markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
No Water
no_water_loops = collections.defaultdict(list) no_water_path = Path('no_water') for f in no_water_path.iterdir(): if 'loops_hist' in f.name: k = float(f.name.split('_')[3]) with f.open('rb') as iv: d = pickle.load(iv) no_water_loops[k].extend(d[-1])
_____no_output_____
Unlicense
paper/analysis/Loops.ipynb
jkrajniak/paper-cg-md-simulations-of-polymerization-with-forward-and-backward-reactions
With water
water_loops = collections.defaultdict(list) water_path = Path('with_water') for f in water_path.iterdir(): if 'loops_hist' in f.name: k = float(f.name.split('_')[3]) with f.open('rb') as iv: d = pickle.load(iv) water_loops[k].extend(d[-1])
_____no_output_____
Unlicense
paper/analysis/Loops.ipynb
jkrajniak/paper-cg-md-simulations-of-polymerization-with-forward-and-backward-reactions
Water rev
water_rev_loops = collections.defaultdict(list) water_rev_path = Path('with_water_rev') for f in water_rev_path.iterdir(): if 'loops_hist' in f.name and 'rt1' in f.name: k = float(f.name.split('_')[3]) kr = float(f.name.split('_')[4]) if kr != 0.001: continue print(k,kr) with f.open('rb') as iv: d = pickle.load(iv) water_rev_loops[k].extend(d[-1]) print(k, d[-1]) matplotlib plt.rcParams['figure.figsize'] = (8, 6) markers = {0.001: '*', 0.01: 'h', 0.1: 'X'} for k in no_water_loops: if no_water_loops[k]: n, x = np.histogram(no_water_loops[k], density=False, bins='auto') n = np.asarray(n, np.float) n[n <= 0.0001] = np.nan plt.plot(x[:-1], n, 'h', linestyle='None', label='no water k={}'.format(k)) for k in water_loops: if water_loops[k]: n, x = np.histogram(water_loops[k], density=False, bins='auto') n = np.asarray(n, np.float) n[n <= 0.0001] = np.nan plt.plot(x[:-1], n, 'd', linestyle='None', label='with water k={}'.format(k)) for k in water_rev_loops: if water_rev_loops[k]: n, x = np.histogram(water_rev_loops[k], density=False, bins='auto') n = np.asarray(n, np.float) n[n <= 0.0001] = np.nan plt.plot(x[:-1], n, markers[k], linestyle='None', label='with water $k_f={}$ $k_r=0.001$ (hydrolysis)'.format(k)) plt.legend() plt.xlabel('loop size (monomers)') plt.ylabel('num. of structures') plt.savefig('hist_loops.pdf', dpi=200, tight_layout=True)
_____no_output_____
Unlicense
paper/analysis/Loops.ipynb
jkrajniak/paper-cg-md-simulations-of-polymerization-with-forward-and-backward-reactions
Transformations & Transformation Tuning Parametersdefine the transformations we want to do, some transformations will have parameters (e.g. base of log tranform (or no transform), type of scaling, whether or not to add column combinations (e.g. age * hours-per-week) Below is the pipeline for captail-gain/lost. We want to tune whether or not we should log transform. We need to do this after imputing but before scaling, so it needs to be it's own pipeline.
cap_gain_loss_pipeline = Pipeline([ ('selector', DataFrameSelector(attribute_names=['capital-gain', 'capital-loss'])), ('imputer', Imputer()), # tune Log trasformation base (or no transformation); update: tuned - chose base e ('custom_transform', CustomLogTransform(base=math.e)), # tune "net gain" (have to do it after log transform; log of <=0 doesn't exist) ('custom_cap_gain_minus_loss', CombineCapitalGainLossTransform(combine=True)), # tune MinMax vs StandardScaler; we chose MinMax; update: tuned - chose MinMax ('custom_scaler', ChooserTransform(base_transformer=MinMaxScaler())), ])
_____no_output_____
MIT
data_scientist_nanodegree/projects/p1_charityml/custom/Logistic_RandomizedSearch_sklearn.ipynb
shane-kercheval/udacity
Below is the pipeline for the rest of numeric features:
num_pipeline = Pipeline([ ('selector', DataFrameSelector(attribute_names=['age', 'education-num', 'hours-per-week'])), ('imputer', Imputer()), # tune age * hours-per-week; update: tuned -chose not to include #('combine_agehours', CombineAgeHoursTransform()), # tune MinMax vs StandardScaler; update: tuned - chose MinMax ('custom_scaler', ChooserTransform(base_transformer=MinMaxScaler())), ])
_____no_output_____
MIT
data_scientist_nanodegree/projects/p1_charityml/custom/Logistic_RandomizedSearch_sklearn.ipynb
shane-kercheval/udacity
Pipeline that simply gets the categorical/encoded columns from the previous transformation (which used `oo-learning`)
append_categoricals = Pipeline([ ('append_cats', DataFrameSelector(attribute_names=one_hot_transformer.encoded_columns)) # already encoded ])
_____no_output_____
MIT
data_scientist_nanodegree/projects/p1_charityml/custom/Logistic_RandomizedSearch_sklearn.ipynb
shane-kercheval/udacity
Below is the pipeline for combining all of the other pipelines
# combine pipelines transformations_pipeline = FeatureUnion(transformer_list=[ ("cap_gain_loss_pipeline", cap_gain_loss_pipeline), ("num_pipeline", num_pipeline), ("cat_pipeline", append_categoricals), ])
_____no_output_____
MIT
data_scientist_nanodegree/projects/p1_charityml/custom/Logistic_RandomizedSearch_sklearn.ipynb
shane-kercheval/udacity
Choose the transformations to tune, below: Below calculates the a standard value for `scale_pos_weight` based on the recommendation from http://xgboost.readthedocs.io/en/latest/parameter.html> Control the balance of positive and negative weights, useful for unbalanced classes. A typical value to consider: sum(negative cases) / sum(positive cases)
model = LogisticRegression(random_state=42, #penalty='l2', C=1.0, ) full_pipeline = Pipeline([ ('preparation', transformations_pipeline), #('pca_chooser', ChooserTransform()), # PCA option lost; didn't include #('feature_selection', TopFeatureSelector(feature_importances, k)), ('model', model) ])
_____no_output_____
MIT
data_scientist_nanodegree/projects/p1_charityml/custom/Logistic_RandomizedSearch_sklearn.ipynb
shane-kercheval/udacity
Tuning strategy according to https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/
from scipy.stats import randint, uniform, expon model_param_dict = { # 1st 'model__penalty': ['l1', 'l2'], 'model__C': uniform(0.001, 100), } # actual hyper-parameters/options to tune for transformations. transformation_parameters = { #'preparation__num_pipeline__imputer__strategy': ['mean', 'median', 'most_frequent'], # tune strategy #'pca_chooser__base_transformer': [PCA(n_components=0.95, random_state=42), None], # PCA vs not #'preparation__cap_gain_loss_pipeline__custom_transform__base': [None, math.e], # Log transform (base e) or not #'preparation__cap_gain_loss_pipeline__custom_scaler__base_transformer': [MinMaxScaler(), StandardScaler()], #'preparation__num_pipeline__custom_scaler__base_transformer': [MinMaxScaler(), StandardScaler()], #'preparation__num_pipeline__combine_agehours__combine': [True, False], #'preparation__cap_gain_loss_pipeline__custom_cap_gain_minus_loss__combine': [True, False] } param_grid = {**transformation_parameters, **model_param_dict} param_grid # def binary_roc_auc(y_true, y_score): # return roc_auc_score(y_true=y_true, # # binary makes it so it converts the "scores" to predictions # y_score=[1 if x > 0.5 else 0 for x in y_score]) scorer = make_scorer(roc_auc_score, greater_is_better=True) y = transformed_data[target_variable].apply(lambda x: 1 if x == positive_class else 0) transformed_data[target_variable].values[0:10] y[0:10] print('Starting....') time_start = time.time() from sklearn.model_selection import RandomizedSearchCV grid_search = RandomizedSearchCV(estimator=full_pipeline, param_distributions=param_grid, n_iter=50, cv=RepeatedKFold(n_splits=5, n_repeats=2), scoring=scorer, return_train_score=True, n_jobs=-1, verbose=2) grid_search.fit(transformed_data.drop(columns=target_variable), y) time_end = time.time() print('Time: {}m'.format(round((time_end-time_start)/60, 1))) results_df = pd.concat([pd.DataFrame({'mean_score': grid_search.cv_results_["mean_test_score"], 'st_dev_score': grid_search.cv_results_["std_test_score"]}), pd.DataFrame(grid_search.cv_results_["params"])], axis=1) results_df.sort_values(by=['mean_score'], ascending=False).head(10) grid_search.best_score_, grid_search.best_params_ rescaled_means = MinMaxScaler(feature_range=(100, 1000)).fit_transform(results_df['mean_score'].values.reshape(-1, 1)) rescaled_means = rescaled_means.flatten() # reshape back to array #rescaled_means def compare_two_parameters(x_label, y_label): x = results_df[x_label] y = results_df[y_label] plt.scatter(x,y,c=rescaled_means, s=rescaled_means, alpha=0.5) plt.xlabel(x_label) plt.ylabel(y_label) index_of_best = np.argmax(rescaled_means) plt.scatter(x[index_of_best], y[index_of_best], marker= 'x', s=200, color='red') x_label = 'model__C' y_label = 'model__penalty' compare_two_parameters(x_label, y_label)
_____no_output_____
MIT
data_scientist_nanodegree/projects/p1_charityml/custom/Logistic_RandomizedSearch_sklearn.ipynb
shane-kercheval/udacity
Descarga de excels
from datetime import datetime,timedelta Inicio_programa=datetime.now()
_____no_output_____
MIT
Fase_2.ipynb
rodrigotesone1997/Limpieza_Datos_Municipales
Importo los paquetes
import os import tabula import re from openpyxl import Workbook,load_workbook import pandas as pd import shutil from natsort import natsorted path_local="/home/rodrigo/Scrapper_Sueldos_Municipales"
_____no_output_____
MIT
Fase_2.ipynb
rodrigotesone1997/Limpieza_Datos_Municipales
Verificación de carpetas
path_folder_pdf=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/pdf" lista_folder_pdf=natsorted(os.listdir(path_folder_pdf)) for i in lista_folder_pdf: if re.search("Sueldos",i) is None: lista_folder_pdf.remove(i) lista_folder_pdf index_carpeta_a_modificar=-1 folder_pdf_a_convertir=lista_folder_pdf[index_carpeta_a_modificar]
_____no_output_____
MIT
Fase_2.ipynb
rodrigotesone1997/Limpieza_Datos_Municipales
Crea la carpeta donde se van a guardar los excel en crudo
path_folder_pdf_a_convertir=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/pdf/"+folder_pdf_a_convertir Lista_pdf_nuevos=natsorted(os.listdir(path_folder_pdf_a_convertir)) Lista_nombres_secretarias=[re.sub("\.pdf","",i) for i in Lista_pdf_nuevos] try : os.mkdir(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/Excels_proceso_limpieza") for secretaria in Lista_nombres_secretarias: os.mkdir(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/Excels_proceso_limpieza"+"/"+secretaria) except : pass for ubicacion_secretaria,nombre_secretaria in enumerate(Lista_pdf_nuevos): variable = True n=0 df = tabula.read_pdf(path_folder_pdf_a_convertir+"/"+nombre_secretaria, pages = "all") while (variable == True): try : df[n].to_excel(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/Excels_proceso_limpieza"+"/"+Lista_nombres_secretarias[ubicacion_secretaria]+"/"+Lista_nombres_secretarias[ubicacion_secretaria]+"_imperfecto_"+str(n)+".xlsx") n+=1 except : variable=False carpeta_especifica=re.sub("_Sueldos","",folder_pdf_a_convertir) carpeta_especifica
_____no_output_____
MIT
Fase_2.ipynb
rodrigotesone1997/Limpieza_Datos_Municipales
Acomodo de excel sucios
# Estos 2 nombres no me gustan path_carpetas_excels_sucios=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/Excels_proceso_limpieza" carpetas_excels_sucios=natsorted(os.listdir(path_carpetas_excels_sucios)) for carpeta_secretaria in carpetas_excels_sucios: path_excels_sin_modificar= path_carpetas_excels_sucios+"/"+ carpeta_secretaria archivos_pdf=natsorted(os.listdir(path_excels_sin_modificar)) n=0 for nombre_archivo_pdf in archivos_pdf: wb = load_workbook(filename=path_excels_sin_modificar+"/"+nombre_archivo_pdf) sheet= wb.active sheet.delete_cols(1) celda_1=sheet.cell(row=1, column=1).value celda_2=sheet.cell(row=1, column=2).value if re.search("[a-z]",celda_1) is not None : os.remove(path_excels_sin_modificar+"/"+nombre_archivo_pdf) n+=1 elif re.search("[0-9]",celda_1) is not None and re.search("Unnamed: 0",celda_2) is not None: inicio=re.search("[0-9]",celda_1).span()[0] nombre=celda_1[:inicio] numero=celda_1[inicio:] sheet["A1"] = nombre sheet["B1"] = numero sheet.insert_rows(1) sheet["A1"],sheet["B1"],sheet["C1"],sheet["D1"],sheet["E1"],sheet["F1"]="apellido_y_nombre","sueldo_bruto","sueldo_neto","costo_laboral","planta","funcion" wb.save(filename=path_excels_sin_modificar+"/"+nombre_archivo_pdf) os.rename(path_excels_sin_modificar+"/"+nombre_archivo_pdf , path_excels_sin_modificar+"/"+carpeta_secretaria+"_perfecto_"+str(n)+".xlsx") n+=1 else : sheet.insert_rows(1) sheet["A1"],sheet["B1"],sheet["C1"],sheet["D1"],sheet["E1"],sheet["F1"]="apellido_y_nombre","sueldo_bruto","sueldo_neto","costo_laboral","planta","funcion" wb.save(filename=path_excels_sin_modificar+"/"+nombre_archivo_pdf) os.rename(path_excels_sin_modificar+"/"+nombre_archivo_pdf,path_excels_sin_modificar+"/"+carpeta_secretaria+"_perfecto_"+str(n)+".xlsx") n+=1
_____no_output_____
MIT
Fase_2.ipynb
rodrigotesone1997/Limpieza_Datos_Municipales
Crea la carpeta donde se almacenan los excel
