title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
When and how to paraphrase for named entity recognition?
null
While paraphrasing is a promising approach for data augmentation in classification tasks, its effect on named entity recognition (NER) is not investigated systematically due to the difficulty of span-level label preservation. In this paper, we utilize simple strategies to annotate entity spans in generations and compare established and novel methods of paraphrasing in NLP such as back translation, specialized encoder-decoder models such as Pegasus, and GPT-3 variants for their effectiveness in improving downstream performance for NER across different levels of gold annotations and paraphrasing strength on 5 datasets. We thoroughly explore the influence of paraphrasers, and dynamics between paraphrasing strength and gold dataset size on the NER performance with visualizations and statistical testing. We find that the choice of the paraphraser greatly impacts NER performance, with one of the larger GPT-3 variants exceedingly capable of generating high quality paraphrases, yielding statistically significant improvements in NER performance with increasing paraphrasing strength, while other paraphrasers show more mixed results. Additionally, inline auto annotations generated by larger GPT-3 are strictly better than heuristic based annotations. We also find diminishing benefits of paraphrasing as gold annotations increase for most datasets. Furthermore, while most paraphrasers promote entity memorization in NER, the proposed GPT-3 configuration performs most favorably among the compared paraphrasers when tested on unseen entities, with memorization reducing further with paraphrasing strength. Finally, we explore mention replacement using GPT-3, which provides additional benefits over base paraphrasing for specific datasets.
Saket Sharma, Aviral Joshi, Yiyun Zhao, Namrata Mukhija, Hanoz Bhathena, Prateek Singh, Sashank Santhanam
null
null
2,023
acl
iCLIP: Bridging Image Classification and Contrastive Language-Image Pre-Training for Visual Recognition
null
This paper presents a method that effectively combines two prevalent visual recognition methods, i.e., image classification and contrastive language-image pre-training, dubbed iCLIP. Instead of naive multi-task learning that use two separate heads for each task, we fuse the two tasks in a deep fashion that adapts the image classification to share the same formula and the same model weights with the language-image pre-training. To further bridge these two tasks, we propose to enhance the category names in image classification tasks using external knowledge, such as their descriptions in dictionaries. Extensive experiments show that the proposed method combines the advantages of two tasks well: the strong discrimination ability in image classification tasks due to the clear and clean category labels, and the good zero-shot ability in CLIP tasks ascribed to the richer semantics in the text descriptions. In particular, it reaches 82.9% top-1 accuracy on IN-1K, and surpasses CLIPby 1.8%, with similar model size, on zero-shot recognition of Kornblith 12-dataset benchmark. The code and models are publicly available at https://github.com/weiyx16/iCLIP.
Yixuan Wei, Yue Cao, Zheng Zhang, Houwen Peng, Zhuliang Yao, Zhenda Xie, Han Hu, Baining Guo; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 2776-2786
null
null
2,023
cvpr
From Parse-Execute to Parse-Execute-Refine: Improving Semantic Parser for Complex Question Answering over Knowledge Base
null
Parsing questions into executable logical forms has showed impressive results for knowledge-base question answering (KBQA). However, complex KBQA is a more challenging task that requires to perform complex multi-step reasoning. Recently, a new semantic parser called KoPL has been proposed to explicitly model the reasoning processes, which achieved the state-of-the-art on complex KBQA. In this paper, we further explore how to unlock the reasoning ability of semantic parsers by a simple proposed parse-execute-refine paradigm. We refine and improve the KoPL parser by demonstrating the executed intermediate reasoning steps to the KBQA model. We show that such simple strategy can significantly improve the ability of complex reasoning. Specifically, we propose three components: a parsing stage, an execution stage and a refinement stage, to enhance the ability of complex reasoning. The parser uses the KoPL to generate the transparent logical forms. Then, the execution stage aligns and executes the logical forms over knowledge base to obtain intermediate reasoning processes. Finally, the intermediate step-by-step reasoning processes are demonstrated to the KBQA model in the refinement stage. With the explicit reasoning processes, it is much easier to answer the complex questions. Experiments on benchmark dataset shows that the proposed PER-KBQA performs significantly better than the stage-of-the-art baselines on the complex KBQA.
Wangzhen Guo, Linyin Luo, Hanjiang Lai, Jian Yin
null
null
2,023
emnlp
State and parameter learning with PARIS particle Gibbs
null
Non-linear state-space models, also known as general hidden Markov models (HMM), are ubiquitous in statistical machine learning, being the most classical generative models for serial data and sequences. Learning in HMM, either via Maximum Likelihood Estimation (MLE) or Markov Score Climbing (MSC) requires the estimation of the- smoothing expectation of some additive functionals. Controlling the bias and the variance of this estimation is crucial to establish the convergence of learning algorithms. Our first contribution is to design a novel additive smoothing algorithm, the Parisian particle Gibbs (PPG) sampler, which can be viewed as a PaRIS (Olsson, Westerborn 2017) algorithm driven by conditional SMC moves, resulting in bias-reduced estimates of the targeted quantities. We substantiate the PPG algorithm with theoretical results, including new bounds on bias and variance as well as deviation inequalities. We then establish, in the learning context, and under standard assumptions, non-asymptotic bounds highlighting the value of bias reduction and the implicit Rao–Blackwellization of PPG. These are the first non-asymptotic results of this kind in this setting. We illustrate our theoretical results with numerical experiments supporting our claims.
Gabriel Cardoso, Yazid Janati El Idrissi, Sylvain Le Corff, Eric Moulines, Jimmy Olsson
null
null
2,023
icml
BanglaAbuseMeme: A Dataset forBengali Abusive Meme Classification
null
The dramatic increase in the use of social media platforms for information sharing has also fueled a steep growth in online abuse. A simple yet effective way of abusing individuals or communities is by creating memes, which often integrate an image with a short piece of text layered on top of it. Such harmful elements are in rampant use and are a threat to online safety. Hence it is necessary to develop efficient models to detect and flag abusive memes. The problem becomes more challenging in a low-resource setting (e.g., Bengali memes, i.e., images with Bengali text embedded on it) because of the absence of benchmark datasets on which AI models could be trained. In this paper we bridge this gap by building a Bengali meme dataset. To setup an effective benchmark we implement several baseline models for classifying abusive memes using this dataset. We observe that multimodal models that use both textual and visual information outperform unimodal models. Our best-performing model achieves a macro F1 score of 70.51. Finally, we perform a qualitative error analysis of the misclassified memes of the best-performing text-based, image-based and multimodal models.
Mithun Das, Animesh Mukherjee
null
null
2,023
emnlp
LLM4Vis: Explainable Visualization Recommendation usingChatGPT
null
Data visualization is a powerful tool for exploring and communicating insights in various domains. To automate visualization choice for datasets, a task known as visualization recommendation has been proposed. Various machine-learning-based approaches have been developed for this purpose, but they often require a large corpus of dataset-visualization pairs for training and lack natural explanations for their results. To address this research gap, we propose LLM4Vis, a novel ChatGPT-based prompting approach to perform visualization recommendation and return human-like explanations using very few demonstration examples. Our approach involves feature description, demonstration example selection, explanation generation, demonstration example construction, and inference steps. To obtain demonstration examples with high-quality explanations, we propose a new explanation generation bootstrapping to iteratively refine generated explanations by considering the previous generation and template-based hint. Evaluations on the VizML dataset show that LLM4Vis outperforms or performs similarly to supervised learning models like Random Forest, Decision Tree, and MLP, in both few-shot and zero-shot settings. The qualitative evaluation also shows the effectiveness of explanations generated by LLM4Vis.
Lei Wang, Songheng Zhang, Yun Wang, Ee-Peng Lim, Yong Wang
null
null
2,023
emnlp
Incorporating Question Answering-Based Signals into Abstractive Summarization via Salient Span Selection
null
In this work, we propose a method for incorporating question-answering (QA) signals into a summarization model. Our method identifies salient noun phrases (NPs) in the input document by automatically generating wh-questions that are answered by the NPs and automatically determining whether those questions are answered in the gold summaries. This QA-based signal is incorporated into a two-stage summarization model which first marks salient NPs in the input document using a classification model, then conditionally generates a summary. Our experiments demonstrate that the models trained using QA-based supervision generate higher-quality summaries than baseline methods of identifying salient spans on benchmark summarization datasets. Further, we show that the content of the generated summaries can be controlled based on which NPs are marked in the input document. Finally, we propose a method of augmenting the training data so the gold summaries are more consistent with the marked input spans used during training and show how this results in models which learn to better exclude unmarked document content.
Daniel Deutsch, Dan Roth
null
null
2,023
eacl
Bayesian Metric Learning for Uncertainty Quantification in Image Retrieval
null
We propose a Bayesian encoder for metric learning. Rather than relying on neural amortization as done in prior works, we learn a distribution over the network weights with the Laplace Approximation. We first prove that the contrastive loss is a negative log-likelihood on the spherical space. We propose three methods that ensure a positive definite covariance matrix. Lastly, we present a novel decomposition of the Generalized Gauss-Newton approximation. Empirically, we show that our Laplacian Metric Learner (LAM) yields well-calibrated uncertainties, reliably detects out-of-distribution examples, and has state-of-the-art predictive performance.
Frederik Warburg, Marco Miani, Silas Brack, Søren Hauberg
null
null
2,023
neurips
Variational Monte Carlo on a Budget — Fine-tuning pre-trained Neural Wavefunctions
null
Obtaining accurate solutions to the Schrödinger equation is the key challenge in computational quantum chemistry. Deep-learning-based Variational Monte Carlo (DL-VMC) has recently outperformed conventional approaches in terms of accuracy, but only at large computational cost.Whereas in many domains models are trained once and subsequently applied for inference, accurate DL-VMC so far requires a full optimization for every new problem instance, consuming thousands of GPUhs even for small molecules.We instead propose a DL-VMC model which has been pre-trained using self-supervised wavefunction optimization on a large and chemically diverse set of molecules. Applying this model to new molecules without any optimization, yields wavefunctions and absolute energies that outperform established methods such as CCSD(T)-2Z.To obtain accurate relative energies, only few fine-tuning steps of this base model are required.We accomplish this with a fully end-to-end machine-learned model, consisting of an improved geometry embedding architecture and an existing SE(3)-equivariant model to represent molecular orbitals. Combining this architecture with continuous sampling of geometries, we improve zero-shot accuracy by two orders of magnitude compared to the state of the art.We extensively evaluate the accuracy, scalability and limitations of our base model on a wide variety of test systems.
Michael Scherbela, Leon Gerard, Philipp Grohs
null
null
2,023
neurips
FormNetV2: Multimodal Graph Contrastive Learning for Form Document Information Extraction
null
The recent advent of self-supervised pre-training techniques has led to a surge in the use of multimodal learning in form document understanding. However, existing approaches that extend the mask language modeling to other modalities require careful multi-task tuning, complex reconstruction target designs, or additional pre-training data. In FormNetV2, we introduce a centralized multimodal graph contrastive learning strategy to unify self-supervised pre-training for all modalities in one loss. The graph contrastive objective maximizes the agreement of multimodal representations, providing a natural interplay for all modalities without special customization. In addition, we extract image features within the bounding box that joins a pair of tokens connected by a graph edge, capturing more targeted visual cues without loading a sophisticated and separately pre-trained image embedder. FormNetV2 establishes new state-of-the-art performance on FUNSD, CORD, SROIE and Payment benchmarks with a more compact model size.
Chen-Yu Lee, Chun-Liang Li, Hao Zhang, Timothy Dozat, Vincent Perot, Guolong Su, Xiang Zhang, Kihyuk Sohn, Nikolay Glushnev, Renshen Wang, Joshua Ainslie, Shangbang Long, Siyang Qin, Yasuhisa Fujii, Nan Hua, Tomas Pfister
null
null
2,023
acl
MultiTabQA: Generating Tabular Answers for Multi-Table Question Answering
null
Recent advances in tabular question answering (QA) with large language models are constrained in their coverage and only answer questions over a single table. However, real-world queries are complex in nature, often over multiple tables in a relational database or web page. Single table questions do not involve common table operations such as set operations, Cartesian products (joins), or nested queries. Furthermore, multi-table operations often result in a tabular output, which necessitates table generation capabilities of tabular QA models. To fill this gap, we propose a new task of answering questions over multiple tables. Our model, MultiTabQA, not only answers questions over multiple tables, but also generalizes to generate tabular answers. To enable effective training, we build a pre-training dataset comprising of 132,645 SQL queries and tabular answers. Further, we evaluate the generated tables by introducing table-specific metrics of varying strictness assessing various levels of granularity of the table structure. MultiTabQA outperforms state-of-the-art single table QA models adapted to a multi-table QA setting by finetuning on three datasets: Spider, Atis and GeoQuery.
Vaishali Pal, Andrew Yates, Evangelos Kanoulas, Maarten de Rijke
null
null
2,023
acl
SAM operates far from home: eigenvalue regularization as a dynamical phenomenon
null
The Sharpness Aware Minimization (SAM) optimization algorithm has been shown to control large eigenvalues of the loss Hessian and provide generalization benefits in a variety of settings. The original motivation for SAM was a modified loss function which penalized sharp minima; subsequent analyses have also focused on the behavior near minima. However, our work reveals that SAM provides a strong regularization of the eigenvalues throughout the learning trajectory. We show that in a simplified setting, SAM dynamically induces a stabilization related to the edge of stability (EOS) phenomenon observed in large learning rate gradient descent. Our theory predicts the largest eigenvalue as a function of the learning rate and SAM radius parameters. Finally, we show that practical models can also exhibit this EOS stabilization, and that understanding SAM must account for these dynamics far away from any minima.
Atish Agarwala, Yann Dauphin
null
null
2,023
icml
SCOOP: Self-Supervised Correspondence and Optimization-Based Scene Flow
null
Scene flow estimation is a long-standing problem in computer vision, where the goal is to find the 3D motion of a scene from its consecutive observations. Recently, there have been efforts to compute the scene flow from 3D point clouds. A common approach is to train a regression model that consumes source and target point clouds and outputs the per-point translation vector. An alternative is to learn point matches between the point clouds concurrently with regressing a refinement of the initial correspondence flow. In both cases, the learning task is very challenging since the flow regression is done in the free 3D space, and a typical solution is to resort to a large annotated synthetic dataset. We introduce SCOOP, a new method for scene flow estimation that can be learned on a small amount of data without employing ground-truth flow supervision. In contrast to previous work, we train a pure correspondence model focused on learning point feature representation and initialize the flow as the difference between a source point and its softly corresponding target point. Then, in the run-time phase, we directly optimize a flow refinement component with a self-supervised objective, which leads to a coherent and accurate flow field between the point clouds. Experiments on widespread datasets demonstrate the performance gains achieved by our method compared to existing leading techniques while using a fraction of the training data. Our code is publicly available.
