content
stringlengths 22
815k
| id
int64 0
4.91M
|
---|---|
def get_env_loader(package, context):
"""This function returns a function object which extends a base environment
based on a set of environments to load."""
def load_env(base_env):
# Copy the base environment to extend
job_env = dict(base_env)
# Get the paths to the env loaders
env_loader_paths = get_env_loaders(package, context)
# If DESTDIR is set, set _CATKIN_SETUP_DIR as well
if context.destdir is not None:
job_env['_CATKIN_SETUP_DIR'] = context.package_dest_path(package)
for env_loader_path in env_loader_paths:
# print(' - Loading resultspace env from: {}'.format(env_loader_path))
resultspace_env = get_resultspace_environment(
os.path.split(env_loader_path)[0],
base_env=job_env,
quiet=True,
cached=context.use_env_cache,
strict=False)
job_env.update(resultspace_env)
return job_env
return load_env | 5,353,100 |
def sampen(L, m):
"""
"""
N = len(L)
r = (np.std(L) * .2)
B = 0.0
A = 0.0
# Split time series and save all templates of length m
xmi = np.array([L[i: i + m] for i in range(N - m)])
xmj = np.array([L[i: i + m] for i in range(N - m + 1)])
# Save all matches minus the self-match, compute B
B = np.sum([np.sum(np.abs(xmii - xmj).max(axis=1) <= r) - 1 for xmii in xmi])
# Similar for computing A
m += 1
xm = np.array([L[i: i + m] for i in range(N - m + 1)])
A = np.sum([np.sum(np.abs(xmi - xm).max(axis=1) <= r) - 1 for xmi in xm])
# Return SampEn
return -np.log(A / B) | 5,353,101 |
def close_socket():
"""
This function is used to close client's socket.
Returns:
"""
# send a close signal to cpp server and close its socket
global client_socket
signal = struct.pack("!I", 0)
client_socket.send(signal)
respond = client_socket.recv(4)
respond = struct.unpack("!I", respond)
assert (respond[0] == 0)
reply = struct.pack("!I", 1)
client_socket.send(reply)
client_socket.close() | 5,353,102 |
def total(score: Union[int, RevisedResult]) -> int:
"""
Return the total number of successes (negative for a botch).
If `score` is an integer (from a 1st/2nd ed. die from :func:`standard` or
:func:`special`) then it is returned unmodified.
If `score` is a :class:`RevisedResult` (from :func:`revised_standard` or
:func:`revised_special`) then the value returned is the net successes,
except in the special case where there were successes but they were all
cancelled out by botches. In that case return 0 even if the net successes
is negative.
"""
return int(score) | 5,353,103 |
def test_register_user_with_password(api_client):
"""
Test if a new user can register himself providing his own new password.
"""
from testshop.models import Customer
register_user_url = reverse('shop:register-user')
data = {
'form_data': {
'email': '[email protected]',
'password1': 'secret',
'password2': 'secret',
'preset_password': False,
}
}
response = api_client.post(register_user_url, data, format='json')
assert response.status_code == 200
assert response.json() == {'register_user_form': {'success_message': 'Successfully registered yourself.'}}
customer = Customer.objects.get(user__email='[email protected]')
assert customer is not None | 5,353,104 |
def load_vgg16(model_dir, gpu_ids):
""" Use the model from https://github.com/abhiskk/fast-neural-style/blob/master/neural_style/utils.py """
# if not os.path.exists(model_dir):
# os.mkdir(model_dir)
# if not os.path.exists(os.path.join(model_dir, 'vgg16.weight')):
# if not os.path.exists(os.path.join(model_dir, 'vgg16.t7')):
# os.system('wget https://www.dropbox.com/s/76l3rt4kyi3s8x7/vgg16.t7?dl=1 -O ' + os.path.join(model_dir, 'vgg16.t7'))
# vgglua = load_lua(os.path.join(model_dir, 'vgg16.t7'))
# vgg = Vgg16()
# for (src, dst) in zip(vgglua.parameters()[0], vgg.parameters()):
# dst.data[:] = src
# torch.save(vgg.state_dict(), os.path.join(model_dir, 'vgg16.weight'))
vgg = Vgg16()
# vgg.cuda()
vgg.cuda(device=gpu_ids[0])
vgg.load_state_dict(torch.load(os.path.join(model_dir, 'vgg16.weight')))
vgg = torch.nn.DataParallel(vgg, gpu_ids)
return vgg | 5,353,105 |
def findExchange(username, password, region, orgId, envId, name):
"""This command will try to find an exchange in a given region, org id and environment id"""
#### Anypoint login ####
token = login(username, password)
#### Request destinations to AMQ Rest API ####
destinations_request_url = 'https://anypoint.mulesoft.com/mq/admin/api/v1/organizations/' + \
orgId + '/environments/' + envId + '/regions/' + region + '/destinations/exchanges/' + name
payload = {}
headers = {'X-ANYPNT-ENV-ID': envId, 'Authorization': 'bearer ' +
token}
try:
destinations = requests.request(
"GET", destinations_request_url, headers=headers, data=payload)
destinations.raise_for_status()
print(json.dumps({
"exists": True,
"message": name + " already exists"
}))
except HTTPError as http_err:
if http_err.response.status_code == 404:
print(json.dumps({
"exists": False,
"message": name + " does not exist"
}))
else:
raise Exception('HTTP error occurred: ' + str(http_err))
except Exception as err:
raise Exception('Other error occurred: ' + str(err)) | 5,353,106 |
def rbbox_overlaps_v3(bboxes1, bboxes2, mode='iou', is_aligned=False):
"""Calculate overlap between two set of bboxes.
Args:
bboxes1 (torch.Tensor): shape (B, m, 5) in <cx, cy, w, h, a> format
or empty.
bboxes2 (torch.Tensor): shape (B, n, 5) in <cx, cy, w, h, a> format
or empty.
mode (str): "iou" (intersection over union), "iof" (intersection over
foreground) or "giou" (generalized intersection over union).
Default "iou".
is_aligned (bool, optional): If True, then m and n must be equal.
Default False.
Returns:
Tensor: shape (m, n) if ``is_aligned`` is False else shape (m,)
"""
assert mode in ['iou', 'iof']
# Either the boxes are empty or the length of boxes's last dimension is 5
assert (bboxes1.size(-1) == 5 or bboxes1.size(0) == 0)
assert (bboxes2.size(-1) == 5 or bboxes2.size(0) == 0)
rows = bboxes1.size(0)
cols = bboxes2.size(0)
if is_aligned:
assert rows == cols
if rows * cols == 0:
return bboxes1.new(rows, 1) if is_aligned else bboxes1.new(rows, cols)
return obb_overlaps(bboxes1, bboxes2, mode, is_aligned) | 5,353,107 |
def write_comparison(report_fh, result: Tuple[Dict, List[BadResult]])-> None:
"""Write comparison output."""
(config, bad_results) = result
logging.debug("writing report for %s", config['paper_id'])
if bad_results:
# data = json.dumps( [ config, bad_results], sort_keys=True, default=_serialize)
# report_fh.write( data + "\n")
report_fh.write(f"* paper {config['paper_id']}\n")
for br in bad_results:
if 'GOOD' not in br.message:
report_fh.write( format_bad_result( br ) ) | 5,353,108 |
def get_target_compute_version(target=None):
"""Utility function to get compute capability of compilation target.
Looks for the arch in three different places, first in the target attributes, then the global
scope, and finally the GPU device (if it exists).
Parameters
----------
target : tvm.target.Target, optional
The compilation target
Returns
-------
compute_version : str
compute capability of a GPU (e.g. "8.0")
"""
# 1. Target
if target:
if "arch" in target.attrs:
compute_version = target.attrs["arch"]
major, minor = compute_version.split("_")[1]
return major + "." + minor
# 2. Global scope
from tvm.autotvm.env import AutotvmGlobalScope # pylint: disable=import-outside-toplevel
if AutotvmGlobalScope.current.cuda_target_arch:
major, minor = AutotvmGlobalScope.current.cuda_target_arch.split("_")[1]
return major + "." + minor
# 3. GPU
if tvm.gpu(0).exist:
return tvm.gpu(0).compute_version
warnings.warn(
"No CUDA architecture was specified or GPU detected."
"Try specifying it by adding '-arch=sm_xx' to your target."
)
return None | 5,353,109 |
def get_poet_intro_by_id(uid):
"""
get poet intro by id
:param uid:
:return:
"""
return Poet.get_poet_by_id(uid) | 5,353,110 |
def create_post():
"""Создать пост"""
user = get_user_from_request()
post = Post(
created_date=datetime.datetime.now(),
updated_date=datetime.datetime.now(),
creator=user,
)
json = request.get_json()
url = json["url"]
if Post.get_or_none(Post.url == url) is not None:
return errors.post_url_already_taken()
error = set_blog(post, json, user)
if error is not None:
error_response = {
BlogError.NoBlog: errors.blog_not_found(),
BlogError.NoAccess: errors.blog_no_access(),
}[error]
return error_response
fill_post_from_json(post, json)
post.save()
set_tags_for_post(post, json)
manage_jam_entries(post, json)
return jsonify({"success": 1, "post": post.to_json()}) | 5,353,111 |
def plot_absorption_spectrum(pairlist):
"""Plot line pairs along with transmission spectrum
"""
import subprocess
for pair in tqdm(pairlist):
args = ['/Users/dberke/code/plotSpec.py',
'HD45184/ADP.2014-09-26T16:54:56.573.fits',
'HD45184/ADP.2015-09-30T02:00:51.583.fits',
'-o', 'Trans_{}_{}.png'.format(pair[0], pair[1]),
'-r', '-3.9', '-i', '0', '-j', '1.05', '-vtz', '-n',
'{}'.format(float(pair[0]) -
((float(pair[1]) - float(pair[0])) * 0.75)),
'-m',
'{}'.format(float(pair[1]) +
((float(pair[1]) - float(pair[0])) * 0.75)),
'-l', pair[0], pair[1]]
subprocess.run(args) | 5,353,112 |
async def fetch(session, url):
"""Method to fetch data from a url asynchronously
"""
async with async_timeout.timeout(30):
async with session.get(url) as response:
return await response.json() | 5,353,113 |
def recurse_while(predicate, f, *args):
"""
Accumulate value by executing recursively function `f`.
The function `f` is executed with starting arguments. While the
predicate for the result is true, the result is fed into function `f`.
If predicate is never true then starting arguments are returned.
:param predicate: Predicate function guarding execution.
:param f: Function to execute.
:param *args: Starting arguments.