path_carpeta_sueldos_nuevos=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/"+carpeta_especifica+"_Sueldos" try: os.mkdir(path_carpeta_sueldos_nuevos) except: pass nombres_secciones_secretarias=natsorted(os.listdir(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/secciones")) #print(nombres_secciones_secretarias) for secretaria in nombres_secciones_secretarias: try: secretaria_sin_extension=re.sub(".txt","",secretaria) os.mkdir(os.path.join(path_carpeta_sueldos_nuevos,secretaria_sin_extension)) except: pass path_secretarias=os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/secciones",secretaria) with open(path_secretarias,"r", encoding='utf8') as f: secciones=f.readlines() for seccion in secciones: try: seccion_sin_extension=re.sub(".txt","",seccion) os.mkdir(os.path.join(os.path.join(path_carpeta_sueldos_nuevos,secretaria_sin_extension),seccion_sin_extension)) except Exception as e: print(e)
_____no_output_____
MIT
Fase_2.ipynb
rodrigotesone1997/Limpieza_Datos_Municipales
Re-acomodo los excel en cada subcarpeta
lista_secretarias_sin_excepciones=["salario_ambiente", "salario_control", "salario_deporte_turismo", "salario_hacienda", "salario_ilar", "salario_modernizacion", "salario_movilidad", "salario_obras", "salario_salud", "salario_spv"] for secretaria in lista_secretarias_sin_excepciones: path_limpieza_secretaria=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/Excels_proceso_limpieza/"+secretaria nombre_ultimo_archivo_secretaria=re.sub(".xlsx","",natsorted(os.listdir(path_limpieza_secretaria))[-1]) lista_valores=[*range(int(re.findall(r'\d+',nombre_ultimo_archivo_secretaria)[0])+1)] path_secretaria=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/"+carpeta_especifica+"_Sueldos/"+secretaria lista_secretaria=natsorted(os.listdir(path_secretaria)) parametro_de_referencia=0 numero_archivo=0 for archivo_para_localizar in natsorted(os.listdir(path_limpieza_secretaria)): archivo_para_extraer_numero=re.sub(".xlsx","",archivo_para_localizar) numero=re.search("[0-999]",archivo_para_extraer_numero) inicio_del_numero=numero.span()[0] numero_extraido=int(archivo_para_extraer_numero[inicio_del_numero:]) if numero_extraido == lista_valores[parametro_de_referencia]: shutil.move(os.path.join(path_limpieza_secretaria,archivo_para_localizar),os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo_para_localizar)) else: for k in natsorted(os.listdir(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba")): shutil.move(os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",k),os.path.join(path_secretaria,lista_secretaria[numero_archivo])) numero_archivo+=1 #print("Aca deberia ir una funcion que mande todos los excel recogidos dentro de la carpeta\n") shutil.move(os.path.join(path_limpieza_secretaria,archivo_para_localizar),os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo_para_localizar)) parametro_de_referencia+=1 parametro_de_referencia+=1 lista_ultimos_archivos=natsorted(os.listdir(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba")) for archivo in lista_ultimos_archivos: shutil.move(os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo),os.path.join(path_secretaria,lista_secretaria[-1]))
_____no_output_____
MIT
Fase_2.ipynb
rodrigotesone1997/Limpieza_Datos_Municipales
Manejo de excepciones Salario Cultura
path_limpieza_secretaria=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/Excels_proceso_limpieza/salario_cultura" path_secretaria=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/"+carpeta_especifica+"_Sueldos/salario_cultura" lista_secretaria=natsorted(os.listdir(path_secretaria)) shutil.move(os.path.join(path_limpieza_secretaria,"salario_cultura_perfecto_0.xlsx"),os.path.join(os.path.join(path_secretaria,lista_secretaria[0]),"salario_cultura_perfecto_0.xlsx")) nombre_ultimo_archivo_secretaria=re.sub(".xlsx","",natsorted(os.listdir(path_limpieza_secretaria))[-1]) lista_valores=[*range(1,int(re.findall(r'\d+',nombre_ultimo_archivo_secretaria)[0])+1)] parametro_de_referencia=0 numero_archivo=1 for archivo_para_localizar in natsorted(os.listdir(path_limpieza_secretaria)): archivo_para_extraer_numero=re.sub(".xlsx","",archivo_para_localizar) numero=re.search("[0-999]",archivo_para_extraer_numero) inicio_del_numero=numero.span()[0] numero_extraido=int(archivo_para_extraer_numero[inicio_del_numero:]) if numero_extraido == lista_valores[parametro_de_referencia]: shutil.move(os.path.join(path_limpieza_secretaria,archivo_para_localizar),os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo_para_localizar)) else: for k in natsorted(os.listdir(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba")): shutil.move(os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",k),os.path.join(path_secretaria,lista_secretaria[numero_archivo])) numero_archivo+=1 #print("Aca deberia ir una funcion que mande todos los excel recogidos dentro de la carpeta\n") shutil.move(os.path.join(path_limpieza_secretaria,archivo_para_localizar),os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo_para_localizar)) parametro_de_referencia+=1 parametro_de_referencia+=1 #try: # lista_ultimos_archivos=natsorted(os.listdir(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba")) # for archivo in lista_ultimos_archivos: # shutil.move(os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo),os.path.join(path_secretaria,lista_secretaria[-1])) #except: # pass # Para el caso 2021_01 #shutil.move(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba/salario_cultura_perfecto_92.xlsx",os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/"+carpeta_especifica+"_Sueldos/salario_cultura/40_TEATRO_LA_COMEDIA","salario_cultura_perfecto_92.xlsx")) #try: # lista_ultimos_archivos=natsorted(os.listdir(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba")) # for archivo in lista_ultimos_archivos: # shutil.move(os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo),os.path.join(path_secretaria,lista_secretaria[-2])) #except: # pass # Para el caso 2021_04 shutil.move(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba/salario_cultura_perfecto_95.xlsx",os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/"+carpeta_especifica+"_Sueldos/salario_cultura/"+lista_secretaria[-1],"salario_cultura_perfecto_95.xlsx")) try: lista_ultimos_archivos=natsorted(os.listdir(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba")) for archivo in lista_ultimos_archivos: shutil.move(os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo),os.path.join(path_secretaria,lista_secretaria[-2])) except: pass
_____no_output_____
MIT
Fase_2.ipynb
rodrigotesone1997/Limpieza_Datos_Municipales
Salario Desarrollo Economico
path_limpieza_secretaria=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/Excels_proceso_limpieza/salario_desarrollo_economico" path_secretaria=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/"+carpeta_especifica+"_Sueldos/salario_desarrollo_economico" lista_secretaria=natsorted(os.listdir(path_secretaria)) shutil.move(os.path.join(path_limpieza_secretaria,"salario_desarrollo_economico_perfecto_0.xlsx"),os.path.join(os.path.join(path_secretaria,lista_secretaria[0]),"salario_desarrollo_economico_perfecto_0.xlsx")) shutil.move(os.path.join(path_limpieza_secretaria,"salario_desarrollo_economico_perfecto_1.xlsx"),os.path.join(os.path.join(path_secretaria,lista_secretaria[1]),"salario_desarrollo_economico_perfecto_1.xlsx")) nombre_ultimo_archivo_secretaria=re.sub(".xlsx","",natsorted(os.listdir(path_limpieza_secretaria))[-1]) lista_valores=[*range(2,int(re.findall(r'\d+',nombre_ultimo_archivo_secretaria)[0])+1)] parametro_de_referencia=0 numero_archivo=1 for archivo_para_localizar in natsorted(os.listdir(path_limpieza_secretaria)): archivo_para_extraer_numero=re.sub(".xlsx","",archivo_para_localizar) numero=re.search("[0-999]",archivo_para_extraer_numero) inicio_del_numero=numero.span()[0] numero_extraido=int(archivo_para_extraer_numero[inicio_del_numero:]) if numero_extraido == lista_valores[parametro_de_referencia]: shutil.move(os.path.join(path_limpieza_secretaria,archivo_para_localizar),os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo_para_localizar)) else: for k in natsorted(os.listdir(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba")): shutil.move(os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",k),os.path.join(path_secretaria,lista_secretaria[numero_archivo])) numero_archivo+=1 #print("Aca deberia ir una funcion que mande todos los excel recogidos dentro de la carpeta\n") shutil.move(os.path.join(path_limpieza_secretaria,archivo_para_localizar),os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo_para_localizar)) parametro_de_referencia+=1 parametro_de_referencia+=1 try: lista_ultimos_archivos=natsorted(os.listdir(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba")) for archivo in lista_ultimos_archivos: shutil.move(os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo),os.path.join(path_secretaria,lista_secretaria[-1])) except: pass
_____no_output_____
MIT
Fase_2.ipynb
rodrigotesone1997/Limpieza_Datos_Municipales
Salario desarrollo humano
path_limpieza_secretaria=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/Excels_proceso_limpieza/salario_desarrollo_humano" path_secretaria=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/"+carpeta_especifica+"_Sueldos/salario_desarrollo_humano" lista_secretaria=natsorted(os.listdir(path_secretaria)) shutil.move(os.path.join(path_limpieza_secretaria,"salario_desarrollo_humano_perfecto_0.xlsx"),os.path.join(os.path.join(path_secretaria,lista_secretaria[0]),"salario_desarrollo_humano_perfecto_0.xlsx")) shutil.move(os.path.join(path_limpieza_secretaria,"salario_desarrollo_humano_perfecto_1.xlsx"),os.path.join(os.path.join(path_secretaria,lista_secretaria[1]),"salario_desarrollo_humano_perfecto_1.xlsx")) nombre_ultimo_archivo_secretaria=re.sub(".xlsx","",natsorted(os.listdir(path_limpieza_secretaria))[-1]) lista_valores=[*range(2,int(re.findall(r'\d+',nombre_ultimo_archivo_secretaria)[0])+1)] parametro_de_referencia=0 numero_archivo=2 for archivo_para_localizar in natsorted(os.listdir(path_limpieza_secretaria)): archivo_para_extraer_numero=re.sub(".xlsx","",archivo_para_localizar) numero=re.search("[0-999]",archivo_para_extraer_numero) inicio_del_numero=numero.span()[0] numero_extraido=int(archivo_para_extraer_numero[inicio_del_numero:]) if numero_extraido == lista_valores[parametro_de_referencia]: shutil.move(os.path.join(path_limpieza_secretaria,archivo_para_localizar),os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo_para_localizar)) else: for k in natsorted(os.listdir(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba")): shutil.move(os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",k),os.path.join(path_secretaria,lista_secretaria[numero_archivo])) numero_archivo+=1 #print("Aca deberia ir una funcion que mande todos los excel recogidos dentro de la carpeta\n") shutil.move(os.path.join(path_limpieza_secretaria,archivo_para_localizar),os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo_para_localizar)) parametro_de_referencia+=1 parametro_de_referencia+=1 try: lista_ultimos_archivos=natsorted(os.listdir(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba")) for archivo in lista_ultimos_archivos: shutil.move(os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo),os.path.join(path_secretaria,lista_secretaria[-1])) except: pass
_____no_output_____
MIT
Fase_2.ipynb
rodrigotesone1997/Limpieza_Datos_Municipales
Salario Genero
path_limpieza_secretaria=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/Excels_proceso_limpieza/salario_genero_ddhh" path_secretaria=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/"+carpeta_especifica+"_Sueldos/salario_genero_ddhh" lista_secretaria=natsorted(os.listdir(path_secretaria)) shutil.move(os.path.join(path_limpieza_secretaria,"salario_genero_ddhh_perfecto_0.xlsx"),os.path.join(os.path.join(path_secretaria,lista_secretaria[0]),"salario_genero_ddhh_perfecto_0.xlsx")) nombre_ultimo_archivo_secretaria=re.sub(".xlsx","",natsorted(os.listdir(path_limpieza_secretaria))[-1]) lista_valores=[*range(1,int(re.findall(r'\d+',nombre_ultimo_archivo_secretaria)[0])+1)] parametro_de_referencia=0 numero_archivo=1 for archivo_para_localizar in natsorted(os.listdir(path_limpieza_secretaria)): archivo_para_extraer_numero=re.sub(".xlsx","",archivo_para_localizar) numero=re.search("[0-999]",archivo_para_extraer_numero) inicio_del_numero=numero.span()[0] numero_extraido=int(archivo_para_extraer_numero[inicio_del_numero:]) if numero_extraido == lista_valores[parametro_de_referencia]: shutil.move(os.path.join(path_limpieza_secretaria,archivo_para_localizar),os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo_para_localizar)) else: for k in natsorted(os.listdir(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba")): shutil.move(os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",k),os.path.join(path_secretaria,lista_secretaria[numero_archivo])) numero_archivo+=1 #print("Aca deberia ir una funcion que mande todos los excel recogidos dentro de la carpeta\n") shutil.move(os.path.join(path_limpieza_secretaria,archivo_para_localizar),os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo_para_localizar)) parametro_de_referencia+=1 parametro_de_referencia+=1 try: lista_ultimos_archivos=natsorted(os.listdir(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba")) for archivo in lista_ultimos_archivos: shutil.move(os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo),os.path.join(path_secretaria,lista_secretaria[-1])) except: pass
_____no_output_____
MIT
