content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def list_services(config_dict):
"""
List available services
Args:
config_dict (dict): configuration dictionary
Returns:
list: list of available services
"""
return list(config_dict.keys())
|
a3226589405292f0bcef99aabaec71722aaeb1db
| 697,838 |
def actions_by_behavior(actions):
"""
Gather a dictionary grouping the actions by behavior (not SubBehaviors). The actions in each
list are still sorted by order of their execution in the script.
@param actions (list) of Action objects
@return (dict) where the keys are behaviors and the values are lists of actions
"""
split = {}
for action in actions:
for behavior in action.behaviors:
if behavior.name not in split:
split[behavior.name] = []
split[behavior.name].append(action)
return split
|
ebf97a5837a8d7de735207c5df5e19af2438510a
| 697,839 |
import logging
def get_loglevel(loglevel):
""" Check whether a valid log level has been supplied, and return the numeric log level that
corresponds to the given string level.
Parameters
----------
loglevel: str
The loglevel that has been requested
Returns
-------
int
The numeric representation of the given loglevel
"""
numeric_level = getattr(logging, loglevel.upper(), None)
if not isinstance(numeric_level, int):
raise ValueError("Invalid log level: %s" % loglevel)
return numeric_level
|
a662e00caa21bf5632b28f26cbb604229db9705a
| 697,842 |
import base64
import requests
import json
def retrieve_appdevtools_access_token(username, password, auth_endpoint):
"""
Retrieve access token for appdev tools
Args:
username: username
password: password
auth_endpoint: authorization endpoint
Returns: token
"""
# Form credentials request
credentials = "{0}:{1}".format(username, password)
base_encoded_credential = base64.b64encode(bytes(credentials, "utf-8")).decode().replace('\n', '')
# Form application headers
headers = {
"content-type": "application/json",
"Authorization": "Basic {}".format(base_encoded_credential)
}
# Form login request
login_request = {
"username": username,
"password": password
}
# Issue request, skip SSL validation
response = requests.post(url=auth_endpoint, json=login_request,
headers=headers, verify=True)
# Get access token
return json.loads(response.text)["token"]
|
8f08f4be45998199aa9db151fec26722a13eb060
| 697,844 |
def count_literals(term):
"""
Counts the number of literals in a term
Args:
term : A string containing literals
Returns:
The number of literals in term
"""
count = 0
for char in term:
if char != "_":
count+=1
return count
|
48bb0066f09994627a4b7c2b04a657df1106a1c3
| 697,847 |
import json
def get_json_from_file(filename, warn = False):
"""Loads json from a file.
Optionally specify warn = True to warn, rather than
fail if file not found."""
f = open(filename, 'r')
return json.loads(f.read())
|
6916e0239067b977d0671e1e38006f457da94ae7
| 697,849 |
def list_frequencies(list_of_items):
""" Determine frequency of items in list_of_items. """
itemfreq = [list_of_items.count(p) for p in list_of_items]
return dict(zip(list_of_items,itemfreq))
|
8772e64d0abd400dfe333747e7fce0d816a0f59f
| 697,854 |
import math
def normStdevMask(img,mask):
"""
normalize an image with mean = 0 and stddev = 1.0 only inside a mask
"""
n1 = mask.sum()
if n1 == 0:
return img
sum1 = (img*mask).sum()
sumsq1 = (img*img*mask).sum()
avg1 = sum1/n1
std1 = math.sqrt((sumsq1 - sum1*sum1/n1)/(n1-1))
std2 = img.std()
return (img - avg1) / std1
|
b5493d1e8a0f6594badb97c9376777117263eb0b
| 697,858 |
from typing import Dict
from datetime import datetime
def inject_now() -> Dict:
"""Inject current datetime into request context."""
return dict(request_datetime=datetime.now())
|
e186d4b478a5da5bcdf83e2e34cd381de8d039be
| 697,860 |
def _make_eof_producer(producer):
"""
Send a special EOF byte sequence to terminate the request.
Args:
producer (Callable[[str, socket.socket], None]):
Request producer.
Returns:
Callable[[str, socket.socket], None]:
Request producer that sends 'END-OF-FILE' at end of request.
"""
def new_producer(audio_input, sock):
producer(audio_input, sock)
sock.sendall(b'END-OF-FILE')
return new_producer
|
9c035b1f790cab96c9cffc91e6dcf8a13017a4cc
| 697,861 |
def in_key_rd_dicts( key_rd_dict, key_rd_dicts ):
"""Return True if key_rd_dict is contained in the list of key_rd_dicts."""
k = key_rd_dict.keys()[ 0 ]
v = key_rd_dict[ k ]
for key_rd_dict in key_rd_dicts:
for key, val in key_rd_dict.items():
if key == k and val == v:
return True
return False
|
04c691a1a78834c7d660ae3036e97ea0e78393de
| 697,862 |
import re
def split_text(text, pattern=r";|。|;|,|,"):
"""split text by pattern
Args:
text (str): text
pattern (regexp, optional): expression. Defaults to r";|。|;|,|,".
Returns:
str: text split by pattern
Examples:
>>> s = String()
>>> text = "收快递的时候最怕收不到货,所以购物的时候一定要把地址写清楚,这样才会精准的送到你手里,我告诉大家以后怎么写:“本宇宙-拉尼凯亚超星系团-室女座星系团-本星系群-银河系-猎户臂-太阳系-第三行星-地球-亚洲板块-中国-xxx-xxx-xxx”这样可以保证不会送到其他宇宙去"
>>> s.split_text(text=text)
['收快递的时候最怕收不到货', '所以购物的时候一定要把地址写清楚', '这样才会精准的送到你手里', '我告诉大家以后怎么写:“本宇宙-拉尼凯亚超星系团-室女座星系团-本星系群-银河系-猎户臂-太阳系-第三行星-地球-亚洲板块-中国-xxx-xxx-xxx”这样可以保证不会送到其他宇宙去']
"""
txts = re.split(pattern, text)
return txts
|
080b63c947f5b9aca749e2ec4981f64c09e2ad43
| 697,864 |
def sphere_sre(solution):
"""
Variant of the sphere function. Dimensions except the first 10 ones have limited impact on the function value.
