markdown
stringlengths 0
1.02M
| code
stringlengths 0
832k
| output
stringlengths 0
1.02M
| license
stringlengths 3
36
| path
stringlengths 6
265
| repo_name
stringlengths 6
127
|
---|---|---|---|---|---|
Visualising the clusters - On the first two columns | plt.figure(figsize=(14,10))
plt.scatter(x[y_kmeans == 0, 0], x[y_kmeans == 0, 1],
s = 100, c = 'tab:orange', label = 'Iris-setosa')
plt.scatter(x[y_kmeans == 1, 0], x[y_kmeans == 1, 1],
s = 100, c = 'tab:blue', label = 'Iris-versicolour')
plt.scatter(x[y_kmeans == 2, 0], x[y_kmeans == 2, 1],
s = 100, c = 'tab:green', label = 'Iris-virginica')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:,1],
s = 100, c = 'black', label = 'Centroids')
plt.title('Clusters K = 3')
plt.legend(loc = 'upper left', ncol = 2)
plt.show() | _____no_output_____ | Apache-2.0 | Task_2_Clustering.ipynb | BakkeshAS/GRIP_Task_2_Predict_Optimum_Clusters |
Welcome to an example Binder Test markup This notebook uses a Python environment with a few libraries, including `dask`, all of which were specificied using a `conda` [environment.yml](../edit/environment.yml) file. To demo the environment, we'll show a simplified example of using `dask` to analyze time series data, adapted from Matthew Rocklin's excellent repo of [dask examples](https://github.com/blaze/dask-examples) — check out that repo for the full version (and many other examples). Setup plotting | %matplotlib inline | _____no_output_____ | BSD-3-Clause | index.ipynb | trailmarkerlib/dataExplore |
Turn on a global progress bar | from dask.diagnostics import ProgressBar
progress_bar = ProgressBar()
progress_bar.register() | _____no_output_____ | BSD-3-Clause | index.ipynb | trailmarkerlib/dataExplore |
Generate fake data | import dask.dataframe as dd
df = dd.demo.make_timeseries(start='2000', end='2015', dtypes={'A': float, 'B': int},
freq='5s', partition_freq='3M', seed=1234) | _____no_output_____ | BSD-3-Clause | index.ipynb | trailmarkerlib/dataExplore |
Compute and plot a cumulative sum | df.A.cumsum().resample('1w').mean().compute().plot(); | [########################################] | 100% Completed | 16.5s
| BSD-3-Clause | index.ipynb | trailmarkerlib/dataExplore |
> This is one of the 100 recipes of the [IPython Cookbook](http://ipython-books.github.io/), the definitive guide to high-performance scientific computing and data science in Python. 3.7. Processing webcam images in real-time from the notebook In this recipe, we show how to communicate data in both directions from the notebook to the Python kernel, and conversely. Specifically, we will retrieve the webcam feed from the browser using HTML5's `` element, and pass it to Python in real time using the interactive capabilities of the IPython notebook 2.0+. This way, we can process the image in Python with an edge detector (implemented in scikit-image), and display it in the notebook in real time. Most of the code for this recipe comes from [Jason Grout's example](https://github.com/jasongrout/ipywidgets). 1. We need to import quite a few modules. | from IPython.html.widgets import DOMWidget
from IPython.utils.traitlets import Unicode, Bytes, Instance
from IPython.display import display
from skimage import io, filter, color
import urllib
import base64
from PIL import Image
import StringIO
import numpy as np
from numpy import array, ndarray
import matplotlib.pyplot as plt | _____no_output_____ | BSD-2-Clause | notebooks/chapter03_notebook/07_webcam_py2.ipynb | khanparwaz/PythonProjects |
2. We define two functions to convert images from and to base64 strings. This conversion is a common way to pass binary data between processes (here, the browser and Python). | def to_b64(img):
imgdata = StringIO.StringIO()
pil = Image.fromarray(img)
pil.save(imgdata, format='PNG')
imgdata.seek(0)
return base64.b64encode(imgdata.getvalue())
def from_b64(b64):
im = Image.open(StringIO.StringIO(base64.b64decode(b64)))
return array(im) | _____no_output_____ | BSD-2-Clause | notebooks/chapter03_notebook/07_webcam_py2.ipynb | khanparwaz/PythonProjects |
3. We define a Python function that will process the webcam image in real time. It accepts and returns a NumPy array. This function applies an edge detector with the `roberts()` function in scikit-image. | def process_image(image):
img = filter.roberts(image[:,:,0]/255.)
return (255-img*255).astype(np.uint8) | _____no_output_____ | BSD-2-Clause | notebooks/chapter03_notebook/07_webcam_py2.ipynb | khanparwaz/PythonProjects |
4. Now, we create a custom widget to handle the bidirectional communication of the video flow from the browser to Python and reciprocally. | class Camera(DOMWidget):
_view_name = Unicode('CameraView', sync=True)
# This string contains the base64-encoded raw
# webcam image (browser -> Python).
imageurl = Unicode('', sync=True)
# This string contains the base64-encoded processed
# webcam image(Python -> browser).
imageurl2 = Unicode('', sync=True)
# This function is called whenever the raw webcam
# image is changed.
def _imageurl_changed(self, name, new):
head, data = new.split(',', 1)
if not data:
return
# We convert the base64-encoded string
# to a NumPy array.
image = from_b64(data)
# We process the image.
image = process_image(image)
# We convert the processed image
# to a base64-encoded string.
b64 = to_b64(image)
self.imageurl2 = 'data:image/png;base64,' + b64 | _____no_output_____ | BSD-2-Clause | notebooks/chapter03_notebook/07_webcam_py2.ipynb | khanparwaz/PythonProjects |
5. The next step is to write the Javascript code for the widget. | %%javascript
var video = $('<video>')[0];
var canvas = $('<canvas>')[0];
var canvas2 = $('<img>')[0];
var width = 320;
var height = 0;
require(["widgets/js/widget"], function(WidgetManager){
var CameraView = IPython.DOMWidgetView.extend({
render: function(){
var that = this;
// We append the HTML elements.
setTimeout(function() {
that.$el.append(video).
append(canvas).
append(canvas2);}, 200);
// We initialize the webcam.
var streaming = false;
navigator.getMedia = ( navigator.getUserMedia ||
navigator.webkitGetUserMedia ||
navigator.mozGetUserMedia ||
navigator.msGetUserMedia);
navigator.getMedia({video: true, audio: false},
function(stream) {
if (navigator.mozGetUserMedia) {
video.mozSrcObject = stream;
} else {
var vendorURL = (window.URL ||
window.webkitURL);
video.src = vendorURL.createObjectURL(
stream);
}
video.controls = true;
video.play();
},
function(err) {
console.log("An error occured! " + err);
}
);
// We initialize the size of the canvas.
video.addEventListener('canplay', function(ev){
if (!streaming) {
height = video.videoHeight / (
video.videoWidth/width);
video.setAttribute('width', width);
video.setAttribute('height', height);
canvas.setAttribute('width', width);
canvas.setAttribute('height', height);
canvas2.setAttribute('width', width);
canvas2.setAttribute('height', height);
streaming = true;
}
}, false);
// Play/Pause functionality.
var interval;
video.addEventListener('play', function(ev){
// We get the picture every 100ms.
interval = setInterval(takepicture, 100);
})
video.addEventListener('pause', function(ev){
clearInterval(interval);
})
// This function is called at each time step.
// It takes a picture and sends it to the model.
function takepicture() {
canvas.width = width; canvas.height = height;
canvas2.width = width; canvas2.height = height;
video.style.display = 'none';
canvas.style.display = 'none';
// We take a screenshot from the webcam feed and
// we put the image in the first canvas.
canvas.getContext('2d').drawImage(video,
0, 0, width, height);
// We export the canvas image to the model.
that.model.set('imageurl',
canvas.toDataURL('image/png'));
that.touch();
}
},
update: function(){
// This function is called whenever Python modifies
// the second (processed) image. We retrieve it and
// we display it in the second canvas.
var img = this.model.get('imageurl2');
canvas2.src = img;
return CameraView.__super__.update.apply(this);
}
});
// Register the view with the widget manager.