"""
result = f(*args)
result = result if type(result) == tuple else (result, )
while predicate(*result):
args = result # predicate(args) is always true
result = f(*args)
result = result if type(result) == tuple else (result, )
return args if len(args) > 1 else args[0] | 5,353,114 |
def unparse(node: Optional[ast.AST]) -> Optional[str]:
"""Unparse an AST to string."""
if node is None:
return None
elif isinstance(node, str):
return node
elif node.__class__ in OPERATORS:
return OPERATORS[node.__class__]
elif isinstance(node, ast.arg):
if node.annotation:
return "%s: %s" % (node.arg, unparse(node.annotation))
else:
return node.arg
elif isinstance(node, ast.arguments):
return unparse_arguments(node)
elif isinstance(node, ast.Attribute):
return "%s.%s" % (unparse(node.value), node.attr)
elif isinstance(node, ast.BinOp):
return " ".join(unparse(e) for e in [node.left, node.op, node.right])
elif isinstance(node, ast.BoolOp):
op = " %s " % unparse(node.op)
return op.join(unparse(e) for e in node.values)
elif isinstance(node, ast.Bytes):
return repr(node.s)
elif isinstance(node, ast.Call):
args = ([unparse(e) for e in node.args] +
["%s=%s" % (k.arg, unparse(k.value)) for k in node.keywords])
return "%s(%s)" % (unparse(node.func), ", ".join(args))
elif isinstance(node, ast.Dict):
keys = (unparse(k) for k in node.keys)
values = (unparse(v) for v in node.values)
items = (k + ": " + v for k, v in zip(keys, values))
return "{" + ", ".join(items) + "}"
elif isinstance(node, ast.Ellipsis):
return "..."
elif isinstance(node, ast.Index):
return unparse(node.value)
elif isinstance(node, ast.Lambda):
return "lambda %s: ..." % unparse(node.args)
elif isinstance(node, ast.List):
return "[" + ", ".join(unparse(e) for e in node.elts) + "]"
elif isinstance(node, ast.Name):
return node.id
elif isinstance(node, ast.NameConstant):
return repr(node.value)
elif isinstance(node, ast.Num):
return repr(node.n)
elif isinstance(node, ast.Set):
return "{" + ", ".join(unparse(e) for e in node.elts) + "}"
elif isinstance(node, ast.Str):
return repr(node.s)
elif isinstance(node, ast.Subscript):
return "%s[%s]" % (unparse(node.value), unparse(node.slice))
elif isinstance(node, ast.UnaryOp):
return "%s %s" % (unparse(node.op), unparse(node.operand))
elif isinstance(node, ast.Tuple):
if node.elts:
return ", ".join(unparse(e) for e in node.elts)
else:
return "()"
elif sys.version_info > (3, 6) and isinstance(node, ast.Constant):
# this branch should be placed at last
return repr(node.value)
else:
raise NotImplementedError('Unable to parse %s object' % type(node).__name__) | 5,353,115 |
def test_convert_nonnumeric_value():
"""Test exception is thrown for nonnumeric type."""
with pytest.raises(TypeError):
speed_util.convert("a", SPEED_KILOMETERS_PER_HOUR, SPEED_MILES_PER_HOUR) | 5,353,116 |
def construct_lookup_variables(train_pos_users, train_pos_items, num_users):
"""Lookup variables"""
index_bounds = None
sorted_train_pos_items = None
def index_segment(user):
lower, upper = index_bounds[user:user + 2]
items = sorted_train_pos_items[lower:upper]
negatives_since_last_positive = np.concatenate(
[items[0][np.newaxis], items[1:] - items[:-1] - 1])
return np.cumsum(negatives_since_last_positive)
start_time = timeit.default_timer()
inner_bounds = np.argwhere(train_pos_users[1:] -
train_pos_users[:-1])[:, 0] + 1
(upper_bound,) = train_pos_users.shape
index_bounds = np.array([0] + inner_bounds.tolist() + [upper_bound])
# Later logic will assume that the users are in sequential ascending order.
assert np.array_equal(train_pos_users[index_bounds[:-1]], np.arange(num_users))
sorted_train_pos_items = train_pos_items.copy()
for i in range(num_users):
lower, upper = index_bounds[i:i + 2]
sorted_train_pos_items[lower:upper].sort()
total_negatives = np.concatenate([
index_segment(i) for i in range(num_users)])
logging.info("Negative total vector built. Time: {:.1f} seconds".format(
timeit.default_timer() - start_time))
return total_negatives, index_bounds, sorted_train_pos_items | 5,353,117 |
def total_allocation_constraint(weight, allocation: float, upper_bound: bool = True):
"""
Used for inequality constraint for the total allocation.
:param weight: np.array
:param allocation: float
:param upper_bound: bool if true the constraint is from above (sum of weights <= allocation) else from below
(sum of weights <= allocation)
:return: np.array
"""
if upper_bound:
return allocation - weight.sum()
else:
return weight.sum() - allocation | 5,353,118 |
def sigmoid(x):
""" computes sigmoid of x """
return 1.0/(1.0 + np.exp(-x)) | 5,353,119 |
def handle_error(err):
"""Catches errors with processing client requests and returns message"""
code = 500
error = 'Error processing the request'
if isinstance(err, HTTPError):
code = err.code
error = str(err.message)
return jsonify(error=error, code=code), code | 5,353,120 |
def dimensionality(quantity_or_unit: str) -> Dict[str, int]:
""" Returns the dimensionality of the quantity or unit.
Parameters
-----------
quantity_or_unit : str
A quanitity or a unit
Returns
-------
dimensionality_dict : dict
Dictionary which keys are fundamental units and values are the exponent of
each unit in the quantity.
"""
from pyunitwizard.kernel import default_form, default_parser
from pyunitwizard import convert as _convert, get_dimensionality as _get_dimensionality
tmp_quantity_or_unit = _convert(quantity_or_unit, to_form=default_form, parser=default_parser)
return _get_dimensionality(tmp_quantity_or_unit) | 5,353,121 |
def split_prec_rows(df):
"""Split precincts into two rows.
NOTE: Because this creates a copy of the row values, don't rely on total vote counts, just look at percentage.
"""
for idx in df.index:
# look for rows with precincts that need to be split
if re.search('\d{4}/\d{4}',idx):
row_values = df.loc[idx]
split = idx.split('/')
for p in split:
df.loc[p] = row_values
# delete original row
df = df.drop(idx, axis=0)
return(df) | 5,353,122 |
def socfaker_elasticecsfields_host():
"""
Returns an ECS host dictionary
Returns:
dict: Returns a dictionary of ECS
host fields/properties
"""
if validate_request(request):
return jsonify(str(socfaker.products.elastic.document.fields.host)) | 5,353,123 |
def _moog_writer(photosphere, filename, **kwargs):
"""
Writes an :class:`photospheres.photosphere` to file in a MOOG-friendly
format.
:param photosphere:
The photosphere.
:path filename:
The filename to write the photosphere to.
"""
def _get_xi():
xi = photosphere.meta["stellar_parameters"].get("microturbulence", 0.0)
if 0 >= xi:
logger.warn("Invalid microturbulence value: {:.3f} km/s".format(xi))
return xi
if photosphere.meta["kind"] == "marcs":
xi = _get_xi()
output = dedent("""
WEBMARCS
MARCS (2011) TEFF/LOGG/[M/H]/XI {1:.0f}/{2:.3f}/{3:.3f}/{4:.3f}
NTAU {0:.0f}
5000.0
""".format(len(photosphere),
photosphere.meta["stellar_parameters"]["effective_temperature"],
photosphere.meta["stellar_parameters"]["surface_gravity"],
photosphere.meta["stellar_parameters"]["metallicity"],
xi)).lstrip()
for i, line in enumerate(photosphere):
output += " {0:>3.0f} {0:>3.0f} {1:10.3e} {0:>3.0f} {2:10.3e} "\
"{3:10.3e} {4:10.3e}\n".format(i + 1, line["lgTau5"], line["T"],
line["Pe"], line["Pg"])
output += " {0:.3f}\n".format(xi)
output += "NATOMS 0 {0:.3f}\n".format(
photosphere.meta["stellar_parameters"]["metallicity"])
output += "NMOL 0\n"
elif photosphere.meta["kind"] == "castelli/kurucz":
xi = _get_xi()
output = dedent("""
KURUCZ
CASTELLI/KURUCZ (2004) {1:.0f}/{2:.3f}/{3:.3f}/{4:.3f}/{5:.3f}
NTAU {0:.0f}
""".format(len(photosphere),
photosphere.meta["stellar_parameters"]["effective_temperature"],
photosphere.meta["stellar_parameters"]["surface_gravity"],
photosphere.meta["stellar_parameters"]["metallicity"],
photosphere.meta["stellar_parameters"]["alpha_enhancement"],
xi)).lstrip()
for line in photosphere:
output += " {0:.8e} {1:10.3e}{2:10.3e}{3:10.3e}{4:10.3e}\n".format(
line["RHOX"], line["T"], line["P"], line["XNE"], line["ABROSS"])
output += " {0:.3f}\n".format(xi)
output += "NATOMS 0 {0:.3f}\n".format(
photosphere.meta["stellar_parameters"]["metallicity"])
output += "NMOL 0\n"
# MOOG11 fails to read if you don't add an extra line
output += "\n"
else:
raise ValueError("photosphere kind '{}' cannot be written to a MOOG-"\
"compatible format".format(photosphere.meta["kind"]))
with open(filename, "w") as fp:
fp.write(output)
return None | 5,353,124 |
def upcomingSplits(
symbol="",
exactDate="",
token="",
version="stable",
filter="",
format="json",
):
"""This will return all upcoming estimates, dividends, splits for a given symbol or the market. If market is passed for the symbol, IPOs will also be included.
https://iexcloud.io/docs/api/#upcoming-events
Args:
symbol (str): Symbol to look up
exactDate (str): exactDate Optional. Exact date for which to get data
token (str): Access token
version (str): API version
filter (str): filters: https://iexcloud.io/docs/api/#filter-results
format (str): return format, defaults to json
Returns:
dict or DataFrame: result
"""
return _baseEvent(
"splits",
symbol=symbol,
exactDate=exactDate,
token=token,
version=version,
filter=filter,
format=format,
) | 5,353,125 |
async def async_media_pause(hass, entity_id=None):
"""Send the media player the command for pause."""
data = {ATTR_ENTITY_ID: entity_id} if entity_id else {}
await hass.services.async_call(DOMAIN, SERVICE_MEDIA_PAUSE, data) | 5,353,126 |
def mu_model(u, X, U, k):
"""
Returns the utility of the kth player
Parameters
----------
u
X
U
k
Returns
-------
"""
M = X.T @ X
rewards = M @ u
penalties = u.T @ M @ U[:, :k] * U[:, :k]
return rewards - penalties.sum(axis=1) | 5,353,127 |
def tokenizer_init(model_name):
"""simple wrapper for auto tokenizer"""
tokenizer = AutoTokenizer.from_pretrained(model_name)
return tokenizer | 5,353,128 |
def insert_message(nick, message, textDirection):
"""
Insert record
"""
ins = STATE['messages_table'].insert().values(
nick=nick, message=message, textDirection=textDirection)
res = STATE['conn'].execute(ins)
ltr = 1 if textDirection == 'ltr' else 0
rtl = 1 if textDirection == 'rtl' else 0
STATE['conn'].execute(
'update message_stats set ltr = ltr + ?, rtl = rtl + ?',
ltr, rtl)
return {
'id': res.lastrowid
} | 5,353,129 |
def process_metadata(metadata) -> Tuple[Dict[str, str], Dict[str, str]]:
""" Returns a tuple of valid and invalid metadata values. """
if not metadata:
return {}, {}
valid_values = {}
invalid_values = {}
for m in metadata:
key, value = m.split("=", 1)
if key in supported_metadata_keys:
valid_values[key] = value
else:
invalid_values[key] = value
return valid_values, invalid_values | 5,353,130 |
def rightOfDeciSeperatorToDeci(a):
"""This function only convert value at the right side of decimal seperator to decimal"""
deciNum = 0
for i in range(len(a)):
deciNum += (int(a[i]))*2**-(i+1)
return deciNum | 5,353,131 |
def test_single_download_from_requirements_file(script):
"""
It should support download (in the scratch path) from PyPi from a
requirements file
"""
script.scratch_path.join("test-req.txt").write(textwrap.dedent("""
INITools==0.1
"""))
result = script.pip(
'install', '-r', script.scratch_path / 'test-req.txt', '-d', '.',
expect_error=True,
)
assert Path('scratch') / 'INITools-0.1.tar.gz' in result.files_created
assert script.site_packages / 'initools' not in result.files_created | 5,353,132 |
def init_logging():
""" Initialize logging and write info both into logfile and console
Usage example: land.logger.logging.info('Your message here')
Logger levels: critical, error, warning, info, debug, notset """
this_dir = os.path.dirname(os.path.realpath(__file__)) # path to this directory
log_dir = os.path.join(this_dir, '..', 'temp')
# Create logging directory if not exist
if not os.path.isdir(log_dir):
os.makedirs(log_dir)
# specify logging configuration
logging.basicConfig(level=logging.INFO,
format='%(levelname)s, %(asctime)s, %(filename)s, %(funcName)s, %(message)s',
filename=os.path.join(log_dir, 'logfile.log'),
filemode='a')
# define a handler which writes to the sys.stderr
console = logging.StreamHandler()
# set a format which is simpler for console usage
formatter = logging.Formatter('[%(levelname)s] %(message)s')
# tell the handler to use this format
console.setFormatter(formatter)
# add the handler to the root logger
logging.getLogger('').addHandler(console)
# Override sys.excepthook to log uncaught exceptions
sys.excepthook = handle_uncaught_exception | 5,353,133 |
def conv(input, weight):
"""
Returns the convolution of input and weight tensors,
where input contains sequential data.