"""
a = 0
bias = 0.2
x = solution.get_x()
x1 = x[:10]
x2 = x[10:]
value1 = sum([(i-bias)*(i-bias) for i in x1])
value2 = 1/len(x) * sum([(i-bias)*(i-bias) for i in x2])
return value1 + value2
|
38987c77a6586a0bfab1d94cc4a1511e9418349f
| 697,867 |
from typing import Union
import pytz
from datetime import datetime
def localnow(tz: Union[pytz.BaseTzInfo, str] = "US/Central") -> datetime:
""" Get the current datetime as a localized datetime object with timezone information
Keyword Arguments:
tz {Union[pytz.timezone, str]} -- localize datetime to this timezone (default: "US/Central")
Returns:
datetime -- localized datetime with tzinfo
"""
if isinstance(tz, str):
tz = pytz.timezone(tz)
return datetime.now().astimezone(tz)
|
3dd9132c4adebacf5d348ec34523584642f7140b
| 697,868 |
import torch
def threshold_mask(weights, threshold):
"""Create a threshold mask for the provided parameter tensor using
magnitude thresholding.
Arguments:
weights: a parameter tensor which should be pruned.
threshold: the pruning threshold.
Returns:
prune_mask: The pruning mask.
"""
return torch.gt(torch.abs(weights), threshold).type(weights.type())
|
43ca3f018f047e2ac46a83c36c368798b69e104a
| 697,874 |
def string_is_yes(string, default=None):
"""
Mapping of a given string to a boolean.
If it is empty or None (evaluates to False), and `default` is set, `default` is returned.
If the lowercase of the string is any of ['y', '1', 'yes', 'true', 'ja'], it will return `True`.
Else it will return `False`
:param string: The input
:type string: str
:param default: default result for empty input
:type default: None | bool
:return: result (True/False/default)
:rtype: bool
"""
if not string and default is not None:
return default
# end if
return string.lower() in ['y', '1', 'yes', 'true', 'ja']
|
68482f78f8d4464891f14c19953e1a4785fe0811
| 697,877 |
def arrays_avg(values_array, weights_array=None):
"""
Computes the mean of the elements of the array.
Parameters
----------
values_array : array.
The numbers used to calculate the mean.
weights_array : array, optional, default None.
Used to calculate the weighted average, indicates the weight of each element in the array (values_array).
Returns
-------
result : float.
The mean of the array elements.
"""
n = len(values_array)
if weights_array is None:
weights_array = [1] * n
elif len(weights_array) != n:
raise ValueError(
"values_array and qt_array must have the same number of rows"
)
result = 0
for i, j in zip(values_array, weights_array):
result += i * j
return result / n
|
2f24da412c548c1da53338f2f66d57d18473f798
| 697,882 |
def issue_dictionary_from(column, issue) -> dict:
"""Map issue to dictionary with field names."""
return {
"project column": column.name,
"issue title": issue.title,
"issue description": f"{issue.body}\n\n---\n\n{issue.html_url}",
"labels": ";".join(
f"'{label.name}'" for label in issue.original_labels
),
}
|
eae9e6cdf7ea3d715ad2e1dc8c31672c8c53762e
| 697,885 |
def age_bin(age, labels, bins):
""" Return a label for a given age and bin.
Argument notes:
age -- int
labels -- list of strings
bins -- list of tuples, with the first tuple value being
the inclusive lower limit, and the higher tuple
value being the exclusive upper limit
"""
for x in range(len(bins)):
if age < bins[x][1] and age >= bins[x][0]:
return labels[x]
|
9caccc667b55f66824bcf8802161384590cc2a08
| 697,886 |
def list_intersect(first, second):
"""
Returns elements found in first that are in second
:param first:
:param second:
:return:
"""
second = set(second)
return [item for item in first if item in second]
|
74cf1fc791a57c299f7fcf2369c105d68bda772e
| 697,888 |
import io
import base64
def image_file_to_b64(image_file: io.BytesIO) -> bytes:
"""
Encodes an image file as Base64.
To obtain the stringified Base64 version of the image,
you can convert the output like so:
````python
image_file_to_b64(my_image_file).decode()
````
Arguments:
image_file: The BytesIO file object to be converted.
Returns:
Bytes representation of the Base64 encoded image.
"""
return base64.b64encode(image_file.getvalue())
|
2606f21fca825ea22c06f6372576110c64dc511c
| 697,890 |
from typing import Dict
from typing import Tuple
def read_multiscale_params(cfg: Dict[str, dict]) -> Tuple[int, int]:
"""
Returns the multiscale parameters
:param cfg: configuration
:type cfg: dict
:return:
- num_scales: number of scales
- scale_factor: factor by which each coarser layer is downsampled
:rtype: tuple(int, int )
"""
if "multiscale" in cfg:
# Multiscale processing in conf
multiscale_ = multiscale.AbstractMultiscale(**cfg["multiscale"]) # type: ignore
num_scales = multiscale_.cfg["num_scales"]
scale_factor = multiscale_.cfg["scale_factor"]
else:
# No multiscale selected
num_scales = 1
scale_factor = 1
return num_scales, scale_factor
|
8021cc90c4a4740854a92a7d56524d7037e01988
| 697,894 |
def get_image_type(data):
"""Return a tuple of (content type, extension) for the image data."""
if data[:2] == "\xff\xd8":
return ("image/jpeg", ".jpg")
return ("image/unknown", ".bin")
|
1677cb375a7b405b8a229f1246bdb27ed36dc654
| 697,900 |
def parse_conjugations(group):
"""
Parse conjugations in a word group.
:param group: string of a word group
:return: list of parsed conjugations
"""
return list(
map(
lambda x: x.split('/')[0].strip(),
group.split(' – ')
)
)
|
0a1eca118a1f194a51a889a0fe30fe72488d6ada
| 697,901 |
def read_thresholds(path):
"""
Read the p-value thresholds for each tumour type
"""
thresholds = {}
with open(path) as f:
for line in f:
line = line.strip()
line = line.split('\t')
tumour = line[0]
threshold = float(line[1])
thresholds[tumour] = threshold
return thresholds
|
2615cd3b38e4ce1d80baacd06cf955895f0984ee
| 697,904 |
def linear_regression_line(mb):
"""
Given the output of ``linear_regression()`` function, or provided with
a tuple of ``(m, b)``, where ``m`` is the slope and ``b`` is the intercept,
``inear_regression_line()`` returns a function that calculates y values
based on given x values.