WidgetManager.register_widget_view('CameraView',
CameraView);
}); | _____no_output_____ | BSD-2-Clause | notebooks/chapter03_notebook/07_webcam_py2.ipynb | khanparwaz/PythonProjects |
6. Finally, we create and display the widget. | c = Camera()
display(c) | _____no_output_____ | BSD-2-Clause | notebooks/chapter03_notebook/07_webcam_py2.ipynb | khanparwaz/PythonProjects |
raytracer-imagingFor PET image reconstruction | import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.axes3d import Axes3D
import math
import numpy as np
from numba import cuda,types, from_dtype
import raytracer.cudaOptions
from raytracer.rotation.quaternion import *
from raytracer.raytracer.voxel import *
from raytracer.raytracer.raytrace import *
data_rays = 0.1*np.loadtxt(rayOptions.data_directory).T # x,y,z [mm,ns]
data_rays[0,:]
voxel_size = np.array([10,10,100]) #odd so we have center point
raytracerA = raytracer(voxel_size,method="ART")
#Reconstruction:
projection_error = raytracerA.reconstruct(data_rays[0:100],iterations=8)
# rayNHit,rayHits,rayWeights = raytracerA.norm_raytrace(0.0*np.pi/180.0,90.0*np.pi/180.0)
# projection = raytracerA.rayproject(rayNHit,rayHits)
raytracerA.make_projection(phi=0.0*np.pi/180.0,alpha=90.0*np.pi/180.0)
print(rayNHit)
print("---")
print(nvoxels,camera_nrays)
print(rayHits.shape)
print("---")
count = 0
# for r in range(100):
# if rayNHit[r] > 0:
# print(rayHits[r,0:rayNHit[r]])
# print("---")
# for r in range(100):
# if rayNHit[r] > 0:
# print(rayWeights[r,0:rayNHit[r]])
# print("---")
print(np.sum(rayNHit > 0))
quaternion.rotate(verts,20.*np.pi/180.0,40.*np.pi/180.0)
print(verts)
# set the colors of each object
colors = np.empty(verts.shape, dtype=object)
colors = 'red'
# and plot everything
ax = plt.figure().add_subplot(projection='3d')
ax.voxels(verts, facecolors=colors, edgecolor='k')
plt.show()
ax = plt.figure().add_subplot()
ax.scatter(verts[:,1],verts[:,2],c=voxels.flatten(),cmap='inferno',s=2,alpha=0.5) #project onto x
plt.show()
ax = plt.figure().add_subplot()
ax.scatter(verts[:,1].astype(int),verts[:,2].astype(int),c=voxels.flatten(),cmap='inferno',s=6,alpha=0.5) #project onto x
plt.show()
H, xedges, yedges = np.histogram2d(verts[:,1], verts[:,2], bins=camera_size,range=camera_range)
plt.imshow(H.T,cmap='binary',extent=np.array(camera_range).flatten())
xedges
rayverts | _____no_output_____ | MIT | examples/raytracer_data.ipynb | akhilsadam/raytracer-imaging |
2.1 | df = pd.read_csv('week2.csv')
df = df.sort_values(by=['Date'])
df = df.drop(['Unnamed: 2', 'Month.1', 'Year.1'], axis = 1)
df.head()
df.dtypes
df['Date'] = pd.to_datetime(df['Date'])
df.dtypes
df.set_index("Date", inplace = True)
df.head()
df.reset_index().plot(x='Date', y='Close_Price'); | _____no_output_____ | MIT | Module 2.ipynb | parth2608/Stock-Analysis |
2.2 | plt.stem(df.index.values,df.Day_Perc_Change, bottom=0); | C:\Users\Dell\AppData\Roaming\Python\Python37\site-packages\ipykernel_launcher.py:1: UserWarning: In Matplotlib 3.3 individual lines on a stem plot will be added as a LineCollection instead of individual lines. This significantly improves the performance of a stem plot. To remove this warning and switch to the new behaviour, set the "use_line_collection" keyword argument to True.
"""Entry point for launching an IPython kernel.
| MIT | Module 2.ipynb | parth2608/Stock-Analysis |
2.3 | df.reset_index().plot(x='Date', y='Total_Traded_Quantity');
sns.set(style="darkgrid")
scaledvolume = df["Total_Traded_Quantity"] - df["Total_Traded_Quantity"].min()
scaledvolume = scaledvolume/scaledvolume.max() * df.Day_Perc_Change.max()
fig, ax = plt.subplots(figsize=(12, 6))
ax.stem(df.index, df.Day_Perc_Change , 'b', markerfmt='bo', label='Daily Percente Change')
ax.plot(df.index, scaledvolume, 'k', label='Volume')
ax.set_xlabel('Date')
plt.legend(loc=2)
plt.tight_layout()
plt.xticks(plt.xticks()[0], df.index.date, rotation=45)
plt.show() | C:\Users\Dell\AppData\Roaming\Python\Python37\site-packages\ipykernel_launcher.py:8: UserWarning: In Matplotlib 3.3 individual lines on a stem plot will be added as a LineCollection instead of individual lines. This significantly improves the performance of a stem plot. To remove this warning and switch to the new behaviour, set the "use_line_collection" keyword argument to True.
| MIT | Module 2.ipynb | parth2608/Stock-Analysis |
2.4 | df = df.reset_index()
df.head()
df.Trend.groupby(df.Trend).count().plot(kind='pie', autopct='%.1f%%')
plt.axis('equal')
plt.show()
avg = df.groupby(df['Trend'])['Total_Traded_Quantity'].mean()
med = df.groupby(df['Trend'])['Total_Traded_Quantity'].median()
plt.subplot(2, 1, 1)
avg.plot.bar(color='Blue', label='mean').label_outer()
plt.title('mean')
plt.legend()
plt.show()
plt.subplot(2, 1, 2)
med.plot.bar(color='Orange', label='median')
plt.title('median')
plt.legend()
plt.show() | _____no_output_____ | MIT | Module 2.ipynb | parth2608/Stock-Analysis |
2.5 | df['Day_Perc_Change'].plot.hist(bins=20); | _____no_output_____ | MIT | Module 2.ipynb | parth2608/Stock-Analysis |
2.6 | jublfood = pd.read_csv('JUBLFOOD.csv')
jublfood = jublfood.drop(jublfood[jublfood.Series != 'EQ'].index)
jublfood.reset_index(inplace=True)
print(jublfood.shape)
jublfood.head()
godrejind = pd.read_csv('GODREJIND.csv')
godrejind = godrejind.drop(godrejind[godrejind.Series != 'EQ'].index)
godrejind.reset_index(inplace=True)
print(godrejind.shape)
godrejind.head()
maruti = pd.read_csv('MARUTI.csv')
maruti = maruti.drop(maruti[maruti.Series != 'EQ'].index)
maruti.reset_index(inplace=True)
print(maruti.shape)
maruti.head()
pvr = pd.read_csv('PVR.csv')
pvr = pvr.drop(pvr[pvr.Series != 'EQ'].index)
pvr.reset_index(inplace=True)
print(pvr.shape)
pvr.head()
tcs = pd.read_csv('TCS.csv')
tcs = tcs.drop(tcs[tcs.Series != 'EQ'].index)
tcs.reset_index(inplace=True)
print(tcs.shape)
tcs.head()
combined = pd.concat([godrejind['Close Price'], jublfood['Close Price'], maruti['Close Price'], pvr['Close Price'], tcs['Close Price']], join='inner', axis=1, keys=['GODREJIND', 'JUBLFOOD', 'MARUTI', 'PVR', 'TCS'])
combined.head()
perc_change = pd.DataFrame()
perc_change['GODREJIND'] = combined['GODREJIND'].pct_change()*100
perc_change['GODREJIND'][0] = 0
perc_change['JUBLFOOD'] = combined['JUBLFOOD'].pct_change()*100
perc_change['JUBLFOOD'][0] = 0
perc_change['MARUTI'] = combined['MARUTI'].pct_change()*100
perc_change['MARUTI'][0] = 0
perc_change['PVR'] = combined['PVR'].pct_change()*100
perc_change['PVR'][0] = 0
perc_change['TCS'] = combined['TCS'].pct_change()*100
perc_change['TCS'][0] = 0
perc_change.head()
sns.pairplot(perc_change); | _____no_output_____ | MIT | Module 2.ipynb | parth2608/Stock-Analysis |
2.7 | perc_change = perc_change.drop([0])
perc_change.reset_index(inplace=True)
perc_change.head()
print(perc_change[['GODREJIND', 'JUBLFOOD', 'MARUTI', 'PVR', 'TCS']].rolling(7, min_periods=1).std(ddof=0).head())
plt.plot(perc_change[['GODREJIND', 'JUBLFOOD', 'MARUTI', 'PVR', 'TCS']].rolling(7, min_periods=1).std(ddof=0))
plt.legend(["GODREJIND", "JUBLFOOD", "MARUTI", "PVR", "TCS"])