The convolution is along the sequence axis.
input is of size [batchSize, inputDim, seqLength]
"""
output = torch.nn.functional.conv1d(input=input, weight=weight)
return output | 5,353,134 |
def irr_repr(order, alpha, beta, gamma, dtype = None):
"""
irreducible representation of SO3
- compatible with compose and spherical_harmonics
"""
cast_ = cast_torch_tensor(lambda t: t)
dtype = default(dtype, torch.get_default_dtype())
alpha, beta, gamma = map(cast_, (alpha, beta, gamma))
return wigner_d_matrix(order, alpha, beta, gamma, dtype = dtype) | 5,353,135 |
def label_to_span(labels: List[str],
scheme: Optional[str] = 'BIO') -> dict:
"""
convert labels to spans
:param labels: a list of labels
:param scheme: labeling scheme, in ['BIO', 'BILOU'].
:return: labeled spans, a list of tuples (start_idx, end_idx, label)
"""
assert scheme in ['BIO', 'BILOU'], ValueError("unknown labeling scheme")
labeled_spans = dict()
i = 0
while i < len(labels):
if labels[i] == 'O' or labels[i] == 'ABS':
i += 1
continue
else:
if scheme == 'BIO':
if labels[i][0] == 'B':
start = i
lb = labels[i][2:]
i += 1
try:
while labels[i][0] == 'I':
i += 1
end = i
labeled_spans[(start, end)] = lb
except IndexError:
end = i
labeled_spans[(start, end)] = lb
i += 1
# this should not happen
elif labels[i][0] == 'I':
i += 1
elif scheme == 'BILOU':
if labels[i][0] == 'U':
start = i
end = i + 1
lb = labels[i][2:]
labeled_spans[(start, end)] = lb
i += 1
elif labels[i][0] == 'B':
start = i
lb = labels[i][2:]
i += 1
try:
while labels[i][0] != 'L':
i += 1
end = i
labeled_spans[(start, end)] = lb
except IndexError:
end = i
labeled_spans[(start, end)] = lb
break
i += 1
else:
i += 1
return labeled_spans | 5,353,136 |
def marker_genes_text(
marker_res,
groups: Union[str, Sequence[str]] = 'all',
markers_num: int = 20,
sort_key: str = 'scores',
ascend: bool = False,
fontsize: int = 8,
ncols: int = 4,
sharey: bool = True,
ax: Optional[Axes] = None,
**kwargs,
): # scatter plot, 差异基因显著性图,类碎石图
"""
marker gene scatter visualization.
:param marker_res: the StereoResult of FindMarkers tool.
:param groups: list of cluster ids or 'all' clusters, a cluster equal a group.
:param markers_num: top N genes to show in each cluster.
:param sort_key: the sort key for getting top n marker genes, default `scores`.
:param ascend: asc or dec.
:param fontsize: font size.
:param ncols: number of plot columns.
:param sharey: share scale or not
:param ax: axes object
:param kwargs: other args for plot.
"""
# 调整图像 panel/grid 相关参数
if 'n_panels_per_row' in kwargs:
n_panels_per_row = kwargs['n_panels_per_row']
else:
n_panels_per_row = ncols
if groups == 'all':
group_names = list(marker_res.keys())
else:
group_names = [groups] if isinstance(groups, str) else groups
# one panel for each group
# set up the figure
n_panels_x = min(n_panels_per_row, len(group_names))
n_panels_y = np.ceil(len(group_names) / n_panels_x).astype(int)
# 初始化图像
width = 10
height = 10
fig = plt.figure(
figsize=(
n_panels_x * width, # rcParams['figure.figsize'][0],
n_panels_y * height, # rcParams['figure.figsize'][1],
)
)
gs = gridspec.GridSpec(nrows=n_panels_y, ncols=n_panels_x, wspace=0.22, hspace=0.3)
ax0 = None
ymin = np.Inf
ymax = -np.Inf
for count, group_name in enumerate(group_names):
result = data_helper.get_top_marker(g_name=group_name, marker_res=marker_res, sort_key=sort_key,
ascend=ascend, top_n=markers_num)
gene_names = result.genes.values
scores = result.scores.values
# Setting up axis, calculating y bounds
if sharey:
ymin = min(ymin, np.min(scores))
ymax = max(ymax, np.max(scores))
if ax0 is None:
ax = fig.add_subplot(gs[count])
ax0 = ax
else:
ax = fig.add_subplot(gs[count], sharey=ax0)
else:
ymin = np.min(scores)
ymax = np.max(scores)
ymax += 0.3 * (ymax - ymin)
ax = fig.add_subplot(gs[count])
ax.set_ylim(ymin, ymax)
ax.set_xlim(-0.9, markers_num - 0.1)
# Making labels
for ig, gene_name in enumerate(gene_names):
ax.text(
ig,
scores[ig],
gene_name,
rotation='vertical',
verticalalignment='bottom',
horizontalalignment='center',
fontsize=fontsize,
)
ax.set_title(group_name)
if count >= n_panels_x * (n_panels_y - 1):
ax.set_xlabel('ranking')
# print the 'score' label only on the first panel per row.
if count % n_panels_x == 0:
ax.set_ylabel('score')
if sharey is True:
ymax += 0.3 * (ymax - ymin)
ax.set_ylim(ymin, ymax) | 5,353,137 |
def get_storage_account(account_name: Optional[str] = None,
resource_group_name: Optional[str] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetStorageAccountResult:
"""
The storage account.
:param str account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only.
:param str resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive.
"""
__args__ = dict()
__args__['accountName'] = account_name
__args__['resourceGroupName'] = resource_group_name
if opts is None:
opts = pulumi.InvokeOptions()
if opts.version is None:
opts.version = _utilities.get_version()
__ret__ = pulumi.runtime.invoke('azure-native:storage/v20160501:getStorageAccount', __args__, opts=opts, typ=GetStorageAccountResult).value
return AwaitableGetStorageAccountResult(
access_tier=__ret__.access_tier,
creation_time=__ret__.creation_time,
custom_domain=__ret__.custom_domain,
encryption=__ret__.encryption,
id=__ret__.id,
kind=__ret__.kind,
last_geo_failover_time=__ret__.last_geo_failover_time,
location=__ret__.location,
name=__ret__.name,
primary_endpoints=__ret__.primary_endpoints,
primary_location=__ret__.primary_location,
provisioning_state=__ret__.provisioning_state,
secondary_endpoints=__ret__.secondary_endpoints,
secondary_location=__ret__.secondary_location,
sku=__ret__.sku,
status_of_primary=__ret__.status_of_primary,
status_of_secondary=__ret__.status_of_secondary,
tags=__ret__.tags,
type=__ret__.type) | 5,353,138 |
def format_and_add(graph, info, relation, name):
"""
input: graph and three stirngs
function formats the strings and adds to the graph
"""
info = info.replace(" ", "_")
name = name.replace(" ", "_")
inf = rdflib.URIRef(project_prefix + info)
rel = rdflib.URIRef(project_prefix + relation)
nm = rdflib.URIRef(project_prefix + name)
graph.add((inf, rel, nm))
return None | 5,353,139 |
def get_dataset(dir, batch_size, num_epochs, reshape_size, padding='SAME'):
"""Reads input data num_epochs times. AND Return the dataset
Args:
train: Selects between the training (True) and validation (False) data.
batch_size: Number of examples per returned batch.
num_epochs: Number of times to read the input data, or 0/None to
train forever.
padding: if 'SAME' , have ceil(#samples / batch_size) * epoch_nums batches
if 'VALID', have floor(#samples / batch_size) * epoch_nums batches
Returns:
A tuple (images, labels), where:
* images is a float tensor with shape [batch_size, mnist.IMAGE_PIXELS]
in the range [-0.5, 0.5].
* labels is an int32 tensor with shape [batch_size] with the true label,
a number in the range [0, mnist.NUM_CLASSES).
This function creates a one_shot_iterator, meaning that it will only iterate
over the dataset once. On the other hand there is no special initialization
required.
"""
if not num_epochs:
num_epochs = None
filenames = [os.path.join(dir, i) for i in os.listdir(dir)]
with tf.name_scope('input'):
# TFRecordDataset opens a protobuf and reads entries line by line
# could also be [list, of, filenames]
dataset = tf.data.TFRecordDataset(filenames)
dataset = dataset.repeat(num_epochs)
# map takes a python function and applies it to every sample
dataset = dataset.map(decode)
dataset = dataset.map(extract)
dataset = dataset.map(cast_type)
dataset = dataset.map(augment)
dataset = dataset.map(normalize)
dataset = dataset.map(set_parameter(reshape, reshape_size=reshape_size))
# the parameter is the queue size
dataset = dataset.shuffle(1000 + 3 * batch_size)
dataset = dataset.batch(batch_size)
return dataset | 5,353,140 |
def to_log_space(p:float, bounds: BOUNDS_TYPE):
""" Interprets p as a point in a rectangle in R^2 or R^3 using Morton space-filling curve
:param bounds [ (low,high), (low,high), (low,high) ] defaults to unit cube
:param dim Dimension. Only used if bounds are not supplied.
Very similar to "to_space" but assumes speed varies with logarithm
"""
assert 0 <= p <= 1
dim = len(bounds)
us = list(reversed(ZCurveConventions().to_cube(zpercentile=p, dim=dim))) # 0 < us[i] < 1
return [to_log_space_1d(u, low=b[0], high=b[1]) for u, b in zip(us, bounds)] | 5,353,141 |
def advection2D(iplot=False,use_petsc=False,htmlplot=False,outdir='./_output',solver_type='classic'):
"""
Example python script for solving the 2d advection equation.