Itai Lang, Dror Aiger, Forrester Cole, Shai Avidan, Michael Rubinstein; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 5281-5290
null
null
2,023
cvpr
On the Minimax Regret for Online Learning with Feedback Graphs
null
In this work, we improve on the upper and lower bounds for the regret of online learning with strongly observable undirected feedback graphs. The best known upper bound for this problem is $\mathcal{O}\bigl(\sqrt{\alpha T\ln K}\bigr)$, where $K$ is the number of actions, $\alpha$ is the independence number of the graph, and $T$ is the time horizon. The $\sqrt{\ln K}$ factor is known to be necessary when $\alpha = 1$ (the experts case). On the other hand, when $\alpha = K$ (the bandits case), the minimax rate is known to be $\Theta\bigl(\sqrt{KT}\bigr)$, and a lower bound $\Omega\bigl(\sqrt{\alpha T}\bigr)$ is known to hold for any $\alpha$. Our improved upper bound $\mathcal{O}\bigl(\sqrt{\alpha T(1+\ln(K/\alpha))}\bigr)$ holds for any $\alpha$ and matches the lower bounds for bandits and experts, while interpolating intermediate cases. To prove this result, we use FTRL with $q$-Tsallis entropy for a carefully chosen value of $q \in [1/2, 1)$ that varies with $\alpha$. The analysis of this algorithm requires a new bound on the variance term in the regret. We also show how to extend our techniques to time-varying graphs, without requiring prior knowledge of their independence numbers. Our upper bound is complemented by an improved $\Omega\bigl(\sqrt{\alpha T(\ln K)/(\ln\alpha)}\bigr)$ lower bound for all $\alpha > 1$, whose analysis relies on a novel reduction to multitask learning. This shows that a logarithmic factor is necessary as soon as $\alpha < K$.
Khaled Eldowa, Emmanuel Esposito, Tom Cesari, Nicolò Cesa-Bianchi
null
null
2,023
neurips
RE-Matching: A Fine-Grained Semantic Matching Method for Zero-Shot Relation Extraction
null
Semantic matching is a mainstream paradigm of zero-shot relation extraction, which matches a given input with a corresponding label description. The entities in the input should exactly match their hypernyms in the description, while the irrelevant contexts should be ignored when matching. However, general matching methods lack explicit modeling of the above matching pattern. In this work, we propose a fine-grained semantic matching method tailored for zero-shot relation extraction. Guided by the above matching pattern, we decompose the sentence-level similarity score into the entity matching score and context matching score. Considering that not all contextual words contribute equally to the relation semantics, we design a context distillation module to reduce the negative impact of irrelevant components on context matching. Experimental results show that our method achieves higher matching accuracy and more than 10 times faster inference speed, compared with the state-of-the-art methods.
Jun Zhao, WenYu Zhan, Xin Zhao, Qi Zhang, Tao Gui, Zhongyu Wei, Junzhe Wang, Minlong Peng, Mingming Sun
null
null
2,023
acl
Tractable Diversity: Scalable Multiperspective Ontology Management via Standpoint EL
null
The tractability of the lightweight description logic EL has allowed for the construction of large and widely used ontologies that support semantic interoperability. However, comprehensive domains with a broad user base are often at odds with strong axiomatisations otherwise useful for inferencing, since these are usually context dependent and subject to diverging perspectives. In this paper we introduce Standpoint EL, a multi-modal extension of EL that allows for the integrated representation of domain knowledge relative to diverse, possibly conflicting standpoints (or contexts), which can be hierarchically organised and put in relation to each other. We establish that Standpoint EL still exhibits EL's favourable PTime standard reasoning, whereas introducing additional features like empty standpoints, rigid roles, and nominals makes standard reasoning tasks intractable.
Lucía Gómez Álvarez, Sebastian Rudolph, Hannes Strass
null
null
2,023
ijcai
Frame-Event Alignment and Fusion Network for High Frame Rate Tracking
null
Most existing RGB-based trackers target low frame rate benchmarks of around 30 frames per second. This setting restricts the tracker's functionality in the real world, especially for fast motion. Event-based cameras as bioinspired sensors provide considerable potential for high frame rate tracking due to their high temporal resolution. However, event-based cameras cannot offer fine-grained texture information like conventional cameras. This unique complementarity motivates us to combine conventional frames and events for high frame rate object tracking under various challenging conditions. In this paper, we propose an end-to-end network consisting of multi-modality alignment and fusion modules to effectively combine meaningful information from both modalities at different measurement rates. The alignment module is responsible for cross-modality and cross-frame-rate alignment between frame and event modalities under the guidance of the moving cues furnished by events. While the fusion module is accountable for emphasizing valuable features and suppressing noise information by the mutual complement between the two modalities. Extensive experiments show that the proposed approach outperforms state-of-the-art trackers by a significant margin in high frame rate tracking. With the FE240hz dataset, our approach achieves high frame rate tracking up to 240Hz.
Jiqing Zhang, Yuanchen Wang, Wenxi Liu, Meng Li, Jinpeng Bai, Baocai Yin, Xin Yang; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 9781-9790
null
null
2,023
cvpr
Alignment Before Aggregation: Trajectory Memory Retrieval Network for Video Object Segmentation
null
Memory-based methods in semi-supervised video object segmentation task achieve competitive performance by performing dense matching between query and memory frames. However, most of the existing methods neglect the fact that videos carry rich temporal information yet redundant spatial information. In this case, direct pixel-level global matching will lead to ambiguous correspondences. In this work, we reconcile the inherent tension of spatial and temporal information to retrieve memory frame information along the object trajectory, and propose a novel and coherent Trajectory Memory Retrieval Network (TMRN) to equip with the trajectory information, including a spatial alignment module and a temporal aggregation module. The proposed TMRN enjoys several merits. First, TMRN is empowered to characterize the temporal correspondence which is in line with the nature of video in a data-driven manner. Second, we elegantly customize the spatial alignment module by coupling SVD initialization with agent-level correlation for representative agent construction and rectifying false matches caused by direct pairwise pixel-level correlation, respectively. Extensive experimental results on challenging benchmarks including DAVIS 2017 validation / test and Youtube-VOS 2018 / 2019 demonstrate that our TMRN, as a general plugin module, achieves consistent improvements over several leading methods.
Rui Sun, Yuan Wang, Huayu Mai, Tianzhu Zhang, Feng Wu; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 1218-1228
null
null
2,023
iccv
Summary-Oriented Vision Modeling for Multimodal Abstractive Summarization
null
The goal of multimodal abstractive summarization (MAS) is to produce a concise summary given the multimodal data (text and vision). Existing studies on MAS mainly focus on how to effectively use the extracted visual features, having achieved impressive success on the high-resource English dataset. However, less attention has been paid to the quality of the visual features to the summary, which may limit the model performance, especially in the low- and zero-resource scenarios. In this paper, we propose to improve the summary quality through summary-oriented visual features. To this end, we devise two auxiliary tasks including vision to summary task and masked image modeling task. Together with the main summarization task, we optimize the MAS model via the training objectives of all these tasks. By these means, the MAS model can be enhanced by capturing the summary-oriented visual features, thereby yielding more accurate summaries. Experiments on 44 languages, covering mid-high-, low-, and zero-resource scenarios, verify the effectiveness and superiority of the proposed approach, which achieves state-of-the-art performance under all scenarios. Additionally, we will contribute a large-scale multilingual multimodal abstractive summarization (MM-Sum) dataset to the research community.
Yunlong Liang, Fandong Meng, Jinan Xu, Jiaan Wang, Yufeng Chen, Jie Zhou
null
null
2,023
acl
DoGPTs Produce Less Literal Translations?
null
Large Language Models (LLMs) such as GPT-3 have emerged as general-purpose language models capable of addressing many natural language generation or understanding tasks. On the task of Machine Translation (MT), multiple works have investigated few-shot prompting mechanisms to elicit better translations from LLMs. However, there has been relatively little investigation on how such translations differ qualitatively from the translations generated by standard Neural Machine Translation (NMT) models. In this work, we investigate these differences in terms of the literalness of translations produced by the two systems. Using literalness measures involving word alignment and monotonicity, we find that translations out of English (E-X) from GPTs tend to be less literal, while exhibiting similar or better scores on MT quality metrics. We demonstrate that this finding is borne out in human evaluations as well. We then show that these differences are especially pronounced when translating sentences that contain idiomatic expressions.
Vikas Raunak, Arul Menezes, Matt Post, Hany Hassan
null
null
2,023
acl
Ambiguous Medical Image Segmentation Using Diffusion Models
null
Collective insights from a group of experts have always proven to outperform an individual's best diagnostic for clinical tasks. For the task of medical image segmentation, existing research on AI-based alternatives focuses more on developing models that can imitate the best individual rather than harnessing the power of expert groups. In this paper, we introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights. Our proposed model generates a distribution of segmentation masks by leveraging the inherent stochastic sampling process of diffusion using only minimal additional learning. We demonstrate on three different medical image modalities- CT, ultrasound, and MRI that our model is capable of producing several possible variants while capturing the frequencies of their occurrences. Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks in terms of accuracy while preserving naturally occurring variation. We also propose a new metric to evaluate the diversity as well as the accuracy of segmentation predictions that aligns with the interest of clinical practice of collective insights. Implementation code will be released publicly after the review process.
Aimon Rahman, Jeya Maria Jose Valanarasu, Ilker Hacihaliloglu, Vishal M. Patel; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 11536-11546
null
null
2,023
cvpr
Distribution Free Domain Generalization
null
Accurate prediction of the out-of-distribution data is desired for a learning algorithm. In domain generalization, training data from source domains tend to have different distributions from that of the target domain, while the target data are absence in the training process. We propose a Distribution Free Domain Generalization (DFDG) procedure for classification by conducting standardization to avoid the dominance of a few domains in the training process. The essence of the DFDG is its reformulating the cross domain/class discrepancy by pairwise two sample test statistics, and equally weights their importance or the covariance structures to avoid dominant domain/class. A theoretical generalization bound is established for the multi-class classification problem. The DFDG is shown to offer a superior performance in empirical studies with fewer hyperparameters, which means faster and easier implementation.
Peifeng Tong, Wu Su, He Li, Jialin Ding, Zhan Haoxiang, Song Xi Chen
null
null
2,023
icml
Mapping Degeneration Meets Label Evolution: Learning Infrared Small Target Detection With Single Point Supervision
null
Training a convolutional neural network (CNN) to detect infrared small targets in a fully supervised manner has gained remarkable research interests in recent years, but is highly labor expensive since a large number of per-pixel annotations are required. To handle this problem, in this paper, we make the first attempt to achieve infrared small target detection with point-level supervision. Interestingly, during the training phase supervised by point labels, we discover that CNNs first learn to segment a cluster of pixels near the targets, and then gradually converge to predict groundtruth point labels. Motivated by this "mapping degeneration" phenomenon, we propose a label evolution framework named label evolution with single point supervision (LESPS) to progressively expand the point label by leveraging the intermediate predictions of CNNs. In this way, the network predictions can finally approximate the updated pseudo labels, and a pixel-level target mask can be obtained to train CNNs in an end-to-end manner. We conduct extensive experiments with insightful visualizations to validate the effectiveness of our method. Experimental results show that CNNs equipped with LESPS can well recover the target masks from corresponding point labels, and can achieve over 70% and 95% of their fully supervised performance in terms of pixel-level intersection over union (IoU) and object-level probability of detection (Pd), respectively. Code is available at https://github.com/XinyiYing/LESPS.
Xinyi Ying, Li Liu, Yingqian Wang, Ruojing Li, Nuo Chen, Zaiping Lin, Weidong Sheng, Shilin Zhou; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 15528-15538
null
null
2,023
cvpr
Fairness Continual Learning Approach to Semantic Scene Understanding in Open-World Environments
null
Continual semantic segmentation aims to learn new classes while maintaining the information from the previous classes. Although prior studies have shown impressive progress in recent years, the fairness concern in the continual semantic segmentation needs to be better addressed. Meanwhile, fairness is one of the most vital factors in deploying the deep learning model, especially in human-related or safety applications. In this paper, we present a novel Fairness Continual Learning approach to the semantic segmentation problem.In particular, under the fairness objective, a new fairness continual learning framework is proposed based on class distributions.Then, a novel Prototypical Contrastive Clustering loss is proposed to address the significant challenges in continual learning, i.e., catastrophic forgetting and background shift. Our proposed loss has also been proven as a novel, generalized learning paradigm of knowledge distillation commonly used in continual learning. Moreover, the proposed Conditional Structural Consistency loss further regularized the structural constraint of the predicted segmentation. Our proposed approach has achieved State-of-the-Art performance on three standard scene understanding benchmarks, i.e., ADE20K, Cityscapes, and Pascal VOC, and promoted the fairness of the segmentation model.
Thanh-Dat Truong, Hoang-Quan Nguyen, Bhiksha Raj, Khoa Luu
null
null
2,023
neurips
Learning Clothing and Pose Invariant 3D Shape Representation for Long-Term Person Re-Identification
null
Long-Term Person Re-Identification (LT-ReID) has become increasingly crucial in computer vision and biometrics. In this work, we aim to extend LT-ReID beyond pedestrian recognition to include a wider range of real-world human activities while still accounting for cloth-changing scenarios over large time gaps. This setting poses additional challenges due to the geometric misalignment and appearance ambiguity caused by the diversity of human pose and clothing. To address these challenges, we propose a new approach 3DInvarReID for (i) disentangling identity from non-identity components (pose, clothing shape, and texture) of 3D clothed humans, and (ii) reconstructing accurate 3D clothed body shapes and learning discriminative features of naked body shapes for person ReID in a joint manner. To better evaluate our study of LT-ReID, we collect a real-world dataset called CCDA, which contains a wide variety of human activities and clothing changes. Experimentally, we show the superior performance of our approach for person ReID.
