_lib.add_long_name", "line_number": 31, "usage_type": "call" }, { "api_name": "randovania.lib.enum_lib", "line_number": 31, "usage_type": "name" }, { "api_name": "randovania.lib.enum_lib.add_per_enum_field", "line_number": 40, "usage_type": "call" }, { "api_name": "randovania.lib.enum_lib", "line_number": 40, "usage_type": "name" }, { "api_name": "randovania.bitpacking.bitpacking.BitPackValue", "line_number": 52, "usage_type": "name" }, { "api_name": "randovania.bitpacking.type_enforcement.DataclassPostInitTypeCheck", "line_number": 52, "usage_type": "name" }, { "api_name": "randovania.games.game.RandovaniaGame", "line_number": 53, "usage_type": "name" }, { "api_name": "randovania.game_description.db.dock.DockWeakness", "line_number": 55, "usage_type": "name" }, { "api_name": "randovania.game_description.db.dock.DockWeakness", "line_number": 56, "usage_type": "name" }, { "api_name": "randovania.games.game.RandovaniaGame", "line_number": 59, "usage_type": "name" }, { "api_name": "randovania.game_description.default_database.game_description_for", "line_number": 60, "usage_type": "call" }, { "api_name": "randovania.game_description.default_database", "line_number": 60, "usage_type": "name" }, { "api_name": "randovania.game_description.db.dock.DockWeaknessDatabase", "line_number": 59, "usage_type": "name" }, { "api_name": "randovania.game_description.db.dock.DockWeaknessDatabase", "line_number": 63, "usage_type": "name" }, { "api_name": "randovania.game_description.db.dock.DockType", "line_number": 67, "usage_type": "name" }, { "api_name": "randovania.games.game.RandovaniaGame", "line_number": 82, "usage_type": "name" }, { "api_name": "randovania.bitpacking.bitpacking.pack_sorted_array_elements", "line_number": 96, "usage_type": "call" }, { "api_name": "randovania.bitpacking.bitpacking", "line_number": 96, "usage_type": "name" }, { "api_name": "randovania.bitpacking.bitpacking.pack_sorted_array_elements", "line_number": 100, "usage_type": "call" }, { "api_name": "randovania.bitpacking.bitpacking", "line_number": 100, "usage_type": "name" }, { "api_name": "collections.abc.Iterator", "line_number": 95, "usage_type": "name" }, { "api_name": "randovania.bitpacking.bitpacking.BitPackDecoder", "line_number": 106, "usage_type": "name" }, { "api_name": "randovania.bitpacking.bitpacking.decode_sorted_array_elements", "line_number": 114, "usage_type": "call" }, { "api_name": "randovania.bitpacking.bitpacking", "line_number": 114, "usage_type": "name" }, { "api_name": "randovania.bitpacking.bitpacking.decode_sorted_array_elements", "line_number": 115, "usage_type": "call" }, { "api_name": "randovania.bitpacking.bitpacking", "line_number": 115, "usage_type": "name" }, { "api_name": "randovania.games.game.RandovaniaGame", "line_number": 119, "usage_type": "name" }, { "api_name": "collections.abc.Iterator", "line_number": 119, "usage_type": "name" }, { "api_name": "randovania.game_description.db.dock.DockWeakness", "line_number": 119, "usage_type": "name" }, { "api_name": "collections.abc.Iterator", "line_number": 124, "usage_type": "name" }, { "api_name": "randovania.game_description.db.dock.DockWeakness", "line_number": 124, "usage_type": "name" }, { "api_name": "randovania.games.game.RandovaniaGame", "line_number": 128, "usage_type": "name" }, { "api_name": "collections.abc.Iterator", "line_number": 128, "usage_type": "name" }, { "api_name": "randovania.game_description.db.dock.DockWeakness", "line_number": 128, "usage_type": "name" }, { "api_name": "collections.abc.Iterator", "line_number": 133, "usage_type": "name" }, { "api_name": "randovania.game_description.db.dock.DockWeakness", "line_number": 133, "usage_type": "name" }, { "api_name": "dataclasses.dataclass", "line_number": 51, "usage_type": "call" }, { "api_name": "randovania.bitpacking.bitpacking.BitPackValue", "line_number": 138, "usage_type": "name" }, { "api_name": "randovania.bitpacking.type_enforcement.DataclassPostInitTypeCheck", "line_number": 138, "usage_type": "name" }, { "api_name": "randovania.games.game.RandovaniaGame", "line_number": 139, "usage_type": "name" }, { "api_name": "randovania.game_description.db.dock.DockType", "line_number": 141, "usage_type": "name" }, { "api_name": "randovania.games.game.RandovaniaGame", "line_number": 144, "usage_type": "name" }, { "api_name": "randovania.game_description.default_database.game_description_for", "line_number": 145, "usage_type": "call" }, { "api_name": "randovania.game_description.default_database", "line_number": 145, "usage_type": "name" }, { "api_name": "randovania.game_description.db.dock.DockWeaknessDatabase", "line_number": 144, "usage_type": "name" }, { "api_name": "randovania.game_description.db.dock.DockWeaknessDatabase", "line_number": 148, "usage_type": "name" }, { "api_name": "randovania.games.game.RandovaniaGame", "line_number": 161, "usage_type": "name" }, { "api_name": "typing.Self", "line_number": 161, "usage_type": "name" }, { "api_name": "randovania.bitpacking.bitpacking.pack_sorted_array_elements", "line_number": 182, "usage_type": "call" }, { "api_name": "randovania.bitpacking.bitpacking", "line_number": 182, "usage_type": "name" }, { "api_name": "collections.abc.Iterator", "line_number": 172, "usage_type": "name" }, { "api_name": "randovania.bitpacking.bitpacking.BitPackDecoder", "line_number": 187, "usage_type": "name" }, { "api_name": "randovania.bitpacking.bitpacking.decode_sorted_array_elements", "line_number": 192, "usage_type": "call" }, { "api_name": "randovania.bitpacking.bitpacking", "line_number": 192, "usage_type": "name" }, { "api_name": "copy.copy", "line_number": 195, "usage_type": "call" }, { "api_name": "typing.Self", "line_number": 187, "usage_type": "name" }, { "api_name": "randovania.game_description.db.dock.DockType", "line_number": 210, "usage_type": "name" }, { "api_name": "dataclasses.dataclass", "line_number": 137, "usage_type": "call" } ]
741344040
import os from pytest_mock import MockFixture from app.config import get_config, DevelopmentConfig, ProductionConfig, PRODUCTION, DEVELOPMENT def test_get_config_in_development(): app_config = get_config() assert app_config.env == DEVELOPMENT assert isinstance(app_config, DevelopmentConfig) def test_get_config_in_production(mocker: MockFixture): mocked_environ = { 'ENV': 'PROD', 'API_URL': 'http://test.com', 'API_EMAIL': '[email protected]', 'API_PASSWORD': 'pass123', 'BROKER_URI': 'broker.com', 'BROKER_PORT': '1232' } mocker.patch.dict(os.environ, mocked_environ) app_config = get_config() assert app_config.env == PRODUCTION assert isinstance(app_config, ProductionConfig)
hrozan/utfpr-final-paper
legacy/smart-object/tests/test_config.py
test_config.py
py
771
python
en
code
2
github-code
6
[ { "api_name": "app.config.get_config", "line_number": 9, "usage_type": "call" }, { "api_name": "app.config.DEVELOPMENT", "line_number": 11, "usage_type": "name" }, { "api_name": "app.config.DevelopmentConfig", "line_number": 12, "usage_type": "argument" }, { "api_name": "pytest_mock.MockFixture", "line_number": 15, "usage_type": "name" }, { "api_name": "os.environ", "line_number": 24, "usage_type": "attribute" }, { "api_name": "app.config.get_config", "line_number": 26, "usage_type": "call" }, { "api_name": "app.config.PRODUCTION", "line_number": 28, "usage_type": "name" }, { "api_name": "app.config.ProductionConfig", "line_number": 29, "usage_type": "argument" } ]
34375411916
#!/usr/bin/env python3 from curses import wrapper from functools import partial from Gamepad import Gamepad import curses import time def spd_scale(y0, x0, y1, x1, x): """Get the speed at the given value of time. NOTE: The output is not clamped, regardless of the reference points given.""" # Two point form of a line # y-y0 = y2-y1/x2-x1 (x-x0) m = (y1 - y0) / (x1 - x0) c = y0 return c + m * (x - x0) def main(stdscr): """Main loop for listening to input events and displaying speed using curses. Takes in the window created by curses. Call this function using curses' wrapper function in order to not mess up terminal state on exceptions.""" # Curses Prelude curses.noecho() curses.cbreak() curses.curs_set(False) # Don't show the cursor stdscr.keypad(True) stdscr.clear() stdscr.nodelay(True) # Don't wait for ENTER to read input stdscr.border() spd_scale_c = partial(spd_scale, 100, 10, 0, 0) w_down_counter = 0 speed = spd_scale_c(w_down_counter) stdscr.attrset(curses.color_pair(1)) stdscr.addstr(0, curses.COLS // 2, "Motor Control", curses.A_DIM) if not Gamepad.available(): print("Couldn't find a gamepad") while not Gamepad.available(): time.sleep(1.0) gamepad = Gamepad.Xbox360() gamepad.startBackgroundUpdates() try: while True and gamepad.isConnected(): val = gamepad.axis("RT") if gamepad.isPressed("A"): w_down_counter = min(w_down_counter + 1, 10) else: w_down_counter = max(w_down_counter - 1, 0) if gamepad.beenPressed("B"): break speed = spd_scale_c(w_down_counter) stdscr.addstr( 4, curses.COLS // 2, f"Current speed is {speed}", curses.A_BOLD ) stdscr.refresh() stdscr.refresh() time.sleep(0.1) finally: gamepad.disconnect() wrapper(main)
kknives/rudra-training
motor-control/js_control.py
js_control.py
py
2,024
python
en
code
0
github-code
6
[ { "api_name": "curses.noecho", "line_number": 28, "usage_type": "call" }, { "api_name": "curses.cbreak", "line_number": 29, "usage_type": "call" }, { "api_name": "curses.curs_set", "line_number": 30, "usage_type": "call" }, { "api_name": "functools.partial", "line_number": 36, "usage_type": "call" }, { "api_name": "curses.color_pair", "line_number": 40, "usage_type": "call" }, { "api_name": "curses.COLS", "line_number": 41, "usage_type": "attribute" }, { "api_name": "curses.A_DIM", "line_number": 41, "usage_type": "attribute" }, { "api_name": "Gamepad.Gamepad.available", "line_number": 43, "usage_type": "call" }, { "api_name": "Gamepad.Gamepad", "line_number": 43, "usage_type": "name" }, { "api_name": "Gamepad.Gamepad.available", "line_number": 45, "usage_type": "call" }, { "api_name": "Gamepad.Gamepad", "line_number": 45, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 46, "usage_type": "call" }, { "api_name": "Gamepad.Gamepad.Xbox360", "line_number": 47, "usage_type": "call" }, { "api_name": "Gamepad.Gamepad", "line_number": 47, "usage_type": "name" }, { "api_name": "curses.COLS", "line_number": 61, "usage_type": "attribute" }, { "api_name": "curses.A_BOLD", "line_number": 61, "usage_type": "attribute" }, { "api_name": "time.sleep", "line_number": 66, "usage_type": "call" }, { "api_name": "curses.wrapper", "line_number": 71, "usage_type": "call" } ]
40880830024
from bs4 import BeautifulSoup import requests,re,os import textract os.chdir("..") DATA_DIR = "data/fiscal_pdf" SAVE_DIR = "data/fiscal_txt" pre_link="http://www.imf.org" target_dir = "http://www.imf.org/external/np/g20/" g8_link = "http://www.g8.utoronto.ca/summit/index.htm" # Extract all IMF Staff Note from IMF website html = requests.get(target_dir) soup = BeautifulSoup(html.content, "lxml") link_imf = soup.findAll("a",text=re.compile('IMF Staff Note to G-20')) def extract_pdf(r,link,datdir,savedir): name = link.split("/")[-1].split(".")[0][:6] name_format = "20"+name[-2:]+name[:2]+name[2:4] name_pdf = name_format + ".pdf" name_txt = name_format + ".txt" save_dir = os.path.join(datdir,name_pdf) save_txt = os.path.join(savedir,name_txt) with open(save_dir, 'wb') as f: f.write(r.content) text = textract.process(save_dir) with open(save_txt, 'wb') as f: f.write(text) for i in link_imf: if "pdf" in i["href"]: if "www" in i["href"]: r = requests.get(i["href"], stream=True) extract_pdf(r,i["href"],DATA_DIR,SAVE_DIR) else: link_temp=pre_link + i["href"] r = requests.get(link_temp,stream=True) extract_pdf(r,i["href"],DATA_DIR,SAVE_DIR) else: if "www" in i["href"]: r = requests.get(i["href"], stream=True) else: link_temp=pre_link + i["href"] r = requests.get(link_temp,stream=True) temp=BeautifulSoup(r.content, "lxml") link_temp=temp.find(text=re.compile("Read the")) link_temp=link_temp.parent.a["href"] if "external" in link_temp: link_temp=pre_link+link_temp else: link_temp=target_dir+link_temp r = requests.get(link_temp,stream=True) extract_pdf(r,link_temp,DATA_DIR,SAVE_DIR)
utipe/imf_fiscal
code/corpus_extraction.py
corpus_extraction.py
py
1,880
python
en
code
0
github-code
6
[ { "api_name": "os.chdir", "line_number": 4, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 12, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 13, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 14, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path", "line_number": 21, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 22, "usage_type": "call" }, { "api_name": "os.path", "line_number": 22, "usage_type": "attribute" }, { "api_name": "textract.process", "line_number": 25, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 32, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 36, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 40, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 43, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 44, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 45, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 51, "usage_type": "call" } ]
40449028487
from ray.rllib.evaluation import MultiAgentEpisode, RolloutWorker from ray.rllib.agents.callbacks import DefaultCallbacks from ray.rllib.env import BaseEnv from ray.rllib.policy import Policy from typing import Dict from ray.rllib.policy.sample_batch import SampleBatch import numpy as np import time import csv import os def trainEvlogs2csv(folder_name,file_name,csvDict, n_episode): fieldnames = list(csvDict.keys()) if n_episode == 1: #print('this happens') csvfile = open(folder_name + file_name, 'w', newline='') writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() else: csvfile = open(folder_name + file_name, 'a', newline='') writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writerow(csvDict) class MyCallbacks(DefaultCallbacks): def on_episode_start(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[str, Policy], episode: MultiAgentEpisode, **kwargs): # , env_index: int, **kwargs): # print("episode {} (env-idx) started.".format(episode.episode_id)) episode.user_data["step"] = 0 #episode.user_data["nb_communications_episode"] = 0 #episode.user_data["collisions"] = 0 #episode.user_data["list_communications"] = [] #episode.user_data["comms_per_step"] = [] #episode.user_data["histogram_communications"] = np.zeros(policies["policy_0"].config["horizon"]+1)#np.zeros(101) episode.user_data["secs_per_episode"] = time.time() episode.user_data["mean_secs_per_ts"] = 0 episode.user_data["auxiliary_time"] = time.time() episode.user_data["auxiliary_time_episode"] = time.time() def on_episode_step(self, *, worker: RolloutWorker, base_env: BaseEnv, episode: MultiAgentEpisode, **kwargs): auxtime_ts = time.time() - episode.user_data["auxiliary_time"] episode.user_data["mean_secs_per_ts"] += auxtime_ts aux = episode.last_observation_for(0) aux12 = aux.reshape((1,aux.shape[0])) #aux2 = episode.last_action_for(0) #aux3 = episode.last_info_for(0) n_agents = worker.env.num_agents episode.batch_builder.count += n_agents - 1 ### THIS ONE IS THE ONE TO CHANGE!! #collisions = 0 if episode.user_data["step"] != 0: for i in range(n_agents): aux4 = episode.policy_for(i) #episode.user_data["nb_communications_episode"] += episode.last_info_for(i)["communication"] #collisions += episode.last_info_for(i)["collisions"] #for ii in range(int(episode.last_info_for(i)["communication"])): # episode.user_data["comms_per_step"].append(episode.user_data["step"]) #episode.user_data["histogram_communications"][episode.user_data["step"]] += episode.last_info_for(i)["communication"] #episode.user_data["list_communications"].append(episode.user_data["nb_communications_episode"]) #episode.user_data["collisions"] += collisions / 2 #if episode.user_data["collisions"] != 0: # print("COLLISION!") episode.user_data["step"] += 1 #print(episode.user_data["step"]) debug = False if debug: workerdebug = worker policy_index = worker.policies_to_train[0] policydebug = worker.policy_map[policy_index] wdebug = policydebug.get_weights() predicate = policydebug.loss_initialized() if predicate: # overwrite default VF prediction with the central VF #sample_batch[SampleBatch.VF_PREDS] = policy.compute_central_vf( #sample_batch[SampleBatch.CUR_OBS], sample_batch[OPPONENT_OBS], #sample_batch[OPPONENT_ACTION]) t1 = time.time() #encoder_debug = policydebug.compute_encoding_layer(aux12) #print(encoder_debug) t1 = time.time()-t1 t2 = time.time() action_debug = policydebug.compute_action(aux12) output_inputs = policydebug.output_inputs(aux12) t2 = time.time() - t2 #print("WEIGHTS") #print(wdebug) #print("END WEIGHTS") episode.user_data["auxiliary_time"] = time.time() def on_episode_end(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[str, Policy], episode: MultiAgentEpisode, **kwargs): #horizon = policies["policy_0"].config["horizon"] #print("episode time:",time.time() - episode.user_data["auxiliary_time_episode"]) policy_index = worker.policies_to_train[0] episode.custom_metrics["secs_per_episode"] = time.time()-episode.user_data["secs_per_episode"] #episode.custom_metrics["mean_secs_per_ts"] = episode.user_data["mean_secs_per_ts"] / policies["policy_0"].config["horizon"] #100.0 episode.custom_metrics["mean_secs_per_ts"] = episode.user_data["mean_secs_per_ts"] / \ policies[policy_index].config["horizon"] # 100.0 episode.custom_metrics["nb targets tracked"] = np.sum(worker.env.num_targets_tracked[0]) episode.custom_metrics["episode length"] = worker.env.steps episode.custom_metrics["success_rate"] = worker.env.success episode.custom_metrics["entropy"] = worker.env.last_entropy_log if worker.env.ntargets == 3: episode.custom_metrics["nb_targets_tracked_3targets"] = np.sum(worker.env.num_targets_tracked[0]) episode.custom_metrics["episode length_3targets"] = worker.env.steps if worker.env.ntargets == 6: episode.custom_metrics["nb_targets_tracked_6targets"] = np.sum(worker.env.num_targets_tracked[0]) episode.custom_metrics["episode length_6targets"] = worker.env.steps if worker.env.ntargets == 9: episode.custom_metrics["nb_targets_tracked_9targets"] = np.sum(worker.env.num_targets_tracked[0]) episode.custom_metrics["episode length_9targets"] = worker.env.steps if worker.env.ntargets == 12: episode.custom_metrics["nb_targets_tracked_12targets"] = np.sum(worker.env.num_targets_tracked[0]) episode.custom_metrics["episode length_12targets"] = worker.env.steps #episode.custom_metrics["nb_communications_episode"] = episode.user_data["nb_communications_episode"] #episode.custom_metrics["collisions"] = episode.user_data["collisions"] #episode.hist_data["communications_histogram"] = episode.user_data["list_communications"] #episode.hist_data["communications_per_step"] = episode.user_data["comms_per_step"] #if episode.user_data["collisions"] == 0: # episode.custom_metrics["success"] = 1 #else: # episode.custom_metrics["success"] = 0 #episode.custom_metrics["scn_"+str(base_env.envs[0]._env.world.current_scenario)+"_success"] = episode.custom_metrics["success"] #episode.custom_metrics["scn_" + str(base_env.envs[0]._env.world.current_scenario) + "_nb_comm_episode"] = episode.custom_metrics["nb_communications_episode"] #nEpisodesxScenario = worker.policy_config['train_batch_size']/(base_env.envs[0]._env.num_agents*policies["policy_0"].config["horizon"]) #if base_env.envs[0]._env.episode_id % nEpisodesxScenario == 0 and base_env.envs[0]._env.world.test == 1: # Alternatively use the in_evaluation value in config #if base_env.envs[0]._env.world.time_step % (worker.policy_config['train_batch_size']/base_env.envs[0]._env.num_agents) == 0 and worker.policy_config["model"]["custom_model_config"]["training"]==False: # Alternatively use the in_evaluation value in config #if base_env.envs[0]._env.world.time_step % (worker.policy_config['train_batch_size']) == 0 and worker.policy_config["model"]["custom_model_config"]["training"] == False: # Alternatively use the in_evaluation value in config #base_env.envs[0]._env.world.next_eval_scenario() #base_env.envs[0]._env.world.set_eval_scenario() # training_eval_logs = base_env.envs[0]._env.world.test # if worker.policy_config["model"]["custom_model_config"]["training"]==False and training_eval_logs == True: # goal_achieved = 1 # for i in range(worker.env.num_agents): # if episode.last_info_for(i)["goal_achieved"] == 0: # goal_achieved = 0 # # if episode.custom_metrics["success"] == 0: # goal_achieved = 0 # # timesteps = episode.last_info_for(0)["step"] # # checkpoint = policies["policy_0"].config["model"]["custom_model_config"]["checkpoint"] # scenario = base_env.envs[0]._env.world.current_scenario # folder_name = base_env.envs[0]._env.folder_name + 'training_eval/' # file_name = 'checkpoint_' + str(checkpoint) + '.csv' # n_episode = base_env.envs[0]._env.episode_id # csvDict = { # 'scenario': scenario, # 'ep_safety': episode.custom_metrics["success"], # 'ep_nb_communications': episode.custom_metrics["nb_communications_episode"], # 'ep_goal_achieved': goal_achieved, # 'step': timesteps # } # for i in range(policies["policy_0"].config["horizon"]+1): #101): # csvDict[str(i)] = episode.user_data["histogram_communications"][i] # # if not os.path.isdir(folder_name): # os.makedirs(folder_name) # trainEvlogs2csv(folder_name,file_name,csvDict, n_episode) #print("episode END") #""" def on_sample_end(self, *, worker: RolloutWorker, samples: SampleBatch, **kwargs): print("returned sample batch of size {}".format(samples.count)) #""" def on_train_result(self, *, trainer, result: dict, **kwargs): #print("trainer.train() result: {} -> {} episodes".format(trainer, result["episodes_this_iter"])) work = trainer.workers.local_worker() policy_index = work.policies_to_train[0] policydebug = work.policy_map[policy_index] wdebug = policydebug.get_weights() #kernelweights = wdebug['default_policy/dense/kernel'] #if np.any(np.isnan(kernelweights)): # print("here's a nan") # if trainer.config["model"]["custom_model_config"]["training"]: # if 313 <= trainer.iteration < 313 * 2: # change distribution of sampled episodes 15000 episodes # work.foreach_env(lambda env: env._env.world.set_scenario_distr([0.25, 0.75, 0])) # if 313 * 2 <= trainer.iteration < 313 * 3: # change distribution of sampled episodes 15000 episodes # work.foreach_env(lambda env: env._env.world.set_scenario_distr([0.125, 0.125, 0.75])) # if 313 * 3 <= trainer.iteration < 313 * 4: # change distribution of sampled episodes 15000 episodes # work.foreach_env(lambda env: env._env.world.set_scenario_distr([0.0, 0.25, 0.75])) # if 313 * 4 <= trainer.iteration: # change distribution of sampled episodes 15000 episodes # work.foreach_env(lambda env: env._env.world.set_scenario_distr([0.0, 0.0, 1.0])) # you can mutate the result dict to add new fields to return result["callback_ok"] = True """ def on_postprocess_trajectory( self, *, worker: RolloutWorker, episode: MultiAgentEpisode, agent_id: str, policy_id: str, policies: Dict[str, Policy], postprocessed_batch: SampleBatch, original_batches: Dict[str, SampleBatch], **kwargs): print("postprocessed {} steps".format(postprocessed_batch.count)) if "num_batches" not in episode.custom_metrics: episode.custom_metrics["num_batches"] = 0 episode.custom_metrics["num_batches"] += 1 #"""
tud-amr/AC-LCP
utils/callbacks.py
callbacks.py
py
12,175
python
en
code
2
github-code
6
[ { "api_name": "csv.DictWriter", "line_number": 20, "usage_type": "call" }, { "api_name": "csv.DictWriter", "line_number": 24, "usage_type": "call" }, { "api_name": "ray.rllib.agents.callbacks.DefaultCallbacks", "line_number": 29, "usage_type": "name" }, { "api_name": "ray.rllib.evaluation.RolloutWorker", "line_number": 30, "usage_type": "name" }, { "api_name": "ray.rllib.env.BaseEnv", "line_number": 30, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 31, "usage_type": "name" }, { "api_name": "ray.rllib.policy.Policy", "line_number": 31, "usage_type": "name" }, { "api_name": "ray.rllib.evaluation.MultiAgentEpisode", "line_number": 32, "usage_type": "name" }, { "api_name": "time.time", "line_number": 40, "usage_type": "call" }, { "api_name": "time.time", "line_number": 42, "usage_type": "call" }, { "api_name": "time.time", "line_number": 43, "usage_type": "call" }, { "api_name": "ray.rllib.evaluation.RolloutWorker", "line_number": 45, "usage_type": "name" }, { "api_name": "ray.rllib.env.BaseEnv", "line_number": 45, "usage_type": "name" }, { "api_name": "ray.rllib.evaluation.MultiAgentEpisode", "line_number": 46, "usage_type": "name" }, { "api_name": "time.time", "line_number": 47, "usage_type": "call" }, { "api_name": "time.time", "line_number": 83, "usage_type": "call" }, { "api_name": "time.time", "line_number": 86, "usage_type": "call" }, { "api_name": "time.time", "line_number": 87, "usage_type": "call" }, { "api_name": "time.time", "line_number": 90, "usage_type": "call" }, { "api_name": "time.time", "line_number": 94, "usage_type": "call" }, { "api_name": "ray.rllib.evaluation.RolloutWorker", "line_number": 98, "usage_type": "name" }, { "api_name": "ray.rllib.env.BaseEnv", "line_number": 98, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 99, "usage_type": "name" }, { "api_name": "ray.rllib.policy.Policy", "line_number": 99, "usage_type": "name" }, { "api_name": "ray.rllib.evaluation.MultiAgentEpisode", "line_number": 99, "usage_type": "name" }, { "api_name": "time.time", "line_number": 103, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 107, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 112, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 115, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 118, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 121, "usage_type": "call" }, { "api_name": "ray.rllib.evaluation.RolloutWorker", "line_number": 177, "usage_type": "name" }, { "api_name": "ray.rllib.policy.sample_batch.SampleBatch", "line_number": 177, "usage_type": "name" } ]
27241749881
import pygal from random import randint class Die: def __init__(self, sides=6): self.sides = sides def roll(self): return randint(1, self.sides) die = Die(8) die_1 = Die(8) results = [die.roll() + die_1.roll() for x in range(1000)] frequencies = [results.count(x) for x in range(2, 2 * die.sides + 1)] # pygal.bar hist = pygal.Bar() hist.title = 'Rolling D6 - 1000' hist.x_labels = [str(x) for x in range(2, 2 * die.sides + 1)] hist.x_title = 'Sides' hist.y_title = 'Frequency' hist.add('D6', frequencies) hist.render_to_file('recap_die_2d8.svg')
mbrad26/Data-Vizualization
Recap/recap_die_2d8.py
recap_die_2d8.py
py
580
python
en
code
0
github-code
6
[ { "api_name": "random.randint", "line_number": 10, "usage_type": "call" }, { "api_name": "pygal.Bar", "line_number": 22, "usage_type": "call" } ]
39620196443
# ===== Inicialização ===== # ----- Importa e inicia pacotes import pygame import random pygame.init() # ----- Gera tela principal WIDTH = 880 HEIGHT = 800 window = pygame.display.set_mode((WIDTH, HEIGHT)) pygame.display.set_caption('Flying_Fox') gravity = 1 difficult = 0 # ----- Inicia assets METEOR_WIDTH = 100 METEOR_HEIGHT = random.randint(300, 450) font = pygame.font.SysFont(None, 48) background = pygame.image.load('Folder_de_Testes/assets/img/snow_day.jpeg').convert() background = pygame.transform.scale(background, (WIDTH, HEIGHT)) meteor_img = pygame.image.load('Folder_de_Testes/assets/img/Tree.png').convert_alpha() meteor_img = pygame.transform.scale(meteor_img, (METEOR_WIDTH, METEOR_HEIGHT)) # ----- Inicia estruturas de dados # Definindo os novos tipos class Fox(pygame.sprite.Sprite): def __init__(self): pygame.sprite.Sprite.__init__(self) Fox_WIDTH = 70 Fox_HEIGHT = 70 Fox1 = pygame.image.load('Folder_de_Testes/assets/img/raposafinal.png').convert_alpha() Fox1 = pygame.transform.scale(Fox1, (Fox_WIDTH, Fox_HEIGHT)) Fox2 = pygame.image.load('Folder_de_Testes/assets/img/snowflake.png').convert_alpha() Fox2 = pygame.transform.scale(Fox2, (Fox_WIDTH, Fox_HEIGHT)) Fox3 = pygame.image.load('Folder_de_Testes/assets/img/Fox.jpeg').convert_alpha() Fox3 = pygame.transform.scale(Fox3, (Fox_WIDTH, Fox_HEIGHT)) self.images = [Fox1,Fox2,Fox3] self.image = Fox1 self.rect = self.image.get_rect() self.rect.centerx = WIDTH / 4 self.rect.bottom = HEIGHT - 200 self.speedy = 1 self.now_on_windon = 0 def update(self): self.rect.y += self.speedy self.speedy += gravity + 0.1 * (-self.speedy) self.now_on_windon = (self.now_on_windon + 1) % 3 self.image = self.images[self.now_on_windon] self.mask = pygame.mask.from_surface(self.image) # Mantem dentro da tela if self.rect.bottom > HEIGHT: pygame.QUIT self.rect.bottom = HEIGHT #game = False if self.rect.top < 0: pygame.QUIT self.rect.top = 0 def pulo(self): self.speedy += -18 class Meteor(pygame.sprite.Sprite): def __init__(self, img): # Construtor da classe mãe (Sprite). pygame.sprite.Sprite.__init__(self) METEOR_HEIGHT = random.randint(50, 250) self.image = img self.mask = pygame.mask.from_surface(self.image) self.rect = self.image.get_rect() self.rect.x = (WIDTH-METEOR_WIDTH) self.rect.y = random.randint(10,HEIGHT) self.speedx = random.randint(-5, -3) METEOR_HEIGHT = random.randint(50, 250) def update(self): # Atualizando a posição do meteoro self.rect.x += self.speedx # Se o meteoro passar do final da tela, volta para cima e sorteia # novas posições e velocidades if self.rect.top > HEIGHT or self.rect.right < 0 or self.rect.left > WIDTH: self.rect.x = (WIDTH-METEOR_WIDTH) self.rect.y = random.randint(10,HEIGHT) self.speedx = random.randint(-5, -3) game = True # Variável para o ajuste de velocidade clock = pygame.time.Clock() FPS = 15 # Criando um grupo de meteoros all_sprites = pygame.sprite.Group() all_meteors = pygame.sprite.Group() # Criando o jogador player = Fox() all_sprites.add(player) # Criando os meteoros for i in range(2): meteor = Meteor(meteor_img) all_sprites.add(meteor) all_meteors.add(meteor) # ===== Loop principal ===== while game: fpdif = FPS + difficult print(fpdif) clock.tick(fpdif) #print(clock) difficult += 0.01 # ----- Trata eventos for event in pygame.event.get(): # ----- Verifica consequências if event.type == pygame.QUIT: game = False # Verifica se apertou alguma tecla. # Verifica se soltou alguma tecla. if event.type == pygame.KEYUP: # Dependendo da tecla, altera a velocidade. if event.key == pygame.K_SPACE: Fox.pulo(player) # ----- Atualiza estado do jogo # Atualizando a posição dos meteoros all_sprites.update() hits = pygame.sprite.spritecollide(player,all_meteors,True, pygame.sprite.collide_mask) if len(hits) > 0: game = False # ----- Gera saídas window.fill((0, 0, 0)) # Preenche com a cor branca window.blit(background, (0, 0)) # Desenhando meteoros all_sprites.draw(window) pygame.display.update() # Mostra o novo frame para o jogador # ===== Finalização ===== pygame.quit() # Função do PyGame que finaliza os recursos utilizados
RodrigoAnciaes/Flying_Fox_game
Folder_de_Testes/Flappy.py
Flappy.py
py
4,902
python
en
code
0
github-code
6
[ { "api_name": "pygame.init", "line_number": 6, "usage_type": "call" }, { "api_name": "pygame.display.set_mode", "line_number": 11, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 11, "usage_type": "attribute" }, { "api_name": "pygame.display.set_caption", "line_number": 12, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 12, "usage_type": "attribute" }, { "api_name": "random.randint", "line_number": 17, "usage_type": "call" }, { "api_name": "pygame.font.SysFont", "line_number": 18, "usage_type": "call" }, { "api_name": "pygame.font", "line_number": 18, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 19, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 19, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 20, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 20, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 21, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 21, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 22, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 22, "usage_type": "attribute" }, { "api_name": "pygame.sprite", "line_number": 28, "usage_type": "attribute" }, { "api_name": "pygame.sprite.Sprite.__init__", "line_number": 32, "usage_type": "call" }, { "api_name": "pygame.sprite", "line_number": 32, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 36, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 36, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 37, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 37, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 38, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 38, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 39, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 39, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 40, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 40, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 41, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 41, "usage_type": "attribute" }, { "api_name": "pygame.mask.from_surface", "line_number": 62, "usage_type": "call" }, { "api_name": "pygame.mask", "line_number": 62, "usage_type": "attribute" }, { "api_name": "pygame.QUIT", "line_number": 67, "usage_type": "attribute" }, { "api_name": "pygame.QUIT", "line_number": 71, "usage_type": "attribute" }, { "api_name": "pygame.sprite", "line_number": 79, "usage_type": "attribute" }, { "api_name": "pygame.sprite.Sprite.__init__", "line_number": 82, "usage_type": "call" }, { "api_name": "pygame.sprite", "line_number": 82, "usage_type": "attribute" }, { "api_name": "random.randint", "line_number": 83, "usage_type": "call" }, { "api_name": "pygame.mask.from_surface", "line_number": 85, "usage_type": "call" }, { "api_name": "pygame.mask", "line_number": 85, "usage_type": "attribute" }, { "api_name": "random.randint", "line_number": 88, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 89, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 90, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 102, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 103, "usage_type": "call" }, { "api_name": "pygame.time.Clock", "line_number": 108, "usage_type": "call" }, { "api_name": "pygame.time", "line_number": 108, "usage_type": "attribute" }, { "api_name": "pygame.sprite.Group", "line_number": 112, "usage_type": "call" }, { "api_name": "pygame.sprite", "line_number": 112, "usage_type": "attribute" }, { "api_name": "pygame.sprite.Group", "line_number": 113, "usage_type": "call" }, { "api_name": "pygame.sprite", "line_number": 113, "usage_type": "attribute" }, { "api_name": "pygame.event.get", "line_number": 132, "usage_type": "call" }, { "api_name": "pygame.event", "line_number": 132, "usage_type": "attribute" }, { "api_name": "pygame.QUIT", "line_number": 134, "usage_type": "attribute" }, { "api_name": "pygame.KEYUP", "line_number": 139, "usage_type": "attribute" }, { "api_name": "pygame.K_SPACE", "line_number": 141, "usage_type": "attribute" }, { "api_name": "pygame.sprite.spritecollide", "line_number": 150, "usage_type": "call" }, { "api_name": "pygame.sprite", "line_number": 150, "usage_type": "attribute" }, { "api_name": "pygame.display.update", "line_number": 159, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 159, "usage_type": "attribute" }, { "api_name": "pygame.quit", "line_number": 162, "usage_type": "call" } ]
72370696507
from django.urls import path from products.views import ( CreateProduct, CreateOption, Products, UpdateProduct, Option, UpdateOption, ) urlpatterns = [ path("", Products.as_view()), path("create/product", CreateProduct.as_view()), path("update/product/<int:pk>", UpdateProduct.as_view()), path("options", Option.as_view()), path("create/option", CreateOption.as_view()), path("update/option/<int:pk>", UpdateOption.as_view()), ]
ohnas/Manager-backend
products/urls.py
urls.py
py
478
python
en
code
0
github-code
6
[ { "api_name": "django.urls.path", "line_number": 12, "usage_type": "call" }, { "api_name": "products.views.Products.as_view", "line_number": 12, "usage_type": "call" }, { "api_name": "products.views.Products", "line_number": 12, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 13, "usage_type": "call" }, { "api_name": "products.views.CreateProduct.as_view", "line_number": 13, "usage_type": "call" }, { "api_name": "products.views.CreateProduct", "line_number": 13, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 14, "usage_type": "call" }, { "api_name": "products.views.UpdateProduct.as_view", "line_number": 14, "usage_type": "call" }, { "api_name": "products.views.UpdateProduct", "line_number": 14, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 15, "usage_type": "call" }, { "api_name": "products.views.Option.as_view", "line_number": 15, "usage_type": "call" }, { "api_name": "products.views.Option", "line_number": 15, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 16, "usage_type": "call" }, { "api_name": "products.views.CreateOption.as_view", "line_number": 16, "usage_type": "call" }, { "api_name": "products.views.CreateOption", "line_number": 16, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 17, "usage_type": "call" }, { "api_name": "products.views.UpdateOption.as_view", "line_number": 17, "usage_type": "call" }, { "api_name": "products.views.UpdateOption", "line_number": 17, "usage_type": "name" } ]
5759869864
import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg #%% Importar los datos (leer la imagen) img = mpimg.imread('../Data/indice.png') plt.imshow(img) #%% reordenar la imagen en una sola tabla d = img.shape img_col = np.reshape(img,(d[0]*d[1],d[2])) #%% Convertir los datos a media cero media = img_col.mean(axis=0) img_m = img_col - media #%% obtener la matriz de covarianzas img_cov = np.cov(img_m,rowvar=False) #%% Obtener valores propios y vectores propios w,v = np.linalg.eig(img_cov) #%% Analizar los componentes principales porcentaje = w/np.sum(w) #%% Comprimir la imagen componentes = w[0] M_trans = np.reshape(v[:,0],(4,1)) img_new = np.matrix(img_m)*np.matrix(M_trans) #%% Recuperar la imagen y visualizarla img_recuperada = np.matrix(img_new)*np.matrix(M_trans.transpose()) img_recuperada = img_recuperada+media img_r = img.copy() for i in np.arange(4): img_r[:,:,i] = img_recuperada[:,i].reshape((d[0],d[1])) plt.subplot(121) plt.imshow(img) plt.subplot(122) plt.imshow(img_r)
OscarFlores-IFi/CDINP19
code/p13.py
p13.py
py
1,039
python
es
code
0
github-code
6
[ { "api_name": "matplotlib.image.imread", "line_number": 6, "usage_type": "call" }, { "api_name": "matplotlib.image", "line_number": 6, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 7, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 7, "usage_type": "name" }, { "api_name": "numpy.reshape", "line_number": 11, "usage_type": "call" }, { "api_name": "numpy.cov", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.linalg.eig", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 21, "usage_type": "attribute" }, { "api_name": "numpy.sum", "line_number": 24, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 28, "usage_type": "call" }, { "api_name": "numpy.matrix", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.matrix", "line_number": 33, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 37, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 40, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 40, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 41, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 41, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 42, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 42, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 43, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 43, "usage_type": "name" } ]
40464221544
import os.path import re import numpy as np from PIL import Image NUM_RE = re.compile(r'(\d+)') maxint = 999999 WHITE_LIST_FORMATS = {'png', 'jpg', 'jpeg', 'bmp'} def hstack_images(input_filenames, target_size=(224, 224)): """ Horizontally stack all images from @input_filenames in order and write to @output_filename """ images = list(map(lambda i: i.resize(target_size), map(Image.open, input_filenames))) widths, heights = zip(*(i.size for i in images)) total_width = sum(widths) max_height = max(heights) new_im = Image.new('RGB', (total_width, max_height)) x_offset = 0 for im in images: new_im.paste(im, (x_offset, 0)) x_offset += im.size[0] return new_im def should_include_image(path, start_num, end_num): """Returns true if an image path should be included in the set, false otherwise. """ fname = path.lower() for extension in WHITE_LIST_FORMATS: if fname.endswith('.' + extension): num_match = NUM_RE.search(fname) if num_match: num, = num_match.groups() num = int(num, 10) return start_num <= num <= end_num return False def flow_from_directory(directory, a, b, c, target_size=(224, 224)): for dirpath, dirnames, fnames in os.walk(directory): if len(dirnames) == 0: # we are at a top-level directory, extract the images in our range xs = [] ys = [] for fname in fnames: if should_include_image(fname, a, b): xs.append(os.path.join(dirpath, fname)) elif should_include_image(fname, b + 1, c): ys.append(os.path.join(dirpath, fname)) xs.sort() ys.sort() if not xs or not ys: continue x_imgs = np.asarray(hstack_images(xs, target_size=target_size)) y_imgs = np.asarray(hstack_images(ys, target_size=target_size)) yield (x_imgs, y_imgs)
eklitzke/dnn-fastai-project
vidextend/flow.py
flow.py
py
2,047
python
en
code
2
github-code
6
[ { "api_name": "re.compile", "line_number": 7, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 19, "usage_type": "attribute" }, { "api_name": "PIL.Image", "line_number": 19, "usage_type": "name" }, { "api_name": "PIL.Image.new", "line_number": 25, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 25, "usage_type": "name" }, { "api_name": "os.path.walk", "line_number": 52, "usage_type": "call" }, { "api_name": "os.path", "line_number": 52, "usage_type": "name" }, { "api_name": "os.path.path.join", "line_number": 60, "usage_type": "call" }, { "api_name": "os.path.path", "line_number": 60, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 60, "usage_type": "name" }, { "api_name": "os.path.path.join", "line_number": 62, "usage_type": "call" }, { "api_name": "os.path.path", "line_number": 62, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 62, "usage_type": "name" }, { "api_name": "numpy.asarray", "line_number": 68, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 69, "usage_type": "call" } ]
8595213301
import openpyxl,os,shutil import pandas as pd import pymssql from sqlalchemy import create_engine backupPath='files-backup' def get_xlsx_to_dataframe(fliename): wb = openpyxl.load_workbook(fliename) sheets = wb.sheetnames ws = wb.get_sheet_by_name(sheets[0]) df = pd.read_excel(fliename) if not os.path.exists(backupPath): os.mkdir(backupPath) shutil.move(fliename,os.path.join(backupPath,os.path.basename(fliename))) return df def dataframe_to_mssql(df, tablename): engine = create_engine('mssql+pymssql://sa:[email protected]/database?tds_version=7.0') df.to_sql(tablename, engine, if_exists='append', index=False)
zjz7304/xlsx_to_database
util.py
util.py
py
666
python
en
code
0
github-code
6
[ { "api_name": "openpyxl.load_workbook", "line_number": 9, "usage_type": "call" }, { "api_name": "pandas.read_excel", "line_number": 13, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path", "line_number": 15, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 16, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path", "line_number": 17, "usage_type": "attribute" }, { "api_name": "os.path.basename", "line_number": 17, "usage_type": "call" }, { "api_name": "sqlalchemy.create_engine", "line_number": 22, "usage_type": "call" } ]
2687351802
import numpy as np import matplotlib.pyplot as plt import random as rnd import turtle N = 100 Nw = 1000 def wedrowniczek(length): x0, y0 = 0,0 x,y = x0,y0 walkx,walky = [x],[y] for i in range(length): rand = rnd.randint(1,4) if rand == 1: x += 1 elif rand == 2: y += 1 elif rand == 3: x += -1 elif rand == 4: y += -1 walkx.append(x) walky.append(y) return [walkx,walky] lastPositions = [] for i in range(Nw): walk = wedrowniczek(N) lastPositions.append([walk[0][-1],walk[1][-1]]) plt.plot(walk[0],walk[1]) lastPositionInStart = 0 for lastPos in lastPositions: if lastPos[0] == 0 and lastPos[-1] == 0: lastPositionInStart += 1 print(lastPositionInStart) plt.axis([-30,30,-30,30]) plt.grid() plt.show()
filipmalecki94/Computer_modeling
lista3/zadanie1.py
zadanie1.py
py
784
python
en
code
0
github-code
6
[ { "api_name": "random.randint", "line_number": 14, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 32, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 32, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axis", "line_number": 38, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 38, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.grid", "line_number": 39, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 39, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 40, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 40, "usage_type": "name" } ]
29358868643
from sqlalchemy.orm import joinedload from clld.db.util import get_distinct_values from clld.db.models import common from clld.web import datatables from clld.web.datatables.base import LinkCol, Col, LinkToMapCol from clld.web.datatables.parameter import Parameters from clld.web.datatables.value import Values, ValueNameCol from clld_glottologfamily_plugin.models import Family from clld_glottologfamily_plugin.datatables import FamilyCol from plansa import models class Languages(datatables.Languages): def base_query(self, query): return query.join(Family).options(joinedload(models.Variety.family)).distinct() def col_defs(self): return [ LinkCol(self, 'name'), FamilyCol(self, 'Family', models.Variety), Col(self, 'latitude', sDescription='<small>The geographic latitude</small>'), Col(self, 'longitude', sDescription='<small>The geographic longitude</small>'), LinkToMapCol(self, 'm'), ] class Taxa(Parameters): def col_defs(self): res = [ LinkCol(self, 'name'), Col(self, 'english', model_col=models.Taxon.name_english), ] for label, col in [ ('kingdom', models.Taxon.kingdom), ('phylum', models.Taxon.phylum), ('class', models.Taxon.class_), ('order', models.Taxon.order), ('family', models.Taxon.family), #('genus', models.Taxon.genus), ]: res.append(Col(self, label, model_col=col, choices=get_distinct_values(col))) return res class Names(Values): def col_defs(self): if self.language: return [ ValueNameCol(self, 'value'), LinkCol(self, 'parameter', sTitle='Scientific name', model_col=common.Parameter.name, get_object=lambda i: i.valueset.parameter), Col(self, 'english', model_col=models.Taxon.name_english, get_object=lambda i: i.valueset.parameter), Col(self, 'spanish', model_col=models.Taxon.name_spanish, get_object=lambda i: i.valueset.parameter), Col(self, 'portuguese', model_col=models.Taxon.name_portuguese, get_object=lambda i: i.valueset.parameter), ] return Values.col_defs(self) def includeme(config): config.register_datatable('values', Names) config.register_datatable('parameters', Taxa) config.register_datatable('languages', Languages)
tsammalex/plansa
plansa/datatables.py
datatables.py
py
2,802
python
en
code
0
github-code
6
[ { "api_name": "clld.web.datatables.Languages", "line_number": 16, "usage_type": "attribute" }, { "api_name": "clld.web.datatables", "line_number": 16, "usage_type": "name" }, { "api_name": "clld_glottologfamily_plugin.models.Family", "line_number": 18, "usage_type": "argument" }, { "api_name": "sqlalchemy.orm.joinedload", "line_number": 18, "usage_type": "call" }, { "api_name": "plansa.models.Variety", "line_number": 18, "usage_type": "attribute" }, { "api_name": "plansa.models", "line_number": 18, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.LinkCol", "line_number": 22, "usage_type": "call" }, { "api_name": "clld_glottologfamily_plugin.datatables.FamilyCol", "line_number": 23, "usage_type": "call" }, { "api_name": "plansa.models.Variety", "line_number": 23, "usage_type": "attribute" }, { "api_name": "plansa.models", "line_number": 23, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.Col", "line_number": 24, "usage_type": "call" }, { "api_name": "clld.web.datatables.base.Col", "line_number": 27, "usage_type": "call" }, { "api_name": "clld.web.datatables.base.LinkToMapCol", "line_number": 30, "usage_type": "call" }, { "api_name": "clld.web.datatables.parameter.Parameters", "line_number": 34, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.LinkCol", "line_number": 37, "usage_type": "call" }, { "api_name": "clld.web.datatables.base.Col", "line_number": 38, "usage_type": "call" }, { "api_name": "plansa.models.Taxon", "line_number": 38, "usage_type": "attribute" }, { "api_name": "plansa.models", "line_number": 38, "usage_type": "name" }, { "api_name": "plansa.models.Taxon", "line_number": 41, "usage_type": "attribute" }, { "api_name": "plansa.models", "line_number": 41, "usage_type": "name" }, { "api_name": "plansa.models.Taxon", "line_number": 42, "usage_type": "attribute" }, { "api_name": "plansa.models", "line_number": 42, "usage_type": "name" }, { "api_name": "plansa.models.Taxon", "line_number": 43, "usage_type": "attribute" }, { "api_name": "plansa.models", "line_number": 43, "usage_type": "name" }, { "api_name": "plansa.models.Taxon", "line_number": 44, "usage_type": "attribute" }, { "api_name": "plansa.models", "line_number": 44, "usage_type": "name" }, { "api_name": "plansa.models.Taxon", "line_number": 45, "usage_type": "attribute" }, { "api_name": "plansa.models", "line_number": 45, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.Col", "line_number": 48, "usage_type": "call" }, { "api_name": "clld.db.util.get_distinct_values", "line_number": 48, "usage_type": "call" }, { "api_name": "clld.web.datatables.value.Values", "line_number": 52, "usage_type": "name" }, { "api_name": "clld.web.datatables.value.ValueNameCol", "line_number": 56, "usage_type": "call" }, { "api_name": "clld.web.datatables.base.LinkCol", "line_number": 57, "usage_type": "call" }, { "api_name": "clld.db.models.common.Parameter", "line_number": 60, "usage_type": "attribute" }, { "api_name": "clld.db.models.common", "line_number": 60, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.Col", "line_number": 62, "usage_type": "call" }, { "api_name": "plansa.models.Taxon", "line_number": 64, "usage_type": "attribute" }, { "api_name": "plansa.models", "line_number": 64, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.Col", "line_number": 66, "usage_type": "call" }, { "api_name": "plansa.models.Taxon", "line_number": 68, "usage_type": "attribute" }, { "api_name": "plansa.models", "line_number": 68, "usage_type": "name" }, { "api_name": "clld.web.datatables.base.Col", "line_number": 70, "usage_type": "call" }, { "api_name": "plansa.models.Taxon", "line_number": 72, "usage_type": "attribute" }, { "api_name": "plansa.models", "line_number": 72, "usage_type": "name" }, { "api_name": "clld.web.datatables.value.Values.col_defs", "line_number": 75, "usage_type": "call" }, { "api_name": "clld.web.datatables.value.Values", "line_number": 75, "usage_type": "name" } ]
23248318495
import pygame #necessary pygame initializing pygame.init() #create a surface that will be seen by the user screen = pygame.display.set_mode((600, 400)) background= pygame.image.load('Background-1.png') #create a varible for degrees pf rotation degree = 0 while True: screen.blit(background, (0,0)) #create shapes so you can tell rotation is happenning ball = pygame.image.load('arrow.png') ##ORIGINAL UNCHANGED #what coordinates will the static image be placed: where = 200, 200 #draw surf to screen and catch the rect that blit returns blittedRect = screen.blit(ball, where) screen.blit(background, (0,0)) ##ROTATED #get center of surf for later oldCenter = blittedRect.center #rotate surf by DEGREE amount degrees rotatedSurf = pygame.transform.rotate(ball, degree) #get the rect of the rotated surf and set it's center to the oldCenter rotRect = rotatedSurf.get_rect() rotRect.center = oldCenter #draw rotatedSurf with the corrected rect so it gets put in the proper spot screen.blit(rotatedSurf, rotRect) degree-=5 if degree <-90: degree = 0 #show the screen surface pygame.display.flip() pygame.time.wait(60)
Soupupup/pythonsensorgame
rotation test 2.py
rotation test 2.py
py
1,287
python
en
code
0
github-code
6
[ { "api_name": "pygame.init", "line_number": 4, "usage_type": "call" }, { "api_name": "pygame.display.set_mode", "line_number": 7, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 7, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 8, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 8, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 16, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 16, "usage_type": "attribute" }, { "api_name": "pygame.transform.rotate", "line_number": 31, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 31, "usage_type": "attribute" }, { "api_name": "pygame.display.flip", "line_number": 48, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 48, "usage_type": "attribute" }, { "api_name": "pygame.time.wait", "line_number": 49, "usage_type": "call" }, { "api_name": "pygame.time", "line_number": 49, "usage_type": "attribute" } ]
5564785730
from src.core.interfaces.model_abc import ModelAbstract from src.core.interfaces.repository_abc import RepositoryAbstract from src.shared import parse_config from sqlalchemy.orm import Session import logging import logging.config import dataclasses from typing import List from datetime import datetime class SqlAlchemyRepository(RepositoryAbstract): def __init__(self, session, object_type) -> None: self.session: Session = session self.object_type: ModelAbstract = object_type logging.config.dictConfig(parse_config.get_logger_config()) self.logger = logging.getLogger("dev") self.logger.debug("{} repository instanciated".format(object_type.__name__)) def get_by_filter(self, filter) -> ModelAbstract: self.logger.info("get_by_filter Request") query = self.session.query(self.object_type).filter_by(**filter) result = self.session.execute(query).fetchall() return result def get_by_id(self, target_id: int) -> ModelAbstract: """This function retrieves an object from the database. Return: The object (ModelAbstract) """ self.logger.info("get_by_id Request") result = self.session.query(self.object_type).get(target_id) return result def get_all(self) -> List[ModelAbstract]: """This function retrieves all the objects in the repository. Returns: A list of the objects (List[ModelAbstract]) """ self.logger.info("get_all Request") result = self.session.query(self.object_type).all() return result def delete_by_filter(self, filter) -> int: """This function deletes an object using the provided filter. Returns: Affected rows provided by the database engine (int) """ self.logger.info("delete_by_filter Request") result = self.session.query(self.object_type).filter(filter).delete() return result def delete_by_id(self, target_id: int) -> int: """This function deletes an object by it's id. Returns: Affected rows provided by the database engine (int) """ self.logger.info("delete_by_id Request") result = self.session.query(self.object_type).filter(self.object_type.id == target_id).delete() self.session.commit() return result def insert(self, new: ModelAbstract) -> int: """This function inserts an object to the database. Returns: Inserted object id (int) """ self.logger.info("insert Request") self.session.add(new) self.session.commit() return new.id def update(self, values_to_update, requested_object) -> ModelAbstract: self.logger.info("update Request") for key, value in values_to_update: if value is not None: setattr(requested_object, key, value) setattr(requested_object, "modified_at", datetime.now()) self.session.commit() return requested_object
ricky-codes/APIGest
src/infrastructure/services/repository.py
repository.py
py
3,071
python
en
code
0
github-code
6
[ { "api_name": "src.core.interfaces.repository_abc.RepositoryAbstract", "line_number": 12, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 15, "usage_type": "name" }, { "api_name": "src.core.interfaces.model_abc.ModelAbstract", "line_number": 16, "usage_type": "name" }, { "api_name": "logging.config.dictConfig", "line_number": 18, "usage_type": "call" }, { "api_name": "logging.config", "line_number": 18, "usage_type": "attribute" }, { "api_name": "src.shared.parse_config.get_logger_config", "line_number": 18, "usage_type": "call" }, { "api_name": "src.shared.parse_config", "line_number": 18, "usage_type": "name" }, { "api_name": "logging.getLogger", "line_number": 19, "usage_type": "call" }, { "api_name": "src.core.interfaces.model_abc.ModelAbstract", "line_number": 23, "usage_type": "name" }, { "api_name": "src.core.interfaces.model_abc.ModelAbstract", "line_number": 29, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 39, "usage_type": "name" }, { "api_name": "src.core.interfaces.model_abc.ModelAbstract", "line_number": 39, "usage_type": "name" }, { "api_name": "src.core.interfaces.model_abc.ModelAbstract", "line_number": 72, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 89, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 89, "usage_type": "name" }, { "api_name": "src.core.interfaces.model_abc.ModelAbstract", "line_number": 84, "usage_type": "name" } ]
35522645807
import requests from time import sleep timeToWait = 300 # Time to wait between callouts (in seconds) while (True): # Get list of commands to run this callout URL = "https://slack.flemingcaleb.com:5000/api/agent/4/command/" r = requests.get(url=URL) if r.status_code == requests.codes.ok: # Process the list of requests print(r) elif r.status_code == requests.codes.not_found: # No list this time print("No list this time") else: #Handle Unintended Error print("ERROR") sleep(timeToWait)
flemingcaleb/InfraBot
agent/agent.py
agent.py
py
567
python
en
code
3
github-code
6
[ { "api_name": "requests.get", "line_number": 9, "usage_type": "call" }, { "api_name": "requests.codes", "line_number": 11, "usage_type": "attribute" }, { "api_name": "requests.codes", "line_number": 14, "usage_type": "attribute" }, { "api_name": "time.sleep", "line_number": 21, "usage_type": "call" } ]
38076886961
import os from pathlib import Path from tempfile import NamedTemporaryFile import pytest import pytest_mock from werkzeug.exceptions import NotFound from iceart.models import Artist, ArtistDto, ArtistViewModel def test_artist_vm_init(): with pytest.raises(NotFound): ArtistViewModel(-1) def test_artist_vm_search_key(): assert ArtistViewModel(44).search_key() == {"_id": 44} def test_artist_init(): # Arrange data = {"_id": 44, "title": "t", "info": "i", "file": "f", "paintings": [5, 3, 77]} # Act model = Artist(data) # Assert assert model.identity == 44 assert model.title == "t" assert model.info == "i" assert model.file == "f" assert model.paintings == [5, 3, 77] def test_artist_dto_init(): # Arrange data = {"_id": 44, "title": "t", "info": "i", "file": "f", "paintings": [5, 3, 77]} model = Artist(data) with NamedTemporaryFile("w+b", delete=False) as tmp_file: tmp_file.write(b"\xab\xef") p = Path(tmp_file.name) # Act with pytest_mock.mock.patch("pathlib.Path.joinpath", return_value=p): dto = ArtistDto(model, {1: "img1", 2: "img2"}) # Assert assert dto.image == "q+8=" assert dto.id == 44 assert dto.title == "t" assert dto.info == "i" assert dto.as_json() == { "id": 44, "title": "t", "info": "i", "image": "q+8=", "paintings": {1: "img1", 2: "img2"}, } assert dto.paintings == {1: "img1", 2: "img2"} # Cleanup os.remove(p)
JonSteinn/iceart_api
tests/test_models/test_artist.py