Fase_2.ipynb
rodrigotesone1997/Limpieza_Datos_Municipales
Salario Gobierno
path_limpieza_secretaria=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/Excels_proceso_limpieza/salario_gobierno" path_secretaria=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/"+carpeta_especifica+"_Sueldos/salario_gobierno" lista_secretaria=natsorted(os.listdir(path_secretaria)) shutil.move(os.path.join(path_limpieza_secretaria,"salario_gobierno_perfecto_0.xlsx"),os.path.join(os.path.join(path_secretaria,lista_secretaria[0]),"salario_gobierno_perfecto_0.xlsx")) shutil.move(os.path.join(path_limpieza_secretaria,"salario_gobierno_perfecto_1.xlsx"),os.path.join(os.path.join(path_secretaria,lista_secretaria[1]),"salario_gobierno_perfecto_1.xlsx")) nombre_ultimo_archivo_secretaria=re.sub(".xlsx","",natsorted(os.listdir(path_limpieza_secretaria))[-1]) lista_valores=[*range(2,int(re.findall(r'\d+',nombre_ultimo_archivo_secretaria)[0])+1)] parametro_de_referencia=0 numero_archivo=2 for archivo_para_localizar in natsorted(os.listdir(path_limpieza_secretaria)): archivo_para_extraer_numero=re.sub(".xlsx","",archivo_para_localizar) numero=re.search("[0-999]",archivo_para_extraer_numero) inicio_del_numero=numero.span()[0] numero_extraido=int(archivo_para_extraer_numero[inicio_del_numero:]) if numero_extraido == lista_valores[parametro_de_referencia]: shutil.move(os.path.join(path_limpieza_secretaria,archivo_para_localizar),os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo_para_localizar)) else: for k in natsorted(os.listdir(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba")): shutil.move(os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",k),os.path.join(path_secretaria,lista_secretaria[numero_archivo])) numero_archivo+=1 #print("Aca deberia ir una funcion que mande todos los excel recogidos dentro de la carpeta\n") shutil.move(os.path.join(path_limpieza_secretaria,archivo_para_localizar),os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo_para_localizar)) parametro_de_referencia+=1 parametro_de_referencia+=1 try: lista_ultimos_archivos=natsorted(os.listdir(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba")) for archivo in lista_ultimos_archivos: shutil.move(os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo),os.path.join(path_secretaria,lista_secretaria[-1])) except: pass
_____no_output_____
MIT
Fase_2.ipynb
rodrigotesone1997/Limpieza_Datos_Municipales
Salario intendencia
path_limpieza_secretaria=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/Excels_proceso_limpieza/salario_intendencia" path_secretaria=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/"+carpeta_especifica+"_Sueldos/salario_intendencia" lista_secretaria=natsorted(os.listdir(path_secretaria)) shutil.move(os.path.join(path_limpieza_secretaria,"salario_intendencia_perfecto_0.xlsx"),os.path.join(os.path.join(path_secretaria,lista_secretaria[0]),"salario_intendencia_perfecto_0.xlsx")) shutil.move(os.path.join(path_limpieza_secretaria,"salario_intendencia_perfecto_1.xlsx"),os.path.join(os.path.join(path_secretaria,lista_secretaria[1]),"salario_intendencia_perfecto_1.xlsx")) nombre_ultimo_archivo_secretaria=re.sub(".xlsx","",natsorted(os.listdir(path_limpieza_secretaria))[-1]) lista_valores=[*range(3,int(re.findall(r'\d+',nombre_ultimo_archivo_secretaria)[0])+1)] parametro_de_referencia=0 numero_archivo=2 for archivo_para_localizar in natsorted(os.listdir(path_limpieza_secretaria)): archivo_para_extraer_numero=re.sub(".xlsx","",archivo_para_localizar) numero=re.search("[0-999]",archivo_para_extraer_numero) inicio_del_numero=numero.span()[0] numero_extraido=int(archivo_para_extraer_numero[inicio_del_numero:]) if numero_extraido == lista_valores[parametro_de_referencia]: shutil.move(os.path.join(path_limpieza_secretaria,archivo_para_localizar),os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo_para_localizar)) else: for k in natsorted(os.listdir(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba")): shutil.move(os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",k),os.path.join(path_secretaria,lista_secretaria[numero_archivo])) numero_archivo+=1 #print("Aca deberia ir una funcion que mande todos los excel recogidos dentro de la carpeta\n") shutil.move(os.path.join(path_limpieza_secretaria,archivo_para_localizar),os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo_para_localizar)) parametro_de_referencia+=1 parametro_de_referencia+=1 try: lista_ultimos_archivos=natsorted(os.listdir(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba")) for archivo in lista_ultimos_archivos: shutil.move(os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo),os.path.join(path_secretaria,lista_secretaria[-1])) except: pass
_____no_output_____
MIT
Fase_2.ipynb
rodrigotesone1997/Limpieza_Datos_Municipales
Salario Planeamiento
path_limpieza_secretaria=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/Excels_proceso_limpieza/salario_planeamiento" path_secretaria=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/"+carpeta_especifica+"_Sueldos/salario_planeamiento" lista_secretaria=natsorted(os.listdir(path_secretaria)) shutil.move(os.path.join(path_limpieza_secretaria,"salario_planeamiento_perfecto_0.xlsx"),os.path.join(os.path.join(path_secretaria,lista_secretaria[0]),"salario_planeamiento_perfecto_0.xlsx")) shutil.move(os.path.join(path_limpieza_secretaria,"salario_planeamiento_perfecto_1.xlsx"),os.path.join(os.path.join(path_secretaria,lista_secretaria[1]),"salario_planeamiento_perfecto_1.xlsx")) shutil.move(os.path.join(path_limpieza_secretaria,"salario_planeamiento_perfecto_2.xlsx"),os.path.join(os.path.join(path_secretaria,lista_secretaria[2]),"salario_planeamiento_perfecto_2.xlsx")) nombre_ultimo_archivo_secretaria=re.sub(".xlsx","",natsorted(os.listdir(path_limpieza_secretaria))[-1]) lista_valores=[*range(4,int(re.findall(r'\d+',nombre_ultimo_archivo_secretaria)[0])+1)] # Para el caso 2020_09 #lista_valores=[*range(3,int(re.findall(r'\d+',nombre_ultimo_archivo_secretaria)[0])+1)] parametro_de_referencia=0 numero_archivo=3 for archivo_para_localizar in natsorted(os.listdir(path_limpieza_secretaria)): archivo_para_extraer_numero=re.sub(".xlsx","",archivo_para_localizar) numero=re.search("[0-999]",archivo_para_extraer_numero) inicio_del_numero=numero.span()[0] numero_extraido=int(archivo_para_extraer_numero[inicio_del_numero:]) if numero_extraido == lista_valores[parametro_de_referencia]: shutil.move(os.path.join(path_limpieza_secretaria,archivo_para_localizar),os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo_para_localizar)) else: for k in natsorted(os.listdir(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba")): shutil.move(os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",k),os.path.join(path_secretaria,lista_secretaria[numero_archivo])) numero_archivo+=1 #print("Aca deberia ir una funcion que mande todos los excel recogidos dentro de la carpeta\n") shutil.move(os.path.join(path_limpieza_secretaria,archivo_para_localizar),os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo_para_localizar)) parametro_de_referencia+=1 parametro_de_referencia+=1 try: lista_ultimos_archivos=natsorted(os.listdir(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba")) for archivo in lista_ultimos_archivos: shutil.move(os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba",archivo),os.path.join(path_secretaria,lista_secretaria[-1])) except: pass
_____no_output_____
MIT
Fase_2.ipynb
rodrigotesone1997/Limpieza_Datos_Municipales
Elimina la carpeta "Excels_proceso_limpieza"
shutil.rmtree(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/Excels_proceso_limpieza")
_____no_output_____
MIT
Fase_2.ipynb
rodrigotesone1997/Limpieza_Datos_Municipales
Creo los archivos finales
path_folder_carpeta=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/"+carpeta_especifica+"_Sueldos" lista_secretarias=natsorted(os.listdir(path_folder_carpeta)) path_carpeta_prueba=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/carpeta_prueba" for secretaria in lista_secretarias: path_folder_secretaria=os.path.join(path_folder_carpeta,secretaria) lista_secciones_secretaria=natsorted(os.listdir(path_folder_secretaria)) for seccion in lista_secciones_secretaria: path_folder_secciones=os.path.join(path_folder_secretaria,seccion) lista_archivos_secciones=natsorted(os.listdir(path_folder_secciones)) path_primer_archivo_seccion=os.path.join(path_folder_secciones, lista_archivos_secciones[0]) path_archivo_final=path_folder_secciones+".xlsx" if len(lista_archivos_secciones) == 1: shutil.move(path_primer_archivo_seccion,path_archivo_final) else: shutil.move(path_primer_archivo_seccion,path_carpeta_prueba) for archivo in lista_archivos_secciones[1:]: shutil.move(os.path.join(path_folder_secciones,archivo),path_carpeta_prueba) lista_archivos_carpeta_prueba=natsorted(os.listdir(path_carpeta_prueba)) path_df_1=os.path.join(path_carpeta_prueba,lista_archivos_carpeta_prueba[0]) path_df_2=os.path.join(path_carpeta_prueba,lista_archivos_carpeta_prueba[1]) df_1=pd.read_excel(path_df_1) df_2=pd.read_excel(path_df_2) df_final=pd.concat([df_1,df_2],ignore_index=True) os.remove(path_df_1) os.remove(path_df_2) df_final.to_excel(path_df_1,index=False,header=True) path_ubicacion_archivo_final=os.path.join(path_carpeta_prueba,lista_archivos_carpeta_prueba[0]) shutil.move(path_ubicacion_archivo_final,path_archivo_final)
_____no_output_____
MIT
Fase_2.ipynb
rodrigotesone1997/Limpieza_Datos_Municipales
Elimina las carpetas
for secretarias in os.listdir(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/"+carpeta_especifica+"_Sueldos"): for archivos_secretaria in os.listdir(os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/"+carpeta_especifica+"_Sueldos",secretarias)): try: os.rmdir(os.path.join(os.path.join(path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/"+carpeta_especifica+"_Sueldos",secretarias),archivos_secretaria)) except: pass
_____no_output_____
MIT
Fase_2.ipynb
rodrigotesone1997/Limpieza_Datos_Municipales
Reviso la columna 1 de todos los excel y muevo los numeros a la segunda columna
path=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/"+carpeta_especifica+"_Sueldos" lista_secretarias=natsorted(os.listdir(path)) for secretaria in lista_secretarias: path_secretaria=os.path.join(path,secretaria) lista_archivos=natsorted(os.listdir(path_secretaria)) for archivo in lista_archivos: path_archivo=os.path.join(path_secretaria,archivo) df=pd.read_excel(path_archivo) final=df.shape[0] workbook= load_workbook(filename=path_archivo) sheet= workbook.active for fila in range(1,final+2): celda=sheet.cell(row=fila, column=1).value try: inicio_numero=re.search("[0-9]",celda).span()[0] nombre=celda[:inicio_numero] numero=celda[inicio_numero:] sheet["A"+str(k)] = nombre sheet["B"+str(k)] = numero except: pass workbook.save(filename=path_archivo)
_____no_output_____
MIT
Fase_2.ipynb
rodrigotesone1997/Limpieza_Datos_Municipales
Reemplazo las comas por puntos
path=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/"+carpeta_especifica+"_Sueldos" for secretaria in natsorted(os.listdir(path)): lista_secretaria=natsorted(os.listdir(os.path.join(path,secretaria))) for archivo in lista_secretaria: path_archivo=os.path.join(os.path.join(path,secretaria),archivo) df=pd.read_excel(path_archivo) final=df.shape[0] workbook= load_workbook(filename=path_archivo) sheet= workbook.active for fila in range(1,final+2): celda_1=sheet.cell(row=fila, column=2).value celda_2=sheet.cell(row=fila, column=3).value celda_3=sheet.cell(row=fila, column=4).value try: sheet["B"+str(k)]=re.sub(",",".",celda_1) sheet["C"+str(k)]=re.sub(",",".",celda_2) sheet["D"+str(k)]=re.sub(",",".",celda_3) except: pass workbook.save(filename=path_archivo)
_____no_output_____
MIT
Fase_2.ipynb
rodrigotesone1997/Limpieza_Datos_Municipales
Esto revisa unos numeros extras que salen random luego de los 2 decimales
path=path_local+"/Gasto_Publico_Argentino_files/Salarios_Rosario/XLSX/"+carpeta_especifica+"_Sueldos" lista_secretarias=natsorted(os.listdir(path)) for columna in [2,3,4]: for secretaria in lista_secretarias: lista_archivos=natsorted(os.listdir(os.path.join(path,secretaria))) for archivo in lista_archivos: path_archivo=os.path.join(os.path.join(path,secretaria),archivo) df=pd.read_excel(path_archivo) final=df.shape[0] workbook= load_workbook(filename=path_archivo) sheet= workbook.active for fila in range(1,final+2): celda=str(sheet.cell(row=fila, column=columna).value) if len(re.findall("\.",celda))>1: final=re.search("\.",celda).span()[1] sheet["B"+str(fila)]=celda[:final+2] else: pass workbook.save(filename=path_archivo)
_____no_output_____
MIT
Fase_2.ipynb
rodrigotesone1997/Limpieza_Datos_Municipales
Mido cuanto tardo el programa (aproximadamente)
Finalizacion_programa=datetime.now() tiempo=Finalizacion_programa-Inicio_programa tiempo_medido=str(timedelta(seconds=tiempo.seconds))[2:] tiempo_medido
_____no_output_____
MIT
Fase_2.ipynb
rodrigotesone1997/Limpieza_Datos_Municipales
Lasso and Elastic Net for Sparse SignalsEstimates Lasso and Elastic-Net regression models on a manually generatedsparse signal corrupted with an additive noise. Estimated coefficients arecompared with the ground-truth.