Args:
mb: A list or tuple of [m, b] or (m, b) where m is the slope and b is the y intercept.
Returns:
A function that accepts ints, floats, lists, or tuples of x values
and returns y values.
Examples:
>>> linear_regression_line(linear_regression([0, 1], [0, 1]))(1)
1.0
>>> linear_regression_line(linear_regression([1,3,5,7,9], [10,11,12,13,14]))([1, 2, 3])
[10.0, 10.5, 11.0]
>>> linear_regression_line([.5, 9.5])([1, 2, 3])
[10.0, 10.5, 11.0]
>>> linear_regression_line(9.5) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
TypeError: linear_regression_line() expects a list or tuple of (slope, intercept)...
>>> linear_regression_line([2, 3, 4])
Traceback (most recent call last):
...
ValueError: The list or tuple containing the slope and intercept needs to be of length = 2.
"""
if type(mb) not in [list, tuple]:
raise TypeError('linear_regression_line() expects a list or tuple of '
'(slope, intercept) or [slope, intercept] form.')
if len(mb) != 2:
raise ValueError('The list or tuple containing the slope and intercept '
'needs to be of length = 2.')
m = mb[0]
b = mb[1]
def line_function(x):
"""
Function created and returned by linear_regression_line().
"""
# if int or float, return one value
if type(x) in [int, float]:
return((x * m) + b)
# otherwise
elif type(x) in [list, tuple]:
y_values = []
for ii in x:
y_values.append(((ii * m) + b))
return(y_values)
return(line_function)
|
dbc61ffafe603e8e6ec21f87debc170e3b6eb289
| 697,907 |
import re
def convert_doctoc(html):
"""
Convert doctoc to confluence macro
:param html: html string
:return: modified html string
"""
toc_tag = '''<p>
<ac:structured-macro ac:name="toc">
<ac:parameter ac:name="printable">true</ac:parameter>
<ac:parameter ac:name="style">disc</ac:parameter>
<ac:parameter ac:name="maxLevel">7</ac:parameter>
<ac:parameter ac:name="minLevel">1</ac:parameter>
<ac:parameter ac:name="type">list</ac:parameter>
<ac:parameter ac:name="outline">clear</ac:parameter>
<ac:parameter ac:name="include">.*</ac:parameter>
</ac:structured-macro>
</p>'''
html = re.sub('\<\!\-\- START doctoc.*END doctoc \-\-\>', toc_tag, html, flags=re.DOTALL)
return html
|
b2a52126d6a234894dcf6f98f0d399c309587a7e
| 697,911 |
def fromScopus(scopus_author):
"""Fetch all publications associated with Scopus author
Parameters
----------
scopus_author : AuthorRetrieval
Scopus author retrieval object (scopus.author_retrieval.AuthorRetrieval)
Returns
-------
bibs : list
List of Scopus search publications (scopus.scopus_search.Document)
"""
bibs = scopus_author.get_documents()
return bibs
|
88aeca0f28af9ca3256e77f6e77207ffb51cefa0
| 697,915 |
def org_commits_by_day(df_raw):
"""Returns all commits with a count and a date index by day"""
odf_day = df_raw.resample('D').sum()
return odf_day
|
bb003b8ce1a0a28e632cfc78ffa3483359259e49
| 697,918 |
def make_queue_name(mt_namespace, handler_name):
"""
Method for declare new queue name in channel. Depends on queue "type",
is it receive event or command.
:param mt_namespace: string with Mass Transit namespace
:param handler_name: string with queue time. MUST be 'command' or 'event'
:return: new unique queue name for channel
"""
return '{}.{}'.format(mt_namespace, handler_name)
|
f74a7be8bf46a56f760b087fe47c9eda58d9f51e
| 697,919 |
def _fix_cookiecutter_jinja_var(value, replace='cookiecutter.'):
"""Remove 'cookiecutter.' string from 'cookiecutter.varname' jinja strings
Can be used to remove different substrings as well by passing a string
to the optional ``replace`` parameter.
:param value: The string value within which to replace text
:type value: str
:param replace: The string to be removed from the ``value`` input,
defaults to 'cookiecutter.'
:type replace: str
:return: Returns the input value with the ``replace`` string removed
if ``value`` is of type str, otherwise it just returns the
``value`` input
"""
if type(value) is str:
return value.replace(replace, "")
else:
return value
|
fc04d36a368fe7dd8c21a8dd3abe46f60d4d3d5e
| 697,921 |
def flatten_dict(row, keys=[('title',),
('street', 'city', 'postalCode')]):
"""Flatten a dict by concatenating string values
of matching keys.
Args:
row (dict): Data to be flattened
Returns:
flat (str): Concatenated data.
"""
flat = '' # The output data
for ks in keys:
# If any keys are present, join the values
if not any(k in row for k in ks):
continue
flat = '\n'.join(row[k] for k in ks
if k in row)
break
assert len(flat) > 0 # Ensures that a key has been found,
# otherwise you'll need to provide more keys
return flat
|
b4bafb0ec19a19d4223d7e9a94e3b8630cad1066
| 697,923 |
import string
def get_range_to_here_hashes(repo, start):
"""Return a list of strings corresponding to commits from 'start' to here.
The list begins with the revision closest to but not including 'start'.
Raise a ValueError if any of the returned values are not valid hexadecimal.
:repo: a callable supporting git commands, e.g. repo("status")
:start: a reference that log will understand
:returns: a list of strings corresponding to commits from 'start' to here.
