content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def get_continuous_segments(array):
"""
Get continuous segments for single frame.
Args:
array (array):
| ordered array with integers representing resids ~ single frame
| e.g.: array = [5, 6, 7, 12, 13, 18, 19, 20]
Returns:
SEGMENTS (list)
list of continuous segments
Example:
| >> gdt.get_continuous_segments([1,2,3,22,23,50,51,52])
| [[1, 2, 3], [22, 23], [50, 51, 52]]
"""
SEGMENTS = []
temp = []
for i in range(len(array)):
temp.append(array[i])
try:
if array[i]+1 != array[i+1]:
SEGMENTS.append(temp)
temp = []
except IndexError:
SEGMENTS.append(temp)
return SEGMENTS
|
365f3b20a7ec4ae016ccc48dff9fd5500cd48746
| 697,554 |
import base64
import struct
def _decode_real(blob):
"""Inverse of _encode_real."""
bytes_ = base64.b64decode(blob)
return struct.unpack('<d', bytes_)[0]
|
b570d5e78177e9f4b783478773665ddf80de4301
| 697,555 |
def retrieve_attrs(instancenorm):
"""
Gather the required attributes for the GroupNorm plugin from the subgraph.
Args:
instancenorm: Instance Normalization node in the graph.
"""
attrs = {}
# The 2nd dimension of the Reshape shape is the number of groups
attrs["num_groups"] = instancenorm.i().i(1).attrs["value"].values[1]
attrs["eps"] = instancenorm.attrs["epsilon"]
# 1 is the default plugin version the parser will search for, and therefore can be omitted,
# but we include it here for illustrative purposes.
attrs["plugin_version"] = "1"
# "" is the default plugin namespace the parser will use, included here for illustrative purposes
attrs["plugin_namespace"] = ""
return attrs
|
88d752a90c285952af8cbed6fd1183111fc99b96
| 697,557 |
import textwrap
def mk_block(decl, contents, indent=2):
"""Format a block like this:
decl {
contents
}
where `decl` is one line but contents can be multiple lines.
"""
return decl + ' {\n' + textwrap.indent(contents, indent * ' ') + '\n}'
|
e57d3fa8f4c94b3a1d4e1145668f8dceccf02025
| 697,560 |
import torch
def affine_make_square(affine):
"""Transform a rectangular affine into a square affine.
Parameters
----------
affine : (..., ndim[+1], ndim+1) tensor
Returns
-------
affine : (..., ndim+1, ndim+1) tensor
"""
affine = torch.as_tensor(affine)
device = affine.device
dtype = affine.dtype
ndims = affine.shape[-1]-1
if affine.shape[-2] not in (ndims, ndims+1):
raise ValueError('Input affine matrix should be of shape\n'
'(..., ndims+1, ndims+1) or (..., ndims, ndims+1).')
if affine.shape[-1] != affine.shape[-2]:
bottom_row = torch.cat((torch.zeros(ndims, device=device, dtype=dtype),
torch.ones(1, device=device, dtype=dtype)), dim=0)
bottom_row = bottom_row.unsqueeze(0)
bottom_row = bottom_row.expand(affine.shape[:-2] + bottom_row.shape)
affine = torch.cat((affine, bottom_row), dim=-2)
return affine
|
440fef0cf43eb501fe25555ac4e113865108d13d
| 697,563 |
import re
def parse_show_ntp_trusted_keys(raw_result):
"""
Parse the 'show ntp trusted-keys' command raw output.
:param str raw_result: vtysh raw result string.
:rtype: dict
:return: The parsed result of the show ntp trusted-keys command \
in a dictionary of the form:
::
{
'11': { 'key_id': '11' },
'12': { 'key_id': '12' }
}
"""
ntp_trusted_key_re = (
r'(?P<key_id>\d+)'
)
result = {}
for line in raw_result.splitlines():
re_result = re.search(ntp_trusted_key_re, line)
if re_result:
partial = re_result.groupdict()
result[partial['key_id']] = partial
return result
|
37c573548359553b03237ddece068e52e9f51fb4
| 697,566 |
import configparser
def read_aranet_conf(file):
"""Reads the Aranet Cloud configuration file
Args:
file (str or os.PathLike): A path-like object giving the pathname of
the configuration file.
Returns:
[configparser.ConfigParser]: A ConfigParser object with the
configuration.
"""
aranet_conf = configparser.ConfigParser(
defaults={
"endpoint": "https://aranet.cloud/api"
}
)
with open(file) as f:
aranet_conf.read_file(f)
return aranet_conf
|
36991e18bd4049145f91aa27aecad57647fc3230
| 697,572 |
def check_anagrams(first_str: str, second_str: str) -> bool:
"""
Two strings are anagrams if they are made of the same letters
arranged differently (ignoring the case).
>>> check_anagrams('Silent', 'Listen')
True
>>> check_anagrams('This is a string', 'Is this a string')
True
>>> check_anagrams('This is a string', 'Is this a string')
True
>>> check_anagrams('There', 'Their')
False
"""
return (
"".join(sorted(first_str.lower())).strip()
== "".join(sorted(second_str.lower())).strip()
)
|
345d83fdcde1a8e1a0d0d2b73e0a16f5b5f816d1
| 697,574 |
def stringify_span(range):
"""Returns a nicely-formatted string representing a span of years.
Arguments:
range {range} - A range object
"""
if len(range) >= 2:
timespan = f"{range[0]}-{range[-1]}"
else:
timespan = range[0]
return timespan
|
043cc8aae9cb2063c5af16dcb55223f05056b903
| 697,579 |
from typing import List
import statistics
def udf_median(items: List[float]):
"""
Median of elements in a list
"""
return statistics.median(items)
|
6ed0841251de91e2758489d742c071f303444dfe
| 697,585 |
def substrings(seq):
""" Returns a set of all the substrings of s.
Recall we can compute a substring using s[i:j] where 0 <= i, j < len(s).
Example:
>>> substrings("abc")
"a", "ab", "abc", "b", "bc", "c"
"""
subs = set()
for i in range(len(seq)): #determine the starting index
for j in range(i + 1, len(seq) + 1): #determine the ending index
subs.add(seq[i:j])
return subs
|
7e27e1e8902410d3ca629edf13c2ce2f54107d08
| 697,586 |
import pytz
def to_zulu_string(dt):
"""Returns a Zulu time string from a datetime.
Assumes naive datetime objects are in UTC.
