content
stringlengths
22
815k
id
int64
0
4.91M
def sigmoid(x: np.ndarray, derivative: bool = False) -> np.ndarray: """ The sigmoid function which is given by 1/(1+exp(-x)) Where x is a number or np vector. if derivative is True it applied the derivative of the sigmoid function instead. Examples: >>> sigmoid(0) 0.5 >>> abs(sigmoid(np.array([100, 30, 10])) - 1) < 0.001 array([ True, True, True]) >>> abs(sigmoid(-100) - 0) < 0.001 True """ if derivative: return sigmoid(x) * (1 - sigmoid(x)) return 1 / (1 + np.exp(-x))
5,353,200
def recv_rectangle(data): """ Handles receiving a rectangle Args: data (list): the data sent over by the server """ global board_elements global canvas if len(data) == 5: top_left = (int(data[1].split(" ")[0]), int(data[1].split(" ")[1])) bottom_right = (int(data[2].split(" ")[0]), int(data[2].split(" ")[1])) colour = (int(data[3].split(" ")[0]), int( data[3].split(" ")[1]), int(data[3].split(" ")[2])) fill = int(data[4]) rect = shapes.Rectangle(top_left, bottom_right, colour, 1) board_elements.append(rect) canvas = rect.mark(canvas)
5,353,201
def create_hierarchy( num_samples, bundle_size, directory_sizes=None, root=".", start_sample_id=0, start_bundle_id=0, address="", n_digits=1, ): """ SampleIndex Hierarchy Factory method. Wraps create_hierarchy_from_max_sample, which is a max_sample-based API, not a numSample-based API like this method. :param num_samples: The total number of samples. :bundle_size: The max number of samples a bundle file is responsible for. :directory_sizes: The number of samples each directory is responsible for - a list, one value for each level in the directory hierarchy. :root: The root path of this index. Defaults to ".". :start_sample_id: The start of the sample count. Defaults to 0. :n_digits: The number of digits to pad the directories with """ if directory_sizes is None: directory_sizes = [] return create_hierarchy_from_max_sample( num_samples + start_sample_id, bundle_size, directory_sizes=directory_sizes, root=root, start_bundle_id=start_bundle_id, min_sample=start_sample_id, address=address, n_digits=n_digits, )
5,353,202
def run_process(grammar, commandline, tmpdir): """ 'PROCESS' test command runner. It will call ``grammarinator-process`` with the specified command line. Tests whether the processing of the grammar (creating a fuzzer from it) is working properly. :param grammar: file name of the grammar that contained the test command. :param commandline: command line as specified in the test command. :param tmpdir: path to a temporary directory (provided by the environment). """ run_subprocess(grammar, '{python} -m grammarinator.process {commandline}' .format(python=sys.executable, commandline=commandline), tmpdir)
5,353,203
def mock_config_file_with_auth_browser(): """A pytest fixture that creates a temporary directory and a config file to match. Deletes directory after test""" # Load auth config for testing test_auth_file = os.path.join(resource_filename('gtmcore', 'auth{}tests'.format(os.path.sep)), 'auth_config.json') if not os.path.exists(test_auth_file): test_auth_file = f"{test_auth_file}.example" with open(test_auth_file, 'rt') as conf: auth_data = json.load(conf) overrides = { 'auth': { 'provider_domain': 'gigantum.auth0.com', 'signing_algorithm': 'RS256', 'client_id': auth_data['client_id'], 'audience': auth_data['audience'], 'identity_manager': 'browser' } } conf_file, working_dir = _create_temp_work_dir(override_dict=overrides) # Go get a JWT for the test user from the dev auth client (real users are not in this DB) response = requests.post("https://gigantum.auth0.com/oauth/token", json=auth_data) token_data = response.json() yield conf_file, working_dir, token_data shutil.rmtree(working_dir)
5,353,204
def eval_sysu(distmat, q_pids, g_pids, q_camids, g_camids, max_rank = 20): """Evaluation with sysu metric Key: for each query identity, its gallery images from the same camera view are discarded. "Following the original setting in ite dataset" """ num_q, num_g = distmat.shape if num_g < max_rank: max_rank = num_g print("Note: number of gallery samples is quite small, got {}".format(num_g)) indices = np.argsort(distmat, axis=1) pred_label = g_pids[indices] matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32) # compute cmc curve for each query new_all_cmc = [] all_cmc = [] all_AP = [] all_INP = [] num_valid_q = 0. # number of valid query for q_idx in range(num_q): # get query pid and camid q_pid = q_pids[q_idx] q_camid = q_camids[q_idx] # remove gallery samples that have the same pid and camid with query order = indices[q_idx] remove = (q_camid == 3) & (g_camids[order] == 2) keep = np.invert(remove) # compute cmc curve # the cmc calculation is different from standard protocol # we follow the protocol of the author's released code new_cmc = pred_label[q_idx][keep] new_index = np.unique(new_cmc, return_index=True)[1] new_cmc = [new_cmc[index] for index in sorted(new_index)] new_match = (new_cmc == q_pid).astype(np.int32) new_cmc = new_match.cumsum() new_all_cmc.append(new_cmc[:max_rank]) orig_cmc = matches[q_idx][keep] # binary vector, positions with value 1 are correct matches if not np.any(orig_cmc): # this condition is true when query identity does not appear in gallery continue cmc = orig_cmc.cumsum() # compute mINP # refernece Deep Learning for Person Re-identification: A Survey and Outlook pos_idx = np.where(orig_cmc == 1) pos_max_idx = np.max(pos_idx) inp = cmc[pos_max_idx]/ (pos_max_idx + 1.0) all_INP.append(inp) cmc[cmc > 1] = 1 all_cmc.append(cmc[:max_rank]) num_valid_q += 1. # compute average precision # reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision num_rel = orig_cmc.sum() tmp_cmc = orig_cmc.cumsum() tmp_cmc = [x / (i+1.) for i, x in enumerate(tmp_cmc)] tmp_cmc = np.asarray(tmp_cmc) * orig_cmc AP = tmp_cmc.sum() / num_rel all_AP.append(AP) assert num_valid_q > 0, "Error: all query identities do not appear in gallery" all_cmc = np.asarray(all_cmc).astype(np.float32) all_cmc = all_cmc.sum(0) / num_valid_q # standard CMC new_all_cmc = np.asarray(new_all_cmc).astype(np.float32) new_all_cmc = new_all_cmc.sum(0) / num_valid_q mAP = np.mean(all_AP) mINP = np.mean(all_INP) return new_all_cmc, mAP, mINP
5,353,205
def espa_login() -> str: """ Get ESPA password using command-line input :return: """ return getpass.getpass("Enter ESPA password: ")
5,353,206
def search_hyperparameters(simulation_folder, method='RF', mode='classification'): """ Function for searching best hyperparameters for random forest algorithm :param simulation_folder: str, name of subfolder for given data set :return: none, hyperparameters are saved down as side effect """ Start = datetime.now() project_directory = os.path.dirname(os.getcwd()) path_to_save = os.path.join(project_directory, "Data") path_to_characteristics_data = os.path.join(path_to_save, simulation_folder, "Characteristics") path_to_hyperparameters = os.path.join(project_directory, "Models", simulation_folder, method, 'Model') if not os.path.exists(path_to_hyperparameters): os.makedirs(path_to_hyperparameters) X_train = np.load(os.path.join(path_to_characteristics_data, "X_train.npy"), allow_pickle=True) y_train = np.load(os.path.join(path_to_characteristics_data, "y_train.npy"), allow_pickle=True) if method == 'RF': if mode == 'classification': random_params = {'n_estimators': [int(x) for x in range(100, 1001, 100)], 'criterion': ["gini", "entropy"], 'max_features': ['log2', 'sqrt', None], 'max_depth': [int(x) for x in np.linspace(10, 110, num=11)] + [None], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], 'bootstrap': [True, False] } box = RandomForestClassifier() elif mode == 'regression': random_params = {'n_estimators': [int(x) for x in range(100, 1001, 100)], 'criterion': ["mae"], 'max_depth': [int(x) for x in np.linspace(10, 110, num=11)] + [None], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], } box = RandomForestRegressor() elif method == 'GB': if mode == 'classification': random_params = {'n_estimators': [int(x) for x in range(100, 1001, 100)], 'max_features': ['log2', 'sqrt', None], 'max_depth': [int(x) for x in np.linspace(10, 110, num=11)] + [None], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], 'criterion': ['friedman_mse'] } box = GradientBoostingClassifier() elif mode == 'regression': random_params = {'n_estimators': [int(x) for x in range(100, 1001, 100)], 'max_features': ['log2', 'sqrt', None], 'max_depth': [int(x) for x in np.linspace(10, 110, num=11)] + [None], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], 'criterion': ['friedman_mse'] } box = GradientBoostingRegressor() elif method == 'XGB': if mode == 'classification': random_params = {'eta': list(np.arange(0.3, 1.1, 0.1)), 'max_depth': [int(x) for x in range(1, 11)], 'min_child_weight': [int(x) for x in range(1, 11)], 'gamma': [int(x) for x in range(0, 11)], 'base_score': [0.5, 1], 'eval_metric': ['merror', 'auc'], } box = XGBClassifier() elif mode == 'regression': random_params = {'eta': list(np.arange(0.3, 1.1, 0.1)), 'max_depth': [int(x) for x in range(1, 11)], 'min_child_weight': [int(x) for x in range(1, 11)], 'gamma': [int(x) for x in range(0, 11)], 'base_score': [1], 'eval_metric': ['mae'], } box = XGBRegressor() # Random search of parameters, using 10 fold cross validation, # search across 100 different combinations, and use all available cores box_random = RandomizedSearchCV(estimator=box, param_distributions=random_params, n_iter=100, cv=10, verbose=2, random_state=42, n_jobs=-1) # Fit the random search model box_random.fit(X_train, y_train) print(box_random.best_params_) with open(os.path.join(path_to_hyperparameters, "hyperparameters.json"), 'w') as fp: json.dump(box_random.best_params_, fp) End = datetime.now() ExecutedTime = End - Start df = pd.DataFrame({'ExecutedTime': [ExecutedTime]}) df.to_csv(os.path.join(path_to_hyperparameters, "time_for_searching.csv")) print(ExecutedTime)
5,353,207
def row_up1_array(row, col): """This function establishes an array that contains the index for the row above each entry""" up1_array = np.zeros((row, col), dtype=np.uint8) for i in range(row): up1_array[i, :] = np.ones(col, dtype = np.uint8) * ((i - 1) % row) return up1_array
5,353,208
def lcm(a, b): """Return lowest common multiple.""" return a * b // gcd(a, b)
5,353,209
def chl_mean_hsl(weights: np.ndarray) -> Callable[[np.ndarray], np.ndarray]: """ return a function that can calculate the channel-wise average of the input picture in HSL color space """ return lambda img: np.average(cv2.cvtColor(img, cv2.COLOR_BGR2HLS), axis=(0, 1), weights=weights)
5,353,210
def cosine_mrl_option(labels, predicts): """For a minibatch of image and sentences embeddings, computes the pairwise contrastive loss""" #batch_size, double_n_emd = tensor.shape(predicts) #res = tensor.split(predicts, [double_n_emd/2, double_n_emd/2], 2, axis=-1) img = l2norm(labels) text = l2norm(predicts) scores = tensor.dot(img, text.T) diagonal = scores.diagonal() mrl_margin = 0.3 loss_max_violation = True # caption retrieval (1 + neg - pos) cost_s = tensor.maximum(0, mrl_margin + scores - diagonal.reshape((-1,1))) # clear diagonals cost_s = fill_diagonal(cost_s, 0) # img retrieval cost_im = tensor.maximum(0, mrl_margin + scores - diagonal) cost_im = fill_diagonal(cost_im, 0) if loss_max_violation: if cost_s: cost_s = tensor.max(cost_s, axis=1) if cost_im: cost_im = tensor.max(cost_im, axis=0) loss = cost_s.mean() + cost_im.mean() return loss
5,353,211
def escape_cdata(cdata): """Escape a string for an XML CDATA section""" return cdata.replace(']]>', ']]>]]&gt;<![CDATA[')
5,353,212
