content
stringlengths
22
815k
id
int64
0
4.91M
def create_cli(ctx): """ Create dataset in a CKAN instance. """ create( ctx.obj['CKAN_HOST'], ctx.obj['CKAN_KEY'], ctx.obj['DATAPACKAGE'], ctx.obj['DATASTORE'], ctx.obj['EXIT_CODE'], )
5,353,300
def divideArray(array, factor): """Dzielimy tablice na #factor tablic, kazda podtablica ma tyle samo elem oprocz ostatniej""" factor = min(factor, len(array)) length = floor(len(array) * 1.0 / factor) res = [] for i in range(factor - 1): res = res + list([array[i * length:(i + 1) * length]]) return list(res + list([array[length * (factor - 1):]]))
5,353,301
async def open(command): """Open the shutter.""" command.info(text="Opening the shutter!") # Here we would implement the actual communication # with the shutter hardware. command.finish(shutter="open") return
5,353,302
def argMax(scores): """ Returns the key with the highest value. """ if len(scores) == 0: return None all = scores.items() values = [x[1] for x in all] maxIndex = values.index(max(values)) return all[maxIndex][0]
5,353,303
def rotateright(arr,k)->list: """ Rotate the array right side k number of times. """ temp=a[0] poi=0 for i in range(len(arr)): for j in range(0,k): poi+=1 if(poi==len(arr)): poi=0 temp1=arr[poi] arr[poi]=temp temp=temp1 return arr
5,353,304
def get_video_chunk_path(instance, filename): """ Get path to store video chunk the path will be of format : project_id/chunks/chunk_no.mp3 """ if (not instance.project_id) and (not instance.chunk_no): raise ValidationError('Invalid Project ID') return os.path.join(instance.project_id + '/chunks/' + instance.chunk_no + '.mp4')
5,353,305
def scrap_page(targetURL): """ Scraps a single URL for sentences, downloading audios """ # Extract post title from URL and use as .csv file name name = targetURL.split("/")[3] with open(f"csv/{name}.csv", "w+", encoding="utf8") as card: # Headers for the GET request so it doesn't get easily rejected headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.87 Safari/537.36" } req = requests.get(targetURL, headers=headers) if req.status_code == 200: print("Successful GET request!") # Initialize lists for later appending englishSentences = list() portugueseSentences = list() audiosURLs = list() audioFilenames = list() content = req.content html = BeautifulSoup(content, "html.parser") # Extract sentences div = html.find("div", class_="post-content") # Sentences are under this div # divStrings = "".join(list(map(str, div))) # print(divStrings) sentencesRegex = ( r"(?:<p.*?>(.*?)<em>(.*?)<br><span.*?><audio .*?src=(\".*?\"))" ) findSentences = re.findall( sentencesRegex, "".join(list(map(str, div))), re.MULTILINE ) for matches in findSentences: englishSentences.append(matches[0]) portugueseSentences.append(matches[1]) audiosURLs.append(matches[2]) del findSentences audiosURLs = list( # Add domain to audio URLs map(lambda url: f"https://blog.influx.com.br{url}", audiosURLs) ) portugueseSentences = list( # Clean and format Portuguese map(format_portuguese_sentence, portugueseSentences) ) englishSentences = list( # Clean and format English map(format_english_sentence, englishSentences) ) # Download audios for url in audiosURLs: print(f"Downloading {url}") localFilename = download_file(url) audioFilenames.append(localFilename) if len(portugueseSentences) != len(englishSentences) != len(audioFilenames): print( f"""Lists don't have all the same length. Output may be compromised. - in '{name}': ({len(englishSentences)} english sentences, {len(portugueseSentences)} portuguese sentences, {len(audioFilenames)} audio files.)""" ) cardInfos = zip(englishSentences, portugueseSentences, audioFilenames) for sentence in cardInfos: card.write( f"{sentence[0]}\t{sentence[1]}\t[sound:{sentence[2]}]\tenglish_influx\n" ) # Use TAB as separator else: print("Failed GET request.")
5,353,306
def create_reverse_routes(rt): """Function to reverse TSP routes""" if rt.tsp_solver_status == 1: for key, value in rt.stop_order_dict.items(): if value != 0: rt.stop_order_dict[key] = rt.num_stops - value
5,353,307
def main(cfg: Config) -> None: """Main function.""" data_cfg = cfg.data if data_cfg.dataset == DS.adult: print("Using the adult dataset.") elif data_cfg.dataset == DS.cmnist: print("Using CMNIST.") if cfg.misc.use_wandb: print("Starting W&B.") args_as_dict = flatten(OmegaConf.to_container(cfg, resolve=True)) # convert to dictionary print("==========================\nAll args as dictionary:") print(args_as_dict)
5,353,308
def draw_string(turtle): """ This function draws the strings to the guitar :param turtle: The name of the turtle :return: None """ turtle.penup() length = 35 turtle.setpos(60, -45) for i in range(5): turtle.penup() turtle.left(90) turtle.pendown() turtle.forward(300) turtle.left(90) turtle.penup() length = length - 6 turtle.forward(length - 6)
5,353,309
def switch_to_sink(pulse, sink): """Switch output to the given sink.""" # set the default sink pulse.default_set(sink) # move existing streams over to the sink for sink_input in pulse.sink_input_list(): pulse.sink_input_move(sink_input.index, sink.index)
5,353,310
def get_ratio(numerator, denominator): """Get ratio from numerator and denominator.""" return ( 0 if not denominator else round(float(numerator or 0) / float(denominator), 2) )
5,353,311
def create_app(): """ Create a Flask application for face alignment Returns: flask.Flask -> Flask application """ app = Flask(__name__) model = setup_model() app.config.from_mapping(MODEL=model) @app.route("/", methods=["GET"]) def howto(): instruction = ( "Send POST request to /align to fix face orientation in input image" "\nex." "\n\tcurl -X POST -F 'image=@/path/to/face.jpg' --output output.jpg localhost:5000/align" ) return instruction @app.route("/align", methods=["POST"]) def align(): data = request.files["image"] img_str = data.read() nparr = np.fromstring(img_str, np.uint8) img = cv2.imdecode(nparr, cv2.IMREAD_ANYCOLOR) faces = model.detect(img) if len(faces) == 0: return "No face found. Try again", 400 elif len(faces) > 1: return "Too many faces found. Try again", 400 else: face = faces[0] rotated_image = rotate_bound(img, face.angle) # Encode image is_completed, buf = cv2.imencode(".jpg", rotated_image) if not is_completed: return "Unexpected encoding error. Try again", 400 byte_buffer = io.BytesIO(buf.tostring()) return send_file( byte_buffer, "image/jpeg", as_attachment=True, attachment_filename="output.jpg", ) return app
5,353,312
def Red(n=1.0): """Change to red color""" glColor3fv((n, 0.0, 0.0))
5,353,313
def test_load_images_and_stack_2d_random(test_output_dirs: OutputFolderForTests) -> None: """ Test load of 2D images """ image_size = (20, 30) low = 0 high = 200 array1 = np.random.randint(low=low, high=high, size=image_size, dtype='uint16') write_test_dicom(array1, test_output_dirs.root_dir / "file1.dcm") array2 = np.random.randint(low=low, high=high, size=image_size, dtype='uint16') write_test_dicom(array2, test_output_dirs.root_dir / "file2.dcm") array3 = np.random.randint(low=low, high=high, size=image_size, dtype='uint16') write_test_dicom(array3, test_output_dirs.root_dir / "file3.dcm") expected_tensor = torch.from_numpy(np.expand_dims(np.stack([array1, array2, array3]).astype(float), axis=1)) file_list = [test_output_dirs.root_dir / f"file{i}.dcm" for i in range(1, 4)] imaging_data = load_images_and_stack(file_list, load_segmentation=False, image_size=(1,) + image_size) assert len(imaging_data.images.shape) == 4 assert imaging_data.images.shape[0] == 3 assert imaging_data.images.shape[1] == 1 assert imaging_data.images.shape[2:] == image_size assert torch.allclose(imaging_data.images, expected_tensor)
5,353,314
def grad_clip(x:Tensor) -> Tensor: """ Clips too big and too small gradients. Example:: grad = grad_clip(grad) Args: x(:obj:`Tensor`): Gradient with too large or small values Returns: :obj:`Tensor`: Cliped Gradient """ x[x>5] = 5 x[x<-5] = -5 return x
5,353,315
def unfold_kernel(kernel): """ In pytorch format, kernel is stored as [out_channel, in_channel, height, width] Unfold kernel into a 2-dimension weights: [height * width * in_channel, out_channel] :param kernel: numpy ndarray :return: """ k_shape = kernel.shape weight = np.zeros([k_shape[1] * k_shape[2] * k_shape[3], k_shape[0]]) for i in range(k_shape[0]): weight[:, i] = np.reshape(kernel[i, :, :, :], [-1]) return weight
5,353,316
def write(message: str, color: str = None) -> None: """ Write message. """ logger.write(message, color)
5,353,317
def _parse_polyline_locations(locations, max_n_locations): """Parse and validate locations in Google polyline format. The "locations" argument of the query should be a string of ascii characters above 63. Args: locations: The location query string. max_n_locations: The max allowable number of locations, to keep query times reasonable. Returns: lats: List of latitude floats. lons: List of longitude floats. Raises: ClientError: If too many locations are given, or if the location string can't be parsed. """ # The Google maps API prefixes their polylines with 'enc:'. if locations and locations.startswith("enc:"): locations = locations[4:] try: latlons = polyline.decode(locations) except Exception as e: msg = "Unable to parse locations as polyline." raise ClientError(msg) # Polyline result in in list of (lat, lon) tuples. lats = [p[0] for p in latlons] lons = [p[1] for p in latlons] # Check number. n_locations = len(lats) if n_locations > max_n_locations: msg = f"Too many locations provided ({n_locations}), the limit is {max_n_locations}." raise ClientError(msg) return lats, lons
5,353,318
def dense(data, weight, bias=None, out_dtype=None): """The default implementation of dense in topi. Parameters ---------- data : tvm.Tensor 2-D with shape [batch, in_dim] weight : tvm.Tensor 2-D with shape [out_dim, in_dim] bias : tvm.Tensor, optional 1-D with shape [out_dim] out_dtype : str The output type. This is used for mixed precision. Returns ------- output : tvm.Tensor 2-D with shape [batch, out_dim] """ assert len(data.shape) == 2 and len(weight.shape) == 2, \ "only support 2-dim dense" if bias is not None: assert len(bias.shape) == 1 if out_dtype is None: out_dtype = data.dtype batch, in_dim = data.shape out_dim, _ = weight.shape k = tvm.reduce_axis((0, in_dim), name='k') matmul = tvm.compute((batch, out_dim), \ lambda i, j: tvm.sum(data[i, k].astype(out_dtype) * \ weight[j, k].astype(out_dtype), axis=k), \ name='T_dense', tag='dense') if bias is not None: matmul = tvm.compute((batch, out_dim), \ lambda i, j: matmul[i, j] + bias[j].astype(out_dtype), \ tag=tag.BROADCAST) return matmul