plt.title('Volatility'); | GODREJIND JUBLFOOD MARUTI PVR TCS
0 0.000000 0.000000 0.000000 0.000000 0.000000
1 0.215246 1.304872 0.922343 0.743322 0.814782
2 1.539099 2.159120 1.524084 0.821539 0.936910
3 1.378038 1.869992 1.348622 0.713198 1.721081
4 1.484981 1.758872 1.297517 1.012500 1.553279
| MIT | Module 2.ipynb | parth2608/Stock-Analysis |
2.8 | nifty = pd.read_csv('Nifty50.csv')
nifty['PCT'] = nifty['Close'].pct_change()*100
nifty = nifty.drop([0])
nifty.reset_index(inplace=True)
nifty.head()
print(nifty[['PCT']].rolling(7, min_periods=1).std(ddof=0).head())
plt.plot(nifty[['PCT']].rolling(7, min_periods=1).std(ddof=0), color='Black');
plt.legend(["Nifty"]);
plt.title('Nifty Volatility');
plt.plot(nifty[['PCT']].rolling(7, min_periods=1).std(ddof=0), color='Black');
plt.plot(perc_change[['GODREJIND', 'JUBLFOOD', 'MARUTI', 'PVR', 'TCS']].rolling(7, min_periods=1).std(ddof=0));
plt.legend(["Nifty", "GODREJIND", "JUBLFOOD", "MARUTI", "PVR", "TCS"]);
plt.title('Volatility Comparison'); | _____no_output_____ | MIT | Module 2.ipynb | parth2608/Stock-Analysis |
2.9 | short_window = 21
long_window = 34
tcs_roll_21 = combined['TCS'].rolling(short_window, min_periods=1).mean()
tcs_roll_34 = combined['TCS'].rolling(long_window, min_periods=1).mean()
date = pd.to_datetime(tcs['Date'])
signals = pd.DataFrame(index=date)
signals['signal'] = 0
signals['signal'][short_window:] = np.where(tcs_roll_21[short_window:] > tcs_roll_34[short_window:], 1, 0)
signals['position'] = signals['signal'].diff().fillna(0)
signals['short_mavg'] = tcs_roll_21.tolist()
signals['long_mavg'] = tcs_roll_34.tolist()
signals.head()
plt.figure(figsize=(16,8))
plt.plot(date, combined['TCS'].rolling(7, min_periods=1).mean(), color='red', label='TCS')
plt.plot(date, tcs_roll_21, color='blue', label='21_SMA')
plt.plot(date, tcs_roll_34, color='green', label='34_SMA')
plt.plot(signals.loc[signals.position == 1].index, signals['short_mavg'][signals.position == 1], '^', markersize=10, color='green', label='Buy')
plt.plot(signals.loc[signals.position == -1].index, signals['short_mavg'][signals.position == -1], 'v', markersize=10, color='red', label='Sell')
plt.legend(loc='best')
plt.xlabel('Date')
plt.ylabel('Price in Rupees')
plt.show() | _____no_output_____ | MIT | Module 2.ipynb | parth2608/Stock-Analysis |
2.10 | tcs_mean_14 = combined.TCS.rolling(14, min_periods=1).mean()
tcs_std_14 = combined.TCS.rolling(14, min_periods=1).std()
upper = tcs_mean_14 + 2*tcs_std_14
lower = tcs_mean_14 - 2*tcs_std_14
plt.figure(figsize=(16,8))
plt.plot(date, tcs_mean_14, color='black', label='TCS')
plt.plot(date, tcs['Average Price'], color='red', label='Average Price')
plt.plot(date, upper, color='blue', label='Upper Bound')
plt.plot(date, lower, color='green', label='Lower Bound')
plt.xlabel('Date')
plt.legend()
plt.show() | _____no_output_____ | MIT | Module 2.ipynb | parth2608/Stock-Analysis |
Beam finite element matricesBased on: \[1] Neto, M. A., Amaro, A., Roseiro, L., Cirne, J., & Leal, R. (2015). Finite Element Method for Beams. In Engineering Computation of Structures: The Finite Element Method (pp. 115–156). Springer International Publishing. http://doi.org/10.1007/978-3-319-17710-6_4The beam finite element, its nodes and degrees-of-freedom (DOFs) can be seen below: | from sympy import *
init_printing()
def symb(x, y):
return symbols('{0}_{1}'.format(x, y), type = float)
E, A, L, G, I_1, I_2, I_3, rho = symbols('E A L G I_1 I_2 I_3 rho', type = float) | _____no_output_____ | MIT | notes/FEM_beam.ipynb | gfsReboucas/Drivetrain-python |
The finite element matrices should have order 12, accounting for each of the element's DOFs, shown below: | u = Matrix(12, 1, [symb('u', v + 1) for v in range(12)])
transpose(u) | _____no_output_____ | MIT | notes/FEM_beam.ipynb | gfsReboucas/Drivetrain-python |
Axial deformation along $x_1$In terms of generic coordinates $v_i$: | v_a = Matrix(2, 1, [symb('v', v + 1) for v in range(2)])
transpose(v_a) | _____no_output_____ | MIT | notes/FEM_beam.ipynb | gfsReboucas/Drivetrain-python |
which are equivalent to the $u_i$ coordinates in the following way:$$ \mathbf{v} = \mathbf{R} \mathbf{u},$$where:$$ v_1 = u_1, \\ v_2 = u_7,$$with the following coordinate transformation matrix: | R = zeros(12)
R[1 - 1, 1 - 1] = 1
R[2 - 1, 7 - 1] = 1
R[:2, :] | _____no_output_____ | MIT | notes/FEM_beam.ipynb | gfsReboucas/Drivetrain-python |
Stiffness matrixEq. (3.15) of [1]: | K_a = (E * A / L) * Matrix([[1, -1],
[-1, 1]])
K_a | _____no_output_____ | MIT | notes/FEM_beam.ipynb | gfsReboucas/Drivetrain-python |
Inertia matrixEq. (3.16) of [1]: | M_a = (rho * A * L / 6) * Matrix([[2, 1],
[1, 2]])
M_a | _____no_output_____ | MIT | notes/FEM_beam.ipynb | gfsReboucas/Drivetrain-python |
Torsional deformation around $x_1$According to [1], one can obtain the matrices for the torsional case from the axial case by replacing the elasticity modulus $E$ and the cross-sectional area $A$ by the shear modulus $G$ and the polar area moment of inertia $I_1$.In terms of generic coordinates $v_i$: | v_t = Matrix(2, 1, [symb('v', v + 3) for v in range(2)])
transpose(v_t) | _____no_output_____ | MIT | notes/FEM_beam.ipynb | gfsReboucas/Drivetrain-python |
which are equivalent to the $u_i$ coordinates in the following way:$$ v_3 = u_4, \\ v_4 = u_{10},$$with the following coordinate transformation matrix: | R[3 - 1, 4 - 1] = 1
R[4 - 1, 10 - 1] = 1
R[0:4, :] | _____no_output_____ | MIT | notes/FEM_beam.ipynb | gfsReboucas/Drivetrain-python |
Stiffness matrix | K_t = K_a.subs([(E, G), (A, I_1)])
K_t | _____no_output_____ | MIT | notes/FEM_beam.ipynb | gfsReboucas/Drivetrain-python |
Inertia matrix | M_t = M_a.subs([(E, G), (A, I_1)])
M_t | _____no_output_____ | MIT | notes/FEM_beam.ipynb | gfsReboucas/Drivetrain-python |
Bending on the plane $x_1-x_3$In this case the bending torsion occurs around the $x_2$ axis. In terms of generic coordinates $v_i$: | v_b13 = Matrix(4, 1, [symb('v', v + 9) for v in range(4)])
transpose(v_b13) | _____no_output_____ | MIT | notes/FEM_beam.ipynb | gfsReboucas/Drivetrain-python |
which are equivalent to the $u_i$ coordinates in the following way:$$ v_9 = u_3, \\ v_{10} = u_5, \\ v_{11} = u_9, \\ v_{12} = u_{11},$$with the following coordinate transformation matrix: | R[9 - 1, 3 - 1] = 1
R[10 - 1, 5 - 1] = 1
R[11 - 1, 9 - 1] = 1
R[12 - 1, 11 - 1] = 1
R | _____no_output_____ | MIT | notes/FEM_beam.ipynb | gfsReboucas/Drivetrain-python |
Stiffness matrix | K_b13 = (E * I_2 / L**3) * Matrix([[ 12 , 6 * L , -12 , 6 * L ],
[ 6 * L, 4 * L**2, - 6 * L, 2 * L**2],
[-12 , -6 * L , 12 , -6 * L ],
[ 6 * L, 2 * L**2, - 6 * L, 4 * L**2]])
if (not K_b13.is_symmetric()):
print('Error in K_b13.')
K_b13 | _____no_output_____ | MIT | notes/FEM_beam.ipynb | gfsReboucas/Drivetrain-python |
Inertia matrix | M_b13 = (rho * L * A / 420) * Matrix([[ 156 , 22 * L , 54 , -13 * L ],
[ 22 * L, 4 * L**2, 13 * L, - 3 * L**2],
[ 54 , 13 * L , 156 , -22 * L ],
[- 13 * L, - 3 * L**2, - 22 * L, 4 * L**2]])
if (not M_b13.is_symmetric()):
print('Error in M_b13.')
