Datasets:

lr-sum / README.md
cpalenmichel's picture
Add 'hau' config data files
0fcacee verified
|
raw
history blame
13.9 kB
metadata
license: cc-by-4.0
task_categories:
  - summarization
  - text-generation
annotations_creators:
  - found
language_creators:
  - found
language:
  - am
  - az
  - bn
  - bo
  - bs
  - ku
  - zh
  - el
  - en
  - fa
  - fr
  - ht
  - ha
  - hy
  - id
  - ka
  - km
  - rw
  - ko
  - lo
  - mk
  - my
  - nd
  - pt
  - ps
  - ru
  - sn
  - so
  - es
  - sq
  - sr
  - sw
  - th
  - ti
  - tr
  - uk
  - ur
  - uz
  - vi
pretty_name: LR-Sum
size_categories:
  - 100K<n<1M
multilinguality:
  - multilingual
tags:
  - conditional-text-generation
viewer: true
configs:
  - config_name: amh
    data_files:
      - split: test
        path: amh/test-*
  - config_name: aze
    data_files:
      - split: test
        path: aze/test-*
      - split: train
        path: aze/train-*
      - split: validation
        path: aze/validation-*
  - config_name: ben
    data_files:
      - split: test
        path: ben/test-*
  - config_name: bod
    data_files:
      - split: test
        path: bod/test-*
  - config_name: bos
    data_files:
      - split: test
        path: bos/test-*
      - split: train
        path: bos/train-*
      - split: validation
        path: bos/validation-*
  - config_name: ckb
    data_files:
      - split: test
        path: ckb/test-*
      - split: train
        path: ckb/train-*
      - split: validation
        path: ckb/validation-*
  - config_name: cmn_s
    data_files:
      - split: test
        path: cmn_s/test-*
      - split: train
        path: cmn_s/train-*
      - split: validation
        path: cmn_s/validation-*
  - config_name: cmn_t
    data_files:
      - split: test
        path: cmn_t/test-*
      - split: train
        path: cmn_t/train-*
      - split: validation
        path: cmn_t/validation-*
  - config_name: ell
    data_files:
      - split: test
        path: ell/test-*
  - config_name: eng
    data_files:
      - split: test
        path: eng/test-*
      - split: train
        path: eng/train-*
      - split: validation
        path: eng/validation-*
  - config_name: fas
    data_files:
      - split: test
        path: fas/test-*
      - split: train
        path: fas/train-*
      - split: validation
        path: fas/validation-*
  - config_name: fra
    data_files:
      - split: test
        path: fra/test-*
      - split: train
        path: fra/train-*
      - split: validation
        path: fra/validation-*
  - config_name: hat
    data_files:
      - split: test
        path: hat/test-*
      - split: train
        path: hat/train-*
      - split: validation
        path: hat/validation-*
  - config_name: hau
    data_files:
      - split: test
        path: hau/test-*
dataset_info:
  - config_name: amh
    features:
      - name: id
        dtype: string
      - name: url
        dtype: string
      - name: title
        dtype: string
      - name: summary
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: test
        num_bytes: 661238
        num_examples: 154
    download_size: 336803
    dataset_size: 661238
  - config_name: aze
    features:
      - name: id
        dtype: string
      - name: url
        dtype: string
      - name: title
        dtype: string
      - name: summary
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: test
        num_bytes: 2690777
        num_examples: 811
      - name: train
        num_bytes: 21683595
        num_examples: 6487
      - name: validation
        num_bytes: 2653949
        num_examples: 810
    download_size: 15117096
    dataset_size: 27028321
  - config_name: ben
    features:
      - name: id
        dtype: string
      - name: url
        dtype: string
      - name: title
        dtype: string
      - name: summary
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: test
        num_bytes: 4111932
        num_examples: 715
    download_size: 1597837
    dataset_size: 4111932
  - config_name: bod
    features:
      - name: id
        dtype: string
      - name: url
        dtype: string
      - name: title
        dtype: string
      - name: summary
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: test
        num_bytes: 2423126
        num_examples: 182
    download_size: 694122
    dataset_size: 2423126
  - config_name: bos
    features:
      - name: id
        dtype: string
      - name: url
        dtype: string
      - name: title
        dtype: string
      - name: summary