5,353,319
def choice(*choices: T, default: Union[T, _MISSING_TYPE] = MISSING, **kwargs: Any) -> T: """Makes a field which can be chosen from the set of choices from the command-line. Returns a regular `dataclasses.field()`, but with metadata which indicates the allowed values. (New:) If `choices` is a dictionary, then passing the 'key' will result in the corresponding value being used. The values may be objects, for example. Similarly for Enum types, passing a type of enum will Args: default (T, optional): The default value of the field. Defaults to dataclasses.MISSING, in which case the command-line argument is required. Raises: ValueError: If the default value isn't part of the given choices. Returns: T: the result of the usual `dataclasses.field()` function (a dataclass field/attribute). """ assert len(choices) > 0, "Choice requires at least one positional argument!" if len(choices) == 1: choices = choices[0] if inspect.isclass(choices) and issubclass(choices, Enum): # If given an enum, construct a mapping from names to values. choice_enum: Type[Enum] = choices choices = OrderedDict((e.name, e) for e in choice_enum) if default is not MISSING and not isinstance(default, choice_enum): if default in choices: warnings.warn( UserWarning( f"Setting default={default} could perhaps be ambiguous " f"(enum names vs enum values). Consider using the enum " f"value {choices[default]} instead." ) ) default = choices[default] else: raise ValueError( f"'default' arg should be of type {choice_enum}, but got {default}" ) if isinstance(choices, dict): # if the choices is a dict, the options are the keys # save the info about the choice_dict in the field metadata. metadata = kwargs.setdefault("metadata", {}) choice_dict = choices # save the choice_dict in metadata so that we can recover the values in postprocessing. metadata["choice_dict"] = choice_dict choices = list(choice_dict.keys()) # TODO: If the choice dict is given, then add encoding/decoding functions that just # get/set the right key. def _encoding_fn(value: Any) -> str: """Custom encoding function that will simply represent the value as the the key in the dict rather than the value itself. """ if value in choice_dict.keys(): return value elif value in choice_dict.values(): return [k for k, v in choice_dict.items() if v == value][0] return value kwargs.setdefault("encoding_fn", _encoding_fn) def _decoding_fn(value: Any) -> str: """Custom decoding function that will retrieve the value from the stored key in the dictionary. """ return choice_dict.get(value, value) kwargs.setdefault("decoding_fn", _decoding_fn) return field(default=default, choices=choices, **kwargs)
5,353,320
def __set_config(key: str, value: Any): """ Update config entry. You should not use this function in your code, once the cfg is set up it should not be changed again! Args: key: name of config entry value: new value """ print('update ', (key, value), ' config') setattr(cfg, key, value)
5,353,321
def modulelink(module, baseurl=''): """Hyperlink to a module, either locally or on python.org""" if module+'.py' not in local_files: baseurl = 'http://www.python.org/doc/current/lib/module-' return link(baseurl+module+'.html', module)
5,353,322
def test_view_translate_not_authed_public_project(client, locale0, settings_debug): """ If the user is not authenticated and we're translating project ID 1, return a 200. """ # Clear out existing project with ID=1 if necessary. Project.objects.filter(id=1).delete() project = Project.objects.create(id=1, slug='valid-project') ProjectLocale.objects.create( project=project, locale=locale0) resource = Resource.objects.create( project=project, path='foo.lang', total_strings=1) TranslatedResource.objects.create( resource=resource, locale=locale0) response = client.get( '/%s/%s/%s/' % (locale0.code, project.slug, resource.path)) assert response.status_code == 200
5,353,323
def print_copy_method(struct_name, field_count, struct_members): """Generate copy function for joint data structure.""" print("struct joint_{0} *joint_{0}_copy(void *(*mem_allocator)(size_t), struct joint_{0} *lhs, struct joint_{0} *rhs) {{".format(struct_name)) print(" if (lhs == rhs) {") print(" return rhs;") print(" }") print(" assert(((void) \"lhs cannot be null\", lhs != NULL));") print(" assert(((void) \"rhs cannot be null\", rhs != NULL));") # Copy memory_block from lhs to rhs print("\n if (lhs->memory_block != rhs->memory_block) {") print(" rhs->memory_block = mem_allocator(lhs->offset[{0}]);".format(field_count - 1)) print(" if (rhs->memory_block == NULL) {") print(" return NULL;") print(" }") print(" memcpy(rhs->memory_block, lhs->memory_block, lhs->offset[{0}]);".format(field_count - 1)) print(" }") # Copy offsets from lhs to rhs print("\n rhs->array_count = lhs->array_count;\n") for (i, field) in enumerate(struct_members): print(" rhs->offset[{0}] = lhs->offset[{0}];".format(i)) print() for (i, field) in enumerate(struct_members): if i == 0: print(" rhs->{0} = ({1} *)(rhs->memory_block);".format(field['name'], field['type'])) else: print(" rhs->{0} = ({1} *)((char *)(rhs->memory_block) + (rhs->offset[{2}]));".format(field['name'], field['type'], i - 1)) print("\n return rhs;") print("}\n")
5,353,324
def cleanup_command( __cli_options=False, artifactsdir=defaults['artifacts_dir'], # Where dexy should store working files. logdir=defaults['log_dir'], # DEPRECATED reports=True # Whether directories generated by reports should also be removed. ): """ Remove the directories which dexy created, including working directories and reports. """ wrapper = init_wrapper(locals()) wrapper.remove_dexy_dirs() wrapper.remove_reports_dirs(reports)
5,353,325
def add_reference( *, short_purpose: str, reference: Optional[str] = None, doi: Optional[str] = None ) -> Callable: """Decorator to link a reference to a function or method. Acts as a marker in code where particular alogrithms/data/... originates. General execution of code silently passes these markers, but remembers how and where they were called. Which markers were passed in a particular program run can be recalled with `print(BIBLIOGRAPHY)`. One and only one method for providing the reference is allowed. Args: short_purpose (str): Identify the thing being referenced. reference (Optional, str): The reference itself, as a plain text string. doi (Optional, str): DOI of the reference. Returns: The decorated function. """ if reference and doi: raise ValueError("Only one method for providing the reference is allowed.") elif reference: ref = reference elif doi: ref = doi if "doi.org" in doi else f"https://doi.org/{doi}" else: raise ValueError("No reference information provided!") @wrapt.decorator(enabled=lambda: BIBLIOGRAPHY.track_references) def wrapper(wrapped, instance, args, kwargs): source = inspect.getsourcefile(wrapped) line = inspect.getsourcelines(wrapped)[1] identifier = f"{source}:{line}" if identifier in BIBLIOGRAPHY and ref in BIBLIOGRAPHY[identifier].references: return wrapped(*args, **kwargs) if identifier not in BIBLIOGRAPHY: BIBLIOGRAPHY[identifier] = FunctionReference( wrapped.__name__, line, source, [], [] ) BIBLIOGRAPHY[identifier].short_purpose.append(short_purpose) BIBLIOGRAPHY[identifier].references.append(ref) return wrapped(*args, **kwargs) return wrapper
5,353,326
def test_autoimport_list(mocker, credentials): """Test list autoimport jobs being outputed to the shell.""" runner = CliRunner() autoimport_response = { "meta": {"count": 2, "next": None, "previous": None}, "results": [ { "id": "41fd0397-62b0-4ef9-992f-423435b5d5ef", "project_id": "290e0c5a-c87e-474e-8b32-fe56fc54cc4d", "identifier": "identifier-in-basespace-project-name", "metadata": None, }, { "id": "0f60ab5e-a34f-4afc-a428-66f81890565f", "project_id": "290e0c5a-c87e-474e-8b32-fe56fc54cc4d", "identifier": "Dummy", "metadata": {}, }, ], } mocked_list_basespace_autoimport_jobs = mocker.patch.object( APIClient, "list_basespace_autoimport_jobs", return_value=BaseSpaceProjectImport(**autoimport_response), ) res = runner.invoke(autoimport_list, credentials) assert res.exit_code == 0 mocked_list_basespace_autoimport_jobs.assert_called() autoimport_jobs = autoimport_response["results"] jobs = "\n".join( [ "\t".join( [ job["id"], job["project_id"], job["identifier"], ] ) for job in autoimport_jobs ] ) assert f"{jobs}\n" == res.output
5,353,327
def get_capital_ptd_act(): """Get chart of accounts from shared drive.""" logging.info('Retrieving latest CIP project to date') command = "smbclient //ad.sannet.gov/dfs " \ + "--user={adname}%{adpass} -W ad -c " \ + "'prompt OFF;" \ + " cd \"FMGT-Shared/Shared/BUDGET/" \ + "Open Data/Open Data Portal/" \ + "Shared with Performance and Analytics/" \ + "Actuals/Capital/P-T-D/\";" \ + " lcd \"/data/temp/\";" \ + " mget FY*ACTUALS.xlsx;'" command = command.format(adname=conf['alb_sannet_user'], adpass=conf['alb_sannet_pass'], temp_dir=conf['temp_data_dir']) logging.info(command) try: p = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT) return p except subprocess.CalledProcessError as e: return e.output
5,353,328
def eval_curvature(poly, x_vals): """ This function returns a vector with the curvature based on path defined by `poly` evaluated on distance vector `x_vals` """ # https://en.wikipedia.org/wiki/Curvature# Local_expressions def curvature(x): a = abs(2 * poly[1] + 6 * poly[0] * x) / (1 + (3 * poly[0] * x**2 + 2 * poly[1] * x + poly[2])**2)**(1.5) return a return np.vectorize(curvature)(x_vals)
5,353,329
def calculate_folder_size(path, _type="mb") -> float: """Return the size of the given path in MB, bytes if wanted""" p1 = subprocess.Popen(["du", "-sb", path], stdout=subprocess.PIPE) p2 = subprocess.Popen(["awk", "{print $1}"], stdin=p1.stdout, stdout=subprocess.PIPE) p1.stdout.close() # type: ignore byte_size = 0.0 byte_size = float(p2.communicate()[0].decode("utf-8").strip()) if _type == "bytes": return byte_size else: return byte_to_mb(byte_size)