print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import r2_score # ############################################################################# # Generate some sparse data to play with np.random.seed(42) n_samples, n_features = 50, 100 X = np.random.randn(n_samples, n_features) # Decreasing coef w. alternated signs for visualization idx = np.arange(n_features) coef = (-1) ** idx * np.exp(-idx / 10) coef[10:] = 0 # sparsify coef y = np.dot(X, coef) # Add noise y += 0.01 * np.random.normal(size=n_samples) # Split data in train set and test set n_samples = X.shape[0] X_train, y_train = X[:n_samples // 2], y[:n_samples // 2] X_test, y_test = X[n_samples // 2:], y[n_samples // 2:] # ############################################################################# # Lasso from sklearn.linear_model import Lasso alpha = 0.1 lasso = Lasso(alpha=alpha) y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test) r2_score_lasso = r2_score(y_test, y_pred_lasso) print(lasso) print("r^2 on test data : %f" % r2_score_lasso) # ############################################################################# # ElasticNet from sklearn.linear_model import ElasticNet enet = ElasticNet(alpha=alpha, l1_ratio=0.7) y_pred_enet = enet.fit(X_train, y_train).predict(X_test) r2_score_enet = r2_score(y_test, y_pred_enet) print(enet) print("r^2 on test data : %f" % r2_score_enet) m, s, _ = plt.stem(np.where(enet.coef_)[0], enet.coef_[enet.coef_ != 0], markerfmt='x', label='Elastic net coefficients', use_line_collection=True) plt.setp([m, s], color="#2ca02c") m, s, _ = plt.stem(np.where(lasso.coef_)[0], lasso.coef_[lasso.coef_ != 0], markerfmt='x', label='Lasso coefficients', use_line_collection=True) plt.setp([m, s], color='#ff7f0e') plt.stem(np.where(coef)[0], coef[coef != 0], label='true coefficients', markerfmt='bx', use_line_collection=True) plt.legend(loc='best') plt.title("Lasso $R^2$: %.3f, Elastic Net $R^2$: %.3f" % (r2_score_lasso, r2_score_enet)) plt.show()
_____no_output_____
MIT
sklearn/sklearn learning/demonstration/auto_examples_jupyter/linear_model/plot_lasso_and_elasticnet.ipynb
wangyendt/deeplearning_models
Campus RecruitmentIn this notebook we will try to answer these questions.* Which factor influenced a candidate in getting placed?* Does percentage matters for one to get placed?* Which degree specialization is much demanded by corporate?* Play with the data conducting all statistical tests.At the end we'll use DecisionTreeClassifier to predict if a student will be placed or not depending on the given data. Data Import & Information
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv("../input/factors-affecting-campus-placement/Placement_Data_Full_Class.csv") df.head() df.describe() df.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 215 entries, 0 to 214 Data columns (total 15 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 sl_no 215 non-null int64 1 gender 215 non-null object 2 ssc_p 215 non-null float64 3 ssc_b 215 non-null object 4 hsc_p 215 non-null float64 5 hsc_b 215 non-null object 6 hsc_s 215 non-null object 7 degree_p 215 non-null float64 8 degree_t 215 non-null object 9 workex 215 non-null object 10 etest_p 215 non-null float64 11 specialisation 215 non-null object 12 mba_p 215 non-null float64 13 status 215 non-null object 14 salary 148 non-null float64 dtypes: float64(6), int64(1), object(8) memory usage: 25.3+ KB
Apache-2.0
campus-recruitment-97-score.ipynb
theyazilimci/KaggleProject
We can observe some Null rows for the columns salary
df.isna().any() df['salary'].mean() df.groupby('degree_t')['salary'].mean()
_____no_output_____
Apache-2.0
campus-recruitment-97-score.ipynb
theyazilimci/KaggleProject
Student in Science and Tech get more money than others
df.groupby('gender')['salary'].mean()
_____no_output_____
Apache-2.0
campus-recruitment-97-score.ipynb
theyazilimci/KaggleProject
Male earn more money than female Plot data
sns.barplot(x='gender',y='salary',data=df,palette="Blues_d") sns.barplot(x='degree_t',y='salary',data=df,palette="Blues_d") sns.countplot(x='gender',data=df,palette="Blues_d") sns.barplot(x="workex",y="salary",data=df,palette="Blues_d") sns.barplot(x="status",y="degree_p",data=df,palette="Blues_d")
_____no_output_____
Apache-2.0
campus-recruitment-97-score.ipynb
theyazilimci/KaggleProject
placed person arehigher degree than not_placed
sns.barplot(x="workex",y="degree_p",data=df,palette="Blues_d") sns.barplot(x="gender",y="degree_p",data=df,palette="Blues_d")
_____no_output_____
Apache-2.0
campus-recruitment-97-score.ipynb
theyazilimci/KaggleProject
Female have better degree than male
sns.barplot(x="ssc_b",y="salary",data=df,palette="Blues_d") sns.barplot(x="specialisation",y="salary",data=df,palette="Blues_d")
_____no_output_____
Apache-2.0
campus-recruitment-97-score.ipynb
theyazilimci/KaggleProject
Global plot
sns.pairplot(data=df,palette="Blues_d")
_____no_output_____
Apache-2.0
campus-recruitment-97-score.ipynb
theyazilimci/KaggleProject
We Can see the correlation (linearity) between different columns
df.groupby('gender')['status'].value_counts()
_____no_output_____
Apache-2.0
campus-recruitment-97-score.ipynb
theyazilimci/KaggleProject
Male are more recruited than female however we saw above that female got better mark than male
# Check the correlation sns.heatmap(df.corr(),cmap="Blues")
_____no_output_____
Apache-2.0
campus-recruitment-97-score.ipynb
theyazilimci/KaggleProject
if we look at the salary we can say that the degree nor the gender of anything have a real impact to the salary of the student
sns.kdeplot(df['salary']) # we get only categorical data cols = df.columns num_cols = df._get_numeric_data().columns num_cols categorical_col = list(set(cols) - set(num_cols)) for i in categorical_col: plt.figure() sns.stripplot(x=i, y="salary",hue='gender',data=df, palette="Set1", dodge=True) df.groupby('degree_t').count() df.groupby('degree_t')['status'].value_counts()
_____no_output_____
Apache-2.0
campus-recruitment-97-score.ipynb
theyazilimci/KaggleProject
Student in Commerce are more placed than Prediction a DecisionTreeClassifier
from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import confusion_matrix df.columns labelEncode = LabelEncoder() for i in categorical_col: df[i] = labelEncode.fit_transform(df[i]) df # people not placed don't have a salary so we fill it with the mean df = df.fillna(df.mean()) df.isna().sum() X = df.drop(['sl_no','status'],axis=1) y = df['status'] x_train,x_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=42) len(x_test),len(y_test)
_____no_output_____
Apache-2.0
campus-recruitment-97-score.ipynb
theyazilimci/KaggleProject
Build DecisionTreeClassifier
decisionTree = DecisionTreeClassifier() decisionTree.fit(x_train,y_train) decisionTree.score(x_test,y_test) y_pred = decisionTree.predict(x_test) y_pred len(y_test) y_test.head() y_test = y_test.tolist() number_error = 0 for i in range(len(y_test)): if y_test[i] != y_pred[i]: number_error += 1 number_error print('confusion matrix: \n',confusion_matrix(y_pred,y_test),'\n')
confusion matrix: [[12 1] [ 0 30]]
Apache-2.0
campus-recruitment-97-score.ipynb
theyazilimci/KaggleProject
Distributions
from empiricaldist import Pmf
_____no_output_____
MIT
notebooks/chap03me.ipynb
mdominguez2010/ThinkBayes2
Probability Mass Functions PMF- for dicrete outcomes (ex: head or tails)- maps each possible outcome to it's probability
# Representing the outcome of a coin toss coin = Pmf() coin['heads'] = 1/2 coin['tails'] = 1/2 coin # Create a probability mass function for a series of die outcomes die = Pmf.from_seq([1, 2, 3, 4, 5, 6]) die
_____no_output_____
MIT
notebooks/chap03me.ipynb
mdominguez2010/ThinkBayes2
All outcomes in the sequence appear once, so they all have the same probability, 1/6
letters = Pmf.from_seq(list('Mississippi')) letters
_____no_output_____
MIT
notebooks/chap03me.ipynb
mdominguez2010/ThinkBayes2
'M' appears once, so probability = 1/11 = 0.0909'i' appears 4 times, so probability = 4/11 = 0.3636and so on...
letters['s'] # Avoid KeyError try: letters['t'] except KeyError as e: print("Please choose a letter contained in the Pmf")
Please choose a letter contained in the Pmf
MIT
notebooks/chap03me.ipynb
mdominguez2010/ThinkBayes2
You can also call a Pmf as if it were a function
letters('s')
_____no_output_____
MIT
notebooks/chap03me.ipynb
mdominguez2010/ThinkBayes2
Calling a quantity that does not exists in the distribution will yield a 0, not an error
letters('t')
_____no_output_____
MIT
notebooks/chap03me.ipynb
mdominguez2010/ThinkBayes2
Can also call some of the elements in the distribution
die([1,4,6])
_____no_output_____
MIT
notebooks/chap03me.ipynb
mdominguez2010/ThinkBayes2
Step 0: This analysis research question will require several different datasets: 1. The `RAW_us_confirmed_cases.csv` file from the [Kaggle repository](https://www.kaggle.com/antgoldbloom/covid19-data-from-john-hopkins-university?select=RAW_us_confirmed_cases.csv) of John Hopkins University COVID-19 data.2. The [CDC dataset](https://data.cdc.gov/Policy-Surveillance/U-S-State-and-Territorial-Public-Mask-Mandates-Fro/62d6-pm5i) of masking mandates by county.3. The New York Times [mask compliance survey data](https://github.com/nytimes/covid-19-data/tree/master/mask-use). The majority of this data is by US County by Day. The mask compliance is a single shot estimator that gives you a compliance estimate for every County in the US. You should carefully review the data descriptions that accompany these datasets. They each have some interesting caveats. As well, some of them are explicit with regard to the way you should interpret missing data. Lastly, you have been assigned a specific US County for analysis. You are NOT analyzing the entire dataset. You have been assigned one US County that forms the basis for your individual analysis. You can find your individual US County assignment from this Google spreadsheet. Setup- specify county of interestAssigned Montgomery County in Maryland
# setup- county of interest # Montgomery, MD state = 'Maryland' st = 'MD' county = 'Montgomery'
_____no_output_____
MIT
A4-Common-Analysis.ipynb
emi90/data-512-a4
Get Cases data
# Unzip cases file os.chdir('data_raw') with ZipFile('RAW_us_confirmed_cases.csv.zip') as zipfiles: zipfiles.extractall() os.chdir('..') os.getcwd() # load cases data raw = pd.read_csv('data_raw/RAW_us_confirmed_cases.csv') raw.columns
_____no_output_____
MIT
A4-Common-Analysis.ipynb
emi90/data-512-a4
Get Mask policy data
# get mask policy data 'https://data.cdc.gov/resource/62d6-pm5i.json?state_tribe_territory=TX&county' base_url = 'https://data.cdc.gov/resource/62d6-pm5i.json?state_tribe_territory={st}&county_name={county}' params = { 'st' : st, 'county' : county + ' County' } mask_url = base_url.format(**params) masks_json = requests.get(mask_url).json() masks_df = pd.DataFrame.from_dict(masks_json) masks_df.shape
_____no_output_____
MIT
A4-Common-Analysis.ipynb
emi90/data-512-a4
Get mask compliance data
# get mask compliance data compliance_url = 'https://raw.githubusercontent.com/nytimes/covid-19-data/master/mask-use/mask-use-by-county.csv' compliance_df = pd.read_csv(compliance_url) compliance_df.head()
_____no_output_____
MIT
A4-Common-Analysis.ipynb
emi90/data-512-a4
Filter based on given county
# filter cases_filter = raw.loc[(raw.Province_State==state) & (raw.Admin2==county)].copy().reset_index(drop=True) fips_county = int('10' + masks_df.fips_county[0]) compliance_filter = compliance_df.loc[compliance_df.COUNTYFP==fips_county].copy().reset_index(drop=True)
_____no_output_____
MIT
A4-Common-Analysis.ipynb
emi90/data-512-a4
Step 1: Analyze The common question that you are to answer is:- How did masking policies change the progression of confirmed COVID-19 cases from February 1, 2020 through October 15, 2021? Answering this question can be a little tricky - and it will be useful for you all (whole class) to discuss this on Slack. We will also spend some time in class on this discussion. Some of the issues that you probably should consider when conducting your analysis include:1. What needs to be cleaned and standardized over the three datasets?2. There is a delay between the time of infection and the time a case is confirmed. Many factors may contribute to such delay. People may not show symptoms right away after infection. It may take a few days for the testing results to become available especially during the early period of the pandemic. Should we model the delay?3. Masking may simply make it longer to get infected or it may prevent some percentage of infection. How should we consider the effect of a mask?4. The research question is about how a time series changes. The infection time series is a set of slopes. Therefore the question is about a derivative function. That is, you want to answer a question about the change in slope over time. How can we test the difference in the derivative function?5. Masking survey data shows probability of compliance in several categories. How can we model different proportions for population compliance?6. Masking policies varied in their implementation (e.g., size of “crowd” required, different situations, restaurants, bars, clubs ...). How should I handle things when my County implemented two different policies at different times?7. The County I was assigned did not implement a masking policy! What is a reasonable way to answer this question? That is, how might I model “voluntary” masking?8. Vaccinations probably impacted the apparent effectiveness of masks. How should we account for different vaccination rates in different populations within the same County? We note that we did not enumerate all potential issues that you may want to discuss. Further, there are some better and worse ways to handle these questions. We are not looking for the one right answer. We are looking for reasonable solutions. There are aspects of this problem that are very hard to model - and so you will probably want to make simplifying assumptions. For example, you might decide to ignore the impacts of vaccinations or consider pre-vaccine availability as one time series and post-vaccine availability as a totally different time series. Define additional datapoints that are initially given
