content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
def _convert_json_keywords(json_dict, conversion_dict): """ Makes a shallow copy of a dictionary with JSON-formatted, producing a dictionary with Python-formatted keys :param json_dict: the JSON dictionary :param conversion_dict: a dictionary that maps JSON keywords to their Python equivalents. Any keywords not present here are assumed to be identical in both. :return: a new dictionary with Python-formatted keys """ converted_dict = {} for keyword, value in json_dict: python_keyword = conversion_dict[keyword] if not python_keyword: python_keyword = keyword converted_dict[python_keyword] = value return converted_dict
bef2749d49411489b61a6692eea15c06004ab264
698,097
def DSER(results): """DA Segmentation Rate: number of segments of the reference incorrectly segmented over number of reference segments. """ assert len(results) == 2 CorrectSegs = results[0] TotalSegs = results[1] return ((TotalSegs-CorrectSegs)/TotalSegs) * 100
5d74c7bd3329448609fe36fa4d7778155c54d7c1
698,099
def normalize_dataframe(df): """ Converts the total occurrences and total docs into percentages""" df.total_occurrences = df.total_occurrences * 100 / df.total_occurrences.sum() df.total_docs = df.total_docs * 100 / df.total_docs.sum() return df
081efaf887b4465bffca9ebe8d2c8cb11e32f720
698,104
def set_element(base, index, value): """Implementation of perl = on an array element""" base[index] = value return value
11940389f4f24868c5afc1e4dbbcbf370a1af102
698,105
import click def command_line_input_output_file_arguments(f): """ Decorator for specifying input and output file arguments in a command """ f = click.argument("outfile", type=click.File("w"), default="-")(f) f = click.argument("infile", type=click.File("r"), default="-")(f) return f
832a527c900d6dc073f0e543d06c48696731c9d7
698,106
from typing import Sequence from typing import Any def _get_cont_out_labels(network_structure: Sequence[Sequence]) -> Any: """ Compute the contracted and free labels of `network_structure`. Contracted labels are labels appearing more than once, free labels are labels appearing exactly once. Computed lists are ordered according to int and ASCII ordering for integer and string values, with first entries in each list being ordered integer labels followed by ASCII ordered string labels. Returns: cont_labels, out_labels: The contracted and free labels of `network_structure`. """ flat_labels = [l for sublist in network_structure for l in sublist] out_labels = [l for l in flat_labels if flat_labels.count(l) == 1] int_out_labels = sorted([o for o in out_labels if not isinstance(o, str) ])[::-1] # pylint: disable=unnecessary-lambda str_out_labels = sorted([o for o in out_labels if isinstance(o, str)], key=lambda x: str(x)) cont_labels = [] for l in flat_labels: if (flat_labels.count(l) > 1) and (l not in cont_labels): cont_labels.append(l) int_cont_labels = sorted([o for o in cont_labels if not isinstance(o, str)]) # pylint: disable=unnecessary-lambda str_cont_labels = sorted([o for o in cont_labels if isinstance(o, str)], key=lambda x: str(x)) return int_cont_labels, str_cont_labels, int_out_labels, str_out_labels
f749b67789a00fe1cf0b2491a0a476d3882de9be
698,114
def get_avg_repr(inp_reprs, indxs, indxs_mask): """ Returns the average representation based on passed indxs and mask. :param inp_reprs: [batch_size1, dim] :param indxs: [batch_size2, seq_len] :param indxs_mask: [batch_size2, seq_len] :return: [batch_size2, dim] """ sel_reprs = inp_reprs[indxs] # [batch_size2, seq_len, dim] avg_reprs = (sel_reprs * indxs_mask.unsqueeze(-1)).sum(dim=1) avg_reprs = avg_reprs / indxs_mask.sum(-1, keepdim=True).float() return avg_reprs
7cf4cc78c108cfe58691fe7b0cec3b2c3608230c
698,115
import hashlib def hashhex(s): """ Returns a heximal formated SHA1 hash of the input string. """ h = hashlib.sha1() h.update(s) return h.hexdigest()
a96fb004984a583c72fdbb7f90ce705858ab8f9d
698,116
def convert_coord(x_center, y_center, radius): """ Convert coordinates from central point to top left point :param x_center: x coordinate of the center :param y_center: y coordinate of the center :param radius: the radius of the ball :return: coordinates of top left point of the surface """ x = x_center - radius y = y_center - radius return x, y
95a6cfd91fd7a59d7995820d3d5fceba6ff985a1
698,119
def chop(x,y,s0,s1): """Chop two 1-d numpy arrays from s0 to s1""" return x[s0:s1], y[s0:s1]
e43b4cbad862558862bb3539a4eac0add1bd14a1
698,121
def psri(b3, b4, b6): """ Plant Senescence Reflectance Index (Merzlyak et al., 1999). .. math:: PSRI = (b4 - b3)/b6 :param b3: Green. :type b3: numpy.ndarray or float :param b4: Red. :type b4: numpy.ndarray or float :param b6: Red-edge 2. :type b6: numpy.ndarray or float :returns PSRI: Index value .. Tip:: Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. 1999. \ Non-destructive optical detection of pigment changes during leaf \ senescence and fruit ripening. Physiologia Plantarum 106, 135-141. \ doi:10.1034/j.1399-3054.1999.106119.x. """ PSRI = (b4 - b3)/b6 return PSRI
3be121d6e0852a6a83d307773ffacf8fddec9f9d
698,122
def no_nodes(G): """ returns the number of nodes in a undirected network """ return len(G)
9504cc092ae63069399124e478b6c9b20d3879c9
698,123
def PNT2Tidal_Tv14(XA,chiA=0,chiB=0,AqmA=0,AqmB=0,alpha2PNT=0): """ TaylorT2 2PN Quadrupolar Tidal Coefficient, v^14 Timing Term. XA = mass fraction of object chiA = aligned spin-orbit component of object chiB = aligned spin-orbit component of companion object AqmA = dimensionless spin-induced quadrupole moment of object AqmB = dimensionless spin-induced quadrupole moment of companion object alpha2PNT = 2PN Quadrupole Tidal Flux coefficient """ XATo2nd = XA*XA XATo3rd = XATo2nd*XA XATo4th = XATo3rd*XA XATo5th = XATo4th*XA return (70312133/21168)+(4*alpha2PNT)/(3) - (147794303*XA)/(127008) \ - (20905*XATo2nd)/(28) - (432193*XATo3rd)/(504)-(5848*XATo4th)/(9) \ + (857*XATo5th)/(3) + (-(639*XATo2nd)/(2)+(525*XATo3rd)/(2) \ + AqmA*(-312*XATo2nd+256*XATo3rd))*chiA*chiA \ + (-609*XA+1108*XATo2nd-499*XATo3rd)*chiA*chiB \ + (-(639)/(2)+(1803*XA)/(2)-(1689*XATo2nd)/(2) + (525*XATo3rd)/(2) \ + AqmB*(-312+880*XA-824*XATo2nd+256*XATo3rd))*chiB*chiB