5,353,330
def templates(): """Return all of the templates and settings.""" return settings
5,353,331
def add_license(license_uri, based_on_uri, version, jurisdiction, legalcode_uri, rdf_dir, license_code): """Create a new license based on an existing one. Write the resulting graph to the rdf_dir.""" # make sure the license_uri ends with a slash if license_uri[-1] != '/': license_uri += '/' # create the graph for the new license license = graph() if based_on_uri: # we're starting from an existing license # load the based on graph based_on = load_graph(license_rdf_filename(based_on_uri, rdf_dir)) # copy base assertions for (p, o) in based_on.predicate_objects(URIRef(based_on_uri)): license.add((URIRef(license_uri), p, o)) replace_predicate( license, URIRef(license_uri), NS_DC.source, URIRef(based_on_uri)) # Record the existing FOAF:logos for reference old_logos = [ result[2].split('/')[-1] for result in license.triples( (URIRef(license_uri), NS_FOAF.logo, None))] # Add the FOAF:logos license.remove( (URIRef(license_uri), NS_FOAF.logo, None)) # Images get put into /l/ or /p/ depending on whether they are # /licenses/ or /publicdomain/ respectively... group_letter = urllib.parse.urlparse(license_uri)[2].lstrip('/')[0] for old_logo in old_logos: # http://i.creativecommons.org/l/by/3.0/88x31.png logo_url = "http://i.creativecommons.org/%s/%s/%s/" % ( group_letter, license_code, version) if jurisdiction: logo_url += jurisdiction + "/" image_name = old_logo.split('/')[-1] logo_url += image_name license.add( ((URIRef(license_uri), NS_FOAF.logo, URIRef(logo_url)))) else: # add the basic framework -- this is a license license.add((URIRef(license_uri), NS_RDF.type, NS_CC.License)) # add the jurisdiction, version, source if jurisdiction is not None: jurisdiction_url = "http://creativecommons.org/international/%s/" % ( jurisdiction) replace_predicate(license, URIRef(license_uri), NS_CC.jurisdiction, URIRef(jurisdiction_url)) else: # unported; remove any jurisdiction assertion license.remove((URIRef(license_uri), NS_CC.jurisdiction, None)) # set/replace the version replace_predicate(license, URIRef(license_uri), NS_DCQ.hasVersion, Literal(version)) # determine the legalcode URI if legalcode_uri is None: legalcode_uri = license_uri + "legalcode" # add the legalcode predicate replace_predicate(license, URIRef(license_uri), NS_CC.legalcode, URIRef(legalcode_uri)) # Add the x-i18n private use subtag (RFC 5646 Language Tag) replace_predicate( license, URIRef(license_uri), NS_DC['title'], Literal(gen_license_i18n_title(license_code, version, jurisdiction), lang="x-i18n")) translate_graph(license) # write the graph out save_graph(license, license_rdf_filename(license_uri, rdf_dir))
5,353,332
def get_semitones(interval_tuplet): """ Takes an interval tuplet of the form returned by get_interval() Returns an int representing the semitones within the interval. """ return mintervals.semitones_from_shorthand(interval_tuplet[0]) + 12*interval_tuplet[1]
5,353,333
def test_fieldset_sample(fieldset, xdim=120, ydim=80): """ Sample the fieldset using indexing notation. """ lon = np.linspace(-170, 170, xdim, dtype=np.float32) lat = np.linspace(-80, 80, ydim, dtype=np.float32) v_s = np.array([fieldset.V[0, 0., 70., x] for x in lon]) u_s = np.array([fieldset.U[0, 0., y, -45.] for y in lat]) assert np.allclose(v_s, lon, rtol=1e-7) assert np.allclose(u_s, lat, rtol=1e-7)
5,353,334
def svds(a, k=6, *, ncv=None, tol=0, which='LM', maxiter=None, return_singular_vectors=True): """Finds the largest ``k`` singular values/vectors for a sparse matrix. Args: a (cupy.ndarray or cupyx.scipy.sparse.csr_matrix): A real or complex array with dimension ``(m, n)`` k (int): The number of singular values/vectors to compute. Must be ``1 <= k < min(m, n)``. ncv (int): The number of Lanczos vectors generated. Must be ``k + 1 < ncv < min(m, n)``. If ``None``, default value is used. tol (float): Tolerance for singular values. If ``0``, machine precision is used. which (str): Only 'LM' is supported. 'LM': finds ``k`` largest singular values. maxiter (int): Maximum number of Lanczos update iterations. If ``None``, default value is used. return_singular_vectors (bool): If ``True``, returns singular vectors in addition to singular values. Returns: tuple: If ``return_singular_vectors`` is ``True``, it returns ``u``, ``s`` and ``vt`` where ``u`` is left singular vectors, ``s`` is singular values and ``vt`` is right singular vectors. Otherwise, it returns only ``s``. .. seealso:: :func:`scipy.sparse.linalg.svds` .. note:: This is a naive implementation using cupyx.scipy.sparse.linalg.eigsh as an eigensolver on ``a.H @ a`` or ``a @ a.H``. """ if a.ndim != 2: raise ValueError('expected 2D (shape: {})'.format(a.shape)) if a.dtype.char not in 'fdFD': raise TypeError('unsupprted dtype (actual: {})'.format(a.dtype)) m, n = a.shape if k <= 0: raise ValueError('k must be greater than 0 (actual: {})'.format(k)) if k >= min(m, n): raise ValueError('k must be smaller than min(m, n) (actual: {})' ''.format(k)) aH = a.conj().T if m >= n: aa = aH @ a else: aa = a @ aH if return_singular_vectors: w, x = eigsh(aa, k=k, which=which, ncv=ncv, maxiter=maxiter, tol=tol, return_eigenvectors=True) else: w = eigsh(aa, k=k, which=which, ncv=ncv, maxiter=maxiter, tol=tol, return_eigenvectors=False) w = cupy.maximum(w, 0) t = w.dtype.char.lower() factor = {'f': 1e3, 'd': 1e6} cond = factor[t] * numpy.finfo(t).eps cutoff = cond * cupy.max(w) above_cutoff = (w > cutoff) n_large = above_cutoff.sum() s = cupy.zeros_like(w) s[:n_large] = cupy.sqrt(w[above_cutoff]) if not return_singular_vectors: return s x = x[:, above_cutoff] if m >= n: v = x u = a @ v / s[:n_large] else: u = x v = aH @ u / s[:n_large] u = _augmented_orthnormal_cols(u, k - n_large) v = _augmented_orthnormal_cols(v, k - n_large) return u, s, v.conj().T
5,353,335
def register_mongodb(app: Flask) -> Flask: """Instantiates database and initializes collections.""" config = app.config # Instantiate PyMongo client mongo = create_mongo_client(app=app, config=config) # Add database db = mongo.db[get_conf(config, "database", "name")] # Add database collection for '/service-info' collection_service_info = mongo.db["service-info"] # Add database collection for '/data_objects' collection_data_objects = mongo.db["data_objects"] collection_data_objects.create_index([("id", ASCENDING)], unique=True, sparse=True) # Add database to app config config["database"]["drs_db"] = collection_data_objects config["database"]["service_info"] = collection_service_info app.config = config return app
5,353,336
def epflux_boa(netcdf = False): """ Input boa variables U, V, T Ouput boa variable. Save to netcdf file if netcdf is true """ pass
5,353,337
def assert_is_compatible(schema, required_args, optional_args): """Raises a :exc:`~cosmic.exceptions.SpecError` if function argument spec (as returned by :func:`get_args`) is incompatible with the given schema. By incompatible, it is meant that there exists such a piece of data that is valid according to the schema, but that could not be applied to the function by :func:`apply_to_func`. """ # No arguments if len(required_args + optional_args) == 0: raise SpecError("Function needs to accept arguments") # One argument can accept anything if len(required_args + optional_args) == 1: return # Multiple arguments means schema must be Struct if not isinstance(schema, Struct): raise SpecError("For a function that takes arguments, accepts schema" " is expected to be a Struct") # Each non-keyword argument in the function must have a corresponding # required field in the schema for r in required_args: if r not in schema.param.keys() or not schema.param[r]["required"]: raise SpecError("Action argument '%s' must have a corresponding" " required field in the accepts schema" % r) # All fields in the schema must have a corresponding function argument for f in schema.param.keys(): if f not in set(required_args + optional_args): raise SpecError("The '%s' field must have a corresponding" " function argument" % f)
5,353,338
def look(table, limit=0, vrepr=None, index_header=None, style=None, truncate=None, width=None): """ Format a portion of the table as text for inspection in an interactive session. E.g.:: >>> import petl as etl >>> table1 = [['foo', 'bar'], ... ['a', 1], ... ['b', 2]] >>> etl.look(table1) +-----+-----+ | foo | bar | +=====+=====+ | 'a' | 1 | +-----+-----+ | 'b' | 2 | +-----+-----+ >>> # alternative formatting styles ... etl.look(table1, style='simple') === === foo bar === === 'a' 1 'b' 2 === === >>> etl.look(table1, style='minimal') foo bar 'a' 1 'b' 2 >>> # any irregularities in the length of header and/or data ... # rows will appear as blank cells ... table2 = [['foo', 'bar'], ... ['a'], ... ['b', 2, True]] >>> etl.look(table2) +-----+-----+------+ | foo | bar | | +=====+=====+======+ | 'a' | | | +-----+-----+------+ | 'b' | 2 | True | +-----+-----+------+ Three alternative presentation styles are available: 'grid', 'simple' and 'minimal', where 'grid' is the default. A different style can be specified using the `style` keyword argument. The default style can also be changed by setting ``petl.config.look_style``. """ # determine defaults if limit == 0: limit = config.look_limit if vrepr is None: vrepr = config.look_vrepr if index_header is None: index_header = config.look_index_header if style is None: style = config.look_style if width is None: width = config.look_width return Look(table, limit=limit, vrepr=vrepr, index_header=index_header, style=style, truncate=truncate, width=width)
5,353,339
def refresh_devices(config, cache_path): """Refresh devices from configuration received""" global DEBUG, m_devices, Device_Cache if DEBUG: print("DEBUG: Refreshing device database") print_progress("Refresh devices") try: m_devices = config['devices'] except: print("ERROR: No device found in config!!") return None else: try: filep = open(cache_path, 'w') except: print("ERROR: Cannot write to device cache %s" % cache_path) else: filep.write(ujson.dumps(m_devices)) filep.close() if DEBUG: print("DEBUG: Written device DB to cache") return m_devices
5,353,340
def test_visiting_the_site(): """Visiting the site."""