Ensures the output always has a floating-point number of seconds.
"""
# Assume non-tz-aware datetimes are in UTC.
if dt.tzinfo is None or dt.tzinfo.utcoffset(dt) is None:
dt = dt.replace(tzinfo=pytz.UTC)
# Convert datetime into UTC.
isodate = dt.astimezone(pytz.UTC).isoformat().split('+')[0]
# Add fractional seconds if not present.
if '.' not in isodate:
isodate += '.0'
return isodate + 'Z'
|
2d7cb31cd83f86e9f2be78bbb8c3d9d517e6d31f
| 697,590 |
def serialize_value(value):
"""Serialize a single value.
This is used instead of a single-shot `.format()` call because some values
need special treatment for being serialized in YAML; notably, booleans must
be written as lowercase strings, and floats exponents must not start with a
0.
"""
if isinstance(value, bool):
return repr(value).lower()
elif isinstance(value, float):
return "{0:.16}".format(value).replace("e+0", "e+").replace("e-0", "e-")
else:
return repr(value)
|
6c01f79cd745799402c5d1db2ed6acafa8dd1c2a
| 697,591 |
def track_title_and_slug_from_penta(tracks, room_slug):
"""
Return the track title (e.g. Community) based on the room slug (mcommunity)
:param tracks:
:param room_slug:
:return:
"""
if room_slug in tracks:
return tracks[room_slug]['title'], tracks[room_slug]['slug']
return None, None
|
4fb4965b8e81c82dd6f34b03166e2c2812653328
| 697,593 |
def list_format(lst):
""" Unpack a list of values and write them to a string
"""
return '\n'.join(lst)
|
754e8cb4710558f551357bf5ac7ed54cbf0730ca
| 697,595 |
def segmentize_geometry(geom, segment_size=1.):
"""
Segmentizes the lines of a geometry (decreases the point spacing along the lines)
according to a given `segment_size`.
Parameters
----------
geom : ogr.Geometry
OGR geometry object.
segment_size : float, optional
For precision: distance of longest segment of the geometry polygon
in units of the spatial reference system.
Returns
-------
geom_fine : ogr.Geometry
A congruent geometry realised by more vertices along its shape.
"""
geom_fine = geom.Clone()
geom_fine.Segmentize(segment_size)
geom = None
return geom_fine
|
324317a1f64ff0794b204c4b0f4b39ff0df9221d
| 697,604 |
def _json_file_name(name):
"""Returns the name of the statistics file for `name`."""
return name + '.json'
|
e554b5e40f9fceb6c98986611588c4853d6861da
| 697,606 |
def get_model_metadata_fixture() -> dict:
"""Test fixture for model metadata
Returns:
dict: Example metadata response structure
"""
metadata = {
"kind": "Model",
"apiVersion": "v1alpha4",
"metadata": {
"displayName": "model display name",
"name": "test-model",
"summary": "Model summary",
"description": "Model description",
"type": "Simulation",
"owner": "0a0a0a0a-0a00-0a00-a000-0a0a0000000a",
},
"spec": {
"inputs": {
"env": [
{
"name": "R_NUMBER",
"title": "R Number",
"desc": "The reproduction number",
"type": "number",
"default": 1.5,
"min": 0.1,
"max": 2.0,
},
{
"name": "setting",
"title": "Setting",
"desc": "Mode to run the model in",
"type": "string",
"default": "long_default_name",
},
],
"dataslots": [
{
"default": [
{
"uid": "11111a1a-a111-11aa-a111-11aa11111aaa",
"versionUid": "21111a1a-a111-11aa-a111-11aa11111aaa",
}
],
"path": "inputs/",
"required": True,
"name": "Inputs",
}
],
},
"outputs": {
"datasets": [
{
"name": "dataset_1.xls",
"type": "xls",
"desc": "Datset 1 description",
},
{
"name": "dataset_2.xls",
"type": "xls",
"desc": "Datset 2 description",
},
]
},
"image": "dreg.platform.dafni.rl.ac.uk/nims-prod/test-model:0a0a0a0a-0a00-0a00-a000-0a0a0000000a",
},
}
return metadata
|
c4ef1d1088bee664e350c32fe457657255f500da
| 697,607 |
from pathlib import Path
def main(file_path: Path) -> str:
"""
Test function for showing file path.
Args:
file_path: file path
Returns:
str: HTML output
"""
return f"Hello world mission2, filePath is {file_path}."
|
06c23ddf08dba563a061e4a503b5ba76f33b456a
| 697,612 |
def GetNamesList(filepath):
"""
Open a file with a given filepath containing place names and return a list.
"""
f = open(filepath)
return f.read().splitlines()
|
1e32772d7483ec9cae7cec2e523a3c7b6ef472fe
| 697,616 |
def splitOn(splitter):
"""Return a function that splits a string on the given splitter string.
The function returned filters an empty string at the end of the result list.
>>> splitOn('X')("aXbXcX")
['a', 'b', 'c']
>>> splitOn('X')("aXbXc")
['a', 'b', 'c']
>>> splitOn('X')("abc")
['abc']
>>> splitOn('X')("abcX")
['abc']
"""
def f(s):
l = s.split(splitter)
if l and not l[-1]:
return l[:-1]
else:
return l
return f
|
c316d0de407aa6ca93208ad7d7ce0ca8cf3c176a
| 697,618 |
def get_default(key, ctx):
"""
Get the default argument using a user instance property
:param value: The name of the property to use
:param ctx: The click context (which will be used to get the user)
:return: The default value, or None
"""
try:
value = getattr(ctx.code_builder, key)
if value == "":
value = None
except KeyError:
value = None
return value
|
c1c8db3bb996a2c018a5eb4ca45638601e15ce82
| 697,622 |
def call(f, *args, **kwargs):
"""When used in pipe, calls given function.
Calls given function, passing pipe argument first, before args and kwargs.
Hence function should be (re)designed to handle this.
Resulting value is then used as pipe argument and passed along further.
Note:
kwargs will overwrite pipe argument ``if xarg in kwarg``.