Feng Liu, Minchul Kim, ZiAng Gu, Anil Jain, Xiaoming Liu; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 19617-19626
null
null
2,023
iccv
GET: Group Event Transformer for Event-Based Vision
null
Event cameras are a type of novel neuromorphic sen-sor that has been gaining increasing attention. Existing event-based backbones mainly rely on image-based designs to extract spatial information within the image transformed from events, overlooking important event properties like time and polarity. To address this issue, we propose a novel Group-based vision Transformer backbone for Event-based vision, called Group Event Transformer (GET), which de-couples temporal-polarity information from spatial infor-mation throughout the feature extraction process. Specifi-cally, we first propose a new event representation for GET, named Group Token, which groups asynchronous events based on their timestamps and polarities. Then, GET ap-plies the Event Dual Self-Attention block, and Group Token Aggregation module to facilitate effective feature commu-nication and integration in both the spatial and temporal-polarity domains. After that, GET can be integrated with different downstream tasks by connecting it with vari-ous heads. We evaluate our method on four event-based classification datasets (Cifar10-DVS, N-MNIST, N-CARS, and DVS128Gesture) and two event-based object detection datasets (1Mpx and Gen1), and the results demonstrate that GET outperforms other state-of-the-art methods. The code is available at https://github.com/Peterande/GET-Group-Event-Transformer.
Yansong Peng, Yueyi Zhang, Zhiwei Xiong, Xiaoyan Sun, Feng Wu; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 6038-6048
null
null
2,023
iccv
RevColV2: Exploring Disentangled Representations in Masked Image Modeling
null
Masked image modeling (MIM) has become a prevalent pre-training setup for vision foundation models and attains promising performance. Despite its success, existing MIM methods discard the decoder network during downstream applica- tions, resulting in inconsistent representations between pre-training and fine-tuning and can hamper downstream task performance. In this paper, we propose a new architecture, RevColV2, which tackles this issue by keeping the entire autoen- coder architecture during both pre-training and fine-tuning. The main body of RevColV2 contains bottom-up columns and top-down columns, between which information is reversibly propagated and gradually disentangled. Such design enables our architecture with the nice property: maintaining disentangled low-level and semantic information at the end of the network in MIM pre-training. Our experimental results suggest that a foundation model with decoupled features can achieve competitive performance across multiple downstream vision tasks such as image classification, semantic segmentation and object detection. For exam- ple, after intermediate fine-tuning on ImageNet-22K dataset, RevColV2-L attains 88.4\% top-1 accuracy on ImageNet-1K classification and 58.6 mIoU on ADE20K semantic segmentation. With extra teacher and large scale dataset, RevColv2-L achieves 62.1 APbox on COCO detection and 60.4 mIoU on ADE20K semantic segmentation.
Qi Han, Yuxuan Cai, Xiangyu Zhang
null
null
2,023
neurips
How to Plant Trees in Language Models: Data and Architectural Effects on the Emergence of Syntactic Inductive Biases
null
Accurate syntactic representations are essential for robust generalization in natural language. Recent work has found that pre-training can teach language models to rely on hierarchical syntactic features—as opposed to incorrect linear features—when performing tasks after fine-tuning. We test what aspects of pre-training are important for endowing encoder-decoder Transformers with an inductive bias that favors hierarchical syntactic generalizations. We focus on architectural features (depth, width, and number of parameters), as well as the genre and size of the pre-training corpus, diagnosing inductive biases using two syntactic transformation tasks: question formation and passivization, both in English. We find that the number of parameters alone does not explain hierarchical generalization: model depth plays greater role than model width. We also find that pre-training on simpler language, such as child-directed speech, induces a hierarchical bias using an order-of-magnitude less data than pre-training on more typical datasets based on web text or Wikipedia; this suggests that in cognitively plausible language acquisition settings, neural language models may be more data-efficient than previously thought.
Aaron Mueller, Tal Linzen
null
null
2,023
acl
QACheck: A Demonstration System for Question-Guided Multi-Hop Fact-Checking
null
Fact-checking real-world claims often requires intricate, multi-step reasoning due to the absence of direct evidence to support or refute them. However, existing fact-checking systems often lack transparency in their decision-making, making it challenging for users to comprehend their reasoning process. To address this, we propose the Question-guided Multi-hop Fact-Checking (QACheck) system, which guides the model’s reasoning process by asking a series of questions critical for verifying a claim. QACheck has five key modules: a claim verifier, a question generator, a question-answering module, a QA validator, and a reasoner. Users can input a claim into QACheck, which then predicts its veracity and provides a comprehensive report detailing its reasoning process, guided by a sequence of (question, answer) pairs. QACheck also provides the source of evidence supporting each question, fostering a transparent, explainable, and user-friendly fact-checking process.
Liangming Pan, Xinyuan Lu, Min-Yen Kan, Preslav Nakov
null
null
2,023
emnlp
Fused Gromov-Wasserstein Graph Mixup for Graph-level Classifications
null
Graph data augmentation has shown superiority in enhancing generalizability and robustness of GNNs in graph-level classifications. However, existing methods primarily focus on the augmentation in the graph signal space and the graph structure space independently, neglecting the joint interaction between them. In this paper, we address this limitation by formulating the problem as an optimal transport problem that aims to find an optimal inter-graph node matching strategy considering the interactions between graph structures and signals. To solve this problem, we propose a novel graph mixup algorithm called FGWMixup, which seeks a "midpoint" of source graphs in the Fused Gromov-Wasserstein (FGW) metric space. To enhance the scalability of our method, we introduce a relaxed FGW solver that accelerates FGWMixup by improving the convergence rate from $\mathcal{O}(t^{-1})$ to $\mathcal{O}(t^{-2})$. Extensive experiments conducted on five datasets using both classic (MPNNs) and advanced (Graphormers) GNN backbones demonstrate that \mname\xspace effectively improves the generalizability and robustness of GNNs. Codes are available at https://github.com/ArthurLeoM/FGWMixup.
Xinyu Ma, Xu Chu, Yasha Wang, Yang Lin, Junfeng Zhao, Liantao Ma, Wenwu Zhu
null
null
2,023
neurips
Distilling Cross-Temporal Contexts for Continuous Sign Language Recognition
null
Continuous sign language recognition (CSLR) aims to recognize glosses in a sign language video. State-of-the-art methods typically have two modules, a spatial perception module and a temporal aggregation module, which are jointly learned end-to-end. Existing results in [9,20,25,36] have indicated that, as the frontal component of the overall model, the spatial perception module used for spatial feature extraction tends to be insufficiently trained. In this paper, we first conduct empirical studies and show that a shallow temporal aggregation module allows more thorough training of the spatial perception module. However, a shallow temporal aggregation module cannot well capture both local and global temporal context information in sign language. To address this dilemma, we propose a cross-temporal context aggregation (CTCA) model. Specifically, we build a dual-path network that contains two branches for perceptions of local temporal context and global temporal context. We further design a cross-context knowledge distillation learning objective to aggregate the two types of context and the linguistic prior. The knowledge distillation enables the resultant one-branch temporal aggregation module to perceive local-global temporal and semantic context. This shallow temporal perception module structure facilitates spatial perception module learning. Extensive experiments on challenging CSLR benchmarks demonstrate that our method outperforms all state-of-the-art methods.
Leming Guo, Wanli Xue, Qing Guo, Bo Liu, Kaihua Zhang, Tiantian Yuan, Shengyong Chen; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 10771-10780
null
null
2,023
cvpr
Reinforcement Learning from Passive Data via Latent Intentions
null
Passive observational data, such as human videos, is abundant and rich in information, yet remains largely untapped by current RL methods. Perhaps surprisingly, we show that passive data, despite not having reward or action labels, can still be used to learn features that accelerate downstream RL. Our approach learns from passive data by modeling intentions: measuring how the likelihood of future outcomes change when the agent acts to achieve a particular task. We propose a temporal difference learning objective to learn about intentions, resulting in an algorithm similar to conventional RL, but which learns entirely from passive data. When optimizing this objective, our agent simultaneously learns representations of states, of policies, and of possible outcomes in an environment, all from raw observational data. Both theoretically and empirically, this scheme learns features amenable for value prediction for downstream tasks, and our experiments demonstrate the ability to learn from many forms of passive data, including cross-embodiment video data and YouTube videos.
Dibya Ghosh, Chethan Anand Bhateja, Sergey Levine
null
null
2,023
icml
Reduced Policy Optimization for Continuous Control with Hard Constraints
null
Recent advances in constrained reinforcement learning (RL) have endowed reinforcement learning with certain safety guarantees. However, deploying existing constrained RL algorithms in continuous control tasks with general hard constraints remains challenging, particularly in those situations with non-convex hard constraints. Inspired by the generalized reduced gradient (GRG) algorithm, a classical constrained optimization technique, we propose a reduced policy optimization (RPO) algorithm that combines RL with GRG to address general hard constraints. RPO partitions actions into basic actions and nonbasic actions following the GRG method and outputs the basic actions via a policy network. Subsequently, RPO calculates the nonbasic actions by solving equations based on equality constraints using the obtained basic actions. The policy network is then updated by implicitly differentiating nonbasic actions with respect to basic actions. Additionally, we introduce an action projection procedure based on the reduced gradient and apply a modified Lagrangian relaxation technique to ensure inequality constraints are satisfied. To the best of our knowledge, RPO is the first attempt that introduces GRG to RL as a way of efficiently handling both equality and inequality hard constraints. It is worth noting that there is currently a lack of RL environments with complex hard constraints, which motivates us to develop three new benchmarks: two robotics manipulation tasks and a smart grid operation control task. With these benchmarks, RPO achieves better performance than previous constrained RL algorithms in terms of both cumulative reward and constraint violation. We believe RPO, along with the new benchmarks, will open up new opportunities for applying RL to real-world problems with complex constraints.
Shutong Ding, Jingya Wang, Yali Du, Ye Shi
null
null
2,023
neurips
Differentiable Shadow Mapping for Efficient Inverse Graphics
null
We show how shadows can be efficiently generated in differentiable rendering of triangle meshes. Our central observation is that pre-filtered shadow mapping, a technique for approximating shadows based on rendering from the perspective of a light, can be combined with existing differentiable rasterizers to yield differentiable visibility information. We demonstrate at several inverse graphics problems that differentiable shadow maps are orders of magnitude faster than differentiable light transport simulation with similar accuracy -- while differentiable rasterization without shadows often fails to converge.
Markus Worchel, Marc Alexa; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 142-153
null
null
2,023
cvpr
LoCoOp: Few-Shot Out-of-Distribution Detection via Prompt Learning
null
We present a novel vision-language prompt learning approach for few-shot out-of-distribution (OOD) detection. Few-shot OOD detection aims to detect OOD images from classes that are unseen during training using only a few labeled in-distribution (ID) images. While prompt learning methods such as CoOp have shown effectiveness and efficiency in few-shot ID classification, they still face limitations in OOD detection due to the potential presence of ID-irrelevant information in text embeddings. To address this issue, we introduce a new approach called $\textbf{Lo}$cal regularized $\textbf{Co}$ntext $\textbf{Op}$timization (LoCoOp), which performs OOD regularization that utilizes the portions of CLIP local features as OOD features during training. CLIP's local features have a lot of ID-irrelevant nuisances ($\textit{e.g.}$, backgrounds), and by learning to push them away from the ID class text embeddings, we can remove the nuisances in the ID class text embeddings and enhance the separation between ID and OOD. Experiments on the large-scale ImageNet OOD detection benchmarks demonstrate the superiority of our LoCoOp over zero-shot, fully supervised detection methods and prompt learning methods. Notably, even in a one-shot setting -- just one label per class, LoCoOp outperforms existing zero-shot and fully supervised detection methods. The code is available via https://github.com/AtsuMiyai/LoCoOp.
Atsuyuki Miyai, Qing Yu, Go Irie, Kiyoharu Aizawa
null
null
2,023
neurips
An Erudite Fine-Grained Visual Classification Model
null
Current fine-grained visual classification (FGVC) models are isolated. In practice, we first need to identify the coarse-grained label of an object, then select the corresponding FGVC model for recognition. This hinders the application of the FGVC algorithm in real-life scenarios. In this paper, we propose an erudite FGVC model jointly trained by several different datasets, which can efficiently and accurately predict an object's fine-grained label across the combined label space. We found through a pilot study that positive and negative transfers co-occur when different datasets are mixed for training, i.e., the knowledge from other datasets is not always useful. Therefore, we first propose a feature disentanglement module and a feature re-fusion module to reduce negative transfer and boost positive transfer between different datasets. In detail, we reduce negative transfer by decoupling the deep features through many dataset-specific feature extractors. Subsequently, these are channel-wise re-fused to facilitate positive transfer. Finally, we propose a meta-learning based dataset-agnostic spatial attention layer to take full advantage of the multi-dataset training data, given that localisation is dataset-agnostic between different datasets. Experimental results across 11 different mixed-datasets built on four different FGVC datasets demonstrate the effectiveness of the proposed method. Furthermore, the proposed method can be easily combined with existing FGVC methods to obtain state-of-the-art results.
Dongliang Chang, Yujun Tong, Ruoyi Du, Timothy Hospedales, Yi-Zhe Song, Zhanyu Ma; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 7268-7277
null
null
2,023
cvpr
Continual Detection Transformer for Incremental Object Detection
null
Incremental object detection (IOD) aims to train an object detector in phases, each with annotations for new object categories. As other incremental settings, IOD is subject to catastrophic forgetting, which is often addressed by techniques such as knowledge distillation (KD) and exemplar replay (ER). However, KD and ER do not work well if applied directly to state-of-the-art transformer-based object detectors such as Deformable DETR and UP-DETR. In this paper, we solve these issues by proposing a ContinuaL DEtection TRansformer (CL-DETR), a new method for transformer-based IOD which enables effective usage of KD and ER in this context. First, we introduce a Detector Knowledge Distillation (DKD) loss, focusing on the most informative and reliable predictions from old versions of the model, ignoring redundant background predictions, and ensuring compatibility with the available ground-truth labels. We also improve ER by proposing a calibration strategy to preserve the label distribution of the training set, therefore better matching training and testing statistics. We conduct extensive experiments on COCO 2017 and demonstrate that CL-DETR achieves state-of-the-art results in the IOD setting.
Yaoyao Liu, Bernt Schiele, Andrea Vedaldi, Christian Rupprecht; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 23799-23808
null
null
2,023
cvpr
On the impact of activation and normalization in obtaining isometric embeddings at initialization
null
In this paper, we explore the structure of the penultimate Gram matrix in deep neural networks, which contains the pairwise inner products of outputs corresponding to a batch of inputs. In several architectures it has been observed that this Gram matrix becomes degenerate with depth at initialization, which dramatically slows training. Normalization layers, such as batch or layer normalization, play a pivotal role in preventing the rank collapse issue. Despite promising advances, the existing theoretical results do not extend to layer normalization, which is widely used in transformers, and can not quantitatively characterize the role of non-linear activations. To bridge this gap, we prove that layer normalization, in conjunction with activation layers, biases the Gram matrix of a multilayer perceptron towards the identity matrix at an exponential rate with depth at initialization. We quantify this rate using the Hermite expansion of the activation function.