test_artist.py
py
1,537
python
en
code
1
github-code
6
[ { "api_name": "pytest.raises", "line_number": 13, "usage_type": "call" }, { "api_name": "werkzeug.exceptions.NotFound", "line_number": 13, "usage_type": "argument" }, { "api_name": "iceart.models.ArtistViewModel", "line_number": 14, "usage_type": "call" }, { "api_name": "iceart.models.ArtistViewModel", "line_number": 18, "usage_type": "call" }, { "api_name": "iceart.models.Artist", "line_number": 26, "usage_type": "call" }, { "api_name": "iceart.models.Artist", "line_number": 39, "usage_type": "call" }, { "api_name": "tempfile.NamedTemporaryFile", "line_number": 40, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 42, "usage_type": "call" }, { "api_name": "pytest_mock.mock.patch", "line_number": 45, "usage_type": "call" }, { "api_name": "pytest_mock.mock", "line_number": 45, "usage_type": "attribute" }, { "api_name": "iceart.models.ArtistDto", "line_number": 46, "usage_type": "call" }, { "api_name": "os.remove", "line_number": 63, "usage_type": "call" } ]
75401661626
import numpy as np import time import torch from multiprocessing import Array, Manager from dgl.dataloading.dataloader import GraphCollator from collections import deque, namedtuple from gp.utils.datasets import DatasetWithCollate """ Following namedtuple makes data collating nad referencing easier """ GraphLabelNT = namedtuple("GraphLabelNT", ["g", "labels", "index"]) ReplayBatch = namedtuple( "ReplayBatch", ["g", "plabel", "nlabel", "select_node", "move_node", "reward"], ) GraphNMLabel = namedtuple("GraphNMLabel", ["g", "rlabel", "labels", "index"]) ReplayBatchHist = namedtuple( "ReplayBatchHist", [ "g", "plabel", "nlabel", "select_node", "move_node", "reward", "context", ], ) ReplayBatchSM = namedtuple( "ReplayBatchSM", [ "g", "plabel", "nlabel", "select_node", "move_node", "reward", ], ) class GraphLabelDataset(DatasetWithCollate): def __init__(self, graphs, labels, ind=None) -> None: super().__init__() self.graphs = graphs self.labels = labels if ind is None: self.ind = np.arange(len(self.graphs)) else: self.ind = ind def __getitem__(self, index): return GraphLabelNT( self.graphs[index], np.array([self.labels[index]]), self.ind[index] ) def __len__(self): return len(self.graphs) def get_collate_fn(self): return GraphCollator().collate class GraphNMDataset(DatasetWithCollate): def __init__(self, graphs, labels, r_labels) -> None: super().__init__() self.graphs = graphs self.labels = labels self.rlabels = r_labels def __getitem__(self, index): return GraphNMLabel( self.graphs[index], np.array(self.rlabels[index]), np.array([self.labels[index]]), index, ) def __len__(self): return len(self.graphs) def get_collate_fn(self): return GraphCollator().collate class GraphReplayBuffer: def __init__(self, capacity): # self.buffer = deque(maxlen=capacity) self.capacity = capacity self.buffer = np.empty(capacity, dtype=object) self.size_count = 0 self.pointer = 0 def __len__(self): return self.size_count def add(self, experience): if isinstance(experience, list): ct = len(experience) self.size_count += ct next_pointer = self.pointer + ct if next_pointer > self.capacity: reminder = self.capacity - self.pointer self.buffer[self.pointer :] = experience[:reminder] self.pointer = 0 next_pointer = next_pointer - self.capacity ct = next_pointer experience = experience[reminder:] self.buffer[self.pointer : next_pointer] = experience self.pointer = next_pointer self.size_count = min(self.size_count, self.capacity) else: self.buffer[self.size_count] = experience # if (len(self) / self.capacity) > 1.3: # self.buffer = self.buffer[-self.capacity :] def sample(self, batch_size): if len(self) < batch_size: return None indices = np.random.choice(len(self), batch_size, replace=True) return [self.buffer[idx] for idx in indices] def reset(self): self.buffer = deque(maxlen=self.capacity) class ReplayDataset(DatasetWithCollate): def __init__(self, graphs, buffer, replay_size=1, replay_type=ReplayBatch): super().__init__() self.graphs = graphs self.buffer = buffer self.replay_size = replay_size self.replay_type = replay_type def __getitem__(self, index): # print(len(self.buffer)) replay = self.buffer.sample(1)[0] replay_graph = self.graphs[int(replay[0])] return self.replay_type(replay_graph, *map(np.array, replay[1:])) def __len__(self): return len(self.graphs) * self.replay_size def get_collate_fn(self): return GraphCollator().collate
LechengKong/MAG-GNN
dataset.py
dataset.py
py
4,231
python
en
code
1
github-code
6
[ { "api_name": "collections.namedtuple", "line_number": 16, "usage_type": "call" }, { "api_name": "collections.namedtuple", "line_number": 17, "usage_type": "call" }, { "api_name": "collections.namedtuple", "line_number": 21, "usage_type": "call" }, { "api_name": "collections.namedtuple", "line_number": 23, "usage_type": "call" }, { "api_name": "collections.namedtuple", "line_number": 36, "usage_type": "call" }, { "api_name": "gp.utils.datasets.DatasetWithCollate", "line_number": 49, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 56, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 62, "usage_type": "call" }, { "api_name": "dgl.dataloading.dataloader.GraphCollator", "line_number": 69, "usage_type": "call" }, { "api_name": "gp.utils.datasets.DatasetWithCollate", "line_number": 72, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 83, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 84, "usage_type": "call" }, { "api_name": "dgl.dataloading.dataloader.GraphCollator", "line_number": 92, "usage_type": "call" }, { "api_name": "numpy.empty", "line_number": 99, "usage_type": "call" }, { "api_name": "numpy.random.choice", "line_number": 129, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 129, "usage_type": "attribute" }, { "api_name": "collections.deque", "line_number": 133, "usage_type": "call" }, { "api_name": "gp.utils.datasets.DatasetWithCollate", "line_number": 136, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 148, "usage_type": "attribute" }, { "api_name": "dgl.dataloading.dataloader.GraphCollator", "line_number": 154, "usage_type": "call" } ]
39756253957
""" Plot a grid on H2 with Poincare Disk visualization. """ import logging import os import matplotlib.pyplot as plt import numpy as np import geomstats.visualization as visualization from geomstats.geometry.hyperbolic import Hyperbolic H2 = Hyperbolic(dimension=2) METRIC = H2.metric def main(left=-128, right=128, bottom=-128, top=128, grid_size=32, n_steps=512): starts = [] ends = [] for p in np.linspace(left, right, grid_size): starts.append(np.array([top, p])) ends.append(np.array([bottom, p])) for p in np.linspace(top, bottom, grid_size): starts.append(np.array([p, left])) ends.append(np.array([p, right])) starts = [H2.intrinsic_to_extrinsic_coords(s) for s in starts] ends = [H2.intrinsic_to_extrinsic_coords(e) for e in ends] ax = plt.gca() for start, end in zip(starts, ends): geodesic = METRIC.geodesic(initial_point=start, end_point=end) t = np.linspace(0, 1, n_steps) points_to_plot = geodesic(t) visualization.plot( points_to_plot, ax=ax, space='H2_poincare_disk', marker='.', s=1) plt.show() if __name__ == "__main__": if os.environ['GEOMSTATS_BACKEND'] == 'tensorflow': logging.info('Examples with visualizations are only implemented ' 'with numpy backend.\n' 'To change backend, write: ' 'export GEOMSTATS_BACKEND = \'numpy\'.') else: main()
hhajri/geomstats
examples/plot_grid_h2.py
plot_grid_h2.py
py
1,552
python
en
code
null
github-code
6
[ { "api_name": "geomstats.geometry.hyperbolic.Hyperbolic", "line_number": 15, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 27, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 28, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 29, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 31, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 32, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.gca", "line_number": 35, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 35, "usage_type": "name" }, { "api_name": "numpy.linspace", "line_number": 40, "usage_type": "call" }, { "api_name": "geomstats.visualization.plot", "line_number": 42, "usage_type": "call" }, { "api_name": "geomstats.visualization", "line_number": 42, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 44, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 44, "usage_type": "name" }, { "api_name": "os.environ", "line_number": 48, "usage_type": "attribute" }, { "api_name": "logging.info", "line_number": 49, "usage_type": "call" } ]
41843820390
import numpy as np from sklearn.metrics import f1_score from sklearn.naive_bayes import BernoulliNB from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer class NaiveBayes: """ Naive Bayes implementation based on Multi-variate Bernoulli using python """ def __init__(self): """ self.class_probability --> Class probability of shape (output_label, ). It indicates the probability of alpha label appearing without seeing the input data. self.phi --> Probability of alpha input feature given alpha output label. P(x|y_train). shape (output_label, input_feature) self.output_label --> Number of output class self.input_feature --> Number of input feature """ self.class_probability = None self.phi = None self.output_label = None def fit(self, x_train, y_train): """ Train the model :param x_train: Input training example of shape (number of training data, input feature) :param y_train: Output training example of shape (number of training data, ) :return: """ m = x_train.shape[0] # Number of training example # Flatten the training set x_train = x_train.reshape(m, -1) input_features = x_train.shape[1] self.output_label = len(np.unique(y_train.reshape(-1))) # Initialize everything with zero self.class_probability = np.zeros(self.output_label) self.phi = np.zeros((self.output_label, input_features)) # Calculate class probability and phi for label in range(self.output_label): # Extract the training data from an individual labels current_label_data = x_train[y_train == label] # Number of occurarances of this particular label in the training set current_label_occur = current_label_data.shape[0] # Class label of this training data self.class_probability[label] = (current_label_occur + 1) / (m + self.output_label) # Calculate phi for an individual label # How many times each of the input feature appeared for this label # One is added for laplace smoothing input_feature_occur = np.sum(current_label_data, axis=0) + 1 # Fix the denominator according to the laplace smoothing curr_label_laplace_smoothing = current_label_occur + self.output_label # Calculate phi self.phi[label, :] = input_feature_occur / curr_label_laplace_smoothing def predict(self, x_test): """ Make prediction :param x_test: data to predict of shape (number of prediction, input feature) :return: """ # Number of prediction num_of_test = x_test.shape[0] # Probability of each of the class. # Initially each of the label will have zero probability probabilities = np.zeros((num_of_test, self.output_label)) # Calculate for all test for test_index in range(num_of_test): # Count probabilities for each of the classes for label in range(self.output_label): # First get all the words present in this test example words_for_this_example = x_test[test_index] == 1 # Get the calculated probabilities for this label and this ese words example words_probabilities = self.phi[label][words_for_this_example] # Multiply all these probability words_probability_multiply = np.prod(words_probabilities) # Multiply this with class_probability probabilities/class probabilities # to get the overall probability of this example probabilities[test_index, label] = words_probability_multiply * self.class_probability[label] # Normalize the probabilities probabilities[test_index] /= np.sum(probabilities[test_index]) # return the maximum probability index return np.argmax(probabilities, axis=1) def get_f1_score(self, x_test, y_test): """ Calculate the f1 score of our model :param x_test: :param y_test: :return: """ return f1_score(y_test, self.predict(x_test)) if __name__ == '__main__': # Test our model with amazon cell review dataset. # Where model will predict if alpha review is positive or negetive # Read the dataset with open("amazon_cells_labelled.txt", "r") as file: # This will contain all the sentences sentences = [] # This will contain all the output label(0, 1) labels = [] for line in file.readlines(): # The label and sentences are separated with alpha tab line_arr = line.strip().split("\t") # Remove stop words sentences.append(line_arr[0]) labels.append(int(line_arr[1])) # Vectorize the training sentences vectorizer = CountVectorizer(analyzer="word", lowercase=True, stop_words="english", max_features=4500) data = vectorizer.fit_transform(sentences).toarray() # Split data x_train, x_test, y_train, y_test = train_test_split(data, np.array(labels)) # Fit to our model naive_bayes = NaiveBayes() naive_bayes.fit(x_train, y_train) model_f1_score = naive_bayes.get_f1_score(x_test, y_test) print("F1 score of test set of our model is : ", str(model_f1_score)) # Compare with scikit-learn model sci_naive_bayes = BernoulliNB() sci_naive_bayes.fit(x_train, y_train) sk_prediction = sci_naive_bayes.predict(x_test) print("F1 score of the test set of scikit learn model is : ", str(f1_score(y_test, sk_prediction)))
gmortuza/machine-learning-scratch
machine_learning/bayesian/naive_bayes/naive_bayes.py
naive_bayes.py
py
5,821
python
en
code
6
github-code
6
[ { "api_name": "numpy.unique", "line_number": 35, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 38, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 50, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 66, "usage_type": "call" }, { "api_name": "numpy.prod", "line_number": 76, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 81, "usage_type": "call" }, { "api_name": "numpy.argmax", "line_number": 83, "usage_type": "call" }, { "api_name": "sklearn.metrics.f1_score", "line_number": 92, "usage_type": "call" }, { "api_name": "sklearn.feature_extraction.text.CountVectorizer", "line_number": 112, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 116, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 116, "usage_type": "call" }, { "api_name": "sklearn.naive_bayes.BernoulliNB", "line_number": 125, "usage_type": "call" }, { "api_name": "sklearn.metrics.f1_score", "line_number": 128, "usage_type": "call" } ]
19365158235
import pickle, ssl, logging import numpy as np import torch from torch import nn from torch.utils.data import DataLoader from torchvision import datasets, transforms import pytorch_lightning as pl import models, curves, utils1, utils, preresnet, resnet DATASET = datasets.CIFAR10 TEST_ITEMS = 50_000 BATCH_SIZE = 128 WORKER_COUNT = 6 EPOCHS = 120 LEARNING_RATE=0.1 LR_GAMMA=0.1 L2_REG = 5e-4 MOMENTUM = 0.9 PARALLEL_MODELS = 1 MODEL = resnet.ResNet18 if DATASET == datasets.CIFAR10 else resnet.ResNet14MNIST CURVE_BENDS = 3 CURVE_NUM_SAMPLES = 61 STEP_MODES = 2 STEP_BAD_MODES = 2 CODE_CHECK = False if CODE_CHECK: TEST_ITEMS = 5000 WORKER_COUNT = 0 EPOCHS = 1 CURVE_NUM_SAMPLES = 2 LOADER_ARGS = {"batch_size":BATCH_SIZE, "num_workers":WORKER_COUNT, "persistent_workers":WORKER_COUNT>0} TRAINER_ARGS = {"accelerator":"gpu", "devices":"auto", "max_epochs":EPOCHS, "precision":16} class LitModel(pl.LightningModule): def __init__(self): super().__init__() if PARALLEL_MODELS > 1: self.model = models.ParallelModel(PARALLEL_MODELS, MODEL, 10, **MODEL.kwargs) else: self.model = MODEL.base(10, **MODEL.kwargs) self.loss = nn.CrossEntropyLoss() self.mode = None def forward(self, x): return self.model(x) def process_batch(self, batch): x, y = batch if PARALLEL_MODELS > 1: y = torch.cat([y for _ in range(PARALLEL_MODELS)], dim=0) return self(x), y def training_step(self, batch, batch_idx): y_hat, y = self.process_batch(batch) loss = self.loss(y_hat, y) self.log("train_loss", loss.item(), on_epoch=True) return loss def validation_step(self, batch, batch_idx): y_hat, y = self.process_batch(batch) loss = self.loss(y_hat, y) correct = (y_hat.argmax(1) == y).type(torch.float).sum().item() acc = 100*correct / y.size(dim=0) self.log("val_loss", loss) self.log("val_acc", acc) def test_step(self, batch, batch_idx): y_hat, y = self.process_batch(batch) loss = self.loss(y_hat, y) correct = (y_hat.argmax(1) == y).type(torch.float).sum().item() acc = 100*correct / y.size(dim=0) self.log("test_loss", loss) self.log("test_acc", acc) def configure_optimizers(self): optimiser = torch.optim.SGD(self.parameters(), lr=LEARNING_RATE*PARALLEL_MODELS, momentum=MOMENTUM, weight_decay=L2_REG) scheduler_dict = { "scheduler": torch.optim.lr_scheduler.StepLR(optimiser, step_size=max(1,EPOCHS//3), gamma=LR_GAMMA), "interval": "epoch" } return {"optimizer":optimiser, "lr_scheduler":scheduler_dict} class LitModelConnect(pl.LightningModule): def __init__(self, start_model = None, end_model = None, num_bends=CURVE_BENDS): super().__init__() self.loss = nn.CrossEntropyLoss() self.model = curves.CurveNet(10, curves.PolyChain, MODEL.curve, num_bends, architecture_kwargs=MODEL.kwargs) self.t = None self.update_bn = False # Initialise curve weights if start_model != None: self.model.import_base_parameters(start_model.model, 0) self.model.import_base_parameters(end_model.model, num_bends - 1) self.model.init_linear() def forward(self, x, **kwargs): return self.model(x, **kwargs) def regulariser(self): return 0.5 * L2_REG * self.model.l2 def process_batch(self, batch): x, y = batch return self(x, t=self.t), y def set_t(self, t): self.t = t def training_step(self, batch, batch_idx): y_hat, y = self.process_batch(batch) loss = self.loss(y_hat, y) + self.regulariser() self.log("train_loss", loss.item(), on_epoch=True) return loss def on_test_start(self): if self.update_bn: self.model.train() def test_step(self, batch, batch_idx): y_hat, y = self.process_batch(batch) nll = self.loss(y_hat, y) loss = nll + self.regulariser() correct = (y_hat.argmax(1) == y).type(torch.float).sum().item() acc = 100*correct / y.size(dim=0) self.log("test_nll", nll) self.log("test_loss", loss) self.log("test_acc", acc) def configure_optimizers(self): optimiser = torch.optim.SGD( filter(lambda param: param.requires_grad, self.parameters()), lr=LEARNING_RATE, momentum=MOMENTUM ) scheduler_dict = { "scheduler": torch.optim.lr_scheduler.StepLR(optimiser, step_size=max(1,EPOCHS//3), gamma=LR_GAMMA), "interval": "epoch" } return {"optimizer":optimiser, "lr_scheduler":scheduler_dict} def update_bn(model, loader): if not utils.check_bn(model): return bn_trainer = pl.Trainer(logger=False,**TRAINER_ARGS) model.update_bn = True bn_trainer.test(model, loader, verbose=False) model.update_bn = False def testCurve(model, trainer, test_loader, train_loader=None): ts = np.linspace(0.0, 1.0, CURVE_NUM_SAMPLES) if train_loader == None: train_loader = test_loader # BN has momentum so iter a few times to warm up model.set_t(0.0) for _ in range(3): update_bn(model, train_loader) # Test and compute max stats max_loss = -1 for t in ts: model.set_t(t) update_bn(model, train_loader) metrics = trainer.test(model, test_loader) max_loss = max(max_loss, metrics[0]["test_loss"]) return max_loss if __name__ == "__main__": # Select training device use_cuda = torch.cuda.is_available() if use_cuda: LOADER_ARGS["pin_memory"] = True device = "cuda" if use_cuda else "cpu" print(f"Training on {device}") # Setup logging logging.getLogger("lightning").setLevel(logging.ERROR) def genLogger(log, path): return pl.loggers.CSVLogger(path, name=log) # Setup checkpointing checkpoint = pl.callbacks.ModelCheckpoint( #dirpath="checkpoints", #save_last=True, save_top_k=0, save_weights_only=True ) # Setup progress bar progress_bar = pl.callbacks.RichProgressBar() TRAINER_ARGS["callbacks"] = [checkpoint, progress_bar] # ------------------------ # Prepare Datasets / Loaders # ------------------------ # CIFAR10 has an expired cert ssl._create_default_https_context = ssl._create_unverified_context # Too many files open with file_descriptor strategy torch.multiprocessing.set_sharing_strategy('file_system') transform = [] # if DATASET == datasets.CIFAR10: # transform += [transforms.Grayscale()] transform += [ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ] transform = transforms.Compose(transform) train_data = DATASET( root=".data", train=True, download=True, transform=transform ) # Truncate data for quick checks if TEST_ITEMS < 50_000: train_data = torch.utils.data.Subset(train_data, range(TEST_ITEMS)) adverse_data = utils1.NoiseDataset(train_data) test_data = DATASET( root=".data", train=False, download=True, transform=transform ) # train_data = utils1.GPUDataset(train_data, "cuda") # adverse_data = utils1.GPUDataset(adverse_data, "cuda") # test_data = utils1.GPUDataset(test_data, "cuda") train_loader = DataLoader(train_data, shuffle=True, **LOADER_ARGS) adverse_loader = DataLoader(adverse_data, shuffle=True, **LOADER_ARGS) LOADER_ARGS["batch_size"] = 1024 test_loader = DataLoader(test_data, **LOADER_ARGS) curve_loader = DataLoader(train_data, **LOADER_ARGS) # ------------------------ # Generate Data # ------------------------ # Load state state = {"minima":[], "paths":[]} try: state_file = open('state.p', 'rb') state = pickle.load(state_file) state_file.close() except FileNotFoundError: pass # ------------------------ # Generate Minima # ------------------------ # Generate good minima good_minima = [] for _ in range(STEP_MODES): model = LitModel() model.mode = "train" path=f"modes/{len(state['minima'])}" trainer = pl.Trainer(logger=genLogger("train", path),**TRAINER_ARGS) trainer.fit(model, train_loader, test_loader) metrics = trainer.test(model, test_loader)[0] trainer.save_checkpoint(path+"/model.ckpt") record = {"idx":len(state["minima"]), "type":"good", "path":path, "loss":metrics["test_loss"], "acc":metrics["test_acc"]} good_minima.append(record) state["minima"].append(record) # Generate adversarial init model = LitModel() model.mode = "adverse" trainer = pl.Trainer(logger=genLogger("adverse", "modes"), **TRAINER_ARGS) trainer.fit(model, adverse_loader) trainer.save_checkpoint("modes/adverse.ckpt") # Generate bad minima bad_minima = [] for _ in range(STEP_BAD_MODES): model = LitModel.load_from_checkpoint("modes/adverse.ckpt") model.mode = "train" path=f"modes/{len(state['minima'])}" trainer = pl.Trainer(logger=genLogger("train", path), **TRAINER_ARGS) trainer.fit(model, train_loader, test_loader) metrics = trainer.test(model, test_loader)[0] trainer.save_checkpoint(path+"/model.ckpt") record = {"idx":len(state["minima"]), "type":"bad", "path":path, "loss":metrics["test_loss"], "acc":metrics["test_acc"]} bad_minima.append(record) state["minima"].append(record) # ------------------------ # Generate Curves # ------------------------ new_curves = [] # Connect good minima to existing for mode in good_minima: if mode["idx"] == 0: continue other = np.random.randint(mode["idx"]) while state["minima"][other]["type"] != "good": other = np.random.randint(mode["idx"]) new_curves.append((mode["idx"], other)) # Connect a bad minimum to a good minimum other = np.random.randint(bad_minima[0]["idx"]) while state["minima"][other]["type"] != "good": other = np.random.randint(bad_minima[0]["idx"]) new_curves.append((bad_minima[0]["idx"], other)) # Curve directly between bad minima new_curves.append((bad_minima[0]["idx"], bad_minima[1]["idx"])) # Random new curves start = np.random.randint(len(state["minima"])) other = np.random.randint(len(state["minima"])) while start == other: other = np.random.randint(len(state["minima"])) new_curves.append((start, other)) start = np.random.randint(len(state["minima"])) other = np.random.randint(len(state["minima"])) while start == other: other = np.random.randint(len(state["minima"])) new_curves.append((start, other)) for start_idx, end_idx in new_curves: start = LitModel.load_from_checkpoint(state["minima"][start_idx]["path"] + "/model.ckpt") end = LitModel.load_from_checkpoint(state["minima"][end_idx]["path"] + "/model.ckpt") path=f"curves/{len(state['paths'])}" linear = LitModelConnect(start, end, 2) trainer = pl.Trainer(logger=genLogger("linear", path), **TRAINER_ARGS) lin_loss = testCurve(linear, trainer, curve_loader, test_loader) trainer.save_checkpoint(path + "/linear.ckpt") curve = LitModelConnect(start, end, CURVE_BENDS) trainer = pl.Trainer(logger=genLogger("curve", path), **TRAINER_ARGS) trainer.fit(curve, train_loader) trainer.save_checkpoint(path + "/curve.ckpt") curve_loss = testCurve(curve, trainer, curve_loader, test_loader) curve_test_loss = testCurve(curve, trainer, test_loader, test_loader) record = {"idx":len(state["paths"]), "path":path, "start":start_idx, "end":end_idx, "lin_loss":lin_loss, "curve_loss":curve_loss, "curve_test_loss":curve_test_loss} state["paths"].append(record) # Save state pickle.dump(state, open('state.p', 'wb'))
jonasjuerss/mode-connectivity
james/main.py
main.py
py
12,280
python
en
code
0
github-code
6
[ { "api_name": "torchvision.datasets.CIFAR10", "line_number": 13, "usage_type": "attribute" }, { "api_name": "torchvision.datasets", "line_number": 13, "usage_type": "name" }, { "api_name": "torchvision.datasets.CIFAR10", "line_number": 26, "usage_type": "attribute" }, { "api_name": "torchvision.datasets", "line_number": 26, "usage_type": "name" }, { "api_name": "resnet.ResNet18", "line_number": 26, "usage_type": "attribute" }, { "api_name": "resnet.ResNet14MNIST", "line_number": 26, "usage_type": "attribute" }, { "api_name": "pytorch_lightning.LightningModule", "line_number": 46, "usage_type": "attribute" }, { "api_name": "models.ParallelModel", "line_number": 50, "usage_type": "call" }, { "api_name": "torch.nn.CrossEntropyLoss", "line_number": 53, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 53, "usage_type": "name" }, { "api_name": "torch.cat", "line_number": 62, "usage_type": "call" }, { "api_name": "torch.float", "line_number": 74, "usage_type": "attribute" }, { "api_name": "torch.float", "line_number": 82, "usage_type": "attribute" }, { "api_name": "torch.optim.SGD", "line_number": 88, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 88, "usage_type": "attribute" }, { "api_name": "torch.optim.lr_scheduler.StepLR", "line_number": 90, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 90, "usage_type": "attribute" }, { "api_name": "pytorch_lightning.LightningModule", "line_number": 97, "usage_type": "attribute" }, { "api_name": "torch.nn.CrossEntropyLoss", "line_number": 100, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 100, "usage_type": "name" }, { "api_name": "curves.CurveNet", "line_number": 101, "usage_type": "call" }, { "api_name": "curves.PolyChain", "line_number": 101, "usage_type": "attribute" }, { "api_name": "torch.float", "line_number": 138, "usage_type": "attribute" }, { "api_name": "torch.optim.SGD", "line_number": 146, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 146, "usage_type": "attribute" }, { "api_name": "torch.optim.lr_scheduler.StepLR", "line_number": 152, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 152, "usage_type": "attribute" }, { "api_name": "utils.check_bn", "line_number": 158, "usage_type": "call" }, { "api_name": "pytorch_lightning.Trainer", "line_number": 160, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 166, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 191, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 191, "usage_type": "attribute" }, { "api_name": "logging.getLogger", "line_number": 198, "usage_type": "call" }, { "api_name": "logging.ERROR", "line_number": 198, "usage_type": "attribute" }, { "api_name": "pytorch_lightning.loggers.CSVLogger", "line_number": 200, "usage_type": "call" }, { "api_name": "pytorch_lightning.loggers", "line_number": 200, "usage_type": "attribute" }, { "api_name": "pytorch_lightning.callbacks.ModelCheckpoint", "line_number": 203, "usage_type": "call" }, { "api_name": "pytorch_lightning.callbacks", "line_number": 203, "usage_type": "attribute" }, { "api_name": "pytorch_lightning.callbacks.RichProgressBar", "line_number": 211, "usage_type": "call" }, { "api_name": "pytorch_lightning.callbacks", "line_number": 211, "usage_type": "attribute" }, { "api_name": "ssl._create_default_https_context", "line_number": 220, "usage_type": "attribute" }, { "api_name": "ssl._create_unverified_context", "line_number": 220, "usage_type": "attribute" }, { "api_name": "torch.multiprocessing.set_sharing_strategy", "line_number": 223, "usage_type": "call" }, { "api_name": "torch.multiprocessing", "line_number": 223, "usage_type": "attribute" }, { "api_name": "torchvision.transforms.ToTensor", "line_number": 229, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 229, "usage_type": "name" }, { "api_name": "torchvision.transforms.Normalize", "line_number": 230, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 230, "usage_type": "name" }, { "api_name": "torchvision.transforms.Compose", "line_number": 233, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 233, "usage_type": "name" }, { "api_name": "torch.utils.data.Subset", "line_number": 244, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 244, "usage_type": "attribute" }, { "api_name": "utils1.NoiseDataset", "line_number": 246, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 259, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 260, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 262, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 263, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 278, "usage_type": "call" }, { "api_name": "pytorch_lightning.Trainer", "line_number": 293, "usage_type": "call" }, { "api_name": "pytorch_lightning.Trainer", "line_number": 305, "usage_type": "call" }, { "api_name": "pytorch_lightning.Trainer", "line_number": 315, "usage_type": "call" }, { "api_name": "numpy.random.randint", "line_number": 333, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 333, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 335, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 335, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 340, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 340, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 342, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 342, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 349, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 349, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 350, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 350, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 352, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 352, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 355, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 355, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 356, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 356, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 358, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 358, "usage_type": "attribute" }, { "api_name": "pytorch_lightning.Trainer", "line_number": 368, "usage_type": "call" }, { "api_name": "pytorch_lightning.Trainer", "line_number": 373, "usage_type": "call" }, { "api_name": "pickle.dump", "line_number": 383, "usage_type": "call" } ]
33205173219
from django.urls import path from .views import (get_user, add_user, get_categories, get_recipe, add_to_favourite, get_user_favourites, get_recipes_in_category, get_random_recipe, add_to_dislikes) urlpatterns = [ path('users/<int:telegram_id>', get_user), path('users/add/', add_user), path('categories/', get_categories), path('category/recipes/', get_recipes_in_category), path('recipe/random/', get_random_recipe), path('favourites/recipe/', get_recipe), path('favourites/', get_user_favourites), path('favourites/add', add_to_favourite), path('dislikes/add', add_to_dislikes) ]
AlexanderZharyuk/recipes
recipes_admin_api/api/urls.py
urls.py
py
684
python
en
code
1
github-code
6
[ { "api_name": "django.urls.path", "line_number": 10, "usage_type": "call" }, { "api_name": "views.get_user", "line_number": 10, "usage_type": "argument" }, { "api_name": "django.urls.path", "line_number": 11, "usage_type": "call" }, { "api_name": "views.add_user", "line_number": 11, "usage_type": "argument" }, { "api_name": "django.urls.path", "line_number": 13, "usage_type": "call" }, { "api_name": "views.get_categories", "line_number": 13, "usage_type": "argument" }, { "api_name": "django.urls.path", "line_number": 14, "usage_type": "call" }, { "api_name": "views.get_recipes_in_category", "line_number": 14, "usage_type": "argument" }, { "api_name": "django.urls.path", "line_number": 16, "usage_type": "call" }, { "api_name": "views.get_random_recipe", "line_number": 16, "usage_type": "argument" }, { "api_name": "django.urls.path", "line_number": 18, "usage_type": "call" }, { "api_name": "views.get_recipe", "line_number": 18, "usage_type": "argument" }, { "api_name": "django.urls.path", "line_number": 19, "usage_type": "call" }, { "api_name": "views.get_user_favourites", "line_number": 19, "usage_type": "argument" }, { "api_name": "django.urls.path", "line_number": 20, "usage_type": "call" }, { "api_name": "views.add_to_favourite", "line_number": 20, "usage_type": "argument" }, { "api_name": "django.urls.path", "line_number": 22, "usage_type": "call" }, { "api_name": "views.add_to_dislikes", "line_number": 22, "usage_type": "argument" } ]
74056199547
import torch import torch.nn as nn import torch.nn.functional as F from .activations import ACTIVATIONS class Embedding(nn.Module): ''' Abstract base class for any module that embeds a collection of N vertices into N hidden states ''' def __init__(self, features, hidden, **kwargs): super().__init__() self.features = features self.hidden = hidden def forward(self, x): pass class Constant(Embedding): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, x): return x class OneLayer(Embedding): def __init__(self, features, hidden, act=None, wn=False, **kwargs): super().__init__(features, hidden) self.fc = nn.Linear(features, hidden) if wn: self.fc = nn.utils.weight_norm(self.fc, name='weight') self.activation = ACTIVATIONS[act]() def forward(self, x): return self.activation(self.fc(x)) class TwoLayer(Embedding): def __init__(self, features, hidden, act=None, wn=False, **kwargs): super().__init__(features, hidden) self.e1 = OneLayer(features, hidden, act, wn) self.e2 = OneLayer(hidden, hidden, act, wn) def forward(self, x): return self.e1(self.e2(x)) class NLayer(nn.Module): def __init__(self, dim_in=None, dim_out=None, n_layers=None, dim_hidden=None, act=None, wn=False, **kwargs): super().__init__() self.activation = ACTIVATIONS[act]() if dim_hidden is None: dim_hidden = dim_out dims = [dim_in] + [dim_hidden] * (n_layers-1) + [dim_out] self.fcs = nn.ModuleList() for i in range(len(dims)-1): fc = nn.Linear(dims[i], dims[i+1]) if wn: fc = nn.utils.weight_norm(fc, name='weight') self.fcs.append(fc) def forward(self, x): for fc in self.fcs: x = fc(x) x = self.activation(x) return x EMBEDDINGS = dict( n=NLayer, one=OneLayer, two=TwoLayer, const=Constant, )
isaachenrion/jets
src/architectures/embedding/embedding.py
embedding.py
py
2,081
python
en
code
9
github-code
6
[ { "api_name": "torch.nn.Module", "line_number": 7, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 7, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 30, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 30, "usage_type": "name" }, { "api_name": "torch.nn.utils.weight_norm", "line_number": 32, "usage_type": "call" }, { "api_name": "torch.nn.utils", "line_number": 32, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 32, "usage_type": "name" }, { "api_name": "activations.ACTIVATIONS", "line_number": 33, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 47, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 47, "usage_type": "name" }, { "api_name": "activations.ACTIVATIONS", "line_number": 50, "usage_type": "name" }, { "api_name": "torch.nn.ModuleList", "line_number": 56, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 56, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 58, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 58, "usage_type": "name" }, { "api_name": "torch.nn.utils.weight_norm", "line_number": 60, "usage_type": "call" }, { "api_name": "torch.nn.utils", "line_number": 60, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 60, "usage_type": "name" } ]
31146266095
import tensorflow as tf import keras.backend as K def huber_loss(y_true, y_pred): return tf.losses.huber_loss(y_true, y_pred) def adjust_binary_cross_entropy(y_true, y_pred): return K.binary_crossentropy(y_true, K.pow(y_pred, 2)) def MMD_Loss_func(num_source, sigmas=None): if sigmas is None: sigmas = [1, 5, 10] def loss(y_true, y_pred): cost = [] for i in range(num_source): for j in range(num_source): domain_i = tf.where(tf.equal(y_true, i))[:, 0] domain_j = tf.where(tf.equal(y_true, j))[:, 0] single_res = mmd_two_distribution(K.gather(y_pred, domain_i), K.gather(y_pred, domain_j), sigmas=sigmas) cost.append(single_res) #print("wtf") cost = K.concatenate(cost) return K.mean(cost) return loss def mmd_two_distribution(source, target, sigmas): sigmas = K.constant(sigmas) xy = rbf_kernel(source, target, sigmas) xx = rbf_kernel(source, source, sigmas) yy = rbf_kernel(target, target, sigmas) return xx + yy - 2 * xy def rbf_kernel(x, y, sigmas): beta = 1. / (2. * (tf.expand_dims(sigmas, 1))) dist = compute_pairwise_distances(x, y) dot = -K.dot(beta, K.reshape(dist, (1, -1))) exp = K.exp(dot) return K.mean(exp, keepdims=True) def compute_pairwise_distances(x, y): norm = lambda x: K.sum(K.square(x), axis=1) return norm(K.expand_dims(x, 2) - K.transpose(y))
rs-dl/MMD-DRCN
customLoss.py
customLoss.py
py
1,575
python
en
code
7
github-code
6
[ { "api_name": "tensorflow.losses.huber_loss", "line_number": 6, "usage_type": "call" }, { "api_name": "tensorflow.losses", "line_number": 6, "usage_type": "attribute" }, { "api_name": "keras.backend.binary_crossentropy", "line_number": 10, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 10, "usage_type": "name" }, { "api_name": "keras.backend.pow", "line_number": 10, "usage_type": "call" }, { "api_name": "tensorflow.where", "line_number": 22, "usage_type": "call" }, { "api_name": "tensorflow.equal", "line_number": 22, "usage_type": "call" }, { "api_name": "tensorflow.where", "line_number": 23, "usage_type": "call" }, { "api_name": "tensorflow.equal", "line_number": 23, "usage_type": "call" }, { "api_name": "keras.backend.gather", "line_number": 24, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 24, "usage_type": "name" }, { "api_name": "keras.backend.gather", "line_number": 25, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 25, "usage_type": "name" }, { "api_name": "keras.backend.concatenate", "line_number": 29, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 29, "usage_type": "name" }, { "api_name": "keras.backend.mean", "line_number": 30, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 30, "usage_type": "name" }, { "api_name": "keras.backend.constant", "line_number": 36, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 36, "usage_type": "name" }, { "api_name": "tensorflow.expand_dims", "line_number": 44, "usage_type": "call" }, { "api_name": "keras.backend.dot", "line_number": 46, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 46, "usage_type": "name" }, { "api_name": "keras.backend.reshape", "line_number": 46, "usage_type": "call" }, { "api_name": "keras.backend.exp", "line_number": 47, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 47, "usage_type": "name" }, { "api_name": "keras.backend.mean", "line_number": 48, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 48, "usage_type": "name" }, { "api_name": "keras.backend.sum", "line_number": 52, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 52, "usage_type": "name" }, { "api_name": "keras.backend.square", "line_number": 52, "usage_type": "call" }, { "api_name": "keras.backend.expand_dims", "line_number": 53, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 53, "usage_type": "name" }, { "api_name": "keras.backend.transpose", "line_number": 53, "usage_type": "call" } ]
34228298510
import os import re import sys import glob import builtins from contextlib import contextmanager import setuptools from setuptools import setup, Extension from setuptools.command.build_ext import build_ext as _build_ext from setuptools.command.install import install as _install with open("README.md", "r") as fh: long_description = fh.read() PACKAGENAME = "aliad" VERSIONFILE = f"{PACKAGENAME}/_version.py" verstrline = open(VERSIONFILE, "rt").read() VSRE = r"^__version__ = ['\"]([^'\"]*)['\"]" mo = re.search(VSRE, verstrline, re.M) if mo: verstr = mo.group(1) else: raise RuntimeError("Unable to find version string in %s." % (VERSIONFILE,)) setup( name=PACKAGENAME, # Replace with your own username version=verstr, author="Alkaid Cheng", author_email="[email protected]", description="A library for anomaly detection.", long_description=long_description, long_description_content_type="text/markdown", packages=setuptools.find_packages(), package_data={PACKAGENAME: []}, exclude_package_data={PACKAGENAME: []}, classifiers=[ 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", ], install_requires=[ 'numpy', 'pandas', 'matplotlib', 'click', 'quickstats' ], scripts=[f'bin/{PACKAGENAME}'], python_requires='>=3.8', )
AlkaidCheng/aliad
setup.py
setup.py
py
1,655
python
en
code
0
github-code
6
[ { "api_name": "re.search", "line_number": 20, "usage_type": "call" }, { "api_name": "re.M", "line_number": 20, "usage_type": "attribute" }, { "api_name": "setuptools.setup", "line_number": 26, "usage_type": "call" }, { "api_name": "setuptools.find_packages", "line_number": 34, "usage_type": "call" } ]
13058259505
from datetime import datetime, timezone from config import Config from logger import logger from model.coordinates import Coordinates from model.media_type import MediaType from model.ts_source import TsSource class MediaFile: original_path: str original_filename: str filename: str media_type: MediaType dir_path: list[str] unix_time_sec: int = None timestamp: datetime = None ts_source: TsSource = None mtime: datetime = None index: int = None coordinates: Coordinates = None md5: str = None target_dir = None target_filename = None target = None def __init__(self, original_path: str, original_filename: str, filename: str, media_type: MediaType, dir_path: list[str]): self.original_path = original_path self.original_filename = original_filename self.filename = filename self.media_type = media_type self.dir_path = dir_path def __repr__(self): if self.ts_source == TsSource.EXIF: sym = Config.SYM_CHECK else: sym = Config.SYM_MULTIPLICATION return f'{sym} {self.ts_source} {self.dir_path}/{self.original_filename}, ts={self.timestamp}' def __lt__(self, other): return self.original_filename.lower() < other.original_filename.lower() def has_timestamp(self) -> bool: return self.timestamp is not None def update_time(self, ts: datetime, source: TsSource, force: bool = False): if ts is not None and (force or self.timestamp is None or ts < self.timestamp): self.timestamp = ts.astimezone(timezone.utc) self.unix_time_sec = int(self.timestamp.timestamp()) self.ts_source = source if self.ts_source == TsSource.MTIME: self.mtime = ts def update_coordinates(self, coordinates: Coordinates): if coordinates is not None: self.coordinates = coordinates @staticmethod def create(source_dir: str, file_dir: str) -> 'MediaFile': original_filename, filename, media_type, split_path = MediaFile.retrieve_filename_data(source_dir, file_dir) return MediaFile( original_path=file_dir, original_filename=original_filename, filename=filename, media_type=media_type, dir_path=split_path ) @staticmethod def retrieve_filename_data(source_dir: str, file_dir: str): if not source_dir.endswith('/'): source_dir += '/' split_path = file_dir.replace(source_dir, '').split('/') original_filename = split_path.pop() fixed_filename = MediaFile.replace_dots(original_filename) filename, extension = fixed_filename.split('.') media_type = MediaType.from_string(extension) return original_filename, filename, media_type, split_path @staticmethod def replace_dots(original_filename: str) -> str: result = original_filename while result.count('.') > 1: result = result.replace('.', ' ', 1) return result
mbogner/imagination
model/media_file.py
media_file.py
py
3,104
python
en
code
0
github-code
6
[ { "api_name": "model.media_type.MediaType", "line_number": 14, "usage_type": "name" }, { "api_name": "datetime.datetime", "line_number": 18, "usage_type": "name" }, { "api_name": "model.ts_source.TsSource", "line_number": 19, "usage_type": "name" }, { "api_name": "datetime.datetime", "line_number": 20, "usage_type": "name" }, { "api_name": "model.coordinates.Coordinates", "line_number": 23, "usage_type": "name" }, { "api_name": "model.media_type.MediaType", "line_number": 31, "usage_type": "name" }, { "api_name": "model.ts_source.TsSource.EXIF", "line_number": 40, "usage_type": "attribute" }, { "api_name": "model.ts_source.TsSource", "line_number": 40, "usage_type": "name" }, { "api_name": "config.Config.SYM_CHECK", "line_number": 41, "usage_type": "attribute" }, { "api_name": "config.Config", "line_number": 41, "usage_type": "name" }, { "api_name": "config.Config.SYM_MULTIPLICATION", "line_number": 43, "usage_type": "attribute" }, { "api_name": "config.Config", "line_number": 43, "usage_type": "name" }, { "api_name": "datetime.datetime", "line_number": 52, "usage_type": "name" }, { "api_name": "model.ts_source.TsSource", "line_number": 52, "usage_type": "name" }, { "api_name": "datetime.timezone.utc", "line_number": 54, "usage_type": "attribute" }, { "api_name": "datetime.timezone", "line_number": 54, "usage_type": "name" }, { "api_name": "model.ts_source.TsSource.MTIME", "line_number": 57, "usage_type": "attribute" }, { "api_name": "model.ts_source.TsSource", "line_number": 57, "usage_type": "name" }, { "api_name": "model.coordinates.Coordinates", "line_number": 60, "usage_type": "name" }, { "api_name": "model.media_type.MediaType.from_string", "line_number": 84, "usage_type": "call" }, { "api_name": "model.media_type.MediaType", "line_number": 84, "usage_type": "name" } ]
3081251304
# -*- coding: utf-8 -* """Graphics .. module:: graphics :synopsis: Module for creating graphs """ # imports import matplotlib.pyplot as plt import numpy as np import resoncalc.output as output from math import ceil from csv import DictReader # globals n_points = 1000 # count of points in graph n_rows = 20.0 # count of rows in graph legend def plot_fem_base_function(func, a, b): """Plot base function Args: func (func): base function a (float): left boundary of interval b (float): right boundary of interval """ # coordinates init x = np.linspace(np.real(a), np.real(b), n_points) n = len(x) y = np.zeros(n, dtype=float) # calculate function values for i in range(n): y[i] = np.real(func(x[i])) # create graph plt.plot(x, y) plt.title('FEM base function') plt.tight_layout() plt.show() def plot_fem_base(funcs, a, b): """Plot base functions Args: funcs (list): base functions a (float): left boundary of interval b (float): right boundary of interval """ # coordinate init x = np.linspace(np.real(a), np.real(b), n_points) n = len(x) # function loop for i in range(len(funcs)): # coordinate init y = np.zeros(n, dtype=float) # bridging function if (type(funcs[i]) is list): for j in range(n): y[j] = np.real(funcs[i][0](x[j]) + funcs[i][1](x[j])) # function within element else: for j in range(n): y[j] = np.real(funcs[i](x[j])) # plot function plt.plot(x, y, label=i+2) # create graph plt.title('FEM base functions') plt.legend(bbox_to_anchor=(1, 1), borderaxespad=0.0, ncol=ceil(len(funcs)/n_rows)) plt.tight_layout() plt.show() def plot_potential(potential, a, b, *params): """Plot potential Args: potential (func): potential function a (float): left boundary of interval b (float): right boundary of interval params (args): potential specific parameters """ # coordinates init x = np.linspace(np.real(a), np.real(b), n_points) n = len(x) y = np.zeros(n, dtype=float) # plot potential for i in range(n): y[i] = potential(x[i], *params) plt.plot(x, y) # create graph plt.title('Potential') plt.xlabel('x') plt.ylabel('E') plt.grid() plt.tight_layout() plt.show() def plot_eigenstates(potential, eigenvalues, a, b, emax, fname='', *params): """Plot eigenstates for given potential Args: potential (func): potential function eigenvalues (list): bound states a (float): left boundary of interval b (float): right boundary of interval emax (float): maximum energy in atomic units fname (str): export filename params (args): potential specific parameters """ # coordinates init eigenvalues = np.real(eigenvalues) x = np.linspace(a, b, n_points) n = len(x) y = np.zeros(n, dtype=float) # plot potential for i in range(n): y[i] = potential(x[i], *params) plt.plot(x, y) # plot eigenstates for i in range(len(eigenvalues)): z = np.zeros(n, dtype=float) val = eigenvalues[i] bound_state = True if (val < 0.0) else False cross = 0 # line segment representing eigenstate for j in range(n): # intersection points with potential if (val > y[j]): if (cross == 0 or (cross == 2 and not bound_state)): cross += 1 elif (cross == 1): cross += 1 # plot line if ((bound_state and cross == 1) or (not bound_state and cross == 2)): z[j] = val else: z[j] = np.nan plt.plot(x, z, 'r', label='E{0} = {1:e}'.format(i+1, val)) # create graph plt.xlim(left=a, right=b) plt.ylim(bottom=None, top=emax) plt.title('Eigenstates') plt.xlabel('x') plt.ylabel('E') plt.grid() plt.legend(bbox_to_anchor=(1, 1), borderaxespad=0.0, ncol=ceil(len(eigenvalues)/n_rows)) plt.tight_layout() # export graph if (len(fname) > 0): plt.savefig(fname) plt.close() # display graph else: plt.show() def plot_complex_spectrum(eigenvalues, eigenvalues2=[], states=None, fname=''): """Plot complex spectrum used in ECS method Args: eigenvalues (list): eigenvalues for first angle or rotation eigenvalues2 (list): eigenvalues for second angle of rotation, default empty states (list): highlighted eigenstates fname (str): export filename """ # plot first eigenvalues x = [] y = [] if (states is None): x = np.real(eigenvalues) y = np.imag(eigenvalues) else: limit = np.abs(states[0]) for val in eigenvalues: if (np.real(val) <= limit): x.append(np.real(val)) y.append(np.imag(val)) plt.plot(x, y, 'b.') # plot second eigenvalues x = [] y = [] if (len(eigenvalues2) > 0): if (states is None): x = np.real(eigenvalues2) y = np.imag(eigenvalues2) else: limit = np.abs(states[0]) for val in eigenvalues2: if (np.real(val) <= limit): x.append(np.real(val)) y.append(np.imag(val)) plt.plot(x, y, 'g.') # highlight eigenstates if (states is not None): for state in states: plt.plot(np.real(state), np.imag(state), 'ro', label='real={0:e}, imag={1:e}'.format(np.real(state), np.imag(state))) plt.legend(loc='lower left') # create graph plt.title('Complex spectrum') plt.xlabel('Re') plt.ylabel('Im') plt.grid() # export graph if (len(fname) > 0): plt.savefig(fname) plt.close() # display graph else: plt.show() def plot_resonances_complex(infile, outfile=''): """Plot resonances in complex plane Args: infile (str): input filename outfile (str): output filename, default empty """ # parse csv file with open(infile, 'r') as f: reader = DictReader(f) states = {} # get resonance states, group by param2 for row in reader: if (row['type'] == 'resonance'): param2 = row['param2'] if (not param2 in states): states[param2] = [] states[param2].append(float(row['real']) + 1j*float(row['imag'])) # plot state trajectories for k, v in states.items(): plt.plot(np.real(v), np.imag(v), 'b-') # create graph plt.title('Resonance states') plt.xlabel('Re') plt.ylabel('Im') plt.grid() # export graph if (len(outfile) > 0): plt.savefig(outfile) plt.close() # display graph else: plt.show() def plot_resonances_params(infile, energy=True, outfile=''): """Plot resonances according to parameters Args: infile (str): input filename energy (bool): energy or width, default energy outfile (str): output filename, default empty """ # parse csv file with open(infile, 'r') as f: reader = DictReader(f) param1, param2, value = [], [], [] # get resonance states for row in reader: if (row['type'] == 'resonance'): param1.append(float(row['param1'])) param2.append(float(row['param2'])) value.append(float(row['real']) if (energy) else -0.5 * float(row['imag'])) # create graph plt.scatter(param1, param2, c=value, cmap=plt.cm.rainbow) plt.colorbar() plt.title('Resonance states {0}'.format('energy' if (energy) else 'width')) plt.xlabel('param a') plt.ylabel('param b') plt.grid() # export graph if (len(outfile) > 0): plt.savefig(outfile) plt.close() # display graph else: plt.show()
hydratk/resoncalc
src/resoncalc/graphics.py
graphics.py
py
8,384
python
en
code
0
github-code
6
[ { "api_name": "numpy.linspace", "line_number": 31, "usage_type": "call" }, { "api_name": "numpy.real", "line_number": 31, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 33, "usage_type": "call" }, { "api_name": "numpy.real", "line_number": 37, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 40, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 40, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 41, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 41, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 42, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 42, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 43, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 43, "usage_type": "name" }, { "api_name": "numpy.linspace", "line_number": 56, "usage_type": "call" }, { "api_name": "numpy.real", "line_number": 56, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 62, "usage_type": "call" }, { "api_name": "numpy.real", "line_number": 67, "usage_type": "call" }, { "api_name": "numpy.real", "line_number": 72, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 75, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 75, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 78, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 78, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 79, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 79, "usage_type": "name" }, { "api_name": "math.ceil", "line_number": 79, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 80, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 80, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 81, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 81, "usage_type": "name" }, { "api_name": "numpy.linspace", "line_number": 95, "usage_type": "call" }, { "api_name": "numpy.real", "line_number": 95, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 97, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 102, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 102, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 106, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 106, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 107, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 107, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 108, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 108, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.grid", "line_number": 109, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 109, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 110, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 110, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 111, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 111, "usage_type": "name" }, { "api_name": "numpy.real", "line_number": 128, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 129, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 131, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 136, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 136, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 140, "usage_type": "call" }, { "api_name": "numpy.nan", "line_number": 159, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 161, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 161, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 164, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 164, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 165, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 165, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 166, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 166, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 167, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 167, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 168, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 168, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.grid", "line_number": 169, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 169, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 170, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 170, "usage_type": "name" }, { "api_name": "math.ceil", "line_number": 170, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 171, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 171, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 175, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 175, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 176, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 176, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 180, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 180, "usage_type": "name" }, { "api_name": "numpy.real", "line_number": 197, "usage_type": "call" }, { "api_name": "numpy.imag", "line_number": 198, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 200, "usage_type": "call" }, { "api_name": "numpy.real", "line_number": 202, "usage_type": "call" }, { "api_name": "numpy.real", "line_number": 203, "usage_type": "call" }, { "api_name": "numpy.imag", "line_number": 204, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 206, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 206, "usage_type": "name" }, { "api_name": "numpy.real", "line_number": 213, "usage_type": "call" }, { "api_name": "numpy.imag", "line_number": 214, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 216, "usage_type": "call" }, { "api_name": "numpy.real", "line_number": 218, "usage_type": "call" }, { "api_name": "numpy.real", "line_number": 219, "usage_type": "call" }, { "api_name": "numpy.imag", "line_number": 220, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 222, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 222, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 227, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 227, "usage_type": "name" }, { "api_name": "numpy.real", "line_number": 227, "usage_type": "call" }, { "api_name": "numpy.imag", "line_number": 227, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 228, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 228, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 231, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 231, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 232, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 232, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 233, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 233, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.grid", "line_number": 234, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 234, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 238, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 238, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 239, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 239, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 243, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 243, "usage_type": "name" }, { "api_name": "csv.DictReader", "line_number": 256, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 270, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 270, "usage_type": "name" }, { "api_name": "numpy.real", "line_number": 270, "usage_type": "call" }, { "api_name": "numpy.imag", "line_number": 270, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.title", "line_number": 273, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 273, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 274, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 274, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 275, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 275, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.grid", "line_number": 276, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 276, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 280, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 280, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 281, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 281, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 285, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 285, "usage_type": "name" }, { "api_name": "csv.DictReader", "line_number": 299, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 310, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 310, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.cm", "line_number": 310, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.colorbar", "line_number": 311, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 311, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 312, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 312, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 313, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 313, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 314, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 314, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.grid", "line_number": 315, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 315, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 319, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 319, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 320, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 320, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 324, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 324, "usage_type": "name" } ]