"""
#===========================================================================
# Import libraries
#===========================================================================
if use_petsc:
import petclaw as pyclaw
else:
import pyclaw
#===========================================================================
# Setup solver and solver parameters
#===========================================================================
if solver_type=='classic':
solver = pyclaw.ClawSolver2D()
elif solver_type=='sharpclaw':
solver = pyclaw.SharpClawSolver2D()
solver.bc_lower[0] = pyclaw.BC.periodic
solver.bc_upper[0] = pyclaw.BC.periodic
solver.bc_lower[1] = pyclaw.BC.periodic
solver.bc_upper[1] = pyclaw.BC.periodic
solver.mwaves = 1
solver.dim_split = 0
solver.cfl_max=1.0
solver.cfl_desired = 0.9
solver.mthlim = pyclaw.limiters.tvd.vanleer
#===========================================================================
# Initialize grids, then initialize the solution associated to the grid and
# finally initialize aux array
#===========================================================================
# Grid:
mx=50; my=50
x = pyclaw.Dimension('x',0.0,1.0,mx)
y = pyclaw.Dimension('y',0.0,1.0,my)
grid = pyclaw.Grid([x,y])
meqn = 1
state = pyclaw.State(grid,meqn)
state.aux_global['u'] = 0.5 # Parameters (global auxiliary variables)
state.aux_global['v'] = 1.0
# Initial solution
# ================
qinit(state) # This function is defined above
#===========================================================================
# Set up controller and controller parameters
#===========================================================================
claw = pyclaw.Controller()
claw.tfinal = 2.0
claw.solution = pyclaw.Solution(state)
claw.solver = solver
claw.outdir = outdir
#===========================================================================
# Solve the problem
#===========================================================================
status = claw.run()
#===========================================================================
# Plot results
#===========================================================================
if htmlplot: pyclaw.plot.html_plot(outdir=outdir)
if iplot: pyclaw.plot.interactive_plot(outdir=outdir) | 5,353,142 |
def rsi_tradingview(ohlc: pd.DataFrame, period: int = 14, round_rsi: bool = True):
""" Implements the RSI indicator as defined by TradingView on March 15, 2021.
The TradingView code is as follows:
//@version=4
study(title="Relative Strength Index", shorttitle="RSI", format=format.price, precision=2, resolution="")
len = input(14, minval=1, title="Length")
src = input(close, "Source", type = input.source)
up = rma(max(change(src), 0), len)
down = rma(-min(change(src), 0), len)
rsi = down == 0 ? 100 : up == 0 ? 0 : 100 - (100 / (1 + up / down))
plot(rsi, "RSI", color=#8E1599)
band1 = hline(70, "Upper Band", color=#C0C0C0)
band0 = hline(30, "Lower Band", color=#C0C0C0)
fill(band1, band0, color=#9915FF, transp=90, title="Background")
:param ohlc:
:param period:
:param round_rsi:
:return: an array with the RSI indicator values
"""
delta = ohlc["close"].diff()
up = delta.copy()
up[up < 0] = 0
up = pd.Series.ewm(up, alpha=1/period).mean()
down = delta.copy()
down[down > 0] = 0
down *= -1
down = pd.Series.ewm(down, alpha=1/period).mean()
rsi = np.where(up == 0, 0, np.where(down == 0, 100, 100 - (100 / (1 + up / down))))
return np.round(rsi, 2) if round_rsi else rsi | 5,353,143 |
def bin_by(x, y, nbins=30):
"""Bin x by y, given paired observations of x & y.
Returns the binned "x" values and the left edges of the bins."""
bins = np.linspace(y.min(), y.max(), nbins+1)
# To avoid extra bin for the max value
bins[-1] += 1
indicies = np.digitize(y, bins)
output = []
for i in xrange(1, len(bins)):
output.append(x[indicies==i])
# Just return the left edges of the bins
bins = bins[:-1]
return output, bins | 5,353,144 |
def calc_stats_with_cumsum(df_tgt, list_tgt_status, dict_diff, calc_type=0):
""" Calculate statistics with cumulative sum of target status types. \n
"dict_diff" is dictionaly of name key and difference value. ex) {"perweek": 7, "per2week": 14} \n
calc_type=0: calculate for each simulation result. \n
calc_type=1: calculate for each daycount result. """
# Prepare front side of dataframe.
if calc_type == 0:
sim_num = len(df_tgt[list_tgt_status[0]].columns)
output_df = pd.DataFrame([i for i in range(sim_num)], columns=["sim_num"])
else:
output_df = df_tgt.iloc[:, :2].copy()
# Calculate statistics with cumulative sum.
for one_status in list_tgt_status:
# Extract target status data.
one_tgt_df = df_tgt[one_status]
# Calculate the days difference in dict_diff.
dict_df_diff = {}
for one_key, one_diff in dict_diff.items():
temp_df_diff = one_tgt_df.cumsum().diff(one_diff)
temp_df_diff.iloc[one_diff-1, :] = one_tgt_df.cumsum().iloc[one_diff-1, :]
dict_df_diff[one_key] = temp_df_diff
if calc_type == 0:
# Each simulation.
output_df.loc[:, "{}_perday_mean".format(one_status)] = one_tgt_df.T.mean(axis=1).values
output_df.loc[:, "{}_perday_std".format(one_status)] = one_tgt_df.T.std(axis=1).values
output_df.loc[:, "{}_perday_min".format(one_status)] = one_tgt_df.T.min(axis=1).values
output_df.loc[:, "{}_perday_quartile1".format(one_status)] = one_tgt_df.T.quantile(q=0.25, axis=1).values
output_df.loc[:, "{}_perday_median".format(one_status)] = one_tgt_df.T.median(axis=1).values
output_df.loc[:, "{}_perday_quartile3".format(one_status)] = one_tgt_df.T.quantile(q=0.75, axis=1).values
output_df.loc[:, "{}_perday_max".format(one_status)] = one_tgt_df.T.max(axis=1).values
for one_key, one_diff in dict_diff.items():
output_df.loc[:, "{}_{}_mean".format(one_status, one_key)] = dict_df_diff[one_key].T.mean(axis=1).values
output_df.loc[:, "{}_{}_std".format(one_status, one_key)] = dict_df_diff[one_key].T.std(axis=1).values
output_df.loc[:, "{}_{}_min".format(one_status, one_key)] = dict_df_diff[one_key].T.min(axis=1).values
output_df.loc[:, "{}_{}_quartile1".format(one_status, one_key)] = dict_df_diff[one_key].T.quantile(q=0.25, axis=1).values
output_df.loc[:, "{}_{}_median".format(one_status, one_key)] = dict_df_diff[one_key].T.median(axis=1).values
output_df.loc[:, "{}_{}_quartile3".format(one_status, one_key)] = dict_df_diff[one_key].T.quantile(q=0.75, axis=1).values
output_df.loc[:, "{}_{}_max".format(one_status, one_key)] = dict_df_diff[one_key].T.max(axis=1).values
else:
# Each day.
output_df.loc[:, "{}_perday_mean".format(one_status)] = one_tgt_df.mean(axis=1)
output_df.loc[:, "{}_perday_std".format(one_status)] = one_tgt_df.std(axis=1)
output_df.loc[:, "{}_perday_min".format(one_status)] = one_tgt_df.min(axis=1)
output_df.loc[:, "{}_perday_quartile1".format(one_status)] = one_tgt_df.quantile(q=0.25, axis=1)
output_df.loc[:, "{}_perday_median".format(one_status)] = one_tgt_df.median(axis=1)
output_df.loc[:, "{}_perday_quartile3".format(one_status)] = one_tgt_df.quantile(q=0.75, axis=1)
output_df.loc[:, "{}_perday_max".format(one_status)] = one_tgt_df.max(axis=1)
for one_key, one_diff in dict_diff.items():
# Note: Processing is well done, but numpy warning occurs.
# Note: Because all the data of first few days in "perweek" and "per2week" become np.NaN.
output_df.loc[:, "{}_{}_mean".format(one_status, one_key)] = dict_df_diff[one_key].mean(axis=1)
output_df.loc[:, "{}_{}_std".format(one_status, one_key)] = dict_df_diff[one_key].std(axis=1)
output_df.loc[:, "{}_{}_min".format(one_status, one_key)] = dict_df_diff[one_key].min(axis=1)
output_df.loc[:, "{}_{}_quartile1".format(one_status, one_key)] = dict_df_diff[one_key].quantile(q=0.25, axis=1)
output_df.loc[:, "{}_{}_median".format(one_status, one_key)] = dict_df_diff[one_key].median(axis=1)
output_df.loc[:, "{}_{}_quartile3".format(one_status, one_key)] = dict_df_diff[one_key].quantile(q=0.75, axis=1)
output_df.loc[:, "{}_{}_max".format(one_status, one_key)] = dict_df_diff[one_key].max(axis=1)
return output_df | 5,353,145 |
def savestates(plate, filename, n, newpath, number=NUMBER):
"""
Create a JPEG and a PNG of the snowflake.
:param plate: (list of list of dict) The plate which contain the cristal.
:param filename: (str) Name of the file.
:param n: (int) The n-th iteration of the snowflake.
0 by default, if the param doesn't change you will only get the last image.
:param newpath: (str) the path of the folder where the pictures are saved
:param number: (int) [DEFAULT:NUMBER] the total number of iterations
"""
pixels_snowflake = []
index_number = str(n).zfill(len(str(number))) # Adds leading zeros in front of the index (instead of 50 we would get 050)
# Creating the pixel image
for y in range(DIMENSION[0]):
for x in range(DIMENSION[1]):
d = plate[y][x]
if d["is_in_crystal"] == False:
pixels_snowflake.append((0,0,255 - int((d["d"] / RHO)*255)))
else:
pixels_snowflake.append((0,255,(int(d["i"]/NUMBER*255))))
snowflake = Image.new("RGB", DIMENSION, color=0)
snowflake.putdata(pixels_snowflake)
snowflake.save(newpath + "Pixels/" + filename + index_number + ".png", format="PNG")
# Creating the Hexagon Image
# Half the height of the hexagon
x = 12*DIMENSION[1]+6
y = DIMENSION[0]*11+3
snowflake = Image.new("RGB", (x, y), color=0)
for y in range(DIMENSION[0]):
for x in range(DIMENSION[1]):
# Add the horizontal offset on every other row
x_ = 0 if (y % 2 == 0) else 6
shape = [
(12*x +6 +x_, y*10 ),
(12*x +12 +x_, y*10 +3 ),
(12*x +12 +x_, y*10 +11),
(12*x +6 +x_, y*10 +14),
(12*x +x_, y*10 +11),
(12*x +x_, y*10 +3 )
]
d = plate[y][x]
if d["is_in_crystal"] == False:
ImageDraw.Draw(snowflake).polygon(xy=shape, fill=(0,0,255 - int((d["d"] / RHO)*255)), outline=(0,0,255 - int((d["d"] / RHO)*255)), )
else:
ImageDraw.Draw(snowflake).polygon(xy=shape, fill=(0,255,(int(d["i"]/NUMBER*255))), outline=(0,255,(int(d["i"]/NUMBER*255))))
snowflake.save(newpath + "Hexagons/" + filename + index_number + ".jpeg", format="JPEG")
return | 5,353,146 |
def _normalize_handler_method(method):
"""Transforms an HTTP method into a valid Python identifier."""
return method.lower().replace("-", "_") | 5,353,147 |
def getContentType(the_type):
"""
Get the content type based on the type name which is in settings
:param the_type:
:return:
"""
if the_type not in settings.XGDS_MAP_SERVER_JS_MAP:
return None
the_model_name = settings.XGDS_MAP_SERVER_JS_MAP[the_type]['model']
splits = the_model_name.split('.')
content_type = ContentType.objects.get(app_label=splits[0], model=splits[1])
return content_type | 5,353,148 |
def calculateGravityAcceleration(stateVec, epoch, useGeoid):
""" Calculate the acceleration due to gravtiy acting on the satellite at
a given state (3 positions and 3 velocities). Ignore satellite's mass,
i.e. use a restricted two-body problem.