# additional data pop = 1062061 # given sq_mi = 491.25 # given sq_km = 1272.34 # given
_____no_output_____
MIT
A4-Common-Analysis.ipynb
emi90/data-512-a4
Cases dataset
# cases have dates in columns- transpose to have each entry as rows # also convert dates to datetime cases = cases_filter[cases_filter.columns[11:]].T.reset_index().rename(columns={'index':'date', 0:'cases'}) cases.date = pd.to_datetime(cases.date) #quick visualization cases.plot(x='date', y='cases') # cases per population cases['pct_pop'] = cases.cases/pop # same, just different units cases.plot(x='date', y='pct_pop')
_____no_output_____
MIT
A4-Common-Analysis.ipynb
emi90/data-512-a4
Masks dataset
# look at data types for col in masks_df.columns: print('Data type for column {} is {}'.format(col, type(masks_df[col][0]))) # convert data types # dates to datetime # order_code to int masks_df.date = pd.to_datetime(masks_df.date) masks_df.order_code = masks_df.order_code.astype(int) # quick visualization masks_df.plot(x='date', y='order_code')
_____no_output_____
MIT
A4-Common-Analysis.ipynb
emi90/data-512-a4
Mask compliance dataset
# also setup as columns --> transpose to show each entry as rows # also show as magnitude mask_comp = compliance_filter.drop(columns=['COUNTYFP']).T.reset_index().rename(columns={'index':'response',0:'pct_pop'}) mask_comp['pop'] = mask_comp.pct_pop * pop mask_comp
_____no_output_____
MIT
A4-Common-Analysis.ipynb
emi90/data-512-a4
Merging datasets
# helper function def case_per_pop(df, subset): """ Helper function to join mask compliance population % with cases dataset df: pd.DataFrame Cases dataframe subset: str String of mask compliance category Returns: new pd.DataFrame with columns added for population given mask compliance response """ subset_pop = mask_comp.loc[mask_comp.response==subset]['pop'].values[0] df[subset.lower()] = subset_pop return df # apply helper function- populate columns with mask compliance population cases_mask = cases.copy() for resp in mask_comp.response: cases_mask = case_per_pop(cases_mask, resp) # additional merge- merge case + compliance with mask order code cases_merge = cases_mask.merge(masks_df[['order_code', 'date']], on='date')
_____no_output_____
MIT
A4-Common-Analysis.ipynb
emi90/data-512-a4
Getting daily cases
# get daily cases- daily difference between total cases cases_merge['daily_cases'] = cases_merge.cases - cases_merge.cases.shift(1) # quick visualization cases_merge.plot(x='date', y='daily_cases')
_____no_output_____
MIT
A4-Common-Analysis.ipynb
emi90/data-512-a4
Get rolling average
# Helper function def get_rolling_avg(df, days): col_name = 'rolling_avg_' + str(days) df[col_name] = df.daily_cases.rolling(days).mean() return df # get rolling average- 7 day cases_merge = get_rolling_avg(cases_merge, 7) # get rolling average- 14 day cases_merge = get_rolling_avg(cases_merge, 14) # quick visualization - 7 day cases_merge.plot(x='date', y='rolling_avg_7') # quick visualization - 14 day cases_merge.plot(x='date', y='rolling_avg_14')
_____no_output_____
MIT
A4-Common-Analysis.ipynb
emi90/data-512-a4
Getting change in daily cases
# helper function def get_pct_chg(df, days): col_name = 'pct_chg_' + str(days) + 'D_avg' pct_col = 'rolling_avg_' + str(days) df[col_name] = df[pct_col].pct_change(1) return df # get pct change- 7 days RA cases_merge = get_pct_chg(cases_merge, 7) # get pct change- 14 days RA cases_merge = get_pct_chg(cases_merge, 14) # get pct change- daily cases_merge['pct_chg_daily'] = cases_merge.daily_cases.pct_change(1) # quick visualization 7D pct chg cases_merge.plot(x='date', y='pct_chg_7D_avg') # quick visualization 14D pct chg cases_merge.plot(x='date', y='pct_chg_14D_avg') # quick visualization daily pct chg cases_merge.plot(x='date', y='pct_chg_daily') # recap- what do we have so far cases_merge.head()
_____no_output_____
MIT
A4-Common-Analysis.ipynb
emi90/data-512-a4
Save to file
# save cleaned dataset to file cases_merge.to_csv('data_clean/cases_clean.csv', index=False)
_____no_output_____
MIT
A4-Common-Analysis.ipynb
emi90/data-512-a4
Step 2: Visualize In this step we want you to create a graph that visualizes how the course of the disease was changed by masking policies. For your county, you should create a time series showing the changes in the derivative function of the rate of infection. Your graph should indicate days where masking policies were in effect (or not) and whether the difference in the derivative function was significant. Optionally, you can add a second time series that shows the actual rate of infection.
# read from file cases = pd.read_csv('data_clean/cases_clean.csv') cases.head() # helper function- get masked array def get_ma(var, order): return np.ma.masked_where(cases.order_code==order, cases[var]) # get variables x = pd.to_datetime(cases.date) # get masked arrays (for different masking orders) daily_mask = get_ma('daily_cases', 2) daily_no_mask = get_ma('daily_cases', 1) total_mask = get_ma('cases', 2) total_no_mask = get_ma('cases', 1) roll7_avg_mask = get_ma('rolling_avg_7', 2) roll7_avg_no_mask = get_ma('rolling_avg_7', 1) roll14_avg_mask = get_ma('rolling_avg_14', 2) roll14_avg_no_mask = get_ma('rolling_avg_14', 1) fig = plt.figure(figsize=(20, 10), facecolor='white') ax = fig.add_subplot() ax.set_title('Daily COVID19 Cases in Montegomery County, MD \nFeb 1 2020 - Oct 15 2021') # plot daily cases ax.bar(x, daily_mask, alpha=0.8, linewidth=2, color='lightblue', label='Daily Cases-Mask Mandate (LHS)') ax.bar(x, daily_no_mask, alpha=0.5, color='silver', label='Daily Cases-No Mask Mandate (LHS)') # plot rolling avg 7D ax.plot(x, roll7_avg_mask, alpha=0.8, linewidth=2, color='crimson', label='7D Rolling Avg of Cases-Mask Mandate (LHS)') ax.plot(x, roll7_avg_no_mask, alpha=0.5, color='crimson', linestyle='dashed', label='7D Rolling Avg of Cases-No Mask Mandate (LHS)') # plot rolling avg 14D ax.plot(x, roll14_avg_mask, alpha=0.8, linewidth=2, color='darkblue', label='14D Rolling Avg of Cases-Mask Mandate (LHS)') ax.plot(x, roll14_avg_no_mask, alpha=0.5, color='darkblue', linestyle='dashed', label='14D Rolling Avg of Cases-No Mask Mandate (LHS)') # set labels ax.set_xlabel('Date') ax.set_ylabel('Number of Positive Cases') plt.legend(loc='upper left') ax2 = ax.twinx() ax2.plot(x, total_mask, c='darkgreen', alpha=0.6, linewidth=5, label='Total Cases-Mask Mandate (RHS)') ax2.plot(x, total_no_mask, c='darkgreen', alpha=0.3, linewidth=3, linestyle='dashed', label='Total Cases-No Mask Mandate (RHS)') ax2.set_ylabel('Number of Positive Cases') plt.legend(loc='upper right') plt.savefig('visualization/plot.png', facecolor=fig.get_facecolor(), bbox_inches='tight')
C:\ProgramData\Anaconda3\lib\site-packages\numpy\lib\stride_tricks.py:256: UserWarning: Warning: converting a masked element to nan. args = [np.array(_m, copy=False, subok=subok) for _m in args]
MIT
A4-Common-Analysis.ipynb
emi90/data-512-a4
Gaussian bayes classifierIn this assignment we will use a Gaussian bayes classfier to classify our data points. Import packages
import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.stats import multivariate_normal from sklearn.metrics import classification_report from matplotlib import cm
_____no_output_____
MIT
07-Assignment/Bayesian_Classifier_Assignment3_ML.ipynb
hritik5102/SHALA2020
Load training dataOur data has 2D feature $x1, x2$. Data from the two classes is are in $\texttt{class1_train}$ and $\texttt{class2_train}$ respectively. Each file has two columns corresponding to the 2D feature.
class1_train = pd.read_csv('https://raw.githubusercontent.com/shala2020/shala2020.github.io/master/Lecture_Materials/Assignments/MachineLearning/L3/class1_train').to_numpy() class2_train = pd.read_csv('https://raw.githubusercontent.com/shala2020/shala2020.github.io/master/Lecture_Materials/Assignments/MachineLearning/L3/class2_train').to_numpy() class1_train[:10] class1_train.shape class2_train.shape
_____no_output_____
MIT
07-Assignment/Bayesian_Classifier_Assignment3_ML.ipynb
hritik5102/SHALA2020
Visualize training dataGenerate 2D scatter plot of the training data. Plot the points from class 1 in red and the points from class 2 in blue.
import seaborn as sns classes = ['class-1','class-2'] for i in range(class1_train.shape[0]): plt.scatter(class1_train[i][0],class1_train[i][1] ,c="red",alpha=0.6, edgecolors='none') # plt.legend(loc='best', fontsize=16) plt.xlabel('Growth %') plt.ylabel('Population') for j in range(class2_train.shape[0]): plt.scatter(class1_train[j][0],class1_train[j][1] ,c="blue")
/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead. import pandas.util.testing as tm
MIT
07-Assignment/Bayesian_Classifier_Assignment3_ML.ipynb
hritik5102/SHALA2020
Maximum likelihood estimate of parametersWe will model the likelihood, $P(\mathbf{x}|C_1)$ and $P(\mathbf{x}|C_2)$ as $\mathcal{N}(\mathbf{\mu_1},\Sigma_1)$ and $\mathcal{N}(\mathbf{\mu_2},\Sigma_2)$ respectively. The prior probability of the classes are called, $P(C_1)=\pi_1$ and $P(C_2)=\pi_2$.The maximum likelihood estimate of the parameters as follows:\begin{align*}\pi_k &= \frac{\sum_{i=1}^N \mathbb{1}(t^i=k)}{N}\\\mathbf{\mu_k} &= \frac{\sum_{i=1}^N \mathbb{1}(t^i=k)\mathbf{x}^i}{\sum_{i=1}^N \mathbb{1}(t^i=k)}\\\Sigma_k &= \frac{\sum_{i=1}^N \mathbb{1}(t^i=k)(\mathbf{x}^i-\mathbf{\mu_k})(\mathbf{x}^i-\mathbf{\mu_k})^T}{\sum_{i=1}^N \mathbb{1}(t^i=k)}\\\end{align*}Here, $t^i$ is the target or class of $i^{th}$ sample. $\mathbb{1}(t^i=k)$ is 1 if $t^i=k$ and 0 otherwise.Compute maximum likelihood values estimates of $\pi_1$, $\mu_1$, $\Sigma_1$ and $\pi_2$, $\mu_2$, $\Sigma_2$ Also print these values $pi$ = `Prior` $mu$ and $sigma$ = `Likelihood`
def calculate_pi_1(): num = class1_train.shape[0] deno = class1_train.shape[0] + class2_train.shape[0] return num/deno def calculate_pi_2(): num = class2_train.shape[0] deno = class1_train.shape[0] + class2_train.shape[0] return num/deno def calculate_mu_1(): return class1_train.mean(axis=0) def calculate_mu_2(): return class2_train.mean(axis=0) def calculate_cov_1(): x = class1_train print(x.shape) mu = x.mean(axis=0) x_norm = x-mu x_transpose = x_norm.transpose() return np.cov(x_transpose) def calculate_cov_2(): x = class2_train print(x.shape) mu = x.mean(axis=0) x_norm = x-mu x_transpose = x_norm.transpose() return np.cov(x_transpose) print( 'pi_1 : {} and pi_2 : {}'.format(calculate_pi_1(),calculate_pi_2())) print( 'mu_1 : {} and mu_2 : {}'.format(calculate_mu_1(),calculate_mu_2())) print( 'sigma_1 : \n{} \n sigma_2 : \n{}'.format(calculate_cov_1(),calculate_cov_2())) ## Another way to get Pi , mu and sigma pi1 = len(class1_train)/(len(class1_train)+len(class2_train)) pi2 = len(class2_train)/(len(class1_train)+len(class2_train)) mu1 = class1_train.mean(axis=0) mu2 = class2_train.mean(axis=0) sig1 = np.cov(class1_train,rowvar=False) sig2 = np.cov(class2_train,rowvar=False) print("Pi-1 {} and Pi-2 {}".format(pi1,pi2)) print("mu-1 {} and mu-2 {}".format(mu1,mu2)) print("sig-1 {} and sig-2 {}".format(sig1,sig2))
Pi-1 0.8040201005025126 and Pi-2 0.19597989949748743 mu-1 [0.96998989 1.02894917] and mu-2 [-1.02482819 -0.91492055] sig-1 [[0.96127884 0.07824879] [0.07824879 0.82105102]] and sig-2 [[1.1978678 0.48182629] [0.48182629 0.93767199]]
MIT
07-Assignment/Bayesian_Classifier_Assignment3_ML.ipynb
hritik5102/SHALA2020
Visualize the likelihoodNow that you have the parameters, let us visualize how the likelihood looks like.1. Use $\texttt{np.mgrid}$ to generate points uniformly spaced in -5 to 5 along 2 axes1. Use $\texttt{multivariate_normal.pdf}$ to get compute the Gaussian likelihood for each class 1. Use $\texttt{plot_surface}$ to plot the likelihood of each class.1. Use $\texttt{contourf}$ to plot the likelihood of each class. You may find the code in the lecture notebook helpful. For the plots, use $\texttt{cmap=cm.Reds}$ for class 1 and $\texttt{cmap=cm.Blues}$ for class 2. Use $\texttt{alpha=0.5}$ to overlay both plots together.