"""
hashes = repo("log", start + "..", "--format=%H").split()
if not all(c in string.hexdigits for s in hashes for c in s):
raise ValueError(
"phlgit_log__getRangeToHereHashes() invalid hashes\n" +
str(hashes))
hashes.reverse()
return hashes
|
41a8795f489d1646ba48366c791308a6d1435b3e
| 697,926 |
import re
def check_token(token):
""" Checks if the given token is a valid UUID."""
valid = re.compile(r"^[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-"
r"[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}$")
return valid.match(token)
|
be675b2fa04aac96b006ab94d8c0f65d8c02132f
| 697,929 |
import requests
from bs4 import BeautifulSoup
def url_to_soup(url):
"""url -> soup"""
html = requests.get(url)
return BeautifulSoup(html.text, 'html.parser')
|
8b3e6a67c2123ca134d581631321cb8a8daf132a
| 697,931 |
def is_vowel(char):
"""Check if it is vowel."""
return char in ['a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U']
|
97f747d96e08cd15fe7a1b742b36f5ff6cc2f3fc
| 697,932 |
from typing import Iterable
from typing import List
def filter_wikipathways_files(file_names: Iterable[str]) -> List[str]:
"""Filter files that have not 'ttl' extension or not start with 'WP'."""
return [
file_name
for file_name in file_names
if file_name.startswith('WP') and file_name.endswith('.ttl')
]
|
abac5be763309986b951d574a72c0f2652b2a981
| 697,934 |
def attr_dict(cls: type, data: dict):
"""
Removes keys from the passed dict ``data`` which don't exist on ``cls`` (thus would get rejected as kwargs),
then create and return an instance of ``cls``, passing the filtered data as keyword args.
Ensures that any keys in your dictionary which don't exist on ``cls`` are automatically filtered out, instead
of causing an error due to unexpected keyword arguments.
Example::
>>> data = dict(timestamp="2019-01-01Z00:00", producer='eosio', block_num=1234, example='hello')
>>> my_block = attr_dict(EOSBlock, data)
:param cls:
:param data:
:return:
"""
if hasattr(cls, '__attrs_attrs__'):
cls_keys = [atr.name for atr in cls.__attrs_attrs__]
else:
cls_keys = [k for k in cls.__dict__.keys() if k[0] != '_']
clean_data = {x: y for x, y in data.items() if x in cls_keys}
return cls(**clean_data)
|
c764cda2ad772de8b239fe34d39ef3ac92e658e5
| 697,935 |
from typing import List
def sbd_3_bitwise(ids: List):
"""
Solution: Use bitwise XOR on a single variable for each element.
Complexity:
Time: O(n)
Space: O(1)
"""
unique_id = 0
for item in ids:
unique_id ^= item
return unique_id
|
d964fe78b2d1cf8de9e4d1cc165ea03a38eb6387
| 697,937 |
def process_spatial(geo):
"""Process time range so it can be added to the dates metadata
Parameters
----------
geo : list
[minLon, maxLon, minLat, maxLat]
Returns
-------
polygon : dict(list(list))
Dictionary following GeoJSON polygon format
"""
polygon = { "type": "Polygon",
"coordinates": [
[ [geo[0], geo[2]], [geo[0], geo[3]], [geo[1], geo[3]], [geo[1], geo[2]] ]
]}
return polygon
|
4ff7dea7d7dcefd5b6bfb1605dd50345fc379527
| 697,938 |
def int32(x):
"""Force conversion of x to 32-bit signed integer"""
x = int(x)
maxint = int(2**31-1)
minint = int(-2**31)
if x > maxint: x = maxint
if x < minint: x = minint
return x
|
854338b7fd748ba5ddbbbd8c697288c6331995c4
| 697,941 |
def get_type(transaction):
"""
:return: the type of the transaction
"""
return transaction['type']
|
4f66830f7c1e3bdc5d6b2c4ccc5db493014b9e5f
| 697,943 |
def format_bytes(n):
"""Format bytes as text
Copied from dask to avoid dependency.
"""
if n > 1e15:
return "%0.2f PB" % (n / 1e15)
if n > 1e12:
return "%0.2f TB" % (n / 1e12)
if n > 1e9:
return "%0.2f GB" % (n / 1e9)
if n > 1e6:
return "%0.2f MB" % (n / 1e6)
if n > 1e3:
return "%0.2f kB" % (n / 1000)
return "%d B" % n
|
f82a135f7f5308a04bf53bd3b8d1a05ef5d96de0
| 697,946 |
def semideviation(r):
"""
Returns the semi-deviation (Negative Deviation) of r ,
r must be a Series or DataFrame
"""
is_negative = r <0
return r [is_negative].std(ddof=0)
|
78eb4092f2c7ed5439ef4ee44b5ddef898bd53fa
| 697,948 |
def _change_galician_cc_token_before_subtree(sentence, token):
"""Determine the token directly preceding a subtree in a sentence.
Args:
sentence (`Sentence`): The sentence.
token (`Token`): The root token of the subtree.
Returns:
str: The ID of the token directly preceding the root token and all of its dependents.
"""
tokens = [token.id]
a = True
while a:
a = False
for t in sentence:
if t.head in tokens and t.id not in tokens:
tokens.append(t.id)
a = True
tokens = sorted(tokens)
return str(int(tokens[0])-1)
|
21eebf0ba9ec02af4a7c65e8631a95e83b68372e
| 697,954 |
def turn(p1, p2, p3):
"""
0 if the points are colinear
1 if the points define a left-turn
-1 if the points define a right-turn
"""
# Compute the z-coordinate of the vectorial product p1p2 x p2p3
z = (p2[0] - p1[0]) * (p3[1] - p1[1]) - (p2[1] - p1[1]) * (p3[0]- p1[0])
return 0 if z == 0 else int(z / abs(z))
|
2b8dccbe0111d9cd655f4a6a8bc2131b73f3a3ee
| 697,956 |
def worker_number(worker_id):
"""Get the current worker number."""
id_as_str = "".join(ch for ch in worker_id if ch.isdigit())
if len(id_as_str) == 0:
return 0
return int(id_as_str)
|
3cd6ca7e665fefda9427476e39de5ea23f843f72
| 697,960 |
def get_reference_value_from_spec(openapi_spec: dict, reference_path: str) -> dict:
"""Follows the reference path passed in and returns the object at the end of the path
Args:
openapi_spec (dict): The openapi.json specification object
reference_path (str): a path formatted as "#/foo/bar/baz"
Returns:
dict: The object if you follow the path
"""
path_elements = reference_path.split("/")
reference_val = openapi_spec
for elem in path_elements:
if elem == "#":
continue
else:
reference_val = reference_val.get(elem, {})
return reference_val
|
c32962a3b008825de4c5108d8d1a3ad5db179b17
| 697,964 |
def hide_keys(dictionary, keys_to_hide, new_value="xxx"):
"""
Return a copy of the given dictionary on which specified keys will be replaced by the new_value word (or 'xxx').