18339770466
import requests import json url = "https://api.telegram.org/bot5653233459:AAHWejZRnvy4luWTetBSbQY5jTzS11mA35U/sendMessage" photo_url = "https://api.telegram.org/bot5653233459:AAHWejZRnvy4luWTetBSbQY5jTzS11mA35U/sendPhoto" document_url = "https://api.telegram.org/bot5653233459:AAHWejZRnvy4luWTetBSbQY5jTzS11mA35U/sendDocument" def buttons(chat_id): payload = { "photo": "https://blog.mint.com/wp-content/uploads/2013/02/1.jpg", #"caption": caption, "chat_id": chat_id, "reply_markup": { "inline_keyboard": [ [ { "text": "Show Plans", "callback_data": "Insurance Plan" } ] ] } } headers = { "Accept": "application/json", "Content-Type": "application/json" } response = requests.post(photo_url, json=payload) def button_1(chat_id): payload = { "photo": "AgACAgUAAxkBAAIGv2Mhrr21NIyhQKZHdVnObrNS0_SdAAIStTEb3U4IVSXi2GZ7s3TqAQADAgADcwADKQQ", "chat_id": chat_id, # "text": "Select one option", "reply_markup": { "inline_keyboard": [ [ { "text": "Term Life", "callback_data": "Term Life" }, { "text": "mediclaim", "callback_data": "Mediclaim" }, { "text": "Accidental", "callback_data": "Accidental Insurance" }, ] ] } } headers = { "Accept": "application/json", "Content-Type": "application/json" } response = requests.post(photo_url, json=payload) print(response) def term_life(chat_id): payload = { "chat_id": chat_id, 'document': 'BQACAgUAAxkBAAIClGMIdmbOEsi8xsAic-Bk0UahnIl5AAJCBgACDBJBVBLbNwoHbsUhKQQ', #"text": "Choose Your Plan", "reply_markup": { "inline_keyboard": [ [ { "text": "25Lac", "callback_data": "25Lac" }, { "text": "50Lac", "callback_data": "50Lac" }, { "text": "75Lac", "callback_data": "75Lac" }, { "text": "1Cr", "callback_data": "1r" }, ] ] } } headers = { "Accept": "application/json", "Content-Type": "application/json" } response = requests.post(document_url, json=payload) def mediclaim(chat_id): payload = { "chat_id": chat_id, #"text": "Choose Your Plan", "document":"BQACAgUAAxkBAAICmmMIeJtMVL1v2JTsRhsdMb4uSDvCAAJEBgACDBJBVKwG4QUSEWW7KQQ", "reply_markup": { "inline_keyboard": [ [ { "text": "2Lac", "callback_data": "mediclaim up to 2Lac" }, { "text": "5Lac", "callback_data": "mediclaim up to 5Lac" }, { "text": "10Lac", "callback_data": "mediclaim up to 10Lac" }, { "text": "25Lac", "callback_data": "mediclaim up to 25Lac" }, ] ] } } headers = { "Accept": "application/json", "Content-Type": "application/json" } response = requests.post(document_url, json=payload) def accidental(chat_id): payload = { "chat_id": chat_id, #"text": "Choose Your Plan", "document":"BQACAgUAAxkBAAICmGMIeJMERoZF4atIdkk_L-cYGESUAAJDBgACDBJBVCJlGZUyjyGkKQQ", "reply_markup": { "inline_keyboard": [ [ { "text": "5Lac", "callback_data": "Plan of 5Lac" }, { "text": "10Lac", "callback_data": "Plan of 10Lac" }, { "text": "25Lac", "callback_data": "Plan of 25Lac" }, { "text": "50Lac", "callback_data": "Plan of 50Lac" }, ] ] } } headers = { "Accept": "application/json", "Content-Type": "application/json" } response = requests.post(document_url, json=payload) def existing_user(chat_id): payload = { "chat_id": chat_id, "text": "Seems you are an existing user! To see your details click here ", "reply_markup": { "inline_keyboard": [ [ { "text": "Show Details", "callback_data": "show details" } ] ] } } headers = { "Accept": "application/json", "Content-Type": "application/json" } response = requests.post(url, json=payload, headers=headers) #print(response.text) # import requests # url = "https://api.telegram.org/bot5340261920:AAF2GGInKosubny7ox-CWeZyl8IMESgQg5o/sendPhoto" # payload = { # "photo": "AgACAgUAAxkBAAMLYvDs4xqN8GzQGUY555yHLr5joacAAjGxMRtMw4hX56puCadfo3cBAAMCAAN5AAMpBA", # # "caption": "Optional", # # "disable_notification": False, # "reply_to_message_id": 0, # "chat_id":1091996976 # } # headers = { # "Accept": "application/json", # "User-Agent": "Telegram Bot SDK - (https://github.com/irazasyed/telegram-bot-sdk)", # "Content-Type": "application/json" # } # response = requests.post(url, json=payload) # print(response.text)
mayuritoro/tele_bot
tele_bot/trial.py
trial.py
py
5,973
python
en
code
0
github-code
6
[ { "api_name": "requests.post", "line_number": 30, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 63, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 101, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 138, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 174, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 196, "usage_type": "call" } ]
14255581243
from selenium import webdriver import time, re from bs4 import BeautifulSoup import pyautogui from selenium.webdriver.support.ui import WebDriverWait from selenium.common.exceptions import TimeoutException import pyperclip import os # 主要功能就是访问300mium所有影片详情页,然后挨个下载封面 class Crawl_51luxu: def main(self, Dir='F:\\pic\\', page=1, category='300MIUM'): current_path = os.getcwd().replace('\\', '/') + '/' # custom_path = 'F:\\pic\\300MIUM\\' custom_path = Dir + category + "\\" chrome_opts = webdriver.ChromeOptions() chrome_opts.add_argument("--headless") chrome_opts.add_experimental_option( 'excludeSwitches', ['enable-logging']) url = 'https://www.51luxu.com/category/sresource/' + category + '/page/' + str(page) def open_browser(url): driver = webdriver.Chrome(options=chrome_opts) driver.get(url) return driver def scrapy(driver): if not os.path.exists(Dir): os.mkdir(Dir) if not os.path.exists(custom_path): os.mkdir(custom_path) Exist = [] if os.path.exists(custom_path + 'history.txt'): with open(custom_path + 'history.txt','r+') as f: lines = f.readlines() for line in lines: Exist.append(line.replace("\n","")) f.close() # 从history中读入历史的所下载的图片的名字,以免重复下载 # 这一步主要是为了,当我筛选图片时,看到好看的要保留,看到不好看的要删除 # 那么读取文件列表就乱了套了,所以把历史下载保存在txt文件中,就知道之前有没有下过这个番号了 for page in range(1,100): try: content = driver.page_source.encode('utf-8') soup = BeautifulSoup(content, 'lxml') img = soup.find_all('img') src1 = re.findall(r'src=".*?"', str(img)) name1 = re.findall(r'alt=".*?"', str(img)) src2 = [] name2 = [] for i in src1: src2.append(i.split('=')[1].replace("\"","")) for i in name1: name2.append(i.split('=')[1].replace("\"", "")) if category == "Scute": pattern = "S-cute" else: pattern = category try: temp = [x.replace("inggo.info", "paypp.xyz") for x in src2] src3 = [x for x in temp if 'images.paypp.xyz/wp-content/uploads' in x] except: src3 = [x for x in src2 if 'images.paypp.xyz/wp-content/uploads' in x] name3 = [x for x in name2 if pattern in x] if len(name3) < 12: name3 = name2 # 上面是name3和src3 保存了主页面的番号和相应的详情页的链接 # 接下来启动第二个浏览器对各个详情页的视频截图进行抓取 driver1 = webdriver.Chrome(options=chrome_opts) for i in range(len(src3)): try: if '[' and '【' not in name3[i]: title = name3[i] else: title = name3[i].split('【')[1].split('】')[0] # 简化一下番号的名字 except: title = name3[i].split('[')[1].split(']')[0] if i >= 1: try: if name3[i].split('[')[1].split(']')[0] == name3[i-1].split('[')[1].split(']')[0]: title = name3[i].split(']')[1].replace("[","") except: pass if i >= 1: try: if name3[i].split('【')[1].split('】')[0] == name3[i-1].split('【')[1].split('】')[0]: title = name3[i].split('】')[1].replace("【","") except: pass if title in Exist: print("%s 已经下载!" % (title)) continue # 前文提到的判断是否下过,如果是,后面就不用进行了 # 进入相应链接的详情页 driver1.get(src3[i]) img = driver1.find_element_by_xpath("//html/body/img") img.screenshot(custom_path + title + '.jpg') # wait = WebDriverWait(driver1, 10) # 等待浏览器相应,删除也可以 # pyautogui.rightClick(x=500, y=500) # 右击图片,位置可根据自己的屏幕调整 # pyautogui.typewrite(['V']) # 另存为的快捷键为 V # time.sleep(2) # 等待电脑响应 # pyperclip.copy(custom_path + title + '.jpg') # 复制文件名加路径到粘贴板 # time.sleep(1) # pyautogui.hotkey('ctrlleft', 'V') # 粘贴 # time.sleep(1) # pyautogui.press('enter') # 确认 # time.sleep(1) while True: filelist = os.listdir(custom_path) if title + '.jpg' in filelist: with open(custom_path + 'history.txt', 'a+') as f: f.writelines(title) f.writelines('\n') f.close() print("%s 下载完成!" % (title)) break else: print("等待响应") time.sleep(2) # pyautogui.hotkey('ctrlleft', 'V') # 粘贴 # time.sleep(1) # pyautogui.press('enter') # 确认 # time.sleep(1) # 在txt中加入当前下载的图片名字 print("%s 下载完成!"%(title)) time.sleep(0.5) driver1.quit() print("第 %d 页爬完"%(page)) button = "//*[@class='next page-numbers']" #翻页按钮 driver.find_elements_by_xpath(button)[0].click() except: print("第 %d 页出错!"%(page)) driver1.quit() try: button = "//*[@class='next page-numbers']" #翻页按钮 driver.find_elements_by_xpath(button)[0].click() except: print("爬取完毕!") break continue driver = open_browser(url) time.sleep(2) scrapy(driver)
ExcaliburEX/GHS
Crawl_51luxu.py
Crawl_51luxu.py
py
7,503
python
en
code
5
github-code
6
[ { "api_name": "os.getcwd", "line_number": 13, "usage_type": "call" }, { "api_name": "selenium.webdriver.ChromeOptions", "line_number": 16, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 16, "usage_type": "name" }, { "api_name": "selenium.webdriver.Chrome", "line_number": 22, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 22, "usage_type": "name" }, { "api_name": "os.path.exists", "line_number": 27, "usage_type": "call" }, { "api_name": "os.path", "line_number": 27, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 28, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 29, "usage_type": "call" }, { "api_name": "os.path", "line_number": 29, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 30, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 32, "usage_type": "call" }, { "api_name": "os.path", "line_number": 32, "usage_type": "attribute" }, { "api_name": "bs4.BeautifulSoup", "line_number": 44, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 46, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 47, "usage_type": "call" }, { "api_name": "selenium.webdriver.Chrome", "line_number": 68, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 68, "usage_type": "name" }, { "api_name": "os.listdir", "line_number": 108, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 118, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 125, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 142, "usage_type": "call" } ]
7261153491
import cv2 import numpy as np img = cv2.imread('bookpage.jpg') grayscaled = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #retval, threshold = cv2.threshold(grayscaled, 11, 255 , cv2.THRESH_BINARY) threshold = cv2.adaptiveThreshold(grayscaled, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 115, 1) median = cv2.medianBlur(threshold,3) gaus = cv2.GaussianBlur(threshold,(5,5),0) cv2.imshow('original',img) cv2.imshow('gray',grayscaled) cv2.imshow('threshold',threshold) cv2.imshow('gaus',gaus) cv2.waitKey(0) cv2.destroyAllWindows()
felipemateus/vis-oCompEstudo
threshHoldExemple2/threshHold.py
threshHold.py
py
541
python
en
code
0
github-code
6
[ { "api_name": "cv2.imread", "line_number": 4, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 6, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 6, "usage_type": "attribute" }, { "api_name": "cv2.adaptiveThreshold", "line_number": 8, "usage_type": "call" }, { "api_name": "cv2.ADAPTIVE_THRESH_GAUSSIAN_C", "line_number": 8, "usage_type": "attribute" }, { "api_name": "cv2.THRESH_BINARY", "line_number": 8, "usage_type": "attribute" }, { "api_name": "cv2.medianBlur", "line_number": 10, "usage_type": "call" }, { "api_name": "cv2.GaussianBlur", "line_number": 11, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 15, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 16, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 17, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 18, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 20, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 21, "usage_type": "call" } ]
22912396559
# -*- coding: utf-8 -*- from datetime import datetime, timedelta from flask import Flask, request, jsonify, make_response, abort import requests from stations import stations app = Flask(__name__) name = [ 'station_train_code', 'from_station_name', 'to_station_name', 'lishi', 'start_time', 'arrive_time', 'swz_num', 'tz_num', 'zy_num', 'ze_num', 'gr_num', 'rw_num', 'yw_num', 'rz_num', 'yz_num', 'wz_num', 'qt_num'] @app.route('/zd') def zd_tickets(): tickets = [] date = request.args.get('Date') from_station = request.args.get('from') to_station = request.args.get('to') if from_station in stations.keys() and to_station in stations.keys(): from_station = stations[from_station] to_station = stations[to_station] else: abort(400) url = 'https://kyfw.12306.cn/otn/lcxxcx/query?purpose_codes=ADULT&queryDate={}&from_station={}&to_station={}'.\ format(date, from_station, to_station) r = requests.get(url, verify=False) # if the url param 'date'was supplied incorrectly, 12306 would return -1 of int type. if r.json() == -1: abort(400) if 'datas' in r.json()['data']: contents = r.json()['data']['datas'] # get out the information that we want in the contents dict. for content in contents: ticket = {key: content[key] for key in name} tickets.append(ticket) else: abort(404) return jsonify({'tickets': tickets}) @app.route('/hc') def hc_tickets(): tickets_1 = [] tickets_2 = [] date = request.args.get('Date') from_station = request.args.get('from') to_station = request.args.get('to') changed_station = request.args.get('change') if from_station in stations.keys() and to_station in stations.keys() and changed_station in stations.keys(): from_station = stations[from_station] to_station = stations[to_station] changed_station = stations[changed_station] else: abort(400) url1 = 'https://kyfw.12306.cn/otn/lcxxcx/query?purpose_codes=ADULT&queryDate={}&from_station={}&to_station={}'. \ format(date, from_station, changed_station) r1 = requests.get(url1, verify=False) if r1.json() == -1: abort(400) if 'datas' in r1.json()['data']: contents_1 = r1.json()['data']['datas'] for content in contents_1: ticket = {key: content[key] for key in name} tickets_1.append(ticket) else: abort(404) for ticket in tickets_1: if int(ticket['lishi'][:2]) + int(ticket['start_time'][:2]) < 24: # TODO url2 = 'https://kyfw.12306.cn/otn/lcxxcx/query?purpose_codes=ADULT' \ '&queryDate={}&from_station={}&to_station={}'. \ format(date, changed_station, to_station) r2 = requests.get(url2, verify=False) if r2.json() == -1: abort(400) if 'datas' in r2.json()['data']: contents_2 = r2.json()['data']['datas'] for content in contents_2: ticket = {key: content[key] for key in name} tickets_2.append(ticket) if tickets_2: for x in tickets_1: x['changed_ticket'] = [y for y in tickets_2 if 1 < int(y['start_time'][:2]) - int(x['arrive_time'][:2]) < 3] else: abort(404) else: # if the first train arrived at next day, we add one day to the queryDate param. date2 = str(datetime.strptime(date, '%Y-%m-%d') + timedelta(days=1))[:10] # TODO: the following repeatedly codes should be moved to a helper method. url2 = 'https://kyfw.12306.cn/otn/lcxxcx/query?purpose_codes=ADULT' \ '&queryDate={}&from_station={}&to_station={}'. \ format(date2, changed_station, to_station) r2 = requests.get(url2, verify=False) if r2.json() == -1: abort(400) if 'datas' in r2.json()['data']: contents_2 = r2.json()['data']['datas'] for content in contents_2: ticket = {key: content[key] for key in name} tickets_2.append(ticket) if tickets_2: for x in tickets_1: x['changed_ticket'] = [y for y in tickets_2 if 1 < int(y['start_time'][:2]) - int(x['arrive_time'][:2]) < 3] return jsonify({'tickets': tickets_1}) @app.errorhandler(404) def not_found(error): return make_response(jsonify({'error': 'Not found'}), 404) @app.errorhandler(400) def bad_request(error): return make_response(jsonify({'error': 'Please check your query param format'}), 400) if __name__ == '__main__': app.run(debug=True)
shenmj053/querytickets
tickets.py
tickets.py
py
5,024
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 7, "usage_type": "call" }, { "api_name": "flask.request.args.get", "line_number": 32, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 32, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 32, "usage_type": "name" }, { "api_name": "flask.request.args.get", "line_number": 33, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 33, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 33, "usage_type": "name" }, { "api_name": "flask.request.args.get", "line_number": 34, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 34, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 34, "usage_type": "name" }, { "api_name": "stations.stations.keys", "line_number": 35, "usage_type": "call" }, { "api_name": "stations.stations", "line_number": 35, "usage_type": "name" }, { "api_name": "stations.stations", "line_number": 36, "usage_type": "name" }, { "api_name": "stations.stations", "line_number": 37, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 39, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 43, "usage_type": "call" }, { "api_name": "flask.abort", "line_number": 46, "usage_type": "call" }, { "api_name": "flask.abort", "line_number": 55, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 57, "usage_type": "call" }, { "api_name": "flask.request.args.get", "line_number": 64, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 64, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 64, "usage_type": "name" }, { "api_name": "flask.request.args.get", "line_number": 65, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 65, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 65, "usage_type": "name" }, { "api_name": "flask.request.args.get", "line_number": 66, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 66, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 66, "usage_type": "name" }, { "api_name": "flask.request.args.get", "line_number": 67, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 67, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 67, "usage_type": "name" }, { "api_name": "stations.stations.keys", "line_number": 68, "usage_type": "call" }, { "api_name": "stations.stations", "line_number": 68, "usage_type": "name" }, { "api_name": "stations.stations", "line_number": 69, "usage_type": "name" }, { "api_name": "stations.stations", "line_number": 70, "usage_type": "name" }, { "api_name": "stations.stations", "line_number": 71, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 73, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 77, "usage_type": "call" }, { "api_name": "flask.abort", "line_number": 80, "usage_type": "call" }, { "api_name": "flask.abort", "line_number": 89, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 96, "usage_type": "call" }, { "api_name": "flask.abort", "line_number": 99, "usage_type": "call" }, { "api_name": "flask.abort", "line_number": 113, "usage_type": "call" }, { "api_name": "datetime.datetime.strptime", "line_number": 117, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 117, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 117, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 123, "usage_type": "call" }, { "api_name": "flask.abort", "line_number": 126, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 140, "usage_type": "call" }, { "api_name": "flask.make_response", "line_number": 145, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 145, "usage_type": "call" }, { "api_name": "flask.make_response", "line_number": 150, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 150, "usage_type": "call" } ]
34107122191
from flask import g, request, current_app import iot_api_core import time class InstanceVersionBaseBehavior(): def __init__(self, widget_type, namespace, instance_id): self.widget_type = widget_type self.namespace = namespace self.instance_id = instance_id self.lumavate = iot_api_core.Lumavate() self.temp = {} self.post_version_create_handlers = [] self.experience_info = None self._instance = None self.status_id = None data = request.get_json(silent=True) if data: self.status_id = data.get('statusId') if self.namespace is None: self.namespace = self.rest_get_single(self.instance_id)['namespace'] @property def properties(self): return [] @property def components(self): return [] @property def page_security_property(self): page_security = { 'always': 'Always Render', 'user-logged-in': 'Only Render When User Logged In', 'user-not-logged-in': 'Only Render When User NOT Logged In', 'prod-registered': 'Only Render When Product Registered', 'device-authorized': 'Only Render When Device Authorized', 'prod-not-registered': 'Only Render When Product NOT Registered', 'device-not-authorized': 'Only Render When Device NOT Authorized', } return iot_api_core.DropdownProperty('General', 'General Settings', 'pageSecurity', 'Page Security', self, default='always', options=page_security) @property def experience_id(self): self.load_experience_info() return self.experience_info.get('id') @property def model_id(self): self.load_experience_info() return self.experience_info.get('modelId') def load(self, version_name): instance = self.rest_get_single(self.instance_id) data = instance[version_name + 'Version']['data'] for x in self.properties: if not x.name.startswith('instance__'): x.read(data) def get_general_properties(self, include_auth=False): return [ self.instance_name_property(), self.instance_page_type_property(include_auth=include_auth), iot_api_core.ToggleProperty('General', 'General Settings', 'displayBackgroundImage', 'Display Background Image', self, default=False), iot_api_core.ImageProperty('General', 'General Settings', 'backgroundImage', 'Background Image', self), iot_api_core.ColorProperty('General', 'General Settings', 'backgroundColor', 'Background Color', self, default='#e2e2e2'), self.page_security_property ] def load_experience_info(self): if not self.experience_info: results = self.lumavate.get('/iot/v1/experiences?siteName=' + self.namespace) if len(results) > 0: self.experience_info = results[0] self.model_info = self.lumavate.get('/iot/v1/models/' + str(self.experience_info['modelId'])) else: self.experience_info = {} self.model_info = {} def rest_get_single(self, id): if self._instance is None: self._instance = self.lumavate.get('/iot/v1/widget-instances/' + str(id)) return self._instance def get_version_id(self, instance_id, version_name): instance = self.rest_get_single(instance_id) return str(instance[version_name + 'VersionId']) def get_property(self, name): return next((p for p in self.properties if p.name == name), None) def get_collection_rest_uri(self): return '/iot/v1/widget-instances/' + str(self.instance_id) + '/versions' def get_single_rest_uri(self, version_id): return self.get_collection_rest_uri() + '/' + str(version_id) def rest_get_collection(self): return self.lumavate.get(self.get_collection_rest_uri()) def instance_name_property(self): instance = self.rest_get_single(self.instance_id) return iot_api_core.TextProperty('General', 'General Settings', 'instance__name', 'Page Name', self, rows=0, default=instance['name']) def resolve_images(self, data): if isinstance(data, dict): if 'key' in data and 'versionId' in data: image_data = self.lumavate.post('/iot/v1/files/preview/' + data['key'] + '/' + data['versionId'], {}) for f in ['contentType', 'url', 'mobileUrl']: if f in data: image_data[f] = data.get(f) return image_data else: return { k: self.resolve_images(data[k]) for k in data } elif isinstance(data, list): return [self.resolve_images(x) for x in data] else: return data def collapse_language(self, data): lang = 'en-us' if isinstance(data, dict): if lang in data: return data[lang] else: return { k: self.collapse_language(data[k]) for k in data } elif isinstance(data, list): return [self.collapse_language(x) for x in data] else: return data def instance_page_type_property(self, include_auth=False): page_types = { 'home': 'Home', 'registration': 'Registration', 'auth': 'Auth', 'error': 'Error', 'normal': '<Normal>' } if include_auth == False: del page_types['auth'] return iot_api_core.DropdownProperty('General', 'General Settings', 'pageType', 'Page Type', self, default='normal', options=page_types) def rest_create(self): instance = self.rest_get_single(self.instance_id) if instance: payload = {'data': self.validate_data(request.get_json())} results = self.lumavate.post(self.get_collection_rest_uri() + '-direct', payload) instance['futureVersionId'] = results['id'] for vch in self.post_version_create_handlers: vch() self.post_version_create_handlers = [] if instance.get('futureVersion') is not None: results['delta'] = self.get_delta_document(instance.get('futureVersion').get('data'), results['data']) else: results['delta'] = results.get('data') return results def background(self, function, args=[], kwargs={}): data = { 'namespace': self.namespace, 'widgetInstanceId': self.instance_id, 'widgetType': current_app.config['WIDGET_ID'], 'method': function.__name__, 'args': args, 'kwargs': kwargs, 'statusId': self.status_id } self.lumavate.post('/iot/v1/background', data) def run_background(self): self.lumavate.put('/iot/v1/statuses/' + self.status_id, {'percent': 100}) return {'a': 4} data = request.get_json() method = data.get('method') args = data.get('args') kwargs = data.get('kwargs') getattr(self, method)(*args, **kwargs) def publish(self, version_name): instance = self.rest_get_single(self.instance_id) if not instance: return if version_name not in ['future', 'draft', 'production', 'current']: return version = instance.get(version_name + 'Version') #for x in self.properties: # x.read(version['data']) # x.publish() if self.status_id: self.lumavate.put('/iot/v1/statuses/' + self.status_id, {'percent': 100}) else: print('NOPE', flush=True) return {'Status': 'Ok'} def store_data(self, category, record_id, data, latitude=None, longitude=None, version='future'): version_id = self.get_version_id(self.instance_id, version) payload = { 'recordId': str(record_id), 'data': data, 'latitude': latitude, 'longitude': longitude } return self.lumavate.post(self.get_single_rest_uri(version_id) + '/data/' + category, payload) def clear_data(self, category, version='future'): version_id = self.get_version_id(self.instance_id, version) return self.lumavate.delete(self.get_single_rest_uri(version_id) + '/data/' + category) def get_current_version(self): if hasattr(g, 'iot_context'): return g.iot_context['token_data']['version'] else: return 'future' def get_data(self, category, default=[], qs=''): version_id = self.get_version_id(self.instance_id, self.get_current_version()) res = self.lumavate.get('/iot/v1/widget-instances/' + str(self.instance_id) + '/versions/' + version_id + '/data/' + category + '?' + qs) for x in res: if 'distance' in x: x['data']['distance'] = x['distance'] res = [x['data'] for x in res] if len(res) == 0: return default else: return res def load_activation_info(self): api_result = {} try: api_result = self.lumavate.get('/iot/v1/labels/' + str(g.iot_context['token_data'].get('activationId', 0))) except Exception as e: pass return { 'key': api_result.get('key'), 'serialNumber': api_result.get('serialNumber') } def get_config_data(self): # Check if there is a valid version for the current context instance = self.rest_get_single(self.instance_id) if instance[self.get_current_version() + 'Version'] is None: raise Exception('Version ' + self.get_current_version() + ' does not exist for instance ' + str(self.instance_id)) result = instance[self.get_current_version() + 'Version']['data'] # Is there any activation to report? result['activation'] = self.load_activation_info() # Are there any 'special' pages that the UI should know about? result['authCheck'] = None if g.iot_context['token_data'].get('authUrl') is not None: root, part, instance = g.iot_context['token_data']['authUrl'].rpartition('/') result['authCheck'] = '{}/api/instances/{}/check-login-status'.format(root, instance) return result def default_image_data(self, data, prop): return { 'preview': data.get(prop, {}).get('preview', '/icons/iot/page/api/instances/icons/no_image_available.png'), 'previewLarge': data.get(prop, {}).get('previewLarge', '/icons/iot/page/api/instances/icons/no_image_available.png'), 'previewMedium': data.get(prop, {}).get('previewMedium', '/icons/iot/page/api/instances/icons/no_image_available.png'), 'previewSmall': data.get(prop, {}).get('previewSmall', '/icons/iot/page/api/instances/icons/no_image_available.png') } def get_delta_document(self, original, current): if original is None: return current else: result = {} for x in self.properties: dd = x.delta_doc(original.get(x.name), current.get(x.name)) if dd is not None: result[x.name] = dd return result def validate_data(self, data): result = {} instance_payload = {} for x in self.properties: if x.name.startswith('instance__'): field = x.name.split('__')[-1] new_val = x.read(data) if self._instance[field] != new_val: self._instance[field] = new_val instance_payload[x.name.split('__')[-1]] = x.read(data) else: result[x.name] = x.read(data) if len(instance_payload.keys()) > 0: self.lumavate.put('/iot/v1/widget-instances/' + str(self.instance_id), instance_payload) return result def get_all_components(self): return [ { 'label': x.instantiate().label, 'type': x.instantiate().component_type, 'icon': x.instantiate().icon_url, 'section': x.instantiate().section, 'category': x.instantiate().category } for x in self.components ] def get_component_properties(self, component_type): comp = next((x.instantiate() for x in self.components if x.instantiate().component_type == component_type), None) if comp: return comp.get_properties() def get_component_property(self, component_type, property_name): comp = next((x.instantiate() for x in self.components if x.instantiate().component_type == component_type), None) if comp: return comp.get_property(property_name) def get_widget_properties(self): return [x.to_json() for x in self.properties] def handle_language_fields(self, data): lang = 'en-us' if isinstance(data, dict): if lang in data: return self.handle_language_fields(data[lang]) else: return { k: self.handle_language_fields(data[k]) for k in data } if isinstance(data, list): return [ self.handle_language_fields(x) for x in data ] else: return data
Lumavate-Team/python-hello
app/iot_api_core/instance_version_base.py
instance_version_base.py
py
12,129
python
en
code
0
github-code
6
[ { "api_name": "iot_api_core.Lumavate", "line_number": 10, "usage_type": "call" }, { "api_name": "flask.request.get_json", "line_number": 16, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 16, "usage_type": "name" }, { "api_name": "iot_api_core.DropdownProperty", "line_number": 43, "usage_type": "call" }, { "api_name": "iot_api_core.ToggleProperty", "line_number": 67, "usage_type": "call" }, { "api_name": "iot_api_core.ImageProperty", "line_number": 68, "usage_type": "call" }, { "api_name": "iot_api_core.ColorProperty", "line_number": 69, "usage_type": "call" }, { "api_name": "iot_api_core.TextProperty", "line_number": 107, "usage_type": "call" }, { "api_name": "iot_api_core.DropdownProperty", "line_number": 154, "usage_type": "call" }, { "api_name": "flask.request.get_json", "line_number": 159, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 159, "usage_type": "name" }, { "api_name": "flask.current_app.config", "line_number": 177, "usage_type": "attribute" }, { "api_name": "flask.current_app", "line_number": 177, "usage_type": "name" }, { "api_name": "flask.request.get_json", "line_number": 189, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 189, "usage_type": "name" }, { "api_name": "flask.g", "line_number": 229, "usage_type": "argument" }, { "api_name": "flask.g.iot_context", "line_number": 230, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 230, "usage_type": "name" }, { "api_name": "flask.g.iot_context", "line_number": 253, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 253, "usage_type": "name" }, { "api_name": "flask.g.iot_context", "line_number": 275, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 275, "usage_type": "name" }, { "api_name": "flask.g.iot_context", "line_number": 276, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 276, "usage_type": "name" } ]
26112891425
__authors__ = ["T. Vincent"] __license__ = "MIT" __date__ = "07/01/2019" import os import logging import weakref from . import qt import silx.resources from silx.utils import weakref as silxweakref _logger = logging.getLogger(__name__) """Module logger""" _cached_icons = None """Cache loaded icons in a weak structure""" def getIconCache(): """Get access to all cached icons :rtype: dict """ global _cached_icons if _cached_icons is None: _cached_icons = weakref.WeakValueDictionary() # Clean up the cache before leaving the application # See https://github.com/silx-kit/silx/issues/1771 qt.QApplication.instance().aboutToQuit.connect(cleanIconCache) return _cached_icons def cleanIconCache(): """Clean up the icon cache""" _logger.debug("Clean up icon cache") _cached_icons.clear() _supported_formats = None """Order of file format extension to check""" class AbstractAnimatedIcon(qt.QObject): """Store an animated icon. It provides an event containing the new icon everytime it is updated.""" def __init__(self, parent=None): """Constructor :param qt.QObject parent: Parent of the QObject :raises: ValueError when name is not known """ qt.QObject.__init__(self, parent) self.__targets = silxweakref.WeakList() self.__currentIcon = None iconChanged = qt.Signal(qt.QIcon) """Signal sent with a QIcon everytime the animation changed.""" def register(self, obj): """Register an object to the AbstractAnimatedIcon. If no object are registred, the animation is paused. Object are stored in a weaked list. :param object obj: An object """ if obj not in self.__targets: self.__targets.append(obj) self._updateState() def unregister(self, obj): """Remove the object from the registration. If no object are registred the animation is paused. :param object obj: A registered object """ if obj in self.__targets: self.__targets.remove(obj) self._updateState() def hasRegistredObjects(self): """Returns true if any object is registred. :rtype: bool """ return len(self.__targets) def isRegistered(self, obj): """Returns true if the object is registred in the AbstractAnimatedIcon. :param object obj: An object :rtype: bool """ return obj in self.__targets def currentIcon(self): """Returns the icon of the current frame. :rtype: qt.QIcon """ return self.__currentIcon def _updateState(self): """Update the object according to the connected objects.""" pass def _setCurrentIcon(self, icon): """Store the current icon and emit a `iconChanged` event. :param qt.QIcon icon: The current icon """ self.__currentIcon = icon self.iconChanged.emit(self.__currentIcon) class MovieAnimatedIcon(AbstractAnimatedIcon): """Store a looping QMovie to provide icons for each frames. Provides an event with the new icon everytime the movie frame is updated.""" def __init__(self, filename, parent=None): """Constructor :param str filename: An icon name to an animated format :param qt.QObject parent: Parent of the QObject :raises: ValueError when name is not known """ AbstractAnimatedIcon.__init__(self, parent) qfile = getQFile(filename) self.__movie = qt.QMovie(qfile.fileName(), qt.QByteArray(), parent) self.__movie.setCacheMode(qt.QMovie.CacheAll) self.__movie.frameChanged.connect(self.__frameChanged) self.__cacheIcons = {} self.__movie.jumpToFrame(0) self.__updateIconAtFrame(0) def __frameChanged(self, frameId): """Callback everytime the QMovie frame change :param int frameId: Current frame id """ self.__updateIconAtFrame(frameId) def __updateIconAtFrame(self, frameId): """ Update the current stored QIcon :param int frameId: Current frame id """ if frameId in self.__cacheIcons: icon = self.__cacheIcons[frameId] else: icon = qt.QIcon(self.__movie.currentPixmap()) self.__cacheIcons[frameId] = icon self._setCurrentIcon(icon) def _updateState(self): """Update the movie play according to internal stat of the MovieAnimatedIcon.""" self.__movie.setPaused(not self.hasRegistredObjects()) class MultiImageAnimatedIcon(AbstractAnimatedIcon): """Store a looping QMovie to provide icons for each frames. Provides an event with the new icon everytime the movie frame is updated.""" def __init__(self, filename, parent=None): """Constructor :param str filename: An icon name to an animated format :param qt.QObject parent: Parent of the QObject :raises: ValueError when name is not known """ AbstractAnimatedIcon.__init__(self, parent) self.__frames = [] for i in range(100): try: frame_filename = os.sep.join((filename, ("%02d" %i))) frame_file = getQFile(frame_filename) except ValueError: break try: icon = qt.QIcon(frame_file.fileName()) except ValueError: break self.__frames.append(icon) if len(self.__frames) == 0: raise ValueError("Animated icon '%s' do not exists" % filename) self.__frameId = -1 self.__timer = qt.QTimer(self) self.__timer.timeout.connect(self.__increaseFrame) self.__updateIconAtFrame(0) def __increaseFrame(self): """Callback called every timer timeout to change the current frame of the animation """ frameId = (self.__frameId + 1) % len(self.__frames) self.__updateIconAtFrame(frameId) def __updateIconAtFrame(self, frameId): """ Update the current stored QIcon :param int frameId: Current frame id """ self.__frameId = frameId icon = self.__frames[frameId] self._setCurrentIcon(icon) def _updateState(self): """Update the object to wake up or sleep it according to its use.""" if self.hasRegistredObjects(): if not self.__timer.isActive(): self.__timer.start(100) else: if self.__timer.isActive(): self.__timer.stop() def getWaitIcon(): """Returns a cached version of the waiting AbstractAnimatedIcon. :rtype: AbstractAnimatedIcon """ return getAnimatedIcon("process-working") def getAnimatedIcon(name): """Create an AbstractAnimatedIcon from a resource name. The resource name can be prefixed by the name of a resource directory. For example "silx:foo.png" identify the resource "foo.png" from the resource directory "silx". If no prefix are specified, the file with be returned from the silx resource directory with a specific path "gui/icons". See also :func:`silx.resources.register_resource_directory`. Try to load a mng or a gif file, then try to load a multi-image animated icon. In Qt5 mng or gif are not used, because the transparency is not very well managed. :param str name: Name of the icon, in one of the defined icons in this module. :return: Corresponding AbstractAnimatedIcon :raises: ValueError when name is not known """ key = name + "__anim" cached_icons = getIconCache() if key not in cached_icons: qtMajorVersion = int(qt.qVersion().split(".")[0]) icon = None # ignore mng and gif in Qt5 if qtMajorVersion != 5: try: icon = MovieAnimatedIcon(name) except ValueError: icon = None if icon is None: try: icon = MultiImageAnimatedIcon(name) except ValueError: icon = None if icon is None: raise ValueError("Not an animated icon name: %s", name) cached_icons[key] = icon else: icon = cached_icons[key] return icon def getQIcon(name): """Create a QIcon from its name. The resource name can be prefixed by the name of a resource directory. For example "silx:foo.png" identify the resource "foo.png" from the resource directory "silx". If no prefix are specified, the file with be returned from the silx resource directory with a specific path "gui/icons". See also :func:`silx.resources.register_resource_directory`. :param str name: Name of the icon, in one of the defined icons in this module. :return: Corresponding QIcon :raises: ValueError when name is not known """ cached_icons = getIconCache() if name not in cached_icons: qfile = getQFile(name) icon = qt.QIcon(qfile.fileName()) cached_icons[name] = icon else: icon = cached_icons[name] return icon def getQPixmap(name): """Create a QPixmap from its name. The resource name can be prefixed by the name of a resource directory. For example "silx:foo.png" identify the resource "foo.png" from the resource directory "silx". If no prefix are specified, the file with be returned from the silx resource directory with a specific path "gui/icons". See also :func:`silx.resources.register_resource_directory`. :param str name: Name of the icon, in one of the defined icons in this module. :return: Corresponding QPixmap :raises: ValueError when name is not known """ qfile = getQFile(name) return qt.QPixmap(qfile.fileName()) def getQFile(name): """Create a QFile from an icon name. Filename is found according to supported Qt formats. The resource name can be prefixed by the name of a resource directory. For example "silx:foo.png" identify the resource "foo.png" from the resource directory "silx". If no prefix are specified, the file with be returned from the silx resource directory with a specific path "gui/icons". See also :func:`silx.resources.register_resource_directory`. :param str name: Name of the icon, in one of the defined icons in this module. :return: Corresponding QFile :rtype: qt.QFile :raises: ValueError when name is not known """ global _supported_formats if _supported_formats is None: _supported_formats = [] supported_formats = qt.supportedImageFormats() order = ["mng", "gif", "svg", "png", "jpg"] for format_ in order: if format_ in supported_formats: _supported_formats.append(format_) if len(_supported_formats) == 0: _logger.error("No format supported for icons") else: _logger.debug("Format %s supported", ", ".join(_supported_formats)) for format_ in _supported_formats: format_ = str(format_) filename = silx.resources._resource_filename('%s.%s' % (name, format_), default_directory='gui/icons') qfile = qt.QFile(filename) if qfile.exists(): return qfile _logger.debug("File '%s' not found.", filename) raise ValueError('Not an icon name: %s' % name)
silx-kit/silx
src/silx/gui/icons.py
icons.py
py
11,642
python
en
code
106
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 14, "usage_type": "call" }, { "api_name": "weakref.WeakValueDictionary", "line_number": 29, "usage_type": "call" }, { "api_name": "silx.utils.weakref.WeakList", "line_number": 59, "usage_type": "call" }, { "api_name": "silx.utils.weakref", "line_number": 59, "usage_type": "name" }, { "api_name": "os.sep.join", "line_number": 186, "usage_type": "call" }, { "api_name": "os.sep", "line_number": 186, "usage_type": "attribute" }, { "api_name": "silx.resources.resources._resource_filename", "line_number": 373, "usage_type": "call" }, { "api_name": "silx.resources.resources", "line_number": 373, "usage_type": "attribute" }, { "api_name": "silx.resources", "line_number": 373, "usage_type": "name" } ]
12571576568
import requests import pandas from bs4 import BeautifulSoup import json url = 'https://www.imdb.com/chart/top/' response = requests.get(url).content soup = BeautifulSoup(response,'html.parser') title = soup.find_all('td', class_='titleColumn') rating = soup.find_all('strong') images = soup.find_all('img') movie_name = [] movie_year =[] movie_href =[] movie_image = [] movie_rating = [] for t in title: imdb_title_num = t.a.get('href').split('/')[2] href = 'https://www.imdb.com/title/'+imdb_title_num movie_href.append(href) imdb_title = t.a.text movie_name.append(imdb_title) year = t.span.text movie_year.append(year) for rate in rating: r = rate.text movie_rating.append(r) for img in images: i = img.get('src') movie_image.append(i) model = pandas.DataFrame({'title': movie_name, 'year': movie_year, 'rating': movie_rating, 'image': movie_image, 'href': movie_href}) model.to_json('movies_data.json', orient="records")
gpuligundla/IMDB-Top-Movies-List
imdb_scrap.py
imdb_scrap.py
py
979
python
en
code
0
github-code
6
[ { "api_name": "requests.get", "line_number": 8, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 10, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 41, "usage_type": "call" } ]
39697194939
# -*- coding: utf-8 -*- import scrapy from LaGou.items import LagouItem import LaGou.settings as settings class LagouSpider(scrapy.Spider): name = 'lagou' allowed_domains = ['https://www.lagou.com'] start_urls = ['http://https://www.lagou.com/'] def parse(self, response): if response.status==200: items=response.css('ul .con_list_item') data=LagouItem() for item in items: data['position']=item.css('.p_top .position_link h3::text').extract_first() data['company']=item.css('.company_name a::text').extract_first() data['sadd']=item.css('.p_top .add em::text').extract_first() data['salary']=item.css('.li_b_l .money::text').extract_first() data['claim']=item.css('.p_bot .li_b_l::text').extract()[-1].strip() # data['tags']=item.css('.list_item_bot .li_b_l span::text').extract() data['joburl']=item.css('.p_top .position_link::attr(href)').extract_first() yield data def start_requests(self): for page in range(3,settings.MAX_PAGE+1): url='https://www.lagou.com/jobs/list_%s?city=%s&cl=false&fromSearch=true'%(settings.KEY,settings.CITY) #输入uid yield scrapy.Request(url=url,callback=self.parse,meta={'page':page},dont_filter=True)
siqyka/Reptile
works/LaGou/LaGou/spiders/lagou.py
lagou.py
py
1,369
python
en
code
1
github-code
6
[ { "api_name": "scrapy.Spider", "line_number": 7, "usage_type": "attribute" }, { "api_name": "LaGou.items.LagouItem", "line_number": 15, "usage_type": "call" }, { "api_name": "LaGou.settings.MAX_PAGE", "line_number": 29, "usage_type": "attribute" }, { "api_name": "LaGou.settings", "line_number": 29, "usage_type": "name" }, { "api_name": "LaGou.settings.KEY", "line_number": 30, "usage_type": "attribute" }, { "api_name": "LaGou.settings", "line_number": 30, "usage_type": "name" }, { "api_name": "LaGou.settings.CITY", "line_number": 30, "usage_type": "attribute" }, { "api_name": "scrapy.Request", "line_number": 31, "usage_type": "call" } ]
19482945267
import math import random import numba as nb import numpy as np @nb.jit(nopython=True) def dimension_selector_uniform(n_dimensions): return random.randrange(n_dimensions) def get_dimension_selector_expovariate( lambd=None, rel_lambd=None, ): if lambd is not None and rel_lambd is not None: raise ValueError("Cannot set both lambd and rel_lambd") if lambd is None and rel_lambd is None: # the default, using a rel_lambd of 4.0, placing the pseudo-mean # 1/4 of the way into the dimensions rel_lambd = 4. @nb.jit(nopython=True) def dimension_selector_expovariate(n_dimensions): nonlocal lambd, rel_lambd value = math.inf while value >= n_dimensions: value = random.expovariate( lambd if lambd is not None else rel_lambd/n_dimensions ) return int(value) return dimension_selector_expovariate def get_finder_for_cluster_obeying( check_func, min_count=1, max_count=-1, max_depth=-1, dimension_selector=dimension_selector_uniform, fixed_dimensional_parameters=-1, fixed_non_dimensional_parameters=-1, fixed_n=-1, verbose=False, jit_kwargs={}, ): @nb.jit(nopython=True, **jit_kwargs) def _find_cluster_obeying( dimensional_parameters, non_dimensional_parameters, random_seed=None, iterations=-1, ): if dimensional_parameters.shape[1] != non_dimensional_parameters.shape[0]: raise ValueError( "Minor dimension of dimensional_parameters must match " "major dimension of non_dimensional_parameters" ) if ( fixed_dimensional_parameters != -1 and fixed_dimensional_parameters != dimensional_parameters.shape[0] ): raise ValueError("Number of dimensional parameters not expected value") if ( fixed_non_dimensional_parameters != -1 and fixed_non_dimensional_parameters != non_dimensional_parameters.shape[1] ): raise ValueError("Number of non-dimensional parameters not expected value") if ( fixed_n != -1 and fixed_n != non_dimensional_parameters.shape[0] ): raise ValueError("Number of candidates not expected value") final_max_depth = max_depth if max_depth != -1 else (1 + int( math.floor(math.log(dimensional_parameters.shape[-1]) / math.log(2)) )) if final_max_depth < 2: raise ValueError("max_depth < 2 makes no sense") if random_seed is not None: random.seed(random_seed) bitmap_stack = np.zeros( (final_max_depth, dimensional_parameters.shape[-1]), dtype=np.bool_, ) bitmap_stack[0,:] = True right_branch_stack = np.zeros((final_max_depth,), dtype=np.int8) current_level = 1 iteration = 0 while True: if right_branch_stack[current_level] == 0: chosen_dimension = dimension_selector(dimensional_parameters.shape[0]) vals_count = 0 # initialize these to any value of the correct type vals_min = vals_max = dimensional_parameters[0,0] # scan for range of remaining values in this dimension for i in range(dimensional_parameters.shape[1]): if bitmap_stack[current_level-1,i]: v = dimensional_parameters[chosen_dimension,i] if vals_count == 0: vals_min = vals_max = v else: vals_min = min(vals_min, v) vals_max = max(vals_max, v) vals_count+=1 chosen_split_point = random.uniform(vals_min, vals_max) # mark values greater than threshold remaining_count = 0 for i in range(dimensional_parameters.shape[1]): if bitmap_stack[current_level-1,i]: is_chosen = ( dimensional_parameters[chosen_dimension,i] >= chosen_split_point ) bitmap_stack[current_level,i] = is_chosen if is_chosen: remaining_count+=1 elif right_branch_stack[current_level] == 1: # invert current_level's bitmap, masked by the previous level's remaining_count = 0 for i in range(bitmap_stack.shape[1]): if bitmap_stack[current_level-1,i]: is_chosen = not bitmap_stack[current_level,i] bitmap_stack[current_level,i] = is_chosen if is_chosen: remaining_count+=1 else: # tidy up then unwind right_branch_stack[current_level] = 0 bitmap_stack[current_level,:] = False if current_level > 1: current_level-=1 # advance branch at underlying level right_branch_stack[current_level]+=1 else: # we're at the root iteration+=1 if iterations != -1 and iteration >= iterations: return None # start again by continuing at the # same current_level continue if verbose: print("current_level = ", current_level, " remaining_count = ", remaining_count) if remaining_count < min_count: right_branch_stack[current_level]+=1 continue if max_count == -1 or remaining_count <= max_count: ndp_subset = np.empty( (remaining_count, non_dimensional_parameters.shape[1],), dtype=non_dimensional_parameters.dtype, ) j = 0 for i in range(bitmap_stack.shape[1]): if j < remaining_count and bitmap_stack[current_level,i]: for k in range(ndp_subset.shape[1]): ndp_subset[j,k] = non_dimensional_parameters[i,k] j+=1 check_result = check_func(ndp_subset) if check_result: if check_result > 0: return bitmap_stack[current_level,:] else: # negative result signals to stop checking this branch right_branch_stack[current_level]+=1 continue if remaining_count <= 1: # dividing any more makes no sense right_branch_stack[current_level]+=1 continue if current_level+1 >= final_max_depth: # can't descend any deeper right_branch_stack[current_level]+=1 continue current_level+=1 return _find_cluster_obeying
risicle/cluscheck
cluscheck/__init__.py
__init__.py
py
7,246
python
en
code
0
github-code
6
[ { "api_name": "random.randrange", "line_number": 10, "usage_type": "call" }, { "api_name": "numba.jit", "line_number": 8, "usage_type": "call" }, { "api_name": "math.inf", "line_number": 29, "usage_type": "attribute" }, { "api_name": "random.expovariate", "line_number": 31, "usage_type": "call" }, { "api_name": "numba.jit", "line_number": 25, "usage_type": "call" }, { "api_name": "math.floor", "line_number": 83, "usage_type": "call" }, { "api_name": "math.log", "line_number": 83, "usage_type": "call" }, { "api_name": "random.seed", "line_number": 90, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 92, "usage_type": "call" }, { "api_name": "numpy.bool_", "line_number": 94, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 97, "usage_type": "call" }, { "api_name": "numpy.int8", "line_number": 97, "usage_type": "attribute" }, { "api_name": "random.uniform", "line_number": 121, "usage_type": "call" }, { "api_name": "numpy.empty", "line_number": 169, "usage_type": "call" }, { "api_name": "numba.jit", "line_number": 51, "usage_type": "call" } ]
37482811265
# coding: utf-8 import json import os import click import gql import graphql import requests from gql.transport.requests import RequestsHTTPTransport try: # python2 from urlparse import urlparse except ImportError: # python3 from urllib.parse import urlparse class SchemaSourceType(click.ParamType): name = 'schema_source' def __init__(self, authenvvar=None, **kwargs): self.authenvvar = authenvvar return super().__init__(**kwargs) def convert_from_url(self, value, param, ctx): headers = {} if self.authenvvar is not None: headers['Authorization'] = os.environ.get(self.authenvvar) try: client = gql.Client( transport=RequestsHTTPTransport( url=value, headers=headers, use_json=True, ), fetch_schema_from_transport=True, ) except requests.exceptions.HTTPError as e: m = str(e) if self.authenvvar is not None and e.response.status_code == 401: m += ' : Try setting %s in the environment.' % self.authenvvar self.fail(m, param=param, ctx=ctx) except ( requests.exceptions.ConnectionError, requests.exceptions.Timeout, requests.exceptions.RequestException ) as e: self.fail(e, param=param, ctx=ctx) return client.schema def convert_from_file(self, value, param, ctx): f = click.File('r').convert(value, param, ctx) try: introspection = json.load(f)['data'] schema = graphql.build_client_schema(introspection) except (ValueError, KeyError) as e: self.fail( 'File content is not valid a graphql schema %s.' % e, param=param, ctx=ctx ) return schema def convert(self, value, param, ctx): parsedurl = urlparse(value) if parsedurl.scheme and parsedurl.netloc: schema = self.convert_from_url(value, param, ctx) else: schema = self.convert_from_file(value, param, ctx) return schema SCHEMA_SOURCE = SchemaSourceType()
wapiflapi/gqldiff
gqldiff/clickgql.py
clickgql.py
py
2,223
python
en
code
1
github-code
6
[ { "api_name": "click.ParamType", "line_number": 22, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 33, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 33, "usage_type": "attribute" }, { "api_name": "gql.Client", "line_number": 36, "usage_type": "call" }, { "api_name": "gql.transport.requests.RequestsHTTPTransport", "line_number": 37, "usage_type": "call" }, { "api_name": "requests.exceptions", "line_number": 42, "usage_type": "attribute" }, { "api_name": "requests.exceptions", "line_number": 48, "usage_type": "attribute" }, { "api_name": "requests.exceptions", "line_number": 49, "usage_type": "attribute" }, { "api_name": "requests.exceptions", "line_number": 50, "usage_type": "attribute" }, { "api_name": "click.File", "line_number": 57, "usage_type": "call" }, { "api_name": "json.load", "line_number": 60, "usage_type": "call" }, { "api_name": "graphql.build_client_schema", "line_number": 61, "usage_type": "call" }, { "api_name": "urllib.parse.urlparse", "line_number": 72, "usage_type": "call" } ]
72784612027
# https://www.codewars.com/kata/558d5c71c68d1e86b000010f from itertools import product as P from collections import Counter # precompute vampires = [] for L in (2,3): G = [range(0,10) for _ in range(L)] limit1 = 10**(2*L-1) limit2 = 10**L**2-1 for a,b in P(P(*G), P(*G)): p = int(''.join(map(str,a))) * int(''.join(map(str,b))) if limit1 < p < limit2 and Counter(str(p)) == Counter(map(str,a+b)) and a[-1]+b[-1] != 0: vampires.append(p) vampires = sorted(list(set(vampires))) def vampire_number(k): return vampires[k-1] # clever is_vampire = lambda x, y: sorted(f"{x}{y}") == sorted(f"{x*y}") and x%10 + y%10 > 0 vampires = sorted({x*y for p in (1, 2) for x in range(10**p, 10**(p+1)) for y in range(x, 10**(p+1)) if is_vampire(x, y)}) # ya clever vampires = set() for i in [1, 2]: for x, y in combinations(range(10**i, 10**(i+1)), 2): if x % 10 == 0 == y % 10: continue z = x * y if sorted(str(z)) == sorted(f'{x}{y}'): vampires.add(z) xs = sorted(vampires)
blzzua/codewars
7-kyu/vampire_numbers_less_than_1000000.py
vampire_numbers_less_than_1000000.py
py
1,072
python
en
code
0
github-code
6
[ { "api_name": "itertools.product", "line_number": 12, "usage_type": "call" }, { "api_name": "collections.Counter", "line_number": 14, "usage_type": "call" } ]
36310398862
import pygame import colors import config class Field(pygame.sprite.Sprite): def __init__(self, x, y, color=None, img_path=None): super().__init__() self.x = x self.y = y self.color = color # sprite image if img_path: img = pygame.image.load(img_path).convert_alpha() img = pygame.transform.scale(img, [config.FIELD_WIDTH, config.FIELD_HEIGHT]) self.base_img = img self.image = img self.rect = self.image.get_rect() self.rect.x = x * config.FIELD_WIDTH self.rect.y = y * config.FIELD_HEIGHT else: self.rect = pygame.Rect(x * config.FIELD_WIDTH, y * config.FIELD_HEIGHT, config.FIELD_WIDTH, config.FIELD_HEIGHT) self.image = None def draw(self, screen): # draw field (background) if self.image: screen.blit(self.image, (self.rect.x, self.rect.y)) # # draw field border # pygame.draw.rect(screen, colors.WHITE, self.rect, 1)
tobnie/human_planning_horizon
game/world/field.py
field.py
py
1,046
python
en
code
0
github-code
6
[ { "api_name": "pygame.sprite", "line_number": 7, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 17, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 17, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 18, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 18, "usage_type": "attribute" }, { "api_name": "config.FIELD_WIDTH", "line_number": 18, "usage_type": "attribute" }, { "api_name": "config.FIELD_HEIGHT", "line_number": 18, "usage_type": "attribute" }, { "api_name": "config.FIELD_WIDTH", "line_number": 22, "usage_type": "attribute" }, { "api_name": "config.FIELD_HEIGHT", "line_number": 23, "usage_type": "attribute" }, { "api_name": "pygame.Rect", "line_number": 25, "usage_type": "call" }, { "api_name": "config.FIELD_WIDTH", "line_number": 25, "usage_type": "attribute" }, { "api_name": "config.FIELD_HEIGHT", "line_number": 25, "usage_type": "attribute" } ]