M_b13 | _____no_output_____ | MIT | notes/FEM_beam.ipynb | gfsReboucas/Drivetrain-python |
Bending on the plane $x_1-x_2$In this case the bending torsion occurs around the $x_3$ axis, but in the opposite direction. The matrices are similar to the case of bending on the $x_1-x_3$ plane, needing proper coordinate transformation and replacing the index of the area moment of inertia from 2 to 3.Written in terms of generic coordinates $v_i$: | v_b12 = Matrix(4, 1, [symb('v', v + 5) for v in range(4)])
transpose(v_b12) | _____no_output_____ | MIT | notes/FEM_beam.ipynb | gfsReboucas/Drivetrain-python |
which are equivalent to the $u_i$ coordinates in the following way:$$ v_5 = u_2, \\ v_6 = -u_6, \\ v_7 = u_8, \\ v_8 = -u_{12},$$with the following coordinate transformation matrix: | R[5 - 1, 2 - 1] = 1
R[6 - 1, 6 - 1] = -1
R[7 - 1, 8 - 1] = 1
R[8 - 1, 12 - 1] = -1
R | _____no_output_____ | MIT | notes/FEM_beam.ipynb | gfsReboucas/Drivetrain-python |
Stiffness matrix | K_b12 = K_b13.subs(I_2, I_3)
K_b12 | _____no_output_____ | MIT | notes/FEM_beam.ipynb | gfsReboucas/Drivetrain-python |
Inertia matrix | M_b12 = M_b13
if (not M_b12.is_symmetric()):
print('Error in M_b12.')
M_b12 | _____no_output_____ | MIT | notes/FEM_beam.ipynb | gfsReboucas/Drivetrain-python |
Assembly of the full matricesAccounting for axial loads, torques and bending in both planes. | RAR = lambda A: transpose(R)*A*R
transpose(R**-1*u)
K_f = diag(K_a, K_t, K_b12, K_b13)
K = RAR(K_f)
if (not K.is_symmetric()):
print('Error in K.')
K
M_f = diag(M_a, M_t, M_b12, M_b13)
M = RAR(M_f)
if (not M.is_symmetric()):
print('Error in M.')
M | _____no_output_____ | MIT | notes/FEM_beam.ipynb | gfsReboucas/Drivetrain-python |
Dynamic matrices for Lin and ParkerSee:Lin, J., & Parker, R. G. (1999). Analytical characterization of the unique properties of planetary gear free vibration. Journal of Vibration and Acoustics, Transactions of the ASME, 121(3), 316–321. http://doi.org/10.1115/1.2893982Considering translation on directions $x_2$ and $x_3$ and rotation around $x_1$: | id = [2,3, 4, 8, 9, 10]
u_LP = [symb('u', i) for i in id]
Matrix(u_LP)
T = zeros(12,6)
T[2 - 1, 1 - 1] = 1
T[3 - 1, 2 - 1] = 1
T[4 - 1, 3 - 1] = 1
T[8 - 1, 4 - 1] = 1
T[9 - 1, 5 - 1] = 1
T[10 - 1, 6 - 1] = 1
(T.T) * K * T | _____no_output_____ | MIT | notes/FEM_beam.ipynb | gfsReboucas/Drivetrain-python |
🚜 Predicting the Sale Price of Bulldozers using Machine LearningIn this notebook, we're going to go through an example machine learning project with the goal of predicting the sale price of bulldozers. 1. Problem defition> How well can we predict the future sale price of a bulldozer, given its characteristics and previous examples of how much similar bulldozers have been sold for? 2. DataThe data is downloaded from the Kaggle Bluebook for Bulldozers competition: https://www.kaggle.com/c/bluebook-for-bulldozers/dataThere are 3 main datasets:* Train.csv is the training set, which contains data through the end of 2011.* Valid.csv is the validation set, which contains data from January 1, 2012 - April 30, 2012 You make predictions on this set throughout the majority of the competition. Your score on this set is used to create the public leaderboard.* Test.csv is the test set, which won't be released until the last week of the competition. It contains data from May 1, 2012 - November 2012. Your score on the test set determines your final rank for the competition. 3. EvaluationThe evaluation metric for this competition is the RMSLE (root mean squared log error) between the actual and predicted auction prices.For more on the evaluation of this project check: https://www.kaggle.com/c/bluebook-for-bulldozers/overview/evaluation**Note:** The goal for most regression evaluation metrics is to minimize the error. For example, our goal for this project will be to build a machine learning model which minimises RMSLE. 4. FeaturesKaggle provides a data dictionary detailing all of the features of the dataset. You can view this data dictionary on Google Sheets: https://docs.google.com/spreadsheets/d/18ly-bLR8sbDJLITkWG7ozKm8l3RyieQ2Fpgix-beSYI/edit?usp=sharing | import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn
# Import training and validation sets
df = pd.read_csv("data/bluebook-for-bulldozers/TrainAndValid.csv",
low_memory=False)
df.info()
df.isna().sum()
df.columns
fig, ax = plt.subplots()
ax.scatter(df["saledate"][:1000], df["SalePrice"][:1000])
df.saledate[:1000]
df.saledate.dtype
df.SalePrice.plot.hist() | _____no_output_____ | MIT | workbench materials/end-to-end-bluebook-bulldozer-price-regression-video.ipynb | Mikolaj-Myszka/DataScience-bulldozer-price-prediction |
Parsing datesWhen we work with time series data, we want to enrich the time & date component as much as possible.We can do that by telling pandas which of our columns has dates in it using the `parse_dates` parameter. | # Import data again but this time parse dates
df = pd.read_csv("data/bluebook-for-bulldozers/TrainAndValid.csv",
low_memory=False,
parse_dates=["saledate"])
df.saledate.dtype
df.saledate[:1000]
fig, ax = plt.subplots()
ax.scatter(df["saledate"][:1000], df["SalePrice"][:1000])
df.head()
df.head().T
df.saledate.head(20) | _____no_output_____ | MIT | workbench materials/end-to-end-bluebook-bulldozer-price-regression-video.ipynb | Mikolaj-Myszka/DataScience-bulldozer-price-prediction |
Sort DataFrame by saledateWhen working with time series data, it's a good idea to sort it by date. | # Sort DataFrame in date order
df.sort_values(by=["saledate"], inplace=True, ascending=True)
df.saledate.head(20) | _____no_output_____ | MIT | workbench materials/end-to-end-bluebook-bulldozer-price-regression-video.ipynb | Mikolaj-Myszka/DataScience-bulldozer-price-prediction |
Make a copy of the original DataFrameWe make a copy of the original dataframe so when we manipulate the copy, we've still got our original data. | # Make a copy of the original DataFrame to perform edits on
df_tmp = df.copy() | _____no_output_____ | MIT | workbench materials/end-to-end-bluebook-bulldozer-price-regression-video.ipynb | Mikolaj-Myszka/DataScience-bulldozer-price-prediction |
Add datetime parameters for `saledate` column | df_tmp["saleYear"] = df_tmp.saledate.dt.year
df_tmp["saleMonth"] = df_tmp.saledate.dt.month
df_tmp["saleDay"] = df_tmp.saledate.dt.day
df_tmp["saleDayOfWeek"] = df_tmp.saledate.dt.dayofweek
df_tmp["saleDayOfYear"] = df_tmp.saledate.dt.dayofyear
df_tmp.head().T
# Now we've enriched our DataFrame with date time features, we can remove 'saledate'
df_tmp.drop("saledate", axis=1, inplace=True)
# Check the values of different columns
df_tmp.state.value_counts()
df_tmp.head()
len(df_tmp) | _____no_output_____ | MIT | workbench materials/end-to-end-bluebook-bulldozer-price-regression-video.ipynb | Mikolaj-Myszka/DataScience-bulldozer-price-prediction |
5. Modelling We've done enough EDA (we could always do more) but let's start to do some model-driven EDA. | # Let's build a machine learning model
from sklearn.ensemble import RandomForestRegressor
model = RandomForestRegressor(n_jobs=-1,
random_state=42)
model.fit(df_tmp.drop("SalePrice", axis=1), df_tmp["SalePrice"])
df_tmp.info()
df_tmp["UsageBand"].dtype
df_tmp.isna().sum() | _____no_output_____ | MIT | workbench materials/end-to-end-bluebook-bulldozer-price-regression-video.ipynb | Mikolaj-Myszka/DataScience-bulldozer-price-prediction |
Convert string to categoriesOne way we can turn all of our data into numbers is by converting them into pandas catgories.We can check the different datatypes compatible with pandas here: https://pandas.pydata.org/pandas-docs/stable/reference/general_utility_functions.htmldata-types-related-functionality | df_tmp.head().T
pd.api.types.is_string_dtype(df_tmp["UsageBand"])
# Find the columns which contain strings
for label, content in df_tmp.items():
if pd.api.types.is_string_dtype(content):
print(label)
# If you're wondering what df.items() does, here's an example
random_dict = {"key1": "hello",
"key2": "world!"}
for key, value in random_dict.items():
print(f"this is a key: {key}",
f"this is a value: {value}")
# This will turn all of the string value into category values
for label, content in df_tmp.items():
if pd.api.types.is_string_dtype(content):
df_tmp[label] = content.astype("category").cat.as_ordered()
df_tmp.info()
df_tmp.state.cat.categories