Amir Joudaki, Hadi Daneshmand, Francis Bach
null
null
2,023
neurips
PRIOR: Prototype Representation Joint Learning from Medical Images and Reports
null
Contrastive learning based vision-language joint pre-training has emerged as a successful representation learning strategy. In this paper, we present a prototype representation learning framework incorporating both global and local alignment between medical images and reports. In contrast to standard global multi-modality alignment methods, we employ a local alignment module for fine-grained representation. Furthermore, a cross-modality conditional reconstruction module is designed to interchange information across modalities in the training phase by reconstructing masked images and reports. For reconstructing long reports, a sentence-wise prototype memory bank is constructed, enabling the network to focus on low-level localized visual and high-level clinical linguistic features. Additionally, a non-auto-regressive generation paradigm is proposed for reconstructing non-sequential reports. Experimental results on five downstream tasks, including supervised classification, zero-shot classification, image-to-text retrieval, semantic segmentation, and object detection, show the proposed method outperforms other state-of-the-art methods across multiple datasets and under different dataset size settings. The code is available at https://github.com/QtacierP/PRIOR.
Pujin Cheng, Li Lin, Junyan Lyu, Yijin Huang, Wenhan Luo, Xiaoying Tang; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 21361-21371
null
null
2,023
iccv
Ewald-based Long-Range Message Passing for Molecular Graphs
null
Neural architectures that learn potential energy surfaces from molecular data have undergone fast improvement in recent years. A key driver of this success is the Message Passing Neural Network (MPNN) paradigm. Its favorable scaling with system size partly relies upon a spatial distance limit on messages. While this focus on locality is a useful inductive bias, it also impedes the learning of long-range interactions such as electrostatics and van der Waals forces. To address this drawback, we propose Ewald message passing: a nonlocal Fourier space scheme which limits interactions via a cutoff on frequency instead of distance, and is theoretically well-founded in the Ewald summation method. It can serve as an augmentation on top of existing MPNN architectures as it is computationally inexpensive and agnostic to architectural details. We test the approach with four baseline models and two datasets containing diverse periodic (OC20) and aperiodic structures (OE62). Across all models and datasets, we observe robust improvements in energy mean absolute errors, averaging 10% on OC20 and 16% on OE62. Our analysis shows an outsize impact of these improvements on structures with high long-range contributions to the ground-truth energy.
Arthur Kosmala, Johannes Gasteiger, Nicholas Gao, Stephan Günnemann
null
null
2,023
icml
FlexNeRF: Photorealistic Free-Viewpoint Rendering of Moving Humans From Sparse Views
null
We present FlexNeRF, a method for photorealistic free-viewpoint rendering of humans in motion from monocular videos. Our approach works well with sparse views, which is a challenging scenario when the subject is exhibiting fast/complex motions. We propose a novel approach which jointly optimizes a canonical time and pose configuration, with a pose-dependent motion field and pose-independent temporal deformations complementing each other. Thanks to our novel temporal and cyclic consistency constraints along with additional losses on intermediate representation such as segmentation, our approach provides high quality outputs as the observed views become sparser. We empirically demonstrate that our method significantly outperforms the state-of-the-art on public benchmark datasets as well as a self-captured fashion dataset. The project page is available at: https://flex-nerf.github.io/.
Vinoj Jayasundara, Amit Agrawal, Nicolas Heron, Abhinav Shrivastava, Larry S. Davis; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 21118-21127
null
null
2,023
cvpr
Efficient Transformers with Dynamic Token Pooling
null
Transformers achieve unrivalled performance in modelling language, but remain inefficient in terms of memory and time complexity. A possible remedy is to reduce the sequence length in the intermediate layers by pooling fixed-length segments of tokens. Nevertheless, natural units of meaning, such as words or phrases, display varying sizes. To address this mismatch, we equip language models with a dynamic-pooling mechanism, which predicts segment boundaries in an autoregressive fashion. We compare several methods to infer boundaries, including end-to-end learning through stochastic re-parameterisation, supervised learning (based on segmentations from subword tokenizers or spikes in conditional entropy), as well as linguistically motivated boundaries. We perform character-level evaluation on texts from multiple datasets and morphologically diverse languages. The results demonstrate that dynamic pooling, which jointly segments and models language, is both faster and more accurate than vanilla Transformers and fixed-length pooling within the same computational budget.
Piotr Nawrot, Jan Chorowski, Adrian Lancucki, Edoardo Maria Ponti
null
null
2,023
acl
On the Effectiveness of Offline RL for Dialogue Response Generation
null
A common training technique for language models is teacher forcing (TF). TF attempts to match human language exactly, even though identical meanings can be expressed in different ways. This motivates use of sequence-level objectives for dialogue response generation. In this paper, we study the efficacy of various offline reinforcement learning (RL) methods to maximize such objectives. We present a comprehensive evaluation across multiple datasets, models, and metrics. Offline RL shows a clear performance improvement over teacher forcing while not inducing training instability or sacrificing practical training budgets.
Paloma Sodhi, Felix Wu, Ethan R. Elenberg, Kilian Q Weinberger, Ryan Mcdonald
null
null
2,023
icml
One-shot Implicit Animatable Avatars with Model-based Priors
null
Existing neural rendering methods for creating human avatars typically either require dense input signals such as video or multi-view images, or leverage a learned prior from large-scale specific 3D human datasets such that reconstruction can be performed with sparse-view inputs. Most of these methods fail to achieve realistic reconstruction when only a single image is available. To enable the data-efficient creation of realistic animatable 3D humans, we propose ELICIT, a novel method for learning human-specific neural radiance fields from a single image. Inspired by the fact that humans can effortlessly estimate the body geometry and imagine full-body clothing from a single image, we leverage two priors in ELICIT: 3D geometry prior and visual semantic prior. Specifically, ELICIT utilizes the 3D body shape geometry prior from a skinned vertex-based template model (i.e., SMPL) and implements the visual clothing semantic prior with the CLIP-based pretrained models. Both priors are used to jointly guide the optimization for creating plausible content in the invisible areas. Taking advantage of the CLIP models, ELICIT can use text descriptions to generate text-conditioned unseen regions. In order to further improve visual details, we propose a segmentation-based sampling strategy that locally refines different parts of the avatar. Comprehensive evaluations on multiple popular benchmarks, including ZJU-MoCAP, Human3.6M, and DeepFashion, show that ELICIT has outperformed strong baseline methods of avatar creation when only a single image is available. The code is public for research purposes at https://huangyangyi.github.io/ELICIT/.
Yangyi Huang, Hongwei Yi, Weiyang Liu, Haofan Wang, Boxi Wu, Wenxiao Wang, Binbin Lin, Debing Zhang, Deng Cai; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 8974-8985
null
null
2,023
iccv
Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models
null
Latent Gaussian models have a rich history in statistics and machine learning, with applications ranging from factor analysis to compressed sensing to time series analysis. The classical method for maximizing the likelihood of these models is the expectation-maximization (EM) algorithm. For problems with high-dimensional latent variables and large datasets, EM scales poorly because it needs to invert as many large covariance matrices as the number of data points. We introduce probabilistic unrolling, a method that combines Monte Carlo sampling with iterative linear solvers to circumvent matrix inversion. Our theoretical analyses reveal that unrolling and backpropagation through the iterations of the solver can accelerate gradient estimation for maximum likelihood estimation. In experiments on simulated and real data, we demonstrate that probabilistic unrolling learns latent Gaussian models up to an order of magnitude faster than gradient EM, with minimal losses in model performance.
Alexander Lin, Bahareh Tolooshams, Yves Atchade, Demba E. Ba
null
null
2,023
icml
TableVLM: Multi-modal Pre-training for Table Structure Recognition
null
Tables are widely used in research and business, which are suitable for human consumption, but not easily machine-processable, particularly when tables are present in images. One of the main challenges to extracting data from images of tables is accurately recognizing table structures, especially for complex tables with cross rows and columns. In this study, we propose a novel multi-modal pre-training model for table structure recognition, named TableVLM.With a two-stream multi-modal transformer-based encoder-decoder architecture, TableVLM learns to capture rich table structure-related features by multiple carefully-designed unsupervised objectives inspired by the notion of masked visual-language modeling. To pre-train this model, we also created a dataset, called ComplexTable, which consists of 1,000K samples to be released publicly. Experiment results show that the model built on pre-trained TableVLM can improve the performance up to 1.97% in tree-editing-distance-score on ComplexTable.
Leiyuan Chen, Chengsong Huang, Xiaoqing Zheng, Jinshu Lin, Xuanjing Huang
null
null
2,023
acl
Listener Model for thePhotoBook Referential Game withCLIPScores as Implicit Reference Chain
null
PhotoBook is a collaborative dialogue game where two players receive private, partially-overlapping sets of images and resolve which images they have in common. It presents machines with a great challenge to learn how people build common ground around multimodal context to communicate effectively. Methods developed in the literature, however, cannot be deployed to real gameplaysince they only tackle some subtasks of the game,and they require additional reference chains inputs, whose extraction process is imperfect. Therefore, we propose a reference chain-free listener modelthat directly addresses the game’s predictive task, i.e., deciding whether an image is shared with partner. Our DeBERTa-based listener model reads the full dialogue, and utilizesCLIPScore features to assess utterance-image relevance. We achieve >77% accuracy on unseen sets of images/game themes, outperforming baseline by >17 points.
Shih-Lun Wu, Yi-Hui Chou, Liangze Li
null
null
2,023
acl
Cola: A Benchmark for Compositional Text-to-image Retrieval
null
Compositional reasoning is a hallmark of human visual intelligence. Yet, despite the size of large vision-language models, they struggle to represent simple compositions by combining objects with their attributes. To measure this lack of compositional capability, we design Cola, a text-to-image retrieval benchmark to Compose Objects Localized with Attributes. To solve Cola, a model must retrieve images with the correct configuration of attributes and objects and avoid choosing a distractor image with the same objects and attributes but in the wrong configuration. Cola contains about 1.2k composed queries of 168 objects and 197 attributes on around 30K images. Our human evaluation finds that Cola is 83.33% accurate, similar to contemporary compositionality benchmarks. Using Cola as a testbed, we explore empirical modeling designs to adapt pre-trained vision-language models to reason compositionally. We explore 6 adaptation strategies on 2 seminal vision-language models, using compositionality-centric test benchmarks - Cola and CREPE. We find the optimal adaptation strategy is to train a multi-modal attention layer that jointly attends over the frozen pre-trained image and language features. Surprisingly, training multimodal layers on CLIP performs better than tuning a larger FLAVA model with already pre-trained multimodal layers. Furthermore, our adaptation strategy improves CLIP and FLAVA to comparable levels, suggesting that training multimodal layers using contrastive attribute-object data is key, as opposed to using them pre-trained. Lastly, we show that Cola is harder than a closely related contemporary benchmark, CREPE, since simpler fine-tuning strategies without multimodal layers suffice on CREPE, but not on Cola. However, we still see a significant gap between our best adaptation and human accuracy, suggesting considerable room for further research. Project page: https://cs-people.bu.edu/array/research/cola/
Arijit Ray, Filip Radenovic, Abhimanyu Dubey, Bryan Plummer, Ranjay Krishna, Kate Saenko
null
null
2,023
neurips
NeRFrac: Neural Radiance Fields through Refractive Surface
null
Neural Radiance Fields (NeRF) is a popular neural expression for novel view synthesis. By querying spatial points and view directions, a multilayer perceptron (MLP) can be trained to output the volume density and radiance at each point, which lets us render novel views of the scene. The original NeRF and its recent variants, however, target opaque scenes dominated by diffuse reflection surfaces and cannot handle complex refractive surfaces well. We introduce NeRFrac to realize neural novel view synthesis of scenes captured through refractive surfaces, typically water surfaces. For each queried ray, an MLP-based Refractive Field is trained to estimate the distance from the ray origin to the refractive surface. A refracted ray at each intersection point is then computed by Snell's Law, given the input ray and the approximated local normal. Points of the scene are sampled along the refracted ray and are sent to a Radiance Field for further radiance estimation. We show that from a sparse set of images, our model achieves accurate novel view synthesis of the scene underneath the refractive surface and simultaneously reconstructs the refractive surface. We evaluate the effectiveness of our method with synthetic and real scenes seen through water surfaces. Experimental results demonstrate the accuracy of NeRFrac for modeling scenes seen through wavy refractive surfaces.
Yifan Zhan, Shohei Nobuhara, Ko Nishino, Yinqiang Zheng; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 18402-18412
null
null
2,023
iccv
Convergence Analysis of Sequential Federated Learning on Heterogeneous Data
null
There are two categories of methods in Federated Learning (FL) for joint training across multiple clients: i) parallel FL (PFL), where clients train models in a parallel manner; and ii) sequential FL (SFL), where clients train models in a sequential manner. In contrast to that of PFL, the convergence theory of SFL on heterogeneous data is still lacking. In this paper, we establish the convergence guarantees of SFL for strongly/general/non-convex objectives on heterogeneous data. The convergence guarantees of SFL are better than that of PFL on heterogeneous data with both full and partial client participation. Experimental results validate the counterintuitive analysis result that SFL outperforms PFL on extremely heterogeneous data in cross-device settings.
Yipeng Li, Xinchen Lyu
null
null
2,023
neurips
Symbolic Chain-of-Thought Distillation: Small Models Can Also “Think” Step-by-Step
null
Chain-of-thought prompting (e.g., “Let’s think step-by-ste”) primes large language models to verbalize rationalization for their predictions. While chain-of-thought can lead to dramatic performance gains, benefits appear to emerge only for sufficiently large models (beyond 50B parameters). We show that orders-of-magnitude smaller models (125M—1.3B parameters) can still benefit from chain-of-thought prompting. To achieve this, we introduce Symbolic Chain-of-Thought Distillation (SCoTD), a method to train a smaller student model on rationalizations sampled from a significantly larger teacher model. Experiments across several commonsense benchmarks show that: 1) SCoTD enhances the performance of the student model in both supervised and few-shot settings, and especially for challenge sets; 2) sampling many reasoning chains per instance from the teacher is paramount; and 3) after distillation, student chain-of-thoughts are judged by humans as comparable to the teacher, despite orders of magnitude fewer parameters. We test several hypotheses regarding what properties of chain-of-thought samples are important, e.g., diversity vs. teacher likelihood vs. open-endedness. We release our corpus of chain-of-thought samples and code.
Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang Ren, Kai-Wei Chang, Yejin Choi
null
null
2,023
acl
Boosting Adversarial Transferability by Achieving Flat Local Maxima
null
Transfer-based attack adopts the adversarial examples generated on the surrogate model to attack various models, making it applicable in the physical world and attracting increasing interest. Recently, various adversarial attacks have emerged to boost adversarial transferability from different perspectives. In this work, inspired by the observation that flat local minima are correlated with good generalization, we assume and empirically validate that adversarial examples at a flat local region tend to have good transferability by introducing a penalized gradient norm to the original loss function. Since directly optimizing the gradient regularization norm is computationally expensive and intractable for generating adversarial examples, we propose an approximation optimization method to simplify the gradient update of the objective function. Specifically, we randomly sample an example and adopt a first-order procedure to approximate the curvature of the second-order Hessian matrix, which makes computing more efficient by interpolating two Jacobian matrices. Meanwhile, in order to obtain a more stable gradient direction, we randomly sample multiple examples and average the gradients of these examples to reduce the variance due to random sampling during the iterative process. Extensive experimental results on the ImageNet-compatible dataset show that the proposed method can generate adversarial examples at flat local regions, and significantly improve the adversarial transferability on either normally trained models or adversarially trained models than the state-of-the-art attacks. Our codes are available at: https://github.com/Trustworthy-AI-Group/PGN.
Zhijin Ge, Hongying Liu, Wang Xiaosen, Fanhua Shang, Yuanyuan Liu
null
null
2,023
neurips
DarkFeat: Noise-Robust Feature Detector and Descriptor for Extremely Low-Light RAW Images
null
Low-light visual perception, such as SLAM or SfM at night, has received increasing attention, in which keypoint detection and local feature description play an important role. Both handcraft designs and machine learning methods have been widely studied for local feature detection and description, however, the performance of existing methods degrades in the extreme low-light scenarios in a certain degree, due to the low signal-to-noise ratio in images. To address this challenge, images in RAW format that retain more raw sensing information have been considered in recent works with a denoise-then-detect scheme. However, existing denoising methods are still insufficient for RAW images and heavily time-consuming, which limits the practical applications of such scheme. In this paper, we propose DarkFeat, a deep learning model which directly detects and describes local features from extreme low-light RAW images in an end-to-end manner. A novel noise robustness map and selective suppression constraints are proposed to effectively mitigate the influence of noise and extract more reliable keypoints. Furthermore, a customized pipeline of synthesizing dataset containing low-light RAW image matching pairs is proposed to extend end-to-end training. Experimental results show that DarkFeat achieves state-of-the-art performance on both indoor and outdoor parts of the challenging MID benchmark, outperforms the denoise-then-detect methods and significantly reduces computational costs up to 70%. Code is available at https://github.com/THU-LYJ-Lab/DarkFeat.
Yuze He, Yubin Hu, Wang Zhao, Jisheng Li, Yong-Jin Liu, Yuxing Han, Jiangtao Wen
null
null
2,023
aaai
Gradient-Regulated Meta-Prompt Learning for Generalizable Vision-Language Models
null
Prompt tuning, a recently emerging paradigm, enables the powerful vision-language pre-training models to adapt to downstream tasks in a parameter- and data- efficient way, by learning the "soft prompts" to condition frozen pre-training models. Though effective, it is particularly problematic in the few-shot scenario, where prompt tuning performance is sensitive to the initialization and requires a time-consuming process to find a good initialization, thus restricting the fast adaptation ability of the pre-training models. In addition, prompt tuning could undermine the generalizability of the pre-training models, because the learnable prompt tokens are easy to overfit to the limited training samples. To address these issues, we introduce a novel Gradient-RegulAted Meta-prompt learning (GRAM) framework that jointly meta-learns an efficient soft prompt initialization for better adaptation and a lightweight gradient regulating function for strong cross-domain generalizability in a meta-learning paradigm using only the unlabeled image-text pre-training data. Rather than designing a specific prompt tuning method, our GRAM can be easily incorporated into various prompt tuning methods in a model-agnostic way, and comprehensive experiments show that GRAM brings about consistent improvement for them in several settings (i.e., few-shot learning, cross-domain generalization, cross-dataset generalization, etc.) over 11 datasets. Further, experiments show that GRAM enables the orthogonal methods of textual and visual prompt tuning to work in a mutually-enhanced way, offering better generalizability beyond the uni-modal prompt tuning methods.
Juncheng Li, Minghe Gao, Longhui Wei, Siliang Tang, Wenqiao Zhang, Mengze Li, Wei Ji, Qi Tian, Tat-Seng Chua, Yueting Zhuang; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 2551-2562
null
null
2,023
iccv
Systematic word meta-sense extension
null
The meaning of polysemous words often varies in a highly productive yet predictable way. Generalizing the regularity between conventional senses to derive novel word meaning is crucial for automated processing of non-literal language uses such as figurative expressions. We introduce a novel task called systematic word meta-sense extension (SWORME) to test and improve language models’ ability to extend word meaning to denote new semantic domains (also called meta-senses) that bear regular semantic relations with existing senses. We found that language models prefer incremental lexical semantic change toward conceptually similar meta-senses such as logical metonymy, and are much worse at predicting highly non-literal meaning extensions such as metaphors. We propose a novel analogy-based method of word meaning extension, and show that it effectively improves language model systematicity in making both gradual and radical types of meta-sense extension. We further demonstrate that learning systematic meta-sense extensions benefits language models on multiple benchmarks of figurative language understanding.
Lei Yu
null
null
2,023
emnlp
Reasoning over Hierarchical Question Decomposition Tree for Explainable Question Answering
null
Explainable question answering (XQA) aims to answer a given question and provide an explanation why the answer is selected. Existing XQA methods focus on reasoning on a single knowledge source, e.g., structured knowledge bases, unstructured corpora, etc. However, integrating information from heterogeneous knowledge sources is essential to answer complex questions. In this paper, we propose to leverage question decomposing for heterogeneous knowledge integration, by breaking down a complex question into simpler ones, and selecting the appropriate knowledge source for each sub-question. To facilitate reasoning, we propose a novel two-stage XQA framework, Reasoning over Hierarchical Question Decomposition Tree (RoHT). First, we build the Hierarchical Question Decomposition Tree (HQDT) to understand the semantics of a complex question; then, we conduct probabilistic reasoning over HQDT from root to leaves recursively, to aggregate heterogeneous knowledge at different tree levels and search for a best solution considering the decomposing and answering probabilities. The experiments on complex QA datasets KQA Pro and Musique show that our framework outperforms SOTA methods significantly, demonstrating the effectiveness of leveraging question decomposing for knowledge integration and our RoHT framework.
Jiajie Zhang, Shulin Cao, Tingjian Zhang, Xin Lv, Juanzi Li, Lei Hou, Jiaxin Shi, Qi Tian
null
null
2,023
acl
DIAGRAPH: An Open-Source Graphic Interface for Dialog Flow Design
null
In this work, we present DIAGRAPH, an open-source graphical dialog flow editor built on the ADVISER toolkit. Our goal for this tool is threefold: 1) To support subject-experts to intuitively create complex and flexible dialog systems,2) To support rapid prototyping of dialog system behavior, e.g., for research, and 3) To provide a hands-on test bed for students learning about dialog systems. To facilitate this, DIAGRAPH aims to provide a clean and intuitive graphical interface for creating dialog systems without requiring any coding knowledge. Once a dialog graph has been created, it is automatically turned into a dialog system using state of the art language models. This allows for rapid prototyping and testing. Dialog designers can then distribute a link to their finished dialog system or embed it into a website.Additionally, to support scientific experiments and data collection, dialog designers can access chat logs. Finally, to verify the usability of DIAGRAPH, we performed evaluation with subject-experts who extensively worked with the tool and users testing it for the first time, receiving above average System Usability Scale (SUS) scores from both (82 out 100 and 75 out of 100, respectively).In this way, we hope DIAGRAPH helps reduce the barrier to entry for creating dialog interactions.
Dirk Väth, Lindsey Vanderlyn, Ngoc Thang Vu
null
null
2,023
acl
Nearly Optimal Bounds for Cyclic Forgetting
null
We provide theoretical bounds on the forgetting quantity in the continual learning setting for linear tasks, where each round of learning corresponds to projecting onto a linear subspace. For a cyclic task ordering on $T$ tasks repeated $m$ times each, we prove the best known upper bound of $O(T^2/m)$ on the forgetting. Notably, our bound holds uniformly over all choices of tasks and is independent of the ambient dimension. Our main technical contribution is a characterization of the union of all numerical ranges of products of $T$ (real or complex) projections as a sinusoidal spiral, which may be of independent interest.
William Swartworth, Deanna Needell, Rachel Ward, Mark Kong, Halyun Jeong
null
null
2,023
neurips
Future-conditioned Unsupervised Pretraining for Decision Transformer
null
Recent research in offline reinforcement learning (RL) has demonstrated that return-conditioned supervised learning is a powerful paradigm for decision-making problems. While promising, return conditioning is limited to training data labeled with rewards and therefore faces challenges in learning from unsupervised data. In this work, we aim to utilize generalized future conditioning to enable efficient unsupervised pretraining from reward-free and sub-optimal offline data. We propose Pretrained Decision Transformer (PDT), a conceptually simple approach for unsupervised RL pretraining. PDT leverages future trajectory information as a privileged context to predict actions during training. The ability to make decisions based on both present and future factors enhances PDT’s capability for generalization. Besides, this feature can be easily incorporated into a return-conditioned framework for online finetuning, by assigning return values to possible futures and sampling future embeddings based on their respective values. Empirically, PDT outperforms or performs on par with its supervised pretraining counterpart, especially when dealing with sub-optimal data. Further analysis reveals that PDT can extract diverse behaviors from offline data and controllably sample high-return behaviors by online finetuning. Code is available at here.
Zhihui Xie, Zichuan Lin, Deheng Ye, Qiang Fu, Yang Wei, Shuai Li
null
null
2,023
icml
Tree of Thoughts: Deliberate Problem Solving with Large Language Models
null
Language models are increasingly being deployed for general problem solving across a wide range of tasks, but are still confined to token-level, left-to-right decision-making processes during inference. This means they can fall short in tasks that require exploration, strategic lookahead, or where initial decisions play a pivotal role. To surmount these challenges, we introduce a new framework for language model inference, Tree of Thoughts (ToT), which generalizes over the popular Chain of Thought approach to prompting language models, and enables exploration over coherent units of text (thoughts) that serve as intermediate steps toward problem solving. ToT allows LMs to perform deliberate decision making by considering multiple different reasoning paths and self-evaluating choices to decide the next course of action, as well as looking ahead or backtracking when necessary to make global choices.Our experiments show that ToT significantly enhances language models’ problem-solving abilities on three novel tasks requiring non-trivial planning or search: Game of 24, Creative Writing, and Mini Crosswords. For instance, in Game of 24, while GPT-4 with chain-of-thought prompting only solved 4\% of tasks, our method achieved a success rate of 74\%. Code repo with all prompts: https://github.com/princeton-nlp/tree-of-thought-llm.
Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, Karthik Narasimhan
null
null
2,023
neurips
Compounding Geometric Operations for Knowledge Graph Completion
null
Geometric transformations including translation, rotation, and scaling are commonly used operations in image processing. Besides, some of them are successfully used in developing effective knowledge graph embedding (KGE). Inspired by the synergy, we propose a new KGE model by leveraging all three operations in this work. Since translation, rotation, and scaling operations are cascaded to form a composite one, the new model is named CompoundE. By casting CompoundE in the framework of group theory, we show that quite a few distanced-based KGE models are special cases of CompoundE. CompoundE extends the simple distance-based scoring functions to relation-dependent compound operations on head and/or tail entities. To demonstrate the effectiveness of CompoundE, we perform three prevalent KG prediction tasks including link prediction, path query answering, and entity typing, on a range of datasets. CompoundE outperforms extant models consistently, demonstrating its effectiveness and flexibility.
Xiou Ge, Yun Cheng Wang, Bin Wang, C.-C. Jay Kuo
null
null
2,023
acl
X-Avatar: Expressive Human Avatars
null
We present X-Avatar, a novel avatar model that captures the full expressiveness of digital humans to bring about life-like experiences in telepresence, AR/VR and beyond. Our method models bodies, hands, facial expressions and appearance in a holistic fashion and can be learned from either full 3D scans or RGB-D data. To achieve this, we propose a part-aware learned forward skinning module that can be driven by the parameter space of SMPL-X, allowing for expressive animation of X-Avatars. To efficiently learn the neural shape and deformation fields, we propose novel part-aware sampling and initialization strategies. This leads to higher fidelity results, especially for smaller body parts while maintaining efficient training despite increased number of articulated bones. To capture the appearance of the avatar with high-frequency details, we extend the geometry and deformation fields with a texture network that is conditioned on pose, facial expression, geometry and the normals of the deformed surface. We show experimentally that our method outperforms strong baselines both quantitatively and qualitatively on the animation task. To facilitate future research on expressive avatars we contribute a new dataset, called X-Humans, containing 233 sequences of high-quality textured scans from 20 participants, totalling 35,500 data frames.
Kaiyue Shen, Chen Guo, Manuel Kaufmann, Juan Jose Zarate, Julien Valentin, Jie Song, Otmar Hilliges; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 16911-16921
null
null
2,023
cvpr
The Drunkard’s Odometry: Estimating Camera Motion in Deforming Scenes
null
Estimating camera motion in deformable scenes poses a complex and open research challenge. Most existing non-rigid structure from motion techniques assume to observe also static scene parts besides deforming scene parts in order to establish an anchoring reference. However, this assumption does not hold true in certain relevant application cases such as endoscopies. Deformable odometry and SLAM pipelines, which tackle the most challenging scenario of exploratory trajectories, suffer from a lack of robustness and proper quantitative evaluation methodologies. To tackle this issue with a common benchmark, we introduce the Drunkard's Dataset, a challenging collection of synthetic data targeting visual navigation and reconstruction in deformable environments. This dataset is the first large set of exploratory camera trajectories with ground truth inside 3D scenes where every surface exhibits non-rigid deformations over time. Simulations in realistic 3D buildings lets us obtain a vast amount of data and ground truth labels, including camera poses, RGB images and depth, optical flow and normal maps at high resolution and quality. We further present a novel deformable odometry method, dubbed the Drunkard’s Odometry, which decomposes optical flow estimates into rigid-body camera motion and non-rigid scene deformations. In order to validate our data, our work contains an evaluation of several baselines as well as a novel tracking error metric which does not require ground truth data. Dataset and code: https://davidrecasens.github.io/TheDrunkard'sOdometry/
David Recasens Lafuente, Martin R. Oswald, Marc Pollefeys, Javier Civera
null
null
2,023
neurips
Emergent Communication for Rules Reasoning
null
Research on emergent communication between deep-learning-based agents has received extensive attention due to its inspiration for linguistics and artificial intelligence. However, previous attempts have hovered around emerging communication under perception-oriented environmental settings, that forces agents to describe low-level perceptual features intra image or symbol contexts. In this work, inspired by the classic human reasoning test (namely Raven's Progressive Matrix), we propose the Reasoning Game, a cognition-oriented environment that encourages agents to reason and communicate high-level rules, rather than perceived low-level contexts. Moreover, we propose 1) an unbiased dataset (namely rule-RAVEN) as a benchmark to avoid overfitting, 2) and a two-stage curriculum agent training method as a baseline for more stable convergence in the Reasoning Game, where contexts and semantics are bilaterally drifting. Experimental results show that, in the Reasoning Game, a semantically stable and compositional language emerges to solve reasoning problems. The emerged language helps agents apply the extracted rules to the generalization of unseen context attributes, and to the transfer between different context attributes or even tasks.