22610452246
from django.contrib import admin from django.contrib.auth.admin import UserAdmin from .models import Hybrid, Specialization, ContactPerson, Subject class MyUserAdmin(UserAdmin): model = Hybrid fieldsets = UserAdmin.fieldsets + ( (None, {'fields': ( 'middle_name', 'member', 'graduation_year', 'image', 'gender', 'specialization', 'date_of_birth', 'title', 'card_key' )}), ) class ContactPersonAdmin(admin.ModelAdmin): model = ContactPerson list_display = ('title', 'search_name') admin.site.register(Hybrid, MyUserAdmin) admin.site.register(Specialization) admin.site.register(ContactPerson, ContactPersonAdmin) admin.site.register(Subject)
hybrida/hybridjango
apps/registration/admin.py
admin.py
py
792
python
en
code
4
github-code
6
[ { "api_name": "django.contrib.auth.admin.UserAdmin", "line_number": 6, "usage_type": "name" }, { "api_name": "models.Hybrid", "line_number": 7, "usage_type": "name" }, { "api_name": "django.contrib.auth.admin.UserAdmin.fieldsets", "line_number": 9, "usage_type": "attribute" }, { "api_name": "django.contrib.auth.admin.UserAdmin", "line_number": 9, "usage_type": "name" }, { "api_name": "django.contrib.admin.ModelAdmin", "line_number": 24, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 24, "usage_type": "name" }, { "api_name": "models.ContactPerson", "line_number": 25, "usage_type": "name" }, { "api_name": "django.contrib.admin.site.register", "line_number": 29, "usage_type": "call" }, { "api_name": "models.Hybrid", "line_number": 29, "usage_type": "argument" }, { "api_name": "django.contrib.admin.site", "line_number": 29, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 29, "usage_type": "name" }, { "api_name": "django.contrib.admin.site.register", "line_number": 30, "usage_type": "call" }, { "api_name": "models.Specialization", "line_number": 30, "usage_type": "argument" }, { "api_name": "django.contrib.admin.site", "line_number": 30, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 30, "usage_type": "name" }, { "api_name": "django.contrib.admin.site.register", "line_number": 31, "usage_type": "call" }, { "api_name": "models.ContactPerson", "line_number": 31, "usage_type": "argument" }, { "api_name": "django.contrib.admin.site", "line_number": 31, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 31, "usage_type": "name" }, { "api_name": "django.contrib.admin.site.register", "line_number": 32, "usage_type": "call" }, { "api_name": "models.Subject", "line_number": 32, "usage_type": "argument" }, { "api_name": "django.contrib.admin.site", "line_number": 32, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 32, "usage_type": "name" } ]
40610907305
# Import libraries import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import missingno as msno from _datetime import date from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.neighbors import LocalOutlierFactor from sklearn.preprocessing import MinMaxScaler, LabelEncoder, StandardScaler, RobustScaler pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) pd.set_option('display.float_format', lambda x: '%.3f' % x) pd.set_option('display.width', 500) # Import the dataset for the small-scale applications def load(): data = pd.read_csv('01_miuul_machine_learning_summercamp/00_datasets/titanic.csv') data.columns = [col.lower() for col in data.columns] return data df = load() df.head() ############################## # Standard scaler ############################## ss = StandardScaler() df['age_standard_scaler'] = ss.fit_transform(df[['age']]) df.head() ############################## # Robust scaler ############################## rs = RobustScaler() df['age_robust_scaler'] = rs.fit_transform(df[['age']]) df.head() ############################## # MinMax scaler ############################## mms = MinMaxScaler() df['age_min_max_scaler'] = mms.fit_transform(df[['age']]) df.head() df.describe().T ############################## # Getting num_summary function ############################## def num_summary(dataframe, col_name, plot=False): """ for col in num_cols: print(f'\n***************-{col.upper()}-***************') num_summary(df, col, plot=False) """ quantiles = [0.05, 0.25, 0.50, 0.75, 0.90, 0.95, 0.99] print(dataframe[col_name].describe(quantiles).T) if plot: plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) sns.boxplot(y=dataframe[col_name], data=dataframe) plt.subplot(1, 2, 2) sns.histplot(x=dataframe[col_name], data=dataframe) plt.show(block=True) age_cols = [col for col in df.columns if 'age' in col] for col in age_cols: print(f'\n***************-{col.upper()}-***************') num_summary(df, col, plot=True) ############################## # Converting numerical variables to categorical variables ############################## df['age_qcut'] = pd.qcut(df.age, 5) df.head() df['age_cut'] = pd.cut(df.age, bins=[0, 18, 25, 45, 60, 100], labels=['0_18', '19_25', '26_45', '46_60', '61_100']) df.head()
afatsumcemreg/feature_engineering
05_feature_scaling.py
05_feature_scaling.py
py
2,572
python
en
code
2
github-code
6
[ { "api_name": "pandas.set_option", "line_number": 13, "usage_type": "call" }, { "api_name": "pandas.set_option", "line_number": 14, "usage_type": "call" }, { "api_name": "pandas.set_option", "line_number": 15, "usage_type": "call" }, { "api_name": "pandas.set_option", "line_number": 16, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 21, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.StandardScaler", "line_number": 32, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.RobustScaler", "line_number": 40, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.MinMaxScaler", "line_number": 48, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 67, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 67, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 68, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 68, "usage_type": "name" }, { "api_name": "seaborn.boxplot", "line_number": 69, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 70, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 70, "usage_type": "name" }, { "api_name": "seaborn.histplot", "line_number": 71, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 72, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 72, "usage_type": "name" }, { "api_name": "pandas.qcut", "line_number": 84, "usage_type": "call" }, { "api_name": "pandas.cut", "line_number": 87, "usage_type": "call" } ]
1370868487
"""Quizzes user on terms and definitions.""" import csv import random from collections import namedtuple RTN = lambda: '\n' def open_csv_populate_dct(): """Import a csv and populate a dictionary with its contents.""" dct = {} with open('csvs/terms_and_definitions.csv') as f: F_CSV = csv.reader(f) ROW = namedtuple('Row', next(F_CSV)) for r in F_CSV: row = ROW(*r) dct[row.term] = row.definition return dct def quiz_user(): """Quiz user.""" lst = [] print(RTN()) for term, definition in sorted(TERMS_AND_DEFINITIONS.items(), key=lambda x: random.random()): print(term) user_answer = input('> ') random.choice(list(TERMS_AND_DEFINITIONS)) if user_answer == definition: print('correct') lst.append((term, 'correct')) print(RTN()) else: print('work on that one') print(f'The correct answer is: {definition}') lst.append((term, 'incorrect')) print(RTN()) return lst def count_results(): """Count correct answers.""" lst = [] for i in results: if i[1] == 'correct': lst.append('correct') else: pass return lst def calc_perc(correct_answers, total): """Calculate percentage of correct answers.""" perc = len(correct_answers) / total * 100 perc_correct = '{0:.2f}%'.format(perc) print(f'percent correct: {perc_correct}\n') TERMS_AND_DEFINITIONS = open_csv_populate_dct() TERMS_TOTAL = len(TERMS_AND_DEFINITIONS) results = quiz_user() corrects = count_results() calc_perc(corrects, TERMS_TOTAL)
craighillelson/terms_and_definitions
terms_and_definitions.py
terms_and_definitions.py
py
1,717
python
en
code
0
github-code
6
[ { "api_name": "csv.reader", "line_number": 14, "usage_type": "call" }, { "api_name": "collections.namedtuple", "line_number": 15, "usage_type": "call" }, { "api_name": "random.random", "line_number": 28, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 31, "usage_type": "call" } ]
10981447634
''' Created on Oct 26, 2015 @author: jcheung Developed for Python 2. May work for Python 3 too (but I never tried) with minor changes. ''' import xml.etree.cElementTree as ET import codecs class WSDInstance: def __init__(self, my_id, lemma, context, index): self.id = my_id # id of the WSD instance self.lemma = lemma # lemma of the word whose sense is to be resolved self.context = context # lemma of all the words in the sentential context self.index = index # index of lemma within the context def __str__(self): ''' For printing purposes. ''' return '%s\t%s\t%s\t%d' % (self.id, self.lemma, ' '.join(self.context), self.index) def load_instances(f): ''' Load two lists of cases to perform WSD on. The structure that is returned is a dict, where the keys are the ids, and the values are instances of WSDInstance. ''' tree = ET.parse(f) root = tree.getroot() dev_instances = {} test_instances = {} for text in root: if text.attrib['id'].startswith('d001'): instances = dev_instances else: instances = test_instances for sentence in text: # construct sentence context context = [to_ascii(el.attrib['lemma']) for el in sentence] for i, el in enumerate(sentence): if el.tag == 'instance': my_id = el.attrib['id'] lemma = to_ascii(el.attrib['lemma']) instances[my_id] = WSDInstance(my_id, lemma, context, i) return dev_instances, test_instances def load_key(f): ''' Load the solutions as dicts. Key is the id Value is the list of correct sense keys. ''' dev_key = {} test_key = {} for line in open(f): if len(line) <= 1: continue #print (line) doc, my_id, sense_key = line.strip().split(' ', 2) if doc == 'd001': dev_key[my_id] = sense_key.split() else: test_key[my_id] = sense_key.split() return dev_key, test_key def to_ascii(s): # remove all non-ascii characters return codecs.encode(s, 'ascii', 'ignore')
JGuymont/lesk-algorithm
lesk/loader.py
loader.py
py
2,227
python
en
code
3
github-code
6
[ { "api_name": "xml.etree.cElementTree.parse", "line_number": 29, "usage_type": "call" }, { "api_name": "xml.etree.cElementTree", "line_number": 29, "usage_type": "name" }, { "api_name": "codecs.encode", "line_number": 70, "usage_type": "call" } ]
972412310
###Episode 1 import numpy as np import torch #Training data # Input (temp, rainfall, humidity) inputs = np.array([[73,67,43], [91,88,64], [87, 134, 58], [108, 43, 37], [69, 96,70]], dtype='float32') # targets (apples, oranges) targets = np.array([[56, 70], [81,101], [119, 133], [22,37], [103, 119]], dtype = 'float32') #Convert inputs and targets to tensors inputs = torch.from_numpy(inputs) targets = torch.from_numpy(targets) print (inputs) print(targets) ###Linear Regression model #Weights and Biases w = torch.randn(2, 3, requires_grad = True) b = torch.randn(2, requires_grad = True) print(w) print(b) ###Model def model(x): return x @w.t() + b # Generate predictions preds = model(inputs) print(preds) #Compare with actual targets print(targets) ### Loss Function : to check how well our model is performing # Calculate the difference betweeen the two matrices (preds and targets). # Square all the elements of the difference matrix to remove negative values. # Calaculate the average of the elements in the resulting matrix. #diff = preds - targets #print(diff) #diff_sqr = diff * diff #torch.sum(diff__sqr)/diff.numel() #Mean Squared Error (MSE) loss def mse(t1, t2): diff = t1 - t2 return torch.sum(diff * diff) / diff.numel() # Compute Loss loss = mse(preds, targets) print(loss) # Compute Gradients loss.backward() # Gradients for weights print(w) print(w.grad) # Gradients for biases print(b) print(b.grad) # Reset the values of Grad values NOT the actual values w.grad.zero_() b.grad.zero_() print(w) print(b) ### Adjust weights and biases using gradient descent # Generate predictions # Calculate the loss # Compute gradients w.r.t weights and biases # Adjust the weights by subtracting a small quantity proportional to the gradient # Reset gradients to zero # Generate predictions preds = model(inputs) print(preds) # Calculate the loss loss = mse (preds, targets) print(loss) # Compute Gradients loss.backward() print(w.grad) print(b.grad) # Adjust the weights and rest gradients with torch.no_grad(): w -= w.grad * 1e-5 b -= b.grad * 1e-5 w.grad.zero_() b.grad.zero_() print(w) print(b) #Lets check if the above slight change in the weights have improved the loss value (i.e decrease) or not. #Calculate loss again preds = model(inputs) loss = mse (preds, targets) print(loss) # Train for multiple epochs (let say for 500 epochs) for i in range (500): preds =model(inputs) loss = mse(preds, targets) loss.backward() # To calculate the gradients with torch.no_grad(): w -= w.grad * 1e-5 # 1e-5 is Learning rate which is a hyper-parameter in machine learning b -= b.grad * 1e-5 w.grad.zero_() # Reset the gradients to zero b.grad.zero_() ### Lets, calculate the loss again # Calculate loss preds = model(inputs) loss = mse (preds, targets) print(loss) ### Lets compare predictions and targets(actual values) #Predictions print(preds) #Targets (Actual values) print(targets) ##### Working with Jovian ##Intall #pip install jovian --upgrade -q #import jovian #jovian.commit() ################# Linear regression using PyTorch built-insert without making manual functions import numpy as np import torch import torch.nn as nn # Input (temp, rainfall, humidity) inputs = np.array([[73,67,43], [91, 88, 64], [87, 134, 58], [102, 43, 37], [69, 96, 70], [73, 67, 43], [91,88,64], [87, 134, 58], [102, 43, 37], [69, 96, 70], [73, 67, 43], [91, 88, 64],[87, 134, 58], [102, 43, 37], [69, 96, 70]], dtype = 'float32') #targets (apples, oranges) targets =np.array([[56, 70], [81, 101], [119, 133], [22, 37], [103, 119], [56, 70], [81, 101], [119, 133], [22, 37], [103, 119], [56, 70], [81, 101], [119, 133], [22, 37], [103, 119]], dtype = 'float32') inputs = torch.from_numpy(inputs) targets = torch.from_numpy(targets) ###Dataset and dataloader # We are not going to use complete dataset but in batches to deal with memory issues and less complex computations from torch.utils.data import TensorDataset # Define Dataset using TensorDataset train_ds = TensorDataset(inputs, targets) train_ds[0:3] # You can also pick specific rows of data) #train_ds[[1, 3, 5, 7]] from torch.utils.data import DataLoader #Define DataLoader batch_size = 5 train_dl = DataLoader(train_ds, batch_size, shuffle=True) for xb, yb in train_dl: #print('batch:') # prints all the batches print(xb) print(yb) break # use break if you want to work only one batch and remove the line 179 that prints all batches # Define model using nn.Linear model = nn.Linear (3, 2) print(model.weight) print(model.bias) # Parameters list(model.parameters()) #Generate predictions preds = model(inputs) print(preds) ###Loss Functions # Import nn.functional import torch.nn.functional as F # Define Loss functional loss_fn = F.mse_loss loss = loss_fn(model(inputs),targets) print(loss) # Note: to read help on Linear model of pytorch use following line # ?nn.Linear # ?F.mse_loss ###Optimizer # Define optimizer (Stochastic Gradient Descent) opt = torch.optim.SGD(model.parameters(), lr=1e-5) ### Train the model # Generate predictions # Calculate the loss # Compute gradients w.r.t weights and biases # Adjust the weights by subtracting a small quantity proportional to the gradient # Reset gradients to zero #Utility fiunction to train the model def fit(num_epochs, model, loss_fn, opt): #Repeat for given number of epochs for epoch in range(num_epochs): #Train with batches of data for xb, yb in train_dl: #1. Generate predictions pred = model(xb) #2. Calculate loss loss = loss_fn(pred, yb) #3. Compute gradients loss.backward() #4. Update parameters using gradients opt.step() #5. reset the gradients to zero opt.zero_grad() #Print the progress if (epoch+1) % 10 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) # loss.item gives the actual value of th eloss in that batch (here after every 10th epoch) # Train the model for 100 epochs fit(100, model, loss_fn, opt) # Generate predictions preds = model(inputs) print(preds) # Compare the weights print(targets) ### Commit and update the notebook import jovian jovian.commit()
NancyGirdhar/PyTorch_Basics
PyTorchSeries_E1.py
PyTorchSeries_E1.py
py
6,595
python
en
code
0
github-code
6
[ { "api_name": "numpy.array", "line_number": 9, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 13, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 16, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 17, "usage_type": "call" }, { "api_name": "torch.randn", "line_number": 24, "usage_type": "call" }, { "api_name": "torch.randn", "line_number": 25, "usage_type": "call" }, { "api_name": "torch.sum", "line_number": 54, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 100, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 123, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 155, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 158, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 160, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 161, "usage_type": "call" }, { "api_name": "torch.utils.data.TensorDataset", "line_number": 169, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 178, "usage_type": "call" }, { "api_name": "torch.nn.Linear", "line_number": 187, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 187, "usage_type": "name" }, { "api_name": "torch.nn.functional.mse_loss", "line_number": 203, "usage_type": "attribute" }, { "api_name": "torch.nn.functional", "line_number": 203, "usage_type": "name" }, { "api_name": "torch.optim.SGD", "line_number": 213, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 213, "usage_type": "attribute" }, { "api_name": "jovian.commit", "line_number": 263, "usage_type": "call" } ]
1218087321
import os from collections import namedtuple #Define a named tuple to represent our files FileStruct = namedtuple("File", "file_name file_ext file_path dir") def XMLifyFile(file_struct): return '\t\t<file alias="' + file_struct.file_name + '">' + file_struct.file_path + "</file>\n" valid_exts = [".graphml", ".png", ".gif", ".jpg" , ".png", ".ico"] directories = {} for root, dirs, files in os.walk("."): for file_name in files: # Trim off the ./ dir_name = root[2:] alias_name = dir_name dir_name = "Resources/" + dir_name # Append Resource Path file_prefix = os.path.splitext(file_name)[0] file_ext = os.path.splitext(file_name)[1].lower() file_path = os.path.join(dir_name, file_name) if file_ext in valid_exts: s = FileStruct(file_name = file_prefix, file_ext = file_ext, file_path = file_path, dir = dir_name) if alias_name not in directories: directories[alias_name] = [] directories[alias_name].append(s) resource_file = open("../resources.qrc", 'w') resource_file.write("<RCC>\n") for dir_name in directories: open_qresource = '\t<qresource prefix="/'+ dir_name + '">\n' close_qresource = '\t</qresource>\n' resource_file.write(open_qresource) for file_struct in directories[dir_name]: resource_file.write(XMLifyFile(file_struct)) resource_file.write(close_qresource) resource_file.write("</RCC>\n") resource_file.flush() resource_file.close()
cdit-ma/SEM
medea/src/app/Resources/resourceqrcmaker.py
resourceqrcmaker.py
py
1,521
python
en
code
3
github-code
6
[ { "api_name": "collections.namedtuple", "line_number": 5, "usage_type": "call" }, { "api_name": "os.walk", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path.splitext", "line_number": 22, "usage_type": "call" }, { "api_name": "os.path", "line_number": 22, "usage_type": "attribute" }, { "api_name": "os.path.splitext", "line_number": 23, "usage_type": "call" }, { "api_name": "os.path", "line_number": 23, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 24, "usage_type": "call" }, { "api_name": "os.path", "line_number": 24, "usage_type": "attribute" } ]
83273089
import pandas as pd from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score def read_file(): # 读取数据 df = pd.read_table("/yourfilepath/SMSSpamCollection", header=None, names=['label', 'sms_message']) # 做一个map表,0表示'ham',1表示'spam' df['label'] = df.label.map({'ham': 0, 'spam': 1}) return df def train_and_test_data(df_data): # 分割训练集和测试机 X_train, X_test, y_train, y_test = train_test_split(df_data['sms_message'], df_data['label'], random_state=1) # 创建实例 count_vector = CountVectorizer() # 训练数据转成矩阵 training_data = count_vector.fit_transform(X_train) # 转化测试集 testing_data = count_vector.transform(X_test) naive_bayes = MultinomialNB() # 运用朴素贝叶斯算法 naive_bayes.fit(training_data, y_train) # 预测数据 predictions = naive_bayes.predict(testing_data) return predictions, X_train, X_test, y_train, y_test def evaluate_model(predictions, y_test): print('Accuracy score: ', format(accuracy_score(y_test, predictions))) print('Precision score: ', format(precision_score(y_test, predictions))) print('Recall score: ', format(recall_score(y_test, predictions))) print('F1 score: ', format(f1_score(y_test, predictions))) def print_testing_result(X_test, y_test, predictions): category_map = {0: 'ham', 1: 'spam'} for message, category, real in zip(X_test[50:100], predictions[50:100], y_test[50:100]): print('\n recevie message:', message, '\n prediction:', category_map[category], 'true value:', category_map[real]) if __name__ == "__main__": df = read_file() predictions, _, X_test, _, y_test = train_and_test_data(df) evaluate_model(predictions, y_test) print_testing_result(X_test, y_test, predictions)
goelo/machine_learning
naive_bayes/smsspammessage.py
smsspammessage.py
py
2,190
python
en
code
4
github-code
6
[ { "api_name": "pandas.read_table", "line_number": 9, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 19, "usage_type": "call" }, { "api_name": "sklearn.feature_extraction.text.CountVectorizer", "line_number": 23, "usage_type": "call" }, { "api_name": "sklearn.naive_bayes.MultinomialNB", "line_number": 29, "usage_type": "call" }, { "api_name": "sklearn.metrics.accuracy_score", "line_number": 38, "usage_type": "call" }, { "api_name": "sklearn.metrics.precision_score", "line_number": 39, "usage_type": "call" }, { "api_name": "sklearn.metrics.recall_score", "line_number": 40, "usage_type": "call" }, { "api_name": "sklearn.metrics.f1_score", "line_number": 41, "usage_type": "call" } ]
11902565567
#!/usr/bin/env python3 from pprint import pprint import subprocess import pyone import config # ----------------------- # Connect to OpenNebula # ----------------------- one = pyone.OneServer(config.ONE['address'], session='%s:%s' % (config.ONE['username'], config.ONE['password'])) # prepare hosts to ips mapping hostToIp = {} hosts = one.hostpool.info() for host in hosts.HOST: if host.STATE != 2: continue host_name = host.TEMPLATE['HOSTNAME'] hostToIp[host_name] = {} hostToIp[host_name]['ip'] = host.TEMPLATE['IP_ADDRESS'] hostToIp[host_name]['cgroups'] = host.TEMPLATE['CGROUPS_VERSION'] print('{count} compute nodes found'.format(count=len(hostToIp))) # get vms vms = one.vmpool.infoextended(-2, -1, -1, -1) for vm in vms.VM: host = vm.HISTORY_RECORDS.HISTORY[-1].HOSTNAME hostIp = hostToIp[host]['ip'] hostCgroups = int(hostToIp[host]['cgroups']) if hostCgroups == 2: cpuCount = float(vm.TEMPLATE.get('CPU')) shares = int(100 * cpuCount) print('Updating VM %s: virsh -c qemu+tcp://%s/system schedinfo %s --set cpu_shares=%s' % (vm.NAME, hostIp, vm.DEPLOY_ID, shares)) subprocess.check_call('virsh -c qemu+tcp://%s/system schedinfo %s --set cpu_shares=%s' % (hostIp, vm.DEPLOY_ID, shares), shell=True)
OpenNebula/addon-3par
scripts/helpers/update-cpu-shares.py
update-cpu-shares.py
py
1,335
python
en
code
2
github-code
6
[ { "api_name": "pyone.OneServer", "line_number": 11, "usage_type": "call" }, { "api_name": "config.ONE", "line_number": 11, "usage_type": "attribute" }, { "api_name": "subprocess.check_call", "line_number": 41, "usage_type": "call" } ]
17591759593
import pathlib from PIL import Image class image_to_c_array: def __init__(self, image_path, output_path, format_bytes_count, char_array_name, include_header_guard=False, include_header_guard_name=None, reset_output_file=True): self.image_path = image_path self.output_path = output_path self.file_bytes = pathlib.Path(image_path).read_bytes() self.char_array_name = char_array_name self.format_bytes_count = format_bytes_count self.include_header_guard_name = include_header_guard_name self.include_header_guard = include_header_guard self.reset_output_file = reset_output_file self.file_bytes_len = 0 for _b in self.file_bytes: self.file_bytes_len += 1 def grab_string(self): if self.include_header_guard: data = "#ifndef {}\n#define {}\nunsigned char {}[{}] = {{\n\t".format(self.include_header_guard_name, self.include_header_guard_name, self.char_array_name,self.file_bytes_len) else: data = "unsigned char {}[{}] = {{\n\t".format(self.char_array_name, self.file_bytes_len) count = 0 for x in self.file_bytes: if count == self.format_bytes_count: data += "\n\t" count = 0 temp_data = str(hex(x)) if len(temp_data) == 3: temp_data = temp_data.replace("0x", "0x0") data += temp_data.upper() + ", " count += 1 if self.include_header_guard_name: data += "\n};\n#endif\n" else: data += "\n};\n\n" return data def save(self): if self.reset_output_file: open(self.output_path, 'w+').close() with open(self.output_path, 'a+') as f: f.write(self.grab_string())
0xRooted/File-To-C-Array
filetocarray.py
filetocarray.py
py
1,846
python
en
code
0
github-code
6
[ { "api_name": "pathlib.Path", "line_number": 9, "usage_type": "call" } ]
14048408200
from io import StringIO from pathlib import Path import streamlit as st import time from detect import detect import os import sys import argparse from PIL import Image import shutil import streamlit.components.v1 as components def get_subdirs(b='.'): ''' Returns all sub-directories in a specific Path ''' result = [] for d in os.listdir(b): bd = os.path.join(b, d) if os.path.isdir(bd): result.append(bd) return result def get_detection_folder(): ''' Returns the latest folder in a runs\detect ''' return max(get_subdirs(os.path.join('runs', 'detect')), key=os.path.getmtime) if __name__ == '__main__': st.title('Bird Identification System ') table_html = """ <!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> <link rel="stylesheet" href="//stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css" integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS" crossorigin="anonymous"> <style> .bd-placeholder-img { font-size: 1.125rem; text-anchor: middle; } @media (min-width: 768px) { .bd-placeholder-img-lg { font-size: 3.5rem; } } </style> <link rel="stylesheet" href="/static/style.css"> <title>Bird Identification System</title> </head> <body class="text-center"> <form class="form-signin card mb-6" method=post enctype=multipart/form-data> <img class="mb-4" src="https://ts1.cn.mm.bing.net/th/id/R-C.93dc7e23a93c7b1b1d23361ce54692a1?rik=6cirEfWmxE5hyQ&riu=http%3a%2f%2fpic.bizhi360.com%2fbbpic%2f0%2f4300.jpg&ehk=kJ5JAQiiwI2BtUKwuLsGoUzUtUagshyomug1aDlAc3A%3d&risl=&pid=ImgRaw&r=0" alt="" width="150" style="border-radius:50%"> <h1 class="h3 mb-3 font-weight-normal">Upload Any Bird Image or Video</h1> <br /> <button> <span class="box"> Weclome! </span> </button> <p class="mt-5 mb-3 text-muted">Built using Streamlit and Pytorch</p> </body> <!-- Github Ribbon Start--> <a href="https://github.com" class="github-corner"><svg width="160" height="160" viewBox="0 0 250 250" style="fill:#0E2E3B; color:#FFFFFF; position: absolute; top: 0; border: 0; right: 0;"> <path d="M0,0 L115,115 L130,115 L142,142 L250,250 L250,0 Z"></path> <path d="M128.3,109.0 C113.8,99.7 119.0,89.6 119.0,89.6 C122.0,82.7 120.5,78.6 120.5,78.6 C119.2,72.0 123.4,76.3 123.4,76.3 C127.3,80.9 125.5,87.3 125.5,87.3 C122.9,97.6 130.6,101.9 134.4,103.2" fill="currentColor" style="transform-origin: 130px 106px;" class="octo-arm"></path> <path d="M115.0,115.0 C114.9,115.1 118.7,116.5 119.8,115.4 L133.7,101.6 C136.9,99.2 139.9,98.4 142.2,98.6 C133.8,88.0 127.5,74.4 143.8,58.0 C148.5,53.4 154.0,51.2 159.7,51.0 C160.3,49.4 163.2,43.6 171.4,40.1 C171.4,40.1 176.1,42.5 178.8,56.2 C183.1,58.6 187.2,61.8 190.9,65.4 C194.5,69.0 197.7,73.2 200.1,77.6 C213.8,80.2 216.3,84.9 216.3,84.9 C212.7,93.1 206.9,96.0 205.4,96.6 C205.1,102.4 203.0,107.8 198.3,112.5 C181.9,128.9 168.3,122.5 157.7,114.1 C157.9,116.9 156.7,120.9 152.7,124.9 L141.0,136.5 C139.8,137.7 141.6,141.9 141.8,141.8 Z" fill="currentColor" class="octo-body"></path> </svg></a> <style> .github-corner:hover .octo-arm { animation: octocat-wave 560ms ease-in-out } @keyframes octocat-wave { 0%, 100% { transform: rotate(0) } 20%, 60% { transform: rotate(-25deg) } 40%, 80% { transform: rotate(10deg) } } @media (max-width:500px) { .github-corner:hover .octo-arm { animation: none } .github-corner .octo-arm { animation: octocat-wave 560ms ease-in-out } } </style> <!-- Github Ribbon End--> </html>""" components.html(table_html, height=400, scrolling=True) parser = argparse.ArgumentParser() parser.add_argument('--weights', nargs='+', type=str, default='best100.pt', help='model.pt path(s)') parser.add_argument('--source', type=str, default='100birds/test/', help='source') parser.add_argument('--img-size', type=int, default=224, help='inference size (pixels)') parser.add_argument('--conf-thres', type=float, default=0.45, help='object confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS') parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--view-img', action='store_true', help='display results') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') parser.add_argument('--nosave', action='store_true', help='do not save images/videos') parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3') parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--update', action='store_true', help='update all models') parser.add_argument('--project', default='runs/detect', help='save results to project/name') parser.add_argument('--name', default='exp', help='save results to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--no-trace', action='store_true', help='don`t trace model') opt = parser.parse_args() print(opt) source = ("图片检测", "视频检测", "文件夹检测") source_index = st.sidebar.selectbox("选择输入", range( len(source)), format_func=lambda x: source[x]) if source_index == 0: uploaded_file = st.sidebar.file_uploader( "上传图片", type=['png', 'jpeg', 'jpg']) if uploaded_file is not None: is_valid = True with st.spinner(text='资源加载中...'): st.sidebar.image(uploaded_file) picture = Image.open(uploaded_file) picture = picture.save(f'100birds/test/{uploaded_file.name}') opt.source = f'100birds/test/{uploaded_file.name}' else: is_valid = False elif source_index == 1: uploaded_file = st.sidebar.file_uploader("上传视频", type=['mp4']) if uploaded_file is not None: is_valid = True with st.spinner(text='资源加载中...'): st.sidebar.video(uploaded_file) with open(os.path.join("100birds", "video", uploaded_file.name), "wb") as f: f.write(uploaded_file.getbuffer()) opt.source = f'100birds/video/{uploaded_file.name}' else: is_valid = False else: uploaded_files = st.sidebar.file_uploader("上传文件夹", accept_multiple_files=True) for uploaded_file in uploaded_files: if uploaded_file is not None: is_valid = True with st.spinner(text='资源加载中...'): st.sidebar.image(uploaded_file) picture = Image.open(uploaded_file) picture = picture.save(f'100birds/test/{uploaded_file.name}') opt.source = f'100birds/test/{uploaded_file.name}' else: is_valid = False is_valid = True if is_valid: print('valid') if source_index == 0: if st.button('开始检测'): detect(opt) with st.spinner(text='Preparing Images'): for img in os.listdir(get_detection_folder()): st.image(str(Path(f'{get_detection_folder()}') / img)) st.balloons() elif source_index == 1: if st.button('开始检测'): detect(opt) with st.spinner(text='Preparing Video'): for vid in os.listdir(get_detection_folder()): st.video(str(Path(f'{get_detection_folder()}') / vid)) st.balloons() else: if st.button('开始检测'): for dirpath, dirname, filenames in os.walk('100birds/test'): for filename in filenames: opt.source = os.path.join(dirpath, filename) detect(opt) with st.spinner(text='Preparing file folder'): for img in os.listdir(get_detection_folder()): st.image(str(Path(f'{get_detection_folder()}') / img)) # for vid in os.listdir(get_detection_folder()): # st.video(str(Path(f'{get_detection_folder()}') / vid)) st.balloons() shutil.rmtree('100birds/test') os.mkdir('100birds/test') # streamlit run main.py
fengxizxf/yolov-bird
main.py
main.py
py
9,736
python
en
code
3
github-code
6
[ { "api_name": "os.listdir", "line_number": 18, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 19, "usage_type": "call" }, { "api_name": "os.path", "line_number": 19, "usage_type": "attribute" }, { "api_name": "os.path.isdir", "line_number": 20, "usage_type": "call" }, { "api_name": "os.path", "line_number": 20, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 29, "usage_type": "call" }, { "api_name": "os.path", "line_number": 29, "usage_type": "attribute" }, { "api_name": "streamlit.title", "line_number": 34, "usage_type": "call" }, { "api_name": "streamlit.components.v1.html", "line_number": 125, "usage_type": "call" }, { "api_name": "streamlit.components.v1", "line_number": 125, "usage_type": "name" }, { "api_name": "argparse.ArgumentParser", "line_number": 127, "usage_type": "call" }, { "api_name": "streamlit.sidebar.selectbox", "line_number": 167, "usage_type": "call" }, { "api_name": "streamlit.sidebar", "line_number": 167, "usage_type": "attribute" }, { "api_name": "streamlit.sidebar.file_uploader", "line_number": 171, "usage_type": "call" }, { "api_name": "streamlit.sidebar", "line_number": 171, "usage_type": "attribute" }, { "api_name": "streamlit.spinner", "line_number": 175, "usage_type": "call" }, { "api_name": "streamlit.sidebar.image", "line_number": 176, "usage_type": "call" }, { "api_name": "streamlit.sidebar", "line_number": 176, "usage_type": "attribute" }, { "api_name": "PIL.Image.open", "line_number": 177, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 177, "usage_type": "name" }, { "api_name": "streamlit.sidebar.file_uploader", "line_number": 183, "usage_type": "call" }, { "api_name": "streamlit.sidebar", "line_number": 183, "usage_type": "attribute" }, { "api_name": "streamlit.spinner", "line_number": 186, "usage_type": "call" }, { "api_name": "streamlit.sidebar.video", "line_number": 187, "usage_type": "call" }, { "api_name": "streamlit.sidebar", "line_number": 187, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 188, "usage_type": "call" }, { "api_name": "os.path", "line_number": 188, "usage_type": "attribute" }, { "api_name": "streamlit.sidebar.file_uploader", "line_number": 194, "usage_type": "call" }, { "api_name": "streamlit.sidebar", "line_number": 194, "usage_type": "attribute" }, { "api_name": "streamlit.spinner", "line_number": 198, "usage_type": "call" }, { "api_name": "streamlit.sidebar.image", "line_number": 199, "usage_type": "call" }, { "api_name": "streamlit.sidebar", "line_number": 199, "usage_type": "attribute" }, { "api_name": "PIL.Image.open", "line_number": 200, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 200, "usage_type": "name" }, { "api_name": "streamlit.button", "line_number": 211, "usage_type": "call" }, { "api_name": "detect.detect", "line_number": 212, "usage_type": "call" }, { "api_name": "streamlit.spinner", "line_number": 214, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 215, "usage_type": "call" }, { "api_name": "streamlit.image", "line_number": 216, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 216, "usage_type": "call" }, { "api_name": "streamlit.balloons", "line_number": 218, "usage_type": "call" }, { "api_name": "streamlit.button", "line_number": 220, "usage_type": "call" }, { "api_name": "detect.detect", "line_number": 221, "usage_type": "call" }, { "api_name": "streamlit.spinner", "line_number": 223, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 224, "usage_type": "call" }, { "api_name": "streamlit.video", "line_number": 225, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 225, "usage_type": "call" }, { "api_name": "streamlit.balloons", "line_number": 227, "usage_type": "call" }, { "api_name": "streamlit.button", "line_number": 229, "usage_type": "call" }, { "api_name": "os.walk", "line_number": 230, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 232, "usage_type": "call" }, { "api_name": "os.path", "line_number": 232, "usage_type": "attribute" }, { "api_name": "detect.detect", "line_number": 233, "usage_type": "call" }, { "api_name": "streamlit.spinner", "line_number": 234, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 235, "usage_type": "call" }, { "api_name": "streamlit.image", "line_number": 236, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 236, "usage_type": "call" }, { "api_name": "streamlit.balloons", "line_number": 240, "usage_type": "call" }, { "api_name": "shutil.rmtree", "line_number": 241, "usage_type": "call" }, { "api_name": "os.mkdir", "line_number": 242, "usage_type": "call" } ]
19733029074
# -*- coding: utf-8 -*- import logging import requests from bs4 import BeautifulSoup logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger('wb') class Client: def __init__(self): self.session = requests.Session() self.session.headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.66 Safari/537.36', 'Accept-Language': 'ru', } def load_page(self): url = 'https://www.wildberries.ru/catalog/aksessuary/aksessuary-dlya-volos' res = self.session.get(url=url) res.raise_for_status() return res.text def parse_page(self, text: str): soup = BeautifulSoup(text, 'lxml') container = soup.select('div.dtList.i-dtList.j-card-item') for block in container: self.parse_block(block=block) def parse_block(self, block): logger.info(block) logger.info('=' * 100) def run(self): text = self.load_page() self.parse_page(text=text) if __name__ == "__main__": parser = Client() parser.run()
KogameDev/WildberriesParser
main.py
main.py
py
1,056
python
en
code
0
github-code
6
[ { "api_name": "logging.basicConfig", "line_number": 7, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 7, "usage_type": "attribute" }, { "api_name": "logging.getLogger", "line_number": 8, "usage_type": "call" }, { "api_name": "requests.Session", "line_number": 13, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 26, "usage_type": "call" } ]
35610337121
import cv2 import os cam = cv2.VideoCapture("video.avi") values = [] def discrimator(frame): return frame[0][0][1] != 253 # Read each frame. Use discriminator on each frame to output a zero or one. while True: ret, f = cam.read() if not ret: break values.append( discrimator(f) ) ones_and_zeroes = "".join(str(int(x)) for x in values) byte_string = int(ones_and_zeroes, 2).to_bytes(len(ones_and_zeroes) // 8, byteorder='big') os.write(1, byte_string)
sectalks/sectalks
ctf-solutions/LON0x26/bc/vid.py
vid.py
py
492
python
en
code
277
github-code
6
[ { "api_name": "cv2.VideoCapture", "line_number": 4, "usage_type": "call" }, { "api_name": "os.write", "line_number": 22, "usage_type": "call" } ]
41087502611
import matplotlib.pyplot as plt import pandas as pd def main(): # Charger les données à partir du fichier CSV data = pd.read_csv("Parcoursup 2023 - Total.csv", delimiter=";") # Extraire les colonnes nécessaires dates = pd.to_datetime(data["Date"], format="%d/%m") # type: ignore en_attente = data[ "Candidats n'ayant pas encore reçu de proposition ou en attente de place" ] # Créer les limites des bacs pour l'histogramme en escalier x = range(len(dates) + 1) y = list(en_attente) + [en_attente.iloc[-1]] # Candidats en attente # Créer le graphique avec la courbe en rouge pour les candidats en attente plt.figure(figsize=(8, 6)) plt.step(x, y, where="post", color="orange", linewidth=2, alpha=0.7) plt.xlabel("Date") plt.ylabel( "Candidats n'ayant pas encore reçu de\nproposition ou en attente de place" ) plt.title( "Évolution en fonction du temps du nombre de\ncandidats sans affectation sur Parcoursup en 2023" ) x_ticks = range(0, len(dates), 3) x_labels = dates[x_ticks].dt.strftime("%d/%m") # type: ignore plt.xticks(x_ticks, x_labels, rotation=45) # Ajuster les limites de l'axe x pour supprimer l'espace blanc à gauche plt.xlim(0, len(dates) - 1) plt.ylim(0, 400000) plt.twinx() plt.ylim(0, (400000 / 827271) * 100) plt.ylabel("Pourcentage en fonction du nombre de candidats") plt.tight_layout() plt.savefig( "Évolution en fonction du temps du nombre de candidats sans affectation sur Parcoursup en 2023.svg" ) print( "Le graphique a été enregistré dans le fichier 'Évolution en fonction du temps du nombre de candidats sans affectation sur Parcoursup en 2023.svg'." ) plt.close() if __name__ == "__main__": main()
Ahhj93/Indicateur-Parcoursup-2023
parcoursup_candidats_en_attente.py
parcoursup_candidats_en_attente.py
py
1,820
python
fr
code
2
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 7, "usage_type": "call" }, { "api_name": "pandas.to_datetime", "line_number": 10, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 20, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 20, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.step", "line_number": 21, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 21, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 22, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 22, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 23, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 23, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 26, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 26, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 31, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 31, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 34, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 34, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 36, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 36, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.twinx", "line_number": 37, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 37, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 38, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 38, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 39, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 39, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 40, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 40, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 41, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 41, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 47, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 47, "usage_type": "name" } ]
34836265477
from django.contrib.contenttypes.models import ContentType from django_filters import rest_framework as filters from music_app.models import Artist, Track, Album from music_app.apps import MusicAppConfig _content_types_id = { 'artist': ContentType.objects.get(app_label=MusicAppConfig.name, model='artist').id, 'album': ContentType.objects.get(app_label=MusicAppConfig.name, model='album').id, 'track': ContentType.objects.get(app_label=MusicAppConfig.name, model='track').id, } class BaseSpotifyFilterSet(filters.FilterSet): name = filters.CharFilter( field_name='name', lookup_expr='icontains', label='Name', ) spotify_id = filters.CharFilter( field_name='spotify_id', lookup_expr='exact', label='Spotify ID', ) spotify_uri = filters.CharFilter( field_name='spotify_uri', lookup_expr='exact', label='Spotify URI', ) class ArtistFilterSet(BaseSpotifyFilterSet): class Meta: model = Artist fields = [] class TrackFilterSet(BaseSpotifyFilterSet): class Meta: model = Track fields = [] class AlbumFilterSet(BaseSpotifyFilterSet): class Meta: model = Album fields = [] class CommentFilterSet(filters.FilterSet): creator = filters.NumberFilter( field_name='creator_id', lookup_expr='exact', label='Creator ID', ) content_type = filters.ChoiceFilter( choices=[ (_content_types_id['artist'], 'artist'), (_content_types_id['album'], 'album'), (_content_types_id['track'], 'track') ], field_name='content_type', lookup_expr='exact', label='Type of model' )
vladyslavtsurkan/django_music_application
music_app/api/filters.py
filters.py
py
1,745
python
en
code
0
github-code
6
[ { "api_name": "django.contrib.contenttypes.models.ContentType.objects.get", "line_number": 8, "usage_type": "call" }, { "api_name": "django.contrib.contenttypes.models.ContentType.objects", "line_number": 8, "usage_type": "attribute" }, { "api_name": "django.contrib.contenttypes.models.ContentType", "line_number": 8, "usage_type": "name" }, { "api_name": "music_app.apps.MusicAppConfig.name", "line_number": 8, "usage_type": "attribute" }, { "api_name": "music_app.apps.MusicAppConfig", "line_number": 8, "usage_type": "name" }, { "api_name": "django.contrib.contenttypes.models.ContentType.objects.get", "line_number": 9, "usage_type": "call" }, { "api_name": "django.contrib.contenttypes.models.ContentType.objects", "line_number": 9, "usage_type": "attribute" }, { "api_name": "django.contrib.contenttypes.models.ContentType", "line_number": 9, "usage_type": "name" }, { "api_name": "music_app.apps.MusicAppConfig.name", "line_number": 9, "usage_type": "attribute" }, { "api_name": "music_app.apps.MusicAppConfig", "line_number": 9, "usage_type": "name" }, { "api_name": "django.contrib.contenttypes.models.ContentType.objects.get", "line_number": 10, "usage_type": "call" }, { "api_name": "django.contrib.contenttypes.models.ContentType.objects", "line_number": 10, "usage_type": "attribute" }, { "api_name": "django.contrib.contenttypes.models.ContentType", "line_number": 10, "usage_type": "name" }, { "api_name": "music_app.apps.MusicAppConfig.name", "line_number": 10, "usage_type": "attribute" }, { "api_name": "music_app.apps.MusicAppConfig", "line_number": 10, "usage_type": "name" }, { "api_name": "django_filters.rest_framework.FilterSet", "line_number": 14, "usage_type": "attribute" }, { "api_name": "django_filters.rest_framework", "line_number": 14, "usage_type": "name" }, { "api_name": "django_filters.rest_framework.CharFilter", "line_number": 15, "usage_type": "call" }, { "api_name": "django_filters.rest_framework", "line_number": 15, "usage_type": "name" }, { "api_name": "django_filters.rest_framework.CharFilter", "line_number": 20, "usage_type": "call" }, { "api_name": "django_filters.rest_framework", "line_number": 20, "usage_type": "name" }, { "api_name": "django_filters.rest_framework.CharFilter", "line_number": 25, "usage_type": "call" }, { "api_name": "django_filters.rest_framework", "line_number": 25, "usage_type": "name" }, { "api_name": "music_app.models.Artist", "line_number": 34, "usage_type": "name" }, { "api_name": "music_app.models.Track", "line_number": 40, "usage_type": "name" }, { "api_name": "music_app.models.Album", "line_number": 46, "usage_type": "name" }, { "api_name": "django_filters.rest_framework.FilterSet", "line_number": 50, "usage_type": "attribute" }, { "api_name": "django_filters.rest_framework", "line_number": 50, "usage_type": "name" }, { "api_name": "django_filters.rest_framework.NumberFilter", "line_number": 51, "usage_type": "call" }, { "api_name": "django_filters.rest_framework", "line_number": 51, "usage_type": "name" }, { "api_name": "django_filters.rest_framework.ChoiceFilter", "line_number": 56, "usage_type": "call" }, { "api_name": "django_filters.rest_framework", "line_number": 56, "usage_type": "name" } ]
650752867
import os import sys import json import unittest import numpy as np import luigi import z5py import cluster_tools.utils.volume_utils as vu from sklearn.metrics import adjusted_rand_score from elf.segmentation.mutex_watershed import mutex_watershed from elf.segmentation.watershed import apply_size_filter try: from ..base import BaseTest except Exception: sys.path.append(os.path.join(os.path.split(__file__)[0], "..")) from base import BaseTest class TestMws(BaseTest): input_key = "volumes/affinities" output_key = "data" offsets = [[-1, 0, 0], [0, -1, 0], [0, 0, -1], [-2, 0, 0], [0, -3, 0], [0, 0, -3], [-3, 0, 0], [0, -9, 0], [0, 0, -9], [-4, 0, 0], [0, -27, 0], [0, 0, -27]] strides = [4, 12, 12] def _check_result(self, size_filter): # load affs and compare with z5py.File(self.input_path, "r") as f: ds = f[self.input_key] ds.n_threads = 4 affs = vu.normalize(ds[:]) shape = affs.shape[1:] with z5py.File(self.output_path, "r") as f: res = f[self.output_key][:] self.assertEqual(res.shape, shape) exp = mutex_watershed(affs, self.offsets, self.strides) if size_filter > 0: exp, _ = apply_size_filter(exp.astype("uint32"), np.max(affs[:3], axis=0), size_filter) score = adjusted_rand_score(exp.ravel(), res.ravel()) expected_score = 0.1 self.assertLess(1. - score, expected_score) def test_mws(self): from cluster_tools.mutex_watershed import MwsWorkflow config = MwsWorkflow.get_config()["mws_blocks"] config["strides"] = self.strides size_filter = config["size_filter"] with open(os.path.join(self.config_folder, "mws_blocks.config"), "w") as f: json.dump(config, f) task = MwsWorkflow(tmp_folder=self.tmp_folder, config_dir=self.config_folder, max_jobs=self.max_jobs, target=self.target, input_path=self.input_path, input_key=self.input_key, output_path=self.output_path, output_key=self.output_key, offsets=self.offsets) ret = luigi.build([task], local_scheduler=True) self.assertTrue(ret) self._check_result(size_filter) if __name__ == "__main__": unittest.main()
constantinpape/cluster_tools
test/mutex_watershed/test_mws.py
test_mws.py
py
2,409
python
en
code
32
github-code
6
[ { "api_name": "sys.path.append", "line_number": 17, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 17, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path", "line_number": 17, "usage_type": "attribute" }, { "api_name": "os.path.split", "line_number": 17, "usage_type": "call" }, { "api_name": "base.BaseTest", "line_number": 21, "usage_type": "name" }, { "api_name": "z5py.File", "line_number": 32, "usage_type": "call" }, { "api_name": "cluster_tools.utils.volume_utils.normalize", "line_number": 35, "usage_type": "call" }, { "api_name": "cluster_tools.utils.volume_utils", "line_number": 35, "usage_type": "name" }, { "api_name": "z5py.File", "line_number": 38, "usage_type": "call" }, { "api_name": "elf.segmentation.mutex_watershed.mutex_watershed", "line_number": 42, "usage_type": "call" }, { "api_name": "elf.segmentation.watershed.apply_size_filter", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 44, "usage_type": "call" }, { "api_name": "sklearn.metrics.adjusted_rand_score", "line_number": 45, "usage_type": "call" }, { "api_name": "cluster_tools.mutex_watershed.MwsWorkflow.get_config", "line_number": 52, "usage_type": "call" }, { "api_name": "cluster_tools.mutex_watershed.MwsWorkflow", "line_number": 52, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 55, "usage_type": "call" }, { "api_name": "os.path", "line_number": 55, "usage_type": "attribute" }, { "api_name": "json.dump", "line_number": 56, "usage_type": "call" }, { "api_name": "cluster_tools.mutex_watershed.MwsWorkflow", "line_number": 58, "usage_type": "call" }, { "api_name": "luigi.build", "line_number": 63, "usage_type": "call" }, { "api_name": "unittest.main", "line_number": 69, "usage_type": "call" } ]
19243529886
import shlex import django_filters from django.core.exceptions import FieldError from django.db.models import Q # The function and Classes in this file are from https://github.com/nexB/scancode.io/blob/main/scanpipe/filters.py def parse_query_string_to_lookups(query_string, default_lookup_expr, default_field): """Parse a query string and convert it into queryset lookups using Q objects.""" lookups = Q() terms = shlex.split(query_string) lookup_types = { "=": "iexact", "^": "istartswith", "$": "iendswith", "~": "icontains", ">": "gt", "<": "lt", } for term in terms: lookup_expr = default_lookup_expr negated = False if ":" in term: field_name, search_value = term.split(":", maxsplit=1) if field_name.endswith(tuple(lookup_types.keys())): lookup_symbol = field_name[-1] lookup_expr = lookup_types.get(lookup_symbol) field_name = field_name[:-1] if field_name.startswith("-"): field_name = field_name[1:] negated = True else: search_value = term field_name = default_field lookups &= Q(**{f"{field_name}__{lookup_expr}": search_value}, _negated=negated) return lookups class QuerySearchFilter(django_filters.CharFilter): """Add support for complex query syntax in search filter.""" def filter(self, qs, value): if not value: return qs lookups = parse_query_string_to_lookups( query_string=value, default_lookup_expr=self.lookup_expr, default_field=self.field_name, ) try: return qs.filter(lookups) except FieldError: return qs.none() class PackageSearchFilter(QuerySearchFilter): def filter(self, qs, value): if not value: return qs if value.startswith("pkg:"): return qs.for_package_url(value) if "://" not in value and ":" in value: return super().filter(qs, value) search_fields = ["type", "namespace", "name", "version", "download_url"] lookups = Q() for field_names in search_fields: lookups |= Q(**{f"{field_names}__{self.lookup_expr}": value}) return qs.filter(lookups)
nexB/purldb
packagedb/filters.py
filters.py
py
2,388
python
en
code
23
github-code
6
[ { "api_name": "django.db.models.Q", "line_number": 12, "usage_type": "call" }, { "api_name": "shlex.split", "line_number": 13, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 43, "usage_type": "call" }, { "api_name": "django_filters.CharFilter", "line_number": 48, "usage_type": "attribute" }, { "api_name": "django.core.exceptions.FieldError", "line_number": 63, "usage_type": "name" }, { "api_name": "django.db.models.Q", "line_number": 79, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 81, "usage_type": "call" } ]
36358232508
import hide headers = hide.headers TOKEN = hide.TOKEN tell_token = hide.tell_token chat_id = hide.chat_id import http.client import mimetypes import ssl import json import time from time import localtime, strftime from datetime import datetime import requests import json # mac has some issue with SLL this fixes it try: _create_unverified_https_context = ssl._create_unverified_context except AttributeError: # Legacy Python that doesn't verify HTTPS certificates by default pass else: # Handle target environment that doesn't support HTTPS verification ssl._create_default_https_context = _create_unverified_https_context def send_to_telegram(message): url = 'https://api.telegram.org/bot'+tell_token+'/sendMessage' for i in chat_id: data = {'chat_id': i, 'text': message} try: requests.post(url, data).json() print("Message sent to Telegram") except: print("message did not send") print("start") send_to_telegram("Start - The code has started") time_for_active_6 = 0 time_for_active_7 = 0 while True: try: conn = http.client.HTTPSConnection("apiv4.olarm.co") payload = '' conn.request("GET", "/api/v4/devices/2731071d-a487-44e8-bb29-fb9a189f6e72/events?pageLength=40", payload, headers) res = conn.getresponse() data = res.read() my_json = data.decode('utf8').replace("'", '"') jdata = json.loads(my_json) for i in jdata['data'][::-1]: if i['eventNum'] == 6 and i['eventState'] == 'active': time_for_active_6 = i['eventTime'] if i['eventNum'] == 7 and i['eventState'] == 'active': time_for_active_7 = i['eventTime'] if i['eventNum'] == 6 and i['eventState'] == 'closed': time_for_active_6 = 0 if i['eventNum'] == 7 and i['eventState'] == 'closed': time_for_active_7 = 0 # Function to find the diffrence between two dates. def time_between(d1, d2): d1 = datetime.strptime(d1, "%Y-%m-%d %H:%M:%S") d2 = datetime.strptime(d2, "%Y-%m-%d %H:%M:%S") #return d2-d1 return abs((d2 - d1).seconds/60) if time_for_active_6 != 0: time_from_the_gararge = (time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time_for_active_6/1000))) current = ( strftime("%Y-%m-%d %H:%M:%S", localtime() ) ) elapsed = time_between(time_from_the_gararge, current) if elapsed > 10: print("The Gararge (orange car) has been open for longer then ",elapsed , "mins" ) send_to_telegram("The door (orange car) has been open for " + str(elapsed) + " mins") time.sleep(120) if time_for_active_7 != 0: time_from_the_gararge = (time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time_for_active_7/1000))) current = ( strftime("%Y-%m-%d %H:%M:%S", localtime() ) ) elapsed = time_between(time_from_the_gararge, current) if elapsed > 10: print("the Gararge (blue car) has been open for longer then ",elapsed , "mins" ) send_to_telegram("The door (blue car) has been open for " + str(elapsed) + " mins") time.sleep(120) # finaly we wait for 2 mins and then we do the whole process again time.sleep(120) except: print("An error occurred try again") try: send_to_telegram("ERROR - Somthing went wrong - check the terminal") except: print("push bullet / telei is not working") time.sleep(10)
tomashege/Olarm_zone_check
check_zone.py
check_zone.py
py
3,684
python
en
code
0
github-code
6
[ { "api_name": "hide.headers", "line_number": 2, "usage_type": "attribute" }, { "api_name": "hide.TOKEN", "line_number": 3, "usage_type": "attribute" }, { "api_name": "hide.tell_token", "line_number": 4, "usage_type": "attribute" }, { "api_name": "hide.chat_id", "line_number": 5, "usage_type": "attribute" }, { "api_name": "ssl._create_unverified_context", "line_number": 18, "usage_type": "attribute" }, { "api_name": "ssl._create_default_https_context", "line_number": 24, "usage_type": "attribute" }, { "api_name": "requests.post", "line_number": 31, "usage_type": "call" }, { "api_name": "http.client.client.HTTPSConnection", "line_number": 43, "usage_type": "call" }, { "api_name": "http.client.client", "line_number": 43, "usage_type": "attribute" }, { "api_name": "http.client", "line_number": 43, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 50, "usage_type": "call" }, { "api_name": "datetime.datetime.strptime", "line_number": 64, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 64, "usage_type": "name" }, { "api_name": "datetime.datetime.strptime", "line_number": 65, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 65, "usage_type": "name" }, { "api_name": "time.strftime", "line_number": 70, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 70, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 71, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 71, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 76, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 79, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 79, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 80, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 80, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 85, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 87, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 94, "usage_type": "call" } ]
11299411121