Args:
f: function to call
*args: other positional arguments to the function
**kwargs: keyword arguments to the function
Returns:
function that performs the required action in pipe
"""
def g(x):
pargs = (x,) + args
return f(*pargs, **kwargs)
return g
|
4fce00354ee6b185a60d542ed173753967f0ca1f
| 697,623 |
def extract_masked_part_from_spectrogram(mask, spectrogram):
""" Extract the masked part of the spectrogram
"""
return spectrogram[:,mask]
|
76be4d93aca3684edfe374bcce0ce09b833ab687
| 697,624 |
def get_stack_output_value(stack, key: str) -> str:
"""
Get a stack output value
:param stack: the boto3 stack resource
:param key: the output key
:return: str
"""
results = [i for i in stack.outputs if i["OutputKey"] == key]
if not results:
raise ValueError(f"could not find output with key {key} in stack")
return results[0]["OutputValue"]
|
0742a2b8558b7aa4ea1656a6645a9b3e5fbdb17a
| 697,630 |
def _skip_class_name(name):
"""Determine if the class name should be skipped."""
return name == "Bundled" or name.startswith("_")
|
7cc942d327784da2ae1aefc99859e52b3696475b
| 697,632 |
def get_longest_parent(task):
"""
Returns the parent of the given task which has the longest execution time
Args:
task (Node)
Returns:
Node
"""
longest_parent = task.get_parents()[0]
for parent in task.get_parents():
if longest_parent.get_exec_time() < parent.get_exec_time():
longest_parent = parent
return longest_parent
|
8e41984c1e287f8a2d457150d332f868660c4eef
| 697,634 |
def gen_mapping(args, service, weight=None, labels={}):
"""
Generate a Mapping for a service/prefix and (optional) weight
"""
prefix = args.prefix
mapping = {
"apiVersion": "getambassador.io/v1",
"kind": "Mapping",
"metadata": {
"name": f"mapping-for-{service}"
},
"spec": {
"prefix": prefix,
"service": service
}
}
if args.namespace:
mapping["metadata"]["namespace"] = args.namespace
if len(labels) > 0:
mapping["metadata"]["labels"] = labels
if weight:
mapping["spec"]["weight"] = weight
return mapping
|
167d044cffed74d5d04498e4941a147395977602
| 697,638 |
def keep_alpha_numeric(input_text: str) -> str:
""" Remove any character except alphanumeric characters """
return ''.join(c for c in input_text if c.isalnum())
|
6775d7ba72ae06c294acde9bc2964ae51a954ce3
| 697,641 |
def reunion(set1, set2):
"""Given the two sets, returns their reunion."""
return set1 | set2
|
3e7af2a784d570d2a28c6665905242f5b6e812de
| 697,642 |
def are_brackets_balanced(expr):
"""
Checks to see if there are parens or brackets that are unbalanced
"""
stack = []
# Traversing the Expression
for char in expr:
if char in ["(", "{", "["]:
# Push the element in the stack
stack.append(char)
elif char in [")", "}", "]"]:
# IF current character is not opening
# bracket, then it must be closing.
# So stack cannot be empty at this point.
if not stack:
return False
current_char = stack.pop()
if current_char == '(':
if char != ")":
return False
if current_char == '{':
if char != "}":
return False
if current_char == '[':
if char != "]":
return False
# Check Empty Stack
if stack:
return False
return True
|
3e548cb2999c404d6ed0587ef1a959767c11d479
| 697,646 |
def _get_p_y_z_halfspace(particles):
"""
This function calcualtes the probabilities of y and z half space
for a given set of particles
Parameters
----------
particles : list
List of SourceParticle
Returns
-------
p_y_halfspace : float
The probability of y half space
p_z_halfspace : float
The probability of z half space
"""
y_count, z_count = 0, 0
for s in particles:
if s.y < 0.5:
y_count = y_count + 1
if s.z < 0.5:
z_count = z_count + 1
p_y_halfspace = float(y_count) / len(particles)
p_z_halfspace = float(z_count) / len(particles)
return p_y_halfspace, p_z_halfspace
|
fb822d7b03b4fc387fff8723d5a8d7dafe8f9bfc
| 697,655 |
import torch
def get_data(generic_iterator, generic_loader):
"""Code to get minibatch from data iterator
Inputs:
- generic_iterator; iterator for dataset
- generic_loader; loader for dataset
Outputs:
- data; minibatch of data from iterator
- generic_iterator; iterator for dataset, reset if
you've reached the end of the dataset"""
try:
data = next(generic_iterator)[0]
except StopIteration:
generic_iterator = iter(generic_loader)
data = next(generic_iterator)[0]
if torch.cuda.is_available():
data = data.cuda()
return data, generic_iterator
|
e827ab7cea13c96953260d6b157a3e6ab370c6c9
| 697,656 |
def get_name(schema_url):
""" Extract the item name from it's URL
:param schema_url: the URL of the schema
:return name: the name of the schema (eg: 'item_schema.json')
"""
name = schema_url.split("/")[-1].replace("#", '')
return name
|
e7632dc959a4503b51cc5c3f851a063056893507
| 697,658 |
import torch
from typing import Callable
def encode_and_aggregate(input_tensor: torch.Tensor,
encoder: torch.nn.Module,
num_encoder_input_channels: int,
num_image_channels: int,
encode_channels_jointly: bool,
aggregation_layer: Callable) -> torch.Tensor:
"""
Function that encodes a given input tensor either jointly using the encoder or separately for each channel
in a sequential manner. Features obtained at the output encoder are then aggregated with the pooling function
defined by `aggregation layer`.
"""
if encode_channels_jointly:
input_tensor = encoder(input_tensor)
input_tensor = aggregation_layer(input_tensor)
else:
shape = input_tensor.shape
channel_shape = (shape[0], num_encoder_input_channels, shape[2], shape[3], shape[4])
encode_and_aggregate = []
# When using multiple encoders, it is more memory efficient to aggregate the individual
# encoder outputs and then stack those smaller results, rather than stack huge outputs and aggregate.
for i in range(num_image_channels):
start_index = i * num_encoder_input_channels
end_index = start_index + num_encoder_input_channels
encoder_output = encoder(input_tensor[:, start_index:end_index].view(channel_shape))
aggregated = aggregation_layer(encoder_output)
encode_and_aggregate.append(aggregated)
input_tensor = torch.cat(encode_and_aggregate, dim=1)
return input_tensor
|
f2d65e1c2c214cfddae40dd235fba86a61866277
| 697,661 |
def apply_each(functions, *args, **kwargs):
"""Returns list containing result of applying each function to args."""