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: test
        num_bytes: 4793400
        num_examples: 1456
      - name: train
        num_bytes: 37692878
        num_examples: 11648
      - name: validation
        num_bytes: 4674155
        num_examples: 1455
    download_size: 30934781
    dataset_size: 47160433
  - config_name: ckb
    features:
      - name: id
        dtype: string
      - name: url
        dtype: string
      - name: title
        dtype: string
      - name: summary
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: test
        num_bytes: 3073172
        num_examples: 500
      - name: train
        num_bytes: 7492985
        num_examples: 1230
      - name: validation
        num_bytes: 3251806
        num_examples: 500
    download_size: 6054129
    dataset_size: 13817963
  - config_name: cmn_s
    features:
      - name: id
        dtype: string
      - name: url
        dtype: string
      - name: title
        dtype: string
      - name: summary
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: test
        num_bytes: 2444203
        num_examples: 500
      - name: train
        num_bytes: 2324426
        num_examples: 483
      - name: validation
        num_bytes: 2452904
        num_examples: 500
    download_size: 4786850
    dataset_size: 7221533
  - config_name: cmn_t
    features:
      - name: id
        dtype: string
      - name: url
        dtype: string
      - name: title
        dtype: string
      - name: summary
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: test
        num_bytes: 1926008
        num_examples: 500
      - name: train
        num_bytes: 7969758
        num_examples: 2103
      - name: validation
        num_bytes: 1938286
        num_examples: 500
    download_size: 7934145
    dataset_size: 11834052
  - config_name: ell
    features:
      - name: id
        dtype: string
      - name: url
        dtype: string
      - name: title
        dtype: string
      - name: summary
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: test
        num_bytes: 3244069
        num_examples: 583
    download_size: 1557990
    dataset_size: 3244069
  - config_name: eng
    features:
      - name: id
        dtype: string
      - name: url
        dtype: string
      - name: title
        dtype: string
      - name: summary
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: test
        num_bytes: 10021562
        num_examples: 2622
      - name: train
        num_bytes: 79349108
        num_examples: 20976
      - name: validation
        num_bytes: 9859201
        num_examples: 2621
    download_size: 60141163
    dataset_size: 99229871
  - config_name: fas
    features:
      - name: id
        dtype: string
      - name: url
        dtype: string
      - name: title
        dtype: string
      - name: summary
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: test
        num_bytes: 7011820
        num_examples: 1343
      - name: train
        num_bytes: 54763383
        num_examples: 10744
      - name: validation
        num_bytes: 7039991
        num_examples: 1342
    download_size: 32366005
    dataset_size: 68815194
  - config_name: fra
    features:
      - name: id
        dtype: string
      - name: url
        dtype: string
      - name: title
        dtype: string
      - name: summary
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: test
        num_bytes: 1363784
        num_examples: 500
      - name: train
        num_bytes: 3139247
        num_examples: 1126
      - name: validation
        num_bytes: 1394751
        num_examples: 500
    download_size: 3525857
    dataset_size: 5897782
  - config_name: hat
    features:
      - name: id
        dtype: string
      - name: url
        dtype: string
      - name: title
        dtype: string
      - name: summary
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: test
        num_bytes: 1269965
        num_examples: 500
      - name: train
        num_bytes: 1132879
        num_examples: 452
      - name: validation
        num_bytes: 1291910
        num_examples: 500
    download_size: 2243949
    dataset_size: 3694754
  - config_name: hau
    features:
      - name: id
        dtype: string
      - name: url
        dtype: string
      - name: title
        dtype: string
      - name: summary
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: test
        num_bytes: 895424
        num_examples: 390
    download_size: 519692
    dataset_size: 895424

