markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
**Expected Output**: **gradients["dxt"][1][2]** = 3.23055911511 **gradients["dxt"].shape** = (3, 10) **gradients["da_prev"][2][3]** = -0.0639621419711 **gradients["da_prev"].shape** = (5, 10) **gradients["dc_prev"][2][3]** = 0.797522038797 **gradients["dc_prev"].shape** = (5, 10) **gradients["dWf"][3][1]** = -0.147954838164 **gradients["dWf"].shape** = (5, 8) **gradients["dWi"][1][2]** = 1.05749805523 **gradients["dWi"].shape** = (5, 8) **gradients["dWc"][3][1]** = 2.30456216369 **gradients["dWc"].shape** = (5, 8) **gradients["dWo"][1][2]** = 0.331311595289 **gradients["dWo"].shape** = (5, 8) **gradients["dbf"][4]** = [ 0.18864637] **gradients["dbf"].shape** = (5, 1) **gradients["dbi"][4]** = [-0.40142491] **gradients["dbi"].shape** = (5, 1) **gradients["dbc"][4]** = [ 0.25587763] **gradients["dbc"].shape** = (5, 1) **gradients["dbo"][4]** = [ 0.13893342] **gradients["dbo"].shape** = (5, 1) 3.3 Backward pass through the LSTM RNNThis part is very similar to the `rnn_backward` function you implemented above. You will first create variables of the same dimension as your return variables. You will then iterate over all the time steps starting from the end and call the one step function you implemented for LSTM at each iteration. You will then update the parameters by summing them individually. Finally return a dictionary with the new gradients. **Instructions**: Implement the `lstm_backward` function. Create a for loop starting from $T_x$ and going backward. For each step call `lstm_cell_backward` and update the your old gradients by adding the new gradients to them. Note that `dxt` is not updated but is stored.
def lstm_backward(da, caches): """ Implement the backward pass for the RNN with LSTM-cell (over a whole sequence). Arguments: da -- Gradients w.r.t the hidden states, numpy-array of shape (n_a, m, T_x) dc -- Gradients w.r.t the memory states, numpy-array of shape (n_a, m, T_x) caches -- cache storing information from the forward pass (lstm_forward) Returns: gradients -- python dictionary containing: dx -- Gradient of inputs, of shape (n_x, m, T_x) da0 -- Gradient w.r.t. the previous hidden state, numpy array of shape (n_a, m) dWf -- Gradient w.r.t. the weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x) dWi -- Gradient w.r.t. the weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x) dWc -- Gradient w.r.t. the weight matrix of the memory gate, numpy array of shape (n_a, n_a + n_x) dWo -- Gradient w.r.t. the weight matrix of the save gate, numpy array of shape (n_a, n_a + n_x) dbf -- Gradient w.r.t. biases of the forget gate, of shape (n_a, 1) dbi -- Gradient w.r.t. biases of the update gate, of shape (n_a, 1) dbc -- Gradient w.r.t. biases of the memory gate, of shape (n_a, 1) dbo -- Gradient w.r.t. biases of the save gate, of shape (n_a, 1) """ # Retrieve values from the first cache (t=1) of caches. (caches, x) = caches (a1, c1, a0, c0, f1, i1, cc1, o1, x1, parameters) = caches[0] ### START CODE HERE ### # Retrieve dimensions from da's and x1's shapes (β‰ˆ2 lines) n_a, m, T_x = da.shape n_x, m = x1.shape # initialize the gradients with the right sizes (β‰ˆ12 lines) dx = np.zeros((n_x, m, T_x)) da0 = np.zeros((n_a, m)) da_prevt = np.zeros((n_a, m)) dc_prevt = np.zeros((n_a, m)) dWf = np.zeros((n_a, n_a + n_x)) dWi = np.zeros((n_a, n_a + n_x)) dWc = np.zeros((n_a, n_a + n_x)) dWo = np.zeros((n_a, n_a + n_x)) dbf = np.zeros((n_a, 1)) dbi = np.zeros((n_a, 1)) dbc = np.zeros((n_a, 1)) dbo = np.zeros((n_a, 1)) # loop back over the whole sequence for t in reversed(range(T_x)): # Compute all gradients using lstm_cell_backward gradients = lstm_cell_backward(da[:,:,t] + da_prevt, dc_prevt, caches[t]) # Store or add the gradient to the parameters' previous step's gradient dx[:,:,t] = gradients["dxt"] dWf += gradients["dWf"] dWi += gradients["dWi"] dWc += gradients["dWc"] dWo += gradients["dWo"] dbf += gradients["dbf"] dbi += gradients["dbi"] dbc += gradients["dbc"] dbo += gradients["dbo"] # Set the first activation's gradient to the backpropagated gradient da_prev. da0 = gradients["da_prev"] ### END CODE HERE ### # Store the gradients in a python dictionary gradients = {"dx": dx, "da0": da0, "dWf": dWf,"dbf": dbf, "dWi": dWi,"dbi": dbi, "dWc": dWc,"dbc": dbc, "dWo": dWo,"dbo": dbo} return gradients np.random.seed(1) x = np.random.randn(3,10,7) a0 = np.random.randn(5,10) Wf = np.random.randn(5, 5+3) bf = np.random.randn(5,1) Wi = np.random.randn(5, 5+3) bi = np.random.randn(5,1) Wo = np.random.randn(5, 5+3) bo = np.random.randn(5,1) Wc = np.random.randn(5, 5+3) bc = np.random.randn(5,1) parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "bi": bi, "bo": bo, "bc": bc, "by": by} a, y, c, caches = lstm_forward(x, a0, parameters) da = np.random.randn(5, 10, 4) gradients = lstm_backward(da, caches) print("gradients[\"dx\"][1][2] =", gradients["dx"][1][2]) print("gradients[\"dx\"].shape =", gradients["dx"].shape) print("gradients[\"da0\"][2][3] =", gradients["da0"][2][3]) print("gradients[\"da0\"].shape =", gradients["da0"].shape) print("gradients[\"dWf\"][3][1] =", gradients["dWf"][3][1]) print("gradients[\"dWf\"].shape =", gradients["dWf"].shape) print("gradients[\"dWi\"][1][2] =", gradients["dWi"][1][2]) print("gradients[\"dWi\"].shape =", gradients["dWi"].shape) print("gradients[\"dWc\"][3][1] =", gradients["dWc"][3][1]) print("gradients[\"dWc\"].shape =", gradients["dWc"].shape) print("gradients[\"dWo\"][1][2] =", gradients["dWo"][1][2]) print("gradients[\"dWo\"].shape =", gradients["dWo"].shape) print("gradients[\"dbf\"][4] =", gradients["dbf"][4]) print("gradients[\"dbf\"].shape =", gradients["dbf"].shape) print("gradients[\"dbi\"][4] =", gradients["dbi"][4]) print("gradients[\"dbi\"].shape =", gradients["dbi"].shape) print("gradients[\"dbc\"][4] =", gradients["dbc"][4]) print("gradients[\"dbc\"].shape =", gradients["dbc"].shape) print("gradients[\"dbo\"][4] =", gradients["dbo"][4]) print("gradients[\"dbo\"].shape =", gradients["dbo"].shape)
gradients["dx"][1][2] = [-0.00173313 0.08287442 -0.30545663 -0.43281115] gradients["dx"].shape = (3, 10, 4) gradients["da0"][2][3] = -0.095911501954 gradients["da0"].shape = (5, 10) gradients["dWf"][3][1] = -0.0698198561274 gradients["dWf"].shape = (5, 8) gradients["dWi"][1][2] = 0.102371820249 gradients["dWi"].shape = (5, 8) gradients["dWc"][3][1] = -0.0624983794927 gradients["dWc"].shape = (5, 8) gradients["dWo"][1][2] = 0.0484389131444 gradients["dWo"].shape = (5, 8) gradients["dbf"][4] = [-0.0565788] gradients["dbf"].shape = (5, 1) gradients["dbi"][4] = [-0.15399065] gradients["dbi"].shape = (5, 1) gradients["dbc"][4] = [-0.29691142] gradients["dbc"].shape = (5, 1) gradients["dbo"][4] = [-0.29798344] gradients["dbo"].shape = (5, 1)
MIT
Course-5-Sequence-Models/week1/Building+a+Recurrent+Neural+Network+-+Step+by+Step+-+v3.ipynb
xnone/coursera-deep-learning
Azure ML & Azure Databricks notebooks by Parashar Shah.Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. ![04ACI](files/tables/image2.JPG) Model Building
import os import pprint import numpy as np from pyspark.ml import Pipeline, PipelineModel from pyspark.ml.feature import OneHotEncoder, StringIndexer, VectorAssembler from pyspark.ml.classification import LogisticRegression from pyspark.ml.evaluation import BinaryClassificationEvaluator from pyspark.ml.tuning import CrossValidator, ParamGridBuilder import azureml.core # Check core SDK version number print("SDK version:", azureml.core.VERSION) ##TESTONLY # import auth creds from notebook parameters tenant = dbutils.widgets.get('tenant_id') username = dbutils.widgets.get('service_principal_id') password = dbutils.widgets.get('service_principal_password') auth = azureml.core.authentication.ServicePrincipalAuthentication(tenant, username, password) # import the Workspace class and check the azureml SDK version from azureml.core import Workspace ws = Workspace.from_config(auth = auth) print('Workspace name: ' + ws.name, 'Azure region: ' + ws.location, 'Subscription id: ' + ws.subscription_id, 'Resource group: ' + ws.resource_group, sep = '\n') ##PUBLISHONLY ## import the Workspace class and check the azureml SDK version #from azureml.core import Workspace # #ws = Workspace.from_config() #print('Workspace name: ' + ws.name, # 'Azure region: ' + ws.location, # 'Subscription id: ' + ws.subscription_id, # 'Resource group: ' + ws.resource_group, sep = '\n') #get the train and test datasets train_data_path = "AdultCensusIncomeTrain" test_data_path = "AdultCensusIncomeTest" train = spark.read.parquet(train_data_path) test = spark.read.parquet(test_data_path) print("train: ({}, {})".format(train.count(), len(train.columns))) print("test: ({}, {})".format(test.count(), len(test.columns))) train.printSchema()
_____no_output_____
MIT
how-to-use-azureml/azure-databricks/03.Build_model_runHistory.ipynb
keerthiadu/MachineLearningNotebooks
Define Model
label = "income" dtypes = dict(train.dtypes) dtypes.pop(label) si_xvars = [] ohe_xvars = [] featureCols = [] for idx,key in enumerate(dtypes): if dtypes[key] == "string": featureCol = "-".join([key, "encoded"]) featureCols.append(featureCol) tmpCol = "-".join([key, "tmp"]) # string-index and one-hot encode the string column #https://spark.apache.org/docs/2.3.0/api/java/org/apache/spark/ml/feature/StringIndexer.html #handleInvalid: Param for how to handle invalid data (unseen labels or NULL values). #Options are 'skip' (filter out rows with invalid data), 'error' (throw an error), #or 'keep' (put invalid data in a special additional bucket, at index numLabels). Default: "error" si_xvars.append(StringIndexer(inputCol=key, outputCol=tmpCol, handleInvalid="skip")) ohe_xvars.append(OneHotEncoder(inputCol=tmpCol, outputCol=featureCol)) else: featureCols.append(key) # string-index the label column into a column named "label" si_label = StringIndexer(inputCol=label, outputCol='label') # assemble the encoded feature columns in to a column named "features" assembler = VectorAssembler(inputCols=featureCols, outputCol="features") from azureml.core.run import Run from azureml.core.experiment import Experiment import numpy as np import os import shutil model_name = "AdultCensus_runHistory.mml" model_dbfs = os.path.join("/dbfs", model_name) run_history_name = 'spark-ml-notebook' # start a training run by defining an experiment myexperiment = Experiment(ws, "Ignite_AI_Talk") root_run = myexperiment.start_logging() # Regularization Rates - regs = [0.0001, 0.001, 0.01, 0.1] # try a bunch of regularization rate in a Logistic Regression model for reg in regs: print("Regularization rate: {}".format(reg)) # create a bunch of child runs with root_run.child_run("reg-" + str(reg)) as run: # create a new Logistic Regression model. lr = LogisticRegression(regParam=reg) # put together the pipeline pipe = Pipeline(stages=[*si_xvars, *ohe_xvars, si_label, assembler, lr]) # train the model model_p = pipe.fit(train) # make prediction pred = model_p.transform(test) # evaluate. note only 2 metrics are supported out of the box by Spark ML. bce = BinaryClassificationEvaluator(rawPredictionCol='rawPrediction') au_roc = bce.setMetricName('areaUnderROC').evaluate(pred) au_prc = bce.setMetricName('areaUnderPR').evaluate(pred) print("Area under ROC: {}".format(au_roc)) print("Area Under PR: {}".format(au_prc)) # log reg, au_roc, au_prc and feature names in run history run.log("reg", reg) run.log("au_roc", au_roc) run.log("au_prc", au_prc) run.log_list("columns", train.columns) # save model model_p.write().overwrite().save(model_name) # upload the serialized model into run history record mdl, ext = model_name.split(".") model_zip = mdl + ".zip" shutil.make_archive(mdl, 'zip', model_dbfs) run.upload_file("outputs/" + model_name, model_zip) #run.upload_file("outputs/" + model_name, path_or_stream = model_dbfs) #cannot deal with folders # now delete the serialized model from local folder since it is already uploaded to run history shutil.rmtree(model_dbfs) os.remove(model_zip) # Declare run completed root_run.complete() root_run_id = root_run.id print ("run id:", root_run.id) metrics = root_run.get_metrics(recursive=True) best_run_id = max(metrics, key = lambda k: metrics[k]['au_roc']) print(best_run_id, metrics[best_run_id]['au_roc'], metrics[best_run_id]['reg']) #Get the best run child_runs = {} for r in root_run.get_children(): child_runs[r.id] = r best_run = child_runs[best_run_id] #Download the model from the best run to a local folder best_model_file_name = "best_model.zip" best_run.download_file(name = 'outputs/' + model_name, output_file_path = best_model_file_name)
_____no_output_____
MIT
how-to-use-azureml/azure-databricks/03.Build_model_runHistory.ipynb
keerthiadu/MachineLearningNotebooks
Model Evaluation
##unzip the model to dbfs (as load() seems to require that) and load it. if os.path.isfile(model_dbfs) or os.path.isdir(model_dbfs): shutil.rmtree(model_dbfs) shutil.unpack_archive(best_model_file_name, model_dbfs) model_p_best = PipelineModel.load(model_name) # make prediction pred = model_p_best.transform(test) output = pred[['hours_per_week','age','workclass','marital_status','income','prediction']] display(output.limit(5)) # evaluate. note only 2 metrics are supported out of the box by Spark ML. bce = BinaryClassificationEvaluator(rawPredictionCol='rawPrediction') au_roc = bce.setMetricName('areaUnderROC').evaluate(pred) au_prc = bce.setMetricName('areaUnderPR').evaluate(pred) print("Area under ROC: {}".format(au_roc)) print("Area Under PR: {}".format(au_prc))