def insert_hosts(raw_data, to_site_id, to_taxon_id): """Insert hosts.""" log(f'Inserting {DATASET_ID} hosts') raw_data['host_id'] = db.get_ids(raw_data, 'hosts') raw_data['site_key'] = tuple(zip( raw_data.Latitude_Original, raw_data.Longitude_Original, raw_data.verbatim_elevation)) raw_data['site_id'] = raw_data.site_key.map(to_site_id) raw_data['host_taxon_id'] = raw_data.sci_name.map(to_taxon_id) raw_data['mass'] = raw_data['mass (g)'] raw_data['age'] = None raw_data['dataset_host_id'] = None fields = """needs_confirmation""".split() raw_data['host_json'] = json_object(raw_data, fields) raw_data.loc[:, db.HOST_COLUMNS].to_sql( 'hosts', db.connect(), if_exists='append', index=False)
5,353,213
def _collect_data_for_docstring(func, annotation): """ Collect data to be printed in docstring. The data is collected from custom annotation (dictionary passed as a parameter for the decorator) and standard Python annotations for the parameters (if any). Data from custom annotation always overrides Python parameter annotations. Parameters ---------- func: callable Reference to the function. annotation: dict Custom annotation. Returns ------- Dictionary of the collected parameters """ signature = inspect.signature(func) parameters = signature.parameters return_annotation = signature.return_annotation doc_params = dict() # Description of the function doc_params["description"] = annotation.get("description", "") # Flag that tells if the function is a generator. Title for returning # values for generator is 'Yields' and for regular functions it is 'Returns' doc_params["is_generator"] = inspect.isgeneratorfunction(func) doc_params["parameters"] = {} if parameters: # The function may have no parameters # We will print names of ALL parameters from the signature for p_name, p in parameters.items(): # Select description, annotation and types from available sources. # Annotation (parameter of the wrapper) always overrides Python annotation. doc_params["parameters"][p_name] = {} kind = p.kind.name kind = kind.lower().replace("_", " ") doc_params["parameters"][p_name]["kind"] = kind desc, an, plans, devices, enums = "", "", {}, {}, {} if ("parameters" in annotation) and (p_name in annotation["parameters"]): p_an = annotation["parameters"][p_name] desc = p_an.get("description", "") if "annotation" in p_an: an = p_an["annotation"] # Ignore annotation if it is an empty string. Lists of plans # and devices make no sense, so don't include them. if an: # Now save the lists of plans and devices if any plans = p_an.get("plans", {}) devices = p_an.get("devices", {}) enums = p_an.get("enums", {}) if not an and parameters[p_name].annotation != inspect.Parameter.empty: an = str(parameters[p_name].annotation) doc_params["parameters"][p_name]["annotation"] = _convert_annotation_to_type(an) doc_params["parameters"][p_name]["description"] = desc doc_params["parameters"][p_name]["plans"] = plans doc_params["parameters"][p_name]["devices"] = devices doc_params["parameters"][p_name]["enums"] = enums if p.default != inspect.Parameter.empty: # Print will print strings in quotes (desired behavior) v_default = pprint.pformat(p.default) else: v_default = None # If 'v_default' is None, it is not specified, so it should not be printed # in the docstring at all doc_params["parameters"][p_name]["default"] = v_default # Print return value annotation and description. Again the annotation from # custom annotation overrides Python annotation. doc_params["returns"] = {} desc, an = "", "" if "returns" in annotation or (return_annotation != inspect.Parameter.empty): if "returns" in annotation: desc = annotation["returns"].get("description", "") an = annotation["returns"].get("annotation", "") if not an: if return_annotation != inspect.Signature.empty: an = str(return_annotation) doc_params["returns"]["description"] = desc if doc_params["is_generator"]: an = _extract_yield_type(an) doc_params["returns"]["annotation"] = _convert_annotation_to_type(an) return doc_params
5,353,214
def _strip_unbalanced_punctuation(text, is_open_char, is_close_char): """Remove unbalanced punctuation (e.g parentheses or quotes) from text. Removes each opening punctuation character for which it can't find corresponding closing character, and vice versa. It can only handle one type of punctuation (e.g. it could strip quotes or parentheses but not both). It takes functions (is_open_char, is_close_char), instead of the characters themselves, so that we can determine from nearby characters whether a straight quote is an opening or closing quote. Args: text (string): the text to fix is_open_char: a function that accepts the text and an index, and returns true if the character at that index is an opening punctuation mark. is_close_char: same as is_open_char for closing punctuation mark. Returns: The text with unmatched punctuation removed. """ # lists of unmatched opening and closing chararacters opening_chars = [] unmatched_closing_chars = [] for idx, c in enumerate(text): if is_open_char(text, idx): opening_chars.append(idx) elif is_close_char(text, idx): if opening_chars: # this matches a character we found earlier opening_chars.pop() else: # this doesn't match any opening character unmatched_closing_chars.append(idx) char_indices = [i for (i, _) in enumerate(text) if not(i in opening_chars or i in unmatched_closing_chars)] stripped_text = "".join([text[i] for i in char_indices]) return stripped_text
5,353,215
def read(fin, alphabet=None): """Read and parse a fasta file. Args: fin -- A stream or file to read alphabet -- The expected alphabet of the data, if given Returns: SeqList -- A list of sequences Raises: ValueError -- If the file is unparsable """ seqs = [s for s in iterseq(fin, alphabet)] name = names[0] if hasattr(fin, "name"): name = fin.name return SeqList(seqs, name=name)
5,353,216
def trip_destination( trips, tours_merged, chunk_size, trace_hh_id): """ Choose a destination for all 'intermediate' trips based on trip purpose. Final trips already have a destination (the primary tour destination for outbound trips, and home for inbound trips.) """ trace_label = 'trip_destination' model_settings_file_name = 'trip_destination.yaml' model_settings = config.read_model_settings(model_settings_file_name) CLEANUP = model_settings.get('CLEANUP', True) fail_some_trips_for_testing = model_settings.get('fail_some_trips_for_testing', False) trips_df = trips.to_frame() tours_merged_df = tours_merged.to_frame() estimator = estimation.manager.begin_estimation('trip_destination') if estimator: estimator.write_coefficients(model_settings=model_settings) # estimator.write_spec(model_settings, tag='SAMPLE_SPEC') estimator.write_spec(model_settings, tag='SPEC') estimator.set_alt_id(model_settings["ALT_DEST_COL_NAME"]) estimator.write_table(inject.get_injectable('size_terms'), 'size_terms', append=False) estimator.write_table(inject.get_table('land_use').to_frame(), 'landuse', append=False) estimator.write_model_settings(model_settings, model_settings_file_name) logger.info("Running %s with %d trips", trace_label, trips_df.shape[0]) trips_df, save_sample_df = run_trip_destination( trips_df, tours_merged_df, estimator=estimator, chunk_size=chunk_size, trace_hh_id=trace_hh_id, trace_label=trace_label, fail_some_trips_for_testing=fail_some_trips_for_testing) # testing feature t0 make sure at least one trip fails so trip_purpose_and_destination model is run if config.setting('testing_fail_trip_destination', False) and not trips_df.failed.any(): if (trips_df.trip_num < trips_df.trip_count).sum() == 0: raise RuntimeError(f"can't honor 'testing_fail_trip_destination' setting because no intermediate trips") fail_o = trips_df[trips_df.trip_num < trips_df.trip_count].origin.max() trips_df.failed = (trips_df.origin == fail_o) & \ (trips_df.trip_num < trips_df.trip_count) if trips_df.failed.any(): logger.warning("%s %s failed trips", trace_label, trips_df.failed.sum()) if inject.get_injectable('pipeline_file_prefix', None): file_name = f"{trace_label}_failed_trips_{inject.get_injectable('pipeline_file_prefix')}" else: file_name = f"{trace_label}_failed_trips" logger.info("writing failed trips to %s", file_name) tracing.write_csv(trips_df[trips_df.failed], file_name=file_name, transpose=False) if estimator: estimator.end_estimation() # no trips should have failed since we overwrite choices and sample should have not failed trips assert not trips_df.failed.any() if CLEANUP: if trips_df.failed.any(): flag_failed_trip_leg_mates(trips_df, 'failed') if save_sample_df is not None: save_sample_df.drop(trips_df.index[trips_df.failed], level='trip_id', inplace=True) trips_df = cleanup_failed_trips(trips_df) trips_df.drop(columns='failed', inplace=True, errors='ignore') pipeline.replace_table("trips", trips_df) if trace_hh_id: tracing.trace_df(trips_df, label=trace_label, slicer='trip_id', index_label='trip_id', warn_if_empty=True) if save_sample_df is not None: # might be none if want_sample_table but there are no intermediate trips # expect samples only for intermediate trip destinations assert len(save_sample_df.index.get_level_values(0).unique()) == \ len(trips_df[trips_df.trip_num < trips_df.trip_count]) sample_table_name = model_settings.get('DEST_CHOICE_SAMPLE_TABLE_NAME') assert sample_table_name is not None logger.info("adding %s samples to %s" % (len(save_sample_df), sample_table_name)) # lest they try to put tour samples into the same table if pipeline.is_table(sample_table_name): raise RuntimeError("sample table %s already exists" % sample_table_name) pipeline.extend_table(sample_table_name, save_sample_df)
5,353,217
def get_min_max_value(dfg): """ Gets min and max value assigned to edges in DFG graph Parameters ----------- dfg Directly follows graph Returns ----------- min_value Minimum value in directly follows graph max_value Maximum value in directly follows graph """ min_value = 9999999999 max_value = -1 for edge in dfg: if dfg[edge] < min_value: min_value = dfg[edge] if dfg[edge] > max_value: max_value = dfg[edge] return min_value, max_value
5,353,218
def process_post(category_id, post_details, user): """Check topic is present in Discourse. IF exists then post, otherwise create new topic for category """ error = False error_message = '' # DISCOURSE_DEV_POST_SUFFIX is used to differentiate the same target name from different dev systems in Discourse # It is not intended to be used for production when there is a dedicated Discourse. post_details['title'] = post_details['title'] + settings.DISCOURSE_DEV_POST_SUFFIX try: topic = DiscourseTopic.objects.get(topic_title=post_details['title']) topic_id = topic.discourse_topic_id if post_details['content'] == '': # No content - Return the URL for the topic post_url = os.path.join(settings.DISCOURSE_HOST, 't', str(topic_id)) else: # Create post for topic error, error_message, null_id, post_url = create_post(user, post_details, topic_id=topic_id) except DiscourseTopic.DoesNotExist: # Create Topic for Category error, error_message, topic_id, post_url = create_post(user, post_details, category_id=category_id) if not error: DiscourseTopic.objects.create(topic_title=post_details['title'], author=user, discourse_topic_id=topic_id) return error, error_message, topic_id, post_url
5,353,219
def vgg_fcn(num_classes=1000, pretrained=False, batch_norm=False, **kwargs): """VGG 16-layer model (configuration "D") Args: num_classes(int): the number of classes at dataset pretrained (bool): If True, returns a model pre-trained on ImageNet batch_norm: if you want to introduce batch normalization """ if pretrained: kwargs['init_weights'] = True model = VGG(make_layers(cfg['D'], batch_norm=batch_norm), num_classes, **kwargs) if pretrained: # loading weights if batch_norm: pretrained_weights = model_zoo.load_url(model_urls['vgg19_bn']) else: pretrained_weights = model_zoo.load_url(model_urls['vgg19']) model.load_state_dict(pretrained_weights, strict=False) return model