df_tmp.state.cat.codes | _____no_output_____ | MIT | workbench materials/end-to-end-bluebook-bulldozer-price-regression-video.ipynb | Mikolaj-Myszka/DataScience-bulldozer-price-prediction |
Thanks to pandas Categories we now have a way to access all of our data in the form of numbers.But we still have a bunch of missing data... | # Check missing data
df_tmp.isnull().sum()/len(df_tmp) | _____no_output_____ | MIT | workbench materials/end-to-end-bluebook-bulldozer-price-regression-video.ipynb | Mikolaj-Myszka/DataScience-bulldozer-price-prediction |
Save preprocessed data | # Export current tmp dataframe
df_tmp.to_csv("data/bluebook-for-bulldozers/train_tmp.csv",
index=False)
# Import preprocessed data
df_tmp = pd.read_csv("data/bluebook-for-bulldozers/train_tmp.csv",
low_memory=False)
df_tmp.head().T
df_tmp.isna().sum() | _____no_output_____ | MIT | workbench materials/end-to-end-bluebook-bulldozer-price-regression-video.ipynb | Mikolaj-Myszka/DataScience-bulldozer-price-prediction |
Fill missing values Fill numerical missing values first | for label, content in df_tmp.items():
if pd.api.types.is_numeric_dtype(content):
print(label)
df_tmp.ModelID
# Check for which numeric columns have null values
for label, content in df_tmp.items():
if pd.api.types.is_numeric_dtype(content):
if pd.isnull(content).sum():
print(label)
# Fill numeric rows with the median
for label, content in df_tmp.items():
if pd.api.types.is_numeric_dtype(content):
if pd.isnull(content).sum():
# Add a binary column which tells us if the data was missing or not
df_tmp[label+"_is_missing"] = pd.isnull(content)
# Fill missing numeric values with median
df_tmp[label] = content.fillna(content.median())
# Demonstrate how median is more robust than mean
hundreds = np.full((1000,), 100)
hundreds_billion = np.append(hundreds, 1000000000)
np.mean(hundreds), np.mean(hundreds_billion), np.median(hundreds), np.median(hundreds_billion)
# Check if there's any null numeric values
for label, content in df_tmp.items():
if pd.api.types.is_numeric_dtype(content):
if pd.isnull(content).sum():
print(label)
# Check to see how many examples were missing
df_tmp.auctioneerID_is_missing.value_counts()
df_tmp.isna().sum() | _____no_output_____ | MIT | workbench materials/end-to-end-bluebook-bulldozer-price-regression-video.ipynb | Mikolaj-Myszka/DataScience-bulldozer-price-prediction |
Filling and turning categorical variables into numbers | # Check for columns which aren't numeric
for label, content in df_tmp.items():
if not pd.api.types.is_numeric_dtype(content):
print(label)
# Turn categorical variables into numbers and fill missing
for label, content in df_tmp.items():
if not pd.api.types.is_numeric_dtype(content):
# Add binary column to indicate whether sample had missing value
df_tmp[label+"_is_missing"] = pd.isnull(content)
# Turn categories into numbers and add +1
df_tmp[label] = pd.Categorical(content).codes+1
pd.Categorical(df_tmp["state"]).codes+1
df_tmp.info()
df_tmp.head().T
df_tmp.isna().sum() | _____no_output_____ | MIT | workbench materials/end-to-end-bluebook-bulldozer-price-regression-video.ipynb | Mikolaj-Myszka/DataScience-bulldozer-price-prediction |
Now that all of data is numeric as well as our dataframe has no missing values, we should be able to build a machine learning model. | df_tmp.head()
len(df_tmp)
%%time
# Instantiate model
model = RandomForestRegressor(n_jobs=-1,
random_state=42)
# Fit the model
model.fit(df_tmp.drop("SalePrice", axis=1), df_tmp["SalePrice"])
# Score the model
model.score(df_tmp.drop("SalePrice", axis=1), df_tmp["SalePrice"]) | _____no_output_____ | MIT | workbench materials/end-to-end-bluebook-bulldozer-price-regression-video.ipynb | Mikolaj-Myszka/DataScience-bulldozer-price-prediction |
**Question:** Why doesn't the above metric hold water? (why isn't the metric reliable) Splitting data into train/validation sets | df_tmp.saleYear
df_tmp.saleYear.value_counts()
# Split data into training and validation
df_val = df_tmp[df_tmp.saleYear == 2012]
df_train = df_tmp[df_tmp.saleYear != 2012]
len(df_val), len(df_train)
# Split data into X & y
X_train, y_train = df_train.drop("SalePrice", axis=1), df_train.SalePrice
X_valid, y_valid = df_val.drop("SalePrice", axis=1), df_val.SalePrice
X_train.shape, y_train.shape, X_valid.shape, y_valid.shape
y_train | _____no_output_____ | MIT | workbench materials/end-to-end-bluebook-bulldozer-price-regression-video.ipynb | Mikolaj-Myszka/DataScience-bulldozer-price-prediction |
Building an evaluation function | # Create evaluation function (the competition uses RMSLE)
from sklearn.metrics import mean_squared_log_error, mean_absolute_error, r2_score
def rmsle(y_test, y_preds):
"""
Caculates root mean squared log error between predictions and
true labels.
"""
return np.sqrt(mean_squared_log_error(y_test, y_preds))
# Create function to evaluate model on a few different levels
def show_scores(model):
train_preds = model.predict(X_train)
val_preds = model.predict(X_valid)
scores = {"Training MAE": mean_absolute_error(y_train, train_preds),
"Valid MAE": mean_absolute_error(y_valid, val_preds),
"Training RMSLE": rmsle(y_train, train_preds),
"Valid RMSLE": rmsle(y_valid, val_preds),
"Training R^2": r2_score(y_train, train_preds),
"Valid R^2": r2_score(y_valid, val_preds)}
return scores | _____no_output_____ | MIT | workbench materials/end-to-end-bluebook-bulldozer-price-regression-video.ipynb | Mikolaj-Myszka/DataScience-bulldozer-price-prediction |
Testing our model on a subset (to tune the hyperparameters) | # # This takes far too long... for experimenting
# %%time
# model = RandomForestRegressor(n_jobs=-1,
# random_state=42)
# model.fit(X_train, y_train)
len(X_train)
# Change max_samples value
model = RandomForestRegressor(n_jobs=-1,
random_state=42,
max_samples=10000)
%%time
# Cutting down on the max number of samples each estimator can see improves training time
model.fit(X_train, y_train)
(X_train.shape[0] * 100) / 1000000
10000 * 100
show_scores(model) | _____no_output_____ | MIT | workbench materials/end-to-end-bluebook-bulldozer-price-regression-video.ipynb | Mikolaj-Myszka/DataScience-bulldozer-price-prediction |
Hyerparameter tuning with RandomizedSearchCV | %%time
from sklearn.model_selection import RandomizedSearchCV
# Different RandomForestRegressor hyperparameters
rf_grid = {"n_estimators": np.arange(10, 100, 10),
"max_depth": [None, 3, 5, 10],
"min_samples_split": np.arange(2, 20, 2),
"min_samples_leaf": np.arange(1, 20, 2),
"max_features": [0.5, 1, "sqrt", "auto"],
"max_samples": [10000]}
# Instantiate RandomizedSearchCV model
rs_model = RandomizedSearchCV(RandomForestRegressor(n_jobs=-1,
random_state=42),
param_distributions=rf_grid,
n_iter=2,
cv=5,
verbose=True)
# Fit the RandomizedSearchCV model
rs_model.fit(X_train, y_train)
# Find the best model hyperparameters
rs_model.best_params_
# Evaluate the RandomizedSearch model
show_scores(rs_model) | _____no_output_____ | MIT | workbench materials/end-to-end-bluebook-bulldozer-price-regression-video.ipynb | Mikolaj-Myszka/DataScience-bulldozer-price-prediction |
Train a model with the best hyperparamters**Note:** These were found after 100 iterations of `RandomizedSearchCV`. | %%time
# Most ideal hyperparamters
ideal_model = RandomForestRegressor(n_estimators=40,
min_samples_leaf=1,
min_samples_split=14,
max_features=0.5,
n_jobs=-1,
max_samples=None,
random_state=42) # random state so our results are reproducible
# Fit the ideal model
ideal_model.fit(X_train, y_train)
# Scores for ideal_model (trained on all the data)
show_scores(ideal_model)
# Scores on rs_model (only trained on ~10,000 examples)
show_scores(rs_model) | _____no_output_____ | MIT | workbench materials/end-to-end-bluebook-bulldozer-price-regression-video.ipynb | Mikolaj-Myszka/DataScience-bulldozer-price-prediction |
Make predictions on test data | # Import the test data
df_test = pd.read_csv("data/bluebook-for-bulldozers/Test.csv",
low_memory=False,
parse_dates=["saledate"])
df_test.head()
# Make predictions on the test dataset
test_preds = ideal_model.predict(df_test) | _____no_output_____ | MIT | workbench materials/end-to-end-bluebook-bulldozer-price-regression-video.ipynb | Mikolaj-Myszka/DataScience-bulldozer-price-prediction |
Preprocessing the data (getting the test dataset in the same format as our training dataset) | def preprocess_data(df):
"""
Performs transformations on df and returns transformed df.