from functools import update_wrapper import logging from .action import FunctionAction from .request import Request from .traject import Traject from .config import Configurable from .settings import SettingSectionContainer from .converter import ConverterRegistry from .predicate import PredicateRegistry from .tween import TweenRegistry from . import generic from reg import Registry as RegRegistry, CachingKeyLookup import venusian from . import compat from .compat import with_metaclass from .implicit import set_implicit from .mount import MountRegistry from .reify import reify from .template import TemplateEngineRegistry COMPONENT_CACHE_SIZE = 5000 ALL_CACHE_SIZE = 5000 FALLBACK_CACHE_SIZE = 5000 class Registry(Configurable, RegRegistry, MountRegistry, PredicateRegistry, ConverterRegistry, TweenRegistry, TemplateEngineRegistry): """A registry holding an application's configuration. """ app = None # app this registry belongs to. set later during scanning def __init__(self, name, bases, testing_config): self.name = name bases = [base.registry for base in bases if hasattr(base, 'registry')] RegRegistry.__init__(self) MountRegistry.__init__(self) PredicateRegistry.__init__(self) Configurable.__init__(self, bases, testing_config) ConverterRegistry.__init__(self) TweenRegistry.__init__(self) TemplateEngineRegistry.__init__(self) self.settings = SettingSectionContainer() self.clear() def actions(self): yield FunctionAction(self, generic.settings), lambda: self.settings def clear(self): """Clear all registrations in this application. """ RegRegistry.clear(self) MountRegistry.clear(self) PredicateRegistry.clear(self) Configurable.clear(self) ConverterRegistry.clear(self) TweenRegistry.clear(self) TemplateEngineRegistry.clear(self) self.traject = Traject() @reify def lookup(self): return CachingKeyLookup( self, COMPONENT_CACHE_SIZE, ALL_CACHE_SIZE, FALLBACK_CACHE_SIZE).lookup() def callback(scanner, name, obj): obj.registry.app = obj scanner.config.configurable(obj.registry) class AppMeta(type): def __new__(cls, name, bases, d): testing_config = d.get('testing_config') d['registry'] = Registry(name, bases, testing_config) result = super(AppMeta, cls).__new__(cls, name, bases, d) venusian.attach(result, callback) return result class App(with_metaclass(AppMeta)): """A Morepath-based application object. You subclass App to create a morepath application class. You can then configure this class using Morepath decorator directives. An application can extend one or more other applications, if desired, by subclassing them. By subclassing App itself, you get the base configuration of the Morepath framework itself. Conflicting configuration within an app is automatically rejected. An subclass app cannot conflict with the apps it is subclassing however; instead configuration is overridden. You can turn your app class into a WSGI application by instantiating it. You can then call it with the ``environ`` and ``start_response`` arguments. """ testing_config = None parent = None """The parent in which this app was mounted.""" request_class = Request """The class of the Request to create. Must be a subclass of :class:`morepath.Request`. """ def __init__(self): pass @reify def lookup(self): """Get the :class:`reg.Lookup` for this application. :returns: a :class:`reg.Lookup` instance. """ return self.registry.lookup def set_implicit(self): set_implicit(self.lookup) @reify def traject(self): return self.registry.traject def request(self, environ): """Create a :class:`Request` given WSGI environment for this app. :param environ: WSGI environment :returns: :class:`morepath.Request` instance """ return self.request_class(environ, self) def __call__(self, environ, start_response): """This app as a WSGI application. """ request = self.request(environ) response = self.publish(request) return response(environ, start_response) def ancestors(self): """Return iterable of all ancestors of this app. Includes this app itself as the first ancestor, all the way up to the root app in the mount chain. """ app = self while app is not None: yield app app = app.parent @reify def root(self): """The root application. """ return list(self.ancestors())[-1] def child(self, app, **variables): """Get app mounted in this app. Either give it an instance of the app class as the first parameter, or the app class itself (or name under which it was mounted) as the first parameter and as ``variables`` the parameters that go to its ``mount`` function. Returns the mounted application object, with its ``parent`` attribute set to this app object, or ``None`` if this application cannot be mounted in this one. """ if isinstance(app, App): result = app # XXX assert that variables is empty # XXX do we need to deal with subclasses of apps? if app.__class__ not in self.registry.mounted: return None else: if isinstance(app, compat.string_types): factory = self.registry.named_mounted.get(app) else: factory = self.registry.mounted.get(app) if factory is None: return None result = factory(**variables) result.parent = self return result def sibling(self, app, **variables): """Get app mounted next to this app. Either give it an instance of the app class as the first parameter, or the app class itself (or name under which it was mounted) as the first parameter and as ``variables`` the parameters that go to its ``mount`` function. Returns the mounted application object, with its ``parent`` attribute set to the same parent as this one, or ``None`` if such a sibling application does not exist. """ parent = self.parent if parent is None: return None return parent.child(app, **variables) @reify def publish(self): # XXX import cycles... from .publish import publish result = publish for tween_factory in reversed(self.registry.sorted_tween_factories()): result = tween_factory(self, result) return result @classmethod def directive(cls, name): """Decorator to register a new directive with this application class. You use this as a class decorator for a :class:`morepath.Directive` subclass:: @App.directive('my_directive') class FooDirective(morepath.Directive): ... This needs to be executed *before* the directive is being used and thus might introduce import dependency issues unlike normal Morepath configuration, so beware! An easy way to make sure that all directives are installed before you use them is to make sure you define them in the same module as where you define the application class that has them. """ return DirectiveDirective(cls, name) @classmethod def dotted_name(cls): return '%s.%s' % (cls.__module__, cls.__name__) class DirectiveDirective(object): def __init__(self, cls, name): self.cls = cls self.name = name def __call__(self, directive): directive_name = self.name def method(self, *args, **kw): result = directive(self, *args, **kw) result.directive_name = directive_name result.argument_info = args, kw result.logger = logging.getLogger('morepath.directive.%s' % directive_name) return result # this is to help morepath.sphinxext to do the right thing method.actual_directive = directive update_wrapper(method, directive.__init__) setattr(self.cls, self.name, classmethod(method)) return directive
magnus-lycka/morepath
morepath/app.py
app.py
py
8,665
python
en
code
null
github-code
6
[ { "api_name": "config.Configurable", "line_number": 28, "usage_type": "name" }, { "api_name": "reg.Registry", "line_number": 28, "usage_type": "name" }, { "api_name": "mount.MountRegistry", "line_number": 28, "usage_type": "name" }, { "api_name": "predicate.PredicateRegistry", "line_number": 28, "usage_type": "name" }, { "api_name": "converter.ConverterRegistry", "line_number": 29, "usage_type": "name" }, { "api_name": "tween.TweenRegistry", "line_number": 29, "usage_type": "name" }, { "api_name": "template.TemplateEngineRegistry", "line_number": 29, "usage_type": "name" }, { "api_name": "reg.Registry.__init__", "line_number": 37, "usage_type": "call" }, { "api_name": "reg.Registry", "line_number": 37, "usage_type": "name" }, { "api_name": "mount.MountRegistry.__init__", "line_number": 38, "usage_type": "call" }, { "api_name": "mount.MountRegistry", "line_number": 38, "usage_type": "name" }, { "api_name": "predicate.PredicateRegistry.__init__", "line_number": 39, "usage_type": "call" }, { "api_name": "predicate.PredicateRegistry", "line_number": 39, "usage_type": "name" }, { "api_name": "config.Configurable.__init__", "line_number": 40, "usage_type": "call" }, { "api_name": "config.Configurable", "line_number": 40, "usage_type": "name" }, { "api_name": "converter.ConverterRegistry.__init__", "line_number": 41, "usage_type": "call" }, { "api_name": "converter.ConverterRegistry", "line_number": 41, "usage_type": "name" }, { "api_name": "tween.TweenRegistry.__init__", "line_number": 42, "usage_type": "call" }, { "api_name": "tween.TweenRegistry", "line_number": 42, "usage_type": "name" }, { "api_name": "template.TemplateEngineRegistry.__init__", "line_number": 43, "usage_type": "call" }, { "api_name": "template.TemplateEngineRegistry", "line_number": 43, "usage_type": "name" }, { "api_name": "settings.SettingSectionContainer", "line_number": 44, "usage_type": "call" }, { "api_name": "action.FunctionAction", "line_number": 48, "usage_type": "call" }, { "api_name": "reg.Registry.clear", "line_number": 53, "usage_type": "call" }, { "api_name": "reg.Registry", "line_number": 53, "usage_type": "name" }, { "api_name": "mount.MountRegistry.clear", "line_number": 54, "usage_type": "call" }, { "api_name": "mount.MountRegistry", "line_number": 54, "usage_type": "name" }, { "api_name": "predicate.PredicateRegistry.clear", "line_number": 55, "usage_type": "call" }, { "api_name": "predicate.PredicateRegistry", "line_number": 55, "usage_type": "name" }, { "api_name": "config.Configurable.clear", "line_number": 56, "usage_type": "call" }, { "api_name": "config.Configurable", "line_number": 56, "usage_type": "name" }, { "api_name": "converter.ConverterRegistry.clear", "line_number": 57, "usage_type": "call" }, { "api_name": "converter.ConverterRegistry", "line_number": 57, "usage_type": "name" }, { "api_name": "tween.TweenRegistry.clear", "line_number": 58, "usage_type": "call" }, { "api_name": "tween.TweenRegistry", "line_number": 58, "usage_type": "name" }, { "api_name": "template.TemplateEngineRegistry.clear", "line_number": 59, "usage_type": "call" }, { "api_name": "template.TemplateEngineRegistry", "line_number": 59, "usage_type": "name" }, { "api_name": "traject.Traject", "line_number": 60, "usage_type": "call" }, { "api_name": "reg.CachingKeyLookup", "line_number": 64, "usage_type": "call" }, { "api_name": "reify.reify", "line_number": 62, "usage_type": "name" }, { "api_name": "venusian.attach", "line_number": 81, "usage_type": "call" }, { "api_name": "compat.with_metaclass", "line_number": 85, "usage_type": "call" }, { "api_name": "request.Request", "line_number": 107, "usage_type": "name" }, { "api_name": "reify.reify", "line_number": 115, "usage_type": "name" }, { "api_name": "implicit.set_implicit", "line_number": 124, "usage_type": "call" }, { "api_name": "reify.reify", "line_number": 126, "usage_type": "name" }, { "api_name": "reify.reify", "line_number": 156, "usage_type": "name" }, { "api_name": "compat.string_types", "line_number": 182, "usage_type": "attribute" }, { "api_name": "publish.publish", "line_number": 213, "usage_type": "name" }, { "api_name": "reify.reify", "line_number": 209, "usage_type": "name" }, { "api_name": "logging.getLogger", "line_number": 255, "usage_type": "call" }, { "api_name": "functools.update_wrapper", "line_number": 261, "usage_type": "call" } ]
30578979945
import os import json from datetime import date from flask import Flask, g, jsonify, request, abort from flask_cors import CORS #comment this on deployment from db.jfl_db import Database app = Flask(__name__) CORS(app) #comment this on deployment def get_db(): ''' Returns the document indexing object. Initializes a new Index object if one doesn't exist ''' db = getattr(g, '_db', None) if db is None: db = Database( host="localhost", user="jeff", password="password", database="jfl" ) return db def validate_current_week_request(params): if params.get('year') is None: print("INFO: no 'year' attribute found in rewquest. Adding the current year") params['year'] = date.today().year def generate_current_week_response(args): ''' Returns a JSON response with the current week ''' response = get_db().get_current_week(args['year']) return jsonify({"current_week": response}) def validate_teams_playing_request(params): errors = [] if params.get('week') is None: print("ERROR: no 'week' attribute found in request.") errors.append("No 'week' attribute found in request.") if params.get('year') is None: print("INFO: no 'year' attribute found in rewquest. Adding the current year") params['year'] = date.today().year if len(errors) > 0: error_message = '\n' + '\n\t'.join(errors) abort(400, f"Invalid Request: {error_message}") def generate_teams_playing_response(args): ''' Returns a JSON response with the teams playing for the week ''' response = get_db().get_teams_playing(args['week'], args['year']) return jsonify(response) def validate_draft_status_request(params): errors = [] if params.get('week') is None: print("ERROR: no 'week' attribute found in request.") errors.append("No 'week' attribute found in request.") if params.get('year') is None: print("INFO: no 'year' attribute found in rewquest. Adding the current year") params['year'] = date.today().year if len(errors) > 0: error_message = '\n' + '\n\t'.join(errors) abort(400, f"Invalid Request: {error_message}") def generate_draft_status_response(args): ''' Returns a JSON response with the teams playing for the week ''' response = get_db().get_current_picks(args['week'], args['year']) return jsonify(response) def validate_pick_team_request(params): errors = [] if params.get('user_id') is None: print("ERROR: no 'user_id' attribute found in rewquest.") errors.append("No 'user_id' attribute found in request.") if params.get('week') is None: print("ERROR: no 'week' attribute found in request.") errors.append("No 'week' attribute found in request.") if params.get('pick') is None: print("ERROR: no 'pick' attribute found in request.") errors.append("No 'pick' attribute found in request.") if params.get('team') is None: print("ERROR: no 'team' attribute found in request.") errors.append("No 'team' attribute found in request.") if params.get('year') is None: print("INFO: no 'year' attribute found in request. Adding the current year") params['year'] = date.today().year if len(errors) > 0: error_message = '\n' + '\n\t'.join(errors) abort(400, f"Invalid Request: {error_message}") def generate_pick_team_response(args): ''' Runs the pick_teams db call Returns a JSON successful message upon completion ''' get_db().select_team(args['user_id'], args['week'], args['pick'], args['team'], args['year']) return jsonify({"success": True}) def validate_season_picks_request(params): if params.get('year') is None: print("INFO: no 'year' attribute found in request. Adding the current year") params['year'] = date.today().year def generate_season_picks_response(args): ''' Returns a JSON response with the teams selected by week & user/player ''' response = get_db().get_season_selections(args['year']) return jsonify(response) def validate_standings_request(params): if params.get('year') is None: print("INFO: no 'year' attribute found in request. Adding the current year") params['year'] = date.today().year def generate_standings_response(args): ''' Returns a JSON response with NFL team information ''' response = get_db().get_standings(args['year']) return jsonify(response) def validate_team_data_request(params): if params.get('team_id') is None: print("ERROR: no 'team_id' attribute found in request.") abort(400, f"Invalid Request: no 'team_id' attribute found in request.") def generate_team_data_response(args): ''' Returns a JSON response with NFL team information ''' response = get_db().get_team_info(args['team_id']) return jsonify(response) def validate_user_data_request(params): if params.get('user_id') is None: print("ERROR: no 'user_id' attribute found in request.") abort(400, f"Invalid Request: no 'user_id' attribute found in request.") def generate_user_data_response(args): ''' Returns a JSON response with user information ''' response = get_db().get_user_info(args['user_id']) return jsonify(response) def validate_complete_week_request(params): errors = [] if params.get('week') is None: print("ERROR: no 'week' attribute found in request.") abort(400, f"Invalid Request: no 'week' attribute found in request.") if params.get('year') is None: print("INFO: no 'year' attribute found in request. Adding the current year") params['year'] = date.today().year if len(errors) > 0: error_message = '\n' + '\n\t'.join(errors) abort(400, f"Invalid Request: {error_message}") def generate_complete_week_response(args): ''' Returns a JSON response verifying the week was completed ''' response = get_db().complete_week(args['week'], args['year']) return jsonify({"success": True}) def validate_reset_week_request(params): errors = [] if params.get('week') is None: print("ERROR: no 'week' attribute found in request.") abort(400, f"Invalid Request: no 'week' attribute found in request.") if params.get('year') is None: print("INFO: no 'year' attribute found in request. Adding the current year") params['year'] = date.today().year if len(errors) > 0: error_message = '\n' + '\n\t'.join(errors) abort(400, f"Invalid Request: {error_message}") def generate_reset_week_response(args): ''' Returns a JSON response verifying the draft picks were reset ''' response = get_db().reset_picks(args['week'], args['year']) return jsonify({"success": True}) def validate_sim_games_request(params): errors = [] if params.get('week') is None: print("ERROR: no 'week' attribute found in request.") abort(400, f"Invalid Request: no 'user_id' attribute found in request.") if params.get('year') is None: print("INFO: no 'year' attribute found in request. Adding the current year") params['year'] = date.today().year if len(errors) > 0: error_message = '\n' + '\n\t'.join(errors) abort(400, f"Invalid Request: {error_message}") def generate_sim_games_response(args): ''' Returns a JSON response verifying the games were simulated for the week ''' response = get_db().sim_week(args['week'], args['year']) return jsonify({"success": True}) @app.route('/api/current_week', methods=['GET']) def api_current_week(): ''' Route for the API to get the current week ''' request_args = dict(request.args) validate_current_week_request(request_args) return generate_current_week_response(request_args) @app.route('/api/teams_playing', methods=['GET']) def api_get_teams_playing(): ''' Route for the API to get the teams playing ''' request_args = dict(request.args) validate_teams_playing_request(request_args) return generate_teams_playing_response(request_args) @app.route('/api/draft_status', methods=['GET']) def api_draft_status(): ''' Route for the API to get the draft status ''' request_args = dict(request.args) validate_draft_status_request(request_args) return generate_draft_status_response(request_args) @app.route('/api/pick_team', methods=['POST']) def api_pick_team(): ''' Route for the API to make a draft selection ''' request_data = json.loads(request.data) validate_pick_team_request(request_data) return generate_pick_team_response(request_data) @app.route('/api/season_selections', methods=['GET']) def api_season_picks(): ''' Route for the API to get the league's picks for the entire season ''' request_args = dict(request.args) validate_season_picks_request(request_args) return generate_season_picks_response(request_args) @app.route('/api/standings', methods=['GET']) def api_standings(): ''' Route for the API to get the standings of the league ''' request_args = dict(request.args) validate_standings_request(request_args) return generate_standings_response(request_args) @app.route('/api/team_data', methods=['GET']) def api_team_data(): ''' Route for the API to get information about an NFL team ''' request_args = dict(request.args) validate_team_data_request(request_args) return generate_team_data_response(request_args) @app.route('/api/user_data', methods=['GET']) def api_user_data(): ''' Route for the API to get information about a user ''' request_args = dict(request.args) validate_user_data_request(request_args) return generate_user_data_response(request_args) @app.route('/api/complete_week', methods=['POST']) def api_complete_week(): ''' Route for the API to complete the week and move to the next week ''' request_data = json.loads(request.data) validate_complete_week_request(request_data) return generate_complete_week_response(request_data) @app.route('/api/reset_week', methods=['POST']) def api_reset_week(): ''' Route for the API to reset the draft picks for a week ''' request_data = json.loads(request.data) validate_reset_week_request(request_data) return generate_reset_week_response(request_data) @app.route('/api/sim_games', methods=['POST']) def api_sim_games(): ''' Route for the API to sim the games for a week ''' request_data = json.loads(request.data) validate_sim_games_request(request_data) return generate_sim_games_response(request_data) if __name__ == '__main__': # Run the app debug = os.environ.get('DEBUG', 'false').lower() == 'true' app.run(host='0.0.0.0', port=5000, debug=debug)
zrahn93/jfl
jfl_services/run.py
run.py
py
11,376
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 10, "usage_type": "call" }, { "api_name": "flask_cors.CORS", "line_number": 11, "usage_type": "call" }, { "api_name": "db.jfl_db", "line_number": 18, "usage_type": "name" }, { "api_name": "flask.g", "line_number": 18, "usage_type": "argument" }, { "api_name": "db.jfl_db", "line_number": 19, "usage_type": "name" }, { "api_name": "db.jfl_db", "line_number": 20, "usage_type": "name" }, { "api_name": "db.jfl_db.Database", "line_number": 20, "usage_type": "call" }, { "api_name": "db.jfl_db", "line_number": 26, "usage_type": "name" }, { "api_name": "datetime.date.today", "line_number": 32, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 32, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 40, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 50, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 50, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 54, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 62, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 72, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 72, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 76, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 84, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 103, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 103, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 107, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 116, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 122, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 122, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 130, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 136, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 136, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 144, "usage_type": "call" }, { "api_name": "flask.abort", "line_number": 150, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 158, "usage_type": "call" }, { "api_name": "flask.abort", "line_number": 164, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 172, "usage_type": "call" }, { "api_name": "flask.abort", "line_number": 179, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 182, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 182, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 186, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 194, "usage_type": "call" }, { "api_name": "flask.abort", "line_number": 201, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 204, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 204, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 208, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 216, "usage_type": "call" }, { "api_name": "flask.abort", "line_number": 223, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 226, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 226, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 230, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 238, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 246, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 246, "usage_type": "name" }, { "api_name": "flask.request.args", "line_number": 256, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 256, "usage_type": "name" }, { "api_name": "flask.request.args", "line_number": 266, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 266, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 276, "usage_type": "call" }, { "api_name": "flask.request.data", "line_number": 276, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 276, "usage_type": "name" }, { "api_name": "flask.request.args", "line_number": 286, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 286, "usage_type": "name" }, { "api_name": "flask.request.args", "line_number": 296, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 296, "usage_type": "name" }, { "api_name": "flask.request.args", "line_number": 306, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 306, "usage_type": "name" }, { "api_name": "flask.request.args", "line_number": 316, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 316, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 326, "usage_type": "call" }, { "api_name": "flask.request.data", "line_number": 326, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 326, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 336, "usage_type": "call" }, { "api_name": "flask.request.data", "line_number": 336, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 336, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 346, "usage_type": "call" }, { "api_name": "flask.request.data", "line_number": 346, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 346, "usage_type": "name" }, { "api_name": "os.environ.get", "line_number": 353, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 353, "usage_type": "attribute" } ]
43242321794
# Same as second example, but using F1 (ALM) import casadi.casadi as cs import opengen as og import json nu = 3 np = 1 u = cs.SX.sym("u", nu) p = cs.SX.sym("p", np) f = cs.dot(u, u) for i in range(nu): f += p * u[i] F1 = cs.sin(u[0]) - 0.3 C = og.constraints.Zero() U = og.constraints.Ball2(None, 0.5) problem = og.builder.Problem(u, p, f) \ .with_constraints(U) \ .with_aug_lagrangian_constraints(F1, C) meta = og.config.OptimizerMeta() \ .with_version("0.0.0") \ .with_authors(["Shane Trimble"]) \ .with_licence("CC4.0-By") \ .with_optimizer_name("shane") build_config = og.config.BuildConfiguration() \ .with_build_directory("python_build") \ .with_build_mode("debug") \ .with_tcp_interface_config() solver_config = og.config.SolverConfiguration() \ .with_tolerance(1e-5) \ .with_initial_tolerance(1e-5) \ .with_initial_penalty(10) \ .with_penalty_weight_update_factor(2) \ .with_max_outer_iterations(20) builder = og.builder.OpEnOptimizerBuilder(problem, metadata=meta, build_configuration=build_config, solver_configuration=solver_config) builder.build() mng = og.tcp.OptimizerTcpManager('python_build/shane') mng.start() pong = mng.ping() # check if the server is alive print(pong) solution = mng.call([1.0]) # call the solver over TCP print(json.dumps(solution, indent=4, sort_keys=False)) mng.kill()
BjoernLindqvist/Crazyflie_NMPC
third_example.py
third_example.py
py
1,718
python
en
code
0
github-code
6
[ { "api_name": "casadi.casadi.SX.sym", "line_number": 8, "usage_type": "call" }, { "api_name": "casadi.casadi.SX", "line_number": 8, "usage_type": "attribute" }, { "api_name": "casadi.casadi", "line_number": 8, "usage_type": "name" }, { "api_name": "casadi.casadi.SX.sym", "line_number": 9, "usage_type": "call" }, { "api_name": "casadi.casadi.SX", "line_number": 9, "usage_type": "attribute" }, { "api_name": "casadi.casadi", "line_number": 9, "usage_type": "name" }, { "api_name": "casadi.casadi.dot", "line_number": 11, "usage_type": "call" }, { "api_name": "casadi.casadi", "line_number": 11, "usage_type": "name" }, { "api_name": "casadi.casadi.sin", "line_number": 15, "usage_type": "call" }, { "api_name": "casadi.casadi", "line_number": 15, "usage_type": "name" }, { "api_name": "opengen.constraints.Zero", "line_number": 16, "usage_type": "call" }, { "api_name": "opengen.constraints", "line_number": 16, "usage_type": "attribute" }, { "api_name": "opengen.constraints.Ball2", "line_number": 18, "usage_type": "call" }, { "api_name": "opengen.constraints", "line_number": 18, "usage_type": "attribute" }, { "api_name": "opengen.builder.Problem", "line_number": 20, "usage_type": "call" }, { "api_name": "opengen.builder", "line_number": 20, "usage_type": "attribute" }, { "api_name": "opengen.config.OptimizerMeta", "line_number": 24, "usage_type": "call" }, { "api_name": "opengen.config", "line_number": 24, "usage_type": "attribute" }, { "api_name": "opengen.config.BuildConfiguration", "line_number": 30, "usage_type": "call" }, { "api_name": "opengen.config", "line_number": 30, "usage_type": "attribute" }, { "api_name": "opengen.config.SolverConfiguration", "line_number": 35, "usage_type": "call" }, { "api_name": "opengen.config", "line_number": 35, "usage_type": "attribute" }, { "api_name": "opengen.builder.OpEnOptimizerBuilder", "line_number": 42, "usage_type": "call" }, { "api_name": "opengen.builder", "line_number": 42, "usage_type": "attribute" }, { "api_name": "opengen.tcp.OptimizerTcpManager", "line_number": 48, "usage_type": "call" }, { "api_name": "opengen.tcp", "line_number": 48, "usage_type": "attribute" }, { "api_name": "json.dumps", "line_number": 54, "usage_type": "call" } ]
74348094589
from collections import namedtuple, defaultdict from itertools import combinations, product from math import sqrt from typing import List INPUTTEST = 'inputtest.txt' INPUTREAL = 'input.txt' def getLines(fileName): file = open(fileName,'r') lines = file.read().splitlines() file.close() return lines class Point3(namedtuple('Point', 'x y z')): def __repr__(self): return f'{self.x},{self.y},{self.z}' # performed x y z rotations in a loop and stored in a set rotations = [([2, 0, 1], [-1, -1, 1]), ([0, 1, 2], [1, -1, -1]), ([2, 1, 0], [-1, -1, -1]), ([2, 1, 0], [1, -1, 1]), ([0, 2, 1], [-1, -1, -1]), ([1, 2, 0], [1, -1, -1]), ([1, 0, 2], [-1, -1, -1]), ([1, 2, 0], [1, 1, 1]), ([0, 2, 1], [-1, 1, 1]), ([0, 1, 2], [-1, 1, -1]), ([0, 2, 1], [1, -1, 1]), ([2, 0, 1], [-1, 1, -1]), ([1, 0, 2], [1, 1, -1]), ([2, 1, 0], [1, 1, -1]), ([2, 0, 1], [1, 1, 1]), ([2, 1, 0], [-1, 1, 1]), ([0, 1, 2], [1, 1, 1]), ([1, 0, 2], [1, -1, 1]), ([1, 0, 2], [-1, 1, 1]), ([0, 1, 2], [-1, -1, 1]), ([1, 2, 0], [-1, 1, -1]), ([1, 2, 0], [-1, -1, 1]), ([0, 2, 1], [1, 1, -1]), ([2, 0, 1], [1, -1, -1])] def formatInput(lines): scanners = {} scannerCurrent = [] i = 0 lines.append("") for line in filter(lambda x: not x.startswith("---"), lines): if len(line) == 0 and len(scannerCurrent) > 0: scanners[i] = scannerCurrent scannerCurrent = [] i += 1 else: scannerCurrent.append([int(t) for t in line.split(",")]) return scanners def partOne(scanners): intersects = getIntersects(scanners) mapping_dict = createMappings(intersects, scanners) beacons = set(toPoint(p) for p in scanners[0]) used_mappings = set() transformed_scanners = {0} scanner_origins = [[0, 0, 0]] while len(transformed_scanners) < len(scanners): queue = [k for k in mapping_dict.keys() if k[0] in transformed_scanners and k[1] not in transformed_scanners] while len(queue) > 0: el = queue.pop() if el[1] in transformed_scanners: continue p_transpose = list(zip(*scanners[el[1]])) centroid = list(zip([0, 0, 0])) # origin relative to scanner itself is 0, 0, 0 use_mapping = el while True: centroid = transform(centroid, *mapping_dict[use_mapping]) p_transpose = transform(p_transpose, *mapping_dict[use_mapping]) new_points = set(toPoint(p) for p in zip(*p_transpose)) if use_mapping[0] == 0: break for mapping in used_mappings: if mapping[1] == use_mapping[0]: use_mapping = mapping break scanner_origins.append([centroid[0][0], centroid[1][0], centroid[2][0]]) transformed_scanners.add(el[1]) beacons.update(new_points) used_mappings.add(el) return len(beacons), scanner_origins def partTwo(scanner_origins): return max(sum(map(lambda x: abs(x[0] - x[1]), zip(*p))) for p in combinations(scanner_origins, 2)) def createMappings(intersects, scanners): mappingDict = {} for i in intersects: pointToDistA = defaultdict(set) for p in combinations(scanners[i[0]], 2): dist = euclidDist(*p) pointToDistA[toPoint(p[0])].add(dist) pointToDistA[toPoint(p[1])].add(dist) pointToDistB = defaultdict(set) for p in combinations(scanners[i[1]], 2): dist = euclidDist(*p) pointToDistB[toPoint(p[0])].add(dist) pointToDistB[toPoint(p[1])].add(dist) pointsA = [] pointsB = [] for p in product(pointToDistA.keys(), pointToDistB.keys()): intersect = pointToDistA[p[0]].intersection(pointToDistB[p[1]]) if len(intersect) >= 11: # 12 common beacons 1 src and 11 dst for distance pointsA.append(pointToList(p[0])) pointsB.append(pointToList(p[1])) mappingDict[i] = mapScannerAToB(pointsA, pointsB) return mappingDict def mapScannerAToB(pointsA, pointsB): aTranspose = list(zip(*pointsA)) bTranspose = list(zip(*pointsB)) for perms, signs in rotations: rotated = rotate(bTranspose, perms, signs) offset = [] for p in zip(rotated, aTranspose): points = set([x[1] - x[0] for x in zip(p[0], p[1])]) if len(points) == 1: offset.append(points.pop()) if len(offset) == 3: return offset, perms, signs return None def transform(itemToTransform, centerOfTarget, transformPerm, transformSign): rotated = rotate(itemToTransform, transformPerm, transformSign) return [list(map(lambda x: centerOfTarget[i] + x, p)) for i, p in enumerate(rotated)] def getIntersects(scanners): intersections = [] distDict = {i: set(euclidDist(*p) for p in combinations(scanners[i], 2)) for i in scanners.keys()} for i in combinations(range(len(scanners)), 2): if len(distDict[i[0]].intersection(distDict[i[1]])) >= 66: intersections.append(i) intersections.append((i[1], i[0])) return intersections def rotate(point, perms, signs): return map(lambda n: n * signs[0], point[perms[0]]), \ map(lambda n: n * signs[1], point[perms[1]]), \ map(lambda n: n * signs[2], point[perms[2]]) def euclidDist(a, b): return sqrt(sum(map(lambda x: pow(x[0] - x[1], 2), zip(a, b)))) def toPoint(plist): if len(plist) == 3: return Point3(plist[0], plist[1], plist[2]) else: raise Exception("Can't cover to point") def pointToList(p): return [p.x, p.y, p.z] lines = getLines(INPUTREAL) scanners = formatInput(lines) part1, centroids = partOne(scanners) '''Part One''' print(part1) '''Part Two''' print(partTwo(centroids))
David-Hatcher/AoC2021
Day 19/Day19.py
Day19.py
py
5,987
python
en
code
1
github-code
6
[ { "api_name": "collections.namedtuple", "line_number": 16, "usage_type": "call" }, { "api_name": "itertools.combinations", "line_number": 78, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 84, "usage_type": "call" }, { "api_name": "itertools.combinations", "line_number": 85, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 89, "usage_type": "call" }, { "api_name": "itertools.combinations", "line_number": 90, "usage_type": "call" }, { "api_name": "itertools.product", "line_number": 96, "usage_type": "call" }, { "api_name": "itertools.combinations", "line_number": 127, "usage_type": "call" }, { "api_name": "itertools.combinations", "line_number": 128, "usage_type": "call" }, { "api_name": "math.sqrt", "line_number": 142, "usage_type": "call" } ]
15821882121
#!/usr/bin/env python import rospy from std_msgs.msg import Bool from audio_common_msgs.msg import AudioData import os import argparse import pyaudio import wave import datetime class AudioCapture: def __init__( self, is_record_topic, audio_data_topic, num_channels, sample_rate, chunk_size, format_size, file_name_prefix='', out_file_directory='audio', ): rospy.init_node('audio_recorder', anonymous=True) self._is_record_subscriber = rospy.Subscriber(is_record_topic, Bool, self._record_callback, queue_size=1) self._audio_data_topic = rospy.Subscriber(audio_data_topic, AudioData, self._audio_data_callback, queue_size=1) self._num_channels = num_channels self._sample_rate = sample_rate self._chunk_size = chunk_size self._format_size = format_size self._file_name_prefix = file_name_prefix if len(self._file_name_prefix) > 0: self._file_name_prefix += '_' rospy.loginfo(self._file_name_prefix) self._out_directory = out_file_directory self._start_record_datetime = None self._audio_data = None def _record_callback(self, data): is_record = data.data self._record(is_record) def _record(self, is_record): if is_record: if self._is_recording(): rospy.logerr("Already recording audio") else: rospy.loginfo("Starting to record audio") self._audio_data = [] self._start_record_datetime = datetime.datetime.now() else: if self._is_recording(): rospy.loginfo("Stopped recording audio") self._save_recording(self._audio_data) # Clean up self._audio_data = None self._start_record_datetime = None else: rospy.logerr("No recording in progress") def _audio_data_callback(self, data): if self._is_recording(): self._audio_data.append(data.data) def _is_recording(self): return self._start_record_datetime is not None def _save_recording(self, audio_data): if not os.path.exists(self._out_directory): os.makedirs(self._out_directory) file_name = "{prefix}{date_str}.{ext}".format( prefix=self._file_name_prefix, date_str=datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S'), ext='wav' ) file_path = os.path.join(self._out_directory, file_name) wf = wave.open(file_path, 'wb') wf.setnchannels(self._num_channels) wf.setsampwidth(pyaudio.PyAudio().get_sample_size(self._format_size)) wf.setframerate(self._sample_rate) wf.setnframes(self._chunk_size) wf.writeframes(b''.join(audio_data)) wf.close() if __name__ == "__main__": # Getting the instance_id for the parameters parser = argparse.ArgumentParser(description='instance_id for audio recording') parser.add_argument('--instance_id', help='instance_id for parameters namespace', default="1") args, _ = parser.parse_known_args() # Getting the values as params is_record_topic = rospy.get_param("/data_capture/"+args.instance_id+"/audio_capture/is_record_topic", "audio_capture/is_record") audio_topic = rospy.get_param("/data_capture/"+args.instance_id+"/audio_capture/audio_topic", "audio/audio") output_directory = rospy.get_param("/data_capture/"+args.instance_id+"/audio_capture/output_directory", "/root/audio") num_channels = rospy.get_param("/data_capture/"+args.instance_id+"/audio_capture/num_channels", 1) sample_rate = rospy.get_param("/data_capture/"+args.instance_id+"/audio_capture/sample_rate", 16000) chunk_size = rospy.get_param("/data_capture/"+args.instance_id+"/audio_capture/chunk_size", 1024) format_type = rospy.get_param("/data_capture/"+args.instance_id+"/audio_capture/format_type", "wave") format_size = eval(rospy.get_param("/data_capture/"+args.instance_id+"/audio_capture/format_size", "pyaudio.paInt16")) file_name_prefix = rospy.get_param("/data_capture/"+args.instance_id+"/audio_capture/file_name_prefix", '') assert format_type == "wave" AudioCapture( is_record_topic=is_record_topic, audio_data_topic=audio_topic, out_file_directory=output_directory, num_channels=num_channels, sample_rate=sample_rate, chunk_size=chunk_size, format_size=format_size, file_name_prefix=file_name_prefix ) rospy.spin()
robotpt/ros-data-capture
src/data_capture/audio_capture2/scripts/capture.py
capture.py
py
4,708
python
en
code
0
github-code
6
[ { "api_name": "rospy.init_node", "line_number": 30, "usage_type": "call" }, { "api_name": "rospy.Subscriber", "line_number": 32, "usage_type": "call" }, { "api_name": "std_msgs.msg.Bool", "line_number": 32, "usage_type": "argument" }, { "api_name": "rospy.Subscriber", "line_number": 33, "usage_type": "call" }, { "api_name": "audio_common_msgs.msg.AudioData", "line_number": 33, "usage_type": "argument" }, { "api_name": "rospy.loginfo", "line_number": 42, "usage_type": "call" }, { "api_name": "rospy.logerr", "line_number": 57, "usage_type": "call" }, { "api_name": "rospy.loginfo", "line_number": 59, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 61, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 61, "usage_type": "attribute" }, { "api_name": "rospy.loginfo", "line_number": 65, "usage_type": "call" }, { "api_name": "rospy.logerr", "line_number": 72, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 83, "usage_type": "call" }, { "api_name": "os.path", "line_number": 83, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 84, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 87, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 87, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 90, "usage_type": "call" }, { "api_name": "os.path", "line_number": 90, "usage_type": "attribute" }, { "api_name": "wave.open", "line_number": 92, "usage_type": "call" }, { "api_name": "pyaudio.PyAudio", "line_number": 94, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 104, "usage_type": "call" }, { "api_name": "rospy.get_param", "line_number": 109, "usage_type": "call" }, { "api_name": "rospy.get_param", "line_number": 110, "usage_type": "call" }, { "api_name": "rospy.get_param", "line_number": 111, "usage_type": "call" }, { "api_name": "rospy.get_param", "line_number": 112, "usage_type": "call" }, { "api_name": "rospy.get_param", "line_number": 113, "usage_type": "call" }, { "api_name": "rospy.get_param", "line_number": 114, "usage_type": "call" }, { "api_name": "rospy.get_param", "line_number": 115, "usage_type": "call" }, { "api_name": "rospy.get_param", "line_number": 116, "usage_type": "call" }, { "api_name": "rospy.get_param", "line_number": 117, "usage_type": "call" }, { "api_name": "rospy.spin", "line_number": 131, "usage_type": "call" } ]
27757527715
import math import torch import torch.nn as nn from torch.nn.parameter import Parameter import util as u def reset_param(t): stdv = 2. / math.sqrt(t.size(0)) t.data.uniform_(-stdv,stdv) class GCN_LSTM(nn.Module): def __init__(self, args, activation, device='cpu'): super().__init__() self.lstm=nn.LSTM( input_size=args.layer_2_feats, hidden_size=args.lstm_feats, num_layers=args.num_lstm_layers ) # self.lstm = nn.GRU( # input_size=args.layer_2_feats, # hidden_size=args.lstm_l2_feats, # num_layers=args.lstm_l2_layers # ) self.device=device self.activation=activation self.num_layers=args.num_gcn_layers self.choose_top_k=TopK(args.layer_2_feats, args.k) self.w_list=nn.ParameterList() for i in range(self.num_layers): if i==0: w_i=Parameter(torch.Tensor(args.feats_per_node, args.layer_1_feats)) reset_param(w_i) else: w_i=Parameter(torch.Tensor(args.layer_1_feats, args.layer_2_feats)) reset_param(w_i) self.w_list.append(w_i) def forward(self, A_list, node_feats, mask_list): last_l_seq=[] for t, Ahat in enumerate(A_list): idx=mask_list[t] Ahat, x=Ahat.to(self.device), node_feats.to(self.device) x=x.matmul(self.w_list[0]) x[idx]=self.activation(Ahat.matmul(x[idx])) for i in range(1, self.num_layers): x=x.matmul(self.w_list[i]) x[idx]=self.activation(Ahat.matmul(x[idx])) last_l_seq.append(x) last_l_seq=torch.stack(last_l_seq) out, _=self.lstm(last_l_seq, None) return out[-1] class TopK(torch.nn.Module): def __init__(self,feats,k): super().__init__() self.scorer = Parameter(torch.Tensor(feats,1)) self.reset_param(self.scorer) self.k = k def reset_param(self,t): #Initialize based on the number of rows stdv = 1. / math.sqrt(t.size(0)) t.data.uniform_(-stdv,stdv) def forward(self,node_embs): scores = node_embs.matmul(self.scorer) / self.scorer.norm() ll=node_embs.shape[0] tanh = torch.nn.Tanh() out=node_embs * tanh(scores.view(-1,1)) if ll<self.k: t=node_embs[-1] * tanh(scores[-1]) t=t.unsqueeze(0).repeat(self.k-ll,1) out =torch.cat([out, t], 0) out=out[:self.k] #we need to transpose the output return out
sunny77889/DyGCN
compare_models/GCN_LSTM/gcn_lstm.py
gcn_lstm.py
py
2,679
python
en
code
3
github-code
6
[ { "api_name": "math.sqrt", "line_number": 11, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 14, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 14, "usage_type": "name" }, { "api_name": "torch.nn.LSTM", "line_number": 17, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 17, "usage_type": "name" }, { "api_name": "torch.nn.ParameterList", "line_number": 31, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 31, "usage_type": "name" }, { "api_name": "torch.nn.parameter.Parameter", "line_number": 34, "usage_type": "call" }, { "api_name": "torch.Tensor", "line_number": 34, "usage_type": "call" }, { "api_name": "torch.nn.parameter.Parameter", "line_number": 37, "usage_type": "call" }, { "api_name": "torch.Tensor", "line_number": 37, "usage_type": "call" }, { "api_name": "torch.stack", "line_number": 52, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 58, "usage_type": "attribute" }, { "api_name": "torch.nn.parameter.Parameter", "line_number": 61, "usage_type": "call" }, { "api_name": "torch.Tensor", "line_number": 61, "usage_type": "call" }, { "api_name": "math.sqrt", "line_number": 67, "usage_type": "call" }, { "api_name": "torch.nn.Tanh", "line_number": 73, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 73, "usage_type": "attribute" }, { "api_name": "torch.cat", "line_number": 78, "usage_type": "call" } ]
23837831992
''' Script for building and visualization of v(x) function for fixed x0 and gamma (OSCILLATING case of eigenfunction) ''' import numpy as np import matplotlib.pyplot as plt import pandas as pd import utils x0 = 0.41 gamma = 6.0 AFTER_TANGENT = False SUFFIX_NAME = '_after_tangent' if AFTER_TANGENT else '' CSV_FILE = f'../Tracer/Results/x0={x0:.2f}/x0={x0:.2f}_analytical' + SUFFIX_NAME + '.csv' def get_omega(g): ''' Return omega(gamma) value :param g: gamma value :return: omega(gamma) value ''' df = pd.read_csv(CSV_FILE, sep=';') return df.loc[(df['gamma'] < g+utils.EPS) & (df['gamma'] > g-utils.EPS)]['w'].values[0] def get_v_func_val(g, w, x): ''' Calculate and return value of v(x) for fixed gamma :param g: fixed gamma value :param g: fixed omega value :param x: x value :return: v(x) for fixed gamma ''' if g <= 0: mu = np.sqrt(-g + w*1.0j) return np.cosh(mu*x) else: mu = np.sqrt(g + w*1.0j) return np.cos(mu*x) def draw_v_func_components(xs, vs): ''' Draw 2 graphics: Re(v(x)) dependency and Im(v(x)) dependency :param xs: x values :param vs: v(x) values ''' f = plt.figure(figsize=(10, 4)) f.canvas.set_window_title('x0={:.2}__g={:.4}'.format(x0, gamma)) f.subplots_adjust(left=0.07, bottom=0.1, right=0.97, top=0.97, hspace=0.5) ax1 = f.add_subplot(121) ax2 = f.add_subplot(122) ax1.set_xlabel('x') ax1.set_ylabel('Re v', rotation='horizontal', position=(0.0, 0.53)) ax1.grid() ys = [v.real for v in vs] ax1.plot(xs, ys, color='seagreen', linewidth=2, zorder=3) ax1.axhline(y=0.0, linewidth=2, color='grey', zorder=2) ax1.axvline(x=0.0, linewidth=2, color='grey', zorder=2) ax2.set_xlabel('x') ax2.set_ylabel('Im v', rotation='horizontal', position=(0.0, 0.53)) ax2.grid() ys = [v.imag for v in vs] ax2.plot(xs, ys, color='peru', linewidth=2, zorder=3) ax2.axhline(y=0.0, linewidth=2, color='grey', zorder=2) ax2.axvline(x=0.0, linewidth=2, color='grey', zorder=2) plt.show() if __name__ == '__main__': w = get_omega(gamma) xs = np.linspace(0, 1, 10000) vs = [get_v_func_val(gamma, w, x) for x in xs] draw_v_func_components(xs, vs)
leonel11/KaschenkoEquation
Scripts/oscillating_draw_v_function.py
oscillating_draw_v_function.py
py
2,269
python
en
code
0
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 26, "usage_type": "call" }, { "api_name": "utils.EPS", "line_number": 27, "usage_type": "attribute" }, { "api_name": "numpy.sqrt", "line_number": 39, "usage_type": "call" }, { "api_name": "numpy.cosh", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 43, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 52, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 52, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 71, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 71, "usage_type": "name" }, { "api_name": "numpy.linspace", "line_number": 76, "usage_type": "call" } ]
13351154708
# -*- coding: utf-8 -*- #electrical calculator import math import cmath import numpy as np import matplotlib.pyplot as plot from matplotlib.offsetbox import AnchoredText #three phase power calculations def singlePhaseLoad( powerConsumed, powerFactor, leadLag): #powerConsumed in kW #power factor #leadLag = 0 - lead, 1 - lag #get the angle from the pf angle = math.acos(powerFactor) #change angle depending on leading or lagging pf. if(leadLag == 1): angle = 0-angle; #calculate the apparent power #S*pf = P apparentPower = powerConsumed/powerFactor; #get reactive Power reactivePower = apparentPower*math.sin(angle); #display values print("Angle is: {} rad / {} degrees").format(angle, math.degrees(angle)) print("Apparent Power: {} VA").format(apparentPower) print("Reactive Power is: {} VAR").format(reactivePower); def threePhaseLoad( powerConsumed, powerFactor, leadLag, voltagel2l): """ Para: powerConsumed - power consumed by the 3phase load in W powerFactor - pf leadLag - leading pf - 0, lagging pf - 1 voltage121 - line to line voltage across the 3 phase load """ #powerConsumed in kW #power factor #leadLag = 0 - lead, 1 - lag #get the angle from the pf angle = math.acos(powerFactor) #change angle depending on leading or lagging pf. if(leadLag == 1): angle = 0-angle; #calculate the apparent power #S*pf = P apparentPower = powerConsumed/powerFactor; #get reactive Power reactivePower = apparentPower*math.sin(angle); #get the line to line current currentl2l = apparentPower/(math.sqrt(3)*voltagel2l); #display values print("Angle is: {} rad / {} degrees").format(angle, math.degrees(angle)) print("Apparent Power: {} VA").format(apparentPower) print("Reactive Power is: {} VAR").format(reactivePower); print("l2l Current is: {} A").format(currentl2l); def polarRec(mod, angleDeg): """ Converts from polar to rectangular coordinates return complexNumber """ return cmath.rect(mod,math.radians(angleDeg)) def recPolar(complexNumber): """ Converts from rectangular to polar coordinates. return (mod, angle in deg) """ ans = cmath.polar(complexNumber) return (ans[0], math.degrees(ans[1])) def paraImp(number1, number2): """ Calculates the total impedence of 2 impedences in parallel """ return (number1*number2)/(number1 + number2) def impBaseConv(voltageRating, powerRating, voltageBase, powerBase, impedenceValue): """ Parameters of equipment are given using the power rating of the equipment as the MVA base. This function converts Z values from old rating to new rating voltageRating - voltage rating of the equipment powerRating - powerRating of the equipment powerBase - the power base of where the equipment is being used voltageBase - the voltage base of where the equipmment is being used impedenceValue - the value to be converted between bases The formula for Zbase = Vbase**2/Sbase """ return impedenceValue*((voltageRating**2/powerRating)/(voltageBase**2/powerBase)) def smibTransCalc(Egen, Vpoc, Xeq, EgenPost, VpocPost, XeqPost): #pre fault graph delta = np.arange(0, 3.14, 0.1); Pe = (abs(Egen)*abs(Vpoc)*np.sin(delta))/abs(Xeq) #post fault graph Pepost = (abs(EgenPost)*abs(VpocPost)*np.sin(delta))/abs(XeqPost) f,ax = plot.subplots(1,1) ax.plot(delta, Pe) #pre fault ax.plot(delta, Pepost) #post fault ax.plot(delta, [ abs(Vpoc) for i in delta]) #mechanical power input plot.title("Power Curve") plot.xlabel("Power Angle Delta (rad)") plot.ylabel("Power (p.u or W)") plot.grid(True, which='both') #plot.text("Pe = {}sin(del)").format((abs(Egen)*abs(Vpoc))/abs(Xeq)) anchored_text = AnchoredText("Pe = {}sin(del)".format((abs(Egen)*abs(Vpoc))/abs(Xeq)), loc=2) ax.add_artist(anchored_text) d0 = math.asin(Vpoc/((abs(Egen)*abs(Vpoc))/abs(Xeq))) d1 = math.asin(Vpoc/((abs(EgenPost)*abs(VpocPost))/abs(XeqPost))) print(d0) print(d1) plot.show()
vdatl5/electricalCalculator
elecCalc.py
elecCalc.py
py
4,282
python
en
code
0
github-code
6
[ { "api_name": "math.acos", "line_number": 18, "usage_type": "call" }, { "api_name": "math.sin", "line_number": 29, "usage_type": "call" }, { "api_name": "math.degrees", "line_number": 32, "usage_type": "call" }, { "api_name": "math.acos", "line_number": 49, "usage_type": "call" }, { "api_name": "math.sin", "line_number": 60, "usage_type": "call" }, { "api_name": "math.sqrt", "line_number": 63, "usage_type": "call" }, { "api_name": "math.degrees", "line_number": 65, "usage_type": "call" }, { "api_name": "cmath.rect", "line_number": 76, "usage_type": "call" }, { "api_name": "math.radians", "line_number": 76, "usage_type": "call" }, { "api_name": "cmath.polar", "line_number": 83, "usage_type": "call" }, { "api_name": "math.degrees", "line_number": 84, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 113, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 114, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 117, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 119, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 119, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 124, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 124, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 125, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 125, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 126, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 126, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.grid", "line_number": 127, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 127, "usage_type": "name" }, { "api_name": "matplotlib.offsetbox.AnchoredText", "line_number": 130, "usage_type": "call" }, { "api_name": "math.asin", "line_number": 133, "usage_type": "call" }, { "api_name": "math.asin", "line_number": 134, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 138, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 138, "usage_type": "name" } ]
39608443773