82eae87495785a5d0cce4d3f0ae5b6654395a42c
698,124
import random def noisify(val, eps): """ Add a Gaussian White noise to function value """ val_noisy = (1 + random.gauss(mu=0,sigma=eps)) * (1-val) return val_noisy
40059eb7f87aa1b7b7096a1c84c7edef09cef4e1
698,126
def get_box_size(box): """Get box size""" x0, y0, x1, y1 = box sx = abs(x1 - x0) + 1 sy = abs(y1 - y0) + 1 return (sx, sy)
cefa6c8950687f0b4d244ebf9080ab29e358a7b2
698,129
from datetime import datetime def unix_epoch_to_datetime(ux_epoch): """Convert number of seconds since 1970-01-01 to `datetime.datetime` object. """ return datetime.utcfromtimestamp(ux_epoch)
13edceec1631a2a3db06dad215380f609693f441
698,133
import torch def point_edt2(point: torch.Tensor, grid: torch.Tensor) -> torch.Tensor: """Batched version of a Squared Euclidean Distance Transform for a D-dimensional point. Args: point: torch.Tensor of size [batch, *, D]. Each element is interpreted as a D-dimensional point (e.g. [row, col] or [depth, row, col]) and * represents any number of additional dimensions (eg. channels or images or both). grid: torch.Tensor of size [*D, D], where *D represents D elements defining a lattice that defines the coordinates of each output pixel/voxel. Returns: a torch.Tensor of size [batch, *, *D] representing the EDT^2 of each point in the input batch where * represents any additional dimensions from the input, and *D is the size of each dimension of the lattice. """ inshape = point.shape outshape = (*inshape[0:-1], *grid.shape[0:-1]) dim = len(grid.shape) - 1 point = point.view(-1, *[1] * dim, dim) # need to replicate the grid for each item in the batch grid = grid.expand(point.shape[0], *grid.shape) pl = (grid - point) d = (pl * pl).sum(dim=-1) d = d.view(outshape) return d
b186ccccd94d8b709974efd3b2ec5817c698f77b
698,134
import queue def bfs(G, start): """ A simple breadth-first search algorithm implemented using native queues. """ seen = set() q = queue.Queue() # we don't care about threading so don't ask Queue to block execution q.put_nowait(start) while not q.empty(): # get the waiting node, again without blocking execution u = q.get_nowait() if u not in seen: seen.add(u) # get all of u's neighbors and enqueue them for n in G[u]: q.put_nowait(n) return seen
a15f6ef42f8873b108c2bd48c462175c77fdeee8
698,136
import re def content_type(response, **patterns): """Return name for response's content-type based on regular expression matches.""" ct = response.headers.get('content-type', '') matches = (name for name, pattern in patterns.items() if re.match(pattern, ct)) return next(matches, '')
c1071b2feae41bd049a26542d89414de54c06d8e
698,137
import re def convert_ip_address(ip_address: str): """ This function converts a ipv4 address in standard string format to a HEX representation :param ip_address: string with IPv4 address in format '192.168.0.1' :return: HEX representation of IPv4 address (string) """ if re.search('^((25[0-5]|(2[0-4]|1[0-9]|[1-9]|)[0-9])(\.(?!$)|$)){4}$', ip_address) is None: return None ip_addr = ip_address.split('.') for i in range(4): ip_addr[i] = hex(int(ip_addr[i]))[2:] while len(ip_addr[i]) < 2: ip_addr[i] = '0' + ip_addr[i] ip_address = ip_addr[0] + ip_addr[1] + ' ' + ip_addr[2] + ip_addr[3] return ip_address
1f50e6e2cb34325d07680a58090b58a1e00b745e
698,138
import base64 def base32_decode(encoded_bytes: bytes) -> str: """ Decodes a given bytes-like object to a string, returning a string >>> base32_decode(b'JBSWY3DPEBLW64TMMQQQ====') 'Hello World!' >>> base32_decode(b'GEZDGNBVGY======') '123456' >>> base32_decode(b'ONXW2ZJANRXW4ZZAMNXW24DMMV4CA43UOJUW4ZY=') 'some long complex string' """ # decode the bytes from base32 # then, decode the bytes-like object to return as a string return base64.b32decode(encoded_bytes).decode("utf-8")
215a1aacd815fe11b93cf7dc6105abdff3492ab2
698,139
import re def replaceThreeOrMore(word): """ look for 3 or more repetitions of letters and replace with this letter itself only once """ pattern = re.compile(r"(.)\1{3,}", re.DOTALL) return pattern.sub(r"\1", word)
c052a082d74873da1a4c64dc035aeff429b29efd
698,140
def luhn_validation(credit_card_number: str) -> bool: """ Function to luhn algorithm validation for a given credit card number. >>> luhn_validation('4111111111111111') True >>> luhn_validation('36111111111111') True >>> luhn_validation('41111111111111') False """ cc_number = credit_card_number total = 0 half_len = len(cc_number) - 2 for i in range(half_len, -1, -2): # double the value of every second digit digit = int(cc_number[i]) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 cc_number = cc_number[:i] + str(digit) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(cc_number) - 1, -1, -2): total += int(cc_number[i]) return total % 10 == 0
4ed1cd788b54819ae4caead22bf34975a774dace
698,142
def _rescale_score_by_abs(score: float, max_score: float, min_score: float) -> float: """ Normalizes an attribution score to the range [0., 1.], where a score score of 0. is mapped to 0.5. :param score: An attribution score :param max_score: The maximum possible attribution score :param min_score: The minimum possible attribution score :return: The normalized score """ if -1e-5 < min_score and max_score < 1e-5: return .5 elif max_score == min_score and min_score < 0: return 0. elif max_score == min_score and max_score > 0: return 1. top = max(abs(max_score), abs(min_score)) return (score + top) / (2. * top)
a9ab337cc47f2d62de33c267bfe19c9522190db4
698,143
def __get_leading_zeros(fl): """Returns the number of leading zeros in a float decimal.""" if fl > 1.0: return 0 else: fl_splitted = str(fl).split(".")[-1] N_unstripped = len(fl_splitted) N_left_stripped = len(fl_splitted.lstrip("0")) return N_unstripped - N_left_stripped
c009a9dcf7f2c57baee3043acf9ec416679fab67
698,145