"""
df["saleYear"] = df.saledate.dt.year
df["saleMonth"] = df.saledate.dt.month
df["saleDay"] = df.saledate.dt.day
df["saleDayOfWeek"] = df.saledate.dt.dayofweek
df["saleDayOfYear"] = df.saledate.dt.dayofyear
df.drop("saledate", axis=1, inplace=True)
# Fill the numeric rows with median
for label, content in df.items():
if pd.api.types.is_numeric_dtype(content):
if pd.isnull(content).sum():
# Add a binary column which tells us if the data was missing or not
df[label+"_is_missing"] = pd.isnull(content)
# Fill missing numeric values with median
df[label] = content.fillna(content.median())
# Filled categorical missing data and turn categories into numbers
if not pd.api.types.is_numeric_dtype(content):
df[label+"_is_missing"] = pd.isnull(content)
# We add +1 to the category code because pandas encodes missing categories as -1
df[label] = pd.Categorical(content).codes+1
return df
# Process the test data
df_test = preprocess_data(df_test)
df_test.head()
# Make predictions on updated test data
test_preds = ideal_model.predict(df_test)
X_train.head()
# We can find how the columns differ using sets
set(X_train.columns) - set(df_test.columns)
# Manually adjust df_test to have auctioneerID_is_missing column
df_test["auctioneerID_is_missing"] = False
df_test.head() | _____no_output_____ | MIT | workbench materials/end-to-end-bluebook-bulldozer-price-regression-video.ipynb | Mikolaj-Myszka/DataScience-bulldozer-price-prediction |
Finally now our test dataframe has the same features as our training dataframe, we can make predictions! | # Make predictions on the test data
test_preds = ideal_model.predict(df_test)
test_preds | _____no_output_____ | MIT | workbench materials/end-to-end-bluebook-bulldozer-price-regression-video.ipynb | Mikolaj-Myszka/DataScience-bulldozer-price-prediction |
We've made some predictions but they're not in the same format Kaggle is asking for: https://www.kaggle.com/c/bluebook-for-bulldozers/overview/evaluation | # Format predictions into the same format Kaggle is after
df_preds = pd.DataFrame()
df_preds["SalesID"] = df_test["SalesID"]
df_preds["SalesPrice"] = test_preds
df_preds
# Export prediction data
df_preds.to_csv("data/bluebook-for-bulldozers/test_predictions.csv", index=False) | _____no_output_____ | MIT | workbench materials/end-to-end-bluebook-bulldozer-price-regression-video.ipynb | Mikolaj-Myszka/DataScience-bulldozer-price-prediction |
Feature ImportanceFeature importance seeks to figure out which different attributes of the data were most importance when it comes to predicting the **target variable** (SalePrice). | # Find feature importance of our best model
ideal_model.feature_importances_
# Helper function for plotting feature importance
def plot_features(columns, importances, n=20):
df = (pd.DataFrame({"features": columns,
"feature_importances": importances})
.sort_values("feature_importances", ascending=False)
.reset_index(drop=True))
# Plot the dataframe
fig, ax = plt.subplots()
ax.barh(df["features"][:n], df["feature_importances"][:20])
ax.set_ylabel("Features")
ax.set_xlabel("Feature importance")
ax.invert_yaxis()
plot_features(X_train.columns, ideal_model.feature_importances_)
df["Enclosure"].value_counts() | _____no_output_____ | MIT | workbench materials/end-to-end-bluebook-bulldozer-price-regression-video.ipynb | Mikolaj-Myszka/DataScience-bulldozer-price-prediction |
BHSA specifics | A = use("bhsa:clone", checkout="clone", hoist=globals())
A.reuse()
A.showContext() | _____no_output_____ | MIT | zz_test/030-bhsa.ipynb | sethbam9/tutorials |
A slot with standard features | A.displayShow("standardFeatures")
w = 2
p = L.u(w, otype="phrase")[0]
tree = A.unravel(w, explain=True)
tree = A.unravel(p, explain=True)
A.pretty(w, standardFeatures=True)
A.pretty(p, standardFeatures=True) | _____no_output_____ | MIT | zz_test/030-bhsa.ipynb | sethbam9/tutorials |
Base types | p = 675477
highlights = {p}
A.pretty(p, highlights=highlights)
A.pretty(p, highlights=highlights, baseTypes="phrase") | _____no_output_____ | MIT | zz_test/030-bhsa.ipynb | sethbam9/tutorials |
A tricky verse | v = T.nodeFromSection(("Genesis", 7, 14))
v
A.plain(v, explain=False) | _____no_output_____ | MIT | zz_test/030-bhsa.ipynb | sethbam9/tutorials |
Halfverses are hidden. This verse is divided (at top level) in 3 spans: one for each clause chunk. The first and last chunksbelong to clause 1, and the middle chunk is clause 2.Look what happens if we set `hideTypes=True`: | A.plain(v, hideTypes=False, explain=False) | _____no_output_____ | MIT | zz_test/030-bhsa.ipynb | sethbam9/tutorials |
When you make the browser window narrower, the line breaks are different.Because now the verse is divided in 2 spans: one for each half verse, and the separation betweenthe half verses is within the third clause chunk.See it in pretty view: | A.pretty(v, explain=False) | _____no_output_____ | MIT | zz_test/030-bhsa.ipynb | sethbam9/tutorials |
We can selectively unhide the half verse and leave everything else hidden: | A.pretty(
v,
hideTypes=True,
hiddenTypes="subphrase phrase_atom clause_atom sentence_atom",
explain=False,
) | _____no_output_____ | MIT | zz_test/030-bhsa.ipynb | sethbam9/tutorials |
This shows the reason of the split.We can also print the full structure (although that's a bit over the top): | A.pretty(v, hideTypes=False) | _____no_output_____ | MIT | zz_test/030-bhsa.ipynb | sethbam9/tutorials |
Alignment in tables | A.table(
((2, 213294, 426583), (3, 213295, 426582), (4, 213296, 426581)), withPassage={1, 2}
) | _____no_output_____ | MIT | zz_test/030-bhsa.ipynb | sethbam9/tutorials |
SubphrasesSubphrases with equal slots: | w = 3461
sps = L.u(w, otype="subphrase")
for sp in sps[0:-1]:
print(E.oslots.s(sp))
A.pretty(sp, standardFeatures=True, extraFeatures="rela", withNodes=True) | array('I', [3461, 3462, 3463])
| MIT | zz_test/030-bhsa.ipynb | sethbam9/tutorials |
Sentence spanning two verses | A.pretty(v, withNodes=True, explain=False) | _____no_output_____ | MIT | zz_test/030-bhsa.ipynb | sethbam9/tutorials |
Base types | cl = 427612
words = L.d(cl, otype="word")
phrases = L.d(cl, otype="phrase")
highlights = {phrases[1]: "lightsalmon", words[2]: "lightblue"}
A.pretty(cl, baseTypes="phrase", withNodes=True, highlights=highlights, explain=True) | <0> TOP
<1> clause 427612 {322-326}
<2> phrase* 651725 {322-323}
<3> word 322 {322}
<3> word 323 {323}
<2> phrase* 651726 {324-326}
<3> word 324 {324}
<3> word 325 {325}
<3> word 326 {326}
| MIT | zz_test/030-bhsa.ipynb | sethbam9/tutorials |
Gaps | c = 427931
s = L.u(c, otype="sentence")[0]
v = L.u(c, otype="verse")[0]
highlights = {c: "khaki", c + 1: "lightblue"}
A.webLink(s)
A.plain(s, withNodes=True, highlights=highlights)
A.plain(s)
T.formats
A.plain(c, fmt="text-phono-full", withNodes=True, explain=False)
A.plain(c, withNodes=False, explain=False)
A.pretty(c, withNodes=True, explain=False)
A.pretty(c, withNodes=True, hideTypes=False, explain=False)
A.pretty(s, withNodes=True, highlights=highlights, explain=False)
A.plain(s, withNodes=True, hideTypes=False)