Yuxuan Guo, Yifan Hao, Rui Zhang, Enshuai Zhou, Zidong Du, xishan zhang, Xinkai Song, Yuanbo Wen, Yongwei Zhao, Xuehai Zhou, Jiaming Guo, Qi Yi, Shaohui Peng, Di Huang, Ruizhi Chen, Qi Guo, Yunji Chen
null
null
2,023
neurips
Clustering Pseudo Language Family in Multilingual Translation Models with Fisher Information Matrix
null
In multilingual translation research, the comprehension and utilization of language families are of paramount importance. Nevertheless, clustering languages based solely on their ancestral families can yield suboptimal results due to variations in the datasets employed during the model’s training phase. To mitigate this challenge, we introduce an innovative method that leverages the fisher information matrix (FIM) to cluster language families, anchored on the multilingual translation model’s characteristics. We hypothesize that language pairs with similar effects on model parameters exhibit a considerable degree of linguistic congruence and should thus be grouped cohesively. This concept has led us to define pseudo language families. We provide an in-depth discussion regarding the inception and application of these pseudo language families. Empirical evaluations reveal that employing these pseudo language families enhances performance over conventional language families in adapting a multilingual translation model to unfamiliar language pairs. The proposed methodology may also be extended to scenarios requiring language similarity measurements. The source code and associated scripts can be accessed at https://github.com/ecoli-hit/PseudoFamily.
Xinyu Ma, Xuebo Liu, Min Zhang
null
null
2,023
emnlp
VaRT: Variational Regression Trees
null
Decision trees are a well-established tool in machine learning for classification and regression tasks. In this paper, we introduce a novel non-parametric Bayesian model that uses variational inference to approximate a posterior distribution over the space of stochastic decision trees. We evaluate the model's performance on 18 datasets and demonstrate its competitiveness with other state-of-the-art methods in regression tasks. We also explore its application to causal inference problems. We provide a fully vectorized implementation of our algorithm in PyTorch.
Sebastian Salazar
null
null
2,023
neurips
HandsOff: Labeled Dataset Generation With No Additional Human Annotations
null
Recent work leverages the expressive power of genera- tive adversarial networks (GANs) to generate labeled syn- thetic datasets. These dataset generation methods often require new annotations of synthetic images, which forces practitioners to seek out annotators, curate a set of synthetic images, and ensure the quality of generated labels. We in- troduce the HandsOff framework, a technique capable of producing an unlimited number of synthetic images and cor- responding labels after being trained on less than 50 pre- existing labeled images. Our framework avoids the practi- cal drawbacks of prior work by unifying the field of GAN in- version with dataset generation. We generate datasets with rich pixel-wise labels in multiple challenging domains such as faces, cars, full-body human poses, and urban driving scenes. Our method achieves state-of-the-art performance in semantic segmentation, keypoint detection, and depth es- timation compared to prior dataset generation approaches and transfer learning baselines. We additionally showcase its ability to address broad challenges in model develop- ment which stem from fixed, hand-annotated datasets, such as the long-tail problem in semantic segmentation. Project page: austinxu87.github.io/handsoff.
Austin Xu, Mariya I. Vasileva, Achal Dave, Arjun Seshadri; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 7991-8000
null
null
2,023
cvpr
SSL4EO-L: Datasets and Foundation Models for Landsat Imagery
null
The Landsat program is the longest-running Earth observation program in history, with 50+ years of data acquisition by 8 satellites. The multispectral imagery captured by sensors onboard these satellites is critical for a wide range of scientific fields. Despite the increasing popularity of deep learning and remote sensing, the majority of researchers still use decision trees and random forests for Landsat image analysis due to the prevalence of small labeled datasets and lack of foundation models. In this paper, we introduce SSL4EO-L, the first ever dataset designed for Self-Supervised Learning for Earth Observation for the Landsat family of satellites (including 3 sensors and 2 product levels) and the largest Landsat dataset in history (5M image patches). Additionally, we modernize and re-release the L7 Irish and L8 Biome cloud detection datasets, and introduce the first ML benchmark datasets for Landsats 4–5 TM and Landsat 7 ETM+ SR. Finally, we pre-train the first foundation models for Landsat imagery using SSL4EO-L and evaluate their performance on multiple semantic segmentation tasks. All datasets and model weights are available via the TorchGeo library, making reproducibility and experimentation easy, and enabling scientific advancements in the burgeoning field of remote sensing for a multitude of downstream applications.
Adam Stewart, Nils Lehmann, Isaac Corley, Yi Wang, Yi-Chia Chang, Nassim Ait Ait Ali Braham, Shradha Sehgal, Caleb Robinson, Arindam Banerjee
null
null
2,023
neurips
SSD-LM: Semi-autoregressive Simplex-based Diffusion Language Model for Text Generation and Modular Control
null
Despite the growing success of diffusion models in continuous-valued domains (e.g., images), similar efforts for discrete domains such as text have yet to match the performance of autoregressive language models. In this work, we present SSD-LM—a diffusion-based language model with two key design choices. First, SSD-LM is semi-autoregressive, iteratively generating blocks of text, allowing for flexible output length at decoding time while enabling local bidirectional context updates. Second, it is simplex-based, performing diffusion on the natural vocabulary space rather than a learned latent space, allowing us to incorporate classifier guidance and modular control using off-the-shelf classifiers without any adaptation. We evaluate SSD-LM on unconstrained text generation benchmarks, and show that it matches or outperforms strong autoregressive GPT-2 models across standard quality and diversity metrics, while vastly outperforming diffusion-based baselines. On controlled text generation, SSD-LM also outperforms competitive baselines, with an extra advantage in modularity.
Xiaochuang Han, Sachin Kumar, Yulia Tsvetkov
null
null
2,023
acl
Spatio-Temporal Pixel-Level Contrastive Learning-Based Source-Free Domain Adaptation for Video Semantic Segmentation
null
Unsupervised Domain Adaptation (UDA) of semantic segmentation transfers labeled source knowledge to an unlabeled target domain by relying on accessing both the source and target data. However, the access to source data is often restricted or infeasible in real-world scenarios. Under the source data restrictive circumstances, UDA is less practical. To address this, recent works have explored solutions under the Source-Free Domain Adaptation (SFDA) setup, which aims to adapt a source-trained model to the target domain without accessing source data. Still, existing SFDA approaches use only image-level information for adaptation, making them sub-optimal in video applications. This paper studies SFDA for Video Semantic Segmentation (VSS), where temporal information is leveraged to address video adaptation. Specifically, we propose Spatio-Temporal Pixel-Level (STPL) contrastive learning, a novel method that takes full advantage of spatio-temporal information to tackle the absence of source data better. STPL explicitly learns semantic correlations among pixels in the spatio-temporal space, providing strong self-supervision for adaptation to the unlabeled target domain. Extensive experiments show that STPL achieves state-of-the-art performance on VSS benchmarks compared to current UDA and SFDA approaches. Code is available at: https://github.com/shaoyuanlo/STPL
Shao-Yuan Lo, Poojan Oza, Sumanth Chennupati, Alejandro Galindo, Vishal M. Patel; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 10534-10543
null
null
2,023
cvpr
EdaDet: Open-Vocabulary Object Detection Using Early Dense Alignment
null
Vision-language models such as CLIP have boosted the performance of open-vocabulary object detection, where the detector is trained on base categories but required to detect novel categories. Existing methods leverage CLIP's strong zero-shot recognition ability to align object-level embeddings with textual embeddings of categories. However, we observe that using CLIP for object-level alignment results in overfitting to base categories, i.e., novel categories most similar to base categories have particularly poor performance as they are recognized as similar base categories. In this paper, we first identify that the loss of critical fine-grained local image semantics hinders existing methods from attaining strong base-to-novel generalization. Then, we propose Early Dense Alignment (EDA) to bridge the gap between generalizable local semantics and object-level prediction. In EDA, we use object-level supervision to learn the dense-level rather than object-level alignment to maintain the local fine-grained semantics. Extensive experiments demonstrate our superior performance to competing approaches under the same strict setting and without using external training resources, i.e., improving the +8.4% novel box AP50 on COCO and +3.9% rare mask AP on LVIS.
Cheng Shi, Sibei Yang; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 15724-15734
null
null
2,023
iccv
E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning
null
As the size of transformer-based models continues to grow, fine-tuning these large-scale pre-trained vision models for new tasks has become increasingly parameter-intensive. Parameter-efficient learning has been developed to reduce the number of tunable parameters during fine-tuning. Although these methods show promising results, there is still a significant performance gap compared to full fine-tuning. To address this challenge, we propose an Effective and Efficient Visual Prompt Tuning (E^2VPT) approach for large-scale transformer-based model adaptation. Specifically, we introduce a set of learnable key-value prompts and visual prompts into self-attention and input layers, respectively, to improve the effectiveness of model fine-tuning. Moreover, we design a prompt pruning procedure to systematically prune low importance prompts while preserving model performance, which largely enhances the model's efficiency. Empirical results demonstrate that our approach outperforms several state-of-the-art baselines on two benchmarks, with considerably low parameter usage (e.g., 0.32% of model parameters on VTAB-1k). We anticipate that this work will inspire further exploration within the pretrain-then-finetune paradigm for large-scale models.
Cheng Han, Qifan Wang, Yiming Cui, Zhiwen Cao, Wenguan Wang, Siyuan Qi, Dongfang Liu; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 17491-17502
null
null
2,023
iccv
Self-supervised Neural Factor Analysis for Disentangling Utterance-level Speech Representations
null
Self-supervised learning (SSL) speech models such as wav2vec and HuBERT have demonstrated state-of-the-art performance on automatic speech recognition (ASR) and proved to be extremely useful in low label-resource settings. However, the success of SSL models has yet to transfer to utterance-level tasks such as speaker, emotion, and language recognition, which still require supervised fine-tuning of the SSL models to obtain good performance. We argue that the problem is caused by the lack of disentangled representations and an utterance-level learning objective for these tasks. Inspired by how HuBERT uses clustering to discover hidden acoustic units, we formulate a factor analysis (FA) model that uses the discovered hidden acoustic units to align the SSL features. The underlying utterance-level representations are disentangled using probabilistic inference on the aligned features. Furthermore, the variational lower bound derived from the FA model provides an utterance-level objective, allowing error gradients to be backpropagated to the Transformer layers to learn highly discriminative acoustic units. When used in conjunction with HuBERT’s masked prediction training, our models outperform the current best model, WavLM, on all utterance-level non-semantic tasks on the SUPERB benchmark with only 20% of labeled data.
Weiwei Lin, Chenhang He, Man-Wai Mak, Youzhi Tu
null
null
2,023
icml
Skill-Based Few-Shot Selection for In-Context Learning
null
*In-context learning* is the paradigm that adapts large language models to downstream tasks by providing a few examples. *Few-shot selection*—selecting appropriate examples for each test instance separately—is important for in-context learning. In this paper, we propose **Skill-KNN**, a skill-based few-shot selection method for in-context learning. The key advantages of Skill-KNN include: (1) it addresses the problem that existing methods based on pre-trained embeddings can be easily biased by surface natural language features that are not important for the target task; (2) it does not require training or fine-tuning of any models, making it suitable for frequently expanding or changing example banks. The key insight is to optimize the inputs fed into the embedding model, rather than tuning the model itself. Technically, Skill-KNN generates the skill-based descriptions for each test case and candidate example by utilizing a pre-processing few-shot prompting, thus eliminating unimportant surface features. Experimental results across five cross-domain semantic parsing datasets and six backbone models show that Skill-KNN significantly outperforms existing methods.
Shengnan An, Bo Zhou, Zeqi Lin, Qiang Fu, Bei Chen, Nanning Zheng, Weizhu Chen, Jian-Guang Lou
null
null
2,023
emnlp
D$^2$CSG: Unsupervised Learning of Compact CSG Trees with Dual Complements and Dropouts
null
We present D$^2$CSG, a neural model composed of two dual and complementary network branches, with dropouts, for unsupervised learning of compact constructive solid geometry (CSG) representations of 3D CAD shapes. Our network is trained to reconstruct a 3D shape by a fixed-order assembly of quadric primitives, with both branches producing a union of primitive intersections or inverses. A key difference between D$^2$CSG and all prior neural CSG models is its dedicated residual branch to assemble the potentially complex shape complement, which is subtracted from an overall shape modeled by the cover branch. With the shape complements, our network is provably general, while the weight dropout further improves compactness of the CSG tree by removing redundant primitives. We demonstrate both quantitatively and qualitatively that D$^2$CSG produces compact CSG reconstructions with superior quality and more natural primitives than all existing alternatives, especially over complex and high-genus CAD shapes.
Fenggen Yu, Qimin Chen, Maham Tanveer, Ali Mahdavi Amiri, Hao Zhang
null
null
2,023
neurips
SDFusion: Multimodal 3D Shape Completion, Reconstruction, and Generation
null
In this work, we present a novel framework built to simplify 3D asset generation for amateur users. To enable interactive generation, our method supports a variety of input modalities that can be easily provided by a human, including images, texts, partially observed shapes and combinations of these, further allowing for adjusting the strength of each input. At the core of our approach is an encoder-decoder, compressing 3D shapes into a compact latent representation, upon which a diffusion model is learned. To enable a variety of multi-modal inputs, we employ task-specific encoders with dropout followed by a cross-attention mechanism. Due to its flexibility, our model naturally supports a variety of tasks outperforming prior works on shape completion, image-based 3D reconstruction, and text-to-3D. Most interestingly, our model can combine all these tasks into one swiss-army-knife tool, enabling the user to perform shape generation using incomplete shapes, images, and textual descriptions at the same time, providing the relative weights for each input and facilitating interactivity. Despite our approach being shape-only, we further show an efficient method to texture the generated using large-scale text-to-image models.
Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, Alexander G. Schwing, Liang-Yan Gui; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 4456-4465
null
null
2,023
cvpr
Sketching Algorithms for Sparse Dictionary Learning: PTAS and Turnstile Streaming
null
Sketching algorithms have recently proven to be a powerful approach both for designing low-space streaming algorithms as well as fast polynomial time approximation schemes (PTAS). In this work, we develop new techniques to extend the applicability of sketching-based approaches to the sparse dictionary learning and the Euclidean $k$-means clustering problems. In particular, we initiate the study of the challenging setting where the dictionary/clustering assignment for each of the $n$ input points must be output, which has surprisingly received little attention in prior work. On the fast algorithms front, we obtain a new approach for designing PTAS's for the $k$-means clustering problem, which generalizes to the first PTAS for the sparse dictionary learning problem. On the streaming algorithms front, we obtain new upper bounds and lower bounds for dictionary learning and $k$-means clustering. In particular, given a design matrix $\mathbf A\in\mathbb R^{n\times d}$ in a turnstile stream, we show an $\tilde O(nr/\epsilon^2 + dk/\epsilon)$ space upper bound for $r$-sparse dictionary learning of size $k$, an $\tilde O(n/\epsilon^2 + dk/\epsilon)$ space upper bound for $k$-means clustering, as well as an $\tilde O(n)$ space upper bound for $k$-means clustering on random order row insertion streams with a natural "bounded sensitivity" assumption. On the lower bounds side, we obtain a general $\tilde\Omega(n/\epsilon + dk/\epsilon)$ lower bound for $k$-means clustering, as well as an $\tilde\Omega(n/\epsilon^2)$ lower bound for algorithms which can estimate the cost of a single fixed set of candidate centers.
Gregory Dexter, Petros Drineas, David Woodruff, Taisuke Yasuda
null
null
2,023
neurips
GibbsDDRM: A Partially Collapsed Gibbs Sampler for Solving Blind Inverse Problems with Denoising Diffusion Restoration
null
Pre-trained diffusion models have been successfully used as priors in a variety of linear inverse problems, where the goal is to reconstruct a signal from noisy linear measurements. However, existing approaches require knowledge of the linear operator. In this paper, we propose GibbsDDRM, an extension of Denoising Diffusion Restoration Models (DDRM) to a blind setting in which the linear measurement operator is unknown. GibbsDDRM constructs a joint distribution of the data, measurements, and linear operator by using a pre-trained diffusion model for the data prior, and it solves the problem by posterior sampling with an efficient variant of a Gibbs sampler. The proposed method is problem-agnostic, meaning that a pre-trained diffusion model can be applied to various inverse problems without fine-tuning. In experiments, it achieved high performance on both blind image deblurring and vocal dereverberation tasks, despite the use of simple generic priors for the underlying linear operators.
Naoki Murata, Koichi Saito, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Yuki Mitsufuji, Stefano Ermon
null
null
2,023
icml
Proxy Anchor-based Unsupervised Learning for Continuous Generalized Category Discovery
null
Recent advances in deep learning have significantly improved the performance of various computer vision applications. However, discovering novel categories in an incremental learning scenario remains a challenging problem due to the lack of prior knowledge about the number and nature of new categories. Existing methods for novel category discovery are limited by their reliance on labeled datasets and prior knowledge about the number of novel categories and the proportion of novel samples in the batch. To address the limitations and more accurately reflect real-world scenarios, in this paper, we propose a novel unsupervised class incremental learning approach for discovering novel categories on unlabeled sets without prior knowledge. The proposed method fine-tunes the feature extractor and proxy anchors on labeled sets, then splits samples into old and novel categories and clusters on the unlabeled dataset. Furthermore, the proxy anchors-based exemplar generates representative category vectors to mitigate catastrophic forgetting. Experimental results demonstrate that our proposed approach outperforms the state-of-the-art methods on fine-grained datasets under real-world scenarios.
Hyungmin Kim, Sungho Suh, Daehwan Kim, Daun Jeong, Hansang Cho, Junmo Kim; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 16688-16697
null
null
2,023
iccv
Beyond Appearance: A Semantic Controllable Self-Supervised Learning Framework for Human-Centric Visual Tasks
null
Human-centric visual tasks have attracted increasing research attention due to their widespread applications. In this paper, we aim to learn a general human representation from massive unlabeled human images which can benefit downstream human-centric tasks to the maximum extent. We call this method SOLIDER, a Semantic cOntrollable seLf-supervIseD lEaRning framework. Unlike the existing self-supervised learning methods, prior knowledge from human images is utilized in SOLIDER to build pseudo semantic labels and import more semantic information into the learned representation. Meanwhile, we note that different downstream tasks always require different ratios of semantic information and appearance information. For example, human parsing requires more semantic information, while person re-identification needs more appearance information for identification purpose. So a single learned representation cannot fit for all requirements. To solve this problem, SOLIDER introduces a conditional network with a semantic controller. After the model is trained, users can send values to the controller to produce representations with different ratios of semantic information, which can fit different needs of downstream tasks. Finally, SOLIDER is verified on six downstream human-centric visual tasks. It outperforms state of the arts and builds new baselines for these tasks. The code is released in https://github.com/tinyvision/SOLIDER.
Weihua Chen, Xianzhe Xu, Jian Jia, Hao Luo, Yaohua Wang, Fan Wang, Rong Jin, Xiuyu Sun; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 15050-15061
null
null
2,023
cvpr
Retrosynthesis Prediction with Local Template Retrieval
null
Retrosynthesis, which predicts the reactants of a given target molecule, is an essential task for drug discovery. In recent years, the machine learing based retrosynthesis methods have achieved promising results. In this work, we introduce RetroKNN, a local reaction template retrieval method to further boost the performance of template-based systems with non-parametric retrieval. We first build an atom-template store and a bond-template store that contains the local templates in the training data, then retrieve from these templates with a k-nearest-neighbor (KNN) search during inference. The retrieved templates are combined with neural network predictions as the final output. Furthermore, we propose a lightweight adapter to adjust the weights when combing neural network and KNN predictions conditioned on the hidden representation and the retrieved templates. We conduct comprehensive experiments on two widely used benchmarks, the USPTO-50K and USPTO-MIT. Especially for the top-1 accuracy, we improved 7.1% on the USPTO-50K dataset and 12.0% on the USPTO-MIT dataset.These results demonstrate the effectiveness of our method.
Shufang Xie, Rui Yan, Junliang Guo, Yingce Xia, Lijun Wu, Tao Qin
null
null
2,023
aaai
Language-driven Scene Synthesis using Multi-conditional Diffusion Model
null
Scene synthesis is a challenging problem with several industrial applications. Recently, substantial efforts have been directed to synthesize the scene using human motions, room layouts, or spatial graphs as the input. However, few studies have addressed this problem from multiple modalities, especially combining text prompts. In this paper, we propose a language-driven scene synthesis task, which is a new task that integrates text prompts, human motion, and existing objects for scene synthesis. Unlike other single-condition synthesis tasks, our problem involves multiple conditions and requires a strategy for processing and encoding them into a unified space. To address the challenge, we present a multi-conditional diffusion model, which differs from the implicit unification approach of other diffusion literature by explicitly predicting the guiding points for the original data distribution. We demonstrate that our approach is theoretically supportive. The intensive experiment results illustrate that our method outperforms state-of-the-art benchmarks and enables natural scene editing applications. The source code and dataset can be accessed at https://lang-scene-synth.github.io/.
An Dinh Vuong, Minh Nhat VU, Toan Nguyen, Baoru Huang, Dzung Nguyen, Thieu Vo, Anh Nguyen
null
null
2,023
neurips
Inversion-Based Style Transfer With Diffusion Models
null
The artistic style within a painting is the means of expression, which includes not only the painting material, colors, and brushstrokes, but also the high-level attributes, including semantic elements and object shapes. Previous arbitrary example-guided artistic image generation methods often fail to control shape changes or convey elements. Pre-trained text-to-image synthesis diffusion probabilistic models have achieved remarkable quality but often require extensive textual descriptions to accurately portray the attributes of a particular painting.The uniqueness of an artwork lies in the fact that it cannot be adequately explained with normal language. Our key idea is to learn the artistic style directly from a single painting and then guide the synthesis without providing complex textual descriptions. Specifically, we perceive style as a learnable textual description of a painting.We propose an inversion-based style transfer method (InST), which can efficiently and accurately learn the key information of an image, thus capturing and transferring the artistic style of a painting. We demonstrate the quality and efficiency of our method on numerous paintings of various artists and styles. Codes are available at https://github.com/zyxElsa/InST.
Yuxin Zhang, Nisha Huang, Fan Tang, Haibin Huang, Chongyang Ma, Weiming Dong, Changsheng Xu; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 10146-10156
null
null
2,023
cvpr
Beyond Exponentially Fast Mixing in Average-Reward Reinforcement Learning via Multi-Level Monte Carlo Actor-Critic
null
Many existing reinforcement learning (RL) methods employ stochastic gradient iteration on the back end, whose stability hinges upon a hypothesis that the data-generating process mixes exponentially fast with a rate parameter that appears in the step-size selection. Unfortunately, this assumption is violated for large state spaces or settings with sparse rewards, and the mixing time is unknown, making the step size inoperable. In this work, we propose an RL methodology attuned to the mixing time by employing a multi-level Monte Carlo estimator for the critic, the actor, and the average reward embedded within an actor-critic (AC) algorithm. This method, which we call Multi-level Actor-Critic (MAC), is developed specifically for infinite-horizon average-reward settings and neither relies on oracle knowledge of the mixing time in its parameter selection nor assumes its exponential decay; it is therefore readily applicable to applications with slower mixing times. Nonetheless, it achieves a convergence rate comparable to SOTA actor-critic algorithms. We experimentally show that these alleviated restrictions on the technical conditions required for stability translate to superior performance in practice for RL problems with sparse rewards.
Wesley A Suttle, Amrit Bedi, Bhrij Patel, Brian M. Sadler, Alec Koppel, Dinesh Manocha
null
null
2,023
icml
Self-Ordering Point Clouds
null
In this paper we address the task of finding representative subsets of points in a 3D point cloud by means of a point-wise ordering. Only a few works have tried to address this challenging vision problem, all with the help of hard to obtain point and cloud labels. Different from these works, we introduce the task of point-wise ordering in 3D point clouds through self-supervision, which we call self-ordering. We further contribute the first end-to-end trainable network that learns a point-wise ordering in a self-supervised fashion. It utilizes a novel differentiable point scoring-sorting strategy and it constructs an hierarchical contrastive scheme to obtain self-supervision signals. We extensively ablate the method and show its superior performance even compared to supervised ordering methods on multiple datasets and tasks including zero-shot ordering of point clouds from unseen categories.
Pengwan Yang, Cees G. M. Snoek, Yuki M. Asano; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 15813-15822
null
null
2,023
iccv
IHNet: Iterative Hierarchical Network Guided by High-Resolution Estimated Information for Scene Flow Estimation
null
Scene flow estimation, which predicts the 3D displacements of point clouds, is a fundamental task in autonomous driving. Most methods have adopted a coarse-to-fine structure to balance computational efficiency with accuracy, particularly when handling large displacements. However, inaccuracies in the initial coarse layer's scene flow estimates may accumulate, leading to incorrect final estimates. To alleviate this, we introduce a novel Iterative Hierarchical Network----IHNet. This approach circulates high-resolution estimated information (scene flow and feature) from the preceding iteration back to the low-resolution layer of the current iteration. Serving as a guide, the high-resolution estimated scene flow, instead of initializing the scene flow from zero, provides a more precise center for low-resolution layer to identify matches. Meanwhile, the decoder's feature at the high-resolution layer can contribute essential movement information. Furthermore, based on the recurrent structure, we design a resampling scheme to enhance the correspondence between points across two consecutive frames. By employing the previous estimated scene flow to fine-tune the target frame's coordinates, we can significantly reduce the correspondence discrepancy between two frame points, a problem often caused by point sparsity. Following this adjustment, we continue to estimate the scene flow using the newly updated coordinates, along with the reencoded feature. Our approach outperforms the recent state-of-the-art method WSAFlowNet by 20.1% on FlyingThings3D and 56.0% on KITTI scene flow datasets according to EPE3D metric. The code is available at https://github.com/wangyunlhr/IHNet.
Yun Wang, Cheng Chi, Min Lin, Xin Yang; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 10073-10082
null
null
2,023
iccv
A Whac-a-Mole Dilemma: Shortcuts Come in Multiples Where Mitigating One Amplifies Others
null
Machine learning models have been found to learn shortcuts---unintended decision rules that are unable to generalize---undermining models' reliability. Previous works address this problem under the tenuous assumption that only a single shortcut exists in the training data. Real-world images are rife with multiple visual cues from background to texture. Key to advancing the reliability of vision systems is understanding whether existing methods can overcome multiple shortcuts or struggle in a Whac-A-Mole game, i.e., where mitigating one shortcut amplifies reliance on others. To address this shortcoming, we propose two benchmarks: 1) UrbanCars, a dataset with precisely controlled spurious cues, and 2) ImageNet-W, an evaluation set based on ImageNet for watermark, a shortcut we discovered affects nearly every modern vision model. Along with texture and background, ImageNet-W allows us to study multiple shortcuts emerging from training on natural images. We find computer vision models, including large foundation models---regardless of training set, architecture, and supervision---struggle when multiple shortcuts are present. Even methods explicitly designed to combat shortcuts struggle in a Whac-A-Mole dilemma. To tackle this challenge, we propose Last Layer Ensemble, a simple-yet-effective method to mitigate multiple shortcuts without Whac-A-Mole behavior. Our results surface multi-shortcut mitigation as an overlooked challenge critical to advancing the reliability of vision systems. The datasets and code are released: https://github.com/facebookresearch/Whac-A-Mole.