Dataset Card for LR-Sum

LR-Sum is a automatic summarization dataset of newswire text with a focus on less resourced languages with a cc-by 4.0 license.

Dataset Details

Dataset Description

LR-Sum is a permissively-licensed dataset created with the goal of enabling further research in automatic summarization for less-resourced languages. LR-Sum contains human-written summaries for 39 languages, many of which are less-resourced. The data is based on the collection of the Multilingual Open Text corpus where the source data is public domain newswire collected from from Voice of America websites. LR-Sum is released under a Creative Commons license (CC BY 4.0), making it one of the most openly-licensed multilingual summarization datasets.

  • Curated by: BLT Lab: Chester Palen-Michel and Constantine Lignos
  • Shared by: Chester Palen-Michel
  • Language(s) (NLP): Albanian, Amharic, Armenian, Azerbaijani, Bengali, Bosnian, Burmese, Chinese, English, French, Georgian, Greek, Haitian Creole, Hausa, Indonesian, Khmer, Kinyarwanda, Korean, Kurdish, Lao, Macedonian, Northern Ndebele, Pashto, Persian, Portuguese, Russian, Serbian, Shona, Somali, Spanish, Swahili, Thai, Tibetan, Tigrinya, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese
  • License: CC-BY 4.0

Dataset Sources [optional]

Multilingual Open Text v1.6 which is a collection of newswire text from Voice of America (VOA).

Uses

The dataset is intended for research in automatic summarization in various languages, especially for less resourced languages.

Direct Use

The data can be used for training text generation models to generate short summaries of news articles in many languages. Automatic evaluation of automatic summarization is another use case, though we encourage also conducting human evaluation of any model trained for summarization.

Out-of-Scope Use

This dataset only includes newswire text, so models trained on the data may not be effective for out of domain summarization.

Dataset Structure

Each field is a string:

{
  'id': Article unique id
  'url': URL for the news article
  'title': The title of the news article
  'summary': The summary of the article
  'text': The full text of the news article not including title
}

Dataset Creation

Curation Rationale

Research in automatic summarization for less resourced languages.

Source Data

Voice of America (VOA)

Data Collection and Processing

See our paper for details on collection and processing.

Who are the source data producers?

Voice of America (VOA)

Annotation process

The summaries are found in news article meta data. More detail about the curation process can be found in our paper.

Who are the annotators?

The summaries are found in the news article meta data. The authors of the summaries are authors and staff for VOA.

Personal and Sensitive Information

The only sensative personal information would be information already published in news articles on VOA. See VOA's mission and values

Bias, Risks, and Limitations

The content in this dataset is newswire. See VOA's mission and values for more detail about the journalistic integrity and policy.

Recommendations

The data is newswire text. Training text generation models on this dataset will have similar risks and limitations to other text generation models including hallucinations and potentially inaccurate statements. For some languages that have fewer examples, issues with text generation models are likely to be more pronounced. The dataset is primarily released for research despite having a permissive license. We encourage users to thoroughly test and evaluate any models trained using this data before putting them into production environments.

Citation

If you make use of this dataset, please cite our paper using this bibtex:

BibTeX:

@inproceedings{palen-michel-lignos-2023-lr,
    title = "{LR}-Sum: Summarization for Less-Resourced Languages",
    author = "Palen-Michel, Chester  and
      Lignos, Constantine",
    editor = "Rogers, Anna  and
      Boyd-Graber, Jordan  and
      Okazaki, Naoaki",
    booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
    month = jul,
    year = "2023",
    address = "Toronto, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.findings-acl.427",
    doi = "10.18653/v1/2023.findings-acl.427",
    pages = "6829--6844",
    abstract = "We introduce LR-Sum, a new permissively-licensed dataset created with the goal of enabling further research in automatic summarization for less-resourced languages.LR-Sum contains human-written summaries for 40 languages, many of which are less-resourced. We describe our process for extracting and filtering the dataset from the Multilingual Open Text corpus (Palen-Michel et al., 2022).The source data is public domain newswire collected from from Voice of America websites, and LR-Sum is released under a Creative Commons license (CC BY 4.0), making it one of the most openly-licensed multilingual summarization datasets. We describe abstractive and extractive summarization experiments to establish baselines and discuss the limitations of this dataset.",
}

Dataset Card Authors

Chester Palen-Michel @cpalenmichel

Dataset Card Contact

Chester Palen-Michel @cpalenmichel