return [f(*args, **kwargs) for f in functions]
|
15dc85cb155db030f4eaf2eccdbd40ed20585b82
| 697,663 |
def _model_delete_by_id_function_name(model):
"""Returns the name of the function to delete a model by id"""
return '{}_delete_by_id'.format(model.get_table_name())
|
df3e1de727b585c1cab403dfcfea08eafe25aeec
| 697,664 |
def subset_matrix(matrix, name_list_1, name_list_2):
"""Subsetting matrix into two symetric matrices given two label lists
Parameter:
----------
matrix : Pandas DataFrame
Full similarity matrix
name_list_1 : list
list of names
name_list_2 : list
list of names
Returns:
--------
list:
list with subsets of matrix
"""
sim_matrix_1 = matrix[name_list_1].loc[name_list_1]
sim_matrix_2 = matrix[name_list_2].loc[name_list_2]
sim_matrix = matrix[name_list_1].loc[name_list_2]
return sim_matrix_1, sim_matrix_2, sim_matrix
|
1b36308c73c864fa446b0bc756240d4d2a8639a6
| 697,668 |
def my_sum(x_val: int, y_val: int) -> int:
"""Sum 2 integers.
Args:
x_val (int): integer to sum.
y_val (int): integer to sum.
Returns:
int: result of the summation.
"""
assert isinstance(x_val, int) and isinstance(
y_val, int
), "Input parameters should be integers."
return x_val + y_val
|
c10001f9ff720ce3d180aaa89af555ac1860ae33
| 697,673 |
def cidr_to_mask(cidr):
"""
Converts decimal CIDR notation to a quad dotted subnetmask.
:param cidr: Decimal CIDR number
:return: Quad dotted subnetmask as string
"""
cidr = int(cidr)
mask = (0xffffffff >> (32 - cidr)) << (32 - cidr)
return (str((0xff000000 & mask) >> 24) + '.' +
str((0x00ff0000 & mask) >> 16) + '.' +
str((0x0000ff00 & mask) >> 8) + '.' +
str((0x000000ff & mask)))
|
037e1cacfb392fad4a06edf1d9c16c4f27c0468b
| 697,676 |
import random
def computer_choice() -> str:
"""
This function takes no inputs and returns either "rock", "paper", or
"scissors" randomly to simulate the computer's decision.
"""
# 'random' is a library. A library is essentially a collection of code that
# contains some kind of feature(s) that we want to use in our program. In
# order to use these features, we need to bring the library into our program.
# This is what is meant by 'importing' a library.
# A function can 'return' a value, allowing it to directly represent some kind
# of data. In this case, we are returning the output of the choice function
# (from the random library). This choice function has 1 input (argument): a
# tuple of 3 possible comma-separated choices that it may return.
return random.choice( ("rock", "paper", "scissors") )
|
1f8e064adfbd6242f2bb199caf98b77acf38c596
| 697,677 |
def head(your_list, default=None):
"""Simple head function implementation."""
return next(iter(your_list or []), default)
|
382e6f069b7aa15c710b41007bbd03be23d63bde
| 697,692 |
from typing import Iterable
from typing import Any
def is_empty(iterable: Iterable[Any]) -> bool:
"""
Check whether provided iterable is empty.
:param iterable: iterable whose emptiness is to be checked.
:return: flag indicating if the provided iterable is empty.
"""
return not any(map(lambda el: True, iterable))
|
cef865deec6a7fd4241e15abaac7fced9ac114b0
| 697,694 |
def gen_xacro_macro(name, links, joints):
"""
Generates (as a string) the complete urdf element sequence for a simple
ROS-Industrial xacro macro that defines geometry (links, joints). It takes
a single argument ``prefix`` that should be used when instantiating the
macro in a composite parent scene.
Note that the ``links`` and ``joints`` sequences should already be strings.
The ``gen_link(..)`` and ``gen_joint_fixed(..)`` macros may be used for that.
:param name: Name of the macro, ``str``
:param links: Sequence containing all the links that should be defined by macro, ``seq(str)``
:param joints: Sequence containing all the joints that should be defined by the macro, ``seq(str)``
:returns: urdf element sequence for a xacro macro, ``str``
"""
links_str = ''.join(links)
joints_str = ''.join(joints)
return '<xacro:macro name="{name}" params="prefix">{links}{joints}</xacro:macro>'.format(
name=name, links=links_str, joints=joints_str)
|
4be7f3353a9fba1f7127e81e29e3536150ed834e
| 697,695 |
def solution(A): # O(N)
"""
Given an integer array nums, find the contiguous subarray
(containing at least one number) which has the largest sum and
return its sum.
>>> solution([-2, 1, -3, 4, -1, 2, 1, -5, 4])
6
>>> solution([-2, -1, -3, 1])
1
"""
summed_values = [] # O(1)
summed_value = 0 # O(1)
for value in A: # O(N)
summed_value += value # O(1)
summed_values.append(summed_value) # O(1)
min_point = float('inf') # O(1)
largest_sum = 0 # O(1)
for value in summed_values: # O(N)
if value < min_point: # O(1)
min_point = value # O(1)
elif value - min_point > largest_sum: # O(1)
largest_sum = value - min_point # O(1)
return largest_sum # O(1)
|
9c41707940d563ba10c97af53e72f8bbf30fd071
| 697,696 |
def _index(key, sequence, testfn=None, keyfn=None):
"""Return the index of key within sequence, using testfn for
comparison and transforming items of sequence by keyfn first.
>>> _index('e', 'hello')
1
>>> _index('E', 'hello', testfn=_equalsIgnoreCase)
1
>>> _index('x', 'hello')
"""
index = 0
for element in sequence:
value = element
if keyfn:
value = keyfn(value)
if (not testfn and value == key) or (testfn and testfn(value, key)):
return index
index += 1
return None
|
0595726f9e14e8f4a3fd4b925de04c801be317a3
| 697,698 |
import six
def like_filter(query, cls, search_opts):
"""Add 'like' filters for specified columns.
Add a sqlalchemy 'like' filter to the query for any entry in the
'search_opts' dict where the key is the name of a column in
'cls' and the value is a string containing '%'.
This allows the value of a column to be matched
against simple sql string patterns using LIKE and the
'%' wildcard.
Return the modified query and any entries in search_opts
whose keys do not match columns or whose values are not
strings containing '%'.