Zhiheng Li, Ivan Evtimov, Albert Gordo, Caner Hazirbas, Tal Hassner, Cristian Canton Ferrer, Chenliang Xu, Mark Ibrahim; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 20071-20082
null
null
2,023
cvpr
Black-Box Sparse Adversarial Attack via Multi-Objective Optimisation
null
Deep neural networks (DNNs) are susceptible to adversarial images, raising concerns about their reliability in safety-critical tasks. Sparse adversarial attacks, which limit the number of modified pixels, have shown to be highly effective in causing DNNs to misclassify. However, existing methods often struggle to simultaneously minimize the number of modified pixels and the size of the modifications, often requiring a large number of queries and assuming unrestricted access to the targeted DNN. In contrast, other methods that limit the number of modified pixels often permit unbounded modifications, making them easily detectable. To address these limitations, we propose a novel multi-objective sparse attack algorithm that efficiently minimizes the number of modified pixels and their size during the attack process. Our algorithm draws inspiration from evolutionary computation and incorporates a mechanism for prioritizing objectives that aligns with an attacker's goals. Our approach outperforms existing sparse attacks on CIFAR-10 and ImageNet trained DNN classifiers while requiring only a small query budget, attaining competitive attack success rates while perturbing fewer pixels. Overall, our proposed attack algorithm provides a solution to the limitations of current sparse attack methods by jointly minimizing the number of modified pixels and their size. Our results demonstrate the effectiveness of our approach in restricted scenarios, highlighting its potential to enhance DNN security.
Phoenix Neale Williams, Ke Li; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 12291-12301
null
null
2,023
cvpr
Fine-tuned vs. Prompt-tuned Supervised Representations: Which Better Account for Brain Language Representations?
null
To decipher the algorithm underlying the human brain's language representation, previous work probed brain responses to language input with pre-trained artificial neural network (ANN) models fine-tuned on NLU tasks. However, full fine-tuning generally updates the entire parametric space and distorts pre-trained features, cognitively inconsistent with the brain's robust multi-task learning ability. Prompt-tuning, in contrast, protects pre-trained weights and learns task-specific embeddings to fit a task. Could prompt-tuning generate representations that better account for the brain's language representations than fine-tuning? If so, what kind of NLU task leads a pre-trained model to better decode the information represented in the human brain? We investigate these questions by comparing prompt-tuned and fine-tuned representations in neural decoding, that is predicting the linguistic stimulus from the brain activities evoked by the stimulus. We find that on none of the 10 NLU tasks, full fine-tuning significantly outperforms prompt-tuning in neural decoding, implicating that a more brain-consistent tuning method yields representations that better correlate with brain data. Moreover, we identify that tasks dealing with fine-grained concept meaning yield representations that better decode brain activation patterns than other tasks, especially the syntactic chunking task. This indicates that our brain encodes more fine-grained concept information than shallow syntactic information when representing languages.
Jingyuan Sun, Marie-Francine Moens
null
null
2,023
ijcai
Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC
null
Since their introduction, diffusion models have quickly become the prevailing approach to generative modeling in many domains. They can be interpreted as learning the gradients of a time-varying sequence of log-probability density functions. This interpretation has motivated classifier-based and classifier-free guidance as methods for post-hoc control of diffusion models. In this work, we build upon these ideas using the score-based interpretation of diffusion models, and explore alternative ways to condition, modify, and reuse diffusion models for tasks involving compositional generation and guidance. In particular, we investigate why certain types of composition fail using current techniques and present a number of solutions. We conclude that the sampler (not the model) is responsible for this failure and propose new samplers, inspired by MCMC, which enable successful compositional generation. Further, we propose an energy-based parameterization of diffusion models which enables the use of new compositional operators and more sophisticated, Metropolis-corrected samplers. Intriguingly we find these samplers lead to notable improvements in compositional generation across a wide variety of problems such as classifier-guided ImageNet modeling and compositional text-to-image generation.
Yilun Du, Conor Durkan, Robin Strudel, Joshua B. Tenenbaum, Sander Dieleman, Rob Fergus, Jascha Sohl-Dickstein, Arnaud Doucet, Will Sussman Grathwohl
null
null
2,023
icml
Learning to Transform for Generalizable Instance-wise Invariance
null
Computer vision research has long aimed to build systems that are robust to transformations found in natural data. Traditionally, this is done using data augmentation or hard-coding invariances into the architecture. However, too much or too little invariance can hurt, and the correct amount is unknown a priori and dependent on the instance. Ideally, the appropriate invariance would be learned from data and inferred at test-time. We treat invariance as a prediction problem. Given any image, we predict a distribution over transformations. We use variational inference to learn this distribution end-to-end. Combined with a graphical model approach, this distribution forms a flexible, generalizable, and adaptive form of invariance. Our experiments show that it can be used to align datasets and discover prototypes, adapt to out-of-distribution poses, and generalize invariances across classes. When used for data augmentation, our method shows consistent gains in accuracy and robustness on CIFAR 10, CIFAR10-LT, and TinyImageNet.
Utkarsh Singhal, Carlos Esteves, Ameesh Makadia, Stella X. Yu; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 6211-6221
null
null
2,023
iccv
Multi-Agent Learning with Heterogeneous Linear Contextual Bandits
null
As trained intelligent systems become increasingly pervasive, multiagent learning has emerged as a popular framework for studying complex interactions between autonomous agents. Yet, a formal understanding of how and when learners in heterogeneous environments benefit from sharing their respective experiences is far from complete. In this paper, we seek answers to these questions in the context of linear contextual bandits. We present a novel distributed learning algorithm based on the upper confidence bound (UCB) algorithm, which we refer to as H-LINUCB, wherein agents cooperatively minimize the group regret under the coordination of a central server. In the setting where the level of heterogeneity or dissimilarity across the environments is known to the agents, we show that H-LINUCB is provably optimal in regimes where the tasks are highly similar or highly dissimilar.
Anh Do, Thanh Nguyen-Tang, Raman Arora
null
null
2,023
neurips
Toward Robust Diagnosis: A Contour Attention Preserving Adversarial Defense for COVID-19 Detection
null
As the COVID-19 pandemic puts pressure on healthcare systems worldwide, the computed tomography image based AI diagnostic system has become a sustainable solution for early diagnosis. However, the model-wise vulnerability under adversarial perturbation hinders its deployment in practical situation. The existing adversarial training strategies are difficult to generalized into medical imaging field challenged by complex medical texture features. To overcome this challenge, we propose a Contour Attention Preserving (CAP) method based on lung cavity edge extraction. The contour prior features are injected to attention layer via a parameter regularization and we optimize the robust empirical risk with hybrid distance metric. We then introduce a new cross-nation CT scan dataset to evaluate the generalization capability of the adversarial robustness under distribution shift. Experimental results indicate that the proposed method achieves state-of-the-art performance in multiple adversarial defense and generalization tasks. The code and dataset are available at https://github.com/Quinn777/CAP.
Kun Xiang, Xing Zhang, Jinwen She, Jinpeng Liu, Haohan Wang, Shiqi Deng, Shancheng Jiang
null
null
2,023
aaai
Learning to Boost Training by Periodic Nowcasting Near Future Weights
null
Recent complicated problems require large-scale datasets and complex model architectures, however, it is difficult to train such large networks due to high computational issues. Significant efforts have been made to make the training more efficient such as momentum, learning rate scheduling, weight regularization, and meta-learning. Based on our observations on 1) high correlation between past eights and future weights, 2) conditions for beneficial weight prediction, and 3) feasibility of weight prediction, we propose a more general framework by intermittently skipping a handful of epochs by periodically forecasting near future weights, i.e., a Weight Nowcaster Network (WNN). As an add-on module, WNN predicts the future weights to make the learning process faster regardless of tasks and architectures. Experimental results show that WNN can significantly save actual time cost for training with an additional marginal time to train WNN. We validate the generalization capability of WNN under various tasks, and demonstrate that it works well even for unseen tasks. The code and pre-trained model are available at https://github.com/jjh6297/WNN.
Jinhyeok Jang, Woo-Han Yun, Won Hwa Kim, Youngwoo Yoon, Jaehong Kim, Jaeyeon Lee, Byungok Han
null
null
2,023
icml
Detecting Human-Object Contact in Images
null
Humans constantly contact objects to move and perform tasks. Thus, detecting human-object contact is important for building human-centered artificial intelligence. However, there exists no robust method to detect contact between the body and the scene from an image, and there exists no dataset to learn such a detector. We fill this gap with HOT ("Human-Object conTact"), a new dataset of human-object contacts in images. To build HOT, we use two data sources: (1) We use the PROX dataset of 3D human meshes moving in 3D scenes, and automatically annotate 2D image areas for contact via 3D mesh proximity and projection. (2) We use the V-COCO, HAKE and Watch-n-Patch datasets, and ask trained annotators to draw polygons around the 2D image areas where contact takes place. We also annotate the involved body part of the human body. We use our HOT dataset to train a new contact detector, which takes a single color image as input, and outputs 2D contact heatmaps as well as the body-part labels that are in contact. This is a new and challenging task, that extends current foot-ground or hand-object contact detectors to the full generality of the whole body. The detector uses a part-attention branch to guide contact estimation through the context of the surrounding body parts and scene. We evaluate our detector extensively, and quantitative results show that our model outperforms baselines, and that all components contribute to better performance. Results on images from an online repository show reasonable detections and generalizability. Our HOT data and model are available for research at https://hot.is.tue.mpg.de.
Yixin Chen, Sai Kumar Dwivedi, Michael J. Black, Dimitrios Tzionas; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 17100-17110
null
null
2,023
cvpr
Formulating Discrete Probability Flow Through Optimal Transport
null
Continuous diffusion models are commonly acknowledged to display a deterministic probability flow, whereas discrete diffusion models do not. In this paper, we aim to establish the fundamental theory for the probability flow of discrete diffusion models. Specifically, we first prove that the continuous probability flow is the Monge optimal transport map under certain conditions, and also present an equivalent evidence for discrete cases. In view of these findings, we are then able to define the discrete probability flow in line with the principles of optimal transport. Finally, drawing upon our newly established definitions, we propose a novel sampling method that surpasses previous discrete diffusion models in its ability to generate more certain outcomes. Extensive experiments on the synthetic toy dataset and the CIFAR-10 dataset have validated the effectiveness of our proposed discrete probability flow. Code is released at: https://github.com/PangzeCheung/Discrete-Probability-Flow.
Pengze Zhang, Hubery Yin, Chen Li, Xiaohua Xie
null
null
2,023
neurips
Novel Motion Patterns Matter for Practical Skeleton-Based Action Recognition
null
Most skeleton-based action recognition methods assume that the same type of action samples in the training set and the test set share similar motion patterns. However, action samples in real scenarios usually contain novel motion patterns which are not involved in the training set. As it is laborious to collect sufficient training samples to enumerate various types of novel motion patterns, this paper presents a practical skeleton-based action recognition task where the training set contains common motion patterns of action samples and the test set contains action samples that suffer from novel motion patterns. For this task, we present a Mask Graph Convolutional Network (Mask-GCN) to focus on learning action-specific skeleton joints that mainly convey action information meanwhile masking action-agnostic skeleton joints that convey rare action information and suffer more from novel motion patterns. Specifically, we design a policy network to learn layer-wise body masks to construct masked adjacency matrices, which guide a GCN-based backbone to learn stable yet informative action features from dynamic graph structure. Extensive experiments on our newly collected dataset verify that Mask-GCN outperforms most GCN-based methods when testing with various novel motion patterns.
Mengyuan Liu, Fanyang Meng, Chen Chen, Songtao Wu
null
null
2,023
aaai
Conservative Offline Policy Adaptation in Multi-Agent Games
null
Prior research on policy adaptation in multi-agent games has often relied on online interaction with the target agent in training, which can be expensive and impractical in real-world scenarios. Inspired by recent progress in offline reinforcement learn- ing, this paper studies offline policy adaptation, which aims to utilize the target agent’s behavior data to exploit its weakness or enable effective cooperation. We investigate its distinct challenges of distributional shift and risk-free deviation, and propose a novel learning objective, conservative offline adaptation, that optimizes the worst-case performance against any dataset consistent proxy models. We pro- pose an efficient algorithm called Constrained Self-Play (CSP) that incorporates dataset information into regularized policy learning. We prove that CSP learns a near-optimal risk-free offline adaptation policy upon convergence. Empirical results demonstrate that CSP outperforms non-conservative baselines in various environments, including Maze, predator-prey, MuJoCo, and Google Football.
Chengjie Wu, Pingzhong Tang, Jun Yang, Yujing Hu, Tangjie Lv, Changjie Fan, Chongjie Zhang
null
null
2,023
neurips
Surrogate Model Extension (SME): A Fast and Accurate Weight Update Attack on Federated Learning
null
In Federated Learning (FL) and many other distributed training frameworks, collaborators can hold their private data locally and only share the network weights trained with the local data after multiple iterations. Gradient inversion is a family of privacy attacks that recovers data from its generated gradients. Seemingly, FL can provide a degree of protection against gradient inversion attacks on weight updates, since the gradient of a single step is concealed by the accumulation of gradients over multiple local iterations. In this work, we propose a principled way to extend gradient inversion attacks to weight updates in FL, thereby better exposing weaknesses in the presumed privacy protection inherent in FL. In particular, we propose a surrogate model method based on the characteristic of two-dimensional gradient flow and low-rank property of local updates. Our method largely boosts the ability of gradient inversion attacks on weight updates containing many iterations and achieves state-of-the-art (SOTA) performance. Additionally, our method runs up to $100\times$ faster than the SOTA baseline in the common FL scenario. Our work re-evaluates and highlights the privacy risk of sharing network weights. Our code is available at https://github.com/JunyiZhu-AI/surrogate_model_extension.
Junyi Zhu, Ruicong Yao, Matthew B. Blaschko
null
null
2,023
icml
DiffDis: Empowering Generative Diffusion Model with Cross-Modal Discrimination Capability
null
Recently, large-scale diffusion models, e.g., Stable diffusion and DallE2, have shown remarkable results on image synthesis. On the other hand, large-scale cross-modal pre-trained models (e.g., CLIP, ALIGN, and FILIP) are competent for various downstream tasks by learning to align vision and language embeddings. In this paper, we explore the possibility of jointly modeling generation and discrimination. Specifically, we propose DiffDis to unify the cross-modal generative and discriminative pretraining into one single framework under the diffusion process. DiffDis first formulates the image-text discriminative problem as a generative diffusion process of the text embedding from the text encoder conditioned on the image. Then, we propose a novel dual-stream network architecture, which fuses the noisy text embedding with the knowledge of latent images from different scales for image-text discriminative learning. Moreover, the generative and discriminative tasks can efficiently share the image-branch network structure in the multi-modality model. Benefiting from diffusion-based unified training, DiffDis achieves both better generation ability and cross-modal semantic alignment in one architecture. Experimental results show that DiffDis outperforms single-task models on both the image generation and the image-text discriminative tasks, e.g., 1.65% improvement on average accuracy of zero-shot classification over 12 datasets and 2.42 improvement on FID of zero-shot image synthesis.
Runhui Huang, Jianhua Han, Guansong Lu, Xiaodan Liang, Yihan Zeng, Wei Zhang, Hang Xu; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 15713-15723
null
null
2,023
iccv