import datetime import os import re import urllib.parse from itertools import groupby from django import forms as django_forms from django.conf import settings from django.core.paginator import Paginator, InvalidPage from django import urls from django.forms import fields from django.http import HttpResponse, HttpResponseNotFound, Http404, \ HttpResponseRedirect, HttpResponsePermanentRedirect from django.shortcuts import render from django.shortcuts import get_object_or_404 from django.template import RequestContext from django.template.defaultfilters import filesizeformat from django.utils import html from django.views.decorators.vary import vary_on_headers from core.utils.url import unpack_url_path from core import models from core import solr_index from core.rdf import title_to_graph, issue_to_graph, page_to_graph from core.utils.utils import HTMLCalendar, _get_tip, _stream_file, \ _page_range_short, _rdf_base, get_page, label, create_crumbs from core.decorator import cache_page, rdf_view @cache_page(settings.DEFAULT_TTL_SECONDS) def issues(request, year=None): issues = models.Issue.objects.all().order_by('date_issued') year_view, select_year_form = _create_year_form(issues, year, True) page_title = "Browse All Issues" page_name = "issues" crumbs = list(settings.BASE_CRUMBS) return render(request, 'issues.html', locals()) @cache_page(settings.DEFAULT_TTL_SECONDS) def issues_title(request, lccn, year=None): title = get_object_or_404(models.Title, lccn=lccn) issues = title.issues.all() year_view, select_year_form = _create_year_form(issues, year, False) page_title = "Browse Issues: %s" % title.display_name page_name = "issues_title" crumbs = create_crumbs(title) return render(request, 'issues_title.html', locals()) @cache_page(settings.DEFAULT_TTL_SECONDS) def title_holdings(request, lccn): title = get_object_or_404(models.Title, lccn=lccn) page_title = "Libraries that Have It: %s" % label(title) page_name = "holdings" crumbs = create_crumbs(title) holdings = title.holdings.select_related('institution').order_by('institution__name') return render(request, 'holdings.html', locals()) @cache_page(settings.DEFAULT_TTL_SECONDS) def title_marc(request, lccn): title = get_object_or_404(models.Title, lccn=lccn) page_title = "MARC Bibliographic Record: %s" % label(title) page_name = "marc" crumbs = create_crumbs(title) return render(request, 'marc.html', locals()) @cache_page(settings.DEFAULT_TTL_SECONDS) @rdf_view def title_rdf(request, lccn): title = get_object_or_404(models.Title, lccn=lccn) graph = title_to_graph(title) response = HttpResponse(graph.serialize(base=_rdf_base(request), include_base=True), content_type='application/rdf+xml') return response @cache_page(settings.DEFAULT_TTL_SECONDS) def title_atom(request, lccn, page_number=1): title = get_object_or_404(models.Title, lccn=lccn) issues = title.issues.all().order_by('-batch__created', '-date_issued') paginator = Paginator(issues, 100) try: page = paginator.page(page_number) except InvalidPage: raise Http404("No such page %s for title feed" % page_number) # figure out the time the title was most recently updated # via the create date of the batch issues = page.object_list num_issues = issues.count() if num_issues > 0: feed_updated = issues[0].batch.created else: feed_updated = title.created host = request.get_host() return render(request, 'title.xml', locals(), content_type='application/atom+xml') @cache_page(settings.DEFAULT_TTL_SECONDS) def title_marcxml(request, lccn): title = get_object_or_404(models.Title, lccn=lccn) return HttpResponse(title.marc.xml, content_type='application/marc+xml') @cache_page(settings.DEFAULT_TTL_SECONDS) def issue_pages(request, lccn, date, edition, page_number=1): title = get_object_or_404(models.Title, lccn=lccn) _year, _month, _day = date.split("-") try: _date = datetime.date(int(_year), int(_month), int(_day)) except ValueError as e: raise Http404 try: issue = title.issues.filter(date_issued=_date, edition=edition).order_by("-created")[0] except IndexError as e: raise Http404 issue_pages = [] for page in issue.pages.all(): # include both issue and page because of how metadata # is being pulled in the template issue_pages.append({'issue': issue, 'page': page}) paginator = Paginator(issue_pages, 20) try: page = paginator.page(page_number) except InvalidPage: page = paginator.page(1) page_range_short = list(_page_range_short(paginator, page)) # set page number variables if page.has_previous(): previous_page_number = int(page_number) - 1 if page.has_next(): next_page_number = int(page_number) + 1 if not page.object_list: notes = issue.notes.filter(type="noteAboutReproduction") num_notes = notes.count() if num_notes >= 1: display_label = notes[0].label explanation = notes[0].text page_title = 'All Pages: %s, %s' % (label(title), label(issue)) page_head_heading = "All Pages: %s, %s" % (title.display_name, label(issue)) page_head_subheading = label(title) crumbs = create_crumbs(title, issue, date, edition) response = render(request, 'issue_pages.html', locals()) return response @cache_page(settings.DEFAULT_TTL_SECONDS) @rdf_view def issue_pages_rdf(request, lccn, date, edition): title, issue, page = _get_tip(lccn, date, edition) graph = issue_to_graph(issue) response = HttpResponse(graph.serialize(base=_rdf_base(request), include_base=True), content_type='application/rdf+xml') return response @cache_page(settings.DEFAULT_TTL_SECONDS) @vary_on_headers('Referer') def page(request, lccn, date, edition, sequence, words=None): fragments = [] if words: fragments.append("words=" + words) qs = request.META.get('QUERY_STRING') if qs: fragments.append(qs) if fragments: path_parts = dict(lccn=lccn, date=date, edition=edition, sequence=sequence) url = urls.reverse('openoni_page', kwargs=path_parts) return HttpResponseRedirect(url + "#" + "&".join(fragments)) title, issue, page = _get_tip(lccn, date, edition, sequence) if not page.jp2_filename: notes = page.notes.filter(type="noteAboutReproduction") num_notes = notes.count() if num_notes >= 1: explanation = notes[0].text else: explanation = "" # if no word highlights were requests, see if the user came # from search engine results and attempt to highlight words from their # query by redirecting to a url that has the highlighted words in it if not words: try: words = _search_engine_words(request) words = '+'.join(words) if len(words) > 0: path_parts = dict(lccn=lccn, date=date, edition=edition, sequence=sequence, words=words) url = urls.reverse('openoni_page_words', kwargs=path_parts) return HttpResponseRedirect(url) except Exception as e: if settings.DEBUG: raise e # else squish the exception so the page will still get # served up minus the highlights # Calculate the previous_issue_first_page. Note: it was decided # that we want to skip over issues with missing pages. See ticket # #383. _issue = issue while True: previous_issue_first_page = None _issue = _issue.previous if not _issue: break previous_issue_first_page = _issue.first_page if previous_issue_first_page: break # do the same as above but for next_issue this time. _issue = issue while True: next_issue_first_page = None _issue = _issue.next if not _issue: break next_issue_first_page = _issue.first_page if next_issue_first_page: break page_title = "%s, %s, %s" % (label(title), label(issue), label(page)) page_head_heading = "%s, %s, %s" % (title.display_name, label(issue), label(page)) page_head_subheading = label(title) crumbs = create_crumbs(title, issue, date, edition, page) filename = page.jp2_abs_filename if filename: try: im = os.path.getsize(filename) image_size = filesizeformat(im) except OSError: image_size = "Unknown" image_credit = issue.batch.awardee.name host = request.get_host() static_url = settings.STATIC_URL template = "page.html" response = render(request, template, locals()) return response @cache_page(settings.DEFAULT_TTL_SECONDS) def titles(request, start=None, page_number=1): page_title = 'Newspaper Titles' if start: page_title += ' Starting With %s' % start titles = models.Title.objects.order_by('name_normal') titles = titles.filter(name_normal__istartswith=start.upper()) else: titles = models.Title.objects.all().order_by('name_normal') paginator = Paginator(titles, 50) try: page = paginator.page(page_number) except InvalidPage: page = paginator.page(1) page_start = page.start_index() page_end = page.end_index() page_range_short = list(_page_range_short(paginator, page)) browse_val = [chr(n) for n in range(65, 91)] browse_val.extend([str(i) for i in range(10)]) collapse_search_tab = True crumbs = list(settings.BASE_CRUMBS) return render(request, 'titles.html', locals()) @cache_page(settings.DEFAULT_TTL_SECONDS) def title(request, lccn): title = get_object_or_404(models.Title, lccn=lccn) page_title = label(title) page_name = "title" # we call these here, because the query the db, they are not # cached by django's ORM, and we have some conditional logic # in the template that would result in them getting called more # than once. Short story: minimize database hits... related_titles = title.related_titles() succeeding_titles = title.succeeding_titles() preceeding_titles = title.preceeding_titles() notes = [] has_external_link = False for note in title.notes.all(): org_text = html.escape(note.text) text = re.sub('(http(s)?://[^\s]+[^\.])', r'<a class="external" href="\1">\1</a>', org_text) if text != org_text: has_external_link = True notes.append(text) if title.has_issues: rep_notes = title.first_issue.notes.filter(type="noteAboutReproduction") num_notes = rep_notes.count() if num_notes >= 1: explanation = rep_notes[0].text first_issue = title.first_issue if first_issue: issue_date = first_issue.date_issued # add essay info on this page from either the database or from a template first_essay = title.first_essay essay_template = os.path.join(settings.ESSAY_TEMPLATES, title.lccn+".html") crumbs = create_crumbs(title) response = render(request, 'title.html', locals()) return response @cache_page(settings.DEFAULT_TTL_SECONDS) def titles_in_city(request, state, county, city, page_number=1, order='name_normal'): state, county, city = list(map(unpack_url_path, (state, county, city))) page_title = "Titles in City: %s, %s" % (city, state) titles = models.Title.objects.all() if city: titles = titles.filter(places__city__iexact=city) if county: titles = titles.filter(places__county__iexact=county) if state: titles = titles.filter(places__state__iexact=state) titles = titles.order_by(order) titles.distinct() if titles.count() == 0: raise Http404 paginator = Paginator(titles, 50) try: page = paginator.page(page_number) except InvalidPage: page = paginator.page(1) page_range_short = list(_page_range_short(paginator, page)) return render(request, 'reports/city.html', locals()) @cache_page(settings.DEFAULT_TTL_SECONDS) def titles_in_county(request, state, county, page_number=1, order='name_normal'): state, county = list(map(unpack_url_path, (state, county))) page_title = "Titles in County: %s, %s" % (county, state) titles = models.Title.objects.all() if county: titles = titles.filter(places__county__iexact=county) if state: titles = titles.filter(places__state__iexact=state) titles = titles.order_by(order) titles = titles.distinct() if titles.count() == 0: raise Http404 paginator = Paginator(titles, 50) try: page = paginator.page(page_number) except InvalidPage: page = paginator.page(1) page_range_short = list(_page_range_short(paginator, page)) return render(request, 'reports/county.html', locals()) @cache_page(settings.DEFAULT_TTL_SECONDS) def titles_in_state(request, state, page_number=1, order='name_normal'): state = unpack_url_path(state) page_title = "Titles in State: %s" % state titles = models.Title.objects.all() if state: titles = titles.filter(places__state__iexact=state) titles = titles.order_by(order) titles = titles.distinct() if titles.count() == 0: raise Http404 paginator = Paginator(titles, 50) try: page = paginator.page(page_number) except InvalidPage: page = paginator.page(1) page_range_short = list(_page_range_short(paginator, page)) return render(request, 'reports/state.html', locals()) # TODO: this redirect can go away some suitable time after 08/2010 # it predates having explicit essay ids @cache_page(settings.DEFAULT_TTL_SECONDS) def title_essays(request, lccn): title = get_object_or_404(models.Title, lccn=lccn) # if there's only one essay might as well redirect to it if len(title.essays.all()) >= 1: url = title.essays.all()[0].url return HttpResponsePermanentRedirect(url) else: return HttpResponseNotFound() def _create_year_form(issues, year, all_issues): if issues.count() > 0: if year is None: _year = issues[0].date_issued.year else: _year = int(year) else: _year = 1900 # no issues available year_view = HTMLCalendar(firstweekday=6, issues=issues, all_issues=all_issues).formatyear(_year) dates = issues.dates('date_issued', 'year') class SelectYearForm(django_forms.Form): year = fields.ChoiceField(choices=((d.year, d.year) for d in dates), initial=_year) year.widget.attrs["class"] = "form-select w-auto d-inline-block" return year_view, SelectYearForm() def _search_engine_words(request): """ Inspects the http request and returns a list of words from the OCR text relevant to a particular search engine query. If the request didn't come via a search engine result an empty list is returned. """ # get the refering url referer = request.META.get('HTTP_REFERER') if not referer: return [] uri = urllib.parse.urlparse(referer) qs = urllib.parse.parse_qs(uri.query) # extract a potential search query from refering url if 'q' in qs: words = qs['q'][0] elif 'p' in qs: words = qs['p'][0] else: return [] # ask solr for the pre-analysis words that could potentially # match on the page. For example if we feed in 'buildings' we could get # ['building', 'buildings', 'BUILDING', 'Buildings'] depending # on the actual OCR for the page id that is passed in words = words.split(' ') words = solr_index.word_matches_for_page(request.path, words) return words @cache_page(settings.DEFAULT_TTL_SECONDS) def page_ocr(request, lccn, date, edition, sequence): title, issue, page = _get_tip(lccn, date, edition, sequence) page_title = "%s, %s, %s" % (label(title), label(issue), label(page)) crumbs = create_crumbs(title, issue, date, edition, page) host = request.get_host() return render(request, 'page_text.html', locals()) def page_pdf(request, lccn, date, edition, sequence): title, issue, page = _get_tip(lccn, date, edition, sequence) return _stream_file(page.pdf_abs_filename, 'application/pdf') def page_jp2(request, lccn, date, edition, sequence): title, issue, page = _get_tip(lccn, date, edition, sequence) return _stream_file(page.jp2_abs_filename, 'image/jp2') def page_ocr_xml(request, lccn, date, edition, sequence): title, issue, page = _get_tip(lccn, date, edition, sequence) return _stream_file(page.ocr_abs_filename, 'application/xml') def page_ocr_txt(request, lccn, date, edition, sequence): title, issue, page = _get_tip(lccn, date, edition, sequence) try: text = page.ocr.text return HttpResponse(text, content_type='text/plain') except models.OCR.DoesNotExist: raise Http404("No OCR for %s" % page) @cache_page(settings.DEFAULT_TTL_SECONDS) @rdf_view def page_rdf(request, lccn, date, edition, sequence): page = get_page(lccn, date, edition, sequence) graph = page_to_graph(page) response = HttpResponse(graph.serialize(base=_rdf_base(request), include_base=True), content_type='application/rdf+xml') return response @cache_page(settings.DEFAULT_TTL_SECONDS) def page_print(request, lccn, date, edition, sequence, width, height, x1, y1, x2, y2): page = get_page(lccn, date, edition, sequence) title = get_object_or_404(models.Title, lccn=lccn) issue = page.issue page_title = "%s, %s, %s" % (label(title), label(issue), label(page)) crumbs = create_crumbs(title, issue, date, edition, page) host = request.get_host() image_credit = page.issue.batch.awardee.name path_parts = dict(lccn=lccn, date=date, edition=edition, sequence=sequence, width=width, height=height, x1=x1, y1=y1, x2=x2, y2=y2) url = urls.reverse('openoni_page_print', kwargs=path_parts) return render(request, 'page_print.html', locals()) @cache_page(settings.DEFAULT_TTL_SECONDS) def issues_first_pages(request, lccn, page_number=1): title = get_object_or_404(models.Title, lccn=lccn) issues = title.issues.all() if not issues.count() > 0: raise Http404("No issues for %s" % title.display_name) first_pages = [] for issue in issues: # include both issue and page because in some cases # an issue exists which has no associated pages first_pages.append({'issue': issue, 'page': issue.first_page}) paginator = Paginator(first_pages, 20) try: page = paginator.page(page_number) except InvalidPage: page = paginator.page(1) page_range_short = list(_page_range_short(paginator, page)) # set page number variables if page.has_previous(): previous_page_number = int(page_number) - 1 if page.has_next(): next_page_number = int(page_number) + 1 page_title = 'Browse Issues: %s' % label(title) page_head_heading = "Browse Issues: %s" % title.display_name page_head_subheading = label(title) crumbs = create_crumbs(title) return render(request, 'issue_pages.html', locals())
open-oni/open-oni
core/views/browse.py
browse.py
py
19,948
python
en
code
43
github-code
6
[ { "api_name": "core.models.Issue.objects.all", "line_number": 35, "usage_type": "call" }, { "api_name": "core.models.Issue", "line_number": 35, "usage_type": "attribute" }, { "api_name": "core.models", "line_number": 35, "usage_type": "name" }, { "api_name": "django.conf.settings.BASE_CRUMBS", "line_number": 39, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 39, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 40, "usage_type": "call" }, { "api_name": "core.decorator.cache_page", "line_number": 33, "usage_type": "call" }, { "api_name": "django.conf.settings.DEFAULT_TTL_SECONDS", "line_number": 33, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 33, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 44, "usage_type": "call" }, { "api_name": "core.models.Title", "line_number": 44, "usage_type": "attribute" }, { "api_name": "core.models", "line_number": 44, "usage_type": "name" }, { "api_name": "core.utils.utils.create_crumbs", "line_number": 49, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 50, "usage_type": "call" }, { "api_name": "core.decorator.cache_page", "line_number": 42, "usage_type": "call" }, { "api_name": "django.conf.settings.DEFAULT_TTL_SECONDS", "line_number": 42, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 42, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 55, "usage_type": "call" }, { "api_name": "core.models.Title", "line_number": 55, "usage_type": "attribute" }, { "api_name": "core.models", "line_number": 55, "usage_type": "name" }, { "api_name": "core.utils.utils.label", "line_number": 56, "usage_type": "call" }, { "api_name": "core.utils.utils.create_crumbs", "line_number": 58, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 62, "usage_type": "call" }, { "api_name": "core.decorator.cache_page", "line_number": 53, "usage_type": "call" }, { "api_name": "django.conf.settings.DEFAULT_TTL_SECONDS", "line_number": 53, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 53, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 67, "usage_type": "call" }, { "api_name": "core.models.Title", "line_number": 67, "usage_type": "attribute" }, { "api_name": "core.models", "line_number": 67, "usage_type": "name" }, { "api_name": "core.utils.utils.label", "line_number": 68, "usage_type": "call" }, { "api_name": "core.utils.utils.create_crumbs", "line_number": 70, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 71, "usage_type": "call" }, { "api_name": "core.decorator.cache_page", "line_number": 65, "usage_type": "call" }, { "api_name": "django.conf.settings.DEFAULT_TTL_SECONDS", "line_number": 65, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 65, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 77, "usage_type": "call" }, { "api_name": "core.models.Title", "line_number": 77, "usage_type": "attribute" }, { "api_name": "core.models", "line_number": 77, "usage_type": "name" }, { "api_name": "core.rdf.title_to_graph", "line_number": 78, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 79, "usage_type": "call" }, { "api_name": "core.utils.utils._rdf_base", "line_number": 79, "usage_type": "call" }, { "api_name": "core.decorator.cache_page", "line_number": 74, "usage_type": "call" }, { "api_name": "django.conf.settings.DEFAULT_TTL_SECONDS", "line_number": 74, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 74, "usage_type": "name" }, { "api_name": "core.decorator.rdf_view", "line_number": 75, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 87, "usage_type": "call" }, { "api_name": "core.models.Title", "line_number": 87, "usage_type": "attribute" }, { "api_name": "core.models", "line_number": 87, "usage_type": "name" }, { "api_name": "django.core.paginator.Paginator", "line_number": 89, "usage_type": "call" }, { "api_name": "django.core.paginator.InvalidPage", "line_number": 92, "usage_type": "name" }, { "api_name": "django.http.Http404", "line_number": 93, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 105, "usage_type": "call" }, { "api_name": "core.decorator.cache_page", "line_number": 85, "usage_type": "call" }, { "api_name": "django.conf.settings.DEFAULT_TTL_SECONDS", "line_number": 85, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 85, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 111, "usage_type": "call" }, { "api_name": "core.models.Title", "line_number": 111, "usage_type": "attribute" }, { "api_name": "core.models", "line_number": 111, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 112, "usage_type": "call" }, { "api_name": "core.decorator.cache_page", "line_number": 109, "usage_type": "call" }, { "api_name": "django.conf.settings.DEFAULT_TTL_SECONDS", "line_number": 109, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 109, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 117, "usage_type": "call" }, { "api_name": "core.models.Title", "line_number": 117, "usage_type": "attribute" }, { "api_name": "core.models", "line_number": 117, "usage_type": "name" }, { "api_name": "datetime.date", "line_number": 120, "usage_type": "call" }, { "api_name": "django.http.Http404", "line_number": 122, "usage_type": "name" }, { "api_name": "django.http.Http404", "line_number": 127, "usage_type": "name" }, { "api_name": "django.core.paginator.Paginator", "line_number": 133, "usage_type": "call" }, { "api_name": "django.core.paginator.InvalidPage", "line_number": 136, "usage_type": "name" }, { "api_name": "core.utils.utils._page_range_short", "line_number": 138, "usage_type": "call" }, { "api_name": "core.utils.utils.label", "line_number": 152, "usage_type": "call" }, { "api_name": "core.utils.utils.label", "line_number": 153, "usage_type": "call" }, { "api_name": "core.utils.utils.label", "line_number": 154, "usage_type": "call" }, { "api_name": "core.utils.utils.create_crumbs", "line_number": 155, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 156, "usage_type": "call" }, { "api_name": "core.decorator.cache_page", "line_number": 115, "usage_type": "call" }, { "api_name": "django.conf.settings.DEFAULT_TTL_SECONDS", "line_number": 115, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 115, "usage_type": "name" }, { "api_name": "core.utils.utils._get_tip", "line_number": 163, "usage_type": "call" }, { "api_name": "core.rdf.issue_to_graph", "line_number": 164, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 165, "usage_type": "call" }, { "api_name": "core.utils.utils._rdf_base", "line_number": 165, "usage_type": "call" }, { "api_name": "core.decorator.cache_page", "line_number": 160, "usage_type": "call" }, { "api_name": "django.conf.settings.DEFAULT_TTL_SECONDS", "line_number": 160, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 160, "usage_type": "name" }, { "api_name": "core.decorator.rdf_view", "line_number": 161, "usage_type": "name" }, { "api_name": "django.urls.reverse", "line_number": 183, "usage_type": "call" }, { "api_name": "django.urls", "line_number": 183, "usage_type": "name" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 186, "usage_type": "call" }, { "api_name": "core.utils.utils._get_tip", "line_number": 188, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 208, "usage_type": "call" }, { "api_name": "django.urls", "line_number": 208, "usage_type": "name" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 210, "usage_type": "call" }, { "api_name": "django.conf.settings.DEBUG", "line_number": 212, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 212, "usage_type": "name" }, { "api_name": "core.utils.utils.label", "line_number": 241, "usage_type": "call" }, { "api_name": "core.utils.utils.label", "line_number": 242, "usage_type": "call" }, { "api_name": "core.utils.utils.label", "line_number": 243, "usage_type": "call" }, { "api_name": "core.utils.utils.create_crumbs", "line_number": 244, "usage_type": "call" }, { "api_name": "os.path.getsize", "line_number": 249, "usage_type": "call" }, { "api_name": "os.path", "line_number": 249, "usage_type": "attribute" }, { "api_name": "django.template.defaultfilters.filesizeformat", "line_number": 250, "usage_type": "call" }, { "api_name": "django.conf.settings.STATIC_URL", "line_number": 256, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 256, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 259, "usage_type": "call" }, { "api_name": "core.decorator.cache_page", "line_number": 171, "usage_type": "call" }, { "api_name": "django.conf.settings.DEFAULT_TTL_SECONDS", "line_number": 171, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 171, "usage_type": "name" }, { "api_name": "django.views.decorators.vary.vary_on_headers", "line_number": 172, "usage_type": "call" }, { "api_name": "core.models.Title.objects.order_by", "line_number": 268, "usage_type": "call" }, { "api_name": "core.models.Title", "line_number": 268, "usage_type": "attribute" }, { "api_name": "core.models", "line_number": 268, "usage_type": "name" }, { "api_name": "core.models.Title.objects.all", "line_number": 271, "usage_type": "call" }, { "api_name": "core.models.Title", "line_number": 271, "usage_type": "attribute" }, { "api_name": "core.models", "line_number": 271, "usage_type": "name" }, { "api_name": "django.core.paginator.Paginator", "line_number": 272, "usage_type": "call" }, { "api_name": "django.core.paginator.InvalidPage", "line_number": 275, "usage_type": "name" }, { "api_name": "core.utils.utils._page_range_short", "line_number": 279, "usage_type": "call" }, { "api_name": "django.conf.settings.BASE_CRUMBS", "line_number": 283, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 283, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 284, "usage_type": "call" }, { "api_name": "core.decorator.cache_page", "line_number": 263, "usage_type": "call" }, { "api_name": "django.conf.settings.DEFAULT_TTL_SECONDS", "line_number": 263, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 263, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 289, "usage_type": "call" }, { "api_name": "core.models.Title", "line_number": 289, "usage_type": "attribute" }, { "api_name": "core.models", "line_number": 289, "usage_type": "name" }, { "api_name": "core.utils.utils.label", "line_number": 290, "usage_type": "call" }, { "api_name": "django.utils.html.escape", "line_number": 302, "usage_type": "call" }, { "api_name": "django.utils.html", "line_number": 302, "usage_type": "name" }, { "api_name": "re.sub", "line_number": 303, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 321, "usage_type": "call" }, { "api_name": "os.path", "line_number": 321, "usage_type": "attribute" }, { "api_name": "django.conf.settings.ESSAY_TEMPLATES", "line_number": 321, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 321, "usage_type": "name" }, { "api_name": "core.utils.utils.create_crumbs", "line_number": 323, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 324, "usage_type": "call" }, { "api_name": "core.decorator.cache_page", "line_number": 287, "usage_type": "call" }, { "api_name": "django.conf.settings.DEFAULT_TTL_SECONDS", "line_number": 287, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 287, "usage_type": "name" }, { "api_name": "core.utils.url.unpack_url_path", "line_number": 330, "usage_type": "argument" }, { "api_name": "core.models.Title.objects.all", "line_number": 332, "usage_type": "call" }, { "api_name": "core.models.Title", "line_number": 332, "usage_type": "attribute" }, { "api_name": "core.models", "line_number": 332, "usage_type": "name" }, { "api_name": "django.http.Http404", "line_number": 343, "usage_type": "name" }, { "api_name": "django.core.paginator.Paginator", "line_number": 345, "usage_type": "call" }, { "api_name": "django.core.paginator.InvalidPage", "line_number": 348, "usage_type": "name" }, { "api_name": "core.utils.utils._page_range_short", "line_number": 350, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 352, "usage_type": "call" }, { "api_name": "core.decorator.cache_page", "line_number": 327, "usage_type": "call" }, { "api_name": "django.conf.settings.DEFAULT_TTL_SECONDS", "line_number": 327, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 327, "usage_type": "name" }, { "api_name": "core.utils.url.unpack_url_path", "line_number": 358, "usage_type": "argument" }, { "api_name": "core.models.Title.objects.all", "line_number": 360, "usage_type": "call" }, { "api_name": "core.models.Title", "line_number": 360, "usage_type": "attribute" }, { "api_name": "core.models", "line_number": 360, "usage_type": "name" }, { "api_name": "django.http.Http404", "line_number": 369, "usage_type": "name" }, { "api_name": "django.core.paginator.Paginator", "line_number": 371, "usage_type": "call" }, { "api_name": "django.core.paginator.InvalidPage", "line_number": 374, "usage_type": "name" }, { "api_name": "core.utils.utils._page_range_short", "line_number": 376, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 378, "usage_type": "call" }, { "api_name": "core.decorator.cache_page", "line_number": 355, "usage_type": "call" }, { "api_name": "django.conf.settings.DEFAULT_TTL_SECONDS", "line_number": 355, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 355, "usage_type": "name" }, { "api_name": "core.utils.url.unpack_url_path", "line_number": 383, "usage_type": "call" }, { "api_name": "core.models.Title.objects.all", "line_number": 385, "usage_type": "call" }, { "api_name": "core.models.Title", "line_number": 385, "usage_type": "attribute" }, { "api_name": "core.models", "line_number": 385, "usage_type": "name" }, { "api_name": "django.http.Http404", "line_number": 392, "usage_type": "name" }, { "api_name": "django.core.paginator.Paginator", "line_number": 394, "usage_type": "call" }, { "api_name": "django.core.paginator.InvalidPage", "line_number": 397, "usage_type": "name" }, { "api_name": "core.utils.utils._page_range_short", "line_number": 399, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 401, "usage_type": "call" }, { "api_name": "core.decorator.cache_page", "line_number": 381, "usage_type": "call" }, { "api_name": "django.conf.settings.DEFAULT_TTL_SECONDS", "line_number": 381, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 381, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 408, "usage_type": "call" }, { "api_name": "core.models.Title", "line_number": 408, "usage_type": "attribute" }, { "api_name": "core.models", "line_number": 408, "usage_type": "name" }, { "api_name": "django.http.HttpResponsePermanentRedirect", "line_number": 412, "usage_type": "call" }, { "api_name": "django.http.HttpResponseNotFound", "line_number": 414, "usage_type": "call" }, { "api_name": "core.decorator.cache_page", "line_number": 406, "usage_type": "call" }, { "api_name": "django.conf.settings.DEFAULT_TTL_SECONDS", "line_number": 406, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 406, "usage_type": "name" }, { "api_name": "core.utils.utils.HTMLCalendar", "line_number": 425, "usage_type": "call" }, { "api_name": "django.forms.Form", "line_number": 428, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 428, "usage_type": "name" }, { "api_name": "django.forms.fields.ChoiceField", "line_number": 429, "usage_type": "call" }, { "api_name": "django.forms.fields", "line_number": 429, "usage_type": "name" }, { "api_name": "urllib.parse.parse.urlparse", "line_number": 447, "usage_type": "call" }, { "api_name": "urllib.parse.parse", "line_number": 447, "usage_type": "attribute" }, { "api_name": "urllib.parse", "line_number": 447, "usage_type": "name" }, { "api_name": "urllib.parse.parse.parse_qs", "line_number": 448, "usage_type": "call" }, { "api_name": "urllib.parse.parse", "line_number": 448, "usage_type": "attribute" }, { "api_name": "urllib.parse", "line_number": 448, "usage_type": "name" }, { "api_name": "core.solr_index.word_matches_for_page", "line_number": 463, "usage_type": "call" }, { "api_name": "core.solr_index", "line_number": 463, "usage_type": "name" }, { "api_name": "core.utils.utils._get_tip", "line_number": 469, "usage_type": "call" }, { "api_name": "core.utils.utils.label", "line_number": 470, "usage_type": "call" }, { "api_name": "core.utils.utils.create_crumbs", "line_number": 471, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 473, "usage_type": "call" }, { "api_name": "core.decorator.cache_page", "line_number": 467, "usage_type": "call" }, { "api_name": "django.conf.settings.DEFAULT_TTL_SECONDS", "line_number": 467, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 467, "usage_type": "name" }, { "api_name": "core.utils.utils._get_tip", "line_number": 477, "usage_type": "call" }, { "api_name": "core.utils.utils._stream_file", "line_number": 478, "usage_type": "call" }, { "api_name": "core.utils.utils._get_tip", "line_number": 482, "usage_type": "call" }, { "api_name": "core.utils.utils._stream_file", "line_number": 483, "usage_type": "call" }, { "api_name": "core.utils.utils._get_tip", "line_number": 487, "usage_type": "call" }, { "api_name": "core.utils.utils._stream_file", "line_number": 488, "usage_type": "call" }, { "api_name": "core.utils.utils._get_tip", "line_number": 492, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 495, "usage_type": "call" }, { "api_name": "core.models.OCR", "line_number": 496, "usage_type": "attribute" }, { "api_name": "core.models", "line_number": 496, "usage_type": "name" }, { "api_name": "django.http.Http404", "line_number": 497, "usage_type": "call" }, { "api_name": "core.utils.utils.get_page", "line_number": 503, "usage_type": "call" }, { "api_name": "core.rdf.page_to_graph", "line_number": 504, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 505, "usage_type": "call" }, { "api_name": "core.utils.utils._rdf_base", "line_number": 505, "usage_type": "call" }, { "api_name": "core.decorator.cache_page", "line_number": 500, "usage_type": "call" }, { "api_name": "django.conf.settings.DEFAULT_TTL_SECONDS", "line_number": 500, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 500, "usage_type": "name" }, { "api_name": "core.decorator.rdf_view", "line_number": 501, "usage_type": "name" }, { "api_name": "core.utils.utils.get_page", "line_number": 514, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 515, "usage_type": "call" }, { "api_name": "core.models.Title", "line_number": 515, "usage_type": "attribute" }, { "api_name": "core.models", "line_number": 515, "usage_type": "name" }, { "api_name": "core.utils.utils.label", "line_number": 517, "usage_type": "call" }, { "api_name": "core.utils.utils.create_crumbs", "line_number": 518, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 525, "usage_type": "call" }, { "api_name": "django.urls", "line_number": 525, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 528, "usage_type": "call" }, { "api_name": "core.decorator.cache_page", "line_number": 511, "usage_type": "call" }, { "api_name": "django.conf.settings.DEFAULT_TTL_SECONDS", "line_number": 511, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 511, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 533, "usage_type": "call" }, { "api_name": "core.models.Title", "line_number": 533, "usage_type": "attribute" }, { "api_name": "core.models", "line_number": 533, "usage_type": "name" }, { "api_name": "django.http.Http404", "line_number": 536, "usage_type": "call" }, { "api_name": "django.core.paginator.Paginator", "line_number": 544, "usage_type": "call" }, { "api_name": "django.core.paginator.InvalidPage", "line_number": 547, "usage_type": "name" }, { "api_name": "core.utils.utils._page_range_short", "line_number": 549, "usage_type": "call" }, { "api_name": "core.utils.utils.label", "line_number": 557, "usage_type": "call" }, { "api_name": "core.utils.utils.label", "line_number": 559, "usage_type": "call" }, { "api_name": "core.utils.utils.create_crumbs", "line_number": 560, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 561, "usage_type": "call" }, { "api_name": "core.decorator.cache_page", "line_number": 531, "usage_type": "call" }, { "api_name": "django.conf.settings.DEFAULT_TTL_SECONDS", "line_number": 531, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 531, "usage_type": "name" } ]
27390985743
# Configuration file for the Sphinx documentation builder. # # For the full list of built-in configuration values, see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html import os import sys sys.path.insert(0, os.path.abspath("../../")) sys.path.insert(0, os.path.abspath(".")) import swiftzoom # -- Project information ----------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information project = 'SWIFTzoom' copyright = '2023, Edoardo Altamura' author = 'Edoardo Altamura' release = swiftzoom.__version__ # -- General configuration --------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "recommonmark", "sphinx.ext.autodoc", "sphinx.ext.viewcode", "sphinx.ext.doctest", "sphinx.ext.napoleon", "sphinx.ext.mathjax", "sphinx.ext.autosummary", ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] source_suffix = [".rst", ".md"] master_doc = "index" # -- Options for HTML output ------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { "collapse_navigation": False } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # -- Options for automatic API doc autodoc_member_order = "bysource" autodoc_default_flags = ["members"] autosummary_generate = True # must be outside run_apidoc definition to be set successfully: os.environ["SPHINX_APIDOC_OPTIONS"] = "members,undoc-members,show-inheritance" def run_apidoc(_): try: from sphinx.ext.apidoc import main except ImportError: from sphinx.apidoc import main sys.path.append(os.path.join(os.path.dirname(__file__), "..")) cur_dir = os.path.abspath(os.path.dirname(__file__)) api_doc_dir = os.path.join(cur_dir, "modules") module = os.path.join(cur_dir, "../..", "swiftzoom") ignore = [ os.path.join(cur_dir, "../..", "tests"), os.path.join(cur_dir, "../..", "swiftzoom/metadata"), ] main(["-M", "-f", "-e", "-T", "-d 0", "-o", api_doc_dir, module, *ignore]) def setup(app): app.connect("builder-inited", run_apidoc)
edoaltamura/swiftzoom
docs/source/conf.py
conf.py
py
3,219
python
en
code
0
github-code
6
[ { "api_name": "sys.path.insert", "line_number": 9, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 9, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 9, "usage_type": "call" }, { "api_name": "os.path", "line_number": 9, "usage_type": "attribute" }, { "api_name": "sys.path.insert", "line_number": 10, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 10, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 10, "usage_type": "call" }, { "api_name": "os.path", "line_number": 10, "usage_type": "attribute" }, { "api_name": "swiftzoom.__version__", "line_number": 20, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 76, "usage_type": "attribute" }, { "api_name": "sys.path.append", "line_number": 86, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 86, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 86, "usage_type": "call" }, { "api_name": "os.path", "line_number": 86, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 86, "usage_type": "call" }, { "api_name": "os.path.abspath", "line_number": 87, "usage_type": "call" }, { "api_name": "os.path", "line_number": 87, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 87, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 89, "usage_type": "call" }, { "api_name": "os.path", "line_number": 89, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 90, "usage_type": "call" }, { "api_name": "os.path", "line_number": 90, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 92, "usage_type": "call" }, { "api_name": "os.path", "line_number": 92, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 93, "usage_type": "call" }, { "api_name": "os.path", "line_number": 93, "usage_type": "attribute" }, { "api_name": "sphinx.apidoc.main", "line_number": 96, "usage_type": "call" } ]
36917846701
import logging import os import sys from queue import Empty from threading import Thread import argparse import jsonpickle from polarity_server import globals from polarity_server.rest import RestApi class App: thread_run = True @classmethod def run(cls): parser = argparse.ArgumentParser() parser.add_argument("--port", "-p", required=False, type=int, default=5000, help="Port for REST API to listen on") parser.add_argument("--input", "-i", required=False, type=str, help="File to preload sessions from") if sys.argv == 1: parser.print_help() sys.exit(os.EX_SOFTWARE) args = parser.parse_args() logging.basicConfig(level=logging.INFO) if args.input: if os.path.isfile(args.input): with open(args.input) as file: data = file.read() globals.sessions = jsonpickle.decode(data) else: logging.error("Invalid input file specified") sys.exit(os.EX_SOFTWARE) RestApi.start_server(args.port) thread = Thread(target=cls.runner) thread.start() command = "" while command != "quit": command = input("Command (\"help\" for options): ") if command == "help": cls.print_usage() elif "sessions" in command: print("") if not globals.sessions: print("No active sessions") else: if len(command.split()) == 1: for i, ip_address in enumerate(globals.sessions): print("{} - {}".format(str(i), ip_address)) else: session_idx = command.split()[1].strip() for i, ip_address in enumerate(globals.sessions): if str(i) == session_idx: for session in globals.sessions[ip_address]: print("{} - {}". format(session.username, ip_address)) print("") elif "interact" in command: if len(command.split()) > 2: session_idx = command.split()[1].strip() username = command.split()[2].strip() session = cls.find_session(session_idx, username) if session: if not session.shell.is_alive(): session.shell.create_connection() session.shell.interact() else: print("\nNo session found for specified id and/or username\n") else: print("\nSession id and username not specified\n") elif "save" in command: if len(command.split()) > 1: filename = command.split()[1].strip() with open(filename) as file: file.write(jsonpickle.encode(globals.sessions)) else: print("\nFilename not specified\n") elif command != "quit": print("\nInvalid command\n") RestApi.stop_server() cls.thread_run = False thread.join() if globals.sessions: for ip_address in globals.sessions: for session in globals.sessions[ip_address]: session.shell.close_connection() sys.exit(os.EX_OK) @staticmethod def print_usage(): print(""" Usage: help: print this message quit: exit the program sessions: print the active session hosts sessions <id>: print the active session host username's interact <session id> <username>: interact with host session save <filename>: save current state to file """) @staticmethod def find_session(idx, username): for i, ip_address in enumerate(globals.sessions): if str(i) == idx: for session in globals.sessions[ip_address]: if session.username == username: return session return None @classmethod def runner(cls): while cls.thread_run: task = cls.get_task() if task: sessions = task.execute() if sessions: globals.sessions.update(sessions) @staticmethod def get_task(): try: return globals.task_queue.get(timeout=1.0) except Empty: return None
willmfftt/polarityserver
polarity_server/app/app.py
app.py
py
4,759
python
en
code
0
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 20, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 26, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 28, "usage_type": "call" }, { "api_name": "os.EX_SOFTWARE", "line_number": 28, "usage_type": "attribute" }, { "api_name": "logging.basicConfig", "line_number": 32, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 32, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 35, "usage_type": "call" }, { "api_name": "os.path", "line_number": 35, "usage_type": "attribute" }, { "api_name": "polarity_server.globals.sessions", "line_number": 38, "usage_type": "attribute" }, { "api_name": "polarity_server.globals", "line_number": 38, "usage_type": "name" }, { "api_name": "jsonpickle.decode", "line_number": 38, "usage_type": "call" }, { "api_name": "logging.error", "line_number": 40, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 41, "usage_type": "call" }, { "api_name": "os.EX_SOFTWARE", "line_number": 41, "usage_type": "attribute" }, { "api_name": "polarity_server.rest.RestApi.start_server", "line_number": 43, "usage_type": "call" }, { "api_name": "polarity_server.rest.RestApi", "line_number": 43, "usage_type": "name" }, { "api_name": "threading.Thread", "line_number": 45, "usage_type": "call" }, { "api_name": "polarity_server.globals.sessions", "line_number": 57, "usage_type": "attribute" }, { "api_name": "polarity_server.globals", "line_number": 57, "usage_type": "name" }, { "api_name": "polarity_server.globals.sessions", "line_number": 61, "usage_type": "attribute" }, { "api_name": "polarity_server.globals", "line_number": 61, "usage_type": "name" }, { "api_name": "polarity_server.globals.sessions", "line_number": 65, "usage_type": "attribute" }, { "api_name": "polarity_server.globals", "line_number": 65, "usage_type": "name" }, { "api_name": "polarity_server.globals.sessions", "line_number": 67, "usage_type": "attribute" }, { "api_name": "polarity_server.globals", "line_number": 67, "usage_type": "name" }, { "api_name": "jsonpickle.encode", "line_number": 89, "usage_type": "call" }, { "api_name": "polarity_server.globals.sessions", "line_number": 89, "usage_type": "attribute" }, { "api_name": "polarity_server.globals", "line_number": 89, "usage_type": "name" }, { "api_name": "polarity_server.rest.RestApi.stop_server", "line_number": 95, "usage_type": "call" }, { "api_name": "polarity_server.rest.RestApi", "line_number": 95, "usage_type": "name" }, { "api_name": "polarity_server.globals.sessions", "line_number": 99, "usage_type": "attribute" }, { "api_name": "polarity_server.globals", "line_number": 99, "usage_type": "name" }, { "api_name": "polarity_server.globals.sessions", "line_number": 100, "usage_type": "attribute" }, { "api_name": "polarity_server.globals", "line_number": 100, "usage_type": "name" }, { "api_name": "polarity_server.globals.sessions", "line_number": 101, "usage_type": "attribute" }, { "api_name": "polarity_server.globals", "line_number": 101, "usage_type": "name" }, { "api_name": "sys.exit", "line_number": 104, "usage_type": "call" }, { "api_name": "os.EX_OK", "line_number": 104, "usage_type": "attribute" }, { "api_name": "polarity_server.globals.sessions", "line_number": 121, "usage_type": "attribute" }, { "api_name": "polarity_server.globals", "line_number": 121, "usage_type": "name" }, { "api_name": "polarity_server.globals.sessions", "line_number": 123, "usage_type": "attribute" }, { "api_name": "polarity_server.globals", "line_number": 123, "usage_type": "name" }, { "api_name": "polarity_server.globals.sessions.update", "line_number": 135, "usage_type": "call" }, { "api_name": "polarity_server.globals.sessions", "line_number": 135, "usage_type": "attribute" }, { "api_name": "polarity_server.globals", "line_number": 135, "usage_type": "name" }, { "api_name": "polarity_server.globals.task_queue.get", "line_number": 140, "usage_type": "call" }, { "api_name": "polarity_server.globals.task_queue", "line_number": 140, "usage_type": "attribute" }, { "api_name": "polarity_server.globals", "line_number": 140, "usage_type": "name" }, { "api_name": "queue.Empty", "line_number": 141, "usage_type": "name" } ]
36818410851
import curses import curses.ascii from curses.textpad import Textbox class MyTextPad(Textbox): ignored_keys = { curses.KEY_PPAGE, # Page Up curses.KEY_NPAGE, # Page Down } def __init__(self, win, default): super().__init__(win) self.default = default self.line = default self._pos = len(default) self.refresh() @property def pos(self): return self._pos @pos.setter def pos(self, val): self._pos = val if self._pos < 0: self._pos = 0 if self._pos > len(self.line): self._pos = len(self.line) @property def cursor_pos(self): y = self.pos // self.maxx x = self.pos % self.maxx return y, x def refresh(self): self.win.clear() for y in range(self.maxy): self.win.addstr(y, 0, self.line[self.maxx * y:self.maxx * (y + 1)]) self.win.move(*self.cursor_pos) self.win.refresh() def do_command(self, ch): ordch = ord(ch) if isinstance(ch, str) else ch ch = chr(ch) if isinstance(ch, int) else ch if curses.KEY_BACKSPACE == ordch: self.line = self.line[:self.pos -1] + self.line[self.pos:] self.pos -= 1 elif curses.KEY_LEFT == ordch: self.pos -= 1 elif curses.KEY_RIGHT == ordch: self.pos += 1 elif curses.KEY_DOWN == ordch: self.pos += self.maxx elif curses.KEY_DC == ordch: self.line = self.line[:self.pos] + self.line[self.pos + 1:] elif curses.KEY_UP == ordch: self.pos -= self.maxx elif curses.KEY_HOME == ordch: self.pos = 0 elif curses.KEY_END == ordch: self.pos = len(self.line) elif ordch in self.ignored_keys: pass elif '\n' == ch: return 0 elif 27 == ordch: return -1 elif ch.isprintable(): self.line = self.line[:self.pos] + ch + self.line[self.pos:] self.pos += 1 return True def gather(self): return self.line.strip() def edit(self, validate=None): while 1: ch = self.win.get_wch() if validate: ch = validate(ch) if not ch: continue code = self.do_command(ch) if code == -1: return self.default if not code: break self.refresh() return self.gather()
AzaubaevViktor/tagging
console/my_textpad.py
my_textpad.py
py
2,571
python
en
code
0
github-code
6
[ { "api_name": "curses.textpad.Textbox", "line_number": 6, "usage_type": "name" }, { "api_name": "curses.KEY_PPAGE", "line_number": 8, "usage_type": "attribute" }, { "api_name": "curses.KEY_NPAGE", "line_number": 9, "usage_type": "attribute" }, { "api_name": "curses.KEY_BACKSPACE", "line_number": 50, "usage_type": "attribute" }, { "api_name": "curses.KEY_LEFT", "line_number": 53, "usage_type": "attribute" }, { "api_name": "curses.KEY_RIGHT", "line_number": 55, "usage_type": "attribute" }, { "api_name": "curses.KEY_DOWN", "line_number": 57, "usage_type": "attribute" }, { "api_name": "curses.KEY_DC", "line_number": 59, "usage_type": "attribute" }, { "api_name": "curses.KEY_UP", "line_number": 61, "usage_type": "attribute" }, { "api_name": "curses.KEY_HOME", "line_number": 63, "usage_type": "attribute" }, { "api_name": "curses.KEY_END", "line_number": 65, "usage_type": "attribute" } ]
28176425279
import sqlite3 import json from datetime import datetime from traceback import print_tb from helpers import create_table_if_not_exists, get_db_path, get_timeframe_path, format_data, \ acceptable, get_timeframes timeframes = get_timeframes() sql_transaction = [] start_row = 0 # start_row = 8400000 # that is where I stopped it last time print(timeframes) def find_parent(pid): try: sql = "SELECT comment FROM parent_reply WHERE comment_id = '{}' LIMIT 1".format(pid) c.execute(sql) result = c.fetchone() if result is not None: res = result[0] if res is None or res == 'False' or res == '0': return False return res else: return False except Exception as e: print('find_parent', e) print_tb(e) return False def find_existing_score(pid): if pid is False: return False try: sql = "SELECT score FROM parent_reply WHERE parent_id = '{}' LIMIT 1".format(pid) c.execute(sql) result = c.fetchone() if result is not None: return result[0] else: return False except Exception as e: print('find_existing_score', e) print_tb(e) return False def transaction_bldr(sql, bindings = None): global sql_transaction sql_transaction.append([sql, bindings]) if len(sql_transaction) > 2000: c.execute('BEGIN TRANSACTION') for s, b in sql_transaction: try: if b is not None: c.execute(s, b) else: c.execute(s) # except Exception as e: # print(str(datetime.now()), s, e) except: pass connection.commit() sql_transaction = [] def sql_insert_replace_comment(commentid, parentid, parent, comment, subreddit, time, score): try: sql = """UPDATE parent_reply SET parent_id = ?, comment_id = ?, parent = ?, comment = ?, subreddit = ?, unix = ?, score = ? WHERE parent_id = ?;""" b = [parentid, commentid, parent, comment, subreddit, int(time), score, parentid] transaction_bldr(sql, b) except Exception as e: print('sql_insert_replace_comment', e) print_tb(e) def sql_insert_has_parent(commentid, parentid, parent, comment, subreddit, time, score): try: sql = """INSERT INTO parent_reply (parent_id, comment_id, parent, comment, subreddit, unix, score) VALUES (?, ?, ?, ?, ?, ?, ?); """ b = [parentid, commentid, parent, comment, subreddit, int(time), score] transaction_bldr(sql, b) except Exception as e: print('sql_insert_has_parent', e) print_tb(e) def sql_insert_no_parent(commentid, parentid, comment, subreddit, time, score): try: sql = """INSERT INTO parent_reply (parent_id, comment_id, comment, subreddit, unix, score) VALUES (?, ?, ?, ?, ?, ?);""" b = [parentid, commentid, comment, subreddit, int(time), score] transaction_bldr(sql, b) except Exception as e: print('sql_insert_no_parent', e) print_tb(e) for timeframe in timeframes: with sqlite3.connect(get_db_path(timeframe)) as connection: c = connection.cursor() create_table_if_not_exists(c) row_counter = 0 paired_rows = 0 # with open(get_timeframe_path(timeframe), buffering=1000) as f: with open(get_timeframe_path(timeframe)) as f: for row in f: row_counter += 1 if row_counter >= start_row: try: row = json.loads(row) parent_id = row['parent_id'].split('_')[1] body = format_data(row['body']) created_utc = row['created_utc'] score = row['score'] comment_id = row['id'] subreddit = row['subreddit'] parent_data = find_parent(parent_id) existing_comment_score = find_existing_score(parent_id) if existing_comment_score: if score > existing_comment_score: if acceptable(body): sql_insert_replace_comment(comment_id, parent_id, parent_data, body, subreddit, created_utc, score) else: if acceptable(body): if parent_data: if score >= 2: sql_insert_has_parent(comment_id, parent_id, parent_data, body, subreddit, created_utc, score) paired_rows += 1 else: sql_insert_no_parent(comment_id, parent_id, body, subreddit, created_utc, score) except Exception as e: print(e) if row_counter % 100000 == 0: print('Total Rows Read: {}, Paired Rows: {}, Time: {}'.format(row_counter, paired_rows, str(datetime.now()))) # start from 0 start_row = 0 print('Done')
DuncteBot/chatbot
data_parser.py
data_parser.py
py
5,643
python
en
code
1
github-code
6
[ { "api_name": "helpers.get_timeframes", "line_number": 9, "usage_type": "call" }, { "api_name": "traceback.print_tb", "line_number": 31, "usage_type": "call" }, { "api_name": "traceback.print_tb", "line_number": 49, "usage_type": "call" }, { "api_name": "traceback.print_tb", "line_number": 89, "usage_type": "call" }, { "api_name": "traceback.print_tb", "line_number": 103, "usage_type": "call" }, { "api_name": "traceback.print_tb", "line_number": 116, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 120, "usage_type": "call" }, { "api_name": "helpers.get_db_path", "line_number": 120, "usage_type": "call" }, { "api_name": "helpers.create_table_if_not_exists", "line_number": 122, "usage_type": "call" }, { "api_name": "helpers.get_timeframe_path", "line_number": 128, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 134, "usage_type": "call" }, { "api_name": "helpers.format_data", "line_number": 136, "usage_type": "call" }, { "api_name": "helpers.acceptable", "line_number": 148, "usage_type": "call" }, { "api_name": "helpers.acceptable", "line_number": 153, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 166, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 166, "usage_type": "name" } ]
33952361000
from pyimagesearch.centroidtracker import CentroidTracker from pyimagesearch.trackableobject import TrackableObject from imutils.video import VideoStream from imutils.video import FPS import numpy as np import argparse import imutils import time import dlib import cv2 ap = argparse.ArgumentParser() ap.add_argument("-p", "--prototxt", required=True, help="path to Caffe 'deploy' prototxt file") ap.add_argument("-m", "--model", required=True, help="path to Caffe pre-trained model") ap.add_argument("-i", "--input", type=str, help="path to optional input video file") ap.add_argument("-o", "--output", type=str, help="path to optional output video file") ap.add_argument("-c", "--confidence", type=float, default=0.4, help="minimum probability to filter weak detections") ap.add_argument("-s", "--skip-frames", type=int, default=30, help="# of skip frames between detections") args = vars(ap.parse_args()) CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] print("[INFO] loading model...") net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"]) if not args.get("input", False): print("[INFO] starting video stream...") vs = VideoStream(src=0).start() time.sleep(2.0) else: print("[INFO] opening video file...") vs = cv2.VideoCapture(args["input"]) writer = None W = None H = None ct = CentroidTracker(maxDisappeared=40, maxDistance=50) trackers = [] trackableObjects = {} totalFrames = 0 totalDown = 0 totalUp = 0 fps = FPS().start() while True: frame = vs.read() frame = frame[1] if args.get("input", False) else frame if args["input"] is not None and frame is None: break frame = imutils.resize(frame, width=500) rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) if W is None or H is None: (H, W) = frame.shape[:2] if args["output"] is not None and writer is None: fourcc = cv2.VideoWriter_fourcc(*"MJPG") writer = cv2.VideoWriter(args["output"], fourcc, 30, (W, H), True) status = "Waiting" rects = [] if totalFrames % args["skip_frames"] == 0: status = "Detecting" trackers = [] blob = cv2.dnn.blobFromImage(frame, 0.007843, (W, H), 127.5) net.setInput(blob) detections = net.forward() for i in np.arange(0, detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > args["confidence"]: idx = int(detections[0, 0, i, 1]) if CLASSES[idx] != "person": continue box = detections[0, 0, i, 3:7] * np.array([W, H, W, H]) (startX, startY, endX, endY) = box.astype("int") tracker = dlib.correlation_tracker() rect = dlib.rectangle(startX, startY, endX, endY) tracker.start_track(rgb, rect) trackers.append(tracker) else: for tracker in trackers: status = "Tracking" tracker.update(rgb) pos = tracker.get_position() startX = int(pos.left()) startY = int(pos.top()) endX = int(pos.right()) endY = int(pos.bottom()) rects.append((startX, startY, endX, endY)) cv2.line(frame, (0, H // 2), (W, H // 2), (0, 255, 255), 2) objects = ct.update(rects) for (objectID, centroid) in objects.items(): to = trackableObjects.get(objectID, None) if to is None: to = TrackableObject(objectID, centroid) else: y = [c[1] for c in to.centroids] direction = centroid[1] - np.mean(y) to.centroids.append(centroid) if not to.counted: if direction < 0 and centroid[1] < H // 2: totalUp += 1 to.counted = True elif direction > 0 and centroid[1] > H // 2: totalDown += 1 to.counted = True trackableObjects[objectID] = to text = "ID {}".format(objectID) cv2.putText(frame, text, (centroid[0] - 10, centroid[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.circle(frame, (centroid[0], centroid[1]), 4, (0, 255, 0), -1) info = [ ("Up", totalUp), ("Down", totalDown), ("Status", status), ] for (i, (k, v)) in enumerate(info): text = "{}: {}".format(k, v) cv2.putText(frame, text, (10, H - ((i * 20) + 20)), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2) cv2.putText(frame, "Crowd Monitor - Store Entry", (109,26), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2) if writer is not None: writer.write(frame) cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF if key == ord("q"): break totalFrames += 1 fps.update() fps.stop() print("[INFO] elapsed time: {:.2f}".format(fps.elapsed())) print("[INFO] approx. FPS: {:.2f}".format(fps.fps())) if writer is not None: writer.release() if not args.get("input", False): vs.stop() else: vs.release() cv2.destroyAllWindows()
Nem3sisX/piedpiper-socialspace
Inside_Store_Model/run.py
run.py
py
4,748
python
en
code
6
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 14, "usage_type": "call" }, { "api_name": "cv2.dnn.readNetFromCaffe", "line_number": 37, "usage_type": "call" }, { "api_name": "cv2.dnn", "line_number": 37, "usage_type": "attribute" }, { "api_name": "imutils.video.VideoStream", "line_number": 42, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 43, "usage_type": "call" }, { "api_name": "cv2.VideoCapture", "line_number": 48, "usage_type": "call" }, { "api_name": "pyimagesearch.centroidtracker.CentroidTracker", "line_number": 58, "usage_type": "call" }, { "api_name": "imutils.video.FPS", "line_number": 68, "usage_type": "call" }, { "api_name": "imutils.resize", "line_number": 77, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 78, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2RGB", "line_number": 78, "usage_type": "attribute" }, { "api_name": "cv2.VideoWriter_fourcc", "line_number": 85, "usage_type": "call" }, { "api_name": "cv2.VideoWriter", "line_number": 86, "usage_type": "call" }, { "api_name": "cv2.dnn.blobFromImage", "line_number": 100, "usage_type": "call" }, { "api_name": "cv2.dnn", "line_number": 100, "usage_type": "attribute" }, { "api_name": "numpy.arange", "line_number": 104, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 110, "usage_type": "call" }, { "api_name": "dlib.correlation_tracker", "line_number": 112, "usage_type": "call" }, { "api_name": "dlib.rectangle", "line_number": 113, "usage_type": "call" }, { "api_name": "cv2.line", "line_number": 128, "usage_type": "call" }, { "api_name": "pyimagesearch.trackableobject.TrackableObject", "line_number": 134, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 137, "usage_type": "call" }, { "api_name": "cv2.putText", "line_number": 148, "usage_type": "call" }, { "api_name": "cv2.FONT_HERSHEY_SIMPLEX", "line_number": 149, "usage_type": "attribute" }, { "api_name": "cv2.circle", "line_number": 150, "usage_type": "call" }, { "api_name": "cv2.putText", "line_number": 158, "usage_type": "call" }, { "api_name": "cv2.FONT_HERSHEY_SIMPLEX", "line_number": 159, "usage_type": "attribute" }, { "api_name": "cv2.putText", "line_number": 161, "usage_type": "call" }, { "api_name": "cv2.FONT_HERSHEY_SIMPLEX", "line_number": 162, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 168, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 169, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 191, "usage_type": "call" } ]
14822509390
from sqlalchemy.orm import Session from database_models import Task, TaskStatuses from schemas import CreateTaskModel, UpdateTaskModel, DeleteTaskModel from datetime import datetime def create_task(db:Session, task: CreateTaskModel): db_task = Task( name = task.name, description = task.description, status = TaskStatuses.opened, create_date = datetime.now() ) db.add(db_task) db.commit() db.refresh(db_task) return db_task def update_task(db:Session, updated_task: UpdateTaskModel): filtered_task = {k:v for k,v in updated_task.to_dict().items() if v is not None} db.query(Task).filter(Task.id==updated_task.id).update(filtered_task) db.commit() return updated_task def delete_task(db:Session, delete_task: DeleteTaskModel): db.query(Task).filter(Task.id==delete_task.id).delete(synchronize_session=False) db.commit() return delete_task def get_all_tasks(db:Session): return db.query(Task).all()
maximzec/ToDoApp
crud.py
crud.py
py
993
python
en
code
0
github-code
6
[ { "api_name": "sqlalchemy.orm.Session", "line_number": 7, "usage_type": "name" }, { "api_name": "schemas.CreateTaskModel", "line_number": 7, "usage_type": "name" }, { "api_name": "database_models.Task", "line_number": 8, "usage_type": "call" }, { "api_name": "database_models.TaskStatuses.opened", "line_number": 11, "usage_type": "attribute" }, { "api_name": "database_models.TaskStatuses", "line_number": 11, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 12, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 12, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 19, "usage_type": "name" }, { "api_name": "schemas.UpdateTaskModel", "line_number": 19, "usage_type": "name" }, { "api_name": "database_models.Task", "line_number": 21, "usage_type": "argument" }, { "api_name": "database_models.Task.id", "line_number": 21, "usage_type": "attribute" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 25, "usage_type": "name" }, { "api_name": "schemas.DeleteTaskModel", "line_number": 25, "usage_type": "name" }, { "api_name": "database_models.Task", "line_number": 26, "usage_type": "argument" }, { "api_name": "database_models.Task.id", "line_number": 26, "usage_type": "attribute" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 32, "usage_type": "name" }, { "api_name": "database_models.Task", "line_number": 33, "usage_type": "argument" } ]