Arguments
----------
numpy.ndarray of shape (1,6) with three Cartesian positions and three
velocities in an inertial reference frame in metres and metres per
second, respectively.
epoch - datetime corresponding to the UTC epoch at which the rate of change
is to be computed.
useGeoid - bool, whether to compute the gravity by using EGM geopotential
expansion (True) or a restricted two-body problem (False).
Returns
----------
numpy.ndarray of shape (1,3) with three Cartesian components of the
acceleration in m/s2 given in an inertial reference frame.
"""
if useGeoid:
" Compute geocentric co-latitude, longitude & radius. "
colatitude,longitude,r = calculateGeocentricLatLon(stateVec, epoch)
" Find the gravitational potential at the desired point. "
# See Eq. 1 in Cunningham (1996) for the general form of the geopotential expansion.
gravitationalPotential = 0.0 # Potential of the gravitational field at the stateVec location.
for degree in range(0, MAX_DEGREE+1): # Go through all the desired orders and compute the geoid corrections to the sphere.
temp = 0. # Contribution to the potential from the current degree and all corresponding orders.
legendreCoeffs = scipy.special.legendre(degree) # Legendre polynomial coefficients corresponding to the current degree.
for order in range(degree+1): # Go through all the orders corresponding to the currently evaluated degree.
if (abs(colatitude-math.pi/2. <= 1E-16)) or (abs(colatitude-3*math.pi/2. <= 1E-16)): # We're at the equator, cos(colatitude) will be zero and things will break.
temp += legendreCoeffs[order] * 1.0 * (Ccoeffs[degree][order]*math.cos( order*longitude ) + Scoeffs[degree][order]*math.sin( order*longitude ))
else:
temp += legendreCoeffs[order] * math.cos(colatitude) * (Ccoeffs[degree][order]*math.cos( order*longitude ) + Scoeffs[degree][order]*math.sin( order*longitude ))
gravitationalPotential += math.pow(EarthRadius/r, degree) * temp # Add the contribution from the current degree.
gravitationalPotential *= GM/r # Final correction (*GM for acceleration, /r to get r^(n+1) in the denominator).
" Compute the acceleration due to the gravity potential at the given point. "
# stateVec is defined w.r.t. Earth's centre of mass, so no need to account
# for the geoid shape here.
gravityAcceleration = gravitationalPotential/r* (-1.*stateVec[:3]/r) # First divide by the radius to get the acceleration value, then get the direction (towards centre of the Earth).
else:
r = numpy.linalg.norm(stateVec[:3]) # Earth-centred radius.
gravityAcceleration = GM/(r*r) * (-1.*stateVec[:3]/r) # First compute the magnitude, then get the direction (towards centre of the Earth).
return gravityAcceleration | 5,353,149 |
def points_on_line(r0, r1, spacing):
"""
Coordinates of points spaced `spacing` apart between points `r0` and `r1`.
The dimensionality is inferred from the length of the tuples `r0` and `r1`,
while the specified `spacing` will be an upper bound to the actual spacing.
"""
dim = len(r0)
v = np.array(r1) - np.array(r0)
length = np.linalg.norm(v)
steps = math.ceil(1.0 * length / spacing) + 1
points = np.zeros((steps, dim))
for i in xrange(dim):
points[:, i] = np.linspace(r0[i], r1[i], steps)
return points | 5,353,150 |
def index() -> Response:
"""
Return application index.
"""
return APP.send_static_file("index.html") | 5,353,151 |
def compare_files(og_maxima,new_maxima, compare_file, until=100, divisor=1000):
"""
given input of the maxima of a graph, compare it to the maxima from data100.txt
maxima will be a series of x,y coordinates corresponding to the x,y values of a maximum from a file.
First see if there is a maxima with the same x value as data100.txt, if there is not expand the x value ranges
until a maximum is found. Find out what this dx is for the new file.
Note do it for all the peaks of data100.txt at once, so that if it finds a peak for the 2nd peak of data100.txt,
it doesn't also assign this to the first peak as well.
kewyword arguments until and divisor:
for the dx loop the loop will increase dx from 0 until until/divisor in steps of 1/divisor
eg for default values until=100 and divisor=1000,
it will increase dx from 0 until 100/1000 (=0.1) in steps of 1/1000 (=0.001)
changing these arguments will lead to more or less peak matching, which could
affect the results of the calculation significantly.
"""
if compare_file == 'data100.txt':
return None
# Whenever there is a match we will iterate this, so that we can compare
#this at the end?
number_of_matches = 0
# Initiate two lists to contain all the dx and dy values for each peak that
# is matched by the code.
dx_values = []
dy_values = []
# Loop through the original maxima list (supplied as an argument)
# and also loop through the maxima from the file being compared.
for og_idx,og_val in enumerate(og_maxima.T[0]):
for idx,val in enumerate(new_maxima.T[0]):
#this will loop dx from 0 to (until)/divisor in steps of 1/divisor
for x in range(until+1):
dx = x/divisor
# For the current value of dx see if there is a matching
# peak between the data100.txt file and the file being compared.
# There is a match if the val from the compare_file is within the range
# of the original peak x value +/- the dx value.
if og_val - dx <= val <= og_val + dx:
#if there is a match print some logging information to the console.
print(f"Peak Match : index {og_idx} from data100.txt and {idx} from {compare_file}")
print(f"values are {og_val} and {val} respectively")
# iterate the number of peak matches between the two files being compared.
number_of_matches+=1
# append the current dx value to our running list which will keep track
# of the dx values for all the matched peaks
dx_values.append(dx)
# Get the absolute value of the difference in y values (dy)
dy = abs(og_maxima.T[1][og_idx] - new_maxima.T[1][idx])
dy_values.append(dy)
#breaks us out of the "for x in range" loop
break
# If the for loop (for x in range ...) isn't terminated by a break statement
# I.E. we didn't get a match
else:
"move onto next peak in new_maxima"
continue
# If the for loop does get terminated by the break statement
# I.E. we get a match
"""compare next peak in og_maxima, IE break the new_maxima loop and move onto
next in the original maxima list"""
break
# Calculate the absolute value of the difference in number of peaks
# between the two data files
different_no_peaks = abs(len(new_maxima) - len(og_maxima))
return [dx_values, dy_values, number_of_matches, different_no_peaks] | 5,353,152 |
def parseDatetimetz(string, local=True):
"""Parse the given string using :func:`parse`.
Return a :class:`datetime.datetime` instance.
"""
y, mo, d, h, m, s, tz = parse(string, local)
s, micro = divmod(s, 1.0)
micro = round(micro * 1000000)
if tz:
offset = _tzoffset(tz, None) / 60
_tzinfo = tzinfo(offset)
else:
_tzinfo = None
return _datetime(y, mo, d, int(h), int(m), int(s), int(micro), _tzinfo) | 5,353,153 |
def median_ratio_flux(spec, smask, ispec, iref, nsig=3., niter=5, **kwargs):
""" Calculate the median ratio between two spectra
Parameters
----------
spec
smask:
True = Good, False = Bad
ispec
iref
nsig
niter
kwargs
Returns
-------
med_scale : float
Median of reference spectrum to input spectrum
"""
# Setup
fluxes, sigs, wave = unpack_spec(spec)
# Mask
okm = smask[iref,:] & smask[ispec,:]
# Insist on positive values
okf = (fluxes[iref,:] > 0.) & (fluxes[ispec,:] > 0)
allok = okm & okf
# Ratio
med_flux = fluxes[iref,allok] / fluxes[ispec,allok]
# Clip
mn_scale, med_scale, std_scale = stats.sigma_clipped_stats(med_flux, sigma=nsig, maxiters=niter, **kwargs)
# Return
return med_scale | 5,353,154 |
def merge_chars(lgr, script, merged_lgr, ref_mapping, previous_scripts):
"""
Merge chars from LGR set.
:param lgr: A LGR from the set
:param script: The LGR script
:param merged_lgr: The merged LGR
:param ref_mapping: The reference mapping from base LGR to new LGR
:param previous_scripts: The scripts that has already been processed
"""
new_variants = []
merged_chars = {char: char for char in merged_lgr.repertoire}
for char in lgr.repertoire:
if len(char.cp) == 1 and lgr.unicode_database is not None:
script_extensions = lgr.unicode_database.get_script_extensions(char.cp[0])
else:
script_extensions = []
new_tags = set(script + '-' + x if ':' not in x else x for x in char.tags) | set(script_extensions)
existing_char = None
if char in merged_chars:
existing_char = merged_chars[char]
if existing_char:
# same cp already in LGR
existing_char.comment = let_user_choose(existing_char.comment, char.comment)
existing_char.tags = list(set.union(set(existing_char.tags), set(new_tags)))
existing_char.references = set.union(set(existing_char.references), set(char.references))
# if 2 scripts have different variants on a character, we need to add the variants for script 1 as
# variant on script 2 to keep transitivity (e.g. b is variant of a in script 1, c is variant of a in
# script 2, we need to set b as c variant and conversely). We do that after processing all code points
# as the code point for the new variant may not be in the merged LGR in the current iteration.
new_v1 = set.difference(set(char.get_variants()), set(existing_char.get_variants()))
new_v2 = set.difference(set(existing_char.get_variants()), set(char.get_variants()))
# remove cp itself to avoid error with reflexive variants
for v in new_v1:
if v.cp == existing_char.cp:
new_v1.remove(v)
break
for v in new_v2:
if v.cp == existing_char.cp:
new_v2.remove(v)
break
if new_v1 and new_v2:
new_variants.append((new_v1, new_v2))
# add new variants to current code point
# do not keep new_v1 as reflexive variant may have been removed
for v in set.difference(set(char.get_variants()), set(existing_char.get_variants())):
new_ref = [ref_mapping[script].get(x, x) for x in v.references]
new_when = None
new_not_when = None
if v.when:
new_when = script + '-' + v.when
if v.not_when:
new_not_when = script + '-' + v.not_when
merged_lgr.add_variant(existing_char.cp, v.cp, variant_type='blocked',
when=new_when, not_when=new_not_when,
comment=v.comment, ref=new_ref)
# existing variants comment or references are not updated as it is not really important
# if when or not-when:
# - if existing cp has no concurrent rule or conversely, keep the rule as is (i.e. if existing cp has
# no rule but cp has one, keep the cp rule with prefixed with the current script)
# - if existing cp has the same when/not-when rules (same name, content is not checked), update cp WLE with
# the prefix from this script
# - if existing cp has a different rule (not the same name), raise an exception
existing_when = existing_char.when
existing_not_when = existing_char.not_when
# retrieve WLE names
for other_script in reversed(previous_scripts):
if existing_char.when:
existing_when = re.sub(r'^{}-'.format(other_script), '', existing_when)
if existing_char.not_when:
existing_not_when = re.sub(r'^{}-'.format(other_script), '', existing_not_when)
if char.when:
if not existing_when:
existing_char.when = script + '-' + char.when
elif existing_when == char.when:
existing_char.when = script + '-' + existing_char.when
# add a merged rule
matching_script = re.sub(r'-{}$'.format(existing_when), '', existing_char.when)
merge_rules(lgr, matching_script, merged_lgr, ref_mapping, specific=existing_when)
else:
raise CharInvalidContextRule(char.cp, char.when)
if char.not_when:
if not existing_not_when:
existing_char.not_when = script + '-' + char.not_when
elif existing_not_when == char.not_when:
existing_char.not_when = script + '-' + existing_char.not_when
# add a merged rule
matching_script = re.sub(r'-{}$'.format(existing_not_when), '', existing_char.not_when)
merge_rules(lgr, matching_script, merged_lgr, ref_mapping, specific=existing_not_when)
else:
raise CharInvalidContextRule(char.cp, char.not_when)
continue
# add new cp in LGR
when = None
not_when = None
if char.when:
when = script + '-' + char.when
if char.not_when:
not_when = script + '-' + char.not_when
new_ref = [ref_mapping.get(script, {}).get(x, x) for x in char.references]
merged_lgr.add_cp(char.cp, comment=char.comment, ref=new_ref,
tag=list(new_tags),
when=when, not_when=not_when)
for v in char.get_variants():
when = None
not_when = None
if v.when:
when = script + '-' + v.when
if v.not_when:
not_when = script + '-' + v.not_when
new_ref = [ref_mapping[script].get(r, r) for r in v.references]
merged_lgr.add_variant(char.cp, v.cp, variant_type='blocked',
comment=v.comment, ref=new_ref,
when=when, not_when=not_when)
# handle transitivity for variants that differ between scripts
for var1_list, var2_list in new_variants:
for v1 in var1_list:
for v2 in var2_list:
merged_lgr.add_variant(v1.cp, v2.cp, variant_type='blocked',
comment='New variant for merge to keep transitivity')
merged_lgr.add_variant(v2.cp, v1.cp, variant_type='blocked',
comment='New variant for merge to keep transitivity') | 5,353,155 |
def configure_parser(parser):
""" Configure parser for this action """
qisys.parsers.worktree_parser(parser) | 5,353,156 |
def get_tags_from_event():
"""List of tags
Arguments:
event {dict} -- Lambda event payload
Returns:
list -- List of AWS tags for use in a CFT
"""
return [
{
"Key": "OwnerContact",
"Value": request_event['OwnerContact']
}
] | 5,353,157 |
def _verify(symbol_table: SymbolTable, ontology: _hierarchy.Ontology) -> List[Error]:
"""Perform a battery of checks on the consistency of ``symbol_table``."""