def df_to_dictionaries(df, change_names={}, include_index=True): """Returns a list of dictionaries, one dictionary for each row in the DataFrame 'df'. The keys of the dictionary match the DataFrame column names, except for any substitututions provided in the 'change_names' dictionary; {'old_name': 'new_name', etc}. If 'include_index' is True, the index values are included in the dictionary keyed on the index name (unless changed in the 'change_names' dictionary) """ # make a list of the final names to use names = list(df.columns.values) if include_index: names = [df.index.name] + names # apply name substitutions for i in range(len(names)): names[i] = change_names.get(names[i], names[i]) result = [] for ix, row in df.iterrows(): vals = list(row.values) if include_index: vals = [ix] + vals result.append( dict(zip(names, vals)) ) return result
f02c97318dda4da6bb082d3a78898584e27d353c
698,147
def _s(word, seq, suffix='s'): """Adds a suffix to ``word`` if some sequence has anything other than exactly one element. word : str The string to add the suffix to. seq : sequence The sequence to check the length of. suffix : str, optional. The suffix to add to ``word`` Returns ------- maybe_plural : str ``word`` with ``suffix`` added if ``len(seq) != 1``. """ return word + (suffix if len(seq) != 1 else '')
7ae7a7ac50b6b6ee92718877d242569d7339fd0e
698,150
def label2Addr(label, labels): """ Return int address associated with label or None. label is a string, either digits or symbolic. Array labels has labels for all addresses in mem. """ if label.isdigit(): return int(label) if label in labels: return labels.index(label)
27b1fe8edce3aa4ee33f2e7ff25843fa958da620
698,152
def evenify(n): """Ensure number is even by incrementing if odd """ return n if n % 2 == 0 else n + 1
8a0e3263c2a4853c25361fda434c88a5f6c45a91
698,158
import logging def _LoadResource(path): """Load the resource at given path. Args: path: a string resource path. Returns: The contents of that resource. Raises: ValueError: If the path is not set up correctly. IOError: If the path is not found, or the resource can't be opened. """ try: with open(path, 'rb') as f: return f.read() except IOError as e: logging.warning('IOError %s on path %s', e, path) raise e
73b5e318214fe44e9de2af251a4e58e7e5ef0376
698,159
import random def valid_add(gene_info, individual): """Based on gene info and current individual, return a valid index to add to an individual. """ return random.choice(list(set(range(0, gene_info.gene_count)) - individual))
bc02ea8d35175ebeb91caf47717bb4d6d8202119
698,161
from typing import Any def serialise(obj: Any, no_head: bool = False) -> dict: """Takes any non-primitive object and serialises it into a dict. Arguments: obj(Any): Any non primitive object. no_head(bool): Will not specify the module and class of the object when True. Returns: dict: A serialised dictionary of all the values of an object. May also contain the module and class. Raises: TypeError: Raised when a built in object is given. """ if obj.__class__.__module__ == '__builtin__': raise TypeError("Can't serialise a builtin type.") cls = obj.__class__ if no_head: dct = {"values": {}} else: dct = {"__module__": cls.__module__, "__name__": cls.__name__, "values": {}} for i in dir(obj): try: val = getattr(obj, i) except AttributeError: val = None if i.startswith("_") or callable(val) or i in vars(cls): continue elif not isinstance(val, (str, int, bool, dict)) and val is not None: try: val = serialise(val) print(val) except RecursionError: val = str(val) dct["values"][i] = val if no_head: return dct["values"] else: return dct
80f306e4fea637bda548c6292d2d38ecba641af8
698,162
def bdev_pmem_create_pool(client, pmem_file, num_blocks, block_size): """Create pmem pool at specified path. Args: pmem_file: path at which to create pmem pool num_blocks: number of blocks for created pmem pool file block_size: block size for pmem pool file """ params = {'pmem_file': pmem_file, 'num_blocks': num_blocks, 'block_size': block_size} return client.call('bdev_pmem_create_pool', params)
f8851fb3d6472751d213ca4b7c4c1d59915e929c
698,165
from datetime import datetime import pytz def now_iso_time(zulu_frmt=True): """ Returns now time in ISO 8601 format in UTC :param zulu_frmt: if True return zulu time format, e.g. '2020-11-26T13:51:29Z', otherwise return string with UTC offset, e.g. '2020-11-26T13:51:29+00:00' """ time_now = datetime.utcnow().replace(tzinfo=pytz.UTC).replace(microsecond=0).isoformat() if zulu_frmt: time_now = time_now.replace("+00:00", "Z") return time_now
55abbdda86beeddf7d6ed5e8e95575b89d7f5071
698,167
import numbers def _create_weights_tuple(weights): """ Returns a tuple with the weights provided. If a number is provided, this is converted to a tuple with one single element. If None is provided, this is converted to the tuple (1.,) """ if weights is None: weights_tuple = (1.,) elif isinstance(weights, numbers.Number): weights_tuple = (weights,) else: weights_tuple = tuple(float(i) for i in weights) return weights_tuple
6d4006a4a88b47fb009e6f45cc654fd7642cbc6a
698,169
def nasa_polynomial(output_str): """ Parse the NASA polynomial from the PAC99 output file. :param output_str: string for the output file :type output_str: str :rtype: str """ lines = output_str.splitlines() return '\n'.join([lines[i] for i in range(11)])
cf02c398ac54c40d814bf649fec2b7d3079a01c7
698,170
import torch def get_metrics(pred_scores: torch.Tensor, true_idx: torch.Tensor, k_values: torch.Tensor): """Calculates mean number of hits@k. Higher values are ranked first. Args: pred_scores: (B, N) tensor of prediction values where B is batch size and N number of classes. ground_truth_idx: (B, 1) tensor with index of ground truth class k_values: (1, k) tensor containing number of top-k results to be considered as hits. Returns: reciprocals: (B, 1) tensor containing reciprocals of the ranks hits: (B, k) tensor containing the number of hits for each value of k """ # Based on PyKEEN's implementation true_scores = pred_scores.gather(dim=1, index=true_idx) best_rank = (pred_scores > true_scores).sum(dim=1, keepdim=True) + 1 worst_rank = (pred_scores >= true_scores).sum(dim=1, keepdim=True) average_rank = (best_rank + worst_rank).float() * 0.5 reciprocals = average_rank.reciprocal() hits = average_rank <= k_values return reciprocals, hits