from matplotlib import cm x,y = np.mgrid[-5:5:.01, -5:5:.01] pos = np.empty(x.shape + (2,)) pos[:, :, 0] = x; pos[:, :, 1] = y mu1 = calculate_mu_1() mu2 = calculate_mu_2() cov1 = calculate_cov_1() cov2 = calculate_cov_2() rv1 = multivariate_normal(mean = mu1, cov = cov1) rv2 = multivariate_normal(mean = mu2, cov = cov2) fig = plt.figure(figsize=(20,10)) ax = fig.add_subplot(121, projection='3d') plt.xlabel('x') plt.ylabel('y') ax.plot_surface(x,y,rv1.pdf(pos), cmap=cm.Reds,alpha=0.5) ax.plot_surface(x,y,rv2.pdf(pos), cmap=cm.Blues,alpha=0.5) plt.subplot(122) plt.contourf(x, y, rv1.pdf(pos), cmap=cm.Reds,alpha=0.5) plt.contourf(x, y, rv2.pdf(pos), cmap=cm.Blues,alpha=0.5) plt.colorbar() plt.xlabel('x') plt.ylabel('y')
(160, 2) (39, 2)
MIT
07-Assignment/Bayesian_Classifier_Assignment3_ML.ipynb
hritik5102/SHALA2020
Visualize the posteriorUse the prior and the likelihood you've computed to obtain the posterior distribution for each class.Like in the case of the likelihood above, make same similar surface and contour plots for the posterior.
likelihood1 = rv1.pdf(pos) likelihood2 = rv2.pdf(pos) p1 = (likelihood1 * pi1)/(likelihood1*pi1+likelihood2*pi2) p2 = (likelihood2 * pi2)/(likelihood1*pi1+likelihood2*pi2) x, y = np.mgrid[-5:5:.01, -5:5:.01] pos = np.empty(x.shape + (2,)) pos[:, :, 0] = x; pos[:, :, 1] = y fig = plt.figure(figsize=(20,10)) ax = fig.add_subplot(131, projection='3d') plt.xlabel('x') plt.ylabel('y') ax.plot_surface(x,y,p1, cmap=cm.Reds,alpha=0.5) ax.plot_surface(x,y,p2, cmap=cm.Blues,alpha=0.5) plt.subplot(132) plt.contourf(x,y,p1,cmap=cm.Reds,alpha=0.5) plt.contourf(x,y,p2,cmap=cm.Blues,alpha=0.5) plt.xlabel('x') plt.ylabel('y')
_____no_output_____
MIT
07-Assignment/Bayesian_Classifier_Assignment3_ML.ipynb
hritik5102/SHALA2020
Decision boundary1. Decision boundary can be obtained by $P(C_2|x)>P(C_1|x)$ in python. Use $\texttt{contourf}$ to plot the decision boundary. Use $\texttt{cmap=cm.Blues}$ and $\texttt{alpha=0.5}$1. Also overlay the scatter plot of train data points from the 2 classes on the same plot. Use red color for class 1 and blue color for class 2
des = p2>p1 plt.contourf(x,y,p1,cmap=cm.Reds,alpha=0.5) plt.contourf(x,y,p2,cmap=cm.Blues,alpha=0.5) plt.contourf(x,y,des,cmap=cm.Greens,alpha=0.3) plt.xlabel('x') plt.ylabel('y') plt.scatter(class1_train[:,0],class1_train[:,1],marker='*',color='red') plt.scatter(class2_train[:,0],class2_train[:,1],marker='+',color='blue')
_____no_output_____
MIT
07-Assignment/Bayesian_Classifier_Assignment3_ML.ipynb
hritik5102/SHALA2020
Test DataNow let's use our trained model to classify test data points1. $\texttt{test_data}$ contains the $x1,x2$ features of different data points1. $\texttt{test_label}$ contains the true class of the data points. 0 means class 1. 1 means class 2. 1. Classify the test points based on whichever class has higher posterior probability for each data point1. Use $\texttt{classification_report}$ to test the classification performance
test = pd.read_csv('https://raw.githubusercontent.com/shala2020/shala2020.github.io/master/Lecture_Materials/Assignments/MachineLearning/L3/test').to_numpy() test_data, test_label = test[:,:2], test[:,2] test_data ## likelihood l1 = rv1.pdf(test_data) l2 = rv2.pdf(test_data) ##Posterior p1_test= (l1*pi1)/(l1*pi1+l2*pi2) p2_test= (l2*pi2)/(l1*pi1+l2*pi2) ## Descision bundory test_data_predict=p2_test>p1_test test_data_predict test_data_predict = np.where(test_data_predict==True,1,0) test_data_predict from sklearn.metrics import classification_report,accuracy_score print(accuracy_score(test_label,test_data_predict)) print(classification_report(test_label,test_data_predict))
_____no_output_____
MIT
07-Assignment/Bayesian_Classifier_Assignment3_ML.ipynb
hritik5102/SHALA2020
Data Wrangling & Cleaning
# import the library %matplotlib inline import pandas as pd import numpy as np import matplotlib.pyplot as plt # convert scientific notation to decimals pd.set_option('display.float_format', lambda x: '%.2f' % x)
_____no_output_____
MIT
data-wrangling-analysis.ipynb
Clercy/proj_bedbugs
Load & Merge the data
df_listing = pd.read_csv('data/kc_house_data.csv') df_walking_score = pd.read_csv('data/walking_score.csv') df_income = pd.read_csv('data/ZIP-3.csv')
_____no_output_____
MIT
data-wrangling-analysis.ipynb
Clercy/proj_bedbugs
Summarizing your data for inspection
print('Listings') print(df_listing.columns) print(df_listing.head()) print(df_listing.describe()) print('') print('Walking Score') # TODO: print the columns, head and describe for the Walking Score dataframe print('') print('Income') # TODO: print the columns, head and describe for the Income dataframe
_____no_output_____
MIT
data-wrangling-analysis.ipynb
Clercy/proj_bedbugs
Fixing column name
df_income.columns = ['zipcode', 'median_income', 'mean_income', 'population']
_____no_output_____
MIT
data-wrangling-analysis.ipynb
Clercy/proj_bedbugs
Converting data types
df_listing['date'] = pd.to_datetime(df_listing['date']) df_income['median_income'] = df_income['median_income'].str.replace(',', '').astype(float) df_income['mean_income'] = df_income['mean_income'].str.replace(',', '').astype(float) df_income.head() # TODO: Convert the data type of the population column df_income
_____no_output_____
MIT
data-wrangling-analysis.ipynb
Clercy/proj_bedbugs
Dealing with missing valuesHow to deal with the missing values? Should we remove the rows or fill the gap with a value?
# Number of missing values by columns print(df_listing.isnull().sum()) print('') print(df_walking_score.isnull().sum()) print('') print(df_income.isnull().sum()) # select all the rows with missing values df_walking_score[df_walking_score.isnull().any(axis=1)] # select all the rows with missing values df_income[df_income.isnull().any(axis=1)] # TODO: Create a strategy to handle the missing values on the Walking Score and Income dataframes
_____no_output_____
MIT
data-wrangling-analysis.ipynb
Clercy/proj_bedbugs
Removing outliersSome algorithms are very sensitive to outliers. Considering the number of bedrooms, should we remove houses with an extreme number of bedrooms? How many bedrooms are too many? (Suggestion: as a rule of thumb, three standard deviations from the mean is a good measure to identify outliers).
# bedrooms print(df_listing['bedrooms'].value_counts()) print('mean', np.mean(df_listing['bedrooms'])) print('std', np.std(df_listing['bedrooms'])) plt.hist(df_listing['bedrooms'], bins=20) plt.show() # TODO: Remove the outlier houses considering the number of bedrooms # Dealing with outliers houses_to_remove = [] # remove based on zipcode and price for zipcode in df_listing['zipcode'].unique(): df_zipcode = df_listing[df_listing['zipcode']==zipcode] m = np.mean(df_zipcode['price']) s = np.std(df_zipcode['price']) houses_to_remove = houses_to_remove + list(df_zipcode[df_zipcode['price']>m+3.0*s].index) print('') print('# houses to remove', len(houses_to_remove)) df_listing = df_listing[~df_listing.index.isin(houses_to_remove)]
_____no_output_____
MIT
data-wrangling-analysis.ipynb
Clercy/proj_bedbugs
Merging Data Sets
df_merge = df_listing.copy() df_merge = df_merge.merge(df_walking_score, on='zipcode', how='left') df_merge = df_merge.merge(df_income, on='zipcode', how='left') print('Total # houses', len(df_merge))
_____no_output_____
MIT
data-wrangling-analysis.ipynb
Clercy/proj_bedbugs
Saving the processed file
df_merge.to_csv('data/house_pricing.csv', index=False)
_____no_output_____
MIT
data-wrangling-analysis.ipynb
Clercy/proj_bedbugs
Standalone Convergence Checker for the numerical vKdV solver KISSME bottom - KISSME stratificationGetting more realistic now. Using the real KISSME stratification. Still linear non hydrostaticStill using an offshore 'blank' zone with initial conditions not boundary conditions
import xarray as xr from iwaves.kdv.kdvimex import KdVImEx#from_netcdf from iwaves.kdv.vkdv import vKdV from iwaves.kdv.solve import solve_kdv from iwaves.utils.plot import vKdV_plot import iwaves.utils.initial_conditions as ics import iwaves.utils.boundary_conditions as bcs import pandas as pd import numpy as np from scipy.interpolate import PchipInterpolator as pchip from scipy.interpolate import interp1d import scipy.signal import matplotlib.pyplot as plt %matplotlib inline from matplotlib import rcParams # Set font sizes rcParams['font.family'] = 'sans-serif' rcParams['font.sans-serif'] = ['Bitstream Vera Sans'] rcParams['font.serif'] = ['Bitstream Vera Sans'] rcParams["font.size"] = "14" rcParams['axes.labelsize']='large' # CONSTANTS FOR WHOLE NOTEBOOK d = 252.5 L_d = 3.0e5 Nz = 100 bathy_params = [L_d/2, 60000, d, d/2] runtime = 4.5*86400. runtime = 1.5*86400. runtime = 2*86400. nonlinear = True nonhydrostatic = True a0 = 0. a_bc_left = 35 kb_start = 1000 drag_param = 0.0006 Wn = 1/200 # Filtering both in and outside of the KdV module. def get_kissme_h(dx, kb_start, start_depth=650, sponge_start_depth=150): """ kb_start is where the KISSME bathy starts - will be constant depth before that. dx is the depth to interpolate to. sponge_start_depth is the depth at which the sponge boundary will kick in. """ data = pd.read_csv(r'..\..\..\..