5,353,220
def test_write(string: str) -> None: """Test illud.outputs.standard_output.StandardOutput.write.""" stdout_mock = MagicMock(sys.stdout) with patch('sys.stdout', stdout_mock): standard_output: StandardOutput = StandardOutput() standard_output.write(string) stdout_mock.write.assert_called_once_with(string)
5,353,221
def apply_heatmap( frame: npt.NDArray[np.uint8], cmap: Union[str, Colormap] = "Pastel1", normalize: bool = True, ) -> npt.NDArray[np.uint8]: """Apply heatmap to an input BGR image. Args: frame (npt.NDArray[np.uint8]) : Input image (BGR). cmap (Union[str, Colormap], optional) : An identifier for color maps. Defaults to ``"Pastel1"``. normalize (bool, optional) : Whether to perform :func:`min-max normalization <veditor.utils.image_utils.min_max_normalization>`. Defaults to ``True``. Returns: npt.NDArray[np.uint8]: [description] .. plot:: :class: popup-img >>> import cv2 >>> import matplotlib.pyplot as plt >>> from veditor.utils import cv2plot, SampleData, apply_heatmap >>> frame = cv2.imread(SampleData().IMAGE_PATH) >>> colormaps = ["Pastel1", "Set1", "tab10", "hsv", "bwr", "Reds"] >>> num_methods = len(colormaps) >>> ncols = 3; nrows = num_methods//ncols >>> fig, axes = plt.subplots(ncols=ncols, nrows=nrows, figsize=(6 * ncols, 4 * nrows)) >>> for i,cmap in enumerate(colormaps): ... ax = cv2plot(apply_heatmap(frame, cmap=cmap), ax=axes[i%2][i//2]) ... ax.set_title(cmap) >>> fig.show() """ cmap = plt.get_cmap(cmap) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) if normalize: gray = min_max_normalization(gray) gray = gray.astype(float) / 255.0 frame = cv2.cvtColor((255 * cmap(gray)).astype(np.uint8)[:, :, :3], cv2.COLOR_RGB2BGR) return frame
5,353,222
def fmt_time(timestamp): """Return ISO formatted time from seconds from epoch.""" if timestamp: return time.strftime('%Y-%m-%dT%H:%M:%S', time.localtime(timestamp)) else: return '-'
5,353,223
def lislice(iterable, *args): """ (iterable, stop) or (iterable, start, stop[, step]) >>> lislice('ABCDEFG', 2) ['A', 'B'] >>> lislice('ABCDEFG', 2, 4) ['C', 'D'] >>> lislice('ABCDEFG', 2, None) ['C', 'D', 'E', 'F', 'G'] >>> lislice('ABCDEFG', 0, None, 2) ['A', 'C', 'E', 'G'] """ return list(islice(iterable, *args))
5,353,224
async def up(ctx): """ A command to update the kebab cote. """ global cote cote += 1 msg = "```" msg += "+1 pour Tristan : ta cote est maintenant de " msg += str(cote) msg += "```" await ctx.send(msg)
5,353,225
def solve_with_duplicate_optional_items(data, max_height, max_width): """Solve the problem by building 2 optional items (rotated or not) for each item.""" # Derived data (expanded to individual items). data_widths = data['width'].to_numpy() data_heights = data['height'].to_numpy() data_availability = data['available'].to_numpy() data_values = data['value'].to_numpy() # Non duplicated items data. base_item_widths = np.repeat(data_widths, data_availability) base_item_heights = np.repeat(data_heights, data_availability) base_item_values = np.repeat(data_values, data_availability) num_data_items = len(base_item_values) # Create rotated items by duplicating. item_widths = np.concatenate((base_item_widths, base_item_heights)) item_heights = np.concatenate((base_item_heights, base_item_widths)) item_values = np.concatenate((base_item_values, base_item_values)) num_items = len(item_values) # OR-Tools model model = cp_model.CpModel() # Variables x_starts = [] y_starts = [] is_used = [] x_intervals = [] y_intervals = [] for i in range(num_items): ## Is the item used? is_used.append(model.NewBoolVar(f'is_used{i}')) ## Item coordinates. x_starts.append( model.NewIntVar(0, max_width - int(item_widths[i]), f'x_start{i}')) y_starts.append( model.NewIntVar(0, max_height - int(item_heights[i]), f'y_start{i}')) ## Interval variables. x_intervals.append( model.NewOptionalFixedSizeIntervalVar(x_starts[i], item_widths[i], is_used[i], f'x_interval{i}')) y_intervals.append( model.NewOptionalFixedSizeIntervalVar(y_starts[i], item_heights[i], is_used[i], f'y_interval{i}')) # Constraints. ## Only one of non-rotated/rotated pair can be used. for i in range(num_data_items): model.Add(is_used[i] + is_used[i + num_data_items] <= 1) ## 2D no overlap. model.AddNoOverlap2D(x_intervals, y_intervals) ## Objective. model.Maximize(cp_model.LinearExpr.WeightedSum(is_used, item_values)) # Output proto to file. if FLAGS.output_proto: print('Writing proto to %s' % FLAGS.output_proto) with open(FLAGS.output_proto, 'w') as text_file: text_file.write(str(model)) # Solve model. solver = cp_model.CpSolver() if FLAGS.params: text_format.Parse(FLAGS.params, solver.parameters) status = solver.Solve(model) # Report solution. if status == cp_model.OPTIMAL: used = {i for i in range(num_items) if solver.BooleanValue(is_used[i])} data = pd.DataFrame({ 'x_start': [solver.Value(x_starts[i]) for i in used], 'y_start': [solver.Value(y_starts[i]) for i in used], 'item_width': [item_widths[i] for i in used], 'item_height': [item_heights[i] for i in used], 'x_end': [solver.Value(x_starts[i]) + item_widths[i] for i in used], 'y_end': [ solver.Value(y_starts[i]) + item_heights[i] for i in used ], 'item_value': [item_values[i] for i in used] }) print(data)
5,353,226
def calculate_transition_cost(number_objs: int, target_storage_class: str) -> float: """ Calculates the cost of transition data from one class to another Args: number_objs: the number of objects that are added on a monthly basis target_storage_class: the storage class the objects will reside in after they are transitioned Returns: int, the cost of the transition """ target_storage_class_data = data[target_storage_class] transition_cost = ( number_objs / target_storage_class_data["items_per_transition_chunk"] ) * target_storage_class_data["transition_cost"] return transition_cost
5,353,227
def _exceptionwarning(ui): """Produce a warning message for the current active exception""" # For compatibility checking, we discard the portion of the hg # version after the + on the assumption that if a "normal # user" is running a build with a + in it the packager # probably built from fairly close to a tag and anyone with a # 'make local' copy of hg (where the version number can be out # of date) will be clueful enough to notice the implausible # version number and try updating. ct = util.versiontuple(n=2) worst = None, ct, b'', b'' if ui.config(b'ui', b'supportcontact') is None: for name, mod in extensions.extensions(): # 'testedwith' should be bytes, but not all extensions are ported # to py3 and we don't want UnicodeException because of that. testedwith = stringutil.forcebytestr( getattr(mod, 'testedwith', b'') ) version = extensions.moduleversion(mod) report = getattr(mod, 'buglink', _(b'the extension author.')) if not testedwith.strip(): # We found an untested extension. It's likely the culprit. worst = name, b'unknown', report, version break # Never blame on extensions bundled with Mercurial. if extensions.ismoduleinternal(mod): continue tested = [util.versiontuple(t, 2) for t in testedwith.split()] if ct in tested: continue lower = [t for t in tested if t < ct] nearest = max(lower or tested) if worst[0] is None or nearest < worst[1]: worst = name, nearest, report, version if worst[0] is not None: name, testedwith, report, version = worst if not isinstance(testedwith, (bytes, str)): testedwith = b'.'.join( [stringutil.forcebytestr(c) for c in testedwith] ) extver = version or _(b"(version N/A)") warning = _( b'** Unknown exception encountered with ' b'possibly-broken third-party extension "%s" %s\n' b'** which supports versions %s of Mercurial.\n' b'** Please disable "%s" and try your action again.\n' b'** If that fixes the bug please report it to %s\n' ) % (name, extver, testedwith, name, stringutil.forcebytestr(report)) else: bugtracker = ui.config(b'ui', b'supportcontact') if bugtracker is None: bugtracker = _(b"https://mercurial-scm.org/wiki/BugTracker") warning = ( _( b"** unknown exception encountered, " b"please report by visiting\n** " ) + bugtracker + b'\n' ) sysversion = pycompat.sysbytes(sys.version).replace(b'\n', b'') def ext_with_ver(x): ext = x[0] ver = extensions.moduleversion(x[1]) if ver: ext += b' ' + ver return ext warning += ( (_(b"** Python %s\n") % sysversion) + (_(b"** Mercurial Distributed SCM (version %s)\n") % util.version()) + ( _(b"** Extensions loaded: %s\n") % b", ".join( [ext_with_ver(x) for x in sorted(extensions.extensions())] ) ) ) return warning
5,353,228
def get_covid(): """This module sends off a covid notification. You can't get covid from this.""" covid_data = covid_handler() covid_content = Markup("Date: " + str(covid_data["date"]) + ",<br/>Country: " + str( covid_data["areaName"]) + ",<br/>New Cases: " + str( covid_data["newCasesByPublishDate"]) + ",<br/>Total Cases: " + str( covid_data["cumCasesByPublishDate"])) # The above formats the covid data, ready to send it off as a notification covid_notification = {"title": "Covid Cases", "content": covid_content} return covid_notification
5,353,229
def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i : i + n]
5,353,230
def send_songogram(your_name, artist_first_name, artist_last_name, song_name, number_to_call): """ Function for sending a Sonogram. :param your_name: string containing the person sending the sonogram's name. :param artist_first_name: string containing the musician's first name. :param artist_last_name: string containing the musician's last name. :param song_name: string containing the song name. :param number_to_call: string of the telephone number to send a sonogram to. """ try: lyrics = scrape_lyrics(artist_first_name, artist_last_name, song_name) make_call(number_to_call, lyrics, your_name) send_text(song_name, artist_first_name + ' ' + artist_last_name, number_to_call, your_name) return {'status': 201} except: return {'status': 400,'error': 'Bad Request', 'message': 'Unable to process request'}
5,353,231
def set_proto_message_event( pb_message_event, span_data_message_event): """Sets properties on the protobuf message event. :type pb_message_event: :class: `~opencensus.proto.trace.Span.TimeEvent.MessageEvent` :param pb_message_event: protobuf message event :type span_data_message_event: :class: `~opencensus.trace.time_event.MessageEvent` :param span_data_message_event: opencensus message event """ pb_message_event.type = span_data_message_event.type pb_message_event.id = span_data_message_event.id pb_message_event.uncompressed_size = \ span_data_message_event.uncompressed_size_bytes pb_message_event.compressed_size = \ span_data_message_event.compressed_size_bytes
5,353,232
def segm_and_cat(sersic_2d_image): """fixture for segmentation and catalog""" image_mean, image_median, image_stddev = sigma_clipped_stats(sersic_2d_image, sigma=3) threshold = image_stddev * 3 # Define smoothing kernel kernel_size = 3 fwhm = 3 # Min Source size (area) npixels = 4 ** 2 return make_catalog( sersic_2d_image, threshold=threshold, deblend=True, kernel_size=kernel_size, fwhm=fwhm, npixels=npixels, contrast=0.00, plot=False, )
5,353,233