_____no_output_____
MIT
how-to-use-azureml/azure-databricks/03.Build_model_runHistory.ipynb
keerthiadu/MachineLearningNotebooks
Model Persistence
##NOTE: by default the model is saved to and loaded from /dbfs/ instead of cwd! model_p_best.write().overwrite().save(model_name) print("saved model to {}".format(model_dbfs)) %sh ls -la /dbfs/AdultCensus_runHistory.mml/* dbutils.notebook.exit("success")
_____no_output_____
MIT
how-to-use-azureml/azure-databricks/03.Build_model_runHistory.ipynb
keerthiadu/MachineLearningNotebooks
**Installing the transformers library**
!cat /proc/meminfo !df -h !pip install transformers
Collecting transformers [?25l Downloading https://files.pythonhosted.org/packages/d8/f4/9f93f06dd2c57c7cd7aa515ffbf9fcfd8a084b92285732289f4a5696dd91/transformers-3.2.0-py3-none-any.whl (1.0MB)  |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1.0MB 9.0MB/s [?25hRequirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.6/dist-packages (from transformers) (2019.12.20) Collecting sacremoses [?25l Downloading https://files.pythonhosted.org/packages/7d/34/09d19aff26edcc8eb2a01bed8e98f13a1537005d31e95233fd48216eed10/sacremoses-0.0.43.tar.gz (883kB)  |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 890kB 35.5MB/s [?25hRequirement already satisfied: packaging in /usr/local/lib/python3.6/dist-packages (from transformers) (20.4) Collecting tokenizers==0.8.1.rc2 [?25l Downloading https://files.pythonhosted.org/packages/80/83/8b9fccb9e48eeb575ee19179e2bdde0ee9a1904f97de5f02d19016b8804f/tokenizers-0.8.1rc2-cp36-cp36m-manylinux1_x86_64.whl (3.0MB)  |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3.0MB 46.8MB/s [?25hRequirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.6/dist-packages (from transformers) (4.41.1) Requirement already satisfied: dataclasses; python_version < "3.7" in /usr/local/lib/python3.6/dist-packages (from transformers) (0.7) Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from transformers) (2.23.0) Requirement already satisfied: filelock in /usr/local/lib/python3.6/dist-packages (from transformers) (3.0.12) Collecting sentencepiece!=0.1.92 [?25l Downloading https://files.pythonhosted.org/packages/d4/a4/d0a884c4300004a78cca907a6ff9a5e9fe4f090f5d95ab341c53d28cbc58/sentencepiece-0.1.91-cp36-cp36m-manylinux1_x86_64.whl (1.1MB)  |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1.1MB 45.9MB/s [?25hRequirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from transformers) (1.18.5) Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from sacremoses->transformers) (1.15.0) Requirement already satisfied: click in /usr/local/lib/python3.6/dist-packages (from sacremoses->transformers) (7.1.2) Requirement already satisfied: joblib in /usr/local/lib/python3.6/dist-packages (from sacremoses->transformers) (0.16.0) Requirement already satisfied: pyparsing>=2.0.2 in /usr/local/lib/python3.6/dist-packages (from packaging->transformers) (2.4.7) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->transformers) (3.0.4) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->transformers) (1.24.3) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->transformers) (2020.6.20) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->transformers) (2.10) Building wheels for collected packages: sacremoses Building wheel for sacremoses (setup.py) ... [?25l[?25hdone Created wheel for sacremoses: filename=sacremoses-0.0.43-cp36-none-any.whl size=893257 sha256=d602654d8ce06566bfa73540ba28fc0736d3471c05b2dc28adc49e037e943519 Stored in directory: /root/.cache/pip/wheels/29/3c/fd/7ce5c3f0666dab31a50123635e6fb5e19ceb42ce38d4e58f45 Successfully built sacremoses Installing collected packages: sacremoses, tokenizers, sentencepiece, transformers Successfully installed sacremoses-0.0.43 sentencepiece-0.1.91 tokenizers-0.8.1rc2 transformers-3.2.0
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**Importing the tools**
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV from sklearn.model_selection import cross_val_score import torch import transformers as ppb from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split import warnings import re warnings.filterwarnings('ignore')
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**Importing the dataset from Drive**
from google.colab import drive drive.mount('/content/gdrive') df=pd.read_csv('gdrive/My Drive/Total_cleaned.csv',delimiter=';') df1=pd.read_csv('gdrive/My Drive/Final_DUP.csv',delimiter=';') df2=pd.read_csv('gdrive/My Drive/Final_NDUP.csv',delimiter=';') df[3]
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**Loading the Pre-trained BERT model**
model_class, tokenizer_class, pretrained_weights = (ppb.BertModel, ppb.BertTokenizer, 'bert-base-uncased') tokenizer = tokenizer_class.from_pretrained(pretrained_weights) model = model_class.from_pretrained(pretrained_weights) model_class, tokenizer_class, pretrained_weights = (ppb.DistilBertModel, ppb.DistilBertTokenizer, 'distilbert-base-uncased') #tokenizer = ppb.DistilBertTokenizer.from_pretrained(distil_bert, do_lower_case=True, add_special_tokens=True, max_length=128, pad_to_max_length=True) tokenizer = tokenizer_class.from_pretrained(pretrained_weights) model = model_class.from_pretrained(pretrained_weights) #model = TFDistilBertModel.from_pretrained('distilbert-base-uncased')
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**Lower case**
df[0]= df[0].str.lower() df[1]= df[1].str.lower() df[2]= df[2].str.lower() df[3]= df[3].str.lower() df[4]= df[4].str.lower() df[5]= df[5].str.lower()
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**Remove Digits**
df[3] = df[3].str.replace(r'0', '') df[3] = df[3].str.replace(r'1', '') df[3] = df[3].str.replace(r'2', '') df[3] = df[3].str.replace(r'3', '') df[3] = df[3].str.replace(r'4', '') df[3] = df[3].str.replace(r'5', '') df[3] = df[3].str.replace(r'6', '') df[3] = df[3].str.replace(r'7', '') df[3] = df[3].str.replace(r'8', '') df[3] = df[3].str.replace(r'9', '')
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**Remove special characters**
df[3] = df[3].str.replace(r'/', '') df[3] = df[3].str.replace(r'@ ?', '') df[3] = df[3].str.replace(r'!', '') df[3] = df[3].str.replace(r'+', '') df[3] = df[3].str.replace(r'-', '') df[3] = df[3].str.replace(r'/', '') df[3] = df[3].str.replace(r':', '') df[3] = df[3].str.replace(r';', '') df[3] = df[3].str.replace(r'>', '') df[3] = df[3].str.replace(r'=', '') df[3] = df[3].str.replace(r'<', '') df[3] = df[3].str.replace(r'(', '') df[3] = df[3].str.replace(r')', '') df[3] = df[3].str.replace(r'#', '') df[3] = df[3].str.replace(r'$', '') df[3] = df[3].str.replace(r'&', '') df[3] = df[3].str.replace(r'*', '') df[3] = df[3].str.replace(r'%', '') df[3] = df[3].str.replace(r'_', '')
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**Convert to String type**
df[3] = pd.Series(df[3], dtype="string") # Pblm tokenize : " Input is not valid ,Should be a string, a list/tuple of strings or a list/tuple of integers" df[2] = pd.Series(df[2], dtype="string") df[2] = df[2].astype("|S") df[2].str.decode("utf-8") df[3] = df[3].astype("|S") df[3].str.decode("utf-8") df[3].str.len()
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**Tokenization**
df.shape batch_31=df1[:3000] batch_32=df2[:3000] df3 = pd.concat([batch_31,batch_32], ignore_index=True) batch_41=df1[3000:6000] batch_42=df2[3000:6000] df4 = pd.concat([batch_41,batch_42], ignore_index=True) batch_51=df1[6000:9000] batch_52=df2[6000:9000] df5 = pd.concat([batch_51,batch_52], ignore_index=True) batch_61=df1[9000:12000] batch_62=df2[9000:12000] df6 = pd.concat([batch_61,batch_62], ignore_index=True) batch_71=df1[12000:15000] batch_72=df2[12000:15000] df7 = pd.concat([batch_71,batch_72], ignore_index=True) batch_81=df1[15000:18000] batch_82=df2[15000:18000] df8 = pd.concat([batch_81,batch_82], ignore_index=True) batch_91=df1[18000:21000] batch_92=df2[18000:21000] df9 = pd.concat([batch_91,batch_92], ignore_index=True) batch_101=df1[21000:] batch_102=df2[21000:] df10 = pd.concat([batch_101,batch_102], ignore_index=True) batch_31=df1[:4000] batch_32=df2[:4000] df3 = pd.concat([batch_31,batch_32], ignore_index=True) batch_41=df1[4000:8000] batch_42=df2[4000:8000] df4 = pd.concat([batch_41,batch_42], ignore_index=True) batch_51=df1[8000:12000] batch_52=df2[8000:12000] df5 = pd.concat([batch_51,batch_52], ignore_index=True) batch_61=df1[12000:16000] batch_62=df2[12000:16000] df6 = pd.concat([batch_61,batch_62], ignore_index=True) batch_71=df1[16000:20000] batch_72=df2[16000:20000] df7 = pd.concat([batch_71,batch_72], ignore_index=True) batch_81=df1[20000:24000] batch_82=df2[20000:24000] df8 = pd.concat([batch_81,batch_82], ignore_index=True) def _get_segments3(tokens, max_seq_length): """Segments: 0 for the first sequence, 1 for the second""" if len(tokens)>max_seq_length: raise IndexError("Token length more than max seq length!") segments = [] first_sep = False current_segment_id = 0 for token in tokens: segments.append(current_segment_id) #print(token) if token == 102: #if first_sep: #first_sep = False #else: current_segment_id = 1 return segments + [0] * (max_seq_length - len(tokens))
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**df3**
pair3= df3['Title1'] + [" [SEP] "] + df3['Title2'] tokenized3 = pair3.apply((lambda x: tokenizer.encode(x, add_special_tokens=True,truncation=True, max_length=512))) max_len3 = 0 # padding all lists to the same size for i in tokenized3.values: if len(i) > max_len3: max_len3 = len(i) max_len3 =120 padded3 = np.array([i + [0]*(max_len3-len(i)) for i in tokenized3.values]) np.array(padded3).shape attention_mask3 = np.where(padded3 != 0, 1, 0) attention_mask3.shape input_ids3 = torch.tensor(padded3) attention_mask3 = torch.tensor(attention_mask3) input_segments3= np.array([_get_segments3(token, max_len3)for token in tokenized3.values]) token_type_ids3 = torch.tensor(input_segments3) input_segments3 = torch.tensor(input_segments3) with torch.no_grad(): last_hidden_states3 = model(input_ids3, attention_mask=attention_mask3, token_type_ids=input_segments3) # <<< 600 rows only !!! with torch.no_grad(): last_hidden_states3 = model(input_ids3, attention_mask=attention_mask3) features3 = last_hidden_states3[0][:,0,:].numpy() features3
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**df4**
pair4= df4['Title1'] + [" [SEP] "] + df4['Title2'] tokenized4 = pair4.apply((lambda x: tokenizer.encode(x, add_special_tokens=True,truncation=True, max_length=512))) max_len4 = 0 # padding all lists to the same size for i in tokenized4.values: if len(i) > max_len4: max_len4 = len(i) max_len4 =120 padded4 = np.array([i + [0]*(max_len4-len(i)) for i in tokenized4.values]) np.array(padded4).shape attention_mask4 = np.where(padded4 != 0, 1, 0) attention_mask4.shape input_ids4 = torch.tensor(padded4) attention_mask4 = torch.tensor(attention_mask4) def _get_segments3(tokens, max_seq_length): """Segments: 0 for the first sequence, 1 for the second""" if len(tokens)>max_seq_length: raise IndexError("Token length more than max seq length!") segments = [] first_sep = False current_segment_id = 0 for token in tokens: segments.append(current_segment_id) #print(token) if token == 102: #if first_sep: #first_sep = False #else: current_segment_id = 1 return segments + [0] * (max_seq_length - len(tokens)) input_segments4= np.array([_get_segments3(token, max_len4)for token in tokenized4.values]) token_type_ids4 = torch.tensor(input_segments4) input_segments4 = torch.tensor(input_segments4) with torch.no_grad(): last_hidden_states4 = model(input_ids4, attention_mask=attention_mask4, token_type_ids=input_segments4) # <<< 600 rows only !!! features4 = last_hidden_states4[0][:,0,:].numpy() features4
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**df5**
pair5= df5['Title1'] + [" [SEP] "] + df5['Title2'] tokenized5 = pair5.apply((lambda x: tokenizer.encode(x, add_special_tokens=True,truncation=True, max_length=512))) pair5.shape tokenized5.shape
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**Padding**
max_len5 = 0 # padding all lists to the same size for i in tokenized5.values: if len(i) > max_len5: max_len5 = len(i) max_len5 =120 padded5 = np.array([i + [0]*(max_len5-len(i)) for i in tokenized5.values]) np.array(padded5).shape # Dimensions of the padded variable
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**Masking**
attention_mask5 = np.where(padded5 != 0, 1, 0) attention_mask5.shape input_ids5 = torch.tensor(padded5) attention_mask5 = torch.tensor(attention_mask5) input_ids[0] ######## TITLE 2
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**Running the `model()` function through BERT**
def _get_segments3(tokens, max_seq_length): """Segments: 0 for the first sequence, 1 for the second""" if len(tokens)>max_seq_length: raise IndexError("Token length more than max seq length!") segments = [] first_sep = False current_segment_id = 0 for token in tokens: segments.append(current_segment_id) #print(token) if token == 102: #if first_sep: #first_sep = False #else: current_segment_id = 1 return segments + [0] * (max_seq_length - len(tokens)) input_segments5= np.array([_get_segments3(token, max_len5)for token in tokenized5.values]) token_type_ids5 = torch.tensor(input_segments5) input_segments5 = torch.tensor(input_segments5) with torch.no_grad(): last_hidden_states5 = model(input_ids5, attention_mask=attention_mask5, token_type_ids=input_segments5) # <<< 600 rows only !!!