\03_CODE\GA BATHY CODES [and data]\xyz for chapter 3.txt', names=['x', 'y', 'h', 'z']) x = data['x'].values.tolist() y = data['y'].values.tolist() z = data['z'].values.tolist() x.reverse() y.reverse() z.reverse() x = np.array(x) y = np.array(y) z = np.array(z) delta_x = x - x[0] delta_y = y - y[0] horz_km = 110*np.sqrt((delta_x**2+(delta_y*np.cos(np.pi*y/180))**2)) ########## ## OUTPUTS x = 1000*horz_km h = -z ######### ## LIMIT ind = np.where(abs(h-start_depth)==min(abs(h-start_depth)))[0][0] x = x[ind:-1] h = h[ind:-1] x = x-x[0]+kb_start ############ ## ADD START print(np.max(x)) print(dx) xi = np.arange(-2*dx, L_d+dx, dx) F = interp1d(x, h, bounds_error=False, fill_value='extrapolate') hi = F(xi) ind = np.where(xi<kb_start)[0] hi[ind] = h[0] ind = np.where(xi>max(x))[0] hi[ind] = h[-1] ######### ## FILTER b, a = scipy.signal.butter(4, Wn) hi = scipy.signal.filtfilt(b, a, hi) ######### ## SPONGE ind = np.where(abs(hi-sponge_start_depth)==min(abs(hi-sponge_start_depth)))[0][0] spongedist = xi[-1] - xi[ind] return xi, hi, spongedist def get_rho_kissme_apr3(): ncfile = r'\\drive.irds.uwa.edu.au\CEME-BBLE-001\KISSME\Processed data\Moorings\Mooring-Temp-SP250_2short.nc' ncfile = r'./data/Mooring-Temp-SP250_2short.nc' ncfile = r'C:\Users\AZulberti\Dropbox\University\PhD\2016_Andrew_Zulberti_2\02 WRITING\3 - Energy dissipation/data/Mooring-Temp-SP250_2short.nc' # April 4 ti_i = 3390 - 200 ti_f = 3420 + 200 # Apr 3 ti_i = 1000 ti_f = 1500 ti_m = int(np.mean((ti_i, ti_f))) ti_wave = np.arange(ti_i, ti_f) ti_full = np.arange(ti_i-200, ti_f+200) ds = xr.open_dataset(ncfile) rho_opt = 'hat' # rho_opt = 'star' if rho_opt == 'hat': rho = ds.dens_hat.values[:, ti_m] elif rho_opt == 'star': rho = ds.dens_star.values[:, ti_m] z = ds.height_star.values rho = rho[::-1] z = z[::-1] z = z-max(z) return z, rho # Functions def run_kdv(args): """ Main function for generating different soliton scenarios """ rho_params, bathy_params, a0, L_d, mode, nu_H, dx, runtime, dt, Lw, solver = args #################################################### # Inputs mode = 0 Nz = 100 ntout = 1800.0 # z = np.linspace(0, -d, Nz) # rhoz = ics.rho_double_tanh_rayson(rho_params,z) z, rhoz = get_rho_kissme_apr3() dz = np.abs(z[1]-z[0]) if solver == 'vkdv': # h = 0*x+d # h = ics.depth_tanh2(bathy_params, x) x, h, spongedist = get_kissme_h(dx, kb_start) pass elif solver == 'imex': x = np.arange(-2*dx,L_d+dx,dx) h = None spongedist = 0 kdvargs = dict(\ verbose=False,\ a0=a0,\ Lw=Lw,\ mode=mode, dt=dt,\ nu_H=nu_H,\ ekdv=False,\ wavefunc=ics.eta_fullsine,\ #L_d = L_d, x=x,\ Nsubset=10, nonlinear=nonlinear, nonhydrostatic=nonhydrostatic, spongedist=spongedist, drag_param = drag_param ) ### # THIS WAS COPIED FROM THE KdV VERSION. IT INITIALISES EACH vKdV 3 TIMES - QUITE SLOW. ### ii=0 #rhoz = single_tanh_rho( # z, pp['rho0'][ii], pp['drho1'][ii], pp['z1'][ii], pp['h1'][ii]) ###### ## Call the vKdV run function mykdv, Bda = solve_kdv(rhoz, z, runtime,\ solver=solver, h=h, ntout=ntout, outfile=None, a_bc_left=a_bc_left, Wn=Wn, **kdvargs) print('Done with dx={} and dt={}'.format(dx, dt)) return mykdv, Bda #betas = [1023.7, 1.12, 105, 52, 155, 43] # ~April 5 #betas = [1023.5, 1.22, 67, 55, 157, 52] # ~March 1 betas_w = [1023.8229810318612, 0.9865506702797462, 143.5428700089361, 46.1265812512485, 136.66278860120943, 41.57014327398592] # 15 July 2016 betas_s =[1023.6834358117951, 1.2249066117658955, 156.78804559089772, 53.66835548728355, 73.14183287436342, 40.21031777315428] # 1st April 2017 mode =0 nu_H = 0 # Going to make Lw an input for the vKdV as it will really speed things up. dx = 100 dt = 10 dx = 10 # x = np.arange(-2*dx,L_d+dx,dx) # h = ics.depth_tanh2(bathy_params, x) # Intended bathy profile x, h, spongedist = get_kissme_h(50, kb_start) z = np.linspace(0, -d, Nz) rhoz_s = ics.rho_double_tanh_rayson(betas_s, z) Lw_s = ics.get_Lw(rhoz_s, z, z0=max(h), mode=0) print(Lw_s) print(spongedist) dxs = [800, 400, 200, 100, 50] # Note this is not necessary, it is set by the KISSME bathy currently. dxs = [50] # Note this is not necessary, it is set by the KISSME bathy currently. dt = 4. all_vkdv_dx_s = [] all_kdvimex_dx_s = [] for dx in dxs: print(' ') print('Running dx={}'.format(dx)) print(' ') mykdv, B = run_kdv( (betas_s, bathy_params, a0, L_d, mode, nu_H, dx, runtime, dt, Lw_s, 'vkdv')) all_vkdv_dx_s.append(mykdv) print(' ') print('Completed dx={}'.format(dx)) print(' ')
Running dx=50 178852.84114035743 50 Calculating eigenfunctions... 0.0 % complete... 5.0 % complete... 10.0 % complete... 15.0 % complete... 20.0 % complete... 25.0 % complete... 30.0 % complete... 35.0 % complete... 40.0 % complete... 45.0 % complete... 50.0 % complete... 55.0 % complete... 60.0 % complete... 65.0 % complete... 70.0 % complete... 75.0 % complete... 80.0 % complete... 85.0 % complete... 90.0 % complete... 95.0 % complete... 100.0 % complete... Calculating nonlinear structure functions... 0.0 % complete... 5.0 % complete... 10.0 % complete... 15.0 % complete... 20.0 % complete... 25.0 % complete... 30.0 % complete... 35.0 % complete... 40.0 % complete... 45.0 % complete... 50.0 % complete... 55.0 % complete... 60.0 % complete... 65.0 % complete... 70.0 % complete... 75.0 % complete... 80.0 % complete... 85.0 % complete... 90.0 % complete... 95.0 % complete... 100.0 % complete... Calculating buoyancy coefficients... Done with dx=50 and dt=4.0 Completed dx=50
BSD-2-Clause
tests/.ipynb_checkpoints/standalone_vkdv_convergence KISSME bathy REAL BVP-checkpoint.ipynb
iosonobert/iwaves
Just double check that vKdV used the correct bathy
x, h, spongedist = get_kissme_h(50, kb_start) # h = 0*x+d plt.figure(figsize=(9,5)) plt.plot(x, h, 'b', label='Intended bathy', linewidth=2) plt.plot(all_vkdv_dx_s[-1].x, all_vkdv_dx_s[-1].h, 'r--', label='Actual vKdV bathy') plt.ylabel('h (m)') plt.xlabel('x (m)') plt.title('vKdV bathy') plt.legend() plt.show() import importlib, iwaves importlib.reload(iwaves.utils.plot) from iwaves.utils.plot import vKdV_plot f = vKdV_plot(all_vkdv_dx_s[-1]) f.savefig('Draft for ch3.png') full_lims = (0, 230000) zoom_lims_vkdv = (50000, 100000) zoom_lims_vkdv2 = (110000, 160000) zoom_lims_y = (-70, 40) ########################### ##### KISSME plt.figure(figsize=(12,5)) ax=plt.subplot(131) for mykdv in all_vkdv_dx_s: plt.plot(mykdv.x, mykdv.B, label=mykdv.dx_s) plt.xlim(full_lims) plt.ylim(zoom_lims_y) plt.ylabel('A (m)') plt.xlabel('x (m)') plt.title('KISSME vKdV full') plt.grid() plt.legend() ax=plt.subplot(132) for mykdv in all_vkdv_dx_s: plt.plot(mykdv.x, mykdv.B, label=mykdv.dx_s) plt.xlim(zoom_lims_vkdv) plt.ylim(zoom_lims_y) plt.xlabel('x (m)') plt.title('KISSME vKdV zoom') plt.grid() ax=plt.subplot(133) for mykdv in all_vkdv_dx_s: plt.plot(mykdv.x, mykdv.B, label=mykdv.dx_s) plt.xlim(zoom_lims_vkdv2) plt.ylim(zoom_lims_y) plt.xlabel('x (m)') plt.title('KISSME vKdV zoom 2') plt.grid() # Compute the errors X = np.arange(0,L_d, 10.) nx = X.shape[0] ndx = len(dxs) def get_rms_error(mykdv, nd): solns = np.zeros((nd, nx)) for ii, mykdv in enumerate(mykdv): Fx = pchip(mykdv.x, mykdv.B) solns[ii,:] = Fx(X) # Compute the error between each solution #err = np.diff(solns, axis=0) err = solns - solns[-1,:] err_rms = np.linalg.norm(err, ord=2, axis=1) # L2-norm #err_rms_w = np.sqrt(np.mean(err**2,axis=1)) return err_rms err_rms_vkdv_s = get_rms_error(all_vkdv_dx_s, ndx) err_rms_kdvimex_s = get_rms_error(all_kdvimex_dx_s, ndx) def make_dx_convergence_plot(kdv_s, err_s, tit): plt.figure(figsize=(9,8)) plt.loglog(dxs[:-1],err_s[:-1],'ko') plt.xlim(2e1,2e3) plt.ylim(1e-1,5e3) plt.grid(b=True) x0 = np.array([50,100.]) plt.plot(x0, 100/x0[0]**2*x0**2, 'k--') plt.plot(x0, 100/x0[0]**1*x0**1, 'k:') plt.ylabel('L2-norm Error [m]') plt.xlabel('$\Delta x$ [m]') plt.title(tit) alpha_s = -2*kdv_s[0].c1*kdv_s[0].r10 beta_s = -1*kdv_s[0].r01 print(type(alpha_s)) if not type(alpha_s) == np.float64: plt.legend((r'$\alpha$ = (%3.4f,%3.4f), $\beta$ = (%3.4f,%3.4f)'%(min(alpha_s), max(alpha_s), min(beta_s), max(beta_s)), ), loc='lower right') else: plt.legend((r'$\alpha$ = (%3.4f), $\beta$ = (%3.4f)'%(alpha_s, beta_s),), loc='lower right') make_dx_convergence_plot(all_kdvimex_dx_s, err_rms_kdvimex_s, 'IMEX') make_dx_convergence_plot(all_vkdv_dx_s, err_rms_vkdv_s, 'vKdV') # Delta t comparison dts = [20,10.,5,2.5,1.25,0.6,0.3] dx = 50. all_vkdv_dt_w = [] all_vkdv_dt_s = [] all_kdvimex_dt_w = [] all_kdvimex_dt_s = [] for dt in dts: print(' ') print('Running dt={}'.format(dt)) print(' ') mykdv, B = run_kdv( (betas_s, bathy_params, a0, L_d, mode, nu_H, dx, runtime, dt, Lw_s, 'imex')) all_kdvimex_dt_s.append(mykdv) mykdv, B = run_kdv( (betas_s, bathy_params, a0, L_d, mode, nu_H, dx, runtime, dt, Lw_s, 'vkdv')) all_vkdv_dt_s.append(mykdv) print(' ') print('Completed dt={}'.format(dt)) print(' ') ########################### ##### SUMMER full_lims = (0, 230000) zoom_lims_imex = (150000, 230000) zoom_lims_vkdv = (150000, 230000) zoom_lims_y = (-30, 30) ########################### ##### IMEX plt.figure(figsize=(12,5)) ax=plt.subplot(121) for mykdv in all_kdvimex_dt_s: plt.plot(mykdv.x, mykdv.B, label=mykdv.dt_s) plt.ylabel('A (m)') plt.xlabel('x (m)') plt.title('Summer IMEX full') plt.xlim((full_lims)) plt.grid() ax=plt.subplot(122) for mykdv in all_kdvimex_dt_s: plt.plot(mykdv.x, mykdv.B, label=mykdv.dt_s) plt.ylim(zoom_lims_y) plt.xlim((zoom_lims_imex)) plt.xlabel('x (m)') plt.title('Summer IMEX zoom') plt.grid() ########################### ##### vKdV plt.figure(figsize=(12,5)) ax=plt.subplot(121) for mykdv in all_vkdv_dt_s: plt.plot(mykdv.x, mykdv.B, label=mykdv.dt_s) plt.ylabel('A (m)') plt.xlabel('x (m)') plt.title('Summer vKdV full') plt.xlim((full_lims)) plt.grid() ax=plt.subplot(122) for mykdv in all_vkdv_dt_s: plt.plot(mykdv.x, mykdv.B, label=mykdv.dt_s) plt.ylim(zoom_lims_y) plt.xlim((zoom_lims_vkdv)) plt.xlabel('x (m)') plt.title('Summer vKdV zoom') plt.grid() plt.show() ndt = len(dts) err_rms_vkdv_dt_s = get_rms_error(all_vkdv_dt_s, ndt) err_rms_kdvimex_dt_s = get_rms_error(all_kdvimex_dt_s, ndt) def make_dt_convergence_plot(kdv_s, err_s, tit): plt.figure(figsize=(9,8)) plt.loglog(dts[:-1],err_s[:-1],'kd', markersize=6) plt.xlim(0,0.5e2) plt.ylim(1e-2,1e3) plt.grid(b=True) x0 = np.array([5,20]) plt.plot(x0, 10/x0[0]**2*x0**2, 'k--') plt.plot(x0, 10/x0[0]**1*x0**1, 'k:') #plt.ylabel('L2-norm Error [m]') plt.xlabel('$\Delta t$ [s]') plt.title(tit) plt.text(0.05,0.95,'(b)',transform=ax.transAxes) alpha_s = -2*kdv_s[0].c1*kdv_s[0].r10 beta_s = -1*kdv_s[0].r01 if not type(alpha_s) == np.float64: plt.legend((r'$\alpha$ = (%3.4f,%3.4f), $\beta$ = (%3.0f,%3.0f)'%(min(alpha_s), max(alpha_s), min(beta_s), max(beta_s)), ), loc='lower right') else: plt.legend((r'$\alpha$ = (%3.4f), $\beta$ = (%3.0f)'%(alpha_s, beta_s), ), loc='lower right') plt.savefig('../FIGURES/vkdv_convergence_dxdt.png',dpi=150) plt.savefig('../FIGURES/vkdv_convergence_dxdt.pdf',dpi=150) make_dt_convergence_plot(all_kdvimex_dt_s, err_rms_kdvimex_dt_s, 'KdV IMEX') make_dt_convergence_plot(all_vkdv_dt_s, err_rms_vkdv_dt_s, 'vKdV')
<ipython-input-91-3b71a6ddff0e>:5: UserWarning: Attempted to set non-positive left xlim on a log-scaled axis. Invalid limit will be ignored. plt.xlim(0,0.5e2) <ipython-input-91-3b71a6ddff0e>:5: UserWarning: Attempted to set non-positive left xlim on a log-scaled axis. Invalid limit will be ignored. plt.xlim(0,0.5e2)
BSD-2-Clause
tests/.ipynb_checkpoints/standalone_vkdv_convergence KISSME bathy REAL BVP-checkpoint.ipynb
iosonobert/iwaves
Copyright 2021 The TF-Agents Authors.