def p_function_definition(p): """function_definition : declaration_specifiers declarator declaration_list compound_statement | function_definition_full compound_statement | declarator declaration_list compound_statement | declarator compound_statement""" global LAST_FUNCTION_DECLARATION symTab = get_current_symtab() if len(p) == 3: p[0] = p[1] p[0]["code"] += p[2]["code"] + [["ENDFUNCTION"]] no_return = True ignorecheck = False for code in p[2]["code"]: # print(code, ignorecheck, p[1]["value"]) if len(code) > 0 and code[0] == "BEGINFUNCTION": ignorecheck = True elif len(code) > 0 and code[0] == "ENDFUNCTION": ignorecheck = False elif len(code) > 0 and code[0] == "RETURN" and not ignorecheck: if len(code) == 1 and p[1]["value"] != "void": err_msg = "Error at line number " + str(p.lineno(1)) + ": Return type not matching declared type" GLOBAL_ERROR_LIST.append(err_msg) raise SyntaxError # raise Exception("Return type not matching declared type") elif ( len(code) > 1 and p[1]["value"] != code[1]["type"] and not (p[1]["value"] == "int" and code[1]["type"].startswith("enum")) ): err_msg = "Error at line number " + str(p.lineno(1)) + ": Return type not matching declared type" GLOBAL_ERROR_LIST.append(err_msg) raise SyntaxError # raise Exception("Return type not matching declared type") no_return = False if no_return and p[1]["value"] != "void": err_msg = "Error at line number " + str(p.lineno(1)) + ": Return type not matching declared type" GLOBAL_ERROR_LIST.append(err_msg) raise SyntaxError # raise Exception("Return type not matching declared type") LAST_FUNCTION_DECLARATION = None else: # TODO p[0] = ("function_definition",) + tuple(p[-len(p) + 1 :])
5,353,234
def break_word_by_trailing_integer(pname_fid: str) -> Tuple[str, str]: """ Splits a word that has a value that is an integer Parameters ---------- pname_fid : str the DVPRELx term (e.g., A(11), NSM(5)) Returns ------- word : str the value not in parentheses value : int the value in parentheses Examples -------- >>> break_word_by_trailing_integer('T11') ('T', '11') >>> break_word_by_trailing_integer('THETA11') ('THETA', '11') """ nums = [] i = 0 for i, letter in enumerate(reversed(pname_fid)): if letter.isdigit(): nums.append(letter) else: break num = ''.join(nums[::-1]) if not num: msg = ("pname_fid=%r does not follow the form 'T1', 'T11', 'THETA42' " "(letters and a number)" % pname_fid) raise SyntaxError(msg) word = pname_fid[:-i] assert len(word)+len(num) == len(pname_fid), 'word=%r num=%r pname_fid=%r' % (word, num, pname_fid) return word, num
5,353,235
def parse_args(): """ parse command line arguments :return dict: dictionary of parameters """ argparser = argparse.ArgumentParser() # training data argparser.add_argument('--trainfiles', nargs='*', default=['./data/valid.tfrecords'], help='Data file(s) for training (tfrecord).') argparser.add_argument('--testfiles', nargs='*', default=['./data/valid.tfrecords'], help='Data file(s) for validation or evaluation (tfrecord).') # input configuration argparser.add_argument('--map_pixel_in_meters', type=float, default=0.02, help='The width (and height) of a pixel of the map in meters. Defaults to 0.02 for House3D data.') argparser.add_argument('--init_particles_distr', type=str, default='tracking', help='Distribution of initial particles. Possible values: tracking / one-room.') argparser.add_argument('--init_particles_std', nargs='*', default=["0.3", "0.523599"], help='Standard deviations for generated initial particles for tracking distribution. Values: translation std (meters), rotation std (radians)') argparser.add_argument('--trajlen', type=int, default=24, help='Length of trajectories.') # PF configuration argparser.add_argument('--num_particles', type=int, default=30, help='Number of particles in Particle Filter.') argparser.add_argument('--transition_std', nargs='*', default=["0.0", "0.0"], help='Standard deviations for transition model. Values: translation std (meters), rotation std (radians)') argparser.add_argument('--resample', type=str, default='false', help='Resample particles in Particle Filter. Possible values: true / false.') argparser.add_argument('--alpha_resample_ratio', type=float, default=1.0, help='Trade-off parameter for soft-resampling in PF-net. Only effective if resample == true. Assumes values 0.0 < alpha <= 1.0. Alpha equal to 1.0 corresponds to hard-resampling.') # training configuration argparser.add_argument('--batch_size', type=int, default=24, help='Minibatch size for training.') argparser.add_argument('--learningrate', type=float, default=0.0025, help='Initial learning rate for training.') argparser.add_argument('--epochs', type=int, default=1, help='Number of epochs for training.') argparser.add_argument('--load', type=str, default='', help='Load a previously trained model from a checkpoint file.') argparser.add_argument('--seed', type=int, default='42', help='Fix the random seed of numpy and tensorflow.') argparser.add_argument('--logpath', type=str, default='./log/', help='Specify path for logs.') argparser.add_argument('--gpu_num', type=int, default='0', help='use gpu no. to train') params = argparser.parse_args() # convert multi-input fileds to numpy arrays params.transition_std = np.array(params.transition_std, np.float32) params.init_particles_std = np.array(params.init_particles_std, np.float32) # build initial covariance matrix of particles, in pixels and radians particle_std = params.init_particles_std.copy() particle_std[0] = particle_std[0] / params.map_pixel_in_meters # convert meters to pixels particle_std2 = np.square(particle_std) # variance params.init_particles_cov = np.diag(particle_std2[(0, 0, 1),]) params.transition_std = np.array(params.transition_std[0] / params.map_pixel_in_meters, params.transition_std[1]) # in pixels & radians # fix seed np.random.seed(params.seed) tf.random.set_seed(params.seed) # use RNN as stateful/non-stateful params.stateful = False params.return_state = True #HACK hardcode fix padding for map params.global_map_size = (4000, 4000, 1) params.window_scaler = 8.0 # filter out info and warning messages os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # convert boolean fields if params.resample not in ['false', 'true']: raise ValurError else: params.resample = (params.resample == 'true') gpus = tf.config.experimental.list_physical_devices('GPU') assert params.gpu_num < len(gpus) if gpus: # restrict TF to only use the first GPU try: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) tf.config.experimental.set_visible_devices(gpus[params.gpu_num], 'GPU') logical_gpus = tf.config.experimental.list_logical_devices('GPU') except RuntimeError as e: # visible devices must be set before GPUs have been initialized print(e) return params
5,353,236
def preprocess_data(image, label, is_training): """CIFAR data preprocessing""" image = tf.image.convert_image_dtype(image, tf.float32) if is_training: crop_padding = 4 image = tf.pad(image, [[crop_padding, crop_padding], [crop_padding, crop_padding], [0, 0]], 'REFLECT') image = tf.image.random_crop(image, [32, 32, 3]) image = tf.image.random_flip_left_right(image) if FLAGS.distort_color: image = color_distortion(image, s=1.0) else: image = tf.image.resize_with_crop_or_pad(image, 32, 32) # central crop return image, label
5,353,237
def delete_env(dlpx_obj, env_name): """ Deletes an environment engine: Dictionary of engines env_name: Name of the environment to delete """ engine_name = dlpx_obj.dlpx_engines.keys()[0] env_obj = find_obj_by_name(dlpx_obj.server_session, environment, env_name) if env_obj: environment.delete(dlpx_obj.server_session, env_obj.reference) dlpx_obj.jobs[engine_name] = \ dlpx_obj.server_session.last_job elif env_obj is None: print('Environment was not found in the Engine: {}'.format(env_name)) sys.exit(1)
5,353,238
def write_to_json_file(content, path: str, indent: int = 4, sort_keys: bool = False, silent: bool = True) -> None: """ Convenience function to write the given content to a json file :param content: Content to write to the json file :param path: Path to the json file :param indent: Indentation to be used for writing to the json file :param sort_keys: Whether to sort keys when writing or not :param silent: Whether to silently pass exceptions or not :return: None """ try: with open(path, 'w') as json_file: json.dump(content, json_file, indent=indent, sort_keys=sort_keys) except TypeError as type_error: if not silent: raise type_error
5,353,239
def load_Counties(): """ Use load_country() instead of this function """ # Get data # Load data using Pandas dfd = { 'positive': reread_csv(csv_data_file_Global['confirmed_US']), 'death': reread_csv(csv_data_file_Global['deaths_US']), } return dfd
5,353,240
def extract_parmtop_residue_with_name(filename, resname): """ fixme - update doc Extract residue name and atom name/type mapping from input parmtop. Note: Only one residue must be present in the topology. Parameters ---------- filename: Path Filename of the input parmtop. Returns ------- dict key = residue name, value = atom name to type mapping (dict). """ res_top = pmd.load_file(str(filename)) extracted_residues = {} for atom in res_top: # extract only the requested residues if atom.residue.name != resname: continue if atom.residue.name not in extracted_residues: extracted_residues[atom.residue.name] = {} extracted_residues[atom.residue.name][atom.name] = atom.type return extracted_residues, res_top
5,353,241
def validate_model_present(program_name, optional_arg_map): """ Determine if the model file was passed separately or requires extraction from the archive. If the model is in the archive, extract it to the temporary model location, and set that file as the MODEL_FILE_SWITCH argument. The MODEL_FILE_SWITCH value may be specified as multiple comma-separated models. :param program_name: the name of the calling program, for logging :param optional_arg_map: the optional arguments from the command line :raises CLAException: if the specified model is not an existing file, or the model is not found in the archive, or the model is not found from either argument """ _method_name = 'validate_model_present' global __tmp_model_dir if CommandLineArgUtil.MODEL_FILE_SWITCH in optional_arg_map: model_file_value = optional_arg_map[CommandLineArgUtil.MODEL_FILE_SWITCH] model_files = cla_utils.get_model_files(model_file_value) for model_file in model_files: try: FileUtils.validateExistingFile(model_file) except IllegalArgumentException, iae: ex = exception_helper.create_cla_exception('WLSDPLY-20006', program_name, model_file, iae.getLocalizedMessage(), error=iae) ex.setExitCode(CommandLineArgUtil.ARG_VALIDATION_ERROR_EXIT_CODE) __logger.throwing(ex, class_name=_class_name, method_name=_method_name) raise ex elif CommandLineArgUtil.ARCHIVE_FILE_SWITCH in optional_arg_map: archive_file_name = optional_arg_map[CommandLineArgUtil.ARCHIVE_FILE_SWITCH] try: archive_file = WLSDeployArchive(archive_file_name) __tmp_model_dir = FileUtils.createTempDirectory(program_name) tmp_model_raw_file = archive_file.extractModel(__tmp_model_dir) if not tmp_model_raw_file: ex = exception_helper.create_cla_exception('WLSDPLY-20026', program_name, archive_file_name, CommandLineArgUtil.MODEL_FILE_SWITCH) ex.setExitCode(CommandLineArgUtil.ARG_VALIDATION_ERROR_EXIT_CODE) __logger.throwing(ex, class_name=_class_name, method_name=_method_name) raise ex model_file_name = FileUtils.fixupFileSeparatorsForJython(tmp_model_raw_file.getAbsolutePath()) except (IllegalArgumentException, IllegalStateException, WLSDeployArchiveIOException), archex: ex = exception_helper.create_cla_exception('WLSDPLY-20010', program_name, archive_file_name, archex.getLocalizedMessage(), error=archex) ex.setExitCode(CommandLineArgUtil.ARG_VALIDATION_ERROR_EXIT_CODE) __logger.throwing(ex, class_name=_class_name, method_name=_method_name) raise ex optional_arg_map[CommandLineArgUtil.MODEL_FILE_SWITCH] = model_file_name else: ex = exception_helper.create_cla_exception('WLSDPLY-20015', program_name, CommandLineArgUtil.MODEL_FILE_SWITCH, CommandLineArgUtil.ARCHIVE_FILE_SWITCH) ex.setExitCode(CommandLineArgUtil.USAGE_ERROR_EXIT_CODE) __logger.throwing(ex, class_name=_class_name, method_name=_method_name) raise ex return