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**Slicing the part of the output of BERT : [cls]**
features5 = last_hidden_states5[0][:,0,:].numpy() features5
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**df6**
pair6= df6['Title1'] + [" [SEP] "] + df6['Title2'] tokenized6 = pair6.apply((lambda x: tokenizer.encode(x, add_special_tokens=True,truncation=True, max_length=512))) max_len6 = 0 # padding all lists to the same size for i in tokenized6.values: if len(i) > max_len6: max_len6 = len(i) max_len6=120 padded6 = np.array([i + [0]*(max_len6-len(i)) for i in tokenized6.values]) np.array(padded6).shape # Dimensions of the padded variable attention_mask6 = np.where(padded6 != 0, 1, 0) attention_mask6.shape input_ids6 = torch.tensor(padded6) attention_mask6 = torch.tensor(attention_mask6) input_segments6= np.array([_get_segments3(token, max_len6)for token in tokenized6.values]) token_type_ids6 = torch.tensor(input_segments6) input_segments6 = torch.tensor(input_segments6) with torch.no_grad(): last_hidden_states6 = model(input_ids6, attention_mask=attention_mask6, token_type_ids=input_segments6) # <<< 600 rows only !!! features6 = last_hidden_states6[0][:,0,:].numpy() features6
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**df7**
pair7= df7['Title1'] + [" [SEP] "] + df7['Title2'] tokenized7 = pair7.apply((lambda x: tokenizer.encode(x, add_special_tokens=True,truncation=True, max_length=512))) max_len7 = 0 # padding all lists to the same size for i in tokenized7.values: if len(i) > max_len7: max_len7 = len(i) max_len7=120 padded7 = np.array([i + [0]*(max_len7-len(i)) for i in tokenized7.values]) np.array(padded7).shape # Dimensions of the padded variable attention_mask7 = np.where(padded7 != 0, 1, 0) attention_mask7.shape input_ids7 = torch.tensor(padded7) attention_mask7 = torch.tensor(attention_mask7) input_segments7= np.array([_get_segments3(token, max_len7)for token in tokenized7.values]) token_type_ids7 = torch.tensor(input_segments7) input_segments7 = torch.tensor(input_segments7) with torch.no_grad(): last_hidden_states7 = model(input_ids7, attention_mask=attention_mask7, token_type_ids=input_segments7) # <<< 600 rows only !!! features7 = last_hidden_states7[0][:,0,:].numpy() features7
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**df8**
pair8= df8['Title1'] + [" [SEP] "] + df8['Title2'] tokenized8 = pair8.apply((lambda x: tokenizer.encode(x, add_special_tokens=True,truncation=True, max_length=512))) max_len8 = 0 # padding all lists to the same size for i in tokenized8.values: if len(i) > max_len8: max_len8 = len(i) max_len8=120 padded8 = np.array([i + [0]*(max_len8-len(i)) for i in tokenized8.values]) np.array(padded8).shape # Dimensions of the padded variable attention_mask8 = np.where(padded8 != 0, 1, 0) attention_mask8.shape input_ids8 = torch.tensor(padded8) attention_mask8 = torch.tensor(attention_mask8) input_segments8= np.array([_get_segments3(token, max_len8)for token in tokenized8.values]) token_type_ids8 = torch.tensor(input_segments8) input_segments8 = torch.tensor(input_segments8) with torch.no_grad(): last_hidden_states8 = model(input_ids8, attention_mask=attention_mask8, token_type_ids=input_segments8) # <<< 600 rows only !!! features8 = last_hidden_states8[0][:,0,:].numpy() features8
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**df9**
pair9= df9['Title1'] + [" [SEP] "] + df9['Title2'] tokenized9 = pair9.apply((lambda x: tokenizer.encode(x, add_special_tokens=True,truncation=True, max_length=512))) max_len9 = 0 # padding all lists to the same size for i in tokenized9.values: if len(i) > max_len9: max_len9 = len(i) max_len9=120 padded9 = np.array([i + [0]*(max_len9-len(i)) for i in tokenized9.values]) np.array(padded9).shape # Dimensions of the padded variable attention_mask9 = np.where(padded9 != 0, 1, 0) attention_mask9.shape input_ids9 = torch.tensor(padded9) attention_mask9 = torch.tensor(attention_mask9) input_segments9= np.array([_get_segments3(token, max_len9)for token in tokenized9.values]) token_type_ids9 = torch.tensor(input_segments9) input_segments9 = torch.tensor(input_segments9) with torch.no_grad(): last_hidden_states9 = model(input_ids9, attention_mask=attention_mask9, token_type_ids=input_segments9) features9 = last_hidden_states9[0][:,0,:].numpy() features9
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**df10**
pair10= df10['Title1'] + [" [SEP] "] + df10['Title2'] tokenized10 = pair10.apply((lambda x: tokenizer.encode(x, add_special_tokens=True,truncation=True, max_length=512))) max_len10 = 0 # padding all lists to the same size for i in tokenized10.values: if len(i) > max_len10: max_len10 = len(i) max_len10=120 padded10 = np.array([i + [0]*(max_len10-len(i)) for i in tokenized10.values]) np.array(padded10).shape # Dimensions of the padded variable attention_mask10 = np.where(padded10 != 0, 1, 0) attention_mask10.shape input_ids10 = torch.tensor(padded10) attention_mask10 = torch.tensor(attention_mask10) input_segments10= np.array([_get_segments3(token, max_len10)for token in tokenized10.values]) token_type_ids10 = torch.tensor(input_segments10) input_segments10 = torch.tensor(input_segments10) with torch.no_grad(): last_hidden_states10 = model(input_ids10, attention_mask=attention_mask10, token_type_ids=input_segments10) # <<< 600 rows only !!! features10 = last_hidden_states10[0][:,0,:].numpy() features10
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**Classification**
features=np.concatenate([features3,features4,features5,features6,features7]) features=features3 features.shape Total = pd.concat([df3,df4,df5,df6,df7], ignore_index=True) Total labels =df3['Label'] labels =Total['Label'] labels train_features, test_features, train_labels, test_labels = train_test_split(features, labels,test_size=0.2,random_state=42) train_labels.shape test_labels.shape test_features.shape #n_splits=2 #cross_val_score=5 parameters = {'C': np.linspace(0.0001, 100, 20)} grid_search = GridSearchCV(LogisticRegression(), parameters, cv=5) grid_search.fit(train_features, train_labels) print('best parameters: ', grid_search.best_params_) print('best scrores: ', grid_search.best_score_) lr_clf = LogisticRegression(C=36.84) lr_clf.fit(train_features, train_labels) lr_clf.score(test_features, test_labels) scores = cross_val_score(lr_clf, test_features, test_labels, cv=10) print("mean: {:.3f} (std: {:.3f})".format(scores.mean(), scores.std()), end="\n\n" ) from sklearn.dummy import DummyClassifier clf = DummyClassifier() scores = cross_val_score(clf, train_features, train_labels) print("Dummy classifier score: %0.3f (+/- %0.2f)" % (scores.mean(), scores.std() * 2)) df.fillna(0) # Pblm de Nan #Import svm model from sklearn import svm #Create a svm Classifier clf = svm.SVC(kernel='linear') # Linear Kernel clf.fit(train_features, train_labels) y_pred = clf.predict(test_features) y_pred ###############"""""""""""""" from sklearn import metrics # Model Accuracy: how often is the classifier correct? print("Accuracy:",metrics.accuracy_score(test_features, y_pred))
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**Decision tree**
from sklearn.tree import DecisionTreeClassifier #n_splits=2 #cross_val_score=5 parameters = {'C': max_leaf_nodes=0)} grid_search = GridSearchCV(DecisionTreeClassifier(), parameters, cv=5) grid_search.fit(train_features, train_labels) print('best parameters: ', grid_search.best_params_) print('best scrores: ', grid_search.best_score_) clf = DecisionTreeClassifier(max_depth = 2, random_state = 0,criterion='gini') clf.fit(train_features, train_labels) # Predict for 1 observation clf.predict(test_features) # Predict for multiple observations #clf.predict(test_features[0:200]) # The score method returns the accuracy of the model score = clf.score(test_features, test_labels) print(score) scores = cross_val_score(clf, test_features, test_labels, cv=10) print("mean: {:.3f} (std: {:.3f})".format(scores.mean(), scores.std()), end="\n\n" )
mean: 0.814 (std: 0.012)
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**SVM**
from sklearn.svm import SVC #n_splits=2 #cross_val_score=5 parameters = {'C': np.linspace(0.0001, 100, 20)} grid_search = GridSearchCV(SVC(), parameters, cv=5) grid_search.fit(train_features, train_labels) print('best parameters: ', grid_search.best_params_) print('best scrores: ', grid_search.best_score_) svclassifier = SVC(kernel='linear') svclassifier.fit(train_features, train_labels) y_pred = svclassifier.predict(test_features) from sklearn.metrics import classification_report, confusion_matrix print(confusion_matrix(test_labels,y_pred)) print(classification_report(test_labels,y_pred)) param_grid = {'C':[1,10,100,1000],'gamma':[1,0.1,0.001,0.0001], 'kernel':['linear','rbf']} grid = GridSearchCV(SVC(),param_grid,refit = True, verbose=2) grid.fit(train_features,train_labels) grid.best_params_ predic = grid.predict(test_features) print(classification_report(test_labels,predic)) print(confusion_matrix(test_labels, predic))
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
Cross_Val_SVC
from sklearn.model_selection import cross_val_score from sklearn import svm clf = svm.SVC(kernel='linear', C=36.84) scores = cross_val_score(clf, test_labels, y_pred, cv=5) scores = cross_val_score(clf, test_features, test_labels, cv=10) print("mean: {:.3f} (std: {:.3f})".format(scores.mean(), scores.std()), end="\n\n" )
mean: 0.850 (std: 0.011)
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**MLP Best params**
from sklearn.neural_network import MLPClassifier mlp = MLPClassifier(max_iter=100) from sklearn.datasets import make_classification parameter_space = { 'hidden_layer_sizes': [(50,50,50), (50,100,50), (100,)], 'activation': ['tanh', 'relu'], 'solver': ['sgd', 'adam'], 'alpha': [0.0001, 0.05], 'learning_rate': ['constant','adaptive'], } from sklearn.model_selection import GridSearchCV clf = GridSearchCV(mlp, parameter_space, n_jobs=-1, cv=3) clf.fit(train_features, train_labels) # Best paramete set print('Best parameters found:\n', clf.best_params_) # All results means = clf.cv_results_['mean_test_score'] stds = clf.cv_results_['std_test_score'] for mean, std, params in zip(means, stds, clf.cv_results_['params']): print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params)) y_true, y_pred = test_labels , clf.predict(test_features) from sklearn.metrics import classification_report, confusion_matrix print('Results on the test set:') print(classification_report(y_true, y_pred)) print(confusion_matrix(y_true, y_pred)) clf = MLPClassifier(random_state=1, max_iter=300).fit(train_features, train_labels) clf.predict_proba(test_features[:1]) clf.predict(test_features[:1000, :]) clf.score(test_features, test_labels) from sklearn.model_selection import cross_val_score clf = MLPClassifier.mlp(kernel='linear') scores = cross_val_score(clf, test_labels, y_pred, cv=5) scores = cross_val_score(clf, test_features, test_labels, cv=10) print("mean: {:.3f} (std: {:.3f})".format(scores.mean(), scores.std()), end="\n\n" )