f0c21fbb993805222f2b84fcc6644868211a95b5
698,171
import re def clean_text(s): """ Remove non alphabetic characters. E.g. 'B:a,n+a1n$a' becomes 'Banana' """ s = re.sub("[^a-z A-Z _]", "", s) s = s.replace(' n ', ' ') return s.strip().lower()
ab18429927bbca362801ec815934aa8dc9a106e9
698,172
def IsArticleURL(para): """该函数接收一个参数,并判断其是否是简书的文章 URL。 Args: para (str): 需要被判断的参数 Returns: bool: 如为 True 代表是文章 URL,为 False 则不是 """ if para.find("http") == -1: return False if para.find("www.jianshu.com") == -1: return False if para.find("/p/") == -1: return False return True
91f9878938e1799373ef928aa8ed6ea0fea1a3ca
698,174
def _validate_lod(lod, tensor_height=-1): """Check whether the input length-based lod info is valid. There are several things to check: 1. lod should be a list of lists. Empty list is fine. 2. The length of each sublist (a lod level) should be at least one. 3. Each element in each lod level should be an integer greater than 0. 4. The sum of one lod level should be equal to the length of the next lod level. 5. The sum of the last lod level should be equal to the tensor height. Bypass this check if user does not provide tensor_height as input. Args: lod: the length-based lod info, e.g., [[2, 3], [2, 1, 2, 3, 4]]. tensor_height: the outermost dimension of the tensor with which the input lod is associated with. Returns: A boolean indicating whether the input lod is valid or not. """ assert isinstance(lod, list), "lod should be a list" # Empty lod is fine if len(lod) == 0: return True lod_sum = [] for level in lod: assert isinstance(level, list), "each item in lod should be a list" # Each level of lod should have at least one length info if len(level) < 1: return False level_sum = 0 for lod_len in level: # Each length in a level should be > 0 if lod_len <= 0: return False level_sum += lod_len lod_sum.append(level_sum) for idx, val in enumerate(lod_sum[:-1]): # Each level's sum should be equal to # the number of items in the next level if val != len(lod[idx + 1]): return False if tensor_height == -1: return True else: # Last level's sum should be equal to the tensor height return lod_sum[-1] == tensor_height
c9717eb8668b03e4da75abdf24003e9458eb9783
698,176
def escape_string(string): """ Escape a string for use in Gerrit commands. Adds necessary escapes and surrounding double quotes to a string so that it can be passed to any of the Gerrit commands that require double-quoted strings. """ result = string result = result.replace('\\', '\\\\') result = result.replace('"', '\\"') return '"' + result + '"'
2c3b16b67377de3cba821cc405c0c5e24943b995
698,180
import importlib def import_consumer(value): """Pass in a string in the format of foo.Bar, foo.bar.Baz, foo.bar.baz.Qux and it will return a handle to the class :param str value: The consumer class in module.Consumer format :return: tuple(Class, str) """ parts = value.split('.') import_name = '.'.join(parts[0:-1]) import_handle = importlib.import_module(import_name) if hasattr(import_handle, '__version__'): version = import_handle.__version__ else: version = None # Return the class handle return getattr(import_handle, parts[-1]), version
c63d57614d7be9cfbda35d25b6634ffaec938288
698,181
def _MakeSplitDimension(value, enabled): """Return dict modelling a BundleConfig splitDimension entry.""" return {'value': value, 'negate': not enabled}
de4d44598e5c9c76e46b57b4b07f41698dbe983d
698,182
import math def calc_easing_degree_for_proportion(proportion): """ Calculates a reasonable easing degree for a given proportion. """ return -math.log10(proportion) + 1
feeab6e87fba3060cbd37f89f3e0391df1bc1102
698,184
def spatial_mean(tensor, ndim=1): """ Average `tensor` over the last dimensions; keep only the first `ndim` ones. """ if tensor.ndim > ndim: return tensor.mean(tuple(range(ndim, tensor.ndim))) return tensor
19bcf5df1d197069842792b9bd5d07a5e223d609
698,185
import binascii def get_address_bytes_from_string(address_string): """ Given a Bluetooth address as a string, optionally delimited by colons (':'), return the bytes representation of the address. :param address_string: A Bluetooth address string, optionally delimited by commas. This value is case-insensitive. :return: A bytes value corresponding to the raw Bluetooth address. :raises: :exc:`ValueError` if `address_string` is not a valid Bluetooth address string. """ address_string = address_string.replace(":", "") if len(address_string) != 12: raise ValueError("Invalid Bluetooth address: {!r}".format(address_string)) try: # Address string is reversed from bytes data. return binascii.unhexlify(address_string)[::-1] except TypeError: raise ValueError("Invalid Bluetooth address: {!r}".format(address_string))
88e83d5916c461e34300a330603e3975320d6568
698,186
def compute_mean_rt(df): """ Computes subject-wise mean RT Input --- df : dataframe aggregate response data Returns --- array of subject-wise mean RTs """ return df.groupby('subject').rt.mean().values
04b51953a8a5fa37fc746e32416bd0b598cfb138
698,188
import re def add_iteration_suffix(name): """ adds iteration suffix. If name already ends with an integer it will continue iteration examples: 'col' -> 'col_01' 'col' -> 'col_01' 'col1' -> 'col2' 'col_02' -> 'col_03' """ # pylint: disable=import-outside-toplevel m = re.search(r"\d+$", name) n = "00" endstr = None midchar = "_" if name[-1] != "_" else "" if m is not None: midchar = "" n = m.group() endstr = -len(n) name = f"{name[:endstr]}{midchar}{int(n)+1:0{len(n)}}" return name
8021f1bc131f0a303bfaa06caa39e77f1de0dff9
698,189
def min_max(tr): """Return the ratio of minimum to maximum of a trace. Parameters ---------- tr : 1D array of float The input profile. Returns ------- mm : float The ratio of the minimum value in `tr` over the maximum. Examples -------- >>> tr = np.array([0.8, 0.9, 1.4, 2.0, 1.1]) >>> min_max(tr) # doctest: +ELLIPSIS 0.4... """ tr = tr.astype(float) mm = tr.min() / tr.max() return mm