5,353,341
def listElements(server, elements, filesToGet): """ Description: Function to print elements list on a distant ssh server. Selected elements, that are in filesToGet, are red underlined. Parameters: - server: the name of the server. - elements: list of element to print out. - filesToGet: list of index of selected files (red underlined). Return: nothing """ print("\n[+] Available elements on " + server + ":") for i, element in enumerate(elements): if i in filesToGet: print("\x1b[101m{0:4}{1:4}{2}\x1b[0m".format(str(i), ":", element)) else: if i % 2 == 0: print("\x1b[100m{0:4}{1:4}{2}\x1b[0m".format(str(i), ":", element)) else: print("{0:4}{1:4}{2}".format(str(i), ":", element))
5,353,342
def warn_vars_naming_style(messages, line, style): """ Check whether varibales and function argumens fit the naming rule.""" naming_style_name = style.Get('CHECK_VAR_NAMING_STYLE') if not naming_style_name: return def is_expr(uwl): return (uwl.tokens and _find_parent(uwl.first.node, None, [syms.expr_stmt])) def is_assignment(uwl): return (is_expr(uwl) and next(filter(lambda t: t.is_name, uwl.tokens), None)) def get_lhs_tokens(uwl): root = _find_parent(uwl.first.node, None, [syms.expr_stmt]) lvalues = _FindLValues(root).lvalues for tok in uwl.tokens: if tok.name == 'EQUAL': break if tok.is_name and id(tok.node) in lvalues: chain = lvalues[id(tok.node)] if (len(chain) == 1 or (len(chain) == 2 and chain[0] == 'self')): yield tok def iter_token_range(first, last): while True: yield first if first is last: break first = first.next_token def iter_parameters(paramlist): for item in paramlist: tokens = iter_token_range(item.first_token, item.last_token) tokens = filter(lambda t: t.name in {'NAME', 'STAR'}, tokens) first = next(tokens, None) if first is None: # This is possible when a comment is added to a function # argument (in some cases, when there is a trailing comma): # # def fn(arg1, # arg2, #comment # arg3, # ): # pass # assert item.first_token.name == 'COMMENT' continue if first.name == 'STAR': yield next(tokens, first) yield first def get_func_args(uwl): for tok in uwl.tokens: if not tok.parameters: continue yield from iter_parameters(tok.parameters) if is_assignment(line): tokens = get_lhs_tokens(line) elif line.tokens and line.is_func_definition: tokens = get_func_args(line) else: return naming_style = REGEXPS['varname'][naming_style_name] for tok in tokens: # explicitly allow UPPER CASE names, because constants sould be # named this way regargless the naming style if not (tok.value == 'self' or tok.value.isupper() or naming_style.match(tok.value)): messages.add(tok, line.AsCode(), Warnings.VAR_NAMING_STYLE, variable=tok.value)
5,353,343
def _create_sync_table_from_resource_df( resource_df: DataFrame, identity_columns: List[str], resource_name: str, sync_db: sqlalchemy.engine.base.Engine, ): """ Take fetched data and push to a new temporary sync table. Includes hash and tentative extractor CreateDate/LastModifiedDates. Parameters ---------- resource_df: DataFrame a DataFrame with current fetched data. identity_columns: List[str] a List of the identity columns for the resource dataframe. resource_name: str the name of the API resource, e.g. "Courses", to be used in SQL sync_db: sqlalchemy.engine.base.Engine an Engine instance for creating database connections """ with sync_db.connect() as con: # ensure sync table exists, need column ordering to be identical to regular table con.execute(f"DROP TABLE IF EXISTS Sync_{resource_name}") con.execute( f""" CREATE TABLE IF NOT EXISTS Sync_{resource_name} ( {SYNC_COLUMNS_SQL} ) """ ) sync_df: DataFrame = resource_df.copy() sync_df = add_hash_and_json_to(sync_df) # add (possibly composite) primary key, sorting for consistent ordering add_sourceid_to(sync_df, identity_columns) now: datetime = datetime.now() sync_df["CreateDate"] = now sync_df["LastModifiedDate"] = now sync_df["SyncNeeded"] = 1 sync_df = sync_df[SYNC_COLUMNS] sync_df.set_index("SourceId", inplace=True) # push to temporary sync table sync_df.to_sql( f"Sync_{resource_name}", sync_db, if_exists="append", index=True, chunksize=1000 )
5,353,344
def validate_schema(path, data, schema): """ Warns and returns the number of errors relating to JSON Schema validation. Uses the `jsonschema <https://python-jsonschema.readthedocs.io/>`__ module. :param object schema: the metaschema against which to validate :returns: the number of errors :rtype: int """ errors = 0 for error in validator(schema, format_checker=FormatChecker()).iter_errors(data): errors += 1 warn(f"{json.dumps(error.instance, indent=2)}\n{error.message} ({'/'.join(error.absolute_schema_path)})\n", SchemaWarning) return errors
5,353,345
def class_dict(base_module, node): """class_dict(base_module, node) -> dict Returns the class dictionary for the module represented by node and with base class base_module""" class_dict_ = {} def update_dict(name, callable_): if class_dict_.has_key(name): class_dict_[name] = callable_(class_dict_[name]) elif hasattr(base_module, name): class_dict_[name] = callable_(getattr(base_module, name)) else: class_dict_[name] = callable_(None) def guarded_SimpleScalarTree_wrap_compute(old_compute): # This builds the scalar tree and makes it cacheable def compute(self): self.is_cacheable = lambda *args, **kwargs: True old_compute(self) self.vtkInstance.BuildTree() return compute def guarded_SetFileName_wrap_compute(old_compute): # This checks for the presence of file in VTK readers def compute(self): # Skips the check if it's a vtkImageReader or vtkPLOT3DReader, because # it has other ways of specifying files, like SetFilePrefix for # multiple files skip = [vtk.vtkBYUReader, vtk.vtkImageReader, vtk.vtkDICOMImageReader, vtk.vtkTIFFReader] # vtkPLOT3DReader does not exist from version 6.0.0 v = vtk.vtkVersion() version = [v.GetVTKMajorVersion(), v.GetVTKMinorVersion(), v.GetVTKBuildVersion()] if version < [6, 0, 0]: skip.append(vtk.vtkPLOT3DReader) if any(issubclass(self.vtkClass, x) for x in skip): old_compute(self) return if self.has_input('SetFileName'): name = self.get_input('SetFileName') elif self.has_input('SetFile'): name = self.get_input('SetFile').name else: raise ModuleError(self, 'Missing filename') if not os.path.isfile(name): raise ModuleError(self, 'File does not exist') old_compute(self) return compute def compute_SetDiffuseColorWidget(old_compute): if old_compute != None: return old_compute def call_SetDiffuseColorWidget(self, color): self.vtkInstance.SetDiffuseColor(color.tuple) return call_SetDiffuseColorWidget def compute_SetAmbientColorWidget(old_compute): if old_compute != None: return old_compute def call_SetAmbientColorWidget(self, color): self.vtkInstance.SetAmbientColor(color.tuple) return call_SetAmbientColorWidget def compute_SetSpecularColorWidget(old_compute): if old_compute != None: return old_compute def call_SetSpecularColorWidget(self, color): self.vtkInstance.SetSpecularColor(color.tuple) return call_SetSpecularColorWidget def compute_SetColorWidget(old_compute): if old_compute != None: return old_compute def call_SetColorWidget(self, color): self.vtkInstance.SetColor(color.tuple) return call_SetColorWidget def compute_SetEdgeColorWidget(old_compute): if old_compute != None: return old_compute def call_SetEdgeColorWidget(self, color): self.vtkInstance.SetEdgeColor(color.tuple) return call_SetEdgeColorWidget def compute_SetBackgroundWidget(old_compute): if old_compute != None: return old_compute def call_SetBackgroundWidget(self, color): self.vtkInstance.SetBackground(color.tuple) return call_SetBackgroundWidget def compute_SetBackground2Widget(old_compute): if old_compute != None: return old_compute def call_SetBackground2Widget(self, color): self.vtkInstance.SetBackground2(color.tuple) return call_SetBackground2Widget def compute_SetVTKCell(old_compute): if old_compute != None: return old_compute def call_SetRenderWindow(self, cellObj): if cellObj.cellWidget: self.vtkInstance.SetRenderWindow(cellObj.cellWidget.mRenWin) return call_SetRenderWindow def compute_SetTransferFunction(old_compute): # This sets the transfer function if old_compute != None: return old_compute def call_SetTransferFunction(self, tf): tf.set_on_vtk_volume_property(self.vtkInstance) return call_SetTransferFunction def compute_SetPointData(old_compute): if old_compute != None: return old_compute def call_SetPointData(self, pd): self.vtkInstance.GetPointData().ShallowCopy(pd) return call_SetPointData def compute_SetCellData(old_compute): if old_compute != None: return old_compute def call_SetCellData(self, cd): self.vtkInstance.GetCellData().ShallowCopy(cd) return call_SetCellData def compute_SetPointIds(old_compute): if old_compute != None: return old_compute def call_SetPointIds(self, point_ids): self.vtkInstance.GetPointIds().SetNumberOfIds(point_ids.GetNumberOfIds()) for i in xrange(point_ids.GetNumberOfIds()): self.vtkInstance.GetPointIds().SetId(i, point_ids.GetId(i)) return call_SetPointIds def compute_CopyImportString(old_compute): if old_compute != None: return old_compute def call_CopyImportVoidPointer(self, pointer): self.vtkInstance.CopyImportVoidPointer(pointer, len(pointer)) return call_CopyImportVoidPointer def guarded_Writer_wrap_compute(old_compute): # The behavior for vtkWriter subclasses is to call Write() # If the user sets a name, we will create a file with that name # If not, we will create a temporary file from the file pool def compute(self): old_compute(self) fn = self.vtkInstance.GetFileName() if not fn: o = self.interpreter.filePool.create_file(suffix='.vtk') self.vtkInstance.SetFileName(o.name) else: o = PathObject(fn) self.vtkInstance.Write() self.set_output('file', o) return compute for var in dir(node.klass): # Everyone that has a Set.*FileName should have a Set.*File port too if set_file_name_pattern.match(var): def get_compute_SetFile(method_name): def compute_SetFile(old_compute): if old_compute != None: return old_compute def call_SetFile(self, file_obj): getattr(self.vtkInstance, method_name)(file_obj.name) return call_SetFile return compute_SetFile update_dict('_special_input_function_' + var[:-4], get_compute_SetFile(var)) if hasattr(node.klass, 'SetFileName'): # ... BUT we only want to check existence of filenames on # readers. VTK is nice enough to be consistent with names, but # this is brittle.. if node.klass.__name__.endswith('Reader'): if not node.klass.__name__.endswith('TiffReader'): update_dict('compute', guarded_SetFileName_wrap_compute) if hasattr(node.klass, 'SetRenderWindow'): update_dict('_special_input_function_SetVTKCell', compute_SetVTKCell) #color gui wrapping if hasattr(node.klass, 'SetDiffuseColor'): update_dict('_special_input_function_SetDiffuseColorWidget', compute_SetDiffuseColorWidget) if hasattr(node.klass, 'SetAmbientColor'): update_dict('_special_input_function_SetAmbientColorWidget', compute_SetAmbientColorWidget) if hasattr(node.klass, 'SetSpecularColor'): update_dict('_special_input_function_SetSpecularColorWidget', compute_SetSpecularColorWidget) if hasattr(node.klass, 'SetEdgeColor'): update_dict('_special_input_function_SetEdgeColorWidget', compute_SetEdgeColorWidget) if hasattr(node.klass, 'SetColor'): update_dict('_special_input_function_SetColorWidget', compute_SetColorWidget) if (issubclass(node.klass, vtk.vtkRenderer) and hasattr(node.klass, 'SetBackground')): update_dict('_special_input_function_SetBackgroundWidget', compute_SetBackgroundWidget) if (issubclass(node.klass, vtk.vtkRenderer) and hasattr(node.klass, 'SetBackground2')): update_dict('_special_input_function_SetBackground2Widget', compute_SetBackground2Widget) if issubclass(node.klass, vtk.vtkWriter): update_dict('compute', guarded_Writer_wrap_compute) if issubclass(node.klass, vtk.vtkScalarTree): update_dict('compute', guarded_SimpleScalarTree_wrap_compute) if issubclass(node.klass, vtk.vtkVolumeProperty): update_dict('_special_input_function_SetTransferFunction', compute_SetTransferFunction) if issubclass(node.klass, vtk.vtkDataSet): update_dict('_special_input_function_SetPointData', compute_SetPointData) update_dict('_special_input_function_SetCellData', compute_SetCellData) if issubclass(node.klass, vtk.vtkCell): update_dict('_special_input_function_SetPointIds', compute_SetPointIds) if issubclass(node.klass, vtk.vtkImageImport): update_dict('_special_input_function_CopyImportString', compute_CopyImportString) return class_dict_
5,353,346