mean: 0.872 (std: 0.014)
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**Random Forest**
from sklearn.ensemble import RandomForestRegressor regressor = RandomForestRegressor(n_estimators=20, random_state=0) regressor.fit(train_features, train_labels) y_pred1 = regressor.predict(test_features) y_pred from sklearn.metrics import classification_report, confusion_matrix, accuracy_score print(confusion_matrix(test_labels,y_pred)) print(classification_report(test_features,test_labels)) print(accuracy_score(test_features, test_labels))
[[616 73] [ 86 625]]
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**Naive Bayes** Gaussian
from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() gnb.fit(train_features, train_labels) y_pred = gnb.predict(test_features) from sklearn import metrics print("Accuracy:",metrics.accuracy_score(test_labels, y_pred))
Accuracy: 0.8358333333333333
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
*Cross Validation*
print("Cross Validation:",cross_val_score(gnb, digits.data, digits.target, scoring='accuracy', cv=10).mean())
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
Bernoulli:
from sklearn.naive_bayes import BernoulliNB bnb = BernoulliNB(binarize=0.0) bnb.fit(train_features, train_labels) print("Score: ",bnb.score(test_features, test_labels))
Score: 0.829
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
*Cross Validation*
print("Cross Validation:",cross_val_score(bnb, digits.data, digits.target, scoring='accuracy', cv=10).mean())
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
Multinomial
from sklearn.naive_bayes import MultinomialNB mnb = MultinomialNB() mnb.fit(train_features, train_labels) mnb.score(test_features, test_labels) mnb = MultinomialNB() cross_val_score(mnb, digits.data, digits.target, scoring='accuracy', cv=10).mean()
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
Best params SVC
from sklearn.svm import SVC model = SVC() model.fit(train_features, train_labels) prediction = model.predict(test_features) from sklearn.metrics import classification_report, confusion_matrix print(classification_report(test_labels,prediction)) print(confusion_matrix(test_labels, prediction)) param_grid = {'C':[1,10,100,1000],'gamma':[1,0.1,0.001,0.0001], 'kernel':['linear','rbf']} grid = GridSearchCV(SVC(),param_grid,refit = True, verbose=2) grid.fit(train_features,train_labels) grid.best_params_ predic = grid.predict(test_features) print(classification_report(test_labels,predic)) print(confusion_matrix(test_labels, predic))
precision recall f1-score support 0 0.86 0.95 0.90 587 1 0.95 0.85 0.90 613 accuracy 0.90 1200 macro avg 0.91 0.90 0.90 1200 weighted avg 0.91 0.90 0.90 1200 [[558 29] [ 89 524]]
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
**Random Forest Best params**
from sklearn.ensemble import RandomForestClassifier rfc=RandomForestClassifier(random_state=42) param_grid = { 'n_estimators': [200, 500], 'max_features': ['auto', 'sqrt', 'log2'], 'max_depth' : [4,5,6,7,8], 'criterion' :['gini', 'entropy'] } CV_rfc = GridSearchCV(estimator=rfc, param_grid=param_grid, cv= 5) CV_rfc.fit(train_features, train_labels) CV_rfc.best_params_ rfc1=RandomForestClassifier(random_state=42, max_features='auto', n_estimators= 200, max_depth=8, criterion='gini') rfc1.fit(train_features, train_labels) pred=rfc1.predict(test_features) from sklearn.metrics import accuracy_score print("Accuracy for Random Forest on CV data: ",accuracy_score(test_labels,pred)) from dnn_classifier import DNNClassifier
_____no_output_____
MIT
Copie de test_tokens(1).ipynb
asma-miladi/DupBugRep-Scripts
Lambda School Data Science*Unit 2, Sprint 1, Module 4*--- Logistic Regression Assignment 🌯You'll use a [**dataset of 400+ burrito reviews**](https://srcole.github.io/100burritos/). How accurately can you predict whether a burrito is rated 'Great'?> We have developed a 10-dimensional system for rating the burritos in San Diego. ... Generate models for what makes a burrito great and investigate correlations in its dimensions.- [ ] Do train/validate/test split. Train on reviews from 2016 & earlier. Validate on 2017. Test on 2018 & later.- [ ] Begin with baselines for classification.- [ ] Use scikit-learn for logistic regression.- [ ] Get your model's validation accuracy. (Multiple times if you try multiple iterations.)- [ ] Get your model's test accuracy. (One time, at the end.)- [ ] Commit your notebook to your fork of the GitHub repo. Stretch Goals- [ ] Add your own stretch goal(s) !- [ ] Make exploratory visualizations.- [ ] Do one-hot encoding.- [ ] Do [feature scaling](https://scikit-learn.org/stable/modules/preprocessing.html).- [ ] Get and plot your coefficients.- [ ] Try [scikit-learn pipelines](https://scikit-learn.org/stable/modules/compose.html). **Load Data**
%%capture import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Linear-Models/master/data/' !pip install category_encoders==2.* # If you're working locally: else: DATA_PATH = '../data/' # Load data downloaded from https://srcole.github.io/100burritos/ import pandas as pd df = pd.read_csv(DATA_PATH+'burritos/burritos.csv') # Derive binary classification target: # We define a 'Great' burrito as having an # overall rating of 4 or higher, on a 5 point scale. # Drop unrated burritos. df = df.dropna(subset=['overall']) df['Great'] = df['overall'] >= 4 # Clean/combine the Burrito categories df['Burrito'] = df['Burrito'].str.lower() california = df['Burrito'].str.contains('california') asada = df['Burrito'].str.contains('asada') surf = df['Burrito'].str.contains('surf') carnitas = df['Burrito'].str.contains('carnitas') df.loc[california, 'Burrito'] = 'California' df.loc[asada, 'Burrito'] = 'Asada' df.loc[surf, 'Burrito'] = 'Surf & Turf' df.loc[carnitas, 'Burrito'] = 'Carnitas' df.loc[~california & ~asada & ~surf & ~carnitas, 'Burrito'] = 'Other' # Drop some high cardinality categoricals df = df.drop(columns=['Notes', 'Location', 'Reviewer', 'Address', 'URL', 'Neighborhood']) # Drop some columns to prevent "leakage" df = df.drop(columns=['Rec', 'overall'])
_____no_output_____
MIT
module4-logistic-regression/Logistic_Regression_Assignment.ipynb
afroman32/DS-Unit-2-Linear-Models
**Train, Val, Test split**
df.shape # reset index because it skipped a couple of numbers df.reset_index(inplace = True, drop = True) df.head(174) # convert Great column to 1 for True and 0 for False key = {True: 1, False:0} df['Great'].replace(key, inplace = True) # convert date column to datetime df['Date'] = pd.to_datetime(df['Date']) df.head(20) df.isnull().sum() train = pd.DataFrame() val = pd.DataFrame() test = pd.DataFrame() # train, val, test split for i in range(0, df.shape[0]): if df['Date'][i].year <= 2016: train = train.append(pd.DataFrame(df.loc[i]).T) elif df['Date'][i].year == 2017: val = val.append(pd.DataFrame(df.loc[i]).T) else: test = test.append(pd.DataFrame(df.loc[i]).T) print(train.shape, val.shape, test.shape) # check to make sure the split is correct print(train['Date'].describe(), '\n') print(val['Date'].describe(), '\n') print(test['Date'].describe())
count 298 unique 110 top 2016-08-30 00:00:00 freq 29 first 2011-05-16 00:00:00 last 2016-12-15 00:00:00 Name: Date, dtype: object count 85 unique 42 top 2017-04-07 00:00:00 freq 6 first 2017-01-04 00:00:00 last 2017-12-29 00:00:00 Name: Date, dtype: object count 38 unique 17 top 2019-08-27 00:00:00 freq 9 first 2018-01-02 00:00:00 last 2026-04-25 00:00:00 Name: Date, dtype: object
MIT
module4-logistic-regression/Logistic_Regression_Assignment.ipynb
afroman32/DS-Unit-2-Linear-Models
**Baseline**
target = 'Great' features = ['Yelp', 'Google', 'Cost', 'Hunger', 'Tortilla', 'Temp', 'Meat', 'Fillings', 'Meat:filling', 'Uniformity', 'Salsa', 'Synergy', 'Wrap'] X_train = train[features] y_train = train[target].astype(int) X_val = val[features] y_val = val[target].astype(int) y_train.value_counts(normalize = True) y_val.value_counts(normalize = True) from sklearn.metrics import accuracy_score majority_case = y_train.mode()[0] y_pred = [majority_case] * len(y_train) accuracy_score(y_train, y_pred) from sklearn.dummy import DummyClassifier # Fit the Dummy Classifier baseline = DummyClassifier(strategy = 'most_frequent') baseline.fit(X_train, y_train) # Make Predictions on validation data y_pred = baseline.predict(X_val) accuracy_score(y_val, y_pred)
_____no_output_____
MIT
module4-logistic-regression/Logistic_Regression_Assignment.ipynb
afroman32/DS-Unit-2-Linear-Models
**Logistic Regression Model**
import category_encoders as ce from sklearn.linear_model import LogisticRegressionCV from sklearn.preprocessing import StandardScaler target = 'Great' features = ['Yelp', 'Google', 'Cost', 'Hunger', 'Tortilla', 'Temp', 'Meat', 'Fillings', 'Meat:filling', 'Uniformity', 'Salsa', 'Synergy', 'Wrap'] X_train = train[features] y_train = train[target].astype(int) X_val = val[features] y_val = val[target].astype(int) # one hot encode encoder = ce.OneHotEncoder(use_cat_names=True) X_train_encoded = encoder.fit_transform(X_train) X_val_encoded = encoder.transform(X_val) # fill missing values imputer = SimpleImputer(strategy = 'mean') X_train_imputed = imputer.fit_transform(X_train_encoded) X_val_imputed = imputer.transform(X_val_encoded) # scale it scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train_imputed) X_val_scaled = scaler.transform(X_val_imputed) # validation error model = LogisticRegressionCV(cv=5, n_jobs=-1, random_state=42) model.fit(X_train_scaled, y_train) print('Validation Accuracy:', model.score(X_val_scaled, y_val)) # define test X matrix X_test = test[features] y_test = test[target].astype(int) # encode X_test X_test_encoded = encoder.transform(X_test) # fill missing values X_test_imputed = imputer.transform(X_test_encoded) # scale X_test X_test_scaled = scaler.transform(X_test_imputed) # get predictions y_pred = model.predict(X_test_scaled) print(f'Test Accuracy: {model.score(X_test_scaled, y_test)}')
_____no_output_____
MIT
module4-logistic-regression/Logistic_Regression_Assignment.ipynb
afroman32/DS-Unit-2-Linear-Models
Seminar: Monte-carlo tree searchIn this seminar, we'll implement a vanilla MCTS planning and use it to solve some Gym envs.But before we do that, we first need to modify gym env to allow saving and loading game states to facilitate backtracking.