8fcb533f22addf95ccf6e75e3d116dfe928aa6ca
698,190
def f(x): # 2 """Simple recursive function.""" # 3 if x == 0: # 4 return 1 # 5 return 1 + f(x - 1)
ad71b050af9f3e634b8afab7565bc4df1c3f1222
698,191
def _assert_float_dtype(dtype): """Validate and return floating point type based on `dtype`. `dtype` must be a floating point type. Args: dtype: The data type to validate. Returns: Validated type. Raises: ValueError: if `dtype` is not a floating point type. """ if not dtype.is_floating: raise ValueError("Expected floating point type, got %s." % dtype) return dtype
7aee4b4bc4b389b718b3e7a8cb9a77c37fd4ff1e
698,193
def get_value(str_val): """convert a string into float or int, if possible.""" if not str_val: return "" if str_val is None: return "" try: val = float(str_val) if "." not in str_val: val = int(val) except ValueError: val = str_val return val
a3c7deee4110ea25a88f8568139015be20fef1d0
698,194
def relation_bet_point_and_line( point, line ): """Judge the realtion between point and the line, there are three situation: 1) the foot point is on the line, the value is in [0,1]; 2) the foot point is on the extension line of segment AB, near the starting point, the value < 0; 3) the foot point is on the extension line of segment AB, near the ending point, the value >1; Args: point ([double, double]): point corrdination line ([x0, y0, x1, y1]): line coordiantions Returns: [float]: the realtion between point and the line (起点 < 0 <= 线段中 <= 1 < 终点) """ pqx = line[2] - line[0] pqy = line[3] - line[1] dx = point[0]- line[0] dy = point[1]- line[1] # 线段长度的平方 d = pow(pqx,2) + pow(pqy,2) # 向量 点积 pq 向量(p相当于A点,q相当于B点,pt相当于P点) t = pqx*dx + pqy*dy flag = 1 if(d>0): t = t/d flag = t return flag
92a1ed906ee4d7fbb97fa46668fedbbd5f704fba
698,195
def escape_quotes(value): """ DTD files can use single or double quotes for identifying strings, so &quot; and &apos; are the safe bet that will work in both cases. """ value = value.replace('"', "\\&quot;") value = value.replace("'", "\\&apos;") return value
1aa6e5f2325bfc293dff6e34b77117284d5bd018
698,196
import json def init_population(ind_init, filename): """ create initial population from json file ind_init: [class] class that and individual will be assigned to filename: [string] string of filename from which pop will be read returns: [list] list of Individual objects """ with open(filename, "r") as pop_file: contents = json.load(pop_file) return list(ind_init(c) for c in contents)
015b4d6b81dc44e325393535fc7abd65ca26db55
698,197
import random def shuffle(l): """ Returns the shuffled list. """ l = list(l) random.shuffle(l) return l
4945d5d57ecaf3c9b8340f3f20c5e960938f3914
698,198
def vec2num(vec): """Convert list to number""" num = 0 for node in vec: num = num * 10 + node return num
ffce787a02bc9f2bc5669dd8fb622bdff1fc941b
698,205
from datetime import datetime def _iardict_to_fil_header(iardict: dict) -> dict: """Build dict header from dict iar.""" source_name = iardict["Source Name"] source_ra = iardict["Source RA (hhmmss.s)"] source_dec = iardict["Source DEC (ddmmss.s)"] # ref_dm = iardict["Reference DM"] # pul_period = iardict["Pulsar Period"] # high_freq = iardict["Highest Observation Frequency (MHz)"] telescope_id = int(iardict["Telescope ID"]) machine_id = int(iardict["Machine ID"]) data_type = int(iardict["Data Type"]) # observing_time = int(iardict["Observing Time (minutes)"]) # gain = iardict["Gain (dB)"] # bandwidth = int(iardict["Total Bandwith (MHz)"]) avg_data = int(iardict["Average Data"]) sub_bands = int(iardict["Sub Bands"]) # ---- ROACH ---- # values fft_pts = 128 adc_clk = 200e6 # parameters tsamp = avg_data * fft_pts / adc_clk f_off = adc_clk / fft_pts * 1e-6 time_now = datetime.now().strftime("_%Y%m%d_%H%M%S") # tsamp = 1e6 / float(bandwidth) * avg_data rawdatafile = f"ds{avg_data}_{source_name}{time_now}.fil" return { "telescope_id": telescope_id, "machine_id": machine_id, "data_type": data_type, "rawdatafile": rawdatafile, "source_name": source_name, "az_start": 0.0, "za_start": 0.0, "src_raj": source_ra, "src_dej": source_dec, "tstart": 0.0, "tsamp": tsamp, "fch1": 0.0, "foff": f_off, "nchans": sub_bands, "nifs": 1, "ibeam": 1, "nbeams": 1, }
920ce832d0ab9b7fa219b14572cbfa04c4c0dfc2
698,207
from typing import OrderedDict def make_per_dataset_plot(delta_cchalf_i): """Make a line plot of delta cc half per group.""" d = OrderedDict() d.update( { "per_dataset_plot": { "data": [ { "y": [i * 100 for i in list(delta_cchalf_i.values())], "x": list(delta_cchalf_i.keys()), "type": "scatter", "mode": "lines", } ], "layout": { "title": "Delta CC-Half vs group", "xaxis": {"title": "Group number"}, "yaxis": {"title": "Delta CC-Half"}, }, } } ) return d
219b7a981f896c7723e8f6ccde16819703503e54
698,210
def merge_sort(array): """ An implementation of the merge sort algorithm. Recursively sorts arrays by calling merge sort on halves of the array, then merging by comparing the first element of each array, then adding the smaller of the two to a the sorted array. """ # Base Cases if len(array) == 1 or len(array) == 0: return array elif len(array) == 2: if array[0] > array[1]: array[0], array[1] = array[1], array[0] return array else: i, j, sort = 0, 0, [] # Split the array into 2 equal parts and sort them middle = int(len(array)/2) left = merge_sort(array[:middle].copy()) right = merge_sort(array[middle:].copy()) # Merge the sorted halves ll, lr = len(left), len(right) while i < ll and j < lr: if left[i] <= right[j]: sort.append(left[i]); i += 1 else: sort.append(right[j]); j += 1 # Add anything left over sort += left[i:] sort += right[j:] return sort
659260d8a9b9160d0576c62d17dadd91925fb05c
698,211
def vectorize_cst(value, cst_precision): """ if cst_precision is a vector format return a list uniformly initialized with value whose size macthes the vector size of cst_precision, else return the scalar value """ if cst_precision.is_vector_format(): return [value] * cst_precision.get_vector_size() else: return value