37018468843
import numpy as np # randomly sampling 100 obsev from t-distribution N = 1000 df = N-1 X = np.random.standard_t(df, size = N) import matplotlib.pyplot as plt from scipy.stats import t x_values = np.arange(-5,5,0.1) y_values = t.pdf(x_values,df) # Sample Distribution count, bins, ignored = plt.hist(X, 20, density = True,color = 'purple',label = 'Sample Distribution') # Population Distribution plt.plot(x_values,y_values, color = 'y', linewidth = 2.5,label = 'Population Distribution') #adding title and y-label plt.title("Randomly sampled from standard Student t-distribution") plt.ylabel("Probability") plt.legend() plt.show()
TatevKaren/mathematics-statistics-for-data-science
Probability-Distribution-Functions/Student t distribution.py
Student t distribution.py
py
634
python
en
code
88
github-code
6
[ { "api_name": "numpy.random.standard_t", "line_number": 6, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 6, "usage_type": "attribute" }, { "api_name": "numpy.arange", "line_number": 12, "usage_type": "call" }, { "api_name": "scipy.stats.t.pdf", "line_number": 13, "usage_type": "call" }, { "api_name": "scipy.stats.t", "line_number": 13, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.hist", "line_number": 15, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 15, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 17, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 17, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 19, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 19, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 20, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 20, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 21, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 21, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 22, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 22, "usage_type": "name" } ]
14764098844
import sys from typing import List, Tuple def _get_element_orders(arr: List[int], key: int) -> Tuple[List[int], List[int], int]: """ return two lists - one of figures less than key and one of those greater - and the count of key in arr """ less, greater, equal = [], [], 0 for i in arr: if i < key: less.append(i) elif i > key: greater.append(i) else: equal += 1 return less, greater, equal def _get_majority_element(arr: List[int], majority_size: int) -> int: """ return the value of the majority element between l and h if this element exists, and return -1 if no such element exists """ less_than, greater_than, equal = _get_element_orders(arr, arr[0]) if equal > majority_size: return arr[0] elif len(less_than) > majority_size: return _get_majority_element(less_than, majority_size) elif len(greater_than) > majority_size: return _get_majority_element(greater_than, majority_size) else: return -1 def get_majority_element(arr: List[int]) -> int: """ wrapper function for _get_majority_element which calculates the majority size """ majority_size = len(arr) / 2 return _get_majority_element(arr, majority_size) if __name__ == '__main__': input_data = sys.stdin.read() n, *a = list(map(int, input_data.split())) if get_majority_element(a) != -1: print(1) else: print(0)
JoeLove100/data-structures-and-algorithms
divide_and_conquer/majority_element.py
majority_element.py
py
1,557
python
en
code
0
github-code
6
[ { "api_name": "typing.List", "line_number": 5, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 6, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 6, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 26, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 46, "usage_type": "name" }, { "api_name": "sys.stdin.read", "line_number": 57, "usage_type": "call" }, { "api_name": "sys.stdin", "line_number": 57, "usage_type": "attribute" } ]
2857680026
import numpy as np import torch from functools import reduce # Required in Python 3 import operator def prod(iterable): return reduce(operator.mul, iterable, 1) def multi_index_to_single(tensor, index): i = 0 return torch.stack([index[i] * prod([tensor.shape[j] for j in range(i + 1, tensor.ndim)]) + index[i + 1] for i in range(len(index) - 1)]).sum(0) # return torch.stack([torch.Tensor([index[i] * prod([tensor.shape[j] for j in range(i + 1, tensor.ndim)]) + index[i + 1]]) for i in range(len(index) - 1)]).sum(0) def add_at(tensor_a, index, tensor_b): index_flat = multi_index_to_single(tensor_a, index) # print(tensor_b.flatten().shape) # print(index_flat.max()) # print(torch.index_select(tensor_a.flatten(), 0, index_flat)) # torch.index_add(tensor_a.flatten().float(), 0, index_flat, tensor_b.flatten()) # print(tensor_a.device, tensor_b.device, index_flat.device) return tensor_a.flatten().index_add_(0, index_flat, tensor_b.flatten()).reshape(tensor_a.shape) # gvi = np.random.randn(5, 5) + np.random.randn(5, 5) * 1j gvi = np.random.randn(5, 5) + np.random.randn(5, 5) * 1j # tensor(4067017.2500) tensor(141988016.) torch.float32 torch.Size([5982336]) # tensor(48913.6250) tensor(22521834.) torch.float32 torch.Size([5982336]) gvi = np.zeros([2300, 2300], dtype=complex) visg = 141988016 * np.random.randn(5982336) + 4067017 + 22521834j * np.random.randn(5982336) + 48913j undxi = np.random.randint(0, 2300, size=(len(visg))) vndxi = np.random.randint(0, 2300, size=(len(visg))) gvi_t = torch.from_numpy(gvi) np.add.at(gvi, (undxi, vndxi), visg) visg_t = torch.from_numpy(visg) undxi = torch.from_numpy(undxi) vndxi = torch.from_numpy(vndxi) gvi_tr = gvi_t.real gvi_ti = gvi_t.imag visg_tr = visg_t.real visg_ti = visg_t.imag add_at(gvi_tr, (undxi, vndxi), visg_tr) add_at(gvi_ti, (undxi, vndxi), visg_ti) gvi_t = torch.view_as_complex(torch.stack([gvi_tr, gvi_ti], dim=-1)) assert np.isclose(gvi_t, gvi).all()
DavidRuhe/interferometry
src/gridding_python_improved/add_at.py
add_at.py
py
1,989
python
en
code
0
github-code
6
[ { "api_name": "functools.reduce", "line_number": 8, "usage_type": "call" }, { "api_name": "operator.mul", "line_number": 8, "usage_type": "attribute" }, { "api_name": "torch.stack", "line_number": 13, "usage_type": "call" }, { "api_name": "numpy.random.randn", "line_number": 29, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 29, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 33, "usage_type": "call" }, { "api_name": "numpy.random.randn", "line_number": 34, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 34, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 36, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 36, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 37, "usage_type": "attribute" }, { "api_name": "torch.from_numpy", "line_number": 39, "usage_type": "call" }, { "api_name": "numpy.add.at", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.add", "line_number": 41, "usage_type": "attribute" }, { "api_name": "torch.from_numpy", "line_number": 43, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 44, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 45, "usage_type": "call" }, { "api_name": "torch.view_as_complex", "line_number": 56, "usage_type": "call" }, { "api_name": "torch.stack", "line_number": 56, "usage_type": "call" }, { "api_name": "numpy.isclose", "line_number": 59, "usage_type": "call" } ]
37430539138
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' name: shopnum1 GuidBuyList.aspx SQL注入 referer: http://www.wooyun.org/bugs/wooyun-2015-0118447 author: Lucifer description: 文件GuidBuyList.aspx中,参数guid存在SQL注入。 ''' import sys import requests class shopnum_GuidBuyList_sqli_BaseVerify: def __init__(self, url): self.url = url def run(self): headers = { "User-Agent":"Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50" } payload = "/GuidBuyList.aspx?guid=97dcbadc-9b4f-4ff5-9ffb-17e46e10d66d%27AnD(ChAr(66)%2BChAr(66)%2BChAr(66)%2B@@VeRsiOn)%3E0--" vulnurl = self.url + payload try: req = requests.get(vulnurl, headers=headers, timeout=10, verify=False) if r"BBBMicrosoft" in req.text: return "[+]存在shopnum1 GuidBuyList.aspx SQL注入漏洞...(高危)\tpayload: "+vulnurl except: return "[-]connect timeout" if __name__ == "__main__": testVuln = shopnum_GuidBuyList_sqli_BaseVerify(sys.argv[1]) testVuln.run()
iceyhexman/onlinetools
scanner/plugins/cms/shopnum/shopnum_GuidBuyList_sqli.py
shopnum_GuidBuyList_sqli.py
py
1,147
python
en
code
1,626
github-code
6
[ { "api_name": "requests.get", "line_number": 25, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 34, "usage_type": "attribute" } ]
22460490121
import os import sys import argparse import time import warnings import torch import torch.nn.functional as F import numpy as np import matplotlib.pyplot as plt sys.path.append(os.path.join(os.getcwd().split('cbo-in-python')[0], 'cbo-in-python')) from src.torch.models import * from src.datasets import load_mnist_dataloaders from src.torch import Optimizer, Loss MODELS = { 'TinyMLP': TinyMLP, 'SmallMLP': SmallMLP, 'LeNet1': LeNet1, 'LeNet5': LeNet5, } DATASETS = { 'MNIST': load_mnist_dataloaders, } def _evaluate(model, X_, y_, loss_fn): with torch.no_grad(): outputs = model(X_) y_pred = torch.argmax(outputs, dim=1) loss = loss_fn(outputs, y_) acc = 1. * y_.eq(y_pred).sum().item() / y_.shape[0] return loss, acc def train(model, train_dataloader, test_dataloader, device, use_multiprocessing, processes, epochs, particles, particles_batch_size, alpha, sigma, l, dt, anisotropic, eps, partial_update, cooling, eval_freq): train_accuracies = [] train_losses = [] test_accuracies = [] test_losses = [] optimizer = Optimizer(model, n_particles=particles, alpha=alpha, sigma=sigma, l=l, dt=dt, anisotropic=anisotropic, eps=eps, partial_update=partial_update, use_multiprocessing=use_multiprocessing, n_processes=processes, particles_batch_size=particles_batch_size, device=device) loss_fn = Loss(F.nll_loss, optimizer) n_batches = len(train_dataloader) for epoch in range(epochs): epoch_train_accuracies = [] epoch_train_losses = [] for batch, (X, y) in enumerate(train_dataloader): X, y = X.to(device), y.to(device) train_loss, train_acc = _evaluate(model, X, y, F.nll_loss) epoch_train_accuracies.append(train_acc) epoch_train_losses.append(train_loss.cpu()) optimizer.zero_grad() loss_fn.backward(X, y, backward_gradients=False) optimizer.step() if batch % eval_freq == 0 or batch == n_batches - 1: with torch.no_grad(): losses = [] accuracies = [] for X_test, y_test in test_dataloader: X_test, y_test = X_test.to(device), y_test.to(device) loss, acc = _evaluate(model, X_test, y_test, F.nll_loss) losses.append(loss.cpu()) accuracies.append(acc) val_loss, val_acc = np.mean(losses), np.mean(accuracies) if batch == n_batches - 1: test_accuracies.append(val_acc) test_losses.append(val_loss) print( f'Epoch: {epoch + 1:2}/{epochs}, batch: {batch + 1:4}/{n_batches}, train loss: {train_loss:8.3f}, ' f'train acc: {train_acc:8.3f}, test loss: {val_loss:8.3f}, test acc: {val_acc:8.3f}', flush=True) train_accuracies.append(np.mean(epoch_train_accuracies)) train_losses.append(np.mean(epoch_train_losses)) if cooling: optimizer.cooling_step() return train_accuracies, test_accuracies, train_losses, test_losses def build_plot(epochs, model_name, dataset_name, plot_path, train_acc, test_acc, train_loss, test_loss): plt.rcParams['figure.figsize'] = (20, 10) plt.rcParams['font.size'] = 25 epochs_range = np.arange(1, epochs + 1, dtype=int) plt.clf() fig, (ax1, ax2) = plt.subplots(1, 2) ax1.plot(epochs_range, train_acc, label='train') ax1.plot(epochs_range, test_acc, label='test') ax1.legend() ax1.set_xlabel('epoch') ax1.set_ylabel('accuracy') ax1.set_title('Accuracy') ax2.plot(epochs_range, train_loss, label='train') ax2.plot(epochs_range, test_loss, label='test') ax2.legend() ax2.set_xlabel('epoch') ax2.set_ylabel('loss') ax2.set_title('Loss') plt.suptitle(f'{model_name} @ {dataset_name}') plt.savefig(plot_path) if __name__ == '__main__': parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--model', type=str, default='SmallMLP', help=f'architecture to use', choices=list(MODELS.keys())) parser.add_argument('--dataset', type=str, default='MNIST', help='dataset to use', choices=list(DATASETS.keys())) parser.add_argument('--device', type=str, choices=['cuda', 'cpu'], default='cuda', help='whether to use GPU (cuda) for accelerated computations or not') parser.add_argument('--use_multiprocessing', action='store_true', help='specify to use multiprocessing for accelerating computations on CPU ' '(note, it is impossible to use multiprocessing with GPU)') parser.add_argument('--processes', type=int, default=4, help='how many processes to use for multiprocessing') parser.add_argument('--epochs', type=int, default=10, help='train for EPOCHS epochs') parser.add_argument('--batch_size', type=int, default=60, help='batch size (for samples-level batching)') parser.add_argument('--particles', type=int, default=100, help='') parser.add_argument('--particles_batch_size', type=int, default=10, help='batch size ' '(for particles-level batching)') parser.add_argument('--alpha', type=float, default=50, help='alpha from CBO dynamics') parser.add_argument('--sigma', type=float, default=0.4 ** 0.5, help='sigma from CBO dynamics') parser.add_argument('--l', type=float, default=1, help='lambda from CBO dynamics') parser.add_argument('--dt', type=float, default=0.1, help='dt from CBO dynamics') parser.add_argument('--anisotropic', type=bool, default=True, help='whether to use anisotropic or not') parser.add_argument('--eps', type=float, default=1e-5, help='threshold for additional random shift') parser.add_argument('--partial_update', type=bool, default=True, help='whether to use partial or full update') parser.add_argument('--cooling', type=bool, default=False, help='whether to apply cooling strategy') parser.add_argument('--build_plot', required=False, action='store_true', help='specify to build loss and accuracy plot') parser.add_argument('--plot_path', required=False, type=str, default='demo.png', help='path to save the resulting plot') parser.add_argument('--eval_freq', type=int, default=100, help='evaluate test accuracy every EVAL_FREQ ' 'samples-level batches') args = parser.parse_args() warnings.filterwarnings('ignore') model = MODELS[args.model]() train_dataloader, test_dataloader = DATASETS[args.dataset](train_batch_size=args.batch_size, test_batch_size=args.batch_size) device = args.device if args.device == 'cuda' and not torch.cuda.is_available(): print('Cuda is unavailable. Using CPU instead.') device = 'cpu' use_multiprocessing = args.use_multiprocessing if device != 'cpu' and use_multiprocessing: print('Unable to use multiprocessing on GPU') use_multiprocessing = False device = torch.device(device) print(f'Training {args.model} @ {args.dataset}') start_time = time.time() result = train(model, train_dataloader, test_dataloader, device, use_multiprocessing, args.processes, args.epochs, args.particles, args.particles_batch_size, args.alpha, args.sigma, args.l, args.dt, args.anisotropic, args.eps, args.partial_update, args.cooling, args.eval_freq) print(f'Elapsed time: {time.time() - start_time} seconds') if args.build_plot: build_plot(args.epochs, args.model, args.dataset, args.plot_path, *result)
Igor-Tukh/cbo-in-python
demo/torch_nn_demo.py
torch_nn_demo.py
py
8,219
python
en
code
3
github-code
6
[ { "api_name": "sys.path.append", "line_number": 12, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 12, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 12, "usage_type": "call" }, { "api_name": "os.path", "line_number": 12, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 12, "usage_type": "call" }, { "api_name": "src.datasets.load_mnist_dataloaders", "line_number": 26, "usage_type": "name" }, { "api_name": "torch.no_grad", "line_number": 31, "usage_type": "call" }, { "api_name": "torch.argmax", "line_number": 33, "usage_type": "call" }, { "api_name": "src.torch.Optimizer", "line_number": 48, "usage_type": "call" }, { "api_name": "src.torch.Loss", "line_number": 52, "usage_type": "call" }, { "api_name": "torch.nn.functional.nll_loss", "line_number": 52, "usage_type": "attribute" }, { "api_name": "torch.nn.functional", "line_number": 52, "usage_type": "name" }, { "api_name": "torch.nn.functional.nll_loss", "line_number": 61, "usage_type": "attribute" }, { "api_name": "torch.nn.functional", "line_number": 61, "usage_type": "name" }, { "api_name": "torch.no_grad", "line_number": 70, "usage_type": "call" }, { "api_name": "torch.nn.functional.nll_loss", "line_number": 75, "usage_type": "attribute" }, { "api_name": "torch.nn.functional", "line_number": 75, "usage_type": "name" }, { "api_name": "numpy.mean", "line_number": 78, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 87, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 88, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 97, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 97, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 98, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 98, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 100, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.clf", "line_number": 102, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 102, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 103, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 103, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.suptitle", "line_number": 119, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 119, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 121, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 121, "usage_type": "name" }, { "api_name": "argparse.ArgumentParser", "line_number": 125, "usage_type": "call" }, { "api_name": "argparse.ArgumentDefaultsHelpFormatter", "line_number": 125, "usage_type": "attribute" }, { "api_name": "warnings.filterwarnings", "line_number": 164, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 170, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 170, "usage_type": "attribute" }, { "api_name": "torch.device", "line_number": 177, "usage_type": "call" }, { "api_name": "time.time", "line_number": 180, "usage_type": "call" }, { "api_name": "time.time", "line_number": 186, "usage_type": "call" } ]
7161693364
""" Given an unsorted integer array nums, return the smallest missing positive integer. You must implement an algorithm that runs in O(n) time and uses constant extra space. Example 1: Input: nums = [1,2,0] Output: 3 Example 2: Input: nums = [3,4,-1,1] Output: 2 Example 3: Input: nums = [7,8,9,11,12] Output: 1 Constraints: 1 <= nums.length <= 5 * 105 -231 <= nums[i] <= 231 - 1 """ from typing import List class Solution: def remove_negative_nums(self,A): temp = [] for num in A: if num > 0: temp.append(num) return temp def firstMissingPositive(self, nums: List[int]) -> int: n = len(nums) num_of_negative_int = 0 for num in nums: if num<=0: num_of_negative_int += 1 if n == num_of_negative_int: return 1 else: temp =[] temp = self.remove_negative_nums(nums) min_num = min(temp) if min_num != 1: return 1 else: # temp = sorted(temp) for i in range(1,len(temp)): if min_num+1 in temp: min_num += 1 else: return min_num + 1 return min_num + 1
CompetitiveCodingLeetcode/LeetcodeEasy
Hard/FirstMissingPositive_Q41.py
FirstMissingPositive_Q41.py
py
1,307
python
en
code
0
github-code
6
[ { "api_name": "typing.List", "line_number": 37, "usage_type": "name" } ]
74494631546
""" Coin recognition, real life application task: calculate the value of coins on picture """ import cv2 import numpy as np def detect_coins(): coins = cv2.imread('../input_image/koruny.jpg', 1) gray = cv2.cvtColor(coins, cv2.COLOR_BGR2GRAY) img = cv2.medianBlur(gray, 7) circles = cv2.HoughCircles( img, # source image cv2.HOUGH_GRADIENT, # type of detection 1, 50, param1=100, param2=50, minRadius=10, # minimal radius maxRadius=380, # max radius ) coins_copy = coins.copy() for detected_circle in circles[0]: x_coor, y_coor, detected_radius = detected_circle coins_detected = cv2.circle( coins_copy, (int(x_coor), int(y_coor)), int(detected_radius), (0, 255, 0), 4, ) cv2.imwrite("../output_image/coin_amount/koruny_test_Hough.jpg", coins_detected) return circles def calculate_amount(): koruny = { "1 CZK": { "value": 1, "radius": 20, "ratio": 1, "count": 0, }, "2 CZK": { "value": 2, "radius": 21.5, "ratio": 1.075, "count": 0, }, "5 CZK": { "value": 5, "radius": 23, "ratio": 1.15, "count": 0, }, "10 CZK": { "value": 10, "radius": 24.5, "ratio": 1.225, "count": 0, }, "20 CZK": { "value": 20, "radius": 26, "ratio": 1.3, "count": 0, }, "50 CZK": { "value": 50, "radius": 27.5, "ratio": 1.375, "count": 0, }, } circles = detect_coins() radius = [] coordinates = [] for detected_circle in circles[0]: x_coor, y_coor, detected_radius = detected_circle radius.append(detected_radius) coordinates.append([x_coor, y_coor]) smallest = min(radius) tolerance = 0.0375 total_amount = 0 coins_circled = cv2.imread('../output_image/coin_amount/koruny_test_Hough.jpg', 1) font = cv2.FONT_HERSHEY_SIMPLEX for coin in circles[0]: ratio_to_check = coin[2] / smallest coor_x = coin[0] coor_y = coin[1] for koruna in koruny: value = koruny[koruna]['value'] if abs(ratio_to_check - koruny[koruna]['ratio']) <= tolerance: koruny[koruna]['count'] += 1 total_amount += koruny[koruna]['value'] cv2.putText(coins_circled, str(value), (int(coor_x), int(coor_y)), font, 1, (0, 0, 0), 4) print(f"The total amount is {total_amount} CZK") for koruna in koruny: pieces = koruny[koruna]['count'] print(f"{koruna} = {pieces}x") cv2.imwrite("../output_image/coin_amount/koruny_hodnota.jpg", coins_circled) if __name__ == "__main__": calculate_amount()
tinazhouhui/computer_vision
image_analysis/coin_amount_calculate.py
coin_amount_calculate.py
py
3,054
python
en
code
1
github-code
6
[ { "api_name": "cv2.imread", "line_number": 10, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 12, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 12, "usage_type": "attribute" }, { "api_name": "cv2.medianBlur", "line_number": 13, "usage_type": "call" }, { "api_name": "cv2.HoughCircles", "line_number": 14, "usage_type": "call" }, { "api_name": "cv2.HOUGH_GRADIENT", "line_number": 16, "usage_type": "attribute" }, { "api_name": "cv2.circle", "line_number": 30, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 38, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 95, "usage_type": "call" }, { "api_name": "cv2.FONT_HERSHEY_SIMPLEX", "line_number": 96, "usage_type": "attribute" }, { "api_name": "cv2.putText", "line_number": 107, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 116, "usage_type": "call" } ]
34900553836
#!/usr/bin/env python import argparse import collections import operator import os import re UA_RE = re.compile(r'"(Mozilla[^"]*?)"') def extract_log(file_obj, counts): for line in file_obj: m = UA_RE.search(line) if not m: continue counts[m.groups()[0]] += 1 def main(): parser = argparse.ArgumentParser() parser.add_argument('-d', '--directory', default='.') parser.add_argument('-c', '--count', default=10) args = parser.parse_args() counts = collections.defaultdict(int) for fname in os.listdir(args.directory): if fname.startswith('access.log'): with open(fname) as file_obj: extract_log(file_obj, counts) agents = list( sorted(counts.items(), key=operator.itemgetter(1), reverse=True)) for agent, count in agents[:args.count]: print('{:<7d} {}'.format(count, agent)) if __name__ == '__main__': main()
eklitzke/nginx-ua-extract
extract.py
extract.py
py
946
python
en
code
0
github-code
6
[ { "api_name": "re.compile", "line_number": 9, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 21, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 26, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 27, "usage_type": "call" }, { "api_name": "operator.itemgetter", "line_number": 33, "usage_type": "call" } ]
43627672364
from typing import List class Solution: # Two pointers def maximumScore(self, nums: List[int], k: int) -> int: i, j = k, k n = len(nums) res, minVal = nums[k], nums[k] while 0 < i or j < n-1: if i == 0: j += 1 elif j == n-1: i -= 1 elif nums[i-1] < nums[j+1]: j += 1 else: i -= 1 minVal = min(minVal, nums[i], nums[j]) res = max(res, minVal * (j-i+1)) return res # O(N*N) is not good enough :( def maximumScore_own_TLE(self, nums: List[int], k: int) -> int: res = float('-inf') n = len(nums) minVals = [[float('inf')]*n for _ in range(n)] for i in range(n): minVal = float('inf') for j in range(i, -1, -1): minVal = min(minVal, nums[j]) minVals[j][i] = minVal for i in range(k, -1, -1): for j in range(k, len(nums)): res = max(res, (minVals[i][j]) * (j - i + 1)) return res def test(self): test_cases = [ [[1,4,3,7,4,5], 3], [[5,5,4,5,4,1,1,1], 0], ] for nums, k in test_cases: res = self.maximumScore(nums, k) print('res: %s' % res) print('-=' * 30 + '-') if __name__ == '__main__': Solution().test()
MichaelTQ/LeetcodePythonProject
solutions/leetcode_1751_1800/LeetCode1793_MaximumScoreOfAGoodSubarray.py
LeetCode1793_MaximumScoreOfAGoodSubarray.py
py
1,424
python
en
code
0
github-code
6
[ { "api_name": "typing.List", "line_number": 6, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 24, "usage_type": "name" } ]
73924482426
import re from bs4 import BeautifulSoup ''' 要爬取信息: 1. 基本信息 2. 作者简介 3. 内容简介 4. 原文摘录 5. 推荐电子书 6. 推荐书籍 7. 评论 ''' class Parser(object): def __init__(self, soup): self.title = soup.find('span', property="v:itemreviewed") self.imgLink = soup.find('a', class_='nbg') self.score = soup.find('div', class_='rating_self clearfix') self.blockquote = soup.find('ul', class_='blockquote-list') self.comments = soup.find('div', class_='comment-list new_score show') self.moreInfo = soup.find('div', id="info") # 内容简介 tmp = soup.find('div', class_="indent", id='link-report') if tmp: self.summary = tmp.find('span', class_='all hidden') if self.summary is None: self.summary = tmp.find('div', class_='intro') else: self.summary = None # 作者简介 tmp = soup.find('div', class_='related_info').find('div', class_="indent", id=False) if tmp: self.author = tmp.find('span', class_='all hidden') if self.author is None: self.author = tmp.find('div', class_='intro') else: self.author = None # 推荐电子书 tmp = soup.find('div', id='rec-ebook-section') if tmp: self.recom_ebook = tmp.find('div', class_='content clearfix') else: self.recom_ebook = None # 推荐书籍 tmp = soup.find('div', id='db-rec-section') if tmp: self.recom_book = tmp.find('div', class_='content clearfix') else: self.recom_book = None # 总的解析函数 def parse_all(self): # 创建字典用来存放解析到的信息 bookDict = dict() # 将信息整合到moveiDict中 bookDict['基本信息'] = self.parse_info() bookDict['内容简介'] = self.parse_summary() bookDict['作者简介'] = self.parse_author() bookDict['原文摘录'] = self.parse_blockquote() bookDict['电子书推荐'] = self.parse_recom_ebook() bookDict['书籍推荐'] = self.parse_recom_book() bookDict['热评'] = self.parse_comment() return bookDict # 解析基本信息 def parse_info(self): infoDict = dict() # 1.标题 infoDict['标题'] = self.title.text # 总不至于连标题也没有吧 # 2.图片链接 if self.imgLink: infoDict['图片链接'] = self.imgLink.img['src'] # 3.评分 {'评分':['xxx 评分', 'xxx 人数']} if self.score: score = self.score.text.split() score[1] = score[1][:-3] infoDict['评分'] = score # 5.解析更多信息 infoDict.update(self.parse_moreinfo()) return infoDict # 解析更多信息 def parse_moreinfo(self): infoDict = dict() for item in re.split('<br>|<br/>', str(self.moreInfo)): # 不同信息 item = BeautifulSoup(item, "html.parser") item = re.sub('[ \n]', '', item.text) if not item: continue item = item.split(':') key = item[0] value = item[1].strip() infoDict[key] = value return infoDict # 获取内容简介 def parse_summary(self): if not self.summary: return None summary = '' for par in self.summary.find_all('p'): par = par.text.replace('\u3000', '') summary = summary + par + '\par' return summary # 获取作者简介 def parse_author(self): if not self.author: return None author = '' for par in self.author.find_all('p'): par = par.text.replace('\u3000', '') author = author + par + '\par' return author # 获取原文摘录 def parse_blockquote(self): if not self.blockquote: return None blockquote = list() [s.extract() for s in self.blockquote('div')] for item in self.blockquote.find_all('figure'): blockquote.append(item.text.strip().split(' (查看原文)')[0]) return blockquote # 相关电子书推荐 def parse_recom_ebook(self): if not self.recom_ebook: return None recom_ebook = list() for item in self.recom_ebook.find_all('dl'): imgLink = item.img imgLink = imgLink['src'] recom_ebook.append([item.text.split()[0], imgLink]) return recom_ebook # 相关书籍推荐 def parse_recom_book(self): if not self.recom_book: return None recom_book = list() for item in self.recom_book.find_all('dl'): if not item.text: continue imgLink = item.img imgLink = imgLink['src'] recom_book.append([item.text.split()[0], imgLink]) return recom_book # 评论 def parse_comment(self): if not self.comments: return None comments = [] for item in self.comments.find_all('span', class_='short'): comments.append(item.text) return comments # 接口函数 def run(self): # print('开始解析') res = self.parse_all() return res # 将dict 转换为 json格式 # return json.dumps(res, ensure_ascii=False, indent=1) # if __name__ == '__main__': # # 打开文件进行解析 # inputPath = r'C:\Users\31363\Desktop\Workspace\lab_web\book_spider\doc\demo.html' # soup = BeautifulSoup(open(inputPath, encoding='utf8'), 'html.parser') # parser = Parser(soup) # parser.parse_all()
icecream-and-tea/labs_web
lab1/lab1_stage1/book_spider/src/html_parser.py
html_parser.py
py
5,863
python
en
code
2
github-code
6
[ { "api_name": "re.split", "line_number": 99, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 100, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 101, "usage_type": "call" } ]
17547705346
from keras.models import Model, load_model, save_model from keras.layers import Input, Dense, Conv2D, Flatten, BatchNormalization, AveragePooling2D from keras.activations import relu, softmax from keras import backend as K from keras.optimizers import Adam, RMSprop, SGD import keras.initializers as initializers class Actor(): def __init__(self, state_size, action_size, hyper_param={}, seed=714): hyper_param = { 'lr': 1e-7, } self.seed = 714 self.state_size = state_size self.action_size = action_size state = Input(shape=self.state_size) advantage = Input(shape=(1, )) old_prediction = Input(shape=(self.action_size, )) x = Conv2D(filters=20, kernel_size=(2, 2), strides=1, activation=relu, padding='same')(state) x = AveragePooling2D()(x) x = Conv2D(filters=20, kernel_size=(4, 4), strides=1, activation=relu, padding='same')(x) x = AveragePooling2D()(x) x = Flatten()(x) x = Dense(units=512, activation=relu, kernel_initializer=initializers.RandomNormal(mean=0.0, stddev=.00002, seed=self.seed), bias_initializer=initializers.Constant(0.1) )(x) actions_prob = Dense(units=action_size, activation=softmax, name='output')(x) model = Model(inputs=[state, advantage, old_prediction], outputs=actions_prob) model.compile(optimizer= # SGD(lr=hyper_param['lr']), # RMSprop(lr=hyper_param['lr']), Adam(lr=hyper_param['lr']), loss=[self.proximal_policy_optimization_loss( advantage=advantage, old_prediction=old_prediction)]) model.summary() self.model = model def proximal_policy_optimization_loss(self, advantage, old_prediction): LOSS_CLIPPING = 0.2 ENTROPY_LOSS = 0.007 def loss(y_true, y_pred): prob = y_true * y_pred old_prob = y_true * old_prediction r = prob/(old_prob + 1e-10) return -K.mean( K.minimum( r * advantage, K.clip( r, min_value=1 - LOSS_CLIPPING, max_value=1 + LOSS_CLIPPING ) * advantage ) + ENTROPY_LOSS * (prob * K.log(prob + 1e-10)) ) return loss def save_model(self, name): self.model.save(name) def load_model(self, name): # state = Input(shape=self.state_size) advantage = Input(shape=(1, )) old_prediction = Input(shape=(self.action_size, )) model = load_model(name, custom_objects={'loss': self.proximal_policy_optimization_loss( advantage=advantage, old_prediction=old_prediction)}) self.model = model
rlalpha/rl-trial
ppo/actor.py
actor.py
py
3,131
python
en
code
0
github-code
6
[ { "api_name": "keras.layers.Input", "line_number": 19, "usage_type": "call" }, { "api_name": "keras.layers.Input", "line_number": 20, "usage_type": "call" }, { "api_name": "keras.layers.Input", "line_number": 21, "usage_type": "call" }, { "api_name": "keras.layers.Conv2D", "line_number": 23, "usage_type": "call" }, { "api_name": "keras.activations.relu", "line_number": 23, "usage_type": "name" }, { "api_name": "keras.layers.AveragePooling2D", "line_number": 24, "usage_type": "call" }, { "api_name": "keras.layers.Conv2D", "line_number": 25, "usage_type": "call" }, { "api_name": "keras.activations.relu", "line_number": 25, "usage_type": "name" }, { "api_name": "keras.layers.AveragePooling2D", "line_number": 26, "usage_type": "call" }, { "api_name": "keras.layers.Flatten", "line_number": 27, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 28, "usage_type": "call" }, { "api_name": "keras.activations.relu", "line_number": 28, "usage_type": "name" }, { "api_name": "keras.initializers.RandomNormal", "line_number": 29, "usage_type": "call" }, { "api_name": "keras.initializers", "line_number": 29, "usage_type": "name" }, { "api_name": "keras.initializers.Constant", "line_number": 30, "usage_type": "call" }, { "api_name": "keras.initializers", "line_number": 30, "usage_type": "name" }, { "api_name": "keras.layers.Dense", "line_number": 32, "usage_type": "call" }, { "api_name": "keras.activations.softmax", "line_number": 32, "usage_type": "name" }, { "api_name": "keras.models.Model", "line_number": 35, "usage_type": "call" }, { "api_name": "keras.optimizers.Adam", "line_number": 39, "usage_type": "call" }, { "api_name": "keras.backend.mean", "line_number": 54, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 54, "usage_type": "name" }, { "api_name": "keras.backend.minimum", "line_number": 55, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 55, "usage_type": "name" }, { "api_name": "keras.backend.clip", "line_number": 57, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 57, "usage_type": "name" }, { "api_name": "keras.backend.log", "line_number": 62, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 62, "usage_type": "name" }, { "api_name": "keras.layers.Input", "line_number": 71, "usage_type": "call" }, { "api_name": "keras.layers.Input", "line_number": 72, "usage_type": "call" }, { "api_name": "keras.models.load_model", "line_number": 73, "usage_type": "call" } ]
70808563069
import torch from .assign_result import AssignResult from .base_assigner import BaseAssigner def calc_region(bbox, ratio, stride, featmap_size=None): # Base anchor locates in (stride - 1) * 0.5 f_bbox = (bbox - (stride - 1) * 0.5) / stride x1 = torch.round((1 - ratio) * f_bbox[0] + ratio * f_bbox[2]) y1 = torch.round((1 - ratio) * f_bbox[1] + ratio * f_bbox[3]) x2 = torch.round(ratio * f_bbox[0] + (1 - ratio) * f_bbox[2]) y2 = torch.round(ratio * f_bbox[1] + (1 - ratio) * f_bbox[3]) if featmap_size is not None: x1 = x1.clamp(min=0, max=featmap_size[1] - 1) y1 = y1.clamp(min=0, max=featmap_size[0] - 1) x2 = x2.clamp(min=0, max=featmap_size[1] - 1) y2 = y2.clamp(min=0, max=featmap_size[0] - 1) return (x1, y1, x2, y2) def anchor_ctr_inside_region_flags(anchors, stride, region): x1, y1, x2, y2 = region f_anchors = (anchors - (stride - 1) * 0.5) / stride x = (f_anchors[:, 0] + f_anchors[:, 2]) * 0.5 y = (f_anchors[:, 1] + f_anchors[:, 3]) * 0.5 flags = (x >= x1) & (x <= x2) & (y >= y1) & (y <= y2) return flags def anchor_outside_flags(flat_anchors, valid_flags, img_shape, allowed_border=0): img_h, img_w = img_shape[:2] if allowed_border >= 0: inside_flags = valid_flags & \ (flat_anchors[:, 0] >= -allowed_border) & \ (flat_anchors[:, 1] >= -allowed_border) & \ (flat_anchors[:, 2] < img_w + allowed_border) & \ (flat_anchors[:, 3] < img_h + allowed_border) else: inside_flags = valid_flags outside_flags = ~inside_flags return outside_flags class RegionAssigner(BaseAssigner): """Assign a corresponding gt bbox or background to each bbox. Each proposals will be assigned with `-1`, `0`, or a positive integer indicating the ground truth index. - -1: don't care - 0: negative sample, no assigned gt - positive integer: positive sample, index (1-based) of assigned gt Args: pos_iou_thr (float): IoU threshold for positive bboxes. neg_iou_thr (float or tuple): IoU threshold for negative bboxes. min_pos_iou (float): Minimum iou for a bbox to be considered as a positive bbox. Positive samples can have smaller IoU than pos_iou_thr due to the 4th step (assign max IoU sample to each gt). """ # TODO update docs def __init__(self, center_ratio=0.2, ignore_ratio=0.5): self.center_ratio = center_ratio self.ignore_ratio = ignore_ratio def assign(self, mlvl_anchors, mlvl_valid_flags, gt_bboxes, img_meta, featmap_sizes, anchor_scale, anchor_strides, gt_bboxes_ignore=None, gt_labels=None, allowed_border=0): """Assign gt to anchors. This method assign a gt bbox to every bbox (proposal/anchor), each bbox will be assigned with -1, 0, or a positive number. -1 means don't care, 0 means negative sample, positive number is the index (1-based) of assigned gt. The assignment is done in following steps, the order matters. 1. Assign every anchor to 0 (negative) For each gt_bboxes: 2. Compute ignore flags based on ignore_region then assign -1 to anchors w.r.t. ignore flags 3. Compute pos flags based on center_region then assign gt_bboxes to anchors w.r.t. pos flags 4. Compute ignore flags based on adjacent anchor lvl then assign -1 to anchors w.r.t. ignore flags 5. Assign anchor outside of image to -1 Args: bboxes (Tensor): Bounding boxes to be assigned, shape(n, 4). gt_bboxes (Tensor): Groundtruth boxes, shape (k, 4). gt_bboxes_ignore (Tensor, optional): Ground truth bboxes that are labelled as `ignored`, e.g., crowd boxes in COCO. gt_labels (Tensor, optional): Label of gt_bboxes, shape (k, ). Returns: :obj:`AssignResult`: The assign result. """ # TODO support gt_bboxes_ignore if gt_bboxes_ignore is not None: raise NotImplementedError if gt_bboxes.shape[0] == 0: raise ValueError('No gt bboxes') num_gts = gt_bboxes.shape[0] num_lvls = len(mlvl_anchors) r1 = (1 - self.center_ratio) / 2 r2 = (1 - self.ignore_ratio) / 2 scale = torch.sqrt((gt_bboxes[:, 2] - gt_bboxes[:, 0] + 1) * (gt_bboxes[:, 3] - gt_bboxes[:, 1] + 1)) min_anchor_size = scale.new_full( (1, ), float(anchor_scale * anchor_strides[0])) target_lvls = torch.floor( torch.log2(scale) - torch.log2(min_anchor_size) + 0.5) target_lvls = target_lvls.clamp(min=0, max=num_lvls - 1).long() # 1. assign 0 (negative) by default mlvl_assigned_gt_inds = [] mlvl_ignore_flags = [] for lvl in range(num_lvls): h, w = featmap_sizes[lvl] assert h * w == mlvl_anchors[lvl].shape[0] assigned_gt_inds = gt_bboxes.new_full((h * w, ), 0, dtype=torch.long) ignore_flags = torch.zeros_like(assigned_gt_inds) mlvl_assigned_gt_inds.append(assigned_gt_inds) mlvl_ignore_flags.append(ignore_flags) for gt_id in range(num_gts): lvl = target_lvls[gt_id].item() featmap_size = featmap_sizes[lvl] stride = anchor_strides[lvl] anchors = mlvl_anchors[lvl] gt_bbox = gt_bboxes[gt_id, :4] # Compute regions ignore_region = calc_region(gt_bbox, r2, stride, featmap_size) ctr_region = calc_region(gt_bbox, r1, stride, featmap_size) # 2. Assign -1 to ignore flags ignore_flags = anchor_ctr_inside_region_flags( anchors, stride, ignore_region) mlvl_assigned_gt_inds[lvl][ignore_flags > 0] = -1 # 3. Assign gt_bboxes to pos flags pos_flags = anchor_ctr_inside_region_flags(anchors, stride, ctr_region) mlvl_assigned_gt_inds[lvl][pos_flags > 0] = gt_id + 1 # 4. Assign -1 to ignore adjacent lvl if lvl > 0: d_lvl = lvl - 1 d_anchors = mlvl_anchors[d_lvl] d_featmap_size = featmap_sizes[d_lvl] d_stride = anchor_strides[d_lvl] d_ignore_region = calc_region(gt_bbox, d_stride, r2, d_featmap_size) ignore_flags = anchor_ctr_inside_region_flags( d_anchors, d_stride, d_ignore_region) mlvl_ignore_flags[d_lvl][ignore_flags > 0] = 1 if lvl < num_lvls - 1: u_lvl = lvl + 1 u_anchors = mlvl_anchors[u_lvl] u_featmap_size = featmap_sizes[u_lvl] u_stride = anchor_strides[u_lvl] u_ignore_region = calc_region(gt_bbox, u_stride, r2, u_featmap_size) ignore_flags = anchor_ctr_inside_region_flags( u_anchors, u_stride, u_ignore_region) mlvl_ignore_flags[u_lvl][ignore_flags > 0] = 1 # 4. (cont.) Assign -1 to ignore adjacent lvl for lvl in range(num_lvls): ignore_flags = mlvl_ignore_flags[lvl] mlvl_assigned_gt_inds[lvl][ignore_flags > 0] = -1 # 5. Assign -1 to anchor outside of image flat_assigned_gt_inds = torch.cat(mlvl_assigned_gt_inds) flat_anchors = torch.cat(mlvl_anchors) flat_valid_flags = torch.cat(mlvl_valid_flags) assert (flat_assigned_gt_inds.shape[0] == flat_anchors.shape[0] == flat_valid_flags.shape[0]) outside_flags = anchor_outside_flags(flat_anchors, flat_valid_flags, img_meta['img_shape'], allowed_border) flat_assigned_gt_inds[outside_flags] = -1 if gt_labels is not None: assigned_labels = torch.zeros_like(flat_assigned_gt_inds) pos_flags = assigned_gt_inds > 0 assigned_labels[pos_flags] = gt_labels[ flat_assigned_gt_inds[pos_flags] - 1] else: assigned_labels = None return AssignResult( num_gts, flat_assigned_gt_inds, None, labels=assigned_labels)
thangvubk/Cascade-RPN
mmdet/core/bbox/assigners/region_assigner.py
region_assigner.py
py
8,816
python
en
code
177
github-code
6
[ { "api_name": "torch.round", "line_number": 10, "usage_type": "call" }, { "api_name": "torch.round", "line_number": 11, "usage_type": "call" }, { "api_name": "torch.round", "line_number": 12, "usage_type": "call" }, { "api_name": "torch.round", "line_number": 13, "usage_type": "call" }, { "api_name": "base_assigner.BaseAssigner", "line_number": 48, "usage_type": "name" }, { "api_name": "torch.sqrt", "line_number": 120, "usage_type": "call" }, { "api_name": "torch.floor", "line_number": 124, "usage_type": "call" }, { "api_name": "torch.log2", "line_number": 125, "usage_type": "call" }, { "api_name": "torch.long", "line_number": 136, "usage_type": "attribute" }, { "api_name": "torch.zeros_like", "line_number": 137, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 190, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 191, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 192, "usage_type": "call" }, { "api_name": "torch.zeros_like", "line_number": 201, "usage_type": "call" }, { "api_name": "assign_result.AssignResult", "line_number": 208, "usage_type": "call" } ]
40466806630
import pyvirtualcam import cv2 import time from filters import Filters import math from datetime import datetime import ML.HandTrackingModule as htm class VCam: def __init__(self, mxhand, video, f, detCon=0.5, cw=640, ch=480, du=True): cv2.namedWindow('feedback') self.videocap = video self.filterList = ['normal', 'negative', 'bgr2gray'] self.filterIndex = 0 self.inputKey = -1 # Utils self.toDU = du self.nextX, self.nextY = cw - 40, ch // 2 self.prevX, self.prevY = 40, ch // 2 self.escX, self.escY = cw - 40, 40 self.radius = 40 # Hand tracking self.detector = htm.HandDetector(detectionCon=detCon, maxHands=mxhand) self.finger = f self.pressing = False self.initialTime = datetime.timestamp(datetime.now()) self.vc = cv2.VideoCapture(self.videocap) if not self.vc.isOpened(): raise RuntimeError('Can\'t open your camera, please check if videocap is validy device, try using "v4l2-ctl --list-device"') self.vc.set(cv2.CAP_PROP_FRAME_WIDTH, cw) self.vc.set(cv2.CAP_PROP_FRAME_HEIGHT, ch) self.vc.set(cv2.CAP_PROP_FPS, 30) # Query final capture device values (may be different from preferred settings). self.width = int(self.vc.get(cv2.CAP_PROP_FRAME_WIDTH)) self.height = int(self.vc.get(cv2.CAP_PROP_FRAME_HEIGHT)) self.fps_out = self.vc.get(cv2.CAP_PROP_FPS) self.ret, self.frame = self.vc.read() if not self.ret: raise RuntimeError('Error fetching frame') self.display = True def start(self): with pyvirtualcam.Camera(self.width, self.height, self.fps_out, print_fps=False, fmt=pyvirtualcam.PixelFormat.BGR,) as cam: print(f'Virtual cam started: {cam.device} ({cam.width}x{cam.height} @ {cam.fps}fps)') pTime, cTime = 0,0 while self.display: # Read frame from webcam. self.ret, self.frame = self.vc.read() self.frame = cv2.flip(self.frame, 1) if not self.ret: raise RuntimeError('Error fetching frame') # Hand track control self.handCommands() self.inputKey = cv2.waitKey(1) if self.inputKey != -1: self.camInputs() filter = self.filterList[self.filterIndex] self.frame = getattr(Filters, filter)(self.frame) cTime = time.time() fps = int(1 / (cTime - pTime)) pTime = cTime cv2.putText(self.frame, str(fps), (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) cam.send(self.frame) if self.toDU: self.drawUtils() self.detector.drawMarks(self.frame, drawFingerMark=[self.finger]) cv2.imshow('feedback', self.frame) print('Virtual camera closed') def handCommands(self): self.detector.findHands(self.frame) lmList, bbox = self.detector.findPosition(self.frame) if lmList: fingerX, fingerY = lmList[self.finger][1], lmList[self.finger][2] init = datetime.timestamp(datetime.now()) # next filter if math.hypot(fingerX - self.nextX, fingerY - self.nextY) <= 30: actual = datetime.timestamp(datetime.now()) if not self.pressing: self.pressing = True self.initialTime = init else: presstime = actual - self.initialTime if presstime >= 1: self.filterIndex = (self.filterIndex + 1) % len(self.filterList) self.pressing = False # previus filter elif math.hypot(fingerX - self.prevX, fingerY - self.prevY) <= 30: actual = datetime.timestamp(datetime.now()) if not self.pressing: self.pressing = True self.initialTime = init else: presstime = actual - self.initialTime if presstime >= 1: self.filterIndex = (self.filterIndex - 1) % len(self.filterList) self.pressing = False # close cam elif math.hypot(fingerX - self.escX, fingerY - self.escY) <= 30: actual = datetime.timestamp(datetime.now()) if not self.pressing: self.pressing = True self.initialTime = init else: presstime = actual - self.initialTime if presstime >= 2: self.vc.release() self.display = False self.pressing = False else: self.pressing = False self.initialTime = init def camInputs(self): # ESC if self.inputKey == 27: cv2.destroyWindow('feedback') self.vc.release() self.display = False # [ elif self.inputKey == 91: self.filterIndex = (self.filterIndex - 1) % len(self.filterList) # ] elif self.inputKey == 93: self.filterIndex = (self.filterIndex + 1) % len(self.filterList) def drawUtils(self): # Drawing area for hand tracker commands cv2.circle(self.frame, (self.nextX, self.nextY), self.radius, (255, 0, 0)) cv2.circle(self.frame, (self.prevX, self.prevY), self.radius, (255, 0, 0)) cv2.circle(self.frame, (self.escX, self.escY), self.radius, (255, 0, 0))
biguelito/funcam
vcam.py
vcam.py
py
5,797
python
en
code
0
github-code
6
[ { "api_name": "cv2.namedWindow", "line_number": 13, "usage_type": "call" }, { "api_name": "ML.HandTrackingModule.HandDetector", "line_number": 27, "usage_type": "call" }, { "api_name": "ML.HandTrackingModule", "line_number": 27, "usage_type": "name" }, { "api_name": "datetime.datetime.timestamp", "line_number": 30, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 30, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 30, "usage_type": "call" }, { "api_name": "cv2.VideoCapture", "line_number": 32, "usage_type": "call" }, { "api_name": "cv2.CAP_PROP_FRAME_WIDTH", "line_number": 36, "usage_type": "attribute" }, { "api_name": "cv2.CAP_PROP_FRAME_HEIGHT", "line_number": 37, "usage_type": "attribute" }, { "api_name": "cv2.CAP_PROP_FPS", "line_number": 38, "usage_type": "attribute" }, { "api_name": "cv2.CAP_PROP_FRAME_WIDTH", "line_number": 41, "usage_type": "attribute" }, { "api_name": "cv2.CAP_PROP_FRAME_HEIGHT", "line_number": 42, "usage_type": "attribute" }, { "api_name": "cv2.CAP_PROP_FPS", "line_number": 43, "usage_type": "attribute" }, { "api_name": "pyvirtualcam.Camera", "line_number": 53, "usage_type": "call" }, { "api_name": "pyvirtualcam.PixelFormat", "line_number": 53, "usage_type": "attribute" }, { "api_name": "cv2.flip", "line_number": 59, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 66, "usage_type": "call" }, { "api_name": "filters.Filters", "line_number": 71, "usage_type": "argument" }, { "api_name": "time.time", "line_number": 73, "usage_type": "call" }, { "api_name": "cv2.putText", "line_number": 76, "usage_type": "call" }, { "api_name": "cv2.FONT_HERSHEY_SIMPLEX", "line_number": 76, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 82, "usage_type": "call" }, { "api_name": "datetime.datetime.timestamp", "line_number": 92, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 92, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 92, "usage_type": "call" }, { "api_name": "math.hypot", "line_number": 95, "usage_type": "call" }, { "api_name": "datetime.datetime.timestamp", "line_number": 96, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 96, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 96, "usage_type": "call" }, { "api_name": "math.hypot", "line_number": 110, "usage_type": "call" }, { "api_name": "datetime.datetime.timestamp", "line_number": 111, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 111, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 111, "usage_type": "call" }, { "api_name": "math.hypot", "line_number": 125, "usage_type": "call" }, { "api_name": "datetime.datetime.timestamp", "line_number": 126, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 126, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 126, "usage_type": "call" }, { "api_name": "cv2.destroyWindow", "line_number": 148, "usage_type": "call" }, { "api_name": "cv2.circle", "line_number": 162, "usage_type": "call" }, { "api_name": "cv2.circle", "line_number": 163, "usage_type": "call" }, { "api_name": "cv2.circle", "line_number": 164, "usage_type": "call" } ]
15273361459
from . import TestCase from flask import url_for from .. import db from ...models import User class UsersTest(TestCase): render_templates = False def test_list_users(self): self._create_user() response = self.as_user('get', url_for("users")) self.assertEquals(1, len(response.json['_embedded']['users'])) def test_list_users_paginate(self): for i in range(1, 30): self._create_user(i) response = self.as_user('get', url_for("users")) self.assertEquals(25, len(response.json['_embedded']['users'])) next_link = response.json['_links']['next']['href'] self.assertEquals("/users?page=2", next_link) response = self.as_user('get', next_link) self.assertFalse('next' in response.json['_links']) def test_view_user(self): self._create_user() response = self.as_user('get', url_for("user", id=1)) self.assertEquals("[email protected]", response.json['email']) def test_add_user(self): data = {'email': '[email protected]'} self.as_user('post', url_for("users"), data=data) u = User.query.get(1) self.assertEquals('[email protected]', u.email) def test_add_user_invalid(self): data = {} response = self.as_user('post', url_for("users"), data=data) self.assert400(response) message = "Error in the email field - This field is required." self.assertEquals(message, response.json['message']) def test_edit_user(self): u = self._create_user() data = {'email': '[email protected]', 'first_name': 'Fist Name'} self.as_user('put', url_for("user", id=1), data=data) self.assertEquals('Fist Name', u.first_name) def test_delete_user(self): u = self._create_user() self.as_user('delete', url_for("user", id=1)) self.assertEqual(False, u.active) def _create_user(self, id=1): u = User() u.id = id u.email = "user%[email protected]" % id u.password = "Password" db.session.add(u) return u
juokaz/flask-skeleton
website/api/tests/users_test.py
users_test.py
py
2,120
python
en
code
0
github-code
6
[ { "api_name": "flask.url_for", "line_number": 15, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 23, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 36, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 43, "usage_type": "call" }, { "api_name": "models.User.query.get", "line_number": 45, "usage_type": "call" }, { "api_name": "models.User.query", "line_number": 45, "usage_type": "attribute" }, { "api_name": "models.User", "line_number": 45, "usage_type": "name" }, { "api_name": "flask.url_for", "line_number": 51, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 62, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 69, "usage_type": "call" }, { "api_name": "models.User", "line_number": 74, "usage_type": "call" } ]
27009005628
from scipy.io import loadmat import numpy as np import xlrd as x import pandas as pd def run(file, delimiter): file_name = file["file"] file_type_list = file_name.split(".") file_type = file_type_list[len(file_type_list) - 1] if file_type == 'mat': key = file["key"] array = read_mat(file_name, key) elif file_type == 'csv': array = read_csv(file_name, delimiter) elif file_type == 'txt': array = read_csv(file_name, delimiter) elif file_type == 'xlsx': array = read_xls(file_name) elif file_type == 'xls': array = read_xls(file_name) else: array = np.array([[]]) return {"array": array.tolist()} def read_mat(file, matKey): dict = loadmat(file) return dict[matKey] def read_csv(file, delimiter): array = np.loadtxt(file, delimiter=delimiter) return np.array(array, dtype=float) def read_xls(file): array = pd.read_excel(file, sheet_name=0, header=None) return np.array(array, dtype=float)
lisunshine1234/mlp-algorithm-python
data/read/read/run.py
run.py
py
1,021
python
en
code
0
github-code
6
[ { "api_name": "numpy.array", "line_number": 25, "usage_type": "call" }, { "api_name": "scipy.io.loadmat", "line_number": 31, "usage_type": "call" }, { "api_name": "numpy.loadtxt", "line_number": 36, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 37, "usage_type": "call" }, { "api_name": "pandas.read_excel", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 42, "usage_type": "call" } ]
35508636359
#START{ import os from github import Github import json import sys import re import time from tabulate import tabulate def clone_repos(GITHUB_ACCESS_TOKEN,GITHUB_USERNAME): g = Github(GITHUB_ACCESS_TOKEN) # Create "repos" folder if it doesn't exist if not os.path.exists("repos"): os.makedirs("repos") # Create "public" and "private" folders within "repos" public_folder = os.path.join("repos", "public") private_folder = os.path.join("repos", "private") if not os.path.exists(public_folder): os.makedirs(public_folder) if not os.path.exists(private_folder): os.makedirs(private_folder) # Clone all public repositories owned by the user for repo in g.get_user().get_repos(affiliation='owner'): if not repo.private: os.makedirs(os.path.join(public_folder), exist_ok=True) if os.path.exists(os.path.join(public_folder, repo.name)): pass else: os.system(f"git clone {repo.clone_url} {os.path.join(public_folder, repo.name)}") os.system(f"rm -rf {os.path.join(public_folder, repo.name, '.git')}") # Clone all private repositories owned by the user for repo in g.get_user().get_repos(affiliation='owner'): if repo.private: os.makedirs(os.path.join(private_folder), exist_ok=True) # Include the access token and username in the clone URL to avoid being prompted for them if os.path.exists(os.path.join(private_folder, repo.name)): pass else: os.system(f"git clone https://{GITHUB_USERNAME}:{GITHUB_ACCESS_TOKEN}@{repo.clone_url.split('://')[1]} {os.path.join(private_folder, repo.name)}") os.system(f"rm -rf {os.path.join(private_folder, repo.name, '.git')}") def is_binary_file(filepath): with open(filepath, 'rb') as f: chunk = f.read(1024) if b'\0' in chunk: return True return False def count_lines(filepath, language): total_lines = 0 code_lines = 0 comment_lines = 0 empty_lines = 0 with open(filepath, 'r', encoding='utf-8', errors='ignore') as f: for line in f: total_lines += 1 line = line.strip() if not line: empty_lines += 1 elif re.match(language['comment_regex'], line): comment_lines += 1 else: code_lines += 1 return (total_lines, code_lines, comment_lines, empty_lines) def get_language(filepath, languages): for language in languages.values(): for extension in language['extensions']: if filepath.endswith(extension): return language return None def get_filetypes(dirpath): filetypes = {} for root, dirs, files in os.walk(dirpath): for file in files: filepath = os.path.join(root, file) if not is_binary_file(filepath): ext = os.path.splitext(file)[1] if ext not in filetypes: filetypes[ext] = 0 filetypes[ext] += 1 return filetypes def main(): dirpath = "./repos" if not os.path.isdir(dirpath): print("Invalid directory path") return with open("languages.json") as f: languages = json.load(f) total_lines = 0 total_code_lines = 0 total_comment_lines = 0 total_empty_lines = 0 lang_lines = {} filetypes = get_filetypes(dirpath) new_dict = {} for key in languages: name = languages[key]["name"].upper() new_dict[name] = 0 for root, dirs, files in os.walk(dirpath): for file in files: filepath = os.path.join(root, file) if not is_binary_file(filepath): language = get_language(filepath, languages) if language: (total, code, comment, empty) = count_lines(filepath, language) total_lines += total total_code_lines += code total_comment_lines += comment total_empty_lines += empty lang_name = language["name"].upper() new_dict[f"{lang_name}"] += 1 if lang_name not in lang_lines: lang_lines[lang_name] = {'total': 0, 'code': 0, 'comment': 0, 'empty': 0} lang_lines[lang_name]['total'] += total lang_lines[lang_name]['code'] += code lang_lines[lang_name]['comment'] += comment lang_lines[lang_name]['empty'] += empty total_files = sum(new_dict.values()) #all_var="" #all_var+="Language Files Total Lines Code Lines Comment Lines Empty Lines"+"\n" #all_var+="-"*84+"\n" data = [] for lang, lines in lang_lines.items(): total = lines['total'] code = lines['code'] comment = lines['comment'] empty = lines['empty'] data.append({'Language': f'{lang}', 'Files': new_dict[f"{lang}"], 'Total Lines': total, 'Code Lines': code, 'Comment Lines': comment, 'Empty Lines': empty}) #all_var+="{:<12}{:<9}{:<17}{:<17}{:<19}{}".format(lang, new_dict[f"{lang}"], total, code, comment, empty)+"\n" #all_var+="-"*84+"\n" #all_var+="{:<12}{:<9}{:<17}{:<17}{:<19}{}".format("TOTAL", total_files, total_lines, total_code_lines, total_comment_lines, total_empty_lines) #data.append({'Language': 'TOTAL', 'Files': total_files, 'Total Lines': total_lines, 'Code Lines': total_code_lines, 'Comment Lines': total_comment_lines, 'Empty Lines': total_empty_lines}) return data def format_table(data): headers = ['Language', 'Files', 'Total Lines', 'Code Lines', 'Comment Lines', 'Empty Lines'] # Sort the data by Total Lines in descending order sorted_data = sorted(data, key=lambda x: x['Total Lines'], reverse=True) table = [] for d in sorted_data: row = [d['Language'], d['Files'], d['Total Lines'], d['Code Lines'], d['Comment Lines'], d['Empty Lines']] table.append(row) table.append(['TOTAL', sum(d['Files'] for d in data), sum(d['Total Lines'] for d in data), sum(d['Code Lines'] for d in data), sum(d['Comment Lines'] for d in data), sum(d['Empty Lines'] for d in data)]) return tabulate(table, headers, tablefmt='pipe') if __name__ == '__main__': if len(sys.argv) < 2: print(f"Usage: python {os.path.basename(__file__)} 'GITHUB_ACCESS_TOKEN' 'GITHUB_USERNAME'") exit() else: clone_repos(sys.argv[1],sys.argv[2]) all_var=format_table(main()) with open('README.md', 'w') as f: # Get current date and time in seconds since the epoch seconds_since_epoch = time.time() # Format the value as a date and time string date_time_string = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(seconds_since_epoch)) # Print the value print(date_time_string) f.write(all_var) f.write("\n\nLast Update: "+date_time_string) print(all_var) #}END.