:param query: a non-null query object
:param cls: the database model class the filters will apply to
:param search_opts: a dictionary whose key/value entries are interpreted as
column names and search patterns
:returns: a tuple containing the modified query and a dictionary of
unused search_opts
"""
if not search_opts:
return query, search_opts
remaining = {}
for k, v in six.iteritems(search_opts):
if isinstance(v, six.string_types) and (
'%' in v and k in cls.__table__.columns):
col = cls.__table__.columns[k]
query = query.filter(col.like(v))
else:
remaining[k] = v
return query, remaining
|
c42318350a9c19715fc6a2e0c74d8bec423b4cfc
| 697,701 |
def read_file(filename):
"""
Return the contents of the file with the given filename as a string
>>> write_file('read_write_file.txt', 'Hello World')
>>> read_file('read_write_file.txt')
'Hello World'
>>> os.unlink('read_write_file.txt')
"""
with open(filename) as in_fh:
return in_fh.read()
|
756187a755a54b2d6e96ad6d297ceb2472afbb6c
| 697,704 |
from typing import Callable
def linear_schedule(initial_value: float) -> Callable[[float], float]:
"""
Linear learning rate schedule.
:param initial_value: Initial learning rate.
:return: schedule that computes
current learning rate depending on remaining progress
"""
def func(progress_remaining: float) -> float:
"""
Progress will decrease from 1 (beginning) to 0.
:param progress_remaining:
:return: current learning rate
"""
return progress_remaining * initial_value
return func
|
47a580788c745b7566c22daa97c3aecee0bb8ff2
| 697,708 |
from datetime import datetime
def is_datenum(datenum):
""" Return True if given str is a date in format %Y%m%d """
try:
datetime.strptime(datenum, "%Y%m%d")
return True
except (ValueError, TypeError):
return False
|
c61998ebf18a3fbdd4c87463a2ab0790864c62b4
| 697,710 |
def _compute_position(input, index):
"""Compute line/column position given an index in a string."""
line = 1
col = 1
eol = None # last end of line character
for c in input[:index]:
if c == '\n' or c == '\r':
if eol is None or eol == c:
eol = c
line += 1
col = 1
else:
# ignore second of '\n\r' and '\r\n' sequences
eol = None
else:
col += 1
return (line, col)
|
f08217651d11ed09c1e100368aa8cc869c37e386
| 697,713 |
import itertools
def flatten(sequence):
"""
Get a flat list out of a list of lists.
"""
return list(itertools.chain(*sequence))
|
1c3c7c41969c7e172083e73f2e2aa5731fb56ada
| 697,715 |
def equal_nan(request):
"""Fixture to whether consider nan as equal when comparing fields."""
return request.config.getoption("equal_nan")
|
8fce969c2c84201822db735d46574644124c5c1a
| 697,716 |
def round2(number: float) -> float:
"""
Rounds a number to the second decimal.
"""
return round(number, 2)
|
5c788d01bce28831145391dcb261362b8a2208f3
| 697,717 |
def flipslash(value):
""" Convert all backslashes to forward slashes (for apache) """
return value.replace("\\", '/')
|
8fa5abe7c334e0b229aa7e9b2477c3c9aecf38e3
| 697,718 |
def binary_search(items, desired_item, start=0, end=None,):
"""Standard Binary search program takes
Parameters:
items= a sorted list
desired_item = single looking for a match (groovy baby)
start= int value representing the index position of search section
end = end boundary of the search section; when end == start
Returns:
None = only returned if the desired_item not found in items
pos = returns the index position of desired_item if found.
"""
if end == None:
end = len(items)
if start == end:
return None
# raise ValueError("%s was not found in the list." % desired_item)
pos = (end - start) // 2 + start
if desired_item == items[pos]:
return pos
elif desired_item > items[pos]:
return binary_search(items, desired_item, start=(pos + 1), end=end)
else: # desired_item < items[pos]:
return binary_search(items, desired_item, start=start, end=pos)
|
7adb942e73e5c3945190c7d88882763f9f7b4f08
| 697,721 |
import importlib
def get_class(m):
"""Import class from string
:param m: string or class to be imported
:type m: str or class
:rtype: class
>>> get_class('microtc.textmodel.TextModel')
<class 'microtc.textmodel.TextModel'>
"""
if isinstance(m, str):
a = m.split('.')
p = importlib.import_module('.'.join(a[:-1]))
return getattr(p, a[-1])
return m
|
9a8c55524a47224a4e916191d66428aad2bc08d5
| 697,724 |
import math
def vec3(a, b, norm=1.0):
"""
x,y,z <- vec3(a, b, norm=1.0)
returns the vector a, b scale to norm
"""
dx = b[0]-a[0]
dy = b[1]-a[1]
dz = b[2]-a[2]
l = norm / math.sqrt( dx*dx + dy*dy +dz*dz)
return [dx*l, dy*l, dz*l]
|
db0f53cad9c472dd903cb18aabd1a6fad275b5bd
| 697,726 |
def path_to_url(path):
"""Convert a system path to a URL."""
return '/'.join(path.split('\\'))
|
79bfd1715420002371fe4201863d736bf9e3b2bf
| 697,728 |
def _use_reasonable_speed(preset, frame_count):
"""Return a reasonable speed parameter for the given animation length."""
return preset.settings.get("speed", 0.25) * (frame_count / 30.0)
|
9327131fbe8f55ba1ee5c1ccc932132ad3d3162a
| 697,729 |
def blend_color_dodge(cb: float, cs: float) -> float:
"""Blend mode 'dodge'."""
if cb == 0:
return 0
elif cs == 1:
return 1
else:
return min(1, cb / (1 - cs))
|
5a96383ce6f71aca42639c7ac4962ea74ecd02c6
| 697,730 |
def drop(n, xs):
"""
drop :: Int -> [a] -> [a]
drop(n, xs) returns the suffix of xs after the first n elements, or [] if n >
length xs
"""
return xs[n:]
|
e9261686022f5419edade3b47e82c68bd52b5cd8
| 697,737 |
def formatIntervalHours(cHours):
""" Format a hours interval into a nice 1w 2d 1h string. """
# Simple special cases.
if cHours < 24:
return '%sh' % (cHours,);
# Generic and a bit slower.
cWeeks = cHours / (7 * 24);
cHours %= 7 * 24;
cDays = cHours / 24;
cHours %= 24;
sRet = '';
if cWeeks > 0:
sRet = '%sw ' % (cWeeks,);
if cDays > 0:
sRet = '%sd ' % (cDays,);
if cHours > 0:
sRet += '%sh ' % (cHours,);
assert len(sRet) > 0; assert sRet[-1] == ' ';
return sRet[:-1];
|
d7c9be3110eb1ecbfb57ae51854d2e576519ced3
| 697,739 |
def get_both_filenames(filename):
""" Get a list of both filenames for FUV data
Regardless if rootname_corrtag_a.fits or rootname_corrtag_b.fits
is passed in, both will be returned in a list.