A.pretty(s, withNodes=True, highlights=highlights, hideTypes=False, explain=False)
A.plain(427931)
A.pretty(427931, withNodes=True)
A.plain(427932)
A.pretty(427932)
sp = F.otype.s("subphrase")[0]
v = L.u(sp, otype="verse")[0]
A.pretty(v)
p = 653380
s = L.u(p, otype="sentence")[0]
c = L.d(s, otype="clause")[0]
A.plain(p)
A.pretty(p)
A.pretty(p, baseTypes="phrase_atom", hideTypes=True)
A.pretty(p, baseTypes="phrase")
A.plain(s)
A.plain(s, plainGaps=False)
A.plain(c, withNodes=True)
A.pretty(c)
A.pretty(s, baseTypes={"subphrase", "word"})
A.pretty(s, baseTypes="phrase")
A.prettyTuple((p,), 1, baseTypes="phrase")
A.pretty(p, baseTypes="phrase") | _____no_output_____ | MIT | zz_test/030-bhsa.ipynb | sethbam9/tutorials |
Atom types | p = F.otype.s("phrase")[0]
pa = F.otype.s("phrase_atom")[0] | _____no_output_____ | MIT | zz_test/030-bhsa.ipynb | sethbam9/tutorials |
Plain | A.plain(p, highlights={p, pa})
A.plain(p, highlights={p, pa}, hideTypes=False)
A.plain(p, highlights={p})
A.plain(p, highlights={p}, hideTypes=False)
A.plain(p, highlights={pa})
A.plain(p, highlights={pa}, hideTypes=False)
A.plain(pa, highlights={p, pa})
A.plain(pa, highlights={p, pa}, hideTypes=False)
A.plain(pa, highlights={pa})
A.plain(pa, highlights={pa}, hideTypes=False)
A.plain(pa, highlights={p})
A.plain(pa, highlights={p}, hideTypes=False) | _____no_output_____ | MIT | zz_test/030-bhsa.ipynb | sethbam9/tutorials |
Pretty | A.pretty(p, highlights={p, pa})
A.pretty(p, highlights={p, pa}, hideTypes=False)
A.pretty(p, highlights={p})
A.pretty(p, highlights={p}, hideTypes=False)
A.pretty(p, highlights={pa})
A.pretty(p, highlights={pa}, hideTypes=False)
A.pretty(pa, highlights={p, pa})
A.pretty(pa, highlights={p, pa}, hideTypes=False)
A.pretty(pa, highlights={pa})
A.pretty(pa, highlights={pa}, hideTypes=False)
A.pretty(pa, highlights={p})
A.pretty(pa, highlights={p}, hideTypes=False) | _____no_output_____ | MIT | zz_test/030-bhsa.ipynb | sethbam9/tutorials |
Highlights | cl = 435509
ph = 675481
w = 38625
highlights = {ph, w}
A.pretty(cl, highlights=highlights, withNodes=True)
A.pretty(cl, highlights=highlights, baseTypes={"phrase"}, withNodes=True)
A.plain(ph, highlights=highlights)
A.plain(ph, highlights=highlights, baseTypes={"phrase"}, withNodes=True)
typeShow(A) | _____no_output_____ | MIT | zz_test/030-bhsa.ipynb | sethbam9/tutorials |
Starting with a 1-indexed array of zeros and a list of operations, for each operation add a value to each the array element between two given indices, inclusive. Once all operations have been performed, return the maximum value in the array. | def main():
n, m = map(int, input().split())
xs = [0] * (n + 2)
for _ in range(m):
a, b, k = map(int, input().split())
xs[a] += k
xs[b + 1] -= k
answer = 0
current = 0
for x in xs:
current += x
answer = max(answer, current)
print(answer)
if __name__ == '__main__':
main()
import math
import os
import random
import re
import sys
# Complete the arrayManipulation function below.
def arrayManipulation(n, queries):
res = [0]*(n+1)
for row in range(len(queries)):
a = queries[row][0]
b = queries[row][1]
k = queries[row][2]
res[a-1] += k
res[b] -= k
sm = 0
mx = 0
for i in range(len(res)):
sm += res[i]
if sm > mx:
mx = sm
return mx
if __name__ == '__main__':
fptr = open(os.environ['OUTPUT_PATH'], 'w')
nm = input().split()
n = int(nm[0])
m = int(nm[1])
queries = []
for _ in range(m):
queries.append(list(map(int, input().rstrip().split())))
result = arrayManipulation(n, queries)
fptr.write(str(result) + '\n')
fptr.close() | _____no_output_____ | MIT | Interview Preparation Kit/1. arrays/4. array manipulation.ipynb | faisalsanto007/Hakcerrank-problem-solving |
Forward Kinematics for Wheeled Robots; Dead Reckoning | # Preparation
import numpy as np
np.set_printoptions(precision=4, suppress=True)
import matplotlib.pyplot as plt
import ipywidgets | _____no_output_____ | MIT | Robotics Concepts/03 wheeled.ipynb | gyani91/Robotics |
Let's first setup useful functions (see transforms2d notebook) | def mktr(x, y):
return np.array([[1, 0, x],
[0, 1, y],
[0, 0, 1]])
def mkrot(theta):
return np.array([[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[0, 0, 1]])
def drawf(f, ax=None, name=None):
""" Draw frame defined by f on axis ax (if provided) or on plt.gca() otherwise """
xhat = f @ np.array([[0, 0, 1], [1, 0, 1]]).T
yhat = f @ np.array([[0, 0, 1], [0, 1, 1]]).T
if(not ax):
ax = plt.gca()
ax.plot(xhat[0, :], xhat[1, :], 'r-') # transformed x unit vector
ax.plot(yhat[0, :], yhat[1, :], 'g-') # transformed y unit vector
if(name):
ax.text(xhat[0, 0], xhat[1, 0], name, va="top", ha="center") | _____no_output_____ | MIT | Robotics Concepts/03 wheeled.ipynb | gyani91/Robotics |
A function to draw a robot at a given pose `f` | def drawrobot(f, l, ax=None, alpha=0.5):
""" Draw robot at f, with wheel distance from center l,
on axis ax (if provided) or on plt.gca() otherwise.
if l is None, no wheels are drawn"""
if(not ax):
ax = plt.gca()
robot = ([[-1, 2, -1, -1], # x
[-1, 0, 1, -1]]) # y
robot = np.array(robot)
robot = np.vstack((
robot * 0.1, # scale by 0.1 units
np.ones((1, robot.shape[1]))))
robott = f @ robot
wheell = np.array([
[-0.05, 0.05],
[l, l],
[1, 1]
])
wheelr = wheell * np.array([[1, -1, 1]]).T
wheellt = f @ wheell
wheelrt = f @ wheelr
ax.plot(robott[0, :], robott[1, :], 'k-', alpha=alpha)
ax.plot(wheellt[0, :], wheellt[1, :], 'k-', alpha=alpha)
ax.plot(wheelrt[0, :], wheelrt[1, :], 'k-', alpha=alpha) | _____no_output_____ | MIT | Robotics Concepts/03 wheeled.ipynb | gyani91/Robotics |
Note how the frame is centered in the middle point between the two wheels, and the robot points towards the $x$ axis. | drawf(np.eye(3))
drawrobot(np.eye(3), 0.1)
drawrobot(mktr(0.5, 0.3) @ mkrot(np.pi/4), 0.1)
plt.gca().axis("equal") | _____no_output_____ | MIT | Robotics Concepts/03 wheeled.ipynb | gyani91/Robotics |
The kinematic model of a differential-drive robotFor a given differential drive robot, we have the following (fixed) parameter:* $l$: distance from the robot frame to each wheel. The distance between the wheel is therefore $2 \cdot l$We control the angular speed of each wheel $\phi_L, \phi_R$. Given the wheel radius $r$, the tangential speed for each wheel is $v_L = r \phi_L$ and $v_R = r \phi_R$, respectively. From now on, we assume we directly control (or measure) $v_L$ and $v_R$.Assuming that $v_L$ and $v_R$ are constant during a short time interval $[t, t+\delta t]$, we have three ways to update the pose of the robot:* Euler method* Runge-Kutta method* Exact methodThe function below implements the exact method, and returns a transform from the pose at $t$ to the pose at $t+\delta t$. | def ddtr(vl, vr, l, dt):
""" returns the pose transform for a motion with duration dt of a differential
drive robot with wheel speeds vl and vr and wheelbase l """
if(np.isclose(vl, vr)): # we are moving straight, R is at the infinity and we handle this case separately
return mktr((vr + vl)/2*dt, 0) # note we translate along x ()
omega = (vr - vl) / (2 * l) # angular speed of the robot frame
R = l * (vr + vl) / (vr - vl)