errors = _verify_there_are_no_duplicate_symbol_names(symbol_table=symbol_table)
if len(errors) > 0:
return errors
errors.extend(
_verify_with_model_type_for_classes_with_at_least_one_concrete_descendant(
symbol_table=symbol_table
)
)
errors.extend(
_verify_all_the_function_calls_in_the_contracts_are_valid(
symbol_table=symbol_table
)
)
errors.extend(
_verify_all_non_optional_properties_are_initialized_in_the_constructor(
symbol_table=symbol_table
)
)
errors.extend(
_verify_orders_of_constructors_arguments_and_properties_match(
symbol_table=symbol_table
)
)
errors.extend(
_verify_all_argument_references_occur_in_valid_context(
symbol_table=symbol_table
)
)
errors.extend(_verify_constraints_and_constraintrefs(symbol_table=symbol_table))
errors.extend(_verify_description_rendering_with_smoke(symbol_table=symbol_table))
errors.extend(_verify_only_simple_type_patterns(symbol_table=symbol_table))
if len(errors) > 0:
return errors
_assert_interfaces_defined_correctly(symbol_table=symbol_table, ontology=ontology)
_assert_all_class_inheritances_defined_an_interface(symbol_table=symbol_table)
_assert_self_not_in_concrete_descendants(symbol_table=symbol_table)
return errors | 5,353,158 |
def gsl_eigen_symmv_alloc(*args, **kwargs):
"""gsl_eigen_symmv_alloc(size_t n) -> gsl_eigen_symmv_workspace"""
return _gslwrap.gsl_eigen_symmv_alloc(*args, **kwargs) | 5,353,159 |
def add_poll_answers(owner, option):
"""
Add poll answer object. Matching user and option is considered same.
:param owner: User object.
:param option: Chosen poll option.
:return: Poll answer object, Boolean (true, if created).
"""
'''
owner = models.ForeignKey(User, related_name='poll_answers', on_delete=models.CASCADE)
answer = models.ForeignKey(PollOption, related_name='answers', on_delete=models.CASCADE)
'''
created = False
try:
a = PollAnswer.objects.get(owner=owner, answer=option)
except PollAnswer.DoesNotExist:
a = PollAnswer(owner=owner, answer=option)
a.save()
return a, created | 5,353,160 |
def calculate_rrfdi ( red_filename, nir_filename ):
"""
A function to calculate the Normalised Difference Vegetation Index
from red and near infrarred reflectances. The reflectance data ought to
be present on two different files, specified by the varaibles
`red_filename` and `nir_filename`. The file format ought to be
recognised by GDAL
"""
g_red = gdal.Open ( red_filename )
red = g_red.ReadAsArray()
g_nir = gdal.Open ( nir_filename )
nir = g_nir.ReadAsArray()
if ( g_red.RasterXSize != g_nir.RasterXSize ) or \
( g_red.RasterYSize != g_nir.RasterYSize ):
print "ERROR: Input datasets do't match!"
print "\t Red data shape is %dx%d" % ( red.shape )
print "\t NIR data shape is %dx%d" % ( nir.shape )
sys.exit ( -1 )
passer = True
rrfdi = np.where ( passer, (1.*red - 1.*nir ) / ( 1.*nir + 1.*red ), -999 )
return rrfdi*(-1) | 5,353,161 |
def retry_on_failure(retries=NO_RETRIES):
"""Decorator which runs a test function and retries N times before
actually failing.
"""
def logfun(exc):
print("%r, retrying" % exc, file=sys.stderr) # NOQA
return retry(exception=AssertionError, timeout=None, retries=retries,
logfun=logfun) | 5,353,162 |
def command_line():
"""Generate an Argument Parser object to control the command line options
"""
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("-w", "--webdir", dest="webdir",
help="make page and plots in DIR", metavar="DIR",
default=None)
parser.add_argument("-s", "--samples", dest="samples",
help="Posterior samples hdf5 file", nargs='+',
default=None)
parser.add_argument("--labels", dest="labels",
help="labels used to distinguish runs", nargs='+',
default=None)
parser.add_argument("--prior", dest="prior",
choices=["population", "default", "both"],
default="both",
help=("Prior to use when calculating source "
"classification probabilities"))
parser.add_argument("--plot", dest="plot",
help="name of the plot you wish to make",
default="bar", choices=["bar", "mass_1_mass_2"])
return parser | 5,353,163 |
def test_xonfg_help(capsys, xonsh_builtins):
"""verify can invoke it, and usage knows about all the options"""
with pytest.raises(SystemExit):
xonfig_main(["-h"])
capout = capsys.readouterr().out
pat = re.compile(r"^usage:\s*xonfig[^\n]*{([\w,-]+)}", re.MULTILINE)
m = pat.match(capout)
assert m[1]
verbs = set(v.strip().lower() for v in m[1].split(","))
exp = set(v.lower() for v in XONFIG_MAIN_ACTIONS)
assert verbs == exp | 5,353,164 |
def strip_price(header_list):
"""input a list of tag-type values and return list of strings with surrounding html characters removed"""
import re
match_obs = []
regex = '\$(((\d+).\d+)|(\d+))'
string_list = []#['' for item in range(len(header_list))]
for item in range(len(header_list)):
match_obs.append(re.search(regex, str(header_list[item])))
for i in range(len(match_obs)):
#print(match_obs[i])
string_list.append(match_obs[i].group(1))
#print(string_list)
return string_list | 5,353,165 |
def test_set():
"""Test raw_to_bids conversion for EEGLAB data."""
# standalone .set file
output_path = _TempDir()
data_path = op.join(testing.data_path(), 'EEGLAB')
raw_fname = op.join(data_path, 'test_raw_onefile.set')
raw_to_bids(subject_id=subject_id, session_id=session_id, run=run,
task=task, acquisition=acq, raw_file=raw_fname,
output_path=output_path, overwrite=False, kind='eeg')
cmd = ['bids-validator', '--bep006', output_path]
run_subprocess(cmd, shell=shell)
with pytest.raises(OSError, match="already exists"):
raw_to_bids(subject_id=subject_id, session_id=session_id, run=run,
task=task, acquisition=acq, raw_file=raw_fname,
output_path=output_path, overwrite=False, kind='eeg')
# .set with associated .fdt
output_path = _TempDir()
data_path = op.join(testing.data_path(), 'EEGLAB')
raw_fname = op.join(data_path, 'test_raw.set')
raw_to_bids(subject_id=subject_id, session_id=session_id, run=run,
task=task, acquisition=acq, raw_file=raw_fname,
output_path=output_path, overwrite=False, kind='eeg')
cmd = ['bids-validator', '--bep006', output_path]
run_subprocess(cmd, shell=shell) | 5,353,166 |
def module(input, output, version):
"""A decorator which turn a function into a module"""
def decorator(f):
class Wrapper(Module):
def __init__(self):
super().__init__(input, output, version)
@property
def name(self):
"""The module's name"""
return f.__name__
def execute(self, *args, **kwargs):
return f(*args, **kwargs)
wrapper = Wrapper()
return functools.wraps(f)(wrapper)
return decorator | 5,353,167 |
def compile_modules_to_ir(
result: BuildResult,
mapper: genops.Mapper,
compiler_options: CompilerOptions,
errors: Errors,
) -> ModuleIRs:
"""Compile a collection of modules into ModuleIRs.
The modules to compile are specified as part of mapper's group_map.
Returns the IR of the modules.
"""
deser_ctx = DeserMaps({}, {})
modules = {}
# Process the graph by SCC in topological order, like we do in mypy.build
for scc in sorted_components(result.graph):
scc_states = [result.graph[id] for id in scc]
trees = [st.tree for st in scc_states if st.id in mapper.group_map and st.tree]
if not trees:
continue
fresh = all(id not in result.manager.rechecked_modules for id in scc)
if fresh:
load_scc_from_cache(trees, result, mapper, deser_ctx)
else:
scc_ir = compile_scc_to_ir(trees, result, mapper, compiler_options, errors)
modules.update(scc_ir)
return modules | 5,353,168 |
def minutes_to_restarttime(minutes) :
"""
converts an int meaning Minutes after midnight into a
restartTime string understood by the bos command
"""
if minutes == -1 :
return "never"
pod = "am"
if minutes > 12*60 :
pod = "pm"
minutes -= 12*60
time = "%d:%02d %s" % (minutes / 60, minutes % 60, pod)
return time | 5,353,169 |
def create_checkpoint(conn):
"""Function use config getter or get checkpoint file and write to disk"""
if "nxos" in conn.platform:
filename = f"{conn.hostname}-checkpoint.txt"
backup = conn._get_checkpoint_file()
with open(filename, "w") as f:
f.write(backup)
else:
raise ValueError("Checkpoint requires NX-OS") | 5,353,170 |
def clean_storage_exceeding_containers():
"""Remove containers which exceeds the max container size defined by $MAX_CONTAINER_SIZE
"""
if max_container_size == -1:
logging.info("The environment variable MAX_CONTAINER_SIZE was not set.")
return
container_size_field = "SizeRw"
containers = docker_api_client.containers(all=True, size=True, filters={"label": label_filter})
for container in containers:
if container_size_field in container:
container_size_in_gb = container[container_size_field]/1000/1000/1000
container_id = container["Id"]
try:
if max_container_size < container_size_in_gb:
logging.info("Delete storage exceeding container " + container["Names"][0])
docker_api_client.remove_container(container_id, force=True)
except docker.errors.APIError as e:
logging.error("Could not remove / re-create the container.", e) | 5,353,171 |
def main(args):
"""
Parses command line arguments and do the work of the program.
"args" specifies the program arguments, with args[0] being the executable
name. The return value should be used as the program's exit code.