from collections import namedtuple from pickle import dumps, loads from gym.core import Wrapper # a container for get_result function below. Works just like tuple, but prettier ActionResult = namedtuple( "action_result", ("snapshot", "observation", "reward", "is_done", "info")) class WithSnapshots(Wrapper): """ Creates a wrapper that supports saving and loading environemnt states. Required for planning algorithms. This class will have access to the core environment as self.env, e.g.: - self.env.reset() #reset original env - self.env.ale.cloneState() #make snapshot for atari. load with .restoreState() - ... You can also use reset, step and render directly for convenience. - s, r, done, _ = self.step(action) #step, same as self.env.step(action) - self.render(close=True) #close window, same as self.env.render(close=True) """ def get_snapshot(self, render=False): """ :returns: environment state that can be loaded with load_snapshot Snapshots guarantee same env behaviour each time they are loaded. Warning! Snapshots can be arbitrary things (strings, integers, json, tuples) Don't count on them being pickle strings when implementing MCTS. Developer Note: Make sure the object you return will not be affected by anything that happens to the environment after it's saved. You shouldn't, for example, return self.env. In case of doubt, use pickle.dumps or deepcopy. """ if render: self.render() # close popup windows since we can't pickle them self.close() if self.unwrapped.viewer is not None: self.unwrapped.viewer.close() self.unwrapped.viewer = None return dumps(self.env) def load_snapshot(self, snapshot, render=False): """ Loads snapshot as current env state. Should not change snapshot inplace (in case of doubt, deepcopy). """ assert not hasattr(self, "_monitor") or hasattr( self.env, "_monitor"), "can't backtrack while recording" if render: self.render() # close popup windows since we can't load into them self.close() self.env = loads(snapshot) def get_result(self, snapshot, action): """ A convenience function that - loads snapshot, - commits action via self.step, - and takes snapshot again :) :returns: next snapshot, next_observation, reward, is_done, info Basically it returns next snapshot and everything that env.step would have returned. """ self.load_snapshot(snapshot) s, r, done, _ = self.step(action) next_snapshot = self.get_snapshot() return ActionResult(next_snapshot, #fill in the variables s, r, done, _)
_____no_output_____
MIT
week6/practice_mcts.ipynb
Iramuk-ganh/practical-rl
try out snapshots:
# make env env = WithSnapshots(gym.make("CartPole-v0")) env.reset() n_actions = env.action_space.n print("initial_state:") plt.imshow(env.render('rgb_array')) env.close() # create first snapshot snap0 = env.get_snapshot() # play without making snapshots (faster) while True: is_done = env.step(env.action_space.sample())[2] if is_done: print("Whoops! We died!") break print("final state:") plt.imshow(env.render('rgb_array')) env.close() # reload initial state env.load_snapshot(snap0) print("\n\nAfter loading snapshot") plt.imshow(env.render('rgb_array')) env.close() # get outcome (snapshot, observation, reward, is_done, info) res = env.get_result(snap0, env.action_space.sample()) snap1, observation, reward = res[:3] # second step res2 = env.get_result(snap1, env.action_space.sample())
_____no_output_____
MIT
week6/practice_mcts.ipynb
Iramuk-ganh/practical-rl
MCTS: Monte-Carlo tree searchIn this section, we'll implement the vanilla MCTS algorithm with UCB1-based node selection.We will start by implementing the `Node` class - a simple class that acts like MCTS node and supports some of the MCTS algorithm steps.This MCTS implementation makes some assumptions about the environment, you can find those _in the notes section at the end of the notebook_.
assert isinstance(env,WithSnapshots) class Node: """ a tree node for MCTS """ #metadata: parent = None #parent Node value_sum = 0. #sum of state values from all visits (numerator) times_visited = 0 #counter of visits (denominator) def __init__(self,parent,action): """ Creates and empty node with no children. Does so by commiting an action and recording outcome. :param parent: parent Node :param action: action to commit from parent Node """ self.parent = parent self.action = action self.children = set() #set of child nodes #get action outcome and save it res = env.get_result(parent.snapshot,action) self.snapshot,self.observation,self.immediate_reward,self.is_done,_ = res def is_leaf(self): return len(self.children)==0 def is_root(self): return self.parent is None def get_mean_value(self): return self.value_sum / self.times_visited if self.times_visited !=0 else 0 def ucb_score(self,scale=10,max_value=1e100): """ Computes ucb1 upper bound using current value and visit counts for node and it's parent. :param scale: Multiplies upper bound by that. From hoeffding inequality, assumes reward range to be [0,scale]. :param max_value: a value that represents infinity (for unvisited nodes) """ if self.times_visited == 0: return max_value #compute ucb-1 additive component (to be added to mean value) #hint: you can use self.parent.times_visited for N times node was considered, # and self.times_visited for n times it was visited U = np.sqrt(2*np.log(self.parent.times_visited)/self.times_visited) return self.get_mean_value() + scale*U #MCTS steps def select_best_leaf(self): """ Picks the leaf with highest priority to expand Does so by recursively picking nodes with best UCB-1 score until it reaches the leaf. """ if self.is_leaf(): return self children = self.children # best_child = <select best child node in terms of node.ucb_score()> best_child = max([(child.ucb_score(), child) for child in children], key=lambda x: x[0])[1] return best_child.select_best_leaf() def expand(self): """ Expands the current node by creating all possible child nodes. Then returns one of those children. """ assert not self.is_done, "can't expand from terminal state" for action in range(n_actions): self.children.add(Node(self,action)) return self.select_best_leaf() def rollout(self,t_max=10**4): """ Play the game from this state to the end (done) or for t_max steps. On each step, pick action at random (hint: env.action_space.sample()). Compute sum of rewards from current state till Note 1: use env.action_space.sample() for random action Note 2: if node is terminal (self.is_done is True), just return 0 """ #set env into the appropriate state env.load_snapshot(self.snapshot) obs = self.observation is_done = self.is_done #<your code here - rollout and compute reward> rollout_reward = 0 while not is_done and t_max>0: t_max-=1 _, r, is_done, _ = env.step(env.action_space.sample()) rollout_reward += r return rollout_reward def propagate(self,child_value): """ Uses child value (sum of rewards) to update parents recursively. """ #compute node value my_value = self.immediate_reward + child_value #update value_sum and times_visited self.value_sum+=my_value self.times_visited+=1 #propagate upwards if not self.is_root(): self.parent.propagate(my_value) def safe_delete(self): """safe delete to prevent memory leak in some python versions""" del self.parent for child in self.children: child.safe_delete() del child class Root(Node): def __init__(self,snapshot,observation): """ creates special node that acts like tree root :snapshot: snapshot (from env.get_snapshot) to start planning from :observation: last environment observation """ self.parent = self.action = None self.children = set() #set of child nodes #root: load snapshot and observation self.snapshot = snapshot self.observation = observation self.immediate_reward = 0 self.is_done=False @staticmethod def from_node(node): """initializes node as root""" root = Root(node.snapshot,node.observation) #copy data copied_fields = ["value_sum","times_visited","children","is_done"] for field in copied_fields: setattr(root,field,getattr(node,field)) return root
_____no_output_____
MIT
week6/practice_mcts.ipynb
Iramuk-ganh/practical-rl
Main MCTS loopWith all we implemented, MCTS boils down to a trivial piece of code.
def plan_mcts(root,n_iters=10): """ builds tree with monte-carlo tree search for n_iters iterations :param root: tree node to plan from :param n_iters: how many select-expand-simulate-propagete loops to make """ for _ in range(n_iters): # PUT CODE HERE node = root.select_best_leaf() if node.is_done: node.propagate(0) else: #node is not terminal #<expand-simulate-propagate loop> child = node.expand() rollout_reward = child.rollout() node.propagate(rollout_reward)
_____no_output_____
MIT
week6/practice_mcts.ipynb
Iramuk-ganh/practical-rl
Plan and executeIn this section, we use the MCTS implementation to find optimal policy.
env = WithSnapshots(gym.make("CartPole-v0")) root_observation = env.reset() root_snapshot = env.get_snapshot() root = Root(root_snapshot, root_observation) #plan from root: plan_mcts(root,n_iters=1000) from IPython.display import clear_output from itertools import count from gym.wrappers import Monitor total_reward = 0 #sum of rewards test_env = loads(root_snapshot) #env used to show progress for i in count(): #get best child # best_child = <select child with highest mean reward> best_child = max([(child.get_mean_value(), child) for child in root.children], key=lambda x: x[0])[1] #take action s,r,done,_ = test_env.step(best_child.action) #show image clear_output(True) plt.title("step %i"%i) plt.imshow(test_env.render('rgb_array')) plt.show() total_reward += r if done: print("Finished with reward = ",total_reward) break #discard unrealized part of the tree [because not every child matters :(] for child in root.children: if child != best_child: child.safe_delete() #declare best child a new root root = Root.from_node(best_child) # assert not root.is_leaf(), "We ran out of tree! Need more planning! Try growing tree right inside the loop." #you may want to expand tree here #<your code here> if root.is_leaf(): plan_mcts(root,n_iters=10)
_____no_output_____
MIT
week6/practice_mcts.ipynb
Iramuk-ganh/practical-rl
Submit to Coursera
from submit import submit_mcts submit_mcts(total_reward, "[email protected]", "xx")
Submitted to Coursera platform. See results on assignment page!
MIT
week6/practice_mcts.ipynb
Iramuk-ganh/practical-rl
$$\newcommand\bs[1]{\boldsymbol{1}}$$ IntroductionThis chapter is light but contains some important definitions. The identity matrix and the inverse of a matrix are concepts that will be very useful in subsequent chapters. Using these concepts, we will see how vectors and matrices can be transformed. To fully understand the intuition behind these operations, we'll take a look at the geometric intrepreation of linear algebra. This will help us visualize otherwise abstract operatins.Then, at the end of this chapter, we'll use the concepts of matrix inversion and the identity matrix to solve a simple system of linear equations! Once you see this approach, you'll never want to use the algebraic methods of substitution or elimination that you learned in high school! 3.3 Identity and Inverse Matrices Identity matricesThe identity matrix $\bs{I}_n$ is a special matrix of shape ($n \times n$) that is filled with $0$ except for the diagonal, which is filled with $1$.A 3 by 3 identity matrixMore generally,$$I_1 = \begin{bmatrix}1 \end{bmatrix},\ I_2 = \begin{bmatrix}1 & 0 \\0 & 1 \end{bmatrix},\ I_3 = \begin{bmatrix}1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1 \end{bmatrix},\ \cdots ,\ I_n = \begin{bmatrix}1 & 0 & 0 & \cdots & 0 \\0 & 1 & 0 & \cdots & 0 \\0 & 0 & 1 & \cdots & 0 \\\vdots & \vdots & \vdots & \ddots & \vdots \\0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$ An identity matrix can be created with the Numpy function `eye()`:
np.eye(3) # 3 rows, and 3 columns
_____no_output_____
Unlicense
Learn Math/3. Linear Algebra/3.3 Identity and Inverse Matrices/3.3 Identity and Inverse Matrices.ipynb
mcallistercs/learning-data-science
When you "apply" the identity matrix to a vector using the dot product, the result is the same vector:$$\bs{I}_n\bs{x} = \bs{x}$$ Example 1$$\begin{bmatrix} 1 & 0 & 0 \\\\ 0 & 1 & 0 \\\\ 0 & 0 & 1\end{bmatrix}\times\begin{bmatrix} x_{1} \\\\ x_{2} \\\\ x_{3}\end{bmatrix}=\begin{bmatrix} 1 \times x_1 + 0 \times x_2 + 0\times x_3 \\\\ 0 \times x_1 + 1 \times x_2 + 0\times x_3 \\\\ 0 \times x_1 + 0 \times x_2 + 1\times x_3\end{bmatrix}=\begin{bmatrix} x_{1} \\\\ x_{2} \\\\ x_{3}\end{bmatrix}$$Hence, the name **identity** matrix.
x = np.array([[2], [6], [3]]) x x_id = np.eye(x.shape[0]).dot(x) x_id
_____no_output_____
Unlicense
Learn Math/3. Linear Algebra/3.3 Identity and Inverse Matrices/3.3 Identity and Inverse Matrices.ipynb
mcallistercs/learning-data-science
More generally, when $\bs{A}$ is an $m\times n$ matrix, it is a property of matrix multiplication that:$$I_m\bs{A} = \bs{A}I_n = \bs{A}$$ Visualizing the intuitionVectors and matrices occupy $n$-dimensional space. This precept allows us to think about linear algebra geometrically and, if we're lucky enough to be working with $<3$ dimensions, visually. For example, if you had a $2$-dimensional vector $\bs{v}$, you could think of the vector as an ordered pair of real numbers ($a,b$). This ordered pair could then be plotted in a Cartesian coordinate system with a line connecting it to the origin:If you had two such vectors ($\bs{v}$ and $\bs{w}$), a simple vector operation like addition would geometrically look like this:Mathematically, that addition looks like this:Now that we've got you thinking about linear algebra geometrically, consider the identity matrix. If you multiply a vector by the identity matrix, you're technically applying a **transformation** to that vector. But since your multiplier was the identity matrix $\bs{I}$, the transformation just outputs the multiplicand, $\bs{x}$, itself. That's what happened above when we saw that $\bs{x}$ was not altered after being multiplied by $\bs{I}$. Visually, nothing would happen to your line.But what if we slightly change our identity matrix? What if, for example, we change the $1$'s to $2$'s like so:$$\begin{bmatrix} 2 & 0 & 0 \\\\ 0 & 2 & 0 \\\\ 0 & 0 & 2\end{bmatrix}$$That would double each element in vector $\bs{x}$. Visually, that would make the line twice as long.The takeaway here is that you can define an **operation matrix** to transform vectors. Here’s a few examples of the types of transformations you could do: - Scale: make all inputs bigger/smaller - Skew: make certain inputs bigger/smaller - Flip: make inputs negative - Rotate: make new coordinates based on old ones (e.g. East becomes North, North becomes West, etc.)In short, all of these are geometric interpretations of multiplication. Each of them provides a means to warp a vector space. Inverse MatricesIf you have a square matrix (i.e. a matrix with the same number of columns and rows) then you can calculate the inverse of that matrix so long as its [determinant](https://en.wikipedia.org/wiki/Determinant) doesn't equal 0 (more on the determinant in a later lesson!).The inverse of $\bs{A}$ is denoted $\bs{A}^{-1}$. It is the matrix that results in the identity matrix when it is multiplied by $\bs{A}$:$$\bs{A}^{-1}\bs{A}=\bs{I}_n$$This means that if we apply a linear transformation to the space with $\bs{A}$, it is possible to go back with $\bs{A}^{-1}$. It provides a way to cancel the transformation. Example 2$$\bs{A}=\begin{bmatrix} 3 & 0 & 2 \\\\ 2 & 0 & -2 \\\\ 0 & 1 & 1\end{bmatrix}$$For this example, we will use the numpy function `linalg.inv()` to calculate the inverse of $\bs{A}$. Let's start by creating $\bs{A}$. If you want to learn about the nitty gritty details behind this operation, check out [this](https://www.mathsisfun.com/algebra/matrix-inverse-minors-cofactors-adjugate.html) or [this](https://www.mathsisfun.com/algebra/matrix-inverse-row-operations-gauss-jordan.html).