9a5ba282309f8134007084e32a4a58876ec05d73
698,213
def split_me(strings): """ Function to split strings into an array to loop later from the template. """ splited_values = strings.split(",") return splited_values
2b62cccac7602054b0e5cde34d0dbfc9964c0970
698,218
def hamming_distance(Subspace1, Subspace2): """ Returns the Hamming distance between to subspaces. Variables that are free in either subspace are ignored. **arguments**: * *Subspace1, Subspace2* (dict): subspaces in dictionary representation **returns**: * *Distance* (int): the distance between *Subspace1* and *Subspace2* **example**: >>> hamming_distance({"v1":0,"v2":0}, {"v1":1,"v2":1}) 2 >>> hamming_distance({"v1":1}, {"v2":0}) 0 """ return len([k for k, v in Subspace1.items() if k in Subspace2 and Subspace2[k] != v])
f42d13bd1d980b092235aa472a24a1cebe078f44
698,219
from pathlib import Path def find_path(paths): """Given a search path of files or directories with absolute paths, find the first existing path. Args: paths (list): A list of strings with absolute paths. Returns: str: The first path in the list `paths` that exists, or `None` if none of the paths exist. Example: The following example works if the file system has a file /usr/local/etc/snips.toml (e.g. on macOS with Snips installed): >>> find_path(['/etc/snips.toml', '/usr/local/etc/snips.toml']) '/usr/local/etc/snips.toml' """ for name in paths: path = Path(name) if path.exists(): return str(path.resolve()) # If none of the paths in the search path are found in the file system, # return None. return None
53dda06e55c26d0fce43bca5eea0cdc3fca53b11
698,224
def time_to_str(t): """ Turns time objects to strings like '08:30' """ return t.strftime('%H:%M')
6427b9267b63dc6d75dce2afae24bbbd58b0b0dd
698,227
def test(one, two, three, **kwargs) -> int: """Return the sum of the arguments.""" return one + two + three + kwargs["four"] + kwargs["five"] + kwargs["six"]
c48a6968b6d4f1c673f7749e810d8d360e8d8d20
698,231
def _hierarch_keywords(names): """ Prepend the 'HIERARCH ' string to all keywords > 8 characters Avoids FITS VerifyWarning. Parameters ---------- names : list keywords Returns ------- new_names : list keywords with HIERARCH prepended as apprpriate """ new_names = [] for cname in names: if len(cname) >= 8: new_names.append(f"HIERARCH {cname}") else: new_names.append(cname) return new_names
73fc3f1594bf12a7c4a2c79d320aa490eb3d39e9
698,235
def get_size_of_corpus(filepaths): """ Given a list of filepaths, it will return the total number of lines Parameters ---------- filepaths : [ str ] A list of filepaths Returns ------- num_lines : int The total number of lines in filepaths """ def blocks(files, size=65536): while True: b = files.read(size) if not b: break yield b num_lines = 0 for filepath in filepaths: with open(filepath, encoding="utf-8") as f: num_lines += sum(bl.count("\n") for bl in blocks(f)) return num_lines
46d166f7ae21ed345c45c38b782c7405790a8de2
698,239
from struct import unpack from typing import Union from pathlib import Path def _tiff2xml(path: Union[Path, str]) -> bytes: """Extract OME XML from OME-TIFF path. This will use the first ImageDescription tag found in the TIFF header. Parameters ---------- path : Union[Path, str] Path to OME TIFF. Returns ------- xml : str OME XML Raises ------ ValueError If the TIFF file has no OME metadata. """ with Path(path).open(mode="rb") as fh: try: offsetsize, offsetformat, tagnosize, tagnoformat, tagsize, codeformat = { b"II*\0": (4, "<I", 2, "<H", 12, "<H"), b"MM\0*": (4, ">I", 2, ">H", 12, ">H"), b"II+\0": (8, "<Q", 8, "<Q", 20, "<H"), b"MM\0+": (8, ">Q", 8, ">Q", 20, ">H"), }[fh.read(4)] except KeyError as e: raise ValueError(f"{path!r} does not have a recognized TIFF header") from e fh.read(4 if offsetsize == 8 else 0) fh.seek(unpack(offsetformat, fh.read(offsetsize))[0]) for _ in range(unpack(tagnoformat, fh.read(tagnosize))[0]): tagstruct = fh.read(tagsize) if unpack(codeformat, tagstruct[:2])[0] == 270: size = unpack(offsetformat, tagstruct[4 : 4 + offsetsize])[0] if size <= offsetsize: desc = tagstruct[4 + offsetsize : 4 + offsetsize + size] break fh.seek(unpack(offsetformat, tagstruct[-offsetsize:])[0]) desc = fh.read(size) break else: raise ValueError(f"No OME metadata found in file: {path}") if desc[-1] == 0: desc = desc[:-1] return desc
6bd35d09c5edfd6362379ae3375e888e99f4609a
698,242
def DistanceFromMatrix(matrix): """Returns function(i,j) that looks up matrix[i][j]. Useful for maintaining flexibility about whether a function is computed or looked up. Matrix can be a 2D dict (arbitrary keys) or list (integer keys). """ def result(i, j): return matrix[i][j] return result
f3cb95aace0cfe70bfeef9d8778947df16cdd4b1
698,249
from pathlib import Path def homedir() -> str: """Return the user's home directory.""" return str(Path.home())
dbd65e7db4cdbf2bd06c1ab42ed1ea3503e14ac2
698,250
def quote_aware_split(string, delim=',', quote='"'): """ Split outside of quotes (i.e. ignore delimiters within quotes.""" out = [] s = '' open_quote=False for c in string: if c == quote: open_quote = not open_quote if c == delim and not open_quote: out += [s] s = '' else: s += c return out + [s]
0ef5f7040eee2a041fa1b6e6d8bf3a773a80f5f9
698,256
def LMpM_total_size(ell_min, ell_max): """Total array size of Wigner D matrix Assuming an array (e.g., Wigner D matrices) in the order [[ell,mp,m] for ell in range(ell_min, ell_max+1) for mp in range(-ell,ell+1) for m in range(-ell,ell+1)] this function returns the total size of that array. This can be calculated in sympy as from sympy import symbols, summation ell,ell_min,ell_max = symbols('ell,ell_min,ell_max', integer=True) summation((2*ell + 1)**2, (ell, ell_min, ell_max)) """ # raw output is: 4*ell_max**3/3 + 4*ell_max**2 + 11*ell_max/3 - 4*ell_min**3/3 + ell_min/3 + 1 # We rearrange that to act more nicely return (((4 * ell_max + 12) * ell_max + 11) * ell_max + (-4 * ell_min ** 2 + 1) * ell_min + 3) // 3
7a6175640236ec3bc905d3b458f99eedbc792e09
698,262