Parameters
----------
filename : str
full path to COS file
Returns
-------
files : tuple
rootname_corrtag_a.fits, rotname_corrtag_b.fits
"""
if '_a.fits' in filename:
other_filename = filename.replace('_a.fits', '_b.fits')
elif '_b.fits' in filename:
other_filename = filename.replace('_b.fits', '_a.fits')
else:
raise ValueError("filename doesn't match FUV convention".format(filename))
filename_list = [filename, other_filename]
filename_list.sort()
return (filename_list[0], filename_list[1])
|
76449b6f2719d5c6b7ee6dd01f730b9193e368da
| 697,747 |
def _get_greensf_group_name(hdffile):
"""
Return the name of the group containing the Green's function elements
:param hdffile: h5py.File of the greensf.hdf file
:returns: str of the group name containing the Green's Function elements
"""
if '/GreensFunctionElements' in hdffile:
return 'GreensFunctionElements'
elif '/Hubbard1Elements' in hdffile:
return 'Hubbard1Elements'
|
fa5a8c65cad63b3053d8b55af95c9c4547493793
| 697,749 |
import yaml
def from_yml(yml_string: str) -> dict:
"""Load the given YAML string into a dict
:param yml_string: YAML string to work on
:type yml_string: str
:return: dict representation of the given YAML string
:rtype: dict
"""
config: dict = yaml.safe_load(yml_string)
return config
|
28868d568fa519e795df4a32ecae8608da6465d6
| 697,750 |
import string
import random
def generator(length):
"""Generate a random sequence of bytes
Args:
length (int): length
Returns:
bytes: random sequence of bytes
"""
letters = string.printable
return ''.join(random.choice(letters) for i in range(length)).encode()
|
e7a7f22ec3470e9bf45b0084fdc9da917c1f18fb
| 697,751 |
import logging
def get_loglevel(loglevel):
""" Check valid log level supplied and return numeric log level """
numeric_level = getattr(logging, loglevel.upper(), None)
if not isinstance(numeric_level, int):
raise ValueError("Invalid log level: %s" % loglevel)
return numeric_level
|
017bc0be3e5feb890ccd7477bedb87d1077f1ef5
| 697,753 |
def safe_column_name(name):
"""Generate SQL friendly column name"""
return '"{}"'.format(name).upper()
|
495b54a94c4350a8f20df5a1416a5c8c10d7a559
| 697,756 |
def column_name_list(columns):
"""
Gets a comma-separated list of column names.
:param columns: The list of columns.
:returns: A comma-separated list of column names.
"""
if not columns:
return ''
return ', '.join([column.name for column in columns])
|
7c40e420e55368454768d84229f959a11b5c00dd
| 697,759 |
def positiveaxis(axis, ndim):
"""Positive axis
Args:
axis(num): dimension index
ndim(num): number of dimensions
Returns:
num
"""
if axis < 0:
axis += ndim
if axis < 0 or axis >= ndim:
raise IndexError("axis out of range")
return axis
|
3075c06cf5843027bc45e04e032798250924f8fd
| 697,763 |
def is_desired_workflow(run_json):
"""
Checks if this run is for the "Presubmit Checks" workflow.
"""
# Each workflow has a fixed ID.
# For the "Persubmit Checks" workflow, it is:
# https://api.github.com/repos/taichi-dev/taichi/actions/workflows/1291024
DESIRED_ID = 1291024
return run_json['workflow_id'] == DESIRED_ID
|
fc5d915fd3e7b8a62075b29fc9dbe8525fc4da0a
| 697,765 |
def format_codepoint(codepoint):
"""Format a codepoint (integer) to a USV (at least 4 hex digits)"""
usv = ''
if codepoint:
usv = f'{codepoint:04X}'
return usv
|
c3ac63ab0218ad90f7191507a825e95a4f4ab80c
| 697,766 |
def get_dim_coord_names(cube):
"""
Returns an ordered list of dimension coordinate names on the cube
Args:
cube (iris.cube.Cube)
Returns:
list of str
"""
return [coord.name() for coord in cube.coords(dim_coords=True)]
|
ec742b197f02d13e067a250685438f0ed88615e5
| 697,768 |
def get_center_of_mass(centers_of_mass, masses):
"""Determine the center of mass of a set of objects
Args
centers_of_mass [*shape, num_objects, 2]
masses [*shape, num_objects]
Returns [*shape, 2]
"""
return (centers_of_mass * masses[..., None]).sum(-2) / masses.sum(-1)[..., None]
|
22c95024120579ed8471f093ddedd9da75b4ed0f
| 697,770 |
import copy
def start_board(solution_board):
"""Generates an empty board from a solution board"""
empty_board = copy.deepcopy(solution_board)
for row in empty_board:
for index in range(len(row)):
row[index] = '-'
return empty_board
|
fafa73da5867bf7ae324a0531c64c16ae5789f0d
| 697,772 |
def safe_get(list, index, fallback_value):
"""Similar to dict's .get(key, fallback) function but for lists. Returns a fallback/default value if the index is not valid for the list, otherwise returns the value at that index.
Args:
list (_type_): a list-like object
index (_type_): an index into the list
fallback_value (_type_): any value to be returned when the indexing fails
Returns:
_type_: the value in the list, or the fallback_value is the index is not valid for the list.
"""
try:
return list[index]
except IndexError:
return fallback_value
|
bf799f45a04335adc7673aff155b301333ff8e26
| 697,773 |
def clusters_to_labels(clusters):
"""
:param clusters: List of lists, each sublist contains doc ids in that cluster
:return labels: Dict of [doc_id, cluster_label] where cluster_label are assigned from positive ints starting at 1
"""
labels = dict()
for label, cluster in enumerate(clusters):
for doc_id in cluster:
labels[doc_id] = label
return labels
|
4a443b729965d4632dc3ff68cb0828bcc2f4f2ff
| 697,774 |
import ftplib
def connectToFTP(host, usern, passw,verb):
"""
Creates an FTP Connection with the given details using FTPLib.
:param host: Hostname (e.g. IP address) of the connection
:param usern: Username to login with
:param passw: password
:param verb: print errors or not.