5,353,242
def issetiterator(object: Iterator[Any]) -> bool: """Returns True or False based on whether the given object is a set iterator. Parameters ---------- object: Any The object to see if it's a set iterator. Returns ------- bool Whether the given object is a set iterator. """ if not isiterable(object): return False return isinstance(object, SetIteratorType)
5,353,243
def temporal_discretization(Y, method='ups_downs', kwargs={}): """This function acts as a switcher for temporal discretizations and wraps all the functions which carry out discretization over time of time-series. Parameters ---------- Y : array_like, shape (N, M) the signal of each element of the system. M time-series. method: str method used for performing temporal discretization. kwargs: dict required arguments for the method choosen. Returns ------- Yt : array_like, shape (N, M) discretized activation matrix. TODO ---- More than one descriptor. """ if method == 'ups_downs': Yt = ups_downs_temporal_discretization_matrix(Y, **kwargs) elif method not in ['ups_downs']: pass return Yt
5,353,244
def delete(client: ModelTrainingClient, train_id: str, file: str, ignore_not_found: bool): """ Delete a training.\n For this command, you must provide a training ID or path to file with one training. The file must contain only one training. If you want to delete multiples trainings than you should use "legionctl res delete" instead. For now, CLI supports yaml and JSON file formats. The command will be failed if you provide both arguments.\n Usage example:\n * legionctl train delete --id examples-git\n * legionctl train delete -f train.yaml \f :param client: Model training HTTP client :param train_id: Model training ID :param file: Path to the file with only one training :param ignore_not_found: ignore if Model Training is not found """ if not train_id and not file: raise ValueError(f'You should provide a training ID or file parameter, not both.') if train_id and file: raise ValueError(f'You should provide a training ID or file parameter, not both.') if file: train = parse_resources_file_with_one_item(file).resource if not isinstance(train, ModelTraining): raise ValueError(f'Model training expected, but {type(train)} provided') train_id = train.id try: message = client.delete(train_id) click.echo(message) except WrongHttpStatusCode as e: if e.status_code != 404 or not ignore_not_found: raise e click.echo(f'Model training {train_id} was not found. Ignore')
5,353,245
def test_pre_flop_pot(n_players: int, small_blind: int, big_blind: int): """Test preflop the state is set up for player 2 to start betting.""" state, pot = _new_game( n_players=n_players, small_blind=small_blind, big_blind=big_blind, ) n_bet_chips = sum(p.n_bet_chips for p in state.players) target = small_blind + big_blind assert state.player_i == 0 if n_players == 2 else 2 assert state.betting_stage == "pre_flop" assert ( n_bet_chips == target ), f"small and big blind have not bet! {n_bet_chips} == {target}" assert ( n_bet_chips == pot.total ), f"small and big blind have are not in pot! {n_bet_chips} == {pot.total}"
5,353,246
def plotModeScatter( pc , xMode=0, yMode=1, zMode=None, pointLabels=None, nTailLabels=3, classes=None): """ scatter plot mode projections for up to 3 different modes. PointLabels is a list of strings corresponding to each shape. nTailLabels defines number of points that are labelled at the tails of the distributions, can be 'all' to label all points. Point labels are for 2D plots only. """ xWeights = pc.projectedWeights[xMode] yWeights = pc.projectedWeights[yMode] colourMap = mpl.cm.gray if classes==None: c = 'r' else: c = classes if zMode == None: fig = plot.figure() ax = fig.add_subplot(111) plt = ax.scatter(xWeights,yWeights, c=c, marker='o', cmap=colourMap) ax.set_title('Scatter: Mode %d vs Mode %d'%(xMode, yMode)) ax.set_xlabel('Mode %d'%(xMode)) ax.set_ylabel('Mode %d'%(yMode)) if pointLabels!=None: if nTailLabels=='all': for label, x, y in zip(pointLabels, xWeights, yWeights): plot.annotate( label, xy=(x,y), xytext=(-5, 5), textcoords='offset points', ha='right', va='bottom', bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.5), arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0')) elif isinstance(nTailLabels, int): # sort weights xSortedArgs = scipy.argsort(xWeights) ySortedArgs = scipy.argsort(yWeights) # label x tails for i in xSortedArgs[:nTailLabels]: plot.annotate( pointLabels[i], xy=(xWeights[i],yWeights[i]), xytext=(-5, 5), textcoords='offset points', ha='right', va='bottom', bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.5), arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0')) for i in xSortedArgs[-nTailLabels:]: plot.annotate( pointLabels[i], xy=(xWeights[i],yWeights[i]), xytext=(-5, 5), textcoords='offset points', ha='right', va='bottom', bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.5), arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0')) # label y tails for i in ySortedArgs[:nTailLabels]: plot.annotate( pointLabels[i], xy=(xWeights[i],yWeights[i]), xytext=(-5, 5), textcoords='offset points', ha='right', va='bottom', bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.5), arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0')) for i in ySortedArgs[-nTailLabels:]: plot.annotate( pointLabels[i], xy=(xWeights[i],yWeights[i]), xytext=(-5, 5), textcoords='offset points', ha='right', va='bottom', bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.5), arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0')) else: raise ValueError, "nTailLabels must be 'all' or an integer" plot.show() else: from mpl_toolkits.mplot3d import Axes3D fig = plot.figure() zWeights = pc.projectedWeights[zMode] ax = fig.add_subplot(111, projection='3d') plt = ax.scatter(xWeights,yWeights, zWeights, c =c, marker='o', cmap=colourMap) ax.set_title('3D Scatter') ax.set_xlabel('Mode %d'%(xMode)) ax.set_ylabel('Mode %d'%(yMode)) ax.set_zlabel('Mode %d'%(zMode)) plot.show() return fig, plt
5,353,247
def log_benchmarks(benchmarks): """Record all the benchmarks in the log""" log.debug('Benchmarks') log.debug('==========') for bench in benchmarks: log.debug(bench) log.debug('')
5,353,248
def cron_worker(request): """Parse JSON/request arguments and start ingest for a single date export""" request_json = request.get_json(silent=True) request_args = request.args if request_json and 'image' in request_json: image_id = request_json['image'] elif request_args and 'image' in request_args: image_id = request_args['image'] else: abort(400, description='"image" parameter not set') # TODO: Add additional image ID format checking if not re.match('L[TEC]0[4578]_\d{6}_\d{8}', image_id.split('/')[-1], re.I): abort(400, description=f'Image ID {image_id} could not be parsed') elif not re.match('LANDSAT/L[TEC]0[4578]/C0[12]/T1\w+', image_id, re.I): abort(400, description=f'Image ID {image_id} could not be parsed') if request_json and 'overwrite' in request_json: overwrite_flag = request_json['overwrite'] elif request_args and 'overwrite' in request_args: overwrite_flag = request_args['overwrite'] else: overwrite_flag = 'true' if overwrite_flag.lower() in ['true', 't']: overwrite_flag = True elif overwrite_flag.lower() in ['false', 'f']: overwrite_flag = False else: abort(400, description=f'overwrite="{overwrite_flag}" could not be parsed') response = tcorr_gridded_asset_ingest( image_id=image_id, gee_key_file=GEE_KEY_FILE, overwrite_flag=overwrite_flag) return Response(response, mimetype='text/plain')
5,353,249
def test_debug(): """Log an debug message""" print("This message is a %s" % colors.debug("debug message."))
5,353,250
def test_r1t6(capsys): """Check that you cannot transfer between accounts before logging in Arguments: capsys -- object created by pytest to capture stdout and stderr """ helper( capsys=capsys, terminal_input=['transfer', 'login', 'atm', 'logout', 'No'], intput_valid_accounts=['1234568'], expected_tail_of_terminal_output=['Thank you for using Quinterac, have a nice day!'], expected_output_transactions=['EOS 0000000 000 0000000 ***'] )
5,353,251
def calculatetm(seq): """ Calculate Tm of a target candidate, nearest neighbor model """ NNlist = chopseq(seq, 2, 1) NNtable = ['AA', 'AC', 'AG', 'AT', 'CA', 'CC', 'CG', 'CT', 'GA', 'GC', 'GG', 'GT', 'TA', 'TC', 'TG', 'TT'] NNendtable = ['A', 'C', 'G', 'T'] NNcount = np.zeros(16) NNend = np.zeros(4) for c, NN in enumerate(NNtable): NNcount[c] = NNlist.count(NN) for c, NN in enumerate(NNendtable): NNend[c] = seq[0].count(NN) # numbers below from Sugimoto et al. NAR (1996) NNEnthalpy = np.array([-8.0, -9.4, -6.6, -5.6, -8.2, -10.9, -11.8, -6.6, -8.8, -10.5, -10.9, -9.4, -6.6, -8.8, -8.2, -8.0]) NNEntropy = np.array([-21.9, -25.5, -16.4, -15.2, -21.0, -28.4, -29.0, -16.4, -23.5, -26.4, -28.4, -25.5, -18.4, -23.5, -21.0, -21.9]) NNendEnthalpy = np.array([.6, .6, .6, .6]) NNendEntropy = np.array([-9.0, -9.0, -9.0, -9.0]) sumEnthalpy = np.sum(np.multiply(NNcount, NNEnthalpy)) + np.sum(np.multiply(NNend, NNendEnthalpy)) sumEntropy = np.sum(np.multiply(NNcount, NNEntropy)) + np.sum(np.multiply(NNend, NNendEntropy)) Tm = (sumEnthalpy * 1000)/(sumEntropy + (1.9872 * math.log(1e-7))) - 273.15 # oligo concentration: 1e-7 M sumSalt = 0.075 + (3.795 * 0.01**0.5) # monovalent: 0.075 M, bivalent: 0.01 M Tm += 16.6 * math.log10(sumSalt) # salt correction Tm -= 0.72 * 20 # formamide correction return Tm
5,353,252
def share_article_to_group(user, base_list_id, article_id, group_id, target_list_id): """ @api {post} /user/list/:id/article/:id/share/group/:id/list/:id Share a article to group list. @apiName Share a article into a group list. @apiGroup Share @apiUse AuthorizationTokenHeader @apiUse UnauthorizedAccessError @apiUse ResourceDoesNotExist """ app.logger.info('User {} Access {}'.format(user, request.full_path)) result = MongoUtil.share_article_to_group_list(user, base_list_id, article_id, group_id, target_list_id) if isinstance(result, str): app.logger.debug(result) return ResponseUtil.error_response(result) app.logger.info('User {} share article {} to group {}'.format(user, article_id, group_id)) return jsonify(msg='Success')
5,353,253
def _patch_command_processing(command_plugin): """ Patches the command processing functionality to work with promises. :param command_plugin: command plugin to modify. :return: """ if hasattr(command_plugin.__class__, '_old_process_command_response'): logger.debug('Already patched') return command_plugin.__class__._old_process_command_response = command_plugin.__class__._process_command_response def new_command_response(self, iq, session): promise_or_session = session # Can assume that the promise_or_session is a promise. if hasattr(promise_or_session, 'then'): logger.debug('Handling a promise') def promise_handler(_session): logger.debug('Promise resolved') self._old_process_command_response(iq, _session) promise_or_session.then(promise_handler) else: logger.debug('Handling default path') self._old_process_command_response(iq, promise_or_session) command_plugin.__class__._process_command_response = new_command_response logger.debug('Patching the command processing plugin')
5,353,254