def get_fcurve_data_path_property(fcurve): """ Gets fcurve's data path property Example fcurve's data_path: 'sequence_editor.sequences_all["Transform"].scale_start_x' For that example path this function will return 'scale_start_x' :param fcurve: Fcurve instance to get data path from :return: The last component of data path defining actual property name """ # we want to extract last part - data path data_path_full = fcurve.data_path last_dot_index = data_path_full.rfind(".") return data_path_full[(last_dot_index+1):]
0a7ce5fecdaa5cb1fe0024a18f6b6f057b5fe6cb
698,263
def align(offset, alignment): """ Return the offset aligned to the nearest greater given alignment Arguments: - `offset`: An integer - `alignment`: An integer """ if offset % alignment == 0: return offset return offset + (alignment - (offset % alignment))
1f9d8fd4d4ac7798e14ee92d83510bb4b0ba09aa
698,266
def parse_property_string(prop_str): """ Generate valid property string for extended xyz files. (ref. https://libatoms.github.io/QUIP/io.html#extendedxyz) Args: prop_str (str): Valid property string, or appendix of property string Returns: valid property string """ if prop_str.startswith("Properties="): return prop_str return "Properties=species:S:1:pos:R:3:" + prop_str
24a865dcf2cba5b5f840e3e682fd58486b658355
698,267
from typing import List def _format_plugin_names_and_versions(plugininfo) -> List[str]: """Format name and version of loaded plugins.""" values: List[str] = [] for _, dist in plugininfo: # Gets us name and version! name = f"{dist.project_name}-{dist.version}" # Questionable convenience, but it keeps things short. if name.startswith("pytask-"): name = name[7:] # We decided to print python package names they can have more than one plugin. if name not in values: values.append(name) return values
2313f2f60e71be2209ebb201297d44e8dcad513a
698,272
def star_sub_sections(body:str): """ Change \subsection \subsubsection To: \subsection* \subsubsection* """ body = body.replace(r'\subsection',r'\subsection*') body = body.replace(r'\subsubsection',r'\subsubsection*') return body
06583d16c76393edb614955c4e3786b292c5fa51
698,273
def rjd_to_mjd(rjd): """ RJD (Reduced Julian Date) days elapsed since 1858-11-16T12Z (JD 2400000.0) MJD (Modified Julian Date) days elapsed since 1858-11-17T00Z (JD 2400000.5) This function transforms RJD in MJD """ return rjd - 0.5
2b1f4d830670f754fbbc2259face4d261877d335
698,275
def example_function(a: int) -> int: """Takes an integer as input and return it's square Parameters ---------- a : int input number Returns ------- int square of a """ return a ** 2
fd519e72ec385aa905868facee198b3eaf57f778
698,277
import doctest def _quiet_testmod(module): """ Run all of a modules doctests, not producing any output to stdout. Return a tuple with the number of failures and the number of tries. """ finder = doctest.DocTestFinder(exclude_empty=False) runner = doctest.DocTestRunner(verbose=False) for test in finder.find(module, module.__name__): runner.run(test, out=lambda x: True) return (runner.failures, runner.tries)
2c788dd128214e7c230124636aad3b0630060dd1
698,280
def _pango_attr_list_types(attributes): """Returns the types of all attributes in the given Pango.AttrList.""" # Pango.AttrList does not appear to have any normal ways to access its # contents, so this is a bit of a hack. types = [] attributes.filter(lambda attribute: types.append(attribute.klass.type)) return types
d14a28fd88eb60cbe8190efaf09e1b5081c437c5
698,282
import colorsys def hue_sat_to_cmap(hue, sat): """Mkae a color map from a hue and saturation value. """ # normalize to floats hue = float(hue) / 360.0 sat = float(sat) / 100.0 res = [] for val in range(256): hsv_val = float(val) / 255.0 r, g, b = colorsys.hsv_to_rgb(hue, sat, hsv_val) res.append((r, g, b)) return res
816cee4bbf69ee466cdade149b4f4b4547e9b29a
698,284
import jinja2 def render_template(template_file, template_vars, searchpath="./templates/"): """ Render a jinja2 template """ templateLoader = jinja2.FileSystemLoader(searchpath=searchpath) template_env = jinja2.Environment(loader=templateLoader) template = template_env.get_template(template_file) return template.render(template_vars)
d15f5d6e120a22ee5735dbf5b1f8c324a5cae861
698,287
def dict_sort(dictionary: dict) -> list: """Takes in a dictionary with integer values and outputs a list of the keys sorted by their associated values in descending order.""" return list(reversed(sorted(dictionary, key=dictionary.__getitem__)))
330e6033a9e511341e5d9216a385b366a09eed9c
698,289
import re def get_citation_form(attributes): """ Compute the citation form of a pronominal mention. Args: attributes (dict(str, object)): Attributes of the mention, must contain the key "tokens". Returns: str: The citation form of the pronoun, one of "i", "you", "he", "she", "it", "we", "they" and None. """ pronoun = attributes["tokens"][0] pronoun = pronoun.lower() if re.match("^(he|him|himself|his)$", pronoun): return "he" elif re.match("^(she|her|herself|hers|her)$", pronoun): return "she" elif re.match("^(it|itself|its)$", pronoun): return "it" elif re.match("^(they|them|themselves|theirs|their)$", pronoun): return "they" elif re.match("^(i|me|myself|mine|my)$", pronoun): return "i" elif re.match("^(you|yourself|yourselves|yours|your)$", pronoun): return "you" elif re.match("^(we|us|ourselves|ours|our)$", pronoun): return "we"
2e02063ae0694e7ce76e3be8ce111d9550de7697
698,290
def bitpos_from_mask(mask, lsb_pos=0, increment=1): """ Turn a decimal value (bitmask) into a list of indices where each index value corresponds to the bit position of a bit that was set (1) in the mask. What numbers are assigned to the bit positions is controlled by lsb_pos and increment, as explained below. :param mask: a decimal value used as a bit mask :param lsb_pos: The decimal value associated with the LSB bit :param increment: If this is +i, then the bit next to LSB will take the decimal value of lsb_pos + i. :return: List of bit positions where the bit was set in mask """ out = [] while mask: if mask & 0x01: out.append(lsb_pos) lsb_pos += increment mask >>= 1 return sorted(out)