:return: FTP Connection object. Success:1, Failure:0
"""
try:
ftp = ftplib.FTP(host, usern, passw)
ftp.encoding = "utf-8"
ftp.set_pasv(False)
except Exception as e:
if verb:
print(e)
print("\nERROR while creating FTP Connection \n")
return None,0
return ftp,1
|
f6c4dabedbc400204d85cf699a7c592b38704d7d
| 697,779 |
def call_instance_method(instance, name, args, kwargs):
"""indirect caller for instance methods for multiprocessing
Args:
instance: the instance to call method with
name (str): method name to call
args (tuple or None): arguments to be passed to getattr(instance, name)
kwargs (dict or None): kwargs to be passed to getattr(instance, name)
Returns:
the returned values of getattr(instance, name)
"""
if args is None:
args = ()
if kwargs is None:
kwargs = {}
return getattr(instance, name)(*args, **kwargs)
|
30831cafeab2a4f3310a21c41a03e8d3ec9a43ec
| 697,782 |
def refactorize(arr, first_na, na_sentinel=-1):
"""
Modify `arr` *inplace* to match pandas' factorization rules.
This detects the code missing values were assigned, sets
those to `na_sentinel`, and shifts codes above that value
down by 1 to fill the hole.
Parameters
----------
arr : ndarray
First return value from :meth:`pandas.factorize`
first_na : int
The index location of the first missing value
na_sentinel : int, default -1
Value to set for missing values.
"""
# A naive benchmark shows that this gets ~285x speedup
# with numba on a 10,000 element array.
na_code = arr[first_na]
for i in range(len(arr)):
val = arr[i]
if val == na_code:
arr[i] = na_sentinel
elif val > na_code:
arr[i] -= 1
return arr
|
31d5e07650bb0ec6f93d59d453d8de859ab0c621
| 697,785 |
def get_file_id(service, file_name, mime_type=None, parent_id=None):
"""Return the ID of a Google Drive file
:param service: A Google Drive API service object
:param file_name: A string, the name of the file
:param mime_type: A string, optional MIME type of file to search for
:param parent_id: A string, optional id of a parent folder to search in
:return file_id: A string, file ID of the first found result
"""
file_id = None
query = """name='{}'
and trashed=False
""".format(file_name)
if parent_id:
query += "and parents in '{}'".format(parent_id)
if mime_type:
query += "and mimeType in '{}'".format(mime_type)
try:
results = service.files().list(
q=query,
fields='files(name, id)').execute()
if len(results['files']) > 1:
print('Multiple files found, retrieving first from list')
file_id = results['files'][0]['id']
except Exception as e:
print('An error occurred: {}'.format(e))
return file_id
|
e8e371ea740ca4be55b35baa74c28207ca6b7b4d
| 697,787 |
def get_section(f, first_delim, second_delim):
"""
Some open-source indicator downloads contain multiple sections.
This will return the section of the file f that is between the first_delim and second_delim
:param f: The file containing the section to be processed
:type f: file
:param first_delim: A string representing the beginning of the section
:type first_delim: str
:param second_delim: A string representing the terminator of the section
:type second_delim: str
:returns: list
"""
g = []
line = f.readline()
while line.find(first_delim) == -1:
line = f.readline()
if not line: return(None)
line = f.readline()
if second_delim != "":
while line.find(second_delim) == -1:
g.append(line)
line = f.readline()
else:
for line in f:
g.append(line)
return(g)
|
d0d08cf5fc157b7361c4ff5e20fe466de76d93fb
| 697,788 |
from typing import Dict
def number_topics_and_clusters(model, level: int) -> Dict[str, int]:
"""Get the number of topics and clusters for a level of the model hierarchy."""
model.get_groups(level)
return {
"n_topics": model.groups[level]["Bw"],
"n_clusters": model.groups[level]["Bd"],
}
|
ff587450e06bb6ce7ce97bd454c310a7b8d9e4b1
| 697,790 |
import re
def get_year_from_date_str(date_str):
"""
Retrieve only the year from a text string.
"""
return re.findall(r'\d{4}', date_str) if date_str else None
|
b2b02e97963d12236f20dad5d6b5337404a0dfc7
| 697,791 |
def limit(value, min_val, max_val):
"""Returns value clipped to the range [min_val, max_val]"""
return max(min_val, min(value, max_val))
|
8005e5cc9b6947e265f93eed1aa19f4e2abcc5ab
| 697,794 |
def int2tap(x):
"""Convert integer to tap position."""
if x[0] == "-":
res = "pre" + x[1:]
else:
res = "post" + x
return res
|
2af5e1b98258dfb921005a454689d862bdf3d9fe
| 697,795 |
def generate_list(start, stop, step):
"""
>>> generate_list(0, 5, 1)
[0, 1, 2, 3, 4]
>>> generate_list(0, 0, 1)
[]
>>> generate_list(5, 10, 2)
[5, 7, 9]
>>> generate_list(10, 5, -2)
[10, 8, 6]
"""
idx = start
lst = []
if idx < stop:
while idx < stop:
lst.append(idx)
idx += step
else:
while idx > stop:
lst.append(idx)
idx += step
return lst
|
51082bd4acf65abdaacbb98b429d79dcb718d9f7
| 697,796 |
def blocksearch(block, name):
""" Recursive search for name in block (inner blocks)
Args:
name (str): search term
Returns:
Block OR False
"""
if hasattr(block, 'tokens'):
for b in block.tokens[1]:
b = (b if hasattr(b, 'raw') and b.raw() == name else blocksearch(
b, name))
if b:
return b
return False
|
da9f762dddabe762dbabd80addebc0a957b04135
| 697,798 |
def get_provenance_record(ancestor_files):
"""Create a provenance record describing the diagnostic data and plot."""