def get_data_shape(X_train, X_test, X_val=None): """ Creates, updates and returns data_dict containing metadata of the dataset """ # Creates data_dict data_dict = {} # Updates data_dict with lenght of training, test, validation sets train_len = len(X_train) test_len = len(X_test) data_dict.update({'train_len': train_len, 'test_len': test_len}) if X_val is not None: val_len = len(X_val) data_dict.update({'val_len': val_len}) # else : val_len = None # Updates number of dimensions of data no_of_dim = X_train.ndim data_dict.update({'no_of_dim': no_of_dim}) # Updates number of features(, number of channels, width, height) if no_of_dim == 2: no_of_features = X_train.shape[1] data_dict.update({'no_of_features': no_of_features}) elif no_of_dim == 3: channels = X_train.shape[1] features_per_c = X_train.shape[2] no_of_features = channels * features_per_c data_dict.update({'no_of_features': no_of_features, 'channels': channels, 'features_per_c': features_per_c}) elif no_of_dim == 4: channels = X_train.shape[1] height = X_train.shape[2] width = X_train.shape[3] features_per_c = height*width no_of_features = channels*features_per_c data_dict.update({'height':height, 'width':width, 'channels':channels, 'features_per_c':features_per_c, 'no_of_features':no_of_features}) return data_dict
5,353,255
def setupAnnotations(context): """ set up the annotations if they haven't been set up already. The rest of the functions in here assume that this has already been set up """ annotations = IAnnotations(context) if not FAVBY in annotations: annotations[FAVBY] = PersistentList() return annotations
5,353,256
def _get_media(media_types): """Helper method to map the media types.""" get_mapped_media = (lambda x: maps.VIRTUAL_MEDIA_TYPES_MAP[x] if x in maps.VIRTUAL_MEDIA_TYPES_MAP else None) return list(map(get_mapped_media, media_types))
5,353,257
def get_int_property(device_t, property): """ Search the given device for the specified string property @param device_t Device to search @param property String to search for. @return Python string containing the value, or None if not found. """ key = cf.CFStringCreateWithCString( kCFAllocatorDefault, property.encode("mac_roman"), kCFStringEncodingMacRoman ) CFContainer = iokit.IORegistryEntryCreateCFProperty( device_t, key, kCFAllocatorDefault, 0 ); number = ctypes.c_uint16() if CFContainer: output = cf.CFNumberGetValue(CFContainer, 2, ctypes.byref(number)) return number.value
5,353,258
def _get_unique_barcode_ids(pb_index, isoseq_mode=False): """ Get a list of sorted, unique fw/rev barcode indices from an index object. """ bc_sel = (pb_index.bcForward != -1) & (pb_index.bcReverse != -1) bcFw = pb_index.bcForward[bc_sel] bcRev = pb_index.bcReverse[bc_sel] bc_ids = sorted(list(set(zip(bcFw, bcRev)))) if isoseq_mode: bc_ids = sorted(list(set([tuple(sorted(bc)) for bc in bc_ids]))) return bc_ids
5,353,259
def AddCommonArguments(parser): """Adds arguments common to parsers. Args: parser: ArgumentParser object, used to parse flags. """ parser.add_argument("--email", type=str, dest="email", help="Email account to use for authentcation.") parser.add_argument( "--config_file", type=str, dest="config_file", default=DEFAULT_CONFIG_FILE, help="Path to the config file, default to acloud.config" "in the current working directory") parser.add_argument("--report_file", type=str, dest="report_file", default=None, help="Dump the report this file in json format. " "If not specified, just log the report") parser.add_argument("--log_file", dest="log_file", type=str, default=None, help="Path to log file.") parser.add_argument("-v", dest="verbose", action="store_true", default=False, help="Verbose mode") parser.add_argument("-vv", dest="very_verbose", action="store_true", default=False, help="Very verbose mode")
5,353,260
def tests(session_: Session, django: str) -> None: """Run the test suite.""" requirements = Path("requirements.txt") session_.run( "poetry", "export", f"-o{requirements}", "--dev", "--without-hashes", external=True, ) session_.install(f"-r{requirements}") session_.install(f"django=={django}") session_.run("python", "-m", "pytest") requirements.unlink() try: session_.run("coverage", "run", "--parallel", "-m", "pytest", *session_.posargs) finally: if session_.interactive: session_.notify("coverage")
5,353,261
def clean_logs(test_yaml, args): """Remove the test log files on each test host. Args: test_yaml (str): yaml file containing host names args (argparse.Namespace): command line arguments for this program """ # Use the default server yaml and then the test yaml to update the default # DAOS log file locations. This should simulate how the test defines which # log files it will use when it is run. log_files = get_log_files(test_yaml, get_log_files(BASE_LOG_FILE_YAML)) host_list = get_hosts_from_yaml(test_yaml, args) command = "sudo rm -fr {}".format(" ".join(log_files.values())) print("Cleaning logs on {}".format(host_list)) if not spawn_commands(host_list, command): print("Error cleaning logs, aborting") return False return True
5,353,262
def call_posterior_haplotypes(posteriors, threshold=0.01): """Call haplotype alleles for VCF output from a population of genotype posterior distributions. Parameters ---------- posteriors : list, PosteriorGenotypeDistribution A list of individual genotype posteriors. threshold : float Minimum required posterior probability of occurrence with in any individual for a haplotype to be included. Returns ------- haplotypes : ndarray, int, shape, (n_haplotypes, n_base) VCF sorted haplotype arrays. """ # maps of bytes to arrays and bytes to sum probs haplotype_arrays = {} haplotype_values = {} # iterate through genotype posterors for post in posteriors: # include haps based on probability of occurrence ( haps, probs, ) = post.allele_occurrence() _, weights = post.allele_frequencies(dosage=True) idx = probs >= threshold # order haps based on weighted prob haps = haps[idx] weights = weights[idx] for h, w in zip(haps, weights): b = h.tobytes() if b not in haplotype_arrays: haplotype_arrays[b] = h haplotype_values[b] = 0 haplotype_values[b] += w # remove reference allele if present refbytes = None for b, h in haplotype_arrays.items(): if np.all(h == 0): # ref allele refbytes = b if refbytes is not None: haplotype_arrays.pop(refbytes) haplotype_values.pop(refbytes) # combine all called haplotypes into array n_alleles = len(haplotype_arrays) + 1 n_base = posteriors[0].genotypes.shape[-1] haplotypes = np.full((n_alleles, n_base), -1, np.int8) values = np.full(n_alleles, -1, float) for i, (b, h) in enumerate(haplotype_arrays.items()): p = haplotype_values[b] haplotypes[i] = h values[i] = p haplotypes[-1][:] = 0 # ref allele values[-1] = values.max() + 1 order = np.flip(np.argsort(values)) return haplotypes[order]
5,353,263
def to_linprog(x, y, xy_dist) -> LinProg: """ Parameters ---------- x : ndarray 1 - dimensional array of weights y : ndarray 1 - dimensional array of weights xy_dist : ndarray 2 - dimensional array containing distances between x and y density coordinates Returns ------- LinProg This was sometimes flaking out when called with single-precision matrices because of numerical instability in the scipy _presolve step when eliminating redundant constraints, so ensure sufficient precision TODO: use sparse A_eq, A_ub matrices """ # constant used in scipy.optimize._remove_redundancy tol = 1e-8 assert np.abs(x.sum() - y.sum()) < tol, "x and y must be close to avoid instability" assert xy_dist.shape[0] == x.shape[0] assert xy_dist.shape[1] == y.shape[0] x_dim = x.shape[0] y_dim = y.shape[0] c = xy_dist.flatten() A_eq = [] b_eq = [] for i in range(x_dim): constraint = np.zeros(xy_dist.shape) constraint[i] = 1.0 A_eq.append(constraint.flatten()) b_eq.append(x[i]) for i in range(y_dim): constraint = np.zeros(xy_dist.shape) constraint[:, i] = 1.0 A_eq.append(constraint.flatten()) b_eq.append(y[i]) A_ub = np.diag(-np.ones(x_dim * y_dim)) b_ub = np.zeros(x_dim * y_dim) return LinProg(c=c, A_ub=A_ub, b_ub=b_ub, A_eq=np.array(A_eq), b_eq=np.array(b_eq))
5,353,264
def get_discorded_labels(): """ Get videos with citizen discorded labels Partial labels will only be set by citizens """ return get_video_labels(discorded_labels)
5,353,265
def set_common_tags(span: object, result: object): """Function used to set a series of common tags to a span object""" if not isinstance(result, dict): return span for key, val in result.items(): if key.lower() in common_tags: span.set_tag(key, val) return span
5,353,266
def local_timezone(): """ Returns: (str): Name of current local timezone """ try: return time.tzname[0] except (IndexError, TypeError): return ""
5,353,267
def ask_credentials(): """Interactive function asking the user for ASF credentials :return: tuple of username and password :rtype: tuple """ # SciHub account details (will be asked by execution) print( " If you do not have a ASF/NASA Earthdata user account" " go to: https://search.asf.alaska.edu/ and register" ) uname = input(" Your ASF/NASA Earthdata Username:") pword = getpass.getpass(" Your ASF/NASA Earthdata Password:") return uname, pword
5,353,268
def lab2lch(lab): """CIE-LAB to CIE-LCH color space conversion. LCH is the cylindrical representation of the LAB (Cartesian) colorspace Parameters ---------- lab : array_like The N-D image in CIE-LAB format. The last (``N+1``-th) dimension must have at least 3 elements, corresponding to the ``L``, ``a``, and ``b`` color channels. Subsequent elements are copied. Returns ------- out : ndarray The image in LCH format, in a N-D array with same shape as input `lab`. Raises ------ ValueError If `lch` does not have at least 3 color channels (i.e. l, a, b). Notes ----- The Hue is expressed as an angle between ``(0, 2*pi)`` Examples -------- >>> from skimage import data >>> from skimage.color import rgb2lab, lab2lch >>> img = data.astronaut() >>> img_lab = rgb2lab(img) >>> img_lch = lab2lch(img_lab) """ lch = _prepare_lab_array(lab) a, b = lch[..., 1], lch[..., 2] lch[..., 1], lch[..., 2] = _cart2polar_2pi(a, b) return lch
5,353,269
def get_valid_principal_commitments(principal_id=None, consumer_id=None): """ Returns the list of valid commitments for the specified principal (org or actor. If optional consumer_id (actor) is supplied, then filtered by consumer_id """ log.debug("Finding commitments for principal: %s", principal_id) if principal_id is None: return None try: gov_controller = bootstrap.container_instance.governance_controller commitments, _ = gov_controller.rr.find_objects(principal_id, PRED.hasCommitment, RT.Commitment, id_only=False) if not commitments: return None cur_time = get_ion_ts_millis() commitment_list = [com for com in commitments if (consumer_id == None or com.consumer == consumer_id) and \ (int(com.expiration) == 0 or (int(com.expiration) > 0 and cur_time < int(com.expiration)))] if commitment_list: return commitment_list except Exception: log.exception("Could not determine actor resource commitments") return None
5,353,270
def callattice(twotheta, energy_kev=17.794, hkl=(1, 0, 0)): """ Calculate cubic lattice parameter, a from reflection two-theta :param twotheta: Bragg angle, deg :param energy_kev: energy in keV :param hkl: reflection (cubic only :return: float, lattice contant """ qmag = calqmag(twotheta, energy_kev) dspace = q2dspace(qmag) return dspace * np.sqrt(np.sum(np.square(hkl)))
5,353,271
def reset_password( *, db: Session = Depends(get_db), current_user: User = Depends(get_current_active_user), background_tasks: BackgroundTasks, ): """reset current user password""" email = current_user.email # send confirm email if settings.EMAILS_ENABLED and email: confirm_token = create_access_token( subject=email, expires_delta=timedelta(settings.EMAIL_CONFIRM_TOKEN_EXPIRE) ) background_tasks.add_task( send_reset_password_email, email_to=email, token=confirm_token ) return {"msg": "Password reset email sent"}