A = np.array([[3, 0, 2], [2, 0, -2], [0, 1, 1]]) A
_____no_output_____
Unlicense
Learn Math/3. Linear Algebra/3.3 Identity and Inverse Matrices/3.3 Identity and Inverse Matrices.ipynb
mcallistercs/learning-data-science
Now we calculate its inverse:
A_inv = np.linalg.inv(A) A_inv
_____no_output_____
Unlicense
Learn Math/3. Linear Algebra/3.3 Identity and Inverse Matrices/3.3 Identity and Inverse Matrices.ipynb
mcallistercs/learning-data-science
We can check that $\bs{A^{-1}}$ is the inverse of $\bs{A}$ with Python:
A_bis = A_inv.dot(A) A_bis
_____no_output_____
Unlicense
Learn Math/3. Linear Algebra/3.3 Identity and Inverse Matrices/3.3 Identity and Inverse Matrices.ipynb
mcallistercs/learning-data-science
Sovling a system of linear equationsThe inverse matrix can be used to solve the equation $\bs{Ax}=\bs{b}$ by adding it to each term:$$\bs{A}^{-1}\bs{Ax}=\bs{A}^{-1}\bs{b}$$Since we know by definition that $\bs{A}^{-1}\bs{A}=\bs{I}$, we have:$$\bs{I}_n\bs{x}=\bs{A}^{-1}\bs{b}$$We saw that a vector is not changed when multiplied by the identity matrix. So we can write:$$\bs{x}=\bs{A}^{-1}\bs{b}$$This is great because we now have our vector of variables $\bs{x}$ all by itself on the right side of the equation! This means we can solve for $\bs{x}$ by simply computing the dot product of $\bs{A^-1}$ and $\bs{b}$!Let's try that! Example 3We will take a simple solvable example:$$\begin{cases}y = 2x \\\\y = -x +3\end{cases}$$First, lets be sure we're using the notation we saw in above:$$\begin{cases}A_{1,1}x_1 + A_{1,2}x_2 = b_1 \\\\A_{2,1}x_1 + A_{2,2}x_2= b_2\end{cases}$$Here, $x_1$ corresponds to $x$ and $x_2$ corresponds to $y$. So we have:$$\begin{cases}2x_1 - x_2 = 0 \\\\x_1 + x_2= 3\end{cases}$$Our matrix $\bs{A}$ of weights is:$$\bs{A}=\begin{bmatrix} 2 & -1 \\\\ 1 & 1\end{bmatrix}$$And the vector $\bs{b}$ containing the solutions of individual equations is:$$\bs{b}=\begin{bmatrix} 0 \\\\ 3\end{bmatrix}$$Under the matrix form, our systems becomes:$$\begin{bmatrix} 2 & -1 \\\\ 1 & 1\end{bmatrix}\begin{bmatrix} x_1 \\\\ x_2\end{bmatrix}=\begin{bmatrix} 0 \\\\ 3\end{bmatrix}$$Let's define $\bs{A}$:
A = np.array([[2, -1], [1, 1]]) A
_____no_output_____
Unlicense
Learn Math/3. Linear Algebra/3.3 Identity and Inverse Matrices/3.3 Identity and Inverse Matrices.ipynb
mcallistercs/learning-data-science
And let's define $\bs{b}$:
b = np.array([[0], [3]])
_____no_output_____
Unlicense
Learn Math/3. Linear Algebra/3.3 Identity and Inverse Matrices/3.3 Identity and Inverse Matrices.ipynb
mcallistercs/learning-data-science
And now let's find the inverse of $\bs{A}$:
A_inv = np.linalg.inv(A) A_inv
_____no_output_____
Unlicense
Learn Math/3. Linear Algebra/3.3 Identity and Inverse Matrices/3.3 Identity and Inverse Matrices.ipynb
mcallistercs/learning-data-science
Since we saw that$$\bs{x}=\bs{A}^{-1}\bs{b}$$We have:
x = A_inv.dot(b) x
_____no_output_____
Unlicense
Learn Math/3. Linear Algebra/3.3 Identity and Inverse Matrices/3.3 Identity and Inverse Matrices.ipynb
mcallistercs/learning-data-science
This is our solution! $$\bs{x}=\begin{bmatrix} 1 \\\\ 2\end{bmatrix}$$Going back to the geometric interpretion of linear algebra, you can think of our solution vector $\bs{x}$ as containing a set of coordinates ($1, 2$). This point in a $2$-dimensional Cartesian plane is actually the intersection of the two lines representing the equations! Let's plot this to visually check the solution:
#to draw the equation with Matplotlib, first create a vector with some x values x = np.arange(-10, 10) #then create some y values for each of those x values using the equation y = 2*x y1 = -x + 3 #then instantiate the plot figure plt.figure() #draw the first line plt.plot(x, y) #draw the second line plt.plot(x, y1) #set the limits of the axes plt.xlim(0, 3) plt.ylim(0, 3) #draw the axes plt.axvline(x=0, color='grey') plt.axhline(y=0, color='grey')
_____no_output_____
Unlicense
Learn Math/3. Linear Algebra/3.3 Identity and Inverse Matrices/3.3 Identity and Inverse Matrices.ipynb
mcallistercs/learning-data-science
ESML - accelerator: Quick DEMO
import sys, os sys.path.append(os.path.abspath("../azure-enterprise-scale-ml/esml/common/")) # NOQA: E402 from esml import ESMLDataset, ESMLProject p = ESMLProject() # Will search in ROOT for your copied SETTINGS folder '../../../settings', you should copy template settings from '../settings' #p = ESMLProject(True) # Demo settings, will search in internal TEMPLATE SETTINGS folder '../settings' #p.dev_test_prod = "dev" p.describe()
_____no_output_____
MIT
notebook_demos/esml_howto_0_short.ipynb
jostrm/azure-enterprise-scale-ml-usage
from azureml.core import Workspacefrom azureml.core.authentication import InteractiveLoginAuthenticationauth = InteractiveLoginAuthentication(tenant_id = p.tenant)ws = Workspace.get(name = p.workspace_name,subscription_id = p.subscription_id,resource_group = p.resource_group,auth=auth)ws.write_config(path=".", file_name="../../ws_config.json")ws = Workspace.from_config("../ws_config.json") Reads config.json 2) ESML will Automap and Autoregister Azure ML Datasets - IN, SILVER, BRONZE, GOLD- `Automap` and `Autoregister` Azure ML Datasets as: `IN, SILVER, BRONZE, GOLD`
from azureml.core import Workspace ws, config_name = p.authenticate_workspace_and_write_config() ws = p.get_workspace_from_config() ws.name print("Are we in R&D state (no dataset versioning) = {}".format(p.rnd)) p.unregister_all_datasets(ws) # DEMO purpose datastore = p.init(ws)
_____no_output_____
MIT
notebook_demos/esml_howto_0_short.ipynb
jostrm/azure-enterprise-scale-ml-usage
3) IN->`BRONZE->SILVER`->Gold- Create dataset from PANDAS - Save to SILVER
import pandas as pd ds = p.DatasetByName("ds01_diabetes") df = ds.Bronze.to_pandas_dataframe() df.head()
_____no_output_____
MIT
notebook_demos/esml_howto_0_short.ipynb
jostrm/azure-enterprise-scale-ml-usage
3) BRONZE-SILVER (EDIT rows & SAVE)- Test change rows, same structure = new version (and new file added)- Note: not earlier files in folder are removed. They are needed for other "versions". - Expected: For 3 files: New version, 997 rows: 2 older files=627 + 1 new file=370- Expected (if we delete OLD files): New version, with less rows. 370 instead of 997
df_filtered = df[df.AGE > 0.015] print(df.shape[0], df_filtered.shape[0])
_____no_output_____
MIT
notebook_demos/esml_howto_0_short.ipynb
jostrm/azure-enterprise-scale-ml-usage
3a) Save `SILVER` ds01_diabetes
aml_silver = p.save_silver(p.DatasetByName("ds01_diabetes"),df_filtered) aml_silver.name
_____no_output_____
MIT
notebook_demos/esml_howto_0_short.ipynb
jostrm/azure-enterprise-scale-ml-usage
COMPARE `BRONZE vs SILVER`- Compare and validate the feature engineering
ds01 = p.DatasetByName("ds01_diabetes") bronze_rows = ds01.Bronze.to_pandas_dataframe().shape[0] silver_rows = ds01.Silver.to_pandas_dataframe().shape[0] print("Bronze: {}".format(bronze_rows)) # Expected 442 rows print("Silver: {}".format(silver_rows)) # Expected 185 rows (filtered) assert bronze_rows == 442,"BRONZE Should have 442 rows to start with, but is {}".format(bronze_rows) assert silver_rows == 185,"SILVER should have 185 after filtering, but is {}".format(silver_rows)
_____no_output_____
MIT
notebook_demos/esml_howto_0_short.ipynb
jostrm/azure-enterprise-scale-ml-usage
3b) Save `BRONZE β†’ SILVER` ds02_other
df_edited = p.DatasetByName("ds02_other").Silver.to_pandas_dataframe() ds02_silver = p.save_silver(p.DatasetByName("ds02_other"),df_edited) ds02_silver.name
_____no_output_____
MIT
notebook_demos/esml_howto_0_short.ipynb
jostrm/azure-enterprise-scale-ml-usage
3c) Merge all `SILVERS -> then save GOLD`
df_01 = ds01.Silver.to_pandas_dataframe() df_02 = ds02_silver.to_pandas_dataframe() df_gold1_join = df_01.join(df_02) # left join -> NULL on df_02 print("Diabetes shape: ", df_01.shape) print(df_gold1_join.shape)
_____no_output_____
MIT
notebook_demos/esml_howto_0_short.ipynb
jostrm/azure-enterprise-scale-ml-usage
Save `GOLD` v1
print(p.rnd) p.rnd=False # Allow versioning on DATASETS, to have lineage ds_gold_v1 = p.save_gold(df_gold1_join)
_____no_output_____
MIT
notebook_demos/esml_howto_0_short.ipynb
jostrm/azure-enterprise-scale-ml-usage
3c) Ops! "faulty" GOLD - too many features
print(p.Gold.to_pandas_dataframe().shape) # 19 features...I want 11 print("Are we in RnD phase? Or do we have 'versioning on datasets=ON'") print("RnD phase = {}".format(p.rnd))
_____no_output_____
MIT
notebook_demos/esml_howto_0_short.ipynb
jostrm/azure-enterprise-scale-ml-usage
Save `GOLD` v2
# Lets just go with features from ds01 ds_gold_v1 = p.save_gold(df_01)
_____no_output_____
MIT
notebook_demos/esml_howto_0_short.ipynb
jostrm/azure-enterprise-scale-ml-usage
Get `GOLD` by version
gold_1 = p.get_gold_version(1) gold_1.to_pandas_dataframe().shape # (185, 19) gold_2 = p.get_gold_version(2) gold_2.to_pandas_dataframe().shape # (185, 11) p.Gold.to_pandas_dataframe().shape # Latest version (185, 11) df_01_filtered = df_01[df_01.AGE > 0.03807] ds_gold_v1 = p.save_gold(df_01_filtered) gold_2 = p.get_gold_version(3) # sliced, from latest version gold_2.to_pandas_dataframe().shape # (113, 11)
_____no_output_____
MIT
notebook_demos/esml_howto_0_short.ipynb
jostrm/azure-enterprise-scale-ml-usage
TRAIN - `AutoMLFactory + ComputeFactory`
from baselayer_azure_ml import AutoMLFactory, ComputeFactory p.dev_test_prod = "test" print("what environment are we targeting? = {}".format(p.dev_test_prod)) automl_performance_config = p.get_automl_performance_config() automl_performance_config p.dev_test_prod = "dev" automl_performance_config = p.get_automl_performance_config() automl_performance_config
_____no_output_____
MIT
notebook_demos/esml_howto_0_short.ipynb
jostrm/azure-enterprise-scale-ml-usage
Get `COMPUTE` for current `ENVIRONMENT`
aml_compute = p.get_training_aml_compute(ws)
_____no_output_____
MIT
notebook_demos/esml_howto_0_short.ipynb
jostrm/azure-enterprise-scale-ml-usage
`TRAIN` model -> See other notebook `esml_howto_2_train.ipynb`
from azureml.train.automl import AutoMLConfig from baselayer_azure_ml import azure_metric_regression label = "Y" train_6, validate_set_2, test_set_2 = p.split_gold_3(0.6,label) # Auto-registerin AZURE (M03_GOLD_TRAIN | M03_GOLD_VALIDATE | M03_GOLD_TEST) # Alt: train,testv= p.Gold.random_split(percentage=0.8, seed=23) automl_config = AutoMLConfig(task = 'regression', primary_metric = azure_metric_regression.MAE, experiment_exit_score = '0.208', # DEMO purpose compute_target = aml_compute, training_data = p.GoldTrain, # is 'train_6' pandas dataframe, but as an Azure ML Dataset label_column_name = label, **automl_performance_config ) via_pipeline = False best_run, fitted_model, experiment = AutoMLFactory(p).train_pipeline(automl_config) if via_pipeline else AutoMLFactory(p).train_as_run(automl_config)
_____no_output_____
MIT
notebook_demos/esml_howto_0_short.ipynb
jostrm/azure-enterprise-scale-ml-usage
Pymaceuticals Inc.--- Analysis* Capomulin and Ramicane showed the smallest tumor volume at the end of the study.* There appears to be a correlation between mouse weight and the average tumor volume; as weight increases, tumor volume increases.* Capomulin had the lowest IQR, indicating a more narrow spread in the results for this drug regimen.
# Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import scipy.stats as st # Study data files mouse_metadata_path = "data/Mouse_metadata.csv" study_results_path = "data/Study_results.csv" # Read the mouse data and the study results mouse_metadata = pd.read_csv(mouse_metadata_path) study_results = pd.read_csv(study_results_path) mouse_metadata.head() study_results.head() # Combine the data into a single dataset clinical_trial=pd.merge(study_results, mouse_metadata, how='left') clinical_trial.head() clinical_trial.shape
_____no_output_____
ADSL
Pymaceuticals/pymaceuticals_basco.ipynb
bascomary/matplotlib_challenge
Summary Statistics
# Generate a summary statistics table of mean, median, variance, standard deviation, and SEM of the tumor volume for each regimen mean_df = clinical_trial.groupby('Drug Regimen').mean().reset_index() mean_df = mean_df[['Drug Regimen', 'Tumor Volume (mm3)']] mean_df = mean_df.rename(columns={'Tumor Volume (mm3)':'Mean Tumor Volume'}) mean_df median_df=clinical_trial.groupby('Drug Regimen').median().reset_index() median_df=median_df[['Drug Regimen', 'Tumor Volume (mm3)']] median_df=median_df.rename(columns={'Tumor Volume (mm3)':'Median Tumor Volume'}) median_df drug_summary=pd.merge(mean_df, median_df, how="inner") drug_summary variance_df=clinical_trial.groupby('Drug Regimen').var().reset_index() variance_df=variance_df[['Drug Regimen', 'Tumor Volume (mm3)']] variance_df=variance_df.rename(columns={'Tumor Volume (mm3)':'Tumor Volume Variance'}) variance_df drug_summary=pd.merge(drug_summary, variance_df, how="inner") drug_summary std_df=clinical_trial.groupby('Drug Regimen').std().reset_index() std_df=std_df[['Drug Regimen', 'Tumor Volume (mm3)']] std_df=std_df.rename(columns={'Tumor Volume (mm3)':'Tumor Volume Std. Dev.'}) std_df drug_summary=pd.merge(drug_summary, std_df, how="inner") drug_summary sem_df=clinical_trial.groupby('Drug Regimen').sem().reset_index() sem_df=sem_df[['Drug Regimen', 'Tumor Volume (mm3)']] sem_df=sem_df.rename(columns={'Tumor Volume (mm3)':'Tumor Volume Std. Err.'}) sem_df drug_summary=pd.merge(drug_summary, sem_df, how="inner") drug_summary drug_count=clinical_trial.groupby('Drug Regimen').count().reset_index() drug_count=drug_count[['Drug Regimen', 'Tumor Volume (mm3)']] drug_count=drug_count.rename(columns={'Tumor Volume (mm3)':'Count'}) drug_count drug_summary=pd.merge(drug_summary, drug_count, how="inner") drug_summary = drug_summary.sort_values('Count', ascending=False) drug_summary
_____no_output_____
ADSL
Pymaceuticals/pymaceuticals_basco.ipynb
bascomary/matplotlib_challenge
Bar and Pie Charts
# Generate a bar plot showing number of data points for each treatment regimen using pandas drug_summary.sort_values('Count', ascending=False).plot.bar(x="Drug Regimen", y="Count") # Generate a bar plot showing number of data points for each treatment regimen using pyplot plt.bar(drug_summary['Drug Regimen'], drug_summary['Count'], color="b", align="center") plt.xticks(rotation='vertical') # Create a gender dataframe gender_df = clinical_trial.groupby('Sex').count() gender_df = gender_df[['Mouse ID']] gender_df = gender_df.rename(columns={'Mouse ID':'Gender Count'}) gender_df # Generate a pie plot showing the distribution of female versus male mice using pandas gender_df.plot.pie(subplots=True) # Generate a pie plot showing the distribution of female versus male mice using pyplot genders= ['female', 'male'] plt.pie(gender_df['Gender Count'], labels=genders, autopct="%1.1f%%") plt.axis('equal') plt.show()
_____no_output_____
ADSL
Pymaceuticals/pymaceuticals_basco.ipynb
bascomary/matplotlib_challenge
Quartiles, Outliers and Boxplots
# Calculate the final tumor volume of each mouse. tumor_df = clinical_trial.groupby('Mouse ID').last() tumor_df.head() # Calculate the final tumor volume of each mouse in Capomulin treatment regime. capomulin = tumor_df.loc[(tumor_df['Drug Regimen'] == "Capomulin"),:] capomulin.head() # Calculate the IQR and quantitatively determine if there are any potential outliers. cap_quartiles = capomulin['Tumor Volume (mm3)'].quantile([.25,.5,.75]) cap_lowerq = cap_quartiles[0.25] cap_upperq = cap_quartiles[0.75] cap_iqr = cap_upperq-cap_lowerq print(f"The lower quartile of the Capomulin test group is: {cap_lowerq}") print(f"The upper quartile of the Capomulin test group is: {cap_upperq}") print(f"The interquartile range of the Capomulin test group is: {cap_iqr}") print(f"The the median of the Capomulin test group is: {cap_quartiles[0.5]} ") cap_lower_bound = cap_lowerq - (1.5*cap_iqr) cap_upper_bound = cap_upperq + (1.5*cap_iqr) print(f"Values below {cap_lower_bound} could be outliers.") print(f"Values above {cap_upper_bound} could be outliers.") # Calculate the final tumor volume of each mouse in Ramicane treatment regime. ramicane = tumor_df.loc[(tumor_df['Drug Regimen'] == "Ramicane"),:] ramicane.head() # Calculate the IQR and quantitatively determine if there are any potential outliers. ram_quartiles = ramicane['Tumor Volume (mm3)'].quantile([.25,.5,.75]) ram_lowerq = ram_quartiles[0.25] ram_upperq = ram_quartiles[0.75] ram_iqr = ram_upperq-ram_lowerq print(f"The lower quartile of the Ramicane test group is: {ram_lowerq}") print(f"The upper quartile of the Ramicane test group is: {ram_upperq}") print(f"The interquartile range of the Ramicane test group is: {ram_iqr}") print(f"The the median of the Ramicane test group is: {ram_quartiles[0.5]} ") ram_lower_bound = ram_lowerq - (1.5*ram_iqr) ram_upper_bound = ram_upperq + (1.5*ram_iqr) print(f"Values below {ram_lower_bound} could be outliers.") print(f"Values above {ram_upper_bound} could be outliers.") # Calculate the final tumor volume of each mouse in Infubinol treatment regime. infubinol = tumor_df.loc[(tumor_df['Drug Regimen'] == "Infubinol"),:] infubinol.head() # Calculate the IQR and quantitatively determine if there are any potential outliers. inf_quartiles = infubinol['Tumor Volume (mm3)'].quantile([.25,.5,.75]) inf_lowerq = inf_quartiles[0.25] inf_upperq = inf_quartiles[0.75] inf_iqr = inf_upperq-inf_lowerq print(f"The lower quartile of the Infubinol test group is: {inf_lowerq}") print(f"The upper quartile of the Infubinol test group is: {inf_upperq}") print(f"The interquartile range of the Infubinol test group is: {inf_iqr}") print(f"The the median of the Infubinol test group is: {inf_quartiles[0.5]} ") inf_lower_bound = inf_lowerq - (1.5*inf_iqr) inf_upper_bound = inf_upperq + (1.5*inf_iqr) print(f"Values below {inf_lower_bound} could be outliers.") print(f"Values above {inf_upper_bound} could be outliers.") # Calculate the final tumor volume of each mouse in Ceftamin treatment regime. ceftamin = tumor_df.loc[(tumor_df['Drug Regimen'] == "Ceftamin"),:] ceftamin.head() # Calculate the IQR and quantitatively determine if there are any potential outliers. cef_quartiles = ceftamin['Tumor Volume (mm3)'].quantile([.25,.5,.75]) cef_lowerq = cef_quartiles[0.25] cef_upperq = cef_quartiles[0.75] cef_iqr = cef_upperq-cef_lowerq print(f"The lower quartile of the Infubinol test group is: {cef_lowerq}") print(f"The upper quartile of the Infubinol test group is: {cef_upperq}") print(f"The interquartile range of the Infubinol test group is: {cef_iqr}") print(f"The the median of the Infubinol test group is: {cef_quartiles[0.5]} ") cef_lower_bound = cef_lowerq - (1.5*cef_iqr) cef_upper_bound = cef_upperq + (1.5*cef_iqr) print(f"Values below {cef_lower_bound} could be outliers.") print(f"Values above {cef_upper_bound} could be outliers.") #Created new dataframe for four drugs of interest regimen_of_interest = tumor_df.loc[(tumor_df['Drug Regimen'] == 'Capomulin') | (tumor_df['Drug Regimen'] == 'Ramicane') | (tumor_df['Drug Regimen'] == 'Infubinol')| (tumor_df['Drug Regimen'] == 'Ceftamin')] regimen_of_interest # Generate a box plot of the final tumor volume of each mouse across four regimens of interest regimen_of_interest.boxplot('Tumor Volume (mm3)', by='Drug Regimen', figsize=(10, 5)) plt.show
_____no_output_____
ADSL
Pymaceuticals/pymaceuticals_basco.ipynb
bascomary/matplotlib_challenge
Line and Scatter Plots
# Generate a line plot of time point versus tumor volume for a mouse treated with Capomulin clinical_trial.head() single_mouse = clinical_trial[['Mouse ID', 'Timepoint', 'Tumor Volume (mm3)', 'Drug Regimen']] single_mouse = single_mouse.loc[(single_mouse['Drug Regimen'] == "Capomulin"),:].reset_index() single_mouse = single_mouse.loc[(single_mouse['Mouse ID'] == "b128"),:] single_mouse # Generate a line plot of time point versus tumor volume for a mouse treated with Capomulin plt.plot(single_mouse['Timepoint'], single_mouse['Tumor Volume (mm3)'], color='blue', label="Mouse treated with Capomulin, Subject b128") plt.ylabel('Tumor Volume (mm3)') plt.xlabel('Timepoint') # Create new dataframe # Capomulin test group mouse_treatment = clinical_trial[['Mouse ID', 'Drug Regimen']] mouse_treatment mean_mouse = clinical_trial.groupby('Mouse ID').mean().reset_index() mean_mouse.head() merged_group=pd.merge(mean_mouse, mouse_treatment, how='inner').reset_index() merged_group.head() capomulin_test_group = merged_group.loc[(merged_group['Drug Regimen'] == "Capomulin"),:].reset_index() capomulin_test_group.head() # Generate a scatter plot of mouse weight versus average tumor volume for the Capomulin regimen weight = capomulin_test_group['Weight (g)'] tumor = capomulin_test_group['Tumor Volume (mm3)'] plt.scatter(weight, tumor, marker="o", facecolors="red", edgecolors="black") plt.show
_____no_output_____
ADSL
Pymaceuticals/pymaceuticals_basco.ipynb
bascomary/matplotlib_challenge
Correlation and Regression
# Calculate the correlation coefficient and linear regression model # for mouse weight and average tumor volume for the Capomulin regimen vc_slope, vc_int, vc_r, vc_p, vc_std_err = st.linregress(weight, tumor) vc_fit = vc_slope * weight + vc_int plt.plot(weight,vc_fit) weight = capomulin_test_group['Weight (g)'] tumor = capomulin_test_group['Tumor Volume (mm3)'] plt.scatter(weight, tumor, marker="o", facecolors="red", edgecolors="black") plt.show
_____no_output_____
ADSL
Pymaceuticals/pymaceuticals_basco.ipynb
bascomary/matplotlib_challenge
In this notebook we'll provide an example for using different openrouteservice API's to help you look for an apartment.