:param dictionary: a dictionary
:param keys_to_hide: keys to hide in the output dictionary
:param new_value: replacement string for keys to hide
:return: the new dictionary with hidden items
"""
_new_dict = {}
for key, value in dictionary.items():
_new_dict[key] = new_value if key in keys_to_hide else value
return _new_dict
|
d6b8bc7958c637212899c048a9958ac3d2755894
| 697,965 |
def get_other_dims(da, dims_exclude):
"""
Returns all dimensions in provided dataset excluding dim_exclude
| Author: Dougie Squire
| Date: 22/04/2018
Parameters
----------
da : xarray DataArray
Array to retreive dimensions from
dims_exclude : str or sequence of str
Dimensions to exclude
Returns
-------
dims : str or sequence of str
Dimensions of input array, excluding dims_exclude
Examples
--------
>>> A = xr.DataArray(np.random.normal(size=(3,2)), coords=[('x', np.arange(3)),
... ('y', np.arange(2))])
>>> doppyo.utils.get_other_dims(A, 'y')
'x'
"""
dims = da.dims
if dims_exclude == None:
other_dims = dims
else:
if isinstance(dims, str):
dims = [dims]
if isinstance(dims_exclude, str):
dims_exclude = [dims_exclude]
other_dims = set(dims) - set(dims_exclude)
return tuple([o for o in dims if o in other_dims])
|
506a8b7193ea95480c83e3d69a31774f77d4fbcc
| 697,969 |
def standard_split(text, row_length):
"""text = abcdefghijklmnopqrstuvwxyz and row_length = 5
abcde
fghij
klmno
pqrst
uvwxy
z returns ['afkpuz', 'bglqv', 'chmrw', 'dinsx', 'ejoty']
"""
output = []
text_length = len(text)
# Takes output column by index in turn, taking e.g. the 0th, 5th, 10th ... char
# for the 0th column, then the 1st, 6th, 11th ... char for the 1st column etc.
for num in range(row_length):
count = num
output.append([])
while count < text_length:
output[-1].append(text[count])
count += row_length
return(output)
|
3a4732433b58777dcf08529b98b90f890e680a29
| 697,970 |
def median(x):
"""Return the median of a list of values."""
m, r = divmod(len(x), 2)
if r:
return sorted(x)[m]
return sum(sorted(x)[m - 1:m + 1]) / 2
|
337584e40c61bd198496355e38f4a8d4da9310fa
| 697,971 |
def _get_args(tp):
"""Backport of typing.get_args for Python 3.6"""
return getattr(tp, "__args__", ())
|
f265cb6d8d85601d9ee6f20be8f78c8d9819c920
| 697,972 |
def bangbang_compressor(bangbang_protocol
):
"""Compresses the bang bang protocol.
Merges chunks of contiguous bangbang chunks into a Tuple of duration (in
number of chunks) and which Hamiltonian to apply.
Args:
bangbang_protocol: List of HamiltonianType values, determines which
Hamiltonian should be applied at the corresponding chunk.
Returns:
List of Tuples containing the Hamiltonian type and the number of chunks to
apply the Hamiltonian type for.
"""
current_mode = None
compressed_protocol = []
chunk_counter = 0
for protocol_mode in bangbang_protocol:
if current_mode is None:
current_mode = protocol_mode
chunk_counter = 1
elif current_mode == protocol_mode:
chunk_counter += 1
else:
compressed_protocol.append((chunk_counter, current_mode))
current_mode = protocol_mode
chunk_counter = 1
# Append what's left over
if chunk_counter > 0:
compressed_protocol.append((chunk_counter, current_mode))
return compressed_protocol
|
7e3b6e0e5678e705c54c39e31561a908900d9b08
| 697,976 |
import yaml
def load_config(filename):
"""Load and return a config file."""
with open(filename, 'r') as f:
config = yaml.safe_load(f)
return config
|
5c981d7a5aa7846486062c14c940cdb01cb0b5af
| 697,980 |
def argmin_except_c(x,p,c):
"""
argmin_except_c(x,p,c)
Ensure that p is the argmin, i.e. the position of the minimum value
in x, but ignores any value of c.
Note:
- If there are many minimum values then argmin_except_c(x,p,c) will find
all these values.
- We assume that there are at least one value != c.
"""
n = len(x)
constraints = [x[p] != c]
for i in range(n):
constraints += [(p != i).implies((x[i] == c) | (x[p] < x[i])) ]
return constraints
|
8046dddc15113ccb5c75fb62ce9ff5434104811e
| 697,984 |
def compute(n: int) -> float:
"""
Compute the recursive sum ``s = 1 / (1**2) + 1 / (2**2) + ... + 1 / (n**2)``
>>> compute(0)
0
>>> compute(4)
1.4236111111111112
"""
if n == 0:
return 0
return sum(1 / (i ** 2) for i in range(1, n + 1))
|
974506e3523f1c0cfe646b1fdf54846ff7f96cc4
| 697,987 |
from typing import Dict
from typing import Any
async def refresh_tokens_controller_mock() -> Dict[str, Any]:
"""Mock refresh tokens controller."""
return {
"access_token": "test",
"refresh_token": "test",
"expires_at": 0,
}
|
9431f1311a1c0fa45a3e538ee70f66f0ef9de477
| 697,988 |
def _instance_name_from_url(instance_url):
"""Extract instance name from url."""
return instance_url.split('/')[-1]
|
e64bc076be9480a04821e9a9a79f13e25fadad35
| 697,990 |
def calculateGC(seq):
"""Take a sequence as input and calculate the GC %"""
gc = round((seq.count("G")+seq.count("C")) / len(seq) * 100, 2)
return gc
|
ed0c863c31214de970d0d0efd81206084b4bfbcf
| 697,992 |
import re
def strip_html_comments(text):
"""Strip html comments from text (which doesn't need to be valid HTML)"""
return re.sub(r"<!--(.|\s|\n)*?-->", "", text)
|
4ac4c2061520a8ecdafe77884a1bae9196bc4e21
| 697,993 |
import click
def cli_option_quiet(func):
"""
Decorator for adding a reusable CLI option `--quiet`/'-q'.