5,353,272
def rule_valid_histone_target(attr): """ { "applies" : ["ChIP-Seq", "experiment_target_histone"], "description" : "'experiment_target_histone' attributes must be 'NA' only for ChIP-Seq Input" } """ histone = attr.get('experiment_target_histone', [''])[0] if attr.get('experiment_type', [""])[0].lower() in ['ChIP-Seq Input'.lower()]: return histone == 'NA' else: return histone != 'NA'
5,353,273
def extend(curve: CustomCurve, deg): """returns curve over the deg-th relative extension""" E = curve.EC q = curve.q K = curve.field if q % 2 != 0: R = K["x"] pol = R.irreducible_element(deg) Fext = GF(q ** deg, name="z", modulus=pol) return E.base_extend(Fext) charac = K.characteristic() R = GF(charac)["x"] ext_deg = q ** deg pol = R.irreducible_element(deg * ZZ(log(q, charac))) Kext = GF(ext_deg, name="ex", modulus=pol) gKext = Kext.gen() h = gKext ** ((ext_deg - 1) // (q - 1)) assert charac ** (h.minpoly().degree()) == q H = GF(q, name="h", modulus=h.minpoly()) inclusion = H.hom([h]) new_coefficients = [ inclusion(stupid_coerce_K_to_L(a, K, H)) for a in E.a_invariants() ] EE = EllipticCurve(Kext, new_coefficients) return EE
5,353,274
def flatten3D(inputs: tf.Tensor) -> tf.Tensor: """ Flatten the given ``inputs`` tensor to 3 dimensions. :param inputs: >=3d tensor to be flattened :return: 3d flatten tensor """ shape = inputs.get_shape().as_list() if len(shape) == 3: return inputs assert len(shape) > 3 return tf.reshape(inputs, [tf.shape(inputs)[0], tf.shape(inputs)[1], np.prod(inputs.get_shape().as_list()[2:])])
5,353,275
def get_classes(dataset): """Get class names of a dataset.""" alias2name = {} for name, aliases in dataset_aliases.items(): for alias in aliases: alias2name[alias] = name if mmcv.is_str(dataset): if dataset in alias2name: labels = eval(alias2name[dataset] + '_classes()') else: raise ValueError('Unrecognized dataset: {}'.format(dataset)) else: raise TypeError('dataset must a str, but got {}'.format(type(dataset))) return labels
5,353,276
def split_exclude_string(people): """ Function to split a given text of persons' name who wants to exclude with comma separated for each name e.g. ``Konrad, Titipat`` """ people = people.replace('Mentor: ', '').replace('Lab-mates: ', '').replace('\r\n', ',').replace(';', ',') people_list = people.split(',') return [p.strip() for p in people_list if p.strip() is not '']
5,353,277
def now(tz=DEFAULT_TZ): """ Get the current datetime. :param tz: The preferred time-zone, defaults to DEFAULT_TZ :type tz: TzInfo (or similar pytz time-zone) :return: A time-zone aware datetime set to now :rtype: datetime """ return datetime.now(tz=tz)
5,353,278
def egd_add_metatags(context): """Override `Web Page` Doctype template if CMS page.""" if is_app_for_actual_site(): # Allow CMS webpages if context.doctype == "Web Page": context.template = "templates/web.html" # Override metatags if not "metatags" in context: context.metatags = frappe._dict({}) context.metatags["lang"] = frappe.local.lang context.metatags["url"] = context.url context.metatags["og:url"] = context.url # If blog image or no default use the "summary_large_image" value if "image" in context.metatags and context.metatags["image"]: context.metatags["twitter:card"] = "summary_large_image" else: context.metatags["image"] = frappe.utils.get_url() + "/assets/egd_site/images/logo-square.png" context.metatags["twitter:card"] = "summary" if not "title" in context.metatags: context.metatags["title"] = "" if "meta_title" in context: context.metatags["title"] = context["meta_title"] elif context.title: context.metatags["title"] = context.title # Add title suffix except for home if context["path"] != "": from frappe import _ context.metatags["title"] += " | " + _("hero:title") if not "description" in context.metatags and "meta_description" in context: context.metatags["description"] = context["meta_description"] frappe_add_metatags(context)
5,353,279
def MultMat(dest, A, B): """ Multiply two matrices together. Store result in "dest". """ I = len(A) J = len(B[0]) K = len(B) # or len(A[0]) for i in range(0,I): for j in range(0,J): dest[i][j] = 0.0 for k in range(0,K): dest[i][j] += A[i][k] * B[k][j]
5,353,280
def peek_with_kwargs(init, args=[], permissive=False): """ Make datatypes passing keyworded arguments to the constructor. This is a factory function; returns the actual `peek` routine. Arguments: init (callable): type constructor. args (iterable): arguments NOT to be keyworded; order does matter. permissive (bool): missing positional arguments are set to None (*new in 0.8.5*). Returns: callable: deserializer (`peek` routine). All the peeked attributes that are not referenced in `args` are passed to `init` as keyworded arguments. """ if permissive: def try_peek(store, attr, container, _stack=None): try: return store.peek(attr, container, _stack=_stack) except KeyError: return None def peek(store, container, _stack=None): return init(\ *[ try_peek(store, attr, container, _stack) for attr in args ], \ **dict([ (attr, store.peek(attr, container, _stack=_stack)) \ for attr in container if attr not in args ])) else: def peek(store, container, _stack=None): return init(\ *[ store.peek(attr, container, _stack=_stack) for attr in args ], \ **dict([ (attr, store.peek(attr, container, _stack=_stack)) \ for attr in container if attr not in args ])) return peek
5,353,281
def idc_asset_manage(request,aid=None,action=None): """ Manage IDC """ if request.user.has_perms(['asset.view_asset', 'asset.edit_asset']): page_name = '' if aid: idc_list = get_object_or_404(IdcAsset, pk=aid) if action == 'edit': page_name = '编辑IDC机房' if action == 'delete': idc_list.delete() return redirect('idc_asset_list') else: idc_list = IdcAsset() action = 'add' page_name = '新增IDC机房' if request.method == 'POST': form = IdcAssetForm(request.POST,instance=idc_list) if form.is_valid(): if action == 'add': form.save() return redirect('idc_asset_list') if action == 'edit': form.save() return redirect('idc_asset_list') else: form = IdcAssetForm(instance=idc_list) return render(request, 'asset_idc_manage.html', {"form":form, "page_name":page_name, "action":action}) else: raise Http404
5,353,282
def set_justspeaklasttime(speackdata): """ Adds a warning to user """ data_file_path = os.getcwd() + '/just_speack_data.json' if not os.path.exists(data_file_path): with open(data_file_path, 'w', encoding='UTF-8') as data_file: data_file.write(json.dumps({})) data_file.close() with open(data_file_path, 'r', encoding='UTF-8') as data_file: justspeackdata = json.loads(data_file.read()) data_file.close() justspeackdata[speackdata]['pause_last'] = time.time() with open(data_file_path, 'w', encoding='UTF-8') as data_file: data_file.write(json.dumps(users_data)) data_file.close() return True
5,353,283
def get_detected_column_types(df): """ Get data type of each columns ('DATETIME', 'NUMERIC' or 'STRING') Parameters: df (df): pandas dataframe Returns df (df): dataframe that all datatypes are converted (df) """ assert isinstance(df, pd.DataFrame), 'Parameter must be DataFrame' for c in df.columns: # Convert column to string col_data = df[c].map(str) col_data = col_data.replace("NaT", None) col_data = col_data.replace("NaN", None) # Check NULL column if(df[c].isnull().values.all()): continue # Check DATETIME try: # Check if it's able to convert column to datetime # if column is datetime, then skip to convert if 'datetime' in str(col_data.dtype): continue df[c] = pd.to_datetime(col_data) continue except ValueError: pass # Check NUMERIC try: # Drop NaN rows series = df[c].dropna() # if column_name is int or float, then skip to convert if 'int' in str(col_data.dtype) or 'float' in str(col_data.dtype): continue # Check if it can be converted to numeric df[c] = pd.to_numeric(series) except ValueError: pass return df
5,353,284
def set_bin_path(): """ Sets the juju binary path """ candidates = [ '/snap/bin/juju', '/snap/bin/conjure-up.juju', '/usr/bin/juju', '/usr/local/bin/juju', ] _check_bin_candidates(candidates, 'bin_path') # Update $PATH so that we make sure this candidate is used # first. app.env['PATH'] = "{}:{}".format(Path(app.juju.bin_path).parent, app.env['PATH'])
5,353,285
def distance(coords): """Calculates the distance of a path between multiple points Arguments: coords -- List of coordinates, e.g. [(0,0), (1,1)] Returns: Total distance as a float """ distance = 0 for p1, p2 in zip(coords[:-1], coords[1:]): distance += ((p2[0] - p1[0]) ** 2 + (p2[1] - p1[1]) ** 2) ** 0.5 return distance
5,353,286
def roll_dice(dicenum, dicetype, modifier=None, conditional=None, return_tuple=False): """ This is a standard dice roller. Args: dicenum (int): Number of dice to roll (the result to be added). dicetype (int): Number of sides of the dice to be rolled. modifier (tuple): A tuple `(operator, value)`, where operator is one of `"+"`, `"-"`, `"/"` or `"*"`. The result of the dice roll(s) will be modified by this value. conditional (tuple): A tuple `(conditional, value)`, where conditional is one of `"=="`,`"<"`,`">"`,`">="`,`"<=`" or "`!=`". This allows the roller to directly return a result depending on if the conditional was passed or not. return_tuple (bool): Return a tuple with all individual roll results or not. Returns: roll_result (int): The result of the roll + modifiers. This is the default return. condition_result (bool): A True/False value returned if `conditional` is set but not `return_tuple`. This effectively hides the result of the roll. full_result (tuple): If, return_tuple` is `True`, instead return a tuple `(result, outcome, diff, rolls)`. Here, `result` is the normal result of the roll + modifiers. `outcome` and `diff` are the boolean result of the roll and absolute difference to the `conditional` input; they will be will be `None` if `conditional` is not set. `rolls` is itself a tuple holding all the individual rolls in the case of multiple die-rolls. Raises: TypeError if non-supported modifiers or conditionals are given. Notes: All input numbers are converted to integers. Examples: print roll_dice(2, 6) # 2d6 <<< 7 print roll_dice(1, 100, ('+', 5) # 1d100 + 5 <<< 34 print roll_dice(1, 20, conditional=('<', 10) # let'say we roll 3 <<< True print roll_dice(3, 10, return_tuple=True) <<< (11, None, None, (2, 5, 4)) print roll_dice(2, 20, ('-', 2), conditional=('>=', 10), return_tuple=True) <<< (8, False, 2, (4, 6)) # roll was 4 + 6 - 2 = 8 """ dicenum = int(dicenum) dicetype = int(dicetype) # roll all dice, remembering each roll rolls = tuple([randint(1, dicetype) for roll in range(dicenum)]) result = sum(rolls) if modifier: # make sure to check types well before eval mod, modvalue = modifier if mod not in ('+', '-', '*', '/'): raise TypeError("Non-supported dice modifier: %s" % mod) modvalue = int(modvalue) # for safety result = eval("%s %s %s" % (result, mod, modvalue)) outcome, diff = None, None if conditional: # make sure to check types well before eval cond, condvalue = conditional if cond not in ('>', '<', '>=', '<=', '!=', '=='): raise TypeError("Non-supported dice result conditional: %s" % conditional) condvalue = int(condvalue) # for safety outcome = eval("%s %s %s" % (result, cond, condvalue)) # True/False diff = abs(result - condvalue) if return_tuple: return result, outcome, diff, rolls else: if conditional: return outcome else: return result
5,353,287