mkdir ors-apartment conda create -n ors-apartment python=3.6 shapely cd ors-apartment pip install openrouteservice ortools folium import folium from openrouteservice import client
_____no_output_____
Apache-2.0
python/Apartment_Search.ipynb
Xenovortex/ors-example
We have just moved to San Francisco with our kids and are looking for the perfect location to get a new home. Our geo intuition tells us we have to look at the data to come to this important decision. So we decide to geek it up a bit. Apartment isochrones There are three different suggested locations for our new home. Let's visualize them and the 15 minute walking radius on a map:
api_key = '' #Provide your personal API key clnt = client.Client(key=api_key) # Set up folium map map1 = folium.Map(tiles='Stamen Toner', location=([37.738684, -122.450523]), zoom_start=12) # Set up the apartment dictionary with real coordinates apt_dict = {'first': {'location': [-122.430954, 37.792965]}, 'second': {'location': [-122.501636, 37.748653]}, 'third': {'location': [-122.446629, 37.736928]} } # Request of isochrones with 15 minute footwalk. params_iso = {'profile': 'foot-walking', 'intervals': [900], # 900/60 = 15 mins 'segments': 900, 'attributes': ['total_pop'] # Get population count for isochrones } for name, apt in apt_dict.items(): params_iso['locations'] = apt['location'] # Add apartment coords to request parameters apt['iso'] = clnt.isochrones(**params_iso) # Perform isochrone request folium.features.GeoJson(apt['iso']).add_to(map1) # Add GeoJson to map folium.map.Marker(list(reversed(apt['location'])), # reverse coords due to weird folium lat/lon syntax icon=folium.Icon(color='lightgray', icon_color='#cc0000', icon='home', prefix='fa', ), popup=name, ).add_to(map1) # Add apartment locations to map map1
_____no_output_____
Apache-2.0
python/Apartment_Search.ipynb
Xenovortex/ors-example
POIs around apartments For the ever-styled foodie parents we are, we need to have the 3 basic things covered: kindergarten, supermarket and hair dresser. Let's see what options we got around our apartments:
# Common request parameters params_poi = {'request': 'pois', 'sortby': 'distance'} # POI categories according to # https://github.com/GIScience/openrouteservice-docs#places-response categories_poi = {'kindergarten': [153], 'supermarket': [518], 'hairdresser': [395]} for name, apt in apt_dict.items(): apt['categories'] = dict() # Store in pois dict for easier retrieval params_poi['geojson'] = apt['iso']['features'][0]['geometry'] print("\n{} apartment".format(name)) for typ, category in categories_poi.items(): params_poi['filter_category_ids'] = category apt['categories'][typ] = dict() apt['categories'][typ]['geojson']= clnt.places(**params_poi)['features'] # Actual POI request print("\t{}: {}".format(typ, # Print amount POIs len(apt['categories'][typ]['geojson'])))
first apartment kindergarten: 1 supermarket: 8 hairdresser: 10 second apartment kindergarten: 3 supermarket: 1 hairdresser: 4 third apartment kindergarten: 1 supermarket: 3 hairdresser: 2
Apache-2.0
python/Apartment_Search.ipynb
Xenovortex/ors-example
So, all apartments meet all requirements. Seems like we have to drill down further. Routing from apartments to POIs To decide on a place, we would like to know from which apartment we can reach all required POI categories the quickest. So, first we look at the distances from each apartment to the respective POIs.
# Set up common request parameters params_route = {'profile': 'foot-walking', 'format_out': 'geojson', 'geometry': 'true', 'geometry_format': 'geojson', 'instructions': 'false', } # Set up dict for font-awesome style_dict = {'kindergarten': 'child', 'supermarket': 'shopping-cart', 'hairdresser': 'scissors' } # Store all routes from all apartments to POIs for apt in apt_dict.values(): for cat, pois in apt['categories'].items(): pois['durations'] = [] for poi in pois['geojson']: poi_coords = poi['geometry']['coordinates'] # Perform actual request params_route['coordinates'] = [apt['location'], poi_coords ] json_route = clnt.directions(**params_route) folium.features.GeoJson(json_route).add_to(map1) folium.map.Marker(list(reversed(poi_coords)), icon=folium.Icon(color='white', icon_color='#1a1aff', icon=style_dict[cat], prefix='fa' ) ).add_to(map1) poi_duration = json_route['features'][0]['properties']['summary'][0]['duration'] pois['durations'].append(poi_duration) # Record durations of routes map1
_____no_output_____
Apache-2.0
python/Apartment_Search.ipynb
Xenovortex/ors-example
Quickest route to all POIs Now, we only need to determine which apartment is closest to all POI categories.
# Sum up the closest POIs to each apartment for name, apt in apt_dict.items(): apt['shortest_sum'] = sum([min(cat['durations']) for cat in apt['categories'].values()]) print("{} apartments: {} mins".format(name, apt['shortest_sum']/60 ) )
first apartments: 37.09 mins second apartments: 40.325 mins third apartments: 35.315000000000005 mins
Apache-2.0
python/Apartment_Search.ipynb
Xenovortex/ors-example
Making El Nino AnimationsEl Nino is the warm phase of __[El NiΓ±o–Southern Oscillation (ENSO)](https://en.wikipedia.org/wiki/El_Ni%C3%B1o%E2%80%93Southern_Oscillation)__. It is a part of a routine climate pattern that occurs when sea surface temperatures in the tropical Pacific Ocean rise to above-normal levels for an extended period of time.In this Notebook we show how to make animations of sea surface temperature anomalies using __[NOAA 1/4Β° Daily Optimum Interpolation Sea Surface Temperature (Daily OISST) dataset (NOAA OISST](https://data.planetos.com/datasets/noaa_oisst_daily_1_4)___API documentation is available at http://docs.planetos.com. If you have questions or comments, join the Planet OS Slack community to chat with our development team. For general information on usage of IPython/Jupyter and Matplotlib, please refer to their corresponding documentation. https://ipython.org/ and http://matplotlib.org/___This Notebook is running on Python3.__
import os from dh_py_access import package_api import dh_py_access.lib.datahub as datahub import xarray as xr from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt import numpy as np import imageio import shutil import datetime import matplotlib as mpl mpl.rcParams['font.family'] = 'Avenir Lt Std' mpl.rcParams.update({'font.size': 25})
_____no_output_____
MIT
api-examples/El_Nino_animations.ipynb
steffenmodest/notebooks
Please put your datahub API key into a file called APIKEY and place it to the notebook folder or assign your API key directly to the variable API_key!
API_key = open('APIKEY').read().strip() server='api.planetos.com/' version = 'v1'
_____no_output_____
MIT
api-examples/El_Nino_animations.ipynb
steffenmodest/notebooks
This is a part where you should change the time period if you want to get animation of different time frame. Strongest __[El Nino years](http://ggweather.com/enso/oni.htm)__ have been 1982-83, 1997-98 and 2015-16. However, El Nino have occured more frequently. NOAA OISST dataset in Planet OS Datahub starts from 2008, however, we can extend the period if requested (since 1981 September). Feel free to change time_start and time_end to see how anomalies looked like on different years. You can find year when El Nino was present from __[here](http://ggweather.com/enso/oni.htm)__.
time_start = '2016-01-01T00:00:00' time_end = '2016-03-10T00:00:00' dataset_key = 'noaa_oisst_daily_1_4' variable = 'anom' area = 'pacific' latitude_north = 40; latitude_south = -40 longitude_west = -180; longitude_east = -77 anim_name = variable + '_animation_' + str(datetime.datetime.strptime(time_start,'%Y-%m-%dT%H:%M:%S').year) + '.mp4'
_____no_output_____
MIT
api-examples/El_Nino_animations.ipynb
steffenmodest/notebooks
Download the data with package API- Create package objects- Send commands for the package creation- Download the package files
dh=datahub.datahub(server,version,API_key) package = package_api.package_api(dh,dataset_key,variable,longitude_west,longitude_east,latitude_south,latitude_north,time_start,time_end,area_name=area) package.make_package() package.download_package()
Package exists
MIT
api-examples/El_Nino_animations.ipynb
steffenmodest/notebooks
Here we are using xarray to read in the data. We will also rewrite longitude coordinates as they are from 0-360 at first, but Basemap requires longitude -180 to 180.
dd1 = xr.open_dataset(package.local_file_name) dd1['lon'] = ((dd1.lon+180) % 360) - 180
_____no_output_____
MIT
api-examples/El_Nino_animations.ipynb
steffenmodest/notebooks
We like to use Basemap to plot data on it. Here we define the area. You can find more information and documentation about Basemap __[here](https://matplotlib.org/basemap/)__.
m = Basemap(projection='merc', lat_0 = 0, lon_0 = (longitude_east + longitude_west)/2, resolution = 'l', area_thresh = 0.05, llcrnrlon=longitude_west, llcrnrlat=latitude_south, urcrnrlon=longitude_east, urcrnrlat=latitude_north) lons,lats = np.meshgrid(dd1.lon,dd1.lat) lonmap,latmap = m(lons,lats)
_____no_output_____
MIT
api-examples/El_Nino_animations.ipynb
steffenmodest/notebooks
Below we make local folder where we save images. These are the images we will use for animation. No worries, in the end, we will delete the folder from your system.
folder = './ani/' if not os.path.exists(folder): os.mkdir(folder)
_____no_output_____
MIT
api-examples/El_Nino_animations.ipynb
steffenmodest/notebooks
Now it is time to make images from every time step. Let's also show first time step here:
vmin = -5; vmax = 5 for k in range(0,len(dd1[variable])): filename = folder + 'ani_' + str(k).rjust(3,'0') + '.png' fig=plt.figure(figsize=(12,10)) ax = fig.add_subplot(111) pcm = m.pcolormesh(lonmap,latmap,dd1[variable][k,0].data,vmin = vmin, vmax = vmax,cmap='bwr') m.fillcontinents(color='#58606F') m.drawcoastlines(color='#222933') m.drawcountries(color='#222933') m.drawstates(color='#222933') parallels = np.arange(-40.,41,40) # labels = [left,right,top,bottom] m.drawparallels(parallels,labels=[True,False,True,False]) #meridians = np.arange(10.,351.,2.) #m.drawmeridians(meridians,labels=[True,False,False,True]) cbar = plt.colorbar(pcm,fraction=0.035, pad=0.03) ttl = plt.title('SST Anomaly ' + str(dd1[variable].time[k].data)[:-19],fontweight = 'bold') ttl.set_position([.5, 1.05]) if not os.path.exists(folder): os.mkdir(folder) plt.savefig(filename) if k == 0: plt.show() plt.close()
_____no_output_____
MIT
api-examples/El_Nino_animations.ipynb
steffenmodest/notebooks
This is part where we are making animation.
files = sorted(os.listdir(folder)) fileList = [] for file in files: if not file.startswith('.'): complete_path = folder + file fileList.append(complete_path) writer = imageio.get_writer(anim_name, fps=4) for im in fileList: writer.append_data(imageio.imread(im)) writer.close() print ('Animation is saved as ' + anim_name + ' under current working directory')
Animation is saved as anom_animation_2016.mp4 under current working directory
MIT
api-examples/El_Nino_animations.ipynb
steffenmodest/notebooks
And finally, we will delete folder where images where saved. Now you just have animation in your working directory.
shutil.rmtree(folder)
_____no_output_____
MIT
api-examples/El_Nino_animations.ipynb
steffenmodest/notebooks
Task 2: Prediction using Unsupervised ML - K- Means Clustering Importing the libraries
import numpy as np import matplotlib.pyplot as plt import pandas as pd
_____no_output_____
Apache-2.0
Task_2_Clustering.ipynb
BakkeshAS/GRIP_Task_2_Predict_Optimum_Clusters
Importing the dataset
dataset = pd.read_csv('/content/Iris.csv') dataset.head() dataset['Species'].describe()
_____no_output_____
Apache-2.0
Task_2_Clustering.ipynb
BakkeshAS/GRIP_Task_2_Predict_Optimum_Clusters
Determining K - number of clusters
x = dataset.iloc[:, [0, 1, 2, 3]].values from sklearn.cluster import KMeans wcss = [] for i in range(1, 15): kmeans = KMeans(n_clusters = i, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0) kmeans.fit(x) wcss.append(kmeans.inertia_)
_____no_output_____
Apache-2.0
Task_2_Clustering.ipynb
BakkeshAS/GRIP_Task_2_Predict_Optimum_Clusters
Plotting the results - observe 'The elbow'
plt.figure(figsize=(16,8)) plt.style.use('ggplot') plt.plot(range(1, 15), wcss) plt.title('The elbow method') plt.xlabel('Number of clusters') plt.ylabel('WCSS') # Within cluster sum of squares plt.show()
_____no_output_____
Apache-2.0
Task_2_Clustering.ipynb
BakkeshAS/GRIP_Task_2_Predict_Optimum_Clusters
Creating the kmeans classifier with K = 3
kmeans = KMeans(n_clusters = 3, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0) y_kmeans = kmeans.fit_predict(x)
_____no_output_____
Apache-2.0
Task_2_Clustering.ipynb
BakkeshAS/GRIP_Task_2_Predict_Optimum_Clusters