"""
# noinspection PyUnusedLocal
def _callback(ctx: click.Context, param: click.Option, value: bool):
ctx_obj = ctx.ensure_object(dict)
ctx_obj["quiet"] = value
return value
return click.option(
'--quiet', '-q',
is_flag=True,
help="Disable output of log messages to the console entirely."
" Note, this will also suppress error and warning messages.",
callback=_callback
)(func)
|
4249c71b38d24693b0064157dc313d5798d1529b
| 697,995 |
import re
def indent_string(s, indent=12):
"""
Add the given number of space characters to the beginning every
non-blank line in `s`, and return the result.
"""
# This regexp matches the start of non-blank lines:
return re.sub('(?m)^(?!$)', indent*' ', s)
|
cf9603be231749f55e4a29c92c90b9139515894c
| 697,998 |
def rename(**kwargs):
"""Rename one or more columns, leaving other columns unchanged
Example usage:
diamonds >> rename(new_name=old_name)
"""
def rename_columns(df):
column_assignments = {old_name_later._name: new_name
for new_name, old_name_later in kwargs.items()}
return df.rename(columns=column_assignments)
return rename_columns
|
0f4c87795f663a9cab8867c4b856ef75e59e2102
| 697,999 |
import optparse
def comma_separated_callback(*, is_valid_func=lambda v: True,
error_msg="{invalid} is not an allowed value"):
""" Return an optparse callback for comma-separated args.
Default value is not processed.
Usage::
my_callback = comma_separated_callback(
is_valid_func=lambda v: v in {'foo', 'bar'},
error_msg="{invalid} is not an allowed value for --option-name")
op.add_option("--option-name",
default=[],
action='callback',
type='string',
callback=my_callback)
"""
def callback(option, opt, value, parser):
""" optparse callback for comma-separated args """
values = value.split(',')
for v in values:
if not is_valid_func(v):
msg = error_msg.format(value=value, invalid=v)
raise optparse.OptionValueError(msg)
setattr(parser.values, option.dest, values)
return callback
|
3b7c1de63a7a29f0fc2f4a6ae7445d6e05075d32
| 698,001 |
from pathlib import Path
def csv_path(csv_dir: str) -> Path:
"""Build csv Path object & mkdir"""
pwd = Path.cwd()
base = pwd.joinpath(csv_dir)
base.mkdir(exist_ok=True)
return base
|
52d894ca30b3dc9f81c65b09d3739d18eafee7ba
| 698,002 |
def addstrp(arg1, arg2):
"""
Comme addstr() au dessus mais ajoute un espace entre les deux si nécessaire
Args:
arg2: whatever, will be translated via str()
arg1: whatever, will be translated via str()
"""
a = str(arg1)
b = str(arg2)
return u'{}{}{}'.format(a, ' ' if a and b else '', b)
|
fc161017d135daaa744bd9154a9669a8c7c634b1
| 698,005 |
def autofill(field, value):
"""
Return a bcm dictionary with a command to automatically fill the
corresponding "field" with "value"
"""
return {'mode': 'autofill', 'field': field, 'value': value}
|
7b96ccd0e9756cdd6aab9919996b183be1478f8f
| 698,011 |
def valid_vlan_id(vlan_id, extended=True):
"""Validates a VLAN ID.
Args:
vlan_id (integer): VLAN ID to validate. If passed as ``str``, it will
be cast to ``int``.
extended (bool): If the VLAN ID range should be considered extended
for Virtual Fabrics.
Returns:
bool: ``True`` if it is a valid VLAN ID. ``False`` if not.
Raises:
None
Examples:
>>> import pyswitch.utilities
>>> vlan = '565'
>>> pyswitch.utilities.valid_vlan_id(vlan)
True
>>> extended = False
>>> vlan = '6789'
>>> pyswitch.os.base.utilities.valid_vlan_id(vlan, extended=extended)
False
>>> pyswitch.os.base.utilities.valid_vlan_id(vlan)
True
"""
minimum_vlan_id = 1
maximum_vlan_id = 4095
if extended:
maximum_vlan_id = 8191
return minimum_vlan_id <= int(vlan_id) <= maximum_vlan_id
|
c046bf6c1e558eb679c9c53fa4e091213a1b7d46
| 698,012 |
import asyncio
async def open_port(host, port):
"""Repeatedly try if a port on a host is open until duration seconds passed
Parameters
----------
host : str
Host IP address or hostname
port : int
Port number
Returns
-------
awaitable bool
"""
try:
_reader, writer = await asyncio.wait_for(
asyncio.open_connection(host, port), timeout=2
)
writer.close()
await writer.wait_closed()
return True
except Exception:
pass
return False
|
9642cf112c2c3bb83d578c522d70880be064c827
| 698,017 |
from typing import Tuple
def is_event(item: Tuple[str, str]) -> bool:
"""Check item from labelled list of folders if it is event folder.
Args:
item: item from labelled list of folders
Returns:
True if folder in tuple is event-type
"""
i_type = item[1]
return i_type == "event"
|
2307813e7777955b11a5d84c7dbc114a8a690562
| 698,024 |
def _parse_arg_line(line):
"""
pull out the arg names from a line of CLI help text introducing args
>>> _parse_arg_line(' -s, --sudo run operations with sudo (nopasswd) (deprecated, use')
['-s', '--sudo']
"""
return [
part.strip().split(' ')[0].split('=')[0]
for part in line.strip().split(' ')[0].split(',')
]
|
5d6bbddc43792ee974d0dfec4637046aff602052
| 698,025 |
def pyiterator_iter(this):
"""
Returns `this.`
https://docs.python.org/3/library/stdtypes.html#typeiter says
an iterator should have an __iter__ method.
"""
return this
|
5a44e38f6219f9ab0b629be817b0e2877c464149
| 698,026 |
def calculate_binomial_coefficient(n: int, k: int) -> int:
"""Calculate the binomial coefficient (n over k)."""
if n < 0:
raise ValueError('`n` must not be negative!')
if k < 0:
raise ValueError('`k` must not be negative!')
if k > n:
return 0
binomial_coefficient = 1
for i in range(k):
binomial_coefficient *= (n - i)
binomial_coefficient /= (1 + i)
return round(binomial_coefficient)
|
31942eecaa10cb7a13e9cd38dd2daed8d0618b40
| 698,033 |
def isAnalysisJob(trf):
""" Determine whether the job is an analysis job or not """
if (trf.startswith('https://') or trf.startswith('http://')):
analysisJob = True
else:
analysisJob = False
return analysisJob
|
75ccaf711dd04dc99aca266533fee7303fad3e85
| 698,038 |
def powset(S):
"""In : S (set)
Out: List of lists representing powerset.