def assert_records_equal_nonvolatile(first, second, volatile_fields, indent=0): """Compare two test_record tuples, ignoring any volatile fields. 'Volatile' fields include any fields that are expected to differ between successive runs of the same test, mainly timestamps. All other fields are recursively compared. """ if isinstance(first, dict) and isinstance(second, dict): if set(first) != set(second): logging.error('%sMismatching keys:', ' ' * indent) logging.error('%s %s', ' ' * indent, list(first.keys())) logging.error('%s %s', ' ' * indent, list(second.keys())) assert set(first) == set(second) for key in first: if key in volatile_fields: continue try: assert_records_equal_nonvolatile(first[key], second[key], volatile_fields, indent + 2) except AssertionError: logging.error('%sKey: %s ^', ' ' * indent, key) raise elif hasattr(first, '_asdict') and hasattr(second, '_asdict'): # Compare namedtuples as dicts so we get more useful output. assert_records_equal_nonvolatile(first._asdict(), second._asdict(), volatile_fields, indent) elif hasattr(first, '__iter__') and hasattr(second, '__iter__'): for idx, (fir, sec) in enumerate(itertools.izip(first, second)): try: assert_records_equal_nonvolatile(fir, sec, volatile_fields, indent + 2) except AssertionError: logging.error('%sIndex: %s ^', ' ' * indent, idx) raise elif (isinstance(first, records.RecordClass) and isinstance(second, records.RecordClass)): assert_records_equal_nonvolatile( {slot: getattr(first, slot) for slot in first.__slots__}, {slot: getattr(second, slot) for slot in second.__slots__}, volatile_fields, indent) elif first != second: logging.error('%sRaw: "%s" != "%s"', ' ' * indent, first, second) assert first == second
5,353,347
def get_playlist_decreasing_popularity(): """This function is used to return playlists in decreasing popularity""" all_ = PlaylistPopularityPrefixed.objects.all() results = [{"playlist_name": obj.playlist_name, "popularity": obj.played} for obj in all_] return results
5,353,348
def validate_numeric_scalar(var: Any) -> bool: """Evaluates whether an argument is a single numeric value. Args: var: the input argument to validate Returns: var: the value if it passes validation Raises: AssertionError: `var` was not numeric. """ assert isinstance(var, (int, float)), "Argument must be single numeric value" return var
5,353,349
def fit_draw_func(data_for_plotting: Dict[base.FitType, histogram.Histogram1D], component: fit.FitComponent, x: np.ndarray, ax: Axes) -> None: """ Determine and draw the fit and data on a given axis. Here, we will draw both the signal and the background dominated data, regardless of what was actually used for the fitting. Args: data_for_plotting: Data to be used for plotting. component: RP fit component. x: x values where the points should be plotted. ax: matplotlib axis where the information should be plotted. Returns: None. The current axis is modified. """ # Determine the region of the fit. # It will be the same for all of the plotting data, so we just take the first one. fit_type, hist = next(iter(data_for_plotting.items())) # Need to scale the inclusive orientation background down by a factor of 3 because we haven't # scaled by number of triggers. Note that this scaling is only approximate, and is just for # convenience when plotting. scale_factor = 1. if fit_type.orientation == "inclusive": scale_factor = 1. / 3. # Determine the values and the errors of the fit function. fit_values = component.evaluate_fit(x = x) errors = component.fit_result.errors fit_hist = histogram.Histogram1D(bin_edges = hist.bin_edges, y = fit_values, errors_squared = errors ** 2) fit_hist *= scale_factor # Plot the main values plot = ax.plot(x, fit_hist.y, label = "Fit", color = AnalysisColors.fit) # Plot the fit errors ax.fill_between( x, fit_hist.y - fit_hist.errors, fit_hist.y + fit_hist.errors, facecolor = plot[0].get_color(), alpha = 0.8, zorder = 2 ) # Plot the data for fit_type, hist in data_for_plotting.items(): h_component = hist.copy() h_component *= scale_factor ax.errorbar( x, h_component.y, yerr = h_component.errors, label = f"{fit_type.region.capitalize()} dom. data", marker = "o", linestyle = "", fillstyle = "none" if fit_type.region == "background" else "full", color = AnalysisColors.signal if fit_type.region == "signal" else AnalysisColors.background, ) # Also plot the background only fit function if the given component fit to the signal region and # we have the signal data. We plot it last so that the colors are consistent throughout all axes. if isinstance(component, fit.SignalFitComponent) and fit_type.region == "signal": # Calculate background function values values = component.evaluate_background(x) errors = component.calculate_background_function_errors(x) fit_hist_component = histogram.Histogram1D( bin_edges = hist.bin_edges, y = values, errors_squared = errors ** 2 ) fit_hist_component *= scale_factor # Plot background values and errors behind everything else plot_background = ax.plot( fit_hist_component.x, fit_hist_component.y, zorder = 1, label = "Bkg. component", color = AnalysisColors.fit_background ) ax.fill_between( fit_hist_component.x, fit_hist_component.y - fit_hist_component.errors, fit_hist_component.y + fit_hist_component.errors, facecolor = plot_background[0].get_color(), alpha = 0.8, zorder = 1, )
5,353,350
def irrf(valor=0): """ -> Função para cálcular o valor do IRRF. :param valor: Valor base do salário para cálculo do IRRF. :return: Retorna o valor do IRRF e alíquota utilizada. """ irrf = [] if valor < 1903.99: irrf.append(0) irrf.append(0) elif valor >= 1903.99 and valor <= 2826.65: irrf.append((valor * 7.5) / 100 - 142.80) # Alíquota de 7.5%, menos parcela de dedução. irrf.append('7,5') elif valor >= 2826.66 and valor <= 3751.05: irrf.append((valor * 15) / 100 - 354.80) # Alíquota de 15%, menos parcela de dedução. irrf.append('15') elif valor >= 3751.06 and valor <= 4664.68: irrf.append((valor * 22.5) / 100 - 636.13) # Alíquota de 22.5%, menos parcela de dedução. irrf.append('22,5') elif valor > 4664.68: irrf.append((valor * 27.5) / 100 - 869.36) # Alíquota de 27.5%, menos parcela de dedução. irrf.append('27,5') return irrf
5,353,351
def find_adcp_files_within_period(working_directory,max_gap=20.0,max_group_size=6): """ Sorts a directory of ADCPRdiWorkHorseData raw files into groups by closeness in time, with groups being separated by more than 'max_gap_minutes'. This method first sorts the files by start time, and then splits the observations where they are more than 'max_gap_minutes' apart. Inputs: working_directory = directory path containing ADCP raw or netcdf files max_gap = maximum time allowed between ADCP observations when grouping (minutes) max_group_size = maximum number of ADCPData objects per group Returns: List of lists that contain groups of input ADCPData objects """ if os.path.exists(working_directory): data_files = glob.glob(os.path.join(working_directory,'*[rR].000')) data_files.extend(glob.glob(os.path.join(working_directory,'*.nc'))) else: print "Path (%s) not found - exiting."%working_directory exit() start_times = list() for data_file in data_files: try: a = adcpy.open_adcp(data_file, file_type="ADCPRdiWorkhorseData", num_av=1) start_times.append(a.mtime[0]) except: start_times.append(None) if start_times: gaps, nn, nnan = find_start_time_gaps(start_times) data_files_sorted = [ data_files[i] for i in nn ] # convert nnan boolean list to integer index nnan_i = nnan * range(len(nnan)) data_files_sorted = [ data_files_sorted[i] for i in nnan_i ] return group_according_to_gap(data_files_sorted,gaps,max_gap,max_group_size)
5,353,352
def test_get_basic(client): """ Tests get endpoint (all crimes) """ client.delete("/streetlights") insert_test_data(client) rs = client.get("/streetlights") collection = rs.json["result"]["streetlights"] assert len(collection) == 5
5,353,353
def regular_transport_factory(host, port, env, config_file): """ Basic unencrypted Thrift transport factory function. Returns instantiated Thrift transport for use with cql.Connection. Params: * host .........: hostname of Cassandra node. * port .........: port number to connect to. * env ..........: environment variables (os.environ) - not used by this implementation. * config_file ..: path to cqlsh config file - not used by this implementation. """ tsocket = TSocket.TSocket(host, port) return TTransport.TFramedTransport(tsocket)
5,353,354
def frames_to_video(images, Fs, output_file_name, codec_spec='h264'): """ Given a list of image files and a sample rate, concatenate those images into a video and write to [output_file_name]. """ if len(images) == 0: return # Determine the width and height from the first image frame = cv2.imread(images[0]) cv2.imshow('video',frame) height, width, channels = frame.shape # Define the codec and create VideoWriter object fourcc = cv2.VideoWriter_fourcc(*codec_spec) out = cv2.VideoWriter(output_file_name, fourcc, Fs, (width, height)) for image in images: frame = cv2.imread(image) out.write(frame) out.release() cv2.destroyAllWindows()
5,353,355
def smoothed_abs(x, eps=1e-8): """A smoothed version of |x| with improved numerical stability.""" return jnp.sqrt(jnp.multiply(x, x) + eps)
5,353,356
def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ plt.imshow(cm, interpolation='nearest', cmap=cmap,aspect='auto') plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') plt.savefig('confusion_mat.png', bbox_inches='tight', format='png', dpi=300, pad_inches=0,transparent=True) plt.show()
5,353,357
def setup_release(keep_days=0): """ Sets up a full release across the cluster See :func:`_setup_release` for info Example: fab <env> setup_release:keep_days=10 # Makes a new release that will last for 10 days """ _setup_release(parse_int_or_exit(keep_days), full_cluster=True)
5,353,358
def increment(t1, seconds): """Adds seconds to a Time object.""" assert valid_time(t1) seconds += time_to_int(t1) return int_to_time(seconds)
5,353,359
def _apply_write(cls): """Add write method if any formats have a registered writer for `cls`.""" skbio_io_write = globals()['write'] write_formats = list_write_formats(cls) if write_formats: if not hasattr(cls, 'default_write_format'): raise NotImplementedError( "Classes with registered writers must provide a " "`default_write_format`. Please add `default_write_format` to" " '%s'." % cls.__name__) def write(self, fp, format=cls.default_write_format, **kwargs): skbio_io_write(self, into=fp, format=format, **kwargs) write.__doc__ = _write_docstring % ( cls.__name__, _formats_for_docs(write_formats), cls.__name__, cls.default_write_format, _import_paths(write_formats) ) cls.write = write
5,353,360
def add_absname(file): """Prefix a file name with the working directory.""" work_dir = os.path.dirname(__file__) return os.path.join(work_dir, file)
5,353,361
def dense(input_shape, output_shape, output_activation='linear', name=None): """ Build a simple Dense model Parameters ---------- input_shape: shape Input shape output_shape: int Number of actions (Discrete only so far) Returns ------- model: Model Keras tf model """ # Create inputs inputs = Input(shape=input_shape) x = Flatten()(inputs) # Create one dense layer and one layer for output x = Dense(256, activation='tanh')(x) x = Dense(256, activation='tanh')(x) predictions = Dense(output_shape, activation='linear')(x) # Finally build model model = Model(inputs=inputs, outputs=predictions, name=name) model.summary() return model
5,353,362
def test_missing_enable_ext(monkeypatch: pytest.MonkeyPatch) -> None: """Test missing enable-ext option fails. Check that a workflow that needs `--enable-ext` and `--enable-dev` fails without those options and passes with them. """ monkeypatch.delenv("CWLTOOL_OPTIONS", raising=False) assert main([get_data("tests/wf/generator/zing.cwl"), "--zing", "zipper"]) == 1 assert ( main( [ "--enable-ext", "--enable-dev", get_data("tests/wf/generator/zing.cwl"), "--zing", "zipper", ] ) == 0 ) monkeypatch.setenv("CWLTOOL_OPTIONS", "--enable-ext --enable-dev") assert main([get_data("tests/wf/generator/zing.cwl"), "--zing", "zipper"]) == 0
5,353,363
def dataset_labels(alldata, tag=None): """ Return label for axis of dataset Args: ds (DataSet): dataset tag (str): can be 'x', 'y' or 'z' """ if tag == 'x': d = alldata.default_parameter_array() return d.set_arrays[0].label if tag == 'y': d = alldata.default_parameter_array() return d.set_arrays[1].label if tag is None or tag == 'z': d = alldata.default_parameter_array() return d.label return '?'