d7938258c0f2dc523720bc82a48ecba1c2342223
698,293
def url_compose(camera): """ Compose URL string for the camera """ # rtsp://88.204.57.242:5533/user=admin&password=******&channel=1&stream=1.sdp? url: str = f'rtsp://{camera.ip_addr}:{camera.port}/user={camera.login}&password={camera.password}&channel=1&stream=0.sdp?' return url
62bf81b993e95a4c5ed7ca8362220cf16102c877
698,295
def get_first_package_name(name): """ Returns first package name. From `a.b.c` it returns `a`. :param str name: Full module name :return: First package name. :rtype: str """ return name.split(".")[0]
814b175356ef715af46f788dc9eac7e776884b30
698,298
def _parse_url_work_relation(response): """ response is {'resource': 'https://imslp.org/wiki/7_Bagatelles,_Op.33_(Beethoven,_Ludwig_van)', 'relations': [{'source-credit': '', 'target-credit': '', 'type-id': '0cc8527e-ea40-40dd-b144-3b7588e759bf', 'type': 'download for free', 'end': None, 'direction': 'forward', 'ended': False, 'begin': None, 'target-type': 'work', 'work': {'title': '7 Bagatelles, op. 33', 'attributes': [], 'languages': [], 'disambiguation': '', 'type': None, 'iswcs': [], 'type-id': None, 'id': '94a19e47-2c1d-425b-b4f0-63d62d5bf788', 'language': None}, 'attribute-values': {}, 'attribute-ids': {}, 'attributes': []}], 'id': '2d264d6e-5082-46a7-a60a-e2d02ab103e1'} """ relations = response.get('relations', []) if relations: return relations[0]['work']['id']
4e36330be029846bc44c235dafb20e6dc9c5f58f
698,299
import toml import yaml import json def mock_settings_file(request, monkeypatch, tmpdir, file_extension): """Temporarily write a settings file and return the filepath and the expected settings outcome.""" ext = file_extension p = tmpdir.mkdir("sub").join("settings" + ext) expected_result = {"testgroup": {"testvar": 123}, "othergroup": {"blabla": 555}} if ext == ".toml": p.write(toml.dumps(expected_result)) elif ext in [".yml", ".yaml"]: p.write("---\n" + yaml.dump(expected_result)) elif ext == ".json": p.write(json.dumps(expected_result)) else: # pragma: nocover raise NotImplementedError("Invalid file extension :{}.".format(ext)) return str(p), expected_result
4899ebbc9efbe31a931387d4a09dcb8c727eaf8d
698,303
def replicate_idx(head): """Return a list of indices representing replicate groups""" h = head g = h.groupby(['Sample Name', 'Measurement day']) idx = [i[1].index for i in g] return(idx)
ac5b80de8d15ef283185b0e93d495516695aa936
698,308
def str2ascii(string: str) -> list: """Convert a string to a list of ascii-codes""" return [ord(i) for i in string]
a938b0c585e78a455721e9d17e8915b0769a025f
698,310
def rgbToHexColor(r, g, b): """Convert r, g, b to #RRGGBB.""" return f'#{int(r):02X}{int(g):02X}{int(b):02X}'
5cff9abc67c235a4f0fdf258ea555f018d80d1ad
698,311
def filter_refgene_ensgene_exon(var_df_per_chrom, exon_class, refgene, ensgene): """Filter for a refgene function, ensembl function or both. Args: var_df_per_chrom (:obj:`DataFrame`): all variants in a chromosome variant_class (:obj:`str`): annovar variant class to filter on (default None) exon_class (:obj:`str`): annovar EXON class to filter on (default None) refgene (:obj:`boolean`): if used RefSeq to define variant classes ensgene (:obj:`boolean`): using ENSEMBL to define variant classes Returns: var_df_per_chrom (:obj:`DataFrame`): only variants in the desired `exon_class` Description: First prepends a ^ so that only the highest impact `exon_class` is considered as the de-facto class for filtering. """ exon_class = "^" + exon_class if not refgene and not ensgene: print("Using RefGene for filtering") refgene = True if refgene: vars_refgene = var_df_per_chrom.exon_func_refgene.str.contains( exon_class, regex=True) var_df_per_chrom = var_df_per_chrom[vars_refgene] if ensgene: vars_ensgene = var_df_per_chrom.exon_func_ensgene.str.contains( exon_class, regex=True) var_df_per_chrom = var_df_per_chrom[vars_ensgene] return var_df_per_chrom
905db5cab873eabce8ee24872231f2dacabcec29
698,314
def _lin_f(p, x): """Basic linear regression 'model' for use with ODR. This is a function of 2 variables, slope and intercept. """ return (p[0] * x) + p[1]
52bc228dd48ee7939fa60cd052989de70a44b197
698,315
def mock_user(request): """Define a mock user to be used when testing REST API services""" user = dict( id="test_id", name="User Name", description="I'm a test user", url="someurl", ) return user
ff6eee62cd27328130bcd37c6164d3b4b17e2558
698,316
def get_type_as_string(instance: object) -> str: """ >>> x='a' >>> get_type_as_string(x) 'str' >>> x=1 >>> get_type_as_string(x) 'int' >>> import decimal >>> x=decimal.Decimal(1.00) >>> get_type_as_string(x) 'Decimal' >>> x=[] >>> get_type_as_string(x) 'list' """ return type(instance).__name__
5fd2dd4362a98b2121f9ad2eb4e44ead83446327
698,317
def is_property(class_to_check, name): """Determine if the specified name is a property on a class""" if hasattr(class_to_check, name) and isinstance( getattr(class_to_check, name), property ): return True return False
0f7dce28f1e78e8b6b937a5a6536060886666371
698,321
from string import ascii_uppercase def get_cluster_label(cluster_id): """ It assigns a cluster label according to the cluster id that is supplied. It follows the criterion from below: Cluster id | Cluster label 0 --> A 1 --> B 2 --> C 25 --> Z 26 --> AA 27 --> AB 28 --> AC Parameters ---------- cluster_id : int The id of the cluster that will be used to generate the label Returns ------- cluster_label : str The cluster label according to the supplied id and the criterion mentioned above """ cluster_label = '' current_index = cluster_id while current_index >= 0: if current_index < len(ascii_uppercase): cluster_label += ascii_uppercase[current_index] else: for letter in reversed(cluster_label): if letter != 'Z': idx = ascii_uppercase.index(cluster_label[-1]) cluster_label = \ cluster_label[:-1] + ascii_uppercase[idx + 1] break else: cluster_label = 'A' + cluster_label current_index -= 26 return cluster_label
06210786dfb375dce31ec3c014cc5f545d019c50
698,323