"""
print(random.choice(FACTS), file = sys.stderr)
options = parse_args(args) # This holds the nicely-parsed options object
# Make the output directory if it doesn't exist
os.makedirs(options.outdir, exist_ok=True)
# Make a place to total up all the stats
stats_total = None
# Count all the reads
read_count = 0
# Record mapping parameters from at least one read
params = None
for read in read_line_oriented_json(options.input):
if params is None:
# Go get the mapping parameters
params = sniff_params(read)
# For the stats dict for each read
stats = make_stats(read)
if stats_total is None:
stats_total = stats
else:
# Sum up all the stats
add_in_stats(stats_total, stats)
# Count the read
read_count += 1
# After processing all the reads
# Print the table now in case plotting fails
print_table(read_count, stats_total, params)
# Make filter statistic histograms
plot_filter_statistic_histograms(options.outdir, stats_total) | 5,353,172 |
def ccm_test(x, y,emb_dim = "auto", l_0 = "auto", l_1 = "auto", tau=1, n=10,mean_num = 10,max_dim = 10):
"""
estimate x from y to judge x->y cause
:param x:
:param y:
:param l_0:
:param l_1:
:param emb_dim:
:param tau:
:param n:
:return:
"""
if emb_dim == "auto":
emb_dim = decide_dim(x,y)
if l_0 == "auto":
l_0 = int(np.ceil((len(x) - emb_dim + 1) * 0.1))
if l_1 == "auto":
l_1 = int(np.ceil((len(x) - emb_dim + 1) * 0.9))
ys = twin_surrogate(y, emb_dim,num=n)
raw_rhos = []
rhos = []
max_length = len(ys[0])
for i in tqdm(range(n)):
mean = 0
for j in range(mean_num):
rho_0, _ = estimate_using_bootstrap(x, y, length=l_0, emb_dim=emb_dim, tau=tau)
rho_1, _ = estimate_using_bootstrap(x, y, length=l_1, emb_dim=emb_dim, tau=tau)
rho_s_0, _ = estimate_from_emb_random(x, ys[i], length=l_0, emb_dim=emb_dim, tau=tau, max_length = max_length)
rho_s_1, _ = estimate_from_emb_random(x, ys[i], length=l_1, emb_dim=emb_dim, tau=tau, max_length = max_length)
raw_rhos.append([rho_0, rho_1, rho_s_0, rho_s_1])
mean += rho_1 -rho_0 -(rho_s_1 - rho_s_0 )
rhos.append(mean/mean_num)
rhos = np.array(rhos)
p = 1 - (len(rhos[rhos>0]) / n)
return {
"p_value" :p,
"rhos" :rhos,
"raw_rhos":raw_rhos
} | 5,353,173 |
def load_carla_env(
env_name='why_carla-v0',
discount=1.0,
number_of_vehicles=100,
number_of_walkers=0,
display_size=256,
max_past_step=1,
dt=0.1,
discrete=False,
discrete_acc=[-3.0, 0.0, 3.0],
discrete_steer=[-0.2, 0.0, 0.2],
continuous_accel_range=[-3.0, 3.0],
continuous_steer_range=[-0.3, 0.3],
ego_vehicle_filter='vehicle.lincoln*',
port=2000,
town='Town03',
task_mode='random',
max_time_episode=500,
max_waypt=12,
obs_range=32,
lidar_bin=0.5,
d_behind=12,
out_lane_thres=2.0,
desired_speed=8,
max_ego_spawn_times=200,
display_route=True,
pixor_size=64,
pixor=False,
obs_channels=None,
action_repeat=1,):
"""Loads train and eval environments."""
env_params = {
'number_of_vehicles': number_of_vehicles,
'number_of_walkers': number_of_walkers,
'display_size': display_size, # screen size of bird-eye render
'max_past_step': max_past_step, # the number of past steps to draw
'dt': dt, # time interval between two frames
'discrete': discrete, # whether to use discrete control space
'discrete_acc': discrete_acc, # discrete value of accelerations
'discrete_steer': discrete_steer, # discrete value of steering angles
'continuous_accel_range': continuous_accel_range, # continuous acceleration range
'continuous_steer_range': continuous_steer_range, # continuous steering angle range
'ego_vehicle_filter': ego_vehicle_filter, # filter for defining ego vehicle
'port': port, # connection port
'town': town, # which town to simulate
'task_mode': task_mode, # mode of the task, [random, roundabout (only for Town03)]
'max_time_episode': max_time_episode, # maximum timesteps per episode
'max_waypt': max_waypt, # maximum number of waypoints
'obs_range': obs_range, # observation range (meter)
'lidar_bin': lidar_bin, # bin size of lidar sensor (meter)
'd_behind': d_behind, # distance behind the ego vehicle (meter)
'out_lane_thres': out_lane_thres, # threshold for out of lane
'desired_speed': desired_speed, # desired speed (m/s)
'max_ego_spawn_times': max_ego_spawn_times, # maximum times to spawn ego vehicle
'display_route': display_route, # whether to render the desired route
'pixor_size': pixor_size, # size of the pixor labels
'pixor': pixor, # whether to output PIXOR observation
}
gym_spec = gym.spec(env_name)
env = gym_spec.make(params=env_params)
env.reset()
while True:
action = [2.0, 0.0]
obs,r,done,info = env.step(action)
if done:
obs = env.reset()
# if done:
# obs = env.reset() | 5,353,174 |
def make_indiv_spacing(subject, ave_subject, template_spacing, subjects_dir):
"""
Identifies the suiting grid space difference of a subject's volume
source space to a template's volume source space, before a planned
morphing takes place.
Parameters:
-----------
subject : str
Subject ID.
ave_subject : str
Name or ID of the template brain, e.g., fsaverage.
template_spacing : float
Grid spacing used for the template brain.
subjects_dir : str
Path to the subjects directory.
Returns:
--------
trans : SourceEstimate
The generated source time courses.
"""
fname_surf = op.join(subjects_dir, subject, 'bem', 'watershed', '%s_inner_skull_surface' % subject)
fname_surf_temp = op.join(subjects_dir, ave_subject, 'bem', 'watershed', '%s_inner_skull_surface' % ave_subject)
surf = mne.read_surface(fname_surf, return_dict=True, verbose='ERROR')[-1]
surf_temp = mne.read_surface(fname_surf_temp, return_dict=True, verbose='ERROR')[-1]
mins = np.min(surf['rr'], axis=0)
maxs = np.max(surf['rr'], axis=0)
mins_temp = np.min(surf_temp['rr'], axis=0)
maxs_temp = np.max(surf_temp['rr'], axis=0)
# Check which dimension (x,y,z) has greatest difference
diff = (maxs - mins)
diff_temp = (maxs_temp - mins_temp)
# print additional information
# for c, mi, ma, md in zip('xyz', mins, maxs, diff):
# logger.info(' %s = %6.1f ... %6.1f mm --> Difference: %6.1f mm'
# % (c, mi, ma, md))
# for c, mi, ma, md in zip('xyz', mins_temp, maxs_temp, diff_temp):
# logger.info(' %s = %6.1f ... %6.1f mm --> Difference: %6.1f mm'
# % (c, mi, ma, md))
prop = (diff / diff_temp).mean()
indiv_spacing = (prop * template_spacing)
print(" '%s' individual-spacing to '%s'[%.2f] is: %.4fmm" % (
subject, ave_subject, template_spacing, indiv_spacing))
return indiv_spacing | 5,353,175 |
def sqlpool_blob_auditing_policy_update(
cmd,
instance,
state=None,
storage_account=None,
storage_endpoint=None,
storage_account_access_key=None,
storage_account_subscription_id=None,
is_storage_secondary_key_in_use=None,
retention_days=None,
audit_actions_and_groups=None,
is_azure_monitor_target_enabled=None):
"""
Updates a sql pool blob auditing policy. Custom update function to apply parameters to instance.
"""
_audit_policy_update(cmd, instance, state, storage_account, storage_endpoint, storage_account_access_key,
storage_account_subscription_id, is_storage_secondary_key_in_use, retention_days,
audit_actions_and_groups, is_azure_monitor_target_enabled)
return instance | 5,353,176 |
def check_arguments_for_rescoring(usage_key):
"""
Do simple checks on the descriptor to confirm that it supports rescoring.
Confirms first that the usage_key is defined (since that's currently typed
in). An ItemNotFoundException is raised if the corresponding module
descriptor doesn't exist. NotImplementedError is raised if the
corresponding module doesn't support rescoring calls.
Note: the string returned here is surfaced as the error
message on the instructor dashboard when a rescore is
submitted for a non-rescorable block.
"""
descriptor = modulestore().get_item(usage_key)
if not _supports_rescore(descriptor):
msg = _("This component cannot be rescored.")
raise NotImplementedError(msg) | 5,353,177 |
def from_system() -> Optional[Config]:
"""
Config-factory; producing a Config based on environment variables and when
environment variables aren't set, fall back to the ``cij_root`` helper.
"""
conf = Config()
# Setup configuration using environment variable definitions
paths_from_evars = cij.paths_from_env(
"CIJ",
[f.upper() for f in CFG_FIELDS]
)
missing = False
for key, value in paths_from_evars.items():
if value is None:
missing = True
break
setattr(conf, key.lower(), value)
if not missing:
return conf
# Setup configuration using 'cij_root'
with Popen(["cij_root"], stdout=PIPE) as proc:
out, _ = proc.communicate()
if proc.returncode:
return None
cij_root = out.decode("utf-8").strip()
if not os.path.exists(cij_root):
return None
for field in CFG_FIELDS:
setattr(conf, field, os.path.join(cij_root, field))
return conf | 5,353,178 |
def format_search_filter(model_fields):
"""
Creates an LDAP search filter for the given set of model
fields.
"""
ldap_fields = convert_model_fields_to_ldap_fields(model_fields);
ldap_fields["objectClass"] = settings.LDAP_AUTH_OBJECT_CLASS
search_filters = import_func(settings.LDAP_AUTH_FORMAT_SEARCH_FILTERS)(ldap_fields)
return "(&{})".format("".join(search_filters)); | 5,353,179 |
def test_postagging_with_kytea():
"""Test KyTea tokenizer."""
try:
tokenizer = WordTokenizer(tokenizer="kytea", with_postag=True)
except ImportError:
pytest.skip("MyKyTea is not installed.")
expect = [Token(**kwargs) for kwargs in kytea_tokens_list]
result = tokenizer.tokenize("吾輩は猫である")
assert expect == result | 5,353,180 |
def multiprocess(func=None, pycsp_host='', pycsp_port=None):
""" @multiprocess(pycsp_host='', pycsp_port=None)
@multiprocess decorator for making a function into a CSP MultiProcess factory.
Each generated CSP process is implemented as a single OS process.
All objects and variables provided to multiprocesses through the
parameter list must support pickling.
Usage:
>>> @multiprocess
>>> def filter(dataIn, dataOut, tag, debug=False):
>>> pass # perform filtering
>>>
>>> P = filter(A.reader(), B.writer(), "42", debug=True)
or
>>> @multiprocess(pycsp_host="localhost", pycsp_port=9998)
>>> def filter(dataIn, dataOut, tag, debug=False):
>>> pass # perform filtering
>>>
>>> P = filter(A.reader(), B.writer(), "42", debug=True)
The CSP MultiProcess factory returned by the @multiprocess decorator:
func(*args, **kwargs)
"""
if func:
def _call(*args, **kwargs):
return MultiProcess(func, *args, **kwargs)
_call.__name__ = func.__name__
return _call
else:
def wrap_process(func):
def _call(*args, **kwargs):
kwargs['pycsp_host']= pycsp_host
kwargs['pycsp_port']= pycsp_port
return MultiProcess(func, *args, **kwargs)
_call.__name__ = func.__name__
return _call
return wrap_process | 5,353,181 |
def only_percentage_ticks(plot):
"""
Only show ticks from 0.0 to 1.0.