5,353,364
def spread( template: Template, data: Optional[Any], flavor: Flavor, postprocess: Optional[Callable] = None, start_at: int = 0, replace_missing_with: Optional[str] = None, ) -> Tuple[List[Union["pygsheets.Cell"]], int]: """Spread data into cells. Parameters ---------- template A list of expressions which determines how the cells are layed out. data Data to render. Can be a dictionary, a dataclass, a list; just as long as the template expressions can be applied to the data. flavor Determines what kind of cells to generate. postprocess An optional function to call for each cell once it has been created. start_at The row number where the layout begins. Zero-based. replace_missing_with An optional value to be used when a variable isn't found in the data. An exception is raised if a variable is not found and this is not specified. Returns ------- cells The list of cells. n_rows The number of rows which the cells span over. """ data = data or {} # Unpack the template table = [] for c, col in enumerate(template): cells = [] if callable(col): col = col(data) for r, expr in enumerate(col if isinstance(col, list) else [col]): if callable(expr): expr = expr(data) # expr can be: # - expr # - (expr, postprocessor) # - (expr, postprocessor, note) pp = None note = None if isinstance(expr, tuple): if len(expr) == 2: expr, pp = expr else: expr, pp, note, *_ = expr cell = _Cell( r=r + start_at, c=c, expr=_normalize_expression(expr), note=note, postprocess=pp, ) cells.append(cell) table.append(cells) # We're going to add the positions of the named variables to the data named_variables = {} cell_names = {} for c, col in enumerate(table): for r, cell in enumerate(col): if _is_named_formula(cell.expr): name = cell.expr.split(" = ")[0] named_variables[name] = cell.address cell_names[len(cell_names)] = name elif _is_variable(cell.expr): cell_names[len(cell_names)] = cell.expr[1:] else: cell_names[len(cell_names)] = None if flavor == Flavor.PYGSHEETS.value: cells = [ cell.as_pygsheets( data=data, named_variables=named_variables, replace_missing_with=replace_missing_with, ) for col in table for cell in col ] else: raise ValueError( f"Unknown flavor {flavor}. Available options: {', '.join(f.value for f in Flavor)}" ) if postprocess: for i, cell in enumerate(cells): cells[i] = postprocess(cell, cell_names[i]) n_rows = max(map(len, table)) return cells, n_rows
5,353,365
def check_html(name): """ Given a name of graph to save or write, check if it is of valid syntax :param: name: the name to check :type name: str """ assert len(name.split(".")) == 2, "invalid file type for %s" % name assert name.split( ".")[1] == "html", "%s is not a valid html file" % name
5,353,366
def train_validate_test_split(DataFrame, ratios=(0.6,0.2,0.2)): """ Parameters ---------- DataFrame : pandas.DataFrame DataFrame ratios : tuple E.g. (train, validate, test) = (0.6, 0.25, 0.15) (train, test) = (0.6, 0.4) -> validate = test Returns ------- TrainDataset : pandas.DataFrame ValidateDataset : pandas.DataFrame TestDataset : pandas.DataFrame """ from sklearn.model_selection import train_test_split N = len(DataFrame.index) if len(ratios)==3: train_size = ratios[0]/np.sum(ratios) test_size = ratios[2]/np.sum(ratios[1:3]) TrainDataset, TestDataset = train_test_split(DataFrame, train_size=train_size, random_state=42) ValidateDataset, TestDataset = train_test_split(TestDataset, test_size=test_size, random_state=42) elif len(ratios)==2: train_size = ratios[0]/np.sum(ratios) TrainDataset, TestDataset = train_test_split(DataFrame, train_size=train_size, random_state=42) ValidateDataset = TestDataset print('Validate = Test') else: print('ERROR in splitting train, validate, test') return None, None, None n_train = len(TrainDataset.index) n_validate = len(ValidateDataset.index) n_test = len(TestDataset.index) print('Train Samples: {} [{:.1f}%]'.format(n_train, n_train/N*100)) print('Validate Samples: {} [{:.1f}%]'.format(n_validate, n_validate/N*100)) print('Test Samples: {} [{:.1f}%]'.format(n_test, n_test/N*100)) return TrainDataset, ValidateDataset, TestDataset
5,353,367
def is_error(code: Union[Error, int]) -> bool: """Returns True, if error is a (fatal) error, not just a warning.""" if isinstance(code, Error): code = code.code return code >= ERROR
5,353,368
def unpack_triple(item): """Extracts the indices and values from an object. The argument item can either be an instance of SparseTriple or a sequence of length three. Example usage: >>> st = SparseTriple() >>> ind1, ind2, val = unpack_triple(st) >>> quad_expr = [[], [], []] >>> ind1, ind2, val = unpack_triple(quad_expr) """ try: assert item.isvalid() ind1, ind2, val = item.unpack() except AttributeError: ind1, ind2, val = item[0:3] validate_arg_lengths([ind1, ind2, val]) return ind1, ind2, val
5,353,369
def class_report(data=None, label: str = None): """ This function calculates a class report of a given anomaly score. :param data: dataset [DataFrame] :param label: anomaly-score of an given feature [string] :return: Classification report as console output """ print(classification_report(data['Jumps'], data[label], target_names=['normal', 'outlier']))
5,353,370
def test_skip_c() -> None: """ Test with skip """ run_test(['-c', SKIP], 'tests/expected/skip.txt.c.out')
5,353,371
def max_sequence(arr): """ The maximum sum subarray problem consists in finding the maximum sum of a contiguous subsequence in an array or list of integers. :param arr: an array or list of integers. :return: the maximum value found within the subarray. """ best = 0 for x in range(len(arr)): for y in range(len(arr)): if sum(arr[x:y+1]) > best: best = sum(arr[x:y+1]) return best
5,353,372
def get_by_username(username): """ Retrieve a user from the database by their username :param username: :return: """ return database.get(User, username, field="username")
5,353,373
def plot_averaged_forecast(actual, predicted, first_column_act, last_column_act, first_column_pr, last_column_pr): """ Function plot averaged forecasts and actual time series :param actual: time series with averaged actual values :param predicted: time series with averaged predicted values :param first_column_act: numpy array with actual first days :param last_column_act: numpy array with actual seventh days :param first_column_pr: numpy array with predicted first days :param last_column_pr: numpy array with predicted seventh days """ plt.plot(actual, label='7-day moving average actual') plt.fill_between(range(0, len(actual)), first_column_act, last_column_act, alpha=0.4) plt.plot(predicted, label='7-day moving average forecast') plt.fill_between(range(0, len(actual)), first_column_pr, last_column_pr, alpha=0.4) plt.ylabel('River level, cm', fontsize=14) plt.xlabel('Time index', fontsize=14) plt.grid() plt.legend(fontsize=12) plt.show()
5,353,374
def evalPoint(u, v): """ Evaluates the surface point corresponding to normalized parameters (u, v) """ a, b, c, d = 0.5, 0.3, 0.5, 0.1 s = TWO_PI * u t = (TWO_PI * (1 - v)) * 2 r = a + b * cos(1.5 * t) x = r * cos(t) y = r * sin(t) z = c * sin(1.5 * t) dv = PVector() dv.x = (-1.5 * b * sin(1.5 * t) * cos(t) - (a + b * cos(1.5 * t)) * sin(t)) dv.y = (-1.5 * b * sin(1.5 * t) * sin(t) + (a + b * cos(1.5 * t)) * cos(t)) dv.z = 1.5 * c * cos(1.5 * t) q = dv q.normalize() qvn = PVector(q.y, -q.x, 0) qvn.normalize() ww = q.cross(qvn) pt = PVector() pt.x = x + d * (qvn.x * cos(s) + ww.x * sin(s)) pt.y = y + d * (qvn.y * cos(s) + ww.y * sin(s)) pt.z = z + d * ww.z * sin(s) return pt
5,353,375
def decode_funcname2(subprogram_die, address): """ Get the function name from an PC address""" for DIE in subprogram_die: try: lowpc = DIE.attributes['DW_AT_low_pc'].value # DWARF v4 in section 2.17 describes how to interpret the # DW_AT_high_pc attribute based on the class of its form. # For class 'address' it's taken as an absolute address # (similarly to DW_AT_low_pc); for class 'constant', it's # an offset from DW_AT_low_pc. highpc_attr = DIE.attributes['DW_AT_high_pc'] highpc_attr_class = describe_form_class(highpc_attr.form) if highpc_attr_class == 'address': highpc = highpc_attr.value elif highpc_attr_class == 'constant': highpc = lowpc + highpc_attr.value else: print('Error: invalid DW_AT_high_pc class:', highpc_attr_class) continue if lowpc <= address < highpc: return DIE.attributes['DW_AT_name'].value except KeyError: continue return None
5,353,376
def load_cubes(filespecs, callback=None): """ Loads cubes from a list of ABF filenames. Args: * filenames - list of ABF filenames to load Kwargs: * callback - a function that can be passed to :func:`iris.io.run_callback` .. note:: The resultant cubes may not be in the same order as in the file. """ if isinstance(filespecs, str): filespecs = [filespecs] for filespec in filespecs: for filename in glob.glob(filespec): field = ABFField(filename) cube = field.to_cube() # Were we given a callback? if callback is not None: cube = iris.io.run_callback(callback, cube, field, filename) if cube is None: continue yield cube
5,353,377
def get_reddit_slug(permalink): """ Get the reddit slug from a submission permalink, with '_' replaced by '-' Args: permalink (str): reddit submission permalink Returns: str: the reddit slug for a submission """ return list(filter(None, permalink.split("/")))[-1].replace("_", "-")
5,353,378