record = {
'caption':
('(a) Zonally averaged sea surface temperature (SST) error in CMIP5 '
'models. (b) Equatorial SST error in CMIP5 models. (c) Zonally '
'averaged multi-model mean SST error for CMIP5 (red line) together '
'with inter-model standard deviation (shading). (d) Equatorial '
'multi-model mean SST in CMIP5(red line) together with inter-model '
'standard deviation (shading) and observations (black). Model '
'climatologies are derived from the 1979-1999 mean of the historical '
'simulations. The Hadley Centre Sea Ice and Sea Surface Temperature '
'(HadISST)(Rayner et al., 2003) observational climatology for '
'1979-1999 is used as reference for the error calculation (a), (b), '
'and (c); and for observations in (d).'),
'statistics': ['anomaly', 'mean', 'stddev', 'clim'],
'domains': ['eq', 'global'],
'plot_types': ['geo', 'sect', 'zonal'],
'authors': ['zimmermann_klaus'],
'projects': ['crescendo'],
'references': ['flato13ipcc', 'hadisst'],
'realms': ['ocean'],
'themes': ['phys'],
'ancestors':
ancestor_files,
}
return record
|
d0c68eb45dd0a9cee0746294b4fd3202dc1003de
| 697,800 |
def compute_statistics(datasetKaggle):
"""
Outputs various statistics of the Kaggle dataset
:param datasetKaggle: the input dataset formatted as a dictionary
:type datasetKaggle: dict
:return: dictionary with the processed information
:rtype: dict
"""
yesNoAnswer = 0
annotationsMax = 0
averageLength = 0
totalExamples = len(datasetKaggle)
for example in datasetKaggle:
annotationsMax = max(len(example['annotations']), annotationsMax) # check for the maximum number of annotations
if example['annotations'][0]['yes_no_answer'] != 'NONE':
yesNoAnswer += 1
averageLength = len(example['document_text']) / totalExamples
output = {'annotationsMax': annotationsMax, 'num_yesNo': yesNoAnswer, 'text_avgLength': averageLength}
return output
|
5d41592f45daa252d2a55c71193c1f022f4f53a2
| 697,803 |
def filter_ice_border(ice_thick):
"""Sets the ice thickness at the border of the domain to zero."""
ice_thick[0, :] = 0
ice_thick[-1, :] = 0
ice_thick[:, 0] = 0
ice_thick[:, -1] = 0
return ice_thick
|
cbe448c2659cab832cb499765fb0d4ae8f95d751
| 697,806 |
def column_names_from_cursor(cur):
"""returns column names as a list when provided cx_Oracle Cursor"""
column_names = []
for column_info in cur.description:
column_names.append(column_info[0])
return column_names
|
f5b1606bec5d32a67438c15c7d655079d189e512
| 697,810 |
from typing import Callable
import functools
def compose(*function: Callable) -> Callable:
"""Compose functions.
I.e::
``lambda x: f(g(x))``
can be written:
``compose(f, g)``
Args:
*function (Callable):
Any number of functions to compose together.
Output type of function N must be the input type of function N+1.
Returns:
Callable:
A composed function with input type same as the firs function, and output
type same as the last function.
"""
return functools.reduce(lambda f, g: lambda x: f(g(x)), function, lambda x: x)
|
8c3b04ffeb03303a49c006fa347e150f94700d40
| 697,812 |
def echo(value: str):
"""Test Celery task to echo a string.
Args:
value (str): string to return.
Returns:
str, the input argument string.
"""
return value
|
cc96b1f80147950cd0a084f45d379e5be0156c36
| 697,816 |
def distance(x1, y1, x2, y2):
"""
Distance between two points (x1, y1), (x2, y2).
"""
return pow((pow(x1 - x2, 2) + pow(y1 - y2, 2)), 0.5)
|
2bd9c1c8be018481998cff594f08c98d29be04de
| 697,821 |
def add_or_get_merge_anchor_index(lane, pos):
"""
Add a merge anchor at pos if needed, return the index of the merge anchor
"""
if not hasattr(lane, "merge_anchors"):
lane.merge_anchors = []
for ind, e in enumerate(lane.merge_anchors):
if (e[1] is None and pos == lane.start) or e[1] == pos:
return ind
lane.merge_anchors.append([lane.anchor, None if pos == lane.start else pos])
return len(lane.merge_anchors) - 1
|
ee52833b37d84ca765f8e5c56ec9e8f52691451a
| 697,823 |
def is_hovering(rect, mouse_pos):
"""Checks if a mouse is hovering over a rect"""
if (
rect.left <= mouse_pos[0] <= rect.right
and rect.top <= mouse_pos[1] <= rect.bottom
):
return True
return False
|
e17f4b8ee6e0b5f174473aa88388ff81ab67ea66
| 697,824 |
import math
def compass_bearing(pointA, pointB):
"""
Calculates the bearing between two points.
The formulae used is the following:
θ = atan2(sin(Δlong).cos(lat2),
cos(lat1).sin(lat2) − sin(lat1).cos(lat2).cos(Δlong))
:Parameters:
- `pointA: The tuple representing the latitude/longitude for the
first point. Latitude and longitude must be in decimal degrees
- `pointB: The tuple representing the latitude/longitude for the
second point. Latitude and longitude must be in decimal degrees
:Returns:
The bearing in degrees
:Returns Type:
float
"""
if (type(pointA) != tuple) or (type(pointB) != tuple):
raise TypeError("Only tuples are supported as arguments")
lat1 = math.radians(pointA[0])
lat2 = math.radians(pointB[0])
diffLong = math.radians(pointB[1] - pointA[1])
x = math.sin(diffLong) * math.cos(lat2)
y = math.cos(lat1) * math.sin(lat2) - (math.sin(lat1)
* math.cos(lat2) * math.cos(diffLong))
initial_bearing = math.atan2(x, y)
# Now we have the initial bearing but math.atan2 return values
# from -180° to + 180° which is not what we want for a compass bearing
# The solution is to normalize the initial bearing as shown below
initial_bearing = math.degrees(initial_bearing)
compass_bearing = (initial_bearing + 360) % 360
return compass_bearing
|
4ef715ab9519e306a12c42ab87f0a624d7e0589c
| 697,825 |
def copy_dict(other_dict):
"""
Returns a copy of the dictionary, separate from the original.
This separation is only at the top-level keys.
If you delete a key in the original, it will not change the copy.
>>> d1 = dict(a=1, b=2)
>>> d2 = dict(**d1)
>>> del d1['a']
>>> 'a' in d1
False
>>> 'a' in d2
True
If any of the top-level values are mutable (list, dict) then changes
to the original will appear in the copy.
>>> d1 = dict(a=[1, 2], b=[3, 4])
>>> d2 = dict(**d1)
>>> d1['a'].pop()
2
>>> d1['a']
[1]
>>> d1['a'] == d2['a']
True
Tested in Python 3.4.
"""
new_dict = dict(**other_dict)
return new_dict
|
a8d25212b2bf0524a5f434fd590c1ac3ec8b8810
| 697,829 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.