Since sets/lists are unhashable, we convert the set
to a list,perform the powerset operations, leaving
the result as a list (can't convert back to a set).
Example:
S = {'ab', 'bc'}
powset(S) -> [['ab', 'bc'], ['bc'], ['ab'], []]
"""
L=list(S)
if L==[]:
return([[]])
else:
pow_rest0 = powset(L[1:])
pow_rest1 = list(map(lambda Ls: [L[0]] + Ls, pow_rest0))
return(pow_rest0 + pow_rest1)
|
8d5cbc09f595d81b4a486994cfbce2a0cf97cf15
| 698,039 |
def slice_dict(original_dict, key_string):
"""
:param original_dict: Original (and larger) dictionary with all entrances
:param key_string: key string (desired starting string)
:return: A new dictionary with all the entrances of the original that start with key_string
"""
newdict = {}
for key in original_dict:
if key.startswith(key_string):
newdict[key] = original_dict[key]
return newdict
|
812b5a45115127f71cd5f2ebc02ea35c2582c81f
| 698,040 |
def unique_name(container, name, ext):
"""Generate unique name for container file."""
filename = '{}.{}'.format(name, ext)
i = 0
while filename in container:
i += 1
filename = '{}.{}.{}'.format(name, i, ext)
return filename
|
f2403611d58551fff65d996d426e458efd03ec80
| 698,042 |
import six
def _is_sequence(seq):
"""Returns true if its input is a `tuple`, `list`, or `range`.
Args:
seq: an input sequence.
Returns:
True if the sequence is a `tuple`, `list`, or `range`.
"""
return isinstance(seq, (tuple, list, six.moves.range))
|
e94094c314cff5bf9bd7525453d7906ca55d7261
| 698,043 |
import re
def AutoscalersForMigs(migs, autoscalers):
"""Finds Autoscalers with target amongst given IGMs.
Args:
migs: List of triples (IGM name, scope type, location reference).
autoscalers: A list of Autoscalers to search among.
Returns:
A list of all Autoscalers with target on mig_names list.
"""
igm_url_regexes = []
for (name, scope_type, location) in migs:
igm_url_regexes.append(
'/projects/{project}/{scopeType}/{scopeName}/'
'instanceGroupManagers/{name}$'
.format(project=location.project,
scopeType=(scope_type + 's'),
scopeName=getattr(location, scope_type),
name=name))
igm_url_regex = re.compile('(' + ')|('.join(igm_url_regexes) + ')')
result = [
autoscaler for autoscaler in autoscalers
if igm_url_regex.search(autoscaler.target)
]
return result
|
52f809794395ba6ed31b94bed36dc9f4de8ce919
| 698,047 |
def normalize_mode(mode):
"""
Return a mode value, normalized to a string and containing a leading zero
if it does not have one.
Allow "keep" as a valid mode (used by file state/module to preserve mode
from the Salt fileserver in file states).
"""
if mode is None:
return None
if not isinstance(mode, str):
mode = str(mode)
mode = mode.replace("0o", "0")
# Strip any quotes any initial zeroes, then though zero-pad it up to 4.
# This ensures that somethign like '00644' is normalized to '0644'
return mode.strip('"').strip("'").lstrip("0").zfill(4)
|
66d58de58eb9f0e77e2fa75253cfeef3ee1abe2c
| 698,048 |
import math
def spherical_index_lm(k):
""" returns the degree l and the order m from the mode k """
l = int(math.floor(math.sqrt(k)))
return l, k - l*(l + 1)
|
de00ebda16ad2480b32a5d827351bb43ec858e42
| 698,049 |
def from_camel_case(name):
"""Convert camel case to snake case.
Function and variable names are usually written in camel case in C++ and
in snake case in Python.
"""
new_name = str(name)
i = 0
while i < len(new_name):
if new_name[i].isupper() and i > 0:
new_name = new_name[:i] + "_" + new_name[i:]
i += 1
i += 1
return new_name.lower()
|
c6e7184598252a6db1bcaee5d5375969c5c9bd39
| 698,053 |
def PatternListToStr(pattern):
"""Return a pattern string for the given list of integers.
PatternListToStr([5,3,1]) -> '531'
"""
return ''.join([chr(p) for p in pattern])
|
d42f06204f3b4c6fa3badb45d5755614554b3f9b
| 698,056 |
import re
def search_by_regex(nodes: list, option: int, regex: str) -> list:
"""
Return all :param regex matched values from :param nodes at :param option index.
:param nodes: list of nodes.
:param option: Index in the nodes list(check constants at the start of this file).
:param regex: Pattern to be found.
:return: Return list of matched values as list.
"""
answers = []
for item in nodes:
if re.search(regex, item[option]):
answers.append(item[option])
return answers
|
3a045c324dd333157a6de036ed7affd11a91b6a0
| 698,059 |
def get_retention_policy(interval, retention_policies):
"""Get appropriate retention policy for interval provided
:param interval: Interval of query in seconds
:type interval: int
:param retention_policies: Retention policy configuration
:type retention_policies: dict(max time range of interval
in seconds: retention policy name)
:rtype: ``str`` or ``None``
"""
if not retention_policies:
return
for retention_interval in sorted(retention_policies.keys()):
if interval <= retention_interval:
return retention_policies[retention_interval]
# In the case that desired interval is beyond configured interval range,
# return policy for max interval
return retention_policies[max(sorted(retention_policies.keys()))]
|
dc1e2358d715cadbcd5275240203fe20a50c1cc9
| 698,060 |
import warnings
def extract_cube_at_time(cubes, time, time_extract):
"""
Extract a single cube at a given time from a cubelist.
Args:
cubes (iris.cube.CubeList):
CubeList of a given diagnostic over several times.
time (datetime.datetime object):
Time at which forecast data is needed.
time_extract (iris.Constraint):
Iris constraint for the desired time.