def newton_halley(func, x0, fprime, fprime2, args=(), tol=1.48e-8, maxiter=50, disp=True): """ Find a zero from Halley's method using the jitted version of Scipy's. `func`, `fprime`, `fprime2` must be jitted via Numba. Parameters ---------- func : callable and jitted The function whose zero is wanted. It must be a function of a single variable of the form f(x,a,b,c...), where a,b,c... are extra arguments that can be passed in the `args` parameter. x0 : float An initial estimate of the zero that should be somewhere near the actual zero. fprime : callable and jitted The derivative of the function (when available and convenient). fprime2 : callable and jitted The second order derivative of the function args : tuple, optional Extra arguments to be used in the function call. tol : float, optional The allowable error of the zero value. maxiter : int, optional Maximum number of iterations. disp : bool, optional If True, raise a RuntimeError if the algorithm didn't converge Returns ------- results : namedtuple root - Estimated location where function is zero. function_calls - Number of times the function was called. iterations - Number of iterations needed to find the root. converged - True if the routine converged """ if tol <= 0: raise ValueError("tol is too small <= 0") if maxiter < 1: raise ValueError("maxiter must be greater than 0") # Convert to float (don't use float(x0); this works also for complex x0) p0 = 1.0 * x0 funcalls = 0 status = _ECONVERR # Halley Method for itr in range(maxiter): # first evaluate fval fval = func(p0, *args) funcalls += 1 # If fval is 0, a root has been found, then terminate if fval == 0: status = _ECONVERGED p = p0 itr -= 1 break fder = fprime(p0, *args) funcalls += 1 # derivative is zero, not converged if fder == 0: p = p0 break newton_step = fval / fder # Halley's variant fder2 = fprime2(p0, *args) p = p0 - newton_step / (1.0 - 0.5 * newton_step * fder2 / fder) if abs(p - p0) < tol: status = _ECONVERGED break p0 = p if disp and status == _ECONVERR: msg = "Failed to converge" raise RuntimeError(msg) return _results((p, funcalls, itr + 1, status))
5,353,379
def staff_dash(request): """Route for displaying the staff dashboard of the site. """ # Empty context to populate: context = {} def get_account_name(path): """Method contains logic to extract the app name from a url path. Method uses the django.urls.resolve method with basic string splitting. """ try: appname = resolve(path).func.__module__.split(".")[1] except: appname = None return appname # Ensuring that the user is a staff member if not redirect home: if request.user.is_staff is False: return redirect("user_account_dashboard") else: # Determining a one month window for queying request data: prev_month = date.today() - timedelta(days=30) # Querying all of the requests made to the database in the last month: max_queryset = Request.objects.filter(time__gt=prev_month) # QuerySet to Dataframe Conversions: requests_timeseries = max_queryset.values_list("time", "response", "method", "path", "user") timeframe_df = pd.DataFrame.from_records(requests_timeseries, columns=["time", "response", "method", "path", "user"]) # Adding columns: timeframe_df["_count"] = 1 timeframe_df['app'] = timeframe_df["path"].apply(lambda x: get_account_name(x)) timeframe_df.set_index(timeframe_df['time'], inplace=True) # Resampling/Transforming data: daily_resample_get = timeframe_df.loc[timeframe_df['method'] == 'GET', "_count"].squeeze().resample('H').sum() daily_resample_posts = timeframe_df.loc[timeframe_df['method'] != 'GET', "_count"].squeeze().resample('H').sum() # Extracting Series for all response codes: daily_200_response = timeframe_df.loc[timeframe_df["response"] < 300, "_count"] daily_300_response = timeframe_df.loc[ (timeframe_df["response"] >= 300) & (timeframe_df["response"] < 400), "_count"] daily_400_response = timeframe_df.loc[ (timeframe_df["response"] >= 400) & (timeframe_df["response"] < 500), "_count"] daily_500_response = timeframe_df.loc[timeframe_df["response"] >= 500, "_count"] # Building a dict of unique get/post timeseries based on unique apps: app_timeseries_dict = {} # Getting relevant list of installed apps: third_party_apps = [app.split(".")[0] for app in settings.INSTALLED_APPS if not app.startswith("django.") and app not in ['rest_framework', 'rest_framework.authtoken', 'rest_auth', 'request'] ] for app in third_party_apps: # Nested dict structure for GET and POST request storage: application_dict = {} # Populating application dict w/ GET and POST request timeseries: try: app_timeseries_get = timeframe_df.loc[ (timeframe_df["app"] == app) & (timeframe_df["method"] == "GET"), "_count"].resample("H").sum() application_dict["GET"] = { "Data" : app_timeseries_get.values.tolist(), "Index": app_timeseries_get.index.tolist() } except: application_dict["GET"] = [0] * len(daily_resample_get.index) try: app_timeseries_post = timeframe_df.loc[ (timeframe_df["app"] == app) & (timeframe_df["method"] == "POST"), "_count"].resample("H").sum() application_dict["POST"] = { "Data": app_timeseries_post.values.tolist(), "Index": app_timeseries_post.index.tolist() } except: application_dict["POST"] = [0] * len(daily_resample_get.index) # Fully Building nested dict: app_timeseries_dict[app] = application_dict print(len(application_dict["GET"]["Data"]), len(application_dict["GET"]['Index'])) # Seralzing dataframe columns to pass to template: context['get_datetime'] = daily_resample_get.index.tolist() # Error-Catching daily response codes when resampling: response_code_dict = {} try: response_code_dict[200] = daily_200_response.squeeze().resample("H").sum().values.tolist() except Exception: response_code_dict[200] = [0] * len(daily_resample_get.index) try: response_code_dict[300] = daily_300_response.squeeze().resample("H").sum().values.tolist() except Exception: response_code_dict[300] = [0] * len(daily_resample_get.index) try: response_code_dict[400] = daily_400_response.squeeze().resample("H").sum().values.tolist() except Exception: response_code_dict[400] = [0] * len(daily_resample_get.index) try: response_code_dict[500] = daily_500_response.squeeze().resample("H").sum().values.tolist() except Exception: response_code_dict[500] = [0] * len(daily_resample_get.index) # Populating Context: context['app_timeseries'] = app_timeseries_dict context['get_requests_count'] = daily_resample_get.values.tolist() context['post_requests_count'] = daily_resample_posts.values.tolist() context['response_codes'] = response_code_dict return render(request, "accounts/staff_dashboard.html", context)
5,353,380
def read_v1_file(path: str = "CBETHUSD.csv") -> tuple: """ Read the data from the file path, reconstruct the format the the data and return a 3d matrix. """ lst = [] res = [] with open(path) as data: reader = csv.reader(data) next(reader) # skip the header row for row in reader: lst.append(float(row[1])) lst_con = [] for i in range(len(lst) - 30): temp = lst[i:i + 25] lst_con.append(temp) res_temp = lst[i + 30] - temp[-1] res_cat = [0, 0, 0] if abs(res_temp) < abs(temp[-1] * 0.05): res_cat[1] = 1 elif res_temp < 0: res_cat[0] = 1 else: res_cat[2] = 1 res.append(res_cat) np_lst = np.array(lst_con).reshape(len(lst_con), 25, 1) np_res = np.array(res) return (np_lst, np_res)
5,353,381
def check_attribute(name, paginator, expected, params): """ Helper method that checks a single attribute and gives a nice error message upon test failure. """ got = getattr(paginator, name) assert expected == got
5,353,382
def get_adjacent_th(spec: torch.Tensor, filter_length: int = 5) -> torch.Tensor: """Zero-pad and unfold stft, i.e., add zeros to the beginning so that, using the multi-frame signal model, there will be as many output frames as input frames. Args: spec (torch.Tensor): input spectrum (B, F, T, 2) filter_length (int): length for frame extension Returns: ret (torch.Tensor): output spectrum (B, F, T, filter_length, 2) """ # noqa: D400 return ( torch.nn.functional.pad(spec, pad=[0, 0, filter_length - 1, 0]) .unfold(dimension=-2, size=filter_length, step=1) .transpose(-2, -1) .contiguous() )
5,353,383
def K2(eps): """ Radar dielectric factor |K|**2 Parameters ---------- eps : complex nd array of complex relative dielectric constants Returns ------- nd - float Radar dielectric factor |K|**2 real """ K_complex = (eps-1.0)/(eps+2.0) return (K_complex*K_complex.conj()).real
5,353,384
def permutation_test_mi(x, y, B=100, random_state=None, **kwargs): """Permutation test for mutual information Parameters ---------- x : 1d array-like Array of n elements y : 1d array-like Array of n elements n_classes : int Number of classes B : int Number of permutations random_state : int Sets seed for random number generator Returns ------- p : float Achieved significance level """ np.random.seed(random_state) # Estimate correlation from original data theta = mi(x, y) # Permutations y_ = y.copy() theta_p = np.zeros(B) for i in range(B): np.random.shuffle(y_) theta_p[i] = mi(x, y_) # Achieved significance level return np.mean(theta_p >= theta)
5,353,385
def convert_time_units(value, value_unit="s", result_unit="s", case_sensitive=True): """ Convert `value` from `value_unit` to `result_unit`. The possible time units are ``'s'``,``'ms'``, ``'us'``, ``'ns'``, ``'ps'``, ``'fs'``, ``'as'``. If ``case_sensitive==True``, matching units is case sensitive. """ if string_utils.string_equal(value_unit,"s",case_sensitive=case_sensitive): value_s=value elif string_utils.string_equal(value_unit,"ms",case_sensitive=case_sensitive): value_s=value*1E-3 elif string_utils.string_equal(value_unit,"us",case_sensitive=case_sensitive): value_s=value*1E-6 elif string_utils.string_equal(value_unit,"ns",case_sensitive=case_sensitive): value_s=value*1E-9 elif string_utils.string_equal(value_unit,"ps",case_sensitive=case_sensitive): value_s=value*1E-12 elif string_utils.string_equal(value_unit,"fs",case_sensitive=case_sensitive): value_s=value*1E-15 elif string_utils.string_equal(value_unit,"as",case_sensitive=case_sensitive): value_s=value*1E-18 else: raise IOError("unrecognized length unit: {0}".format(value_unit)) if string_utils.string_equal(result_unit,"s",case_sensitive=case_sensitive): return value_s elif string_utils.string_equal(result_unit,"ms",case_sensitive=case_sensitive): return value_s*1E3 elif string_utils.string_equal(result_unit,"us",case_sensitive=case_sensitive): return value_s*1E6 elif string_utils.string_equal(result_unit,"ns",case_sensitive=case_sensitive): return value_s*1E9 elif string_utils.string_equal(result_unit,"ps",case_sensitive=case_sensitive): return value_s*1E12 elif string_utils.string_equal(result_unit,"fs",case_sensitive=case_sensitive): return value_s*1E15 elif string_utils.string_equal(result_unit,"as",case_sensitive=case_sensitive): return value_s*1E18 else: raise IOError("unrecognized length unit: {0}".format(result_unit))
5,353,386