"""
hide_ticks(plot, min_tick_value=0, max_tick_value=1.0) | 5,353,182 |
def normalize_img(img):
"""
normalize image (caffe model definition compatible)
input: opencv numpy array image (h, w, c)
output: dnn input array (c, h, w)
"""
scale = 1.0
mean = [104,117,123]
img = img.astype(np.float32)
img = img * scale
img -= mean
img = np.transpose(img, (2, 0, 1))
return img | 5,353,183 |
def pages(lst: List[Any], n: int, title: str, *, fmt: str = "```%s```", sep: str = "\n") -> List[discord.Embed]:
# noinspection GrazieInspection
"""
Paginates a list into embeds to use with :class:disputils.BotEmbedPaginator
:param lst: the list to paginate
:param n: the number of elements per page
:param title: the title of the embed
:param fmt: a % string used to format the resulting page
:param sep: the string to join the list elements with
:return: a list of embeds
"""
l: List[List[str]] = group_list([str(i) for i in lst], n)
pgs = [sep.join(page) for page in l]
return [
discord.Embed(
title=f"{title} - {i + 1}/{len(pgs)}",
description=fmt % pg
) for i, pg in enumerate(pgs)
] | 5,353,184 |
def Substitute_Percent(sentence):
"""
Substitutes percents with special token
"""
sentence = re.sub(r'''(?<![^\s"'[(])[+-]?[.,;]?(\d+[.,;']?)+%(?![^\s.,;!?'")\]])''',
' @percent@ ', sentence)
return sentence | 5,353,185 |
def ready_df1(df):
"""
This function prepares the dataframe for EDA.
"""
df = remove_columns(df, columns=[ 'nitrogen_dioxide',
'nitrogen_dioxide_aqi',
'sulfur_dioxide',
'sulfur_dioxide_aqi',
'trioxygen',
'trioxygen_aqi',
'volatile',
'volatile_aqi',
])
df['fahrenheit'] = 9.0/5.0 * df['temperature'] + 32
df = df.drop(columns=['temperature'])
df = df.rename(index=str, columns={'fahrenheit':'temperature'})
df['carbon_monoxide'] = df['carbon_monoxide'].fillna(0).astype(int)
df['timestamp'] = pd.to_datetime(df['timestamp'])
return df | 5,353,186 |
def save_reward_history(reward_history, file_name):
"""
Saves the reward history of the agent teams to create plots for learning performance
:param reward_history:
:param file_name:
:return:
"""
dir_name = 'Output_Data/' # Intended directory for output files
save_file_name = os.path.join(dir_name, file_name)
with open(save_file_name, 'a+', newline='') as csvfile: # Record reward history for each stat run
writer = csv.writer(csvfile)
writer.writerow(['Performance'] + reward_history) | 5,353,187 |
def _wrap(func, args, flip=True):
"""Return partial function with flipped args if flip=True
:param function func: Any function
:param args args: Function arguments
:param bool flip: If true reverse order of arguments.
:return: Returns function
:rtype: function
"""
@wraps(func)
def flippedfunc(*args):
return func(*args[::-1])
return partial(flippedfunc if flip else func, args) | 5,353,188 |
def compute_kkt_optimality(g, on_bound):
"""Compute the maximum violation of KKT conditions."""
g_kkt = g * on_bound
free_set = on_bound == 0
g_kkt[free_set] = np.abs(g[free_set])
return np.max(g_kkt) | 5,353,189 |
def replace_cipd_revision(file_path, old_revision, new_revision):
"""Replaces cipd revision strings in file.
Args:
file_path: Path to file.
old_revision: Old cipd revision to be replaced.
new_revision: New cipd revision to use as replacement.
Returns:
Number of replaced occurrences.
Raises:
IOError: If no occurrences were found.
"""
with open(file_path) as f:
contents = f.read()
num = contents.count(old_revision)
if not num:
raise IOError('Did not find old CIPD revision {} in {}'.format(
old_revision, file_path))
newcontents = contents.replace(old_revision, new_revision)
with open(file_path, 'w') as f:
f.write(newcontents)
return num | 5,353,190 |
def spectral_derivs_plot(spec_der, contrast=0.1, ax=None, freq_range=None,
fft_step=None, fft_size=None):
"""
Plot the spectral derivatives of a song in a grey scale.
spec_der - The spectral derivatives of the song (computed with
`spectral_derivs`) or the song itself
contrast - The contrast of the plot
ax - The matplotlib axis where the plot must be drawn, if None, a new axis
is created
freq_range - The amount of frequency to plot, usefull only if `spec_der` is
a song. Given to `spectral_derivs`
ov_params - The Parameters to override, passed to `spectral_derivs`
"""
if spec_der.ndim == 1:
spec_der = spectral_derivs(spec_der, freq_range, fft_step, fft_size)
ax = sns.heatmap(spec_der.T, yticklabels=50, xticklabels=50,
vmin=-contrast, vmax=contrast, ax=ax, cmap='Greys',
cbar=False)
ax.invert_yaxis()
return ax | 5,353,191 |
def scale_center(pnt, fac, center):
"""scale point in relation to a center"""
return add(scale(sub(pnt, center), fac), center) | 5,353,192 |
def constrain_uptakes(model, xi):
"""When the cells are not competing (resource excess, high ξ) uptakes are
restricted by the limits of metabolite importers. When competion occurs
competiton is modeled by limiting uptakes to metabolite_concentration/ξ
Parameters
----------
model : cobra.Model
xi : float
= D/X
"""
v_glc = .5 # mmol/gDW/h
v_aa = 0.05
IMDM = pandas.read_table('IMDM.txt', comment='#', sep='\s+')
conc = {}
for index, row in IMDM.iterrows():
conc[row['id']] = row['mM']
for met in conc:
if met == 'glc_D_e':
if xi == 0:
model.reactions.get_by_id('EX_glc_e_').lower_bound = -v_glc
else:
model.reactions.get_by_id('EX_glc_e_').lower_bound = \
-min(v_glc, conc[met]/xi)
else:
try:
name = met.split('_')[0]
if xi == 0:
model.reactions.get_by_id(
'EX_' + name + '_e_').lower_bound = -v_aa
else:
model.reactions.get_by_id(
'EX_' + name + '_e_').lower_bound = \
-min(v_aa, conc[met]/xi)
except KeyError:
if xi == 0:
model.reactions.get_by_id(
'EX_' + name + '_L_e_').lower_bound = -v_aa
else:
model.reactions.get_by_id(
'EX_' + name + '_L_e_').lower_bound \
= -min(v_aa, conc[met]/xi) | 5,353,193 |
def gopherize_feed(feed_url, timestamp=False, plug=True):
"""Return a gophermap string for the feed at feed_url."""
return gopherize_feed_object(feedparser.parse(feed_url), timestamp, plug) | 5,353,194 |
def first_sunday_of_month(datetime: pendulum.DateTime) -> pendulum.DateTime:
"""Get the first Sunday of the month based on a given datetime.
:param datetime: the datetime.
:return: the first Sunday of the month.
"""
return datetime.start_of("month").first_of("month", day_of_week=7) | 5,353,195 |
def evaluate_single_model(
model_path, model_index, save_preds_to_db, save_prefix,
metrics, k_values, X, y, labeled_indices):
"""
Evaluate a single model with provided model specifications and data.
Arguments:
- model_path: path to load the model
- model_index: index for the model
- save_preds_to_db: whether or not to save predictions to database
- save_prefix: string prefix for any tables created
- metrics: a list of metrics to use
- k_values: k-values used for computing the metrics
- X: feature array
- y: label array
- labeled_indices: indices of rows that have labels
Returns:
- model_index: index for the model
- model_results: an (M x K) array of model results, for each metric, at each k-value
"""
# Load saved model
with open(model_path, 'rb') as file:
model = pickle.load(file)
# Get predictions
pred_table_name = f'{save_prefix}_model_{model_index}' if save_preds_to_db else None
y_preds, probs = get_predictions(model, X, k_values=k_values, pred_table_name=pred_table_name)
# Filter labels
y_preds_filtered = y_preds[labeled_indices]
y_filtered = y.to_numpy(copy=True)[labeled_indices]
# Calculate metrics for each k value
model_results = np.zeros((len(metrics), len(k_values)))
for i, metric in enumerate(metrics):
for j in range(len(k_values)):
model_results[i, j] = metric(y_filtered, y_preds_filtered[:, j])
return model_index, model_results | 5,353,196 |
def slack_notify_update_user_queue(username: str):
"""
Queue 등록 알림
"""
channel = settings.SLACK_CHANNEL_CRONTAB
server = 'PROD' if settings.IS_PROD else 'LOCAL'
attachments = [
{
"color": "#ff0000",
"title": 'RATE LIMIT 제한으로 update 실패',
"pretext": f'[{server}] {username}이 Queue(DB)에 등록되었습니다.',
}
]
if channel:
slack = slackweb.Slack(url=channel)
slack.notify(attachments=attachments) | 5,353,197 |
async def test_update_raceplan(
http_service: Any, token: MockFixture, context: dict
) -> None:
"""Should return No Content."""
url = f"{http_service}/raceplans"
headers = {
hdrs.CONTENT_TYPE: "application/json",
hdrs.AUTHORIZATION: f"Bearer {token}",
}
id = context["id"]
url = f"{url}/{id}"
update_raceplan = deepcopy(context)
update_raceplan["event_id"] = "new_event_id"
request_body = json.dumps(update_raceplan, indent=4, sort_keys=True, default=str)
async with ClientSession() as session:
async with session.put(url, headers=headers, data=request_body) as response:
pass
assert response.status == 204 | 5,353,198 |
def parse_args (
) -> argparse.Namespace:
""" Parser for cli arguments.
Returns:
A Namespace containing all parsed data
"""
# The parser itself
parser = argparse.ArgumentParser(add_help=False)
parser.description = "Evaluates single choice sheets"
# Groups for ordering arguments in help command
grp_req_excl = parser.add_argument_group("required arguments, mutually exclusive")
grp_req = parser.add_argument_group("required arguments")
grp_opt = parser.add_argument_group("optional arguments")
#########################
##### Required Args #####
#########################
# Input path - either an url or a path to a local file
io_grp = grp_req_excl.add_mutually_exclusive_group(required=True)
io_grp.add_argument("-u", "--url", dest="url",
help="URL to the image or pdf to be evaluated.")
io_grp.add_argument("-f", "--file", dest="file",
help="path to the image or pdf to be evaluated.")
# required arg for number of answers each question
grp_req.add_argument("-n", "--num", dest="num", required=True,
type=_arg_int_pos, help="number of answers per question")
#########################
##### Optional Args #####
#########################
# help message. Added manually so it is shown under optional
grp_opt.add_argument("-h", "--help", action="help", help="show this help message and exit")
# path to store the result picture to
grp_opt.add_argument("-i", "--iout", dest="iout",
help="path for the output picture to be stored.")
# path to store the result list to
grp_opt.add_argument("-d", "--dout", dest="dout",
help="path for the output data to be stored.")
# path to compare results generated by the program with data stored in a file
grp_opt.add_argument("-c", "--compare", dest="comp",
help="compares the calculated result to a given result")
# plotting all steps
grp_opt.add_argument("-p", "--plot", dest="plot", action="store_true",
help="plots every single step")
return parser.parse_args() | 5,353,199 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.