Returns:
cube (iris.cube.Cube):
Cube of data at the desired time.
Raises:
ValueError if the desired time is not available within the cubelist.
"""
try:
cube_in, = cubes.extract(time_extract)
return cube_in
except ValueError:
msg = ('Forecast time {} not found within data cubes.'.format(
time.strftime("%Y-%m-%d:%H:%M")))
warnings.warn(msg)
return None
|
24f6019f8a01a8d4b9c8f66c18c94eaee4f3077e
| 698,062 |
def kw2re(x):
"""Convert a list of keywords to a regex."""
return r'(%s)' % '|'.join(sorted(list(set(x))))
|
13127d8b0c6d1772ebd4be58aca0f9e3f160544a
| 698,063 |
def get_boundary_locations(size, sector_size, stride):
"""Get a list of 1D sector boundary positions.
Args:
size: length of the full domain.
sector_size: length of the sector.
stride: how far each sector moves to the right
Returns:
boundaries: a list of 1D sector boundary positions
"""
boundaries = []
sector_l, sector_r = 0, sector_size # left and right pos of the sector
while sector_l < size:
if sector_l < size and sector_r > size:
boundaries.append((size - sector_size, size))
break
else:
boundaries.append((sector_l, sector_r))
if (sector_l, sector_r) == (size - sector_size, size):
break
sector_l += stride
sector_r += stride
return boundaries
|
ae6a2b6461f2c823f0129e7f691d63830834cbe7
| 698,067 |
def from_dero(value_in_dero):
"""Convert number in dero to smallest unit"""
return int(value_in_dero*10**12)
|
6a27469721cbd9851312f73a971caf279c95ffa8
| 698,072 |
import hashlib
def sha256_hash(data):
"""Compute SHA-256 of data and return hash as hex encoded value."""
data = data or b""
hasher = hashlib.sha256()
hasher.update(data.encode() if isinstance(data, str) else data)
sha256sum = hasher.hexdigest()
return sha256sum.decode() if isinstance(sha256sum, bytes) else sha256sum
|
88443a9a62080b9e17c6a4eb4bf68ca7b8f62e6c
| 698,074 |
import json
def load_fixture_json(name):
"""Load fixture from json file."""
with open(f"tests/fixtures/{name}.json", encoding="UTF-8") as json_file:
data = json.load(json_file)
return data
|
31f064da134974380ee12341199aef4d05bdba99
| 698,075 |
def fetch_token_mock(self,
token_url=None,
code=None,
authorization_response=None,
body='',
auth=None,
username=None,
password=None,
method='POST',
timeout=None,
headers=None,
verify=True,
proxies=None,
**kwargs):
"""Mock token fetching api call."""
token = {
"orcid": "123",
"name": "ros",
"access_token": "xyz",
"refresh_token": "xyz",
"scope": ["/activities/update", "/read/limited"],
"expires_in": "12121"
}
return token
|
8c6902272140ffe498ac52c69564d351c6257b2f
| 698,079 |
import math
def valid(f):
"""Checks if the given coordinate is valid
Args:
f (float): Coordinate of a HeightCoordinate
Returns:
boolean: whether or not the coordinate is valid
"""
return math.isfinite(f)
|
38753057630cb2581ec1752d672e9a5c76162066
| 698,082 |
def _pointed_type(tp):
"""Return the pointed type if this is a pointer, otherwise None."""
tp_nam = tp.__name__
if tp_nam.startswith("LP_"):
if tp_nam.startswith("LP_c_") or tp_nam.startswith("LP_4_") or tp_nam.startswith("LP_8_"):
return tp_nam[5:]
return None
if tp_nam == "c_void_p":
return "void"
return None
|
bcd92c3b824016c552c77627cd9ec8b411179a26
| 698,085 |
def make_image_carousel_column(image_url=None,
image_resource_id=None,
action=None,
i18n_image_urls=None,
i18n_image_resource_ids=None):
"""
Create a image carousel column object.
reference
- https://developers.worksmobile.com/jp/document/100500809?lang=en
:return: carousel column
"""
column_data = {}
if image_url is not None:
column_data["imageUrl"] = image_url
if image_resource_id is not None:
column_data["imageResourceId"] = image_resource_id
if action is not None:
column_data["action"] = action
if i18n_image_urls is not None:
column_data["i18nImageUrls"] = i18n_image_urls
if i18n_image_resource_ids is not None:
column_data["i18nImageResourceIds"] = i18n_image_resource_ids
return column_data
|
7abf182f2255d0486136dcbe64ea8de4a63146c9
| 698,086 |
import hashlib
def md5_(value: str) -> str:
"""
A function to return the md5 hash of the given string.
:param value: The string to hash.
:return: The hashed string.
"""
return str(hashlib.md5(value.encode()).hexdigest())
|
e86553ab1c57f48f5e972df1e7abb5237f4d3972
| 698,089 |
def idFormat(id_num):
"""Format a numeric id into 5-digit string.
Paramters
---------
id_num: str
A unique string number assigned to a User or Request.
"""
if len(id_num) == 1:
id_num = "0000" + id_num
elif len(id_num) == 2:
id_num = "000" + id_num
elif len(id_num) == 3:
id_num = "00" + id_num
elif len(id_num) == 4:
id_num = "0" + id_num
return id_num
|
a3afb52dd552fe7eb6e971bd3f889bb114ee505c
| 698,093 |
def next_multiple(query, multiple):
"""Get the next multiple
Args:
query (int): To test
multiple (int): Divider
Returns:
int: Next multiple of divider
"""
result = query
while result % multiple:
result += 1
return result
|
e76e59e94e7ac72dbcf86a6c99a17229acc7a15d
| 698,094 |
def change_dict_structure(dict_list):
"""Takes list of dicts from db_query and changes to dict with key=id, value = text (used for metrices).
Args:
dict_list (list): List of dictionaries from db_query.
Returns:
texts (dictionary): Dictionary with document IDs as keys and document text as values.
"""
texts = {}
for dict in dict_list:
doc_id = dict.get('document_id')
text = dict.get('fulltext_cleaned')
texts.update({doc_id: text})
return texts
|
1e31055606a692f4e743a61f8a394134b9e72126
| 698,096 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.