def compute_distribution_clusters(columns: list, dataset_name: str, threshold: float, pool: Pool, chunk_size: int = None, quantiles: int = 256): """ Algorithm 2 of the paper "Automatic Discovery of Attributes in Relational Databases" from M. Zhang et al. [1]. This algorithm captures which columns contain data with similar distributions based on the EMD distance metric. Parameters --------- columns : list(str) The columns of the database dataset_name : str Other name of the dataset threshold : float The conservative global EMD cutoff threshold described in [1] pool: multiprocessing.Pool The process pool that will be used in the pre-processing of the table's columns chunk_size : int, optional The number of chunks of each job process (default let the framework decide) quantiles : int, optional The number of quantiles that the histograms are split on (default is 256) Returns ------- list(list(str)) A list that contains the distribution clusters that contain the column names in the cluster """ combinations = list(column_combinations(columns, dataset_name, quantiles, intersection=False)) total = len(combinations) if chunk_size is None: chunk_size = int(calc_chunksize(pool._processes, total)) A: dict = transform_dict(dict(tqdm(pool.imap_unordered(process_emd, combinations, chunksize=chunk_size), total=total))) edges_per_column = list(pool.map(parallel_cutoff_threshold, list(cuttoff_column_generator(A, columns, dataset_name, threshold)))) graph = create_graph(columns, edges_per_column) connected_components = list(nx.connected_components(graph)) return connected_components
5,353,387
def save_cpx_image(image, name): """Save a complex image (represented by real and imaginary channels) as two images.""" save_image(image[0], '{}_real.png'.format(name)) save_image(image[1], '{}_imag.png'.format(name))
5,353,388
def get_eventframe_sequence(event_deque, is_x_first, is_x_flipped, is_y_flipped, shape, data_format, frame_width, frame_gen_method): """ Given a single sequence of x-y-ts events, generate a sequence of binary event frames. """ inp = [] while len(event_deque) > 0: inp.append(get_binary_frame(event_deque, is_x_first, is_x_flipped, is_y_flipped, shape, data_format, frame_width, frame_gen_method)) return np.stack(inp, -1)
5,353,389
def creation_sequence_to_weights(creation_sequence): """ Returns a list of node weights which create the threshold graph designated by the creation sequence. The weights are scaled so that the threshold is 1.0. The order of the nodes is the same as that in the creation sequence. """ # Turn input sequence into a labeled creation sequence first = creation_sequence[0] if isinstance(first, str): # creation sequence if isinstance(creation_sequence, list): wseq = creation_sequence[:] else: wseq = list(creation_sequence) # string like 'ddidid' elif isinstance(first, tuple): # labeled creation sequence wseq = [v[1] for v in creation_sequence] elif isinstance(first, int): # compact creation sequence wseq = uncompact(creation_sequence) else: raise TypeError("Not a valid creation sequence type") # pass through twice--first backwards wseq.reverse() w = 0 prev = 'i' for j, s in enumerate(wseq): if s == 'i': wseq[j] = w prev = s elif prev == 'i': prev = s w += 1 wseq.reverse() # now pass through forwards for j, s in enumerate(wseq): if s == 'd': wseq[j] = w prev = s elif prev == 'd': prev = s w += 1 # Now scale weights if prev == 'd': w += 1 wscale = 1. / float(w) return [ww * wscale for ww in wseq] # return wseq
5,353,390
def parse_args(): """ Parsing shell command arguments, and override appropriate params from setting module :return: None """ parser = argparse.ArgumentParser(version=VERSION) parser.add_argument('-u', action='store', dest='url') parser.add_argument('-f', action='store', dest='url_file') parser.add_argument('-t', action='store', dest='target_log_file') parser.add_argument('-l', action='store', dest='log_file') parser.add_argument('-p', action='store_true', dest='plotting', default=True) parser.add_argument('-m', action='store', dest='max_allowed_concurrent', type=int) parser.add_argument('-b', action='store', dest='base_concurrent', type=int) parser.add_argument('-s', action='store', dest='step_concurrent', type=int) result = parser.parse_args() if result.url: global url url = result.url if result.url_file: global url_file url_file = result.url_file if result.target_log_file: global target_file target_file = result.target_log_file if result.log_file: global log_file log_file = result.log_file if result.plotting: global plotting plotting = result.plotting if result.max_allowed_concurrent: global max_concurrent max_concurrent = result.max_allowed_concurrent if result.base_concurrent: global base_concurrent base_concurrent = result.base_concurrent if result.step_concurrent: global step_concurrent step_concurrent = result.step_concurrent
5,353,391
def group(): """ Model generator. """
5,353,392
def get_seg_features(string): """ Segment text with jieba features are represented in bies format s donates single word """ seg_feature = [] for word in jieba.cut(string): if len(word) == 1: seg_feature.append(0) else: tmp = [2] * len(word) tmp[0] = 1 tmp[-1] = 3 seg_feature.extend(tmp) return seg_feature
5,353,393
def print_device_info(nodemap): """ This function prints the device information of the camera from the transport layer; please see NodeMapInfo example for more in-depth comments on printing device information from the nodemap. :param nodemap: Transport layer device nodemap. :type nodemap: INodeMap :return: True if successful, False otherwise. :rtype: bool """ print('\n*** DEVICE INFORMATION ***\n') try: result = True node_device_information = PySpin.CCategoryPtr(nodemap.GetNode('DeviceInformation')) if PySpin.IsAvailable(node_device_information) and PySpin.IsReadable(node_device_information): features = node_device_information.GetFeatures() for feature in features: node_feature = PySpin.CValuePtr(feature) print('%s: %s' % (node_feature.GetName(), node_feature.ToString() if PySpin.IsReadable(node_feature) else 'Node not readable')) else: print('Device control information not available.') except PySpin.SpinnakerException as ex: print('Error: %s' % ex.message) return False return result
5,353,394
def make_withdrawal(account): """Withdrawal Dialog.""" # @TODO: Use questionary to capture the withdrawal and set it equal to amount variable. Be sure that amount is a floating # point number. amount = questionary.text("How much would you like to withdraw").ask() amount = float(amount) # @TODO: Validates amount of withdrawal. If less than or equal to 0 system exits with error message. if amount <= account["balance"]: account["balance"] = account["balance"] - amount print("Your withdrawl was successful") return account else: sys.exit( "Your do not have enough money in your account to make this withdrawl. PLease try again." ) # @TODO: Validates if withdrawal amount is less than or equal to account balance, processes withdrawal and returns account. # Else system exits with error messages indicating that the account is short of funds.
5,353,395
def coerce_to_pendulum_date(x: PotentialDatetimeType, assume_local: bool = False) -> Optional[Date]: """ Converts something to a :class:`pendulum.Date`. Args: x: something that may be coercible to a date assume_local: if ``True``, assume local timezone; if ``False``, assume UTC Returns: a :class:`pendulum.Date`, or ``None``. Raises: pendulum.parsing.exceptions.ParserError: if a string fails to parse ValueError: if no conversion possible """ p = coerce_to_pendulum(x, assume_local=assume_local) return None if p is None else p.date()
5,353,396
def loss_fixed_depl_noquench(params, loss_data): """ MSE loss function for fitting individual stellar mass histories. Only main sequence efficiency parameters. Quenching is deactivated. Depletion time is fixed at tau=0Gyr, i.e. gas conversion is instantaenous. """ ( lgt, dt, dmhdt, log_mah, sm_target, log_sm_target, sfr_target, fstar_target, index_select, fstar_indx_high, fstar_tdelay, ssfrh_floor, weight, weight_fstar, t_fstar_max, fixed_tau, q_params, ) = loss_data sfr_params = [*params[0:4], fixed_tau] _res = calculate_sm_sfr_fstar_history_from_mah( lgt, dt, dmhdt, log_mah, sfr_params, q_params, index_select, fstar_indx_high, fstar_tdelay, ) mstar, sfr, fstar = _res mstar = jnp.log10(mstar) fstar = jnp.log10(fstar) sfr_res = 1e8 * (sfr - sfr_target) / sm_target sfr_res = jnp.clip(sfr_res, -1.0, 1.0) loss = jnp.mean(((mstar - log_sm_target) / weight) ** 2) loss += jnp.mean(((fstar - fstar_target) / weight_fstar) ** 2) loss += jnp.mean((sfr_res / weight) ** 2) qt = _get_bounded_qt(q_params[0]) loss += _sigmoid(qt - t_fstar_max, 0.0, 50.0, 100.0, 0.0) return loss
5,353,397
def plot_timeseries_comp(date1, value1, date2, value2, fname_list, labelx='Time [UTC]', labely='Value', label1='Sensor 1', label2='Sensor 2', titl='Time Series Comparison', period1=0, period2=0, ymin=None, ymax=None, dpi=72): """ plots 2 time series in the same graph Parameters ---------- date1 : datetime object time of the first time series value1 : float array values of the first time series date2 : datetime object time of the second time series value2 : float array values of the second time series fname_list : list of str list of names of the files where to store the plot labelx : str The label of the X axis labely : str The label of the Y axis label1, label2 : str legend label for each time series titl : str The figure title period1, period2 : float measurement period in seconds used to compute accumulation. If 0 no accumulation is computed dpi : int dots per inch ymin, ymax : float The limits of the Y-axis. None will keep the default limit. Returns ------- fname_list : list of str list of names of the created plots History -------- 201?.??.?? -fvj- created 2017.08.21 -jgr- changed some graphical aspects """ if (period1 > 0) and (period2 > 0): # TODO: document this and check (sometimes artefacts) value1 *= (period1/3600.) value1 = np.ma.cumsum(value1) value2 *= (period2/3600.) value2 = np.ma.cumsum(value2) fig, ax = plt.subplots(figsize=[10, 6.5], dpi=dpi) ax.plot(date1, value1, 'b', label=label1, linestyle='--', marker='o') ax.plot(date2, value2, 'r', label=label2, linestyle='--', marker='s') ax.legend(loc='best') ax.set_xlabel(labelx) ax.set_ylabel(labely) ax.set_title(titl) ax.grid() ax.set_ylim(bottom=ymin, top=ymax) ax.set_xlim([date2[0], date2[-1]]) # rotates and right aligns the x labels, and moves the bottom of the # axes up to make room for them fig.autofmt_xdate() # Make a tight layout fig.tight_layout() for fname in fname_list: fig.savefig(fname, dpi=dpi) plt.close(fig) return fname_list
5,353,398
def write_basissets(inp, basissets, folder): """Writes the unified BASIS_SETS file with the used basissets""" _write_gdt(inp, basissets, folder, "BASIS_SET_FILE_NAME", "BASIS_SETS")
5,353,399