TAFFAHACHRAF/TAFFAHACHRAF
main.py
main.py
py
7,201
python
en
code
3
github-code
6
[ { "api_name": "github.Github", "line_number": 12, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path", "line_number": 15, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 19, "usage_type": "call" }, { "api_name": "os.path", "line_number": 19, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 20, "usage_type": "call" }, { "api_name": "os.path", "line_number": 20, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path", "line_number": 21, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 22, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 23, "usage_type": "call" }, { "api_name": "os.path", "line_number": 23, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 24, "usage_type": "call" }, { "api_name": "os.makedirs", "line_number": 29, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 29, "usage_type": "call" }, { "api_name": "os.path", "line_number": 29, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 30, "usage_type": "call" }, { "api_name": "os.path", "line_number": 30, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 30, "usage_type": "call" }, { "api_name": "os.system", "line_number": 33, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 33, "usage_type": "call" }, { "api_name": "os.path", "line_number": 33, "usage_type": "attribute" }, { "api_name": "os.system", "line_number": 34, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 34, "usage_type": "call" }, { "api_name": "os.path", "line_number": 34, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 39, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 39, "usage_type": "call" }, { "api_name": "os.path", "line_number": 39, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 41, "usage_type": "call" }, { "api_name": "os.path", "line_number": 41, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 41, "usage_type": "call" }, { "api_name": "os.system", "line_number": 44, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 44, "usage_type": "call" }, { "api_name": "os.path", "line_number": 44, "usage_type": "attribute" }, { "api_name": "os.system", "line_number": 45, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 45, "usage_type": "call" }, { "api_name": "os.path", "line_number": 45, "usage_type": "attribute" }, { "api_name": "re.match", "line_number": 66, "usage_type": "call" }, { "api_name": "os.walk", "line_number": 81, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 83, "usage_type": "call" }, { "api_name": "os.path", "line_number": 83, "usage_type": "attribute" }, { "api_name": "os.path.splitext", "line_number": 85, "usage_type": "call" }, { "api_name": "os.path", "line_number": 85, "usage_type": "attribute" }, { "api_name": "os.path.isdir", "line_number": 93, "usage_type": "call" }, { "api_name": "os.path", "line_number": 93, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 98, "usage_type": "call" }, { "api_name": "os.walk", "line_number": 112, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 114, "usage_type": "call" }, { "api_name": "os.path", "line_number": 114, "usage_type": "attribute" }, { "api_name": "tabulate.tabulate", "line_number": 164, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 168, "usage_type": "attribute" }, { "api_name": "os.path.basename", "line_number": 169, "usage_type": "call" }, { "api_name": "os.path", "line_number": 169, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 172, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 177, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 180, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 180, "usage_type": "call" } ]
40005326365
import pytest from xdlang.structures import XDType, ast from xdlang.visitors.parser import parse_text, transform_parse_tree def parse_and_transform_expr(program_text: str): parsed = parse_text(program_text, start="expr") ast = transform_parse_tree(parse_tree=parsed) return ast @pytest.mark.parametrize( "text,type,value", [ ("42", XDType.INT, 42), ("17.00", XDType.FLOAT, 17.0), ("'Q'", XDType.CHAR, "Q"), ("false", XDType.BOOL, False), ("true", XDType.BOOL, True), ], ) def test_literal(text, type, value): node: ast.LiteralNode = parse_and_transform_expr(text) assert isinstance(node, ast.LiteralNode) assert node.type == type assert node.value == value
mbednarski/xdlang
tests/ast/test_ast_literal.py
test_ast_literal.py
py
742
python
en
code
3
github-code
6
[ { "api_name": "xdlang.visitors.parser.parse_text", "line_number": 8, "usage_type": "call" }, { "api_name": "xdlang.structures.ast", "line_number": 9, "usage_type": "name" }, { "api_name": "xdlang.visitors.parser.transform_parse_tree", "line_number": 9, "usage_type": "call" }, { "api_name": "xdlang.structures.ast", "line_number": 10, "usage_type": "name" }, { "api_name": "xdlang.structures.ast.LiteralNode", "line_number": 24, "usage_type": "attribute" }, { "api_name": "xdlang.structures.ast", "line_number": 24, "usage_type": "name" }, { "api_name": "xdlang.structures.ast.LiteralNode", "line_number": 25, "usage_type": "attribute" }, { "api_name": "xdlang.structures.ast", "line_number": 25, "usage_type": "name" }, { "api_name": "pytest.mark.parametrize", "line_number": 13, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 13, "usage_type": "attribute" }, { "api_name": "xdlang.structures.XDType.INT", "line_number": 16, "usage_type": "attribute" }, { "api_name": "xdlang.structures.XDType", "line_number": 16, "usage_type": "name" }, { "api_name": "xdlang.structures.XDType.FLOAT", "line_number": 17, "usage_type": "attribute" }, { "api_name": "xdlang.structures.XDType", "line_number": 17, "usage_type": "name" }, { "api_name": "xdlang.structures.XDType.CHAR", "line_number": 18, "usage_type": "attribute" }, { "api_name": "xdlang.structures.XDType", "line_number": 18, "usage_type": "name" }, { "api_name": "xdlang.structures.XDType.BOOL", "line_number": 19, "usage_type": "attribute" }, { "api_name": "xdlang.structures.XDType", "line_number": 19, "usage_type": "name" }, { "api_name": "xdlang.structures.XDType.BOOL", "line_number": 20, "usage_type": "attribute" }, { "api_name": "xdlang.structures.XDType", "line_number": 20, "usage_type": "name" } ]
10220508565
from time import time from nazurin.database import Database from nazurin.models import Illust from .api import Zerochan from .config import COLLECTION patterns = [ # https://www.zerochan.net/123456 r"zerochan\.net/(\d+)", # https://s1.zerochan.net/Abcdef.600.123456.jpg # https://static.zerochan.net/Abcdef.full.123456.jpg r"zerochan\.net/\S+\.(\d+)\.\w+$", ] async def handle(match) -> Illust: post_id = match.group(1) api = Zerochan() db = Database().driver() collection = db.collection(COLLECTION) illust = await api.view(post_id) illust.metadata["collected_at"] = time() await collection.insert(int(post_id), illust.metadata) return illust
y-young/nazurin
nazurin/sites/zerochan/interface.py
interface.py
py
702
python
en
code
239
github-code
6
[ { "api_name": "api.Zerochan", "line_number": 20, "usage_type": "call" }, { "api_name": "nazurin.database.Database", "line_number": 21, "usage_type": "call" }, { "api_name": "config.COLLECTION", "line_number": 22, "usage_type": "argument" }, { "api_name": "api.view", "line_number": 24, "usage_type": "call" }, { "api_name": "time.time", "line_number": 25, "usage_type": "call" }, { "api_name": "nazurin.models.Illust", "line_number": 18, "usage_type": "name" } ]
21867315415
import phywhisperer.interface.naeusb as NAE import phywhisperer.interface.program_fpga as LLINT import os import re import logging import pkg_resources import threading import time from phywhisperer.interface.bootloader_sam3u import Samba from phywhisperer.sniffer import USBSniffer, USBSimplePrintSink from phywhisperer.protocol import PWPacketDispatcher, PWPacketHandler, IncompletePacket from zipfile import ZipFile from phywhisperer.firmware.phywhisperer import getsome class Usb(PWPacketDispatcher): """PhyWhisperer-USB Interface""" MAX_PATTERN_LENGTH = 64 def __init__ (self, viewsb=False): """ Set up PhyWhisperer-USB device. Args: viewsb: Should only be set to 'True' when this is called by ViewSB. """ self.viewsb = viewsb self.addpattern = False self.short_timestamps = [0] * 2**3 self.long_timestamps = [0] * 2**16 self.stat_pattern_match_value = 0 self.capture_size = 8188 # default to FIFO size self.usb_trigger_freq = 240E6 #internal frequency used for trigger ticks self.entries_captured = 0 self.expected_verilog_matches = 80 self.slurp_defines() # Set up the PW device to handle packets in ViewSB: if viewsb: super().__init__(verbose=False) self.sniffer = USBSniffer() self.register_packet_handler(self.sniffer) def slurp_defines(self): """ Parse Verilog defines file so we can access register and bit definitions by name and avoid 'magic numbers'. """ self.verilog_define_matches = 0 defines_files = [pkg_resources.resource_filename('phywhisperer', 'firmware/defines_pw.v'), pkg_resources.resource_filename('phywhisperer', 'firmware/defines_usb.v')] for i,defines_file in enumerate(defines_files): defines = open(defines_file, 'r') define_regex_base = re.compile(r'`define') define_regex_reg = re.compile(r'`define\s+?REG_') define_regex_radix = re.compile(r'`define\s+?(\w+).+?\'([bdh])([0-9a-fA-F]+)') define_regex_noradix = re.compile(r'`define\s+?(\w+?)\s+?(\d+?)') for define in defines: if define_regex_base.search(define): reg = define_regex_reg.search(define) match = define_regex_radix.search(define) if reg: if i == 0: block_offset = self.MAIN_REG_SELECT << 6 else: block_offset = self.USB_REG_SELECT << 6 else: block_offset = 0 if match: self.verilog_define_matches += 1 if match.group(2) == 'b': radix = 2 elif match.group(2) == 'h': radix = 16 else: radix = 10 setattr(self, match.group(1), int(match.group(3),radix) + block_offset) else: match = define_regex_noradix.search(define) if match: self.verilog_define_matches += 1 setattr(self, match.group(1), int(match.group(2),10) + block_offset) else: logging.warning("Couldn't parse line: %s", define) defines.close() assert self.verilog_define_matches == self.expected_verilog_matches, "Trouble parsing Verilog defines files: didn't find the right number of defines (expected %d, got %d)." % (self.expected_verilog_matches, self.verilog_define_matches) def con(self, PID=0xC610, sn=None, program_fpga=True, bitstream_file=None): """Connect to PhyWhisperer-USB. Raises error if multiple detected Args: PID (int, optional): USB PID of PhyWhisperer, defaults to 0xC610 (NewAE standard). sn (int, option): Serial Number of PhyWhisperer, required when multiple PhyWhisperers are connected. program_fpga (bool, option): Specifies whether or not to program the FPGA with the default firmware when we connect. Set to False if using custom bitstream. """ self.usb = NAE.NAEUSB() self.usb.con(idProduct=[PID], serial_number=sn) self._llint = LLINT.PhyWhispererUSB(self.usb) if program_fpga: if bitstream_file is None: with ZipFile(getsome("phywhisperer-firmware.zip")) as myzip: with myzip.open('phywhisperer_top.bit') as bitstream: self._llint.FPGAProgram(bitstream) pass else: print("Programming custom bit stream '%s'" % bitstream_file) with open(bitstream_file,"rb") as bitstream: self._llint.FPGAProgram(bitstream) self.write_reg(self.REG_COUNT_WRITES, [1]) def set_power_source(self, src): """Set power source for target. Args: src (str): * "5V" for power from this computer (via 'Control' USB port). * "host" for power from the host of the connection we're sniffing. * "off" for no power. """ if src == "5V": self._llint.changePowerSource(self._llint.PWR_SRC_5V) pass elif src == "host": self._llint.changePowerSource(self._llint.PWR_SRC_HOST) pass elif src == "off" or src is None or src == False: self._llint.changePowerSource(self._llint.PWR_SRC_OFF) pass else: raise AttributeError("Unknown source %s, valid sources: '5V', 'host', 'off'") def reset_fpga(self): """ Reset FPGA registers to defaults, use liberally to clear incorrect states. """ #self._llint.resetFPGA() self.write_reg(self.REG_RESET_REG, [1]) self.write_reg(self.REG_RESET_REG, [0]) self.write_reg(self.REG_COUNT_WRITES, [1]) def load_bitstream(self, bitfile): """Load bitstream onto FPGA""" if not os.path.isfile(bitfile): raise ValueError("Cannot find specified bitfile {}".format(bitfile)) bitstream = open(bitfile, "rb") self._llint.FPGAProgram(bitstream) pass def auto_program(self): """ Erases the firmware of the onboard SAM3U, and reprograms it with default firmware Attempts to autodetect the COM PORT that the SAM3U shows up as. If this fails, it will be necessary to flash new firmware via :code:`program_sam3u` """ import time, serial.tools.list_ports before = serial.tools.list_ports.comports() before = [b.device for b in before] time.sleep(0.5) self.erase_sam3u() time.sleep(1.5) after = serial.tools.list_ports.comports() after = [a.device for a in after] candidate = list(set(before) ^ set(after)) if len(candidate) == 0: raise OSError("Could not detect COMPORT. Continue using programmer.program()") com = candidate[0] print("Detected com port {}".format(com)) self.program_sam3u(com) def erase_sam3u(self): """Erase the SAM3U Firmware, which forces it into bootloader mode.""" self._llint.eraseFW(confirm=True) def program_sam3u(self, port, fw_path=None): """Program the SAM3U Firmware assuming device is in bootloader mode. Args: port (str): Serial port name, such as 'COM36' or '/dev/ttyACM0'. fw_path (str): Path to firmware binary to program the sam3u with. If None, use default firmware. Defautls to None. """ fw_data = None print("Opening firmware...") if fw_path is None: print("Firmware not specified. Using firmware/phywhisperer.py") fw_data = getsome("phywhisperer-SAM3U1C.bin").read() else: if not os.path.isfile(fw_path): raise ValueError("Cannot find specified firmware file {}".format(fw_path)) fw_data = open(fw_path, "rb").read() sam = Samba() print("Opened!\nConnecting...") sam.con(port) print("Connected!\nErasing...") sam.erase() print("Erased!\nProgramming file {}...".format(fw_path)) sam.write(fw_data) print("Programmed!\nVerifying...") if sam.verify(fw_data): print("Verify OK!") sam.flash.setBootFlash(True) print("Bootloader disabled. Please power cycle device.") else: print("Verify FAILED!") sam.ser.close() def set_usb_mode(self, mode='auto'): """Set USB PHY speed. Args: mode (str): * "LS": manually set the PHY to low speed. * "FS": manually set the PHY to full speed. * "HS": manually set the PHY to high speed. * "auto": Default. PW will attempt to automatically determine the speed when the target is connected. Mode must be set to 'auto' prior to connecting or powering up the target, otherwise speed cannot be determined correctly. Setting the mode to 'auto' actively causes PW to try to determine the speed. """ if mode == 'auto': self.write_reg(self.REG_USB_SPEED, [self.USB_SPEED_AUTO]) elif mode == 'LS': self.write_reg(self.REG_USB_SPEED, [self.USB_SPEED_LS]) elif mode == 'FS': self.write_reg(self.REG_USB_SPEED, [self.USB_SPEED_FS]) elif mode == 'HS': self.write_reg(self.REG_USB_SPEED, [self.USB_SPEED_HS]) else: raise ValueError('Invalid mode %s; specify auto, LS, FS, or HS.' % mode) pass def write_reg(self, address, data): """Write a PhyWhisperer register. Args: address: int data: bytes """ return self.usb.cmdWriteMem(address, data) def read_reg(self, address, size=1): """Reads a PhyWhisperer register. Args: address: int size: int, number of bytes to read Returns: """ return self.usb.cmdReadMem(address, size) def get_usb_mode(self): """Returns USB PHY speed. Return values: - 'auto': the speed has not been determined yet (was the mode set to 'auto' _before_ the target was connected or powered up?). - 'LS': low speed - 'FS': full speed - 'HS: high speed """ value = self.read_reg(self.REG_USB_SPEED)[0] if value == self.USB_SPEED_AUTO: return 'auto' elif value == self.USB_SPEED_LS: return 'LS' elif value == self.USB_SPEED_FS: return 'FS' elif value == self.USB_SPEED_HS: return 'HS' else: raise ValueError('Internal error: REG_USB_SPEED register contains invalid value %d.' % value) def read_capture_data(self, entries=0, verbose=False, blocking=False, burst_size=8192, timeout=5): """Read from USB capture memory. Args: blocking (bool, optional): * True: wait for data to be available before reading (slower). * False: read immediately, with underflow protection, all of the captured data, until PW tells us we've read everything that it captured ('entries' is ignored). entries (int, optional): When blocking=True, number of capture entries to read. If not specified, read all the captured data. Cannot be greater than capture size, as set by set_capture_size(). burst_size (int, optional): When blocking=False, size of burst FIFO reads, defaults to 8192. timeout (int, optional): timeout in seconds (ignored if 0, defaults to 5) verbose (bool, optional): Print extra debug info. Returns: List of captured entries. Each list element is itself a 3-element list, containing the 3 bytes that make up a capture entry. Can be parsed by split_packets() or split_data(). See software/phywhisperer/firmware/defines.v for definition of the FIFO data fields. """ data = [] starttime = time.time() self.entries_captured = 0 if blocking: entries_read = 0 if not entries: entries = self.capture_size elif entries > self.capture_size: raise ValueError('Error: requested to read %d entries but only %d were captured.' % (entries, self.capture_size)) while entries_read < entries: while self.fifo_empty(): if timeout and time.time() - starttime > timeout: logging.warning("Capture timed out!") break data.append(self.read_reg(self.REG_SNIFF_FIFO_RD, 4)[1:4]) entries_read += 1 else: notdone = True early_exit = False raw = [] while notdone: raw.extend(self.read_reg(self.REG_SNIFF_FIFO_RD, 4*burst_size)) # check CAPTURE_DONE and EMPTY flags on last entry read: bitmask = 2**self.FE_FIFO_STAT_CAPTURE_DONE + 2**self.FE_FIFO_STAT_EMPTY if raw[-1] & bitmask == bitmask: notdone = False # did we also overflow? if raw[-1] & 2**self.FE_FIFO_STAT_OVERFLOW_BLOCKED: logging.warning("FIFO overflowed, capture stopped.") early_exit = True elif timeout and time.time() - starttime > timeout: logging.warning("Capture timed out!") notdone = False early_exit = True # reformat the return array and at the same time, filter out the (possibly numerous) empty FIFO reads: for i in range(int(len(raw)/4)): if raw[i*4+3] & 3 != self.FE_FIFO_CMD_STRM: data.append(raw[i*4+1:i*4+4]) self.entries_captured = len(data) if early_exit: logging.warning("%d entries captured." % self.entries_captured) if len(data): # maybe we only got empty reads if data[-1][2] & 2**self.FE_FIFO_STAT_UNDERFLOW: logging.warning("Capture FIFO underflowed!") return data def split_data(self, rawdata, verbose=False): """Split raw USB capture data into data events and times, stat events and times. Args: rawdata: list of lists, e.g. obtained from read_capture_data() Returns: 4-tuple of lists: 0. data event times 1. data bytes corresponding to data event times 2. USB status update times 3. USB status bytes corresponding to status update times """ timestep = 0 data_bytes = [] data_times = [] stat_bytes = [] stat_times = [] last_flags = 0xff for raw in rawdata: command = raw[2] & 0x3 if (command == self.FE_FIFO_CMD_DATA): data = raw[1] ts = raw[0] & 0x7 self.short_timestamps[ts] += 1 timestep += ts flags = (raw[0] & 0xf8) >> 3 if verbose: print("%8d flags=%02x data=%02x"%(timestep, flags, data)) # only log flags if they've changed: if flags != last_flags: stat_bytes.append(flags) stat_times.append(timestep) last_flags = flags data_bytes.append(data) data_times.append(timestep) elif (command == self.FE_FIFO_CMD_STAT): ts = raw[0] & 0x7 self.short_timestamps[ts] += 1 timestep += ts flags = (raw[0] & 0xf8) >> 3 if verbose: print("%8d flags=%02x"%(timestep, flags)) stat_bytes.append(flags) stat_times.append(timestep) last_flags = flags elif (command == self.FE_FIFO_CMD_TIME): ts = raw[0] + (raw[1] << 8) self.long_timestamps[ts] += 1 #Unlike stat and data commands, we don't add one here; if we did #we'd be overcounting in the common case where a time command immediately #preceeds a stat or data command. Consequence is that timestep will be off #by one in the case of lone time commands (which is rare, and inconsequential #in practice). timestep += ts if verbose: print("%8d" % timestep) elif (command == self.FE_FIFO_CMD_STRM): # nothing to do or report # CAUTION: don't even print a status in verbose mode because we can be # receiving TONS of these! pass else: print ("ERROR: unknown command (%d)" % command) return (data_times, data_bytes, stat_times, stat_bytes) def split_packets(self, rawdata): """Split raw USB capture data into packets. Args: rawdata: list of lists, e.g. obtained from read_capture_data() Returns: list Each list element is one packet and is presented in a dictionary with the following keys: * 'timestamp' * 'size' in bytes * 'contents' list of bytes """ # operates destructively so make a copy: rawdata_copy = rawdata[:] handler = PWPacketHandler() packets = [] incomplete = False while rawdata_copy and not incomplete: # use ViewSB code to avoid duplicating it here: try: packets.append(handler.handle_bytes_received(defines=self, data=rawdata_copy)) except IncompletePacket: incomplete = True continue return packets def print_packets(self, packets): """Print packets using USBSimplePrintSink from ViewSB. Args: packets: list of dictionaries, e.g. obtained from split_packets() """ printer = USBSimplePrintSink(highspeed=self.get_usb_mode() == 'HS') for packet in packets: printer.handle_usb_packet(ts=packet['timestamp'], buf=bytearray(packet['contents']), flags=(packet['flags'])) @staticmethod def print_flags(stat_byte): """Print bitfields of USB status flags byte. """ print('vbus_valid = %d' % (1 if stat_byte & 0x10 else 0)) print('sess_end = %d' % (1 if stat_byte & 0x08 else 0)) print('sess_valid = %d' % (1 if stat_byte & 0x04 else 0)) print('rx_error = %d' % (1 if stat_byte & 0x02 else 0)) print('rx_active = %d' % (1 if stat_byte & 0x01 else 0)) def set_capture_size(self, size=8188): """Set how many events to capture (events include data, USB status, and timestamps). Args: size(int, option): number of events to capture. 0 = unlimited (until overflow). Max = 2^24-1. Since the capture FIFO can hold 8188 events, setting this to > 8188 may result in overflow. """ if (size >= 2**24) or (size < 0): raise ValueError('Illegal size value.') self.capture_size = size self.write_reg(self.REG_CAPTURE_LEN, int.to_bytes(size, length=2, byteorder='little')) def ns_trigger(self, delay_in_ns): """Convert a nS number to delay or width cycles for set_trigger()""" cycles = (float(delay_in_ns) * 1.0E-9) / (1.0 / float(self.usb_trigger_freq)) return round(cycles) def us_trigger(self, delay_in_us): """Convert a uS number to delay or width cycles for set_trigger()""" cycles = (float(delay_in_us) * 1.0E-6) / (1.0 / float(self.usb_trigger_freq)) return round(cycles) def ms_trigger(self, delay_in_ms): """Convert a mS number to delay or width cycles for set_trigger()""" cycles = (float(delay_in_ms) * 1.0E-3) / (1.0 / float(self.usb_trigger_freq)) return round(cycles) def set_trigger(self, num_triggers=1, delays=[0], widths=[1], enable=True): """Program the output trigger pulse(s) delay and width. Both are measured in clock cycles of USB-derived 240 MHz clock. Note that this is a different time base than set_capture_delay(), which uses a 60 MHz clock! Up to 8 pulses may be issued. The capture delay is automatically set to match the trigger delay; use set_capture_delay to set it to a different value. Use ns_trigger(), us_trigger(), and ms_trigger() to convert values as needed. Args: num_triggers (int): number of trigger pulses, from 1 to 8. delay (list of ints): delay for each trigger pulse; each element in range [0, 2^20-1] cycles (only first element can be zero). width (list of ints): width for each trigger pulse; each element in range [1, 2^17-1] cycles. enable (bool, optional): set to 'False' to disable trigger generation on hardware pins. Examples: (a) To set obtain three 2-cycle-wide pulses, each 3 cycles apart, starting immediately after a pattern match: set_trigger(num_triggers=3, delays=[0,3,3], widths=[2,2,2]) (b) To set obtain a 1-cycle wide pulse 10 cycles after a pattern match, followed by a 2-cycle wide pulse 20 cycles later: set_trigger(num_triggers=2, delays=[10,20], widths=[1,2]) """ if num_triggers > 8: raise ValueError('Maximum 8 trigger pulses.') if len(delays) != num_triggers or len(widths) != num_triggers: raise ValueError('Number of elements in delays and widths must match num_triggers.') data = 0 for i in range(num_triggers): delay = delays[i] if (delay >= 2**20) or (delay < 0) or (delay < 1 and i > 0): raise ValueError('Illegal delay value.') data += delay << i*24 self.write_reg(self.REG_TRIGGER_DELAY, int.to_bytes(data, length=3*num_triggers, byteorder='little')) data = 0 for i in range(num_triggers): width = widths[i] if (width >= 2**17) or (width < 1): raise ValueError('Illegal width value.') data += width << i*24 self.write_reg(self.REG_TRIGGER_WIDTH, int.to_bytes(data, length=3*num_triggers, byteorder='little')) self.write_reg(self.REG_NUM_TRIGGERS, [num_triggers]) self.set_capture_delay(int(delay/4)) if enable == True: self.write_reg(self.REG_TRIGGER_ENABLE, [1]) else: self.write_reg(self.REG_TRIGGER_ENABLE, [0]) def set_capture_delay(self, delay): """Program the capture delay, measured in clock cycles of USB-derived 60 MHz clock. Note that this is a different time base than set_trigger(), which uses a 240 MHz clock! Args: delay (int): range in [0, 2^18-1] cycles of 60 MHz clock. """ if (delay >= 2**18) or (delay < 0): raise ValueError('Illegal delay value.') self.write_reg(self.REG_CAPTURE_DELAY, int.to_bytes(delay, length=3, byteorder='little')) def set_pattern(self, pattern, mask=None): """Set the pattern and its bitmask used for capture and trigger output. Args: pattern (list of ints): list of between 1 and 64 bytes mask (list, optional): list of bytes, must have same size as 'pattern' if set. Defaults to [0xff]*len(pattern) if not set. """ if mask is None: mask = [0xFF] * len(pattern) if len(pattern) != len(mask): raise ValueError('pattern and mask must be of same size.') elif len(pattern) > self.MAX_PATTERN_LENGTH: raise ValueError('pattern and mask cannot be more than 64 bytes.') # extend the mask to full width (cheaper to do here than in HW): mask = [0]* (self.MAX_PATTERN_LENGTH - len(mask)) + mask self.write_reg(self.REG_PATTERN, pattern[::-1]) self.write_reg(self.REG_PATTERN_MASK, mask[::-1]) self.write_reg(self.REG_PATTERN_BYTES, [len(pattern)]) self.pattern = pattern self.mask = mask def arm(self): """Arm PhyWhisperer for capture and optionally generating a trigger. Use set_pattern to program the pattern and bitmask which will initiate the capture and/or trigger operation. Use set_trigger to program the trigger parameters. Use set_capture_size and set_capture_delay to program the capture parameters. """ self.write_reg(self.REG_ARM, [1]) def check_fifo_errors(self, underflow=0, overflow=0): """Check whether an underflow or overflow occured on the capture FIFO. Args: underflow (int, optional): expected status, 0 or 1 overflow (int, optional): expected status, 0 or 1 """ status = self.read_reg(self.REG_SNIFF_FIFO_STAT, 1)[0] fifo_underflow = (status & 2) >> 1 fifo_overflow = (status & 16) >> 4 assert fifo_underflow == underflow assert fifo_overflow == overflow def fifo_empty(self): """Returns True if the capture FIFO is empty, False otherwise. """ if self.read_reg(self.REG_SNIFF_FIFO_STAT, 1)[0] & 1: return True else: return False def fifo_over_empty_threshold(self): """Returns True if the capture FIFO has more entries than the empty threshold (128). """ fifo_stat = self.read_reg(self.REG_SNIFF_FIFO_STAT, 1)[0] fifo_empty = fifo_stat & 1 fifo_empty_threshold = fifo_stat & 4 if fifo_empty or fifo_empty_threshold: return False else: return True def armed(self): """Returns True if the PhyWhisperer is armed. """ if self.read_reg(self.REG_ARM, 1)[0]: return True else: return False def wait_disarmed(self): """Blocks until armed() returns false. """ while self.armed(): pass def get_fpga_buildtime(self): """Returns date and time when FPGA bitfile was generated. """ raw = self.read_reg(self.REG_BUILDTIME, 4) # definitions: Xilinx XAPP1232 day = raw[3] >> 3 month = ((raw[3] & 0x7) << 1) + (raw[2] >> 7) year = ((raw[2] >> 1) & 0x3f) + 2000 hour = ((raw[2] & 0x1) << 4) + (raw[1] >> 4) minute = ((raw[1] & 0xf) << 2) + (raw[0] >> 6) return "FPGA build time: {}/{}/{}, {}:{}".format(month, day, year, hour, minute) def trigger_clock_phase_shift(self, steps=1): """Shifts the trigger clock phase (and by extension the output trigger) in steps of 18.6ps (18.6 ps = 1/960 MHz / 56) Args: steps (int): Number of steps to shift the phase (positive or negative integer). """ if not type(steps) == int or steps == 0: raise ValueError('Illegal steps value, must be non-zero integer.') if steps > 0: value = [1] else: value = [0] for i in range(abs(steps)): self.write_reg(self.REG_TRIG_CLK_PHASE_SHIFT, value) while (self.read_reg(self.REG_TRIG_CLK_PHASE_SHIFT, 1)[0] == 1): # phase shift incomplete; wait: pass def set_stat_pattern(self, pattern, mask=0x1f): """ Set a 5-bit pattern and mask for the USB status lines. Args: pattern (int): 5-bit number mask (int): non-zero 5-bit number (default: 0x1f) """ if pattern < 0 or pattern > 0x1f: raise ValueError('Illegal pattern value, must be <= 0x1f.') if mask < 1 or mask > 0x1f: raise ValueError('Illegal mask value, must be <= 0x1f and > 0.') self.write_reg(self.REG_STAT_PATTERN, [pattern, mask]) def stat_pattern_matched(self): """ Returns 1 if a stat pattern match occurred (automatically resets to 0 when armed, and when a new match pattern is written). Actual match value is stored in self.stat_pattern_match_value. """ matched, value = self.read_reg(self.REG_STAT_MATCH, 2) self.stat_pattern_match_value = value return matched def register_sink(self, event_sink): """ ViewSB: Registers a USBEventSink to receive any USB events. Args: event_sink (sniffer.USBEventSink): The sniffer.USBEventSink object to receive any USB events that occur. """ self.sniffer.register_sink(event_sink) def _device_stop_capture(self): # nothing to do? pass def run_capture(self, size=8188, burst=True, pattern=[0], mask=[0], timeout=5, statistics_callback=None, statistics_period=0.1, halt_callback=lambda _ : False, ): """ Runs a capture for ViewSB, including power cycling the device to catch the descriptors. Runs following internally:: self.reset_fpga() self.set_power_source("host") self.set_power_source("off") time.sleep(0.5) self.set_usb_mode("auto") self.set_capture_size(size) self.arm() self.set_trigger(enable=False) self.set_pattern(pattern=pattern, mask=mask) self.set_power_source("host") time.sleep(0.25) """ self.reset_fpga() self.set_power_source("host") self.set_power_source("off") time.sleep(0.5) self.set_usb_mode("auto") self.set_capture_size(size) self.arm() self.set_trigger(enable=False) self.set_pattern(pattern=pattern, mask=mask) self.set_power_source("host") time.sleep(0.25) self.entries_captured = 0 self._start_comms_thread(burst, timeout) elapsed_time = 0.0 try: # Continue until the user-supplied halt condition is met. while not halt_callback(elapsed_time): # If we have a statistics callback, call it. if callable(statistics_callback): statistics_callback(self, elapsed_time) # Wait for the next statistics-interval to occur. time.sleep(statistics_period) elapsed_time = elapsed_time + statistics_period finally: self._device_stop_capture() def __comms_thread_body(self, burst, timeout=5, burst_size=8192): """ ViewSB internal function that executes as our comms thread. Args: burst (bool): If True, read all FIFO at once, then pass on to decoder and frontend; otherwise, read smaller chunks and process them concurrently. burst_size (int): Number of entries to read at a time when burst=False """ if burst: self.wait_disarmed() rawdata = self.read_capture_data() self.handle_incoming_bytes(rawdata) else: notdone = True early_exit = False starttime = time.time() while notdone: raw = self.read_reg(self.REG_SNIFF_FIFO_RD, 4*burst_size) bitmask = 2**self.FE_FIFO_STAT_CAPTURE_DONE + 2**self.FE_FIFO_STAT_EMPTY if raw[-3] & bitmask == bitmask: notdone = False if raw[-3] & 2**self.FE_FIFO_STAT_OVERFLOW_BLOCKED: logging.warning("FIFO overflowed, capture stopped") early_exit = True elif timeout and time.time() - starttime > timeout: logging.warning("Capture timed out!") early_exit = True notdone = False # filter out the empty FIFO reads: rawdata = [] for i in range(int(len(raw)/4)): if raw[i*4+3] & 3 != self.FE_FIFO_CMD_STRM: rawdata.append(raw[i*4+1:i*4+4]) self.handle_incoming_bytes(rawdata) self.entries_captured += len(rawdata) if early_exit: logging.warning("%d entries captured." % self.entries_captured) def _start_comms_thread(self, burst, timeout): """ ViewSB: start the background thread that handles our core communication. """ self.commthread = threading.Thread(target=self.__comms_thread_body, args=[burst, timeout], daemon=True) self.__comm_term = False self.__comm_exc = None self.commthread.start() self.__comm_term = False def close(self): """ Terminates our connection to the PhyWhisperer device. """ if self.viewsb: self.__comm_term = True self.commthread.join() self.usb.close()
newaetech/phywhispererusb
software/phywhisperer/usb.py
usb.py
py
34,049
python
en
code
77
github-code
6
[ { "api_name": "phywhisperer.protocol.PWPacketDispatcher", "line_number": 15, "usage_type": "name" }, { "api_name": "phywhisperer.sniffer.USBSniffer", "line_number": 40, "usage_type": "call" }, { "api_name": "pkg_resources.resource_filename", "line_number": 49, "usage_type": "call" }, { "api_name": "pkg_resources.resource_filename", "line_number": 50, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 53, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 54, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 55, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 56, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 83, "usage_type": "call" }, { "api_name": "phywhisperer.interface.naeusb.NAEUSB", "line_number": 99, "usage_type": "call" }, { "api_name": "phywhisperer.interface.naeusb", "line_number": 99, "usage_type": "name" }, { "api_name": "phywhisperer.interface.program_fpga.PhyWhispererUSB", "line_number": 101, "usage_type": "call" }, { "api_name": "phywhisperer.interface.program_fpga", "line_number": 101, "usage_type": "name" }, { "api_name": "zipfile.ZipFile", "line_number": 105, "usage_type": "call" }, { "api_name": "phywhisperer.firmware.phywhisperer.getsome", "line_number": 105, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 149, "usage_type": "call" }, { "api_name": "os.path", "line_number": 149, "usage_type": "attribute" }, { "api_name": "serial.tools.list_ports.tools.list_ports.comports", "line_number": 164, "usage_type": "call" }, { "api_name": "serial.tools.list_ports.tools", "line_number": 164, "usage_type": "attribute" }, { "api_name": "serial.tools.list_ports", "line_number": 164, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 166, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 168, "usage_type": "call" }, { "api_name": "serial.tools.list_ports.tools.list_ports.comports", "line_number": 169, "usage_type": "call" }, { "api_name": "serial.tools.list_ports.tools", "line_number": 169, "usage_type": "attribute" }, { "api_name": "serial.tools.list_ports", "line_number": 169, "usage_type": "name" }, { "api_name": "phywhisperer.firmware.phywhisperer.getsome", "line_number": 198, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 200, "usage_type": "call" }, { "api_name": "os.path", "line_number": 200, "usage_type": "attribute" }, { "api_name": "phywhisperer.interface.bootloader_sam3u.Samba", "line_number": 204, "usage_type": "call" }, { "api_name": "time.time", "line_number": 317, "usage_type": "call" }, { "api_name": "time.time", "line_number": 330, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 331, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 348, "usage_type": "call" }, { "api_name": "time.time", "line_number": 350, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 351, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 360, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 364, "usage_type": "call" }, { "api_name": "phywhisperer.protocol.PWPacketHandler", "line_number": 451, "usage_type": "call" }, { "api_name": "phywhisperer.protocol.IncompletePacket", "line_number": 458, "usage_type": "name" }, { "api_name": "phywhisperer.sniffer.USBSimplePrintSink", "line_number": 469, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 756, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 763, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 779, "usage_type": "call" }, { "api_name": "time.time", "line_number": 803, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 810, "usage_type": "call" }, { "api_name": "time.time", "line_number": 812, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 813, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 824, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 830, "usage_type": "call" } ]
72132172028
import datetime import re import subprocess import sys from typing import Optional def run(argv: list[str]) -> subprocess.CompletedProcess: return subprocess.run( argv, capture_output=True, encoding='utf-8' ) def error(str: str) -> None: sys.stderr.write("%s\n" % str) def get_merge_commits(base: Optional[str], since: Optional[str]) -> list[str]: argv = [ "git", "log", "--pretty=tformat:%h,%p" ] if base: argv.append("%s..HEAD" % base) if since: argv.append('--since=%s' % since) completed = run(argv) re_merge_commit = r'^([0-9a-fA-f]+),([0-9a-fA-F]+) ([0-9a-fA-F]+)$' output = completed.stdout lines = output.splitlines() merge_commits = [] for line in lines: match = re.match(re_merge_commit, line) if match: merge_commits.append(match.group(1)) return merge_commits def find_matches(merge_commits: list[str], patterns: list[str]) -> list[str]: matches = [] for commit_hash in merge_commits: completed = run( [ "git", "show", "--pretty=tformat:%s", commit_hash ] ) first_line = completed.stdout.splitlines()[0] found_match = False for pattern in patterns: match = re.search(pattern, first_line) if match: matches.append(match.group(1)) found_match = True continue if not found_match: error("no match: »%s«" % first_line) return matches def partition_args(raw: list[str]) -> tuple[list[str], dict[str, Optional[str]]]: args = [] flags = {} for arg in raw: if len(arg) > 0 and arg[0] == '-': key, *value = arg.split('=', 1) flags[key] = value[0] if len(value) else None else: args.append(arg) return (args, flags) def parse_relative_date(raw: str) -> Optional[datetime.datetime]: match = re.match(r'([0-9]+)[ ]*([a-z]+)', raw) if not match: return None n = int(match.group(1)) if match.group(2) == 'days': return datetime.datetime.now() - datetime.timedelta(days=n) else: return None def main() -> None: (args, flags) = partition_args(sys.argv[1:]) commit_hash = None patterns = [] since = None if '--today' in flags: today = datetime.date.today() since = '%s 00:00:00' % today.isoformat() patterns = args elif '--since' in flags: raw_since = flags['--since'] if not raw_since: raise Exception dt = parse_relative_date(raw_since) if not dt: raise Exception since = dt.isoformat() patterns = args elif len(args): commit_hash, *patterns = args merge_commits = get_merge_commits(commit_hash, since) print("Number of merge commits: %d" % len(merge_commits)) print() print("Merge commits:") if not merge_commits: print("(none)") for commit in merge_commits: print("- %s" % commit) print() if len(patterns) > 0: print("Matches:") matches = find_matches(merge_commits, patterns) if not matches: print("(none)") for title in matches: print("- %s" % title) if __name__ == "__main__": main()
djfo/dev-tools
merge_commits.py
merge_commits.py
py
3,438
python
en
code
1
github-code
6
[ { "api_name": "subprocess.run", "line_number": 9, "usage_type": "call" }, { "api_name": "subprocess.CompletedProcess", "line_number": 8, "usage_type": "attribute" }, { "api_name": "sys.stderr.write", "line_number": 17, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 17, "usage_type": "attribute" }, { "api_name": "typing.Optional", "line_number": 20, "usage_type": "name" }, { "api_name": "re.match", "line_number": 36, "usage_type": "call" }, { "api_name": "re.search", "line_number": 56, "usage_type": "call" }, { "api_name": "typing.Optional", "line_number": 66, "usage_type": "name" }, { "api_name": "re.match", "line_number": 79, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 84, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 84, "usage_type": "attribute" }, { "api_name": "datetime.timedelta", "line_number": 84, "usage_type": "call" }, { "api_name": "typing.Optional", "line_number": 78, "usage_type": "name" }, { "api_name": "datetime.datetime", "line_number": 78, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 90, "usage_type": "attribute" }, { "api_name": "datetime.date.today", "line_number": 96, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 96, "usage_type": "attribute" } ]