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
_____no_output_____
Apache-2.0
site/zh-cn/agents/tutorials/6_reinforce_tutorial.ipynb
RedContritio/docs-l10n
REINFORCE 代理 在 TensorFlow.org 上查看 在 Google Colab 运行 在 Github 上查看源代码 下载笔记本 简介 本例介绍如何使用 TF-Agents 库在 Cartpole 环境中训练 [REINFORCE](http://www-anw.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf) 代理,与 [DQN 教程](1_dqn_tutorial.ipynb)比较相似。![Cartpole environment](images/cartpole.png)我们会引导您完成强化学习 (RL) 流水线中关于训练、评估和数据收集的所有部分。 设置 如果尚未安装以下依赖项,请运行以下命令:
!sudo apt-get update !sudo apt-get install -y xvfb ffmpeg freeglut3-dev !pip install 'imageio==2.4.0' !pip install pyvirtualdisplay !pip install tf-agents[reverb] !pip install pyglet xvfbwrapper from __future__ import absolute_import from __future__ import division from __future__ import print_function import base64 import imageio import IPython import matplotlib.pyplot as plt import numpy as np import PIL.Image import pyvirtualdisplay import reverb import tensorflow as tf from tf_agents.agents.reinforce import reinforce_agent from tf_agents.drivers import py_driver from tf_agents.environments import suite_gym from tf_agents.environments import tf_py_environment from tf_agents.networks import actor_distribution_network from tf_agents.policies import py_tf_eager_policy from tf_agents.replay_buffers import reverb_replay_buffer from tf_agents.replay_buffers import reverb_utils from tf_agents.specs import tensor_spec from tf_agents.trajectories import trajectory from tf_agents.utils import common # Set up a virtual display for rendering OpenAI gym environments. display = pyvirtualdisplay.Display(visible=0, size=(1400, 900)).start()
_____no_output_____
Apache-2.0
site/zh-cn/agents/tutorials/6_reinforce_tutorial.ipynb
RedContritio/docs-l10n
超参数
env_name = "CartPole-v0" # @param {type:"string"} num_iterations = 250 # @param {type:"integer"} collect_episodes_per_iteration = 2 # @param {type:"integer"} replay_buffer_capacity = 2000 # @param {type:"integer"} fc_layer_params = (100,) learning_rate = 1e-3 # @param {type:"number"} log_interval = 25 # @param {type:"integer"} num_eval_episodes = 10 # @param {type:"integer"} eval_interval = 50 # @param {type:"integer"}
_____no_output_____
Apache-2.0
site/zh-cn/agents/tutorials/6_reinforce_tutorial.ipynb
RedContritio/docs-l10n
环境RL 环境用于描述要解决的任务或问题。在 TF-Agents 中,使用 `suites` 可以轻松创建标准环境。我们提供了不同的 `suites`,只需提供一个字符串环境名称,即可帮助您从来源加载环境,如 OpenAI Gym、Atari、DM Control 等。现在,我们试试从 OpenAI Gym 套件加载 CartPole 环境。
env = suite_gym.load(env_name)
_____no_output_____
Apache-2.0
site/zh-cn/agents/tutorials/6_reinforce_tutorial.ipynb
RedContritio/docs-l10n
我们可以渲染此环境以查看其形式:小车上连接一条自由摆动的长杆。目标是向右或向左移动小车,使长杆保持朝上。
#@test {"skip": true} env.reset() PIL.Image.fromarray(env.render())
_____no_output_____
Apache-2.0
site/zh-cn/agents/tutorials/6_reinforce_tutorial.ipynb
RedContritio/docs-l10n
在该环境中,`time_step = environment.step(action)` 语句用于执行 `action`。返回的 `TimeStep` 元组包含该操作在环境中的下一个观测值和奖励。环境中的 `time_step_spec()` 和 `action_spec()` 方法分别返回 `time_step` 和 `action` 的规范(类型、形状、边界)。
print('Observation Spec:') print(env.time_step_spec().observation) print('Action Spec:') print(env.action_spec())
_____no_output_____
Apache-2.0
site/zh-cn/agents/tutorials/6_reinforce_tutorial.ipynb
RedContritio/docs-l10n
我们可以看到,该观测值是一个包含 4 个浮点数的数组:小车的位置和速度,长杆的角度位置和速度。由于只有两个操作(向左或向右移动),因此,`action_spec` 是一个标量,其中 0 表示“向左移动”,1 表示“向右移动”。
time_step = env.reset() print('Time step:') print(time_step) action = np.array(1, dtype=np.int32) next_time_step = env.step(action) print('Next time step:') print(next_time_step)
_____no_output_____
Apache-2.0
site/zh-cn/agents/tutorials/6_reinforce_tutorial.ipynb
RedContritio/docs-l10n
通常,我们会创建两个环境:一个用于训练,另一个用于评估。大部分环境都是使用纯 Python 语言编写的,但是使用 `TFPyEnvironment` 包装器可轻松将其转换至 TensorFlow 环境。原始环境的 API 使用 NumPy 数组,但凭借 `TFPyEnvironment`,这些数组可以与 `Tensors` 相互转换,从而更轻松地与 TensorFlow 策略和代理交互。
train_py_env = suite_gym.load(env_name) eval_py_env = suite_gym.load(env_name) train_env = tf_py_environment.TFPyEnvironment(train_py_env) eval_env = tf_py_environment.TFPyEnvironment(eval_py_env)
_____no_output_____
Apache-2.0
site/zh-cn/agents/tutorials/6_reinforce_tutorial.ipynb
RedContritio/docs-l10n
代理我们用于解决 RL 问题的算法以 `Agent` 形式表示。除了 REINFORCE 代理,TF-Agents 还为各种 `Agents` 提供了标准实现,如 [DQN](https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf)、[DDPG](https://arxiv.org/pdf/1509.02971.pdf)、[TD3](https://arxiv.org/pdf/1802.09477.pdf)、[PPO](https://arxiv.org/abs/1707.06347) 和 [SAC](https://arxiv.org/abs/1801.01290)。要创建 REINFORCE 代理,首先需要有一个通过环境提供的观测值,学会预测操作的 `Actor Network`。使用观测值和操作的规范,我们可以轻松创建 `Actor Network`。我们也可以在网络中指定层,本例中是设置为 `ints` 元祖(表示每个隐藏层的大小)的 `fc_layer_params` 参数(请参阅上面的“超参数”部分)。
actor_net = actor_distribution_network.ActorDistributionNetwork( train_env.observation_spec(), train_env.action_spec(), fc_layer_params=fc_layer_params)
_____no_output_____
Apache-2.0
site/zh-cn/agents/tutorials/6_reinforce_tutorial.ipynb
RedContritio/docs-l10n
我们还需要一个 `optimizer` 来训练刚才创建的网络,以及一个跟踪网络更新次数的 `train_step_counter` 变量。
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) train_step_counter = tf.Variable(0) tf_agent = reinforce_agent.ReinforceAgent( train_env.time_step_spec(), train_env.action_spec(), actor_network=actor_net, optimizer=optimizer, normalize_returns=True, train_step_counter=train_step_counter) tf_agent.initialize()
_____no_output_____
Apache-2.0
site/zh-cn/agents/tutorials/6_reinforce_tutorial.ipynb
RedContritio/docs-l10n
策略在 TF-Agents 中,策略是 RL 中的标准策略概念:给订 `time_step` 来产生操作或操作的分布。主要方法是 `policy_step = policy.step(time_step)`,其中 `policy_step` 是命名元祖 `PolicyStep(action, state, info)`。`policy_step.action` 是要应用到环境的 `action`,`state` 表示有状态 (RNN) 策略的状态,而 `info` 可能包含辅助信息(如操作的对数几率)。代理包含两个策略:一个是用于评估/部署的主要策略 (agent.policy),另一个是用于数据收集的策略 (agent.collect_policy)。
eval_policy = tf_agent.policy collect_policy = tf_agent.collect_policy
_____no_output_____
Apache-2.0
site/zh-cn/agents/tutorials/6_reinforce_tutorial.ipynb
RedContritio/docs-l10n
指标和评估用于评估策略的最常用指标是平均回报。回报就是在环境中运行策略时,某个片段获得的奖励总和,我们通常会计算几个片段的平均值。计算平均回报指标的代码如下。
#@test {"skip": true} def compute_avg_return(environment, policy, num_episodes=10): total_return = 0.0 for _ in range(num_episodes): time_step = environment.reset() episode_return = 0.0 while not time_step.is_last(): action_step = policy.action(time_step) time_step = environment.step(action_step.action) episode_return += time_step.reward total_return += episode_return avg_return = total_return / num_episodes return avg_return.numpy()[0] # Please also see the metrics module for standard implementations of different # metrics.
_____no_output_____
Apache-2.0
site/zh-cn/agents/tutorials/6_reinforce_tutorial.ipynb
RedContritio/docs-l10n
回放缓冲区为了跟踪从环境收集的数据,我们将使用 [Reverb](https://deepmind.com/research/open-source/Reverb),这是 Deepmind 打造的一款高效、可扩展且易于使用的回放系统。它会在我们收集轨迹时存储经验数据,并在训练期间使用。此回放缓冲区使用描述要存储的张量的规范进行构造,可以使用 `tf_agent.collect_data_spec` 从代理获取这些张量。
table_name = 'uniform_table' replay_buffer_signature = tensor_spec.from_spec( tf_agent.collect_data_spec) replay_buffer_signature = tensor_spec.add_outer_dim( replay_buffer_signature) table = reverb.Table( table_name, max_size=replay_buffer_capacity, sampler=reverb.selectors.Uniform(), remover=reverb.selectors.Fifo(), rate_limiter=reverb.rate_limiters.MinSize(1), signature=replay_buffer_signature) reverb_server = reverb.Server([table]) replay_buffer = reverb_replay_buffer.ReverbReplayBuffer( tf_agent.collect_data_spec, table_name=table_name, sequence_length=None, local_server=reverb_server) rb_observer = reverb_utils.ReverbAddEpisodeObserver( replay_buffer.py_client, table_name, replay_buffer_capacity )
_____no_output_____
Apache-2.0
site/zh-cn/agents/tutorials/6_reinforce_tutorial.ipynb
RedContritio/docs-l10n
对于大多数代理,`collect_data_spec` 是一个 `Trajectory` 命名元组,其中包含观测值、操作和奖励等。 数据收集当 REINFORCE 从全部片段中学习时,我们使用给定数据收集策略定义一个函数来收集片段,并在回放缓冲区中将数据(观测值、操作、奖励等)保存为轨迹。这里我们使用“PyDriver”运行经验收集循环。您可以在我们的 [driver 教程](https://tensorflow.google.cn/agents/tutorials/4_drivers_tutorial)中了解到有关 TF Agents driver 的更多信息。
#@test {"skip": true} def collect_episode(environment, policy, num_episodes): driver = py_driver.PyDriver( environment, py_tf_eager_policy.PyTFEagerPolicy( policy, use_tf_function=True), [rb_observer], max_episodes=num_episodes) initial_time_step = environment.reset() driver.run(initial_time_step)
_____no_output_____
Apache-2.0
site/zh-cn/agents/tutorials/6_reinforce_tutorial.ipynb
RedContritio/docs-l10n
训练代理训练循环包括从环境收集数据和优化代理的网络。在训练过程中,我们偶尔会评估代理的策略,看看效果如何。运行下面的代码大约需要 3 分钟。
#@test {"skip": true} try: %%time except: pass # (Optional) Optimize by wrapping some of the code in a graph using TF function. tf_agent.train = common.function(tf_agent.train) # Reset the train step tf_agent.train_step_counter.assign(0) # Evaluate the agent's policy once before training. avg_return = compute_avg_return(eval_env, tf_agent.policy, num_eval_episodes) returns = [avg_return] for _ in range(num_iterations): # Collect a few episodes using collect_policy and save to the replay buffer. collect_episode( train_py_env, tf_agent.collect_policy, collect_episodes_per_iteration) # Use data from the buffer and update the agent's network. iterator = iter(replay_buffer.as_dataset(sample_batch_size=1)) trajectories, _ = next(iterator) train_loss = tf_agent.train(experience=trajectories) replay_buffer.clear() step = tf_agent.train_step_counter.numpy() if step % log_interval == 0: print('step = {0}: loss = {1}'.format(step, train_loss.loss)) if step % eval_interval == 0: avg_return = compute_avg_return(eval_env, tf_agent.policy, num_eval_episodes) print('step = {0}: Average Return = {1}'.format(step, avg_return)) returns.append(avg_return)
_____no_output_____
Apache-2.0
site/zh-cn/agents/tutorials/6_reinforce_tutorial.ipynb
RedContritio/docs-l10n
可视化 绘图我们可以通过绘制回报与全局步骤的图形来了解代理的性能。在 `Cartpole-v0` 中,长杆每停留一个时间步骤,环境就会提供一个 +1 的奖励,由于最大步骤数量为 200,所以可以获得的最大回报也是 200。
#@test {"skip": true} steps = range(0, num_iterations + 1, eval_interval) plt.plot(steps, returns) plt.ylabel('Average Return') plt.xlabel('Step') plt.ylim(top=250)
_____no_output_____
Apache-2.0
site/zh-cn/agents/tutorials/6_reinforce_tutorial.ipynb
RedContritio/docs-l10n