# Make sure you understand this!
return mktr(0, R) @ mkrot(omega * dt) @ mktr(0, -R) | _____no_output_____ | MIT | Robotics Concepts/03 wheeled.ipynb | gyani91/Robotics |
Let's test our function. Try special cases and try for each to predict where the ICR will be.* $v_R = -v_L$* $v_R = 0$, $v_L > 0$* $v_R = 0.5 \cdot v_L$ | l = 0.1
initial_frame = np.eye(3) # try changing this
@ipywidgets.interact(vl=ipywidgets.FloatSlider(min=-2, max=+2),
vr=ipywidgets.FloatSlider(min=-2, max=+2))
def f(vl, vr):
drawf(initial_frame) # Initial frame
f = ddtr(vl, vr, l, 1)
drawf(f)
drawrobot(f, l)
plt.axis("equal") | _____no_output_____ | MIT | Robotics Concepts/03 wheeled.ipynb | gyani91/Robotics |
This approach tells you how to move from the pose at $t$ to the pose at $t+\delta t$. Then you can concatenate multiple transformations. | dt = 1.0
Ts = [mktr(1, 1) @ mkrot(np.pi/4)]
vl, vr = 0.10, 0.05
l = 0.1
for i in range(10):
Ts.append(Ts[-1] @ ddtr(vl, vr, l, dt))
drawf(np.eye(3))
for T in Ts:
drawrobot(T, l)
plt.axis("equal") | _____no_output_____ | MIT | Robotics Concepts/03 wheeled.ipynb | gyani91/Robotics |
Question: in the example above, would you get the same result if you estimated the final position in a single step? Try that, and make sure you understand the result. | @ipywidgets.interact(
vl=ipywidgets.FloatSlider(min=-0.5, max=0.5, value=0, step=0.02),
vr=ipywidgets.FloatSlider(min=-0.5, max=0.5, value=0, step=0.02),
l= ipywidgets.FloatSlider(min=0.05, max=0.15, value=0.10, step=0.01))
def f(vl, vr, l):
Ts = [np.eye(3)]
for i in range(10):
Ts.append(Ts[-1] @ ddtr(vl, vr, l, 1))
drawf(np.eye(3))
for T in Ts:
drawrobot(T, l)
plt.axis("equal") | _____no_output_____ | MIT | Robotics Concepts/03 wheeled.ipynb | gyani91/Robotics |
ExerciseImplement the same approach, using the Euler method for integration. Compare the results with the method above using different values for $\delta t$. Dead ReckoningWe now have all the necessary info in order to predict the trajectory when the wheel speeds change over time. We define the initial and final speeds for the left and right wheels, and let them vary linearly from $t=0$ to $t=10$.Can you set the parameters to get an s-shaped path? Try changing the value of `dt` and make sure you understand under what conditions the final pose of the robot changes when you change `dt`. | l = 0.05
@ipywidgets.interact(
vl0=ipywidgets.FloatSlider(min=-0.5, max=0.5, value=0, step=0.02),
vr0=ipywidgets.FloatSlider(min=-0.5, max=0.5, value=0, step=0.02),
vl1=ipywidgets.FloatSlider(min=-0.5, max=0.5, value=0, step=0.02),
vr1=ipywidgets.FloatSlider(min=-0.5, max=0.5, value=0, step=0.02),
dt=ipywidgets.Select(options=[1, 5]))
def f(vl0, vr0, vl1, vr1, dt):
t0 = 0
t1 = 10
def wheelspeeds(t):
return (vl0 + (vl1-vl0)*(t-t0)/(t1-t0),
vr0 + (vr1-vr0)*(t-t0)/(t1-t0))
ts = np.arange(t0, t1+dt, dt)
vls, vrs = [], []
for t in ts:
vl, vr = wheelspeeds(t)
vls.append(vl)
vrs.append(vr)
cT = np.eye(3)
Ts = []
for i, t in enumerate(ts):
if(i == 0):
Ts.append(cT)
else:
vl, vr = vls[i-1], vrs[i-1]
cT = cT @ ddtr(vl, vr, l, dt)
Ts.append(cT)
fig, ax = plt.subplots()
ax.plot(ts, vls, label=("left"))
ax.plot(ts, vrs, label=("right"))
ax.set(xlabel="time",
ylabel="wheel tangential speed")
ax.legend()
fig, ax = plt.subplots()
drawf(np.eye(3), ax=ax)
for T in Ts:
drawrobot(T, l, ax=ax)
drawf(Ts[-1], name="time = {}".format(ts[-1]), ax=ax)
plt.axis("equal") | _____no_output_____ | MIT | Robotics Concepts/03 wheeled.ipynb | gyani91/Robotics |
Sorting Lists of Lists Sort the following list of lists by the grades in descending order. The desired output should be: [['Kaylee', 99], ['Simon', 99], ['Zoe', 85], ['Malcolm', 80], ['Wash', 79]] Hints: https://wiki.python.org/moin/HowTo/Sorting | grades = [["Malcolm", 80], ["Zoe", 85], ["Kaylee", 99], ["Simon", 99], ["Wash", 79]] | _____no_output_____ | ADSL | Python-Drills/01-Sort_List_of_Lists/Sort_List_of_Lists.ipynb | SVEENASHARMA/web-design-challenge |
YOUR CODE HERE | sorted_list = sorted(grades, key = lambda x:(-x[1], x[0]))
print(sorted_list) | [['Kaylee', 99], ['Simon', 99], ['Zoe', 85], ['Malcolm', 80], ['Wash', 79]]
| ADSL | Python-Drills/01-Sort_List_of_Lists/Sort_List_of_Lists.ipynb | SVEENASHARMA/web-design-challenge |
In this challenge we jump directly into building neural networks. We won't get into much theory or generality, but by the end of this exercise you'll build a very simple example of one, and in the mean time gain some intuition for how they work. First, we import numpy as usual. | # LAMBDA SCHOOL
#
# MACHINE LEARNING
#
# MIT LICENSE
import numpy as np | _____no_output_____ | MIT | Week 09 Neural Networks/Code Challenges/Day 1 XOR.ipynb | jraval/LambdaSchoolDataScience |
Next, look at the Wikipedia article for the XOR function (https://en.wikipedia.org/wiki/XOR_gate). Basically, it's a function that takes in two truth values (aka booleans) x and y and spits out a third truth value f(x,y) according to the following rule: f(x,y) is true when x is true OR y is true, but not both. If we use the common representation wherein "1" means "True" and "0" means "False", this means that f(0,0) = f(1,1) = 0 and f(0,1) = f(1,0) = 1. Check that this makes sense!Your first task for today is to implement the XOR function. There are slick ways to do this using modular arithmetic (if you're in to that sort of thing), but implement it however you like. Check that it gives the right values for each of the inputs (0,0), (0,1), (1,0), and (1,1). | def xorFunction(x, y):
if x == y:
return False
else:
return True | _____no_output_____ | MIT | Week 09 Neural Networks/Code Challenges/Day 1 XOR.ipynb | jraval/LambdaSchoolDataScience |
Great. Now, define a function sigma(x) that acts the way that the sigmoid function does. If you don't remember exactly how this works, check Wikipedia or ask one of your classmates. | def sigma(x):
return 1 / (1 + np.exp(-x)) | _____no_output_____ | MIT | Week 09 Neural Networks/Code Challenges/Day 1 XOR.ipynb | jraval/LambdaSchoolDataScience |
Most machine learning algorithms have free parameters that we tweak to get the behavior we want, and this is no exception. Introduce two variables a and b and assign them both to the value 10 (for now). | a = 10
b = 10 | _____no_output_____ | MIT | Week 09 Neural Networks/Code Challenges/Day 1 XOR.ipynb | jraval/LambdaSchoolDataScience |
Finally, here's our first neural network. Just like linear and logistic regression, it's nothing more than a function that takes in our inputs (x and y) and returns an output according to some prescribed rule. Today our rule consists of the following steps:Step 1: Take x and y and calculate ax + by.Step 2: Plug the result of step 1 into the sigma function we introduced earlier.Step 3: Take the result of step 2 and round it to the nearest whole number.Define a function NN(x,y) that takes in x and y and returns the result of performing these steps. | def NN(x,y):
linear = a*x + b*y
out = sigma(linear)
return np.round(out) | _____no_output_____ | MIT | Week 09 Neural Networks/Code Challenges/Day 1 XOR.ipynb | jraval/LambdaSchoolDataScience |
See what happens when you plug the values (0,0), (0,1), (1,0), and (1,1) into NN. The last (and possible trickiest) part of this assignment is to try and find values of a and b such that NN and XOR give the same outputs on each of those inputs. If you find a solution, share it. If you can't, talk with your classmates and see how they do. Feel free to collaborate! | print([NN(*args) for args in [(0, 0), (0, 1), (1, 0), (1, 1)]]) | [0.0, 1.0, 1.0, 1.0]
| MIT | Week 09 Neural Networks/Code Challenges/Day 1 XOR.ipynb | jraval/LambdaSchoolDataScience |
The XOR function cannot be learned by a single unit, which has a linear decision boundary.See: https://www.youtube.com/watch?v=kNPGXgzxoHw | def NN2(x, y):
h1 = np.round(sigma(w11*x + w11*y + b11))
h2 = np.round(sigma(w12*x + w12*y + b12))
out = np.round(sigma(w21*h1 + w22*h2 + b2))
return out
w11 = 20
w12 = -20
b11 = -10
b12 = 30
w21 = 20
w22 = 20
b2 = -30
print([NN2(*args) for args in [(0, 0), (0, 1), (1, 0), (1, 1)]]) | [0.0, 1.0, 1.0, 0.0]
| MIT | Week 09 Neural Networks/Code Challenges/Day 1 XOR.ipynb | jraval/LambdaSchoolDataScience |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.