def build_central_hierarchical_histogram_computation( lower_bound: float, upper_bound: float, num_bins: int, arity: int = 2, max_records_per_user: int = 1, epsilon: float = 1, delta: float = 1e-5, secure_sum: bool = False): """Create the tff federated computation for central hierarchical histogram aggregation. Args: lower_bound: A `float` specifying the lower bound of the data range. upper_bound: A `float` specifying the upper bound of the data range. num_bins: The integer number of bins to compute. arity: The branching factor of the tree. Defaults to 2. max_records_per_user: The maximum number of records each user is allowed to contribute. Defaults to 1. epsilon: Differential privacy parameter. Defaults to 1. delta: Differential privacy parameter. Defaults to 1e-5. secure_sum: A boolean deciding whether to use secure aggregation. Defaults to `False`. Returns: A tff.federated_computation function to perform central tree aggregation. """ if upper_bound < lower_bound: raise ValueError(f'upper_bound: {upper_bound} is smaller than ' f'lower_bound: {lower_bound}.') if num_bins <= 0: raise ValueError(f'num_bins: {num_bins} smaller or equal to zero.') if arity < 2: raise ValueError(f'Arity should be at least 2.' f'arity={arity} is given.') if max_records_per_user < 1: raise ValueError(f'Maximum records per user should be at least 1. ' f'max_records_per_user={max_records_per_user} is given.') if epsilon < 0 or delta < 0 or delta > 1: raise ValueError(f'Privacy parameters in wrong range: ' f'(epsilon, delta): ({epsilon}, {delta})') if epsilon == 0.: stddev = 0. else: stddev = max_records_per_user * _find_noise_multiplier( epsilon, delta, steps=math.ceil(math.log(num_bins, arity))) central_tree_aggregation_factory = hierarchical_histogram_factory.create_central_hierarchical_histogram_factory( stddev, arity, max_records_per_user, secure_sum=secure_sum) return _build_hierarchical_histogram_computation( lower_bound, upper_bound, num_bins, central_tree_aggregation_factory)
5,353,288
def initialise_halo_params(): """Initialise the basic parameters needed to simulate a forming Dark matter halo. Args: None Returns: G: gravitational constant. epsilon: softening parameter. limit: width of the simulated universe. radius: simulated radius of each particle (for proper handling of boundary conditions). num_pos_particles: number of positive mass particles. num_neg_particles: number of negative mass particles. chunks_value: dask chunks value. time_steps: number of time steps to simulate. """ G = 1.0 epsilon = 0.07 limit = 80000 radius = 4 num_pos_particles = 5000 num_neg_particles = 45000 chunks_value = (num_pos_particles+num_neg_particles)/5.0 time_steps = 1000 return G, epsilon, limit, radius, num_pos_particles, num_neg_particles, chunks_value, time_steps
5,353,289
def read_data(image_paths, label_list, image_size, batch_size, max_nrof_epochs, num_threads, shuffle, random_flip, random_brightness, random_contrast): """ Creates Tensorflow Queue to batch load images. Applies transformations to images as they are loaded. :param random_brightness: :param random_flip: :param image_paths: image paths to load :param label_list: class labels for image paths :param image_size: size to resize images to :param batch_size: num of images to load in batch :param max_nrof_epochs: total number of epochs to read through image list :param num_threads: num threads to use :param shuffle: Shuffle images :param random_flip: Random Flip image :param random_brightness: Apply random brightness transform to image :param random_contrast: Apply random contrast transform to image :return: images and labels of batch_size """ images = ops.convert_to_tensor(image_paths, dtype=tf.string) labels = ops.convert_to_tensor(label_list, dtype=tf.int32) # Makes an input queue input_queue = tf.train.slice_input_producer((images, labels), num_epochs=max_nrof_epochs, shuffle=shuffle, ) images_labels = [] imgs = [] lbls = [] for _ in range(num_threads): image, label = read_image_from_disk(filename_to_label_tuple=input_queue) image = tf.random_crop(image, size=[image_size, image_size, 3]) image.set_shape((image_size, image_size, 3)) image = tf.image.per_image_standardization(image) if random_flip: image = tf.image.random_flip_left_right(image) if random_brightness: image = tf.image.random_brightness(image, max_delta=0.3) if random_contrast: image = tf.image.random_contrast(image, lower=0.2, upper=1.8) imgs.append(image) lbls.append(label) images_labels.append([image, label]) image_batch, label_batch = tf.train.batch_join(images_labels, batch_size=batch_size, capacity=4 * num_threads, enqueue_many=False, allow_smaller_final_batch=True) return image_batch, label_batch
5,353,290
def test_run_retries(): """Should retry until a success condition is reached""" responses = [httpretty.Response(body="Internal Server Error", status=500), httpretty.Response(body="Internal Server Error", status=500), httpretty.Response(body="<html></html>", status=200)] httpretty.register_uri(httpretty.GET, URL, responses=responses) with mock.patch('httsleep.main.sleep') as mock_sleep: resp = HttSleeper(URL, {'status_code': 200}).run() assert mock_sleep.called assert mock_sleep.call_count == 2 assert resp.status_code == 200 assert resp.text == '<html></html>'
5,353,291
def reorder_matrix (m, d) : """ Reorder similarity matrix : put species in same cluster together. INPUT: m - similarity matrix d - medoid dictionary : {medoid : [list of species index in cluster]} OUTPUT : m in new order new_order - order of species indexes in matrix """ new_order = [] for i, med_class in enumerate(d.values()): new_order.append(med_class) return m[np.concatenate(new_order), :], new_order
5,353,292
def extract_sound(video_filename): """Given the name of a video, extract the sound to a .wav file, and return the filename of the new file.""" # Generate a filename for the temporary audio file with NamedTemporaryFile(suffix='.wav') as tf: wave_filename = tf.name # Extract the sound from the video using ffmpeg subprocess.run(['ffmpeg', '-i', video_filename, '-vn', wave_filename], check=True, stderr=subprocess.DEVNULL, stdout=subprocess.DEVNULL) return wave_filename
5,353,293
def init_plugins(config_path: Optional[str] = None) -> None: """ init_plugins loads the plugins from the specified config, the path specified by TORCHX_CONFIG environment variable or the default location at /etc/torchx/config.yaml. """ if not config_path: config_path = os.getenv(TORCHX_CONFIG_ENV, DEFAULT_TORCHX_CONFIG_PATH) print(f"config path: {config_path}") if not os.path.exists(config_path): return with open(config_path, "r") as f: config = yaml.safe_load(f) init_plugins_from_config(config)
5,353,294
def valid_utility_climate_zone_combos(utility, year): """Returns all utility-climate zone combinations""" utility_cz = get_all_valid_utility_climate_zone_combinations(year, utility) click.echo( json.dumps( utility_cz.groupby("utility")["climate_zone"] .agg(lambda x: ", ".join(x)) .to_dict(), indent=2, ) )
5,353,295
def reward_penalized_log_p(mol): """ Reward that consists of log p penalized by SA and # long cycles, as described in (Kusner et al. 2017). Scores are normalized based on the statistics of 250k_rndm_zinc_drugs_clean.smi dataset :param mol: rdkit mol object :return: float """ # normalization constants, statistics from 250k_rndm_zinc_drugs_clean.smi logP_mean = 2.4570953396190123 logP_std = 1.434324401111988 SA_mean = -3.0525811293166134 SA_std = 0.8335207024513095 cycle_mean = -0.0485696876403053 cycle_std = 0.2860212110245455 log_p = MolLogP(mol) SA = -calculateScore(mol) # cycle score cycle_list = nx.cycle_basis(nx.Graph( Chem.rdmolops.GetAdjacencyMatrix(mol))) if len(cycle_list) == 0: cycle_length = 0 else: cycle_length = max([len(j) for j in cycle_list]) if cycle_length <= 6: cycle_length = 0 else: cycle_length = cycle_length - 6 cycle_score = -cycle_length normalized_log_p = (log_p - logP_mean) / logP_std normalized_SA = (SA - SA_mean) / SA_std normalized_cycle = (cycle_score - cycle_mean) / cycle_std return normalized_log_p + normalized_SA + normalized_cycle
5,353,296
def loadmat(filename, variable_names=None): """ load mat file from h5py files :param filename: mat filename :param variable_names: list of variable names that should be loaded :return: dictionary of loaded data """ data = {} matfile = h5py.File(filename, 'r') if variable_names is None: for key in matfile.keys(): data.update({key: matfile[key][()]}) else: for key in variable_names: if not key in matfile.keys(): raise RuntimeError('Variable: "' + key + '" is not in file: ' + filename) data.update({key: matfile[key][()]}) return data
5,353,297
def date_start_search(line): """予定開始の日付を検出し,strで返す.""" # 全角スペース zen_space = ' ' # 全角0 zen_zero = '0' nichi = '日' dollar = '$' # 全角スペースを0に置き換えることで無理やり対応 line = line.replace(zen_space, zen_zero) index = line.find(nichi) # 日と曜日の位置関係から誤表記を訂正 index_first_dollar = line.find(dollar, index + 1) if index + 1 != index_first_dollar: index = index_first_dollar # ex. 1 → 01 #if line[index - 1] == zen_space: # line[index - 1] = zen_zero return zenhan.z2h(line[index - 2:index])
5,353,298
def train_sub1(sess, x, y, bbox_preds, x_sub, y_sub, nb_classes, nb_epochs_s, batch_size, learning_rate, data_aug, lmbda, aug_batch_size, rng, img_rows=48, img_cols=48, nchannels=3): """ This function creates the substitute by alternatively augmenting the training data and training the substitute. :param sess: TF session :param x: input TF placeholder :param y: output TF placeholder :param bbox_preds: output of black-box model predictions :param x_sub: initial substitute training data :param y_sub: initial substitute training labels :param nb_classes: number of output classes :param nb_epochs_s: number of epochs to train substitute model :param batch_size: size of training batches :param learning_rate: learning rate for training :param data_aug: number of times substitute training data is augmented :param lmbda: lambda from arxiv.org/abs/1602.02697 :param rng: numpy.random.RandomState instance :return: """ # Define TF model graph (for the black-box model) model_sub = ModelSubstitute('model_s', nb_classes) preds_sub = model_sub.get_logits(x) loss_sub = CrossEntropy(model_sub, smoothing=0) print("Defined TensorFlow model graph for the substitute.") # Define the Jacobian symbolically using TensorFlow grads = jacobian_graph(preds_sub, x, nb_classes) # Train the substitute and augment dataset alternatively for rho in xrange(data_aug): print("Substitute training epoch #" + str(rho)) train_params = { 'nb_epochs': nb_epochs_s, 'batch_size': batch_size, 'learning_rate': learning_rate } #with TemporaryLogLevel(logging.WARNING, "cleverhans.utils.tf"): train(sess, loss_sub, x, y, x_sub, to_categorical(y_sub, nb_classes), init_all=False, args=train_params, rng=rng) #var_list=model_sub.get_params()) # If we are not at last substitute training iteration, augment dataset if rho < data_aug - 1: print("Augmenting substitute training data.") # Perform the Jacobian augmentation lmbda_coef = 2 * int(int(rho / 3) != 0) - 1 # print(x.shape) # print(x_sub.shape) # print(y_sub.shape) #print(grads.shape) x_sub = jacobian_augmentation(sess, x, x_sub, y_sub, grads, lmbda_coef * lmbda, aug_batch_size) print("Labeling substitute training data.") # Label the newly generated synthetic points using the black-box y_sub = np.hstack([y_sub, y_sub]) x_sub_prev = x_sub[int(len(x_sub)/2):] eval_params = {'batch_size': batch_size} #tmp = batch_eval(sess, [x], [bbox_preds], [x_sub_prev],args=eval_params) tmp = batch_eval(sess, [x], [bbox_preds], [x_sub_prev],batch_size=batch_size) print(tmp) bbox_val = tmp[0] # Note here that we take the argmax because the adversary # only has access to the label (not the probabilities) output # by the black-box model y_sub[int(len(x_sub)/2):] = np.argmax(bbox_val, axis=1) return model_sub, preds_sub
5,353,299