title
stringlengths 5
246
| categories
stringlengths 5
94
⌀ | abstract
stringlengths 54
5.03k
| authors
stringlengths 0
6.72k
| doi
stringlengths 12
54
⌀ | id
stringlengths 6
10
⌀ | year
float64 2.02k
2.02k
⌀ | venue
stringclasses 13
values |
---|---|---|---|---|---|---|---|
TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities | null | Recently, the success of pre-training in text domain has been fully extended to vision, audio, and cross-modal scenarios. The proposed pre-training models of different modalities are showing a rising trend of homogeneity in their model structures, which brings the opportunity to implement different pre-training models within a uniform framework. In this paper, we present TencentPretrain, a toolkit supporting pre-training models of different modalities. The core feature of TencentPretrain is the modular design. The toolkit uniformly divides pre-training models into 5 components: embedding, encoder, target embedding, decoder, and target. As almost all of common modules are provided in each component, users can choose the desired modules from different components to build a complete pre-training model. The modular design enables users to efficiently reproduce existing pre-training models or build brand-new one. We test the toolkit on text, vision, and audio benchmarks and show that it can match the performance of the original implementations. | Zhe Zhao, Yudong Li, Cheng Hou, Jing Zhao, Rong Tian, Weijie Liu, Yiren Chen, Ningyuan Sun, Haoyan Liu, Weiquan Mao, Han Guo, Weigang Gou, Taiqiang Wu, Tao Zhu, Wenhang Shi, Chen Chen, Shan Huang, Sihong Chen, Liqun Liu, Feifei Li, Xiaoshuai Chen, Xingwu Sun, Zhanhui Kang, Xiaoyong Du, Linlin Shen, Kimmo Yan | null | null | 2,023 | acl |
Generalized Belief Transport | null | Human learners have ability to adopt appropriate learning approaches depending on constraints such as prior on the hypothesis, urgency of decision, and drift of the environment. However, existing learning models are typically considered individually rather than in relation to one and other. To build agents that have the ability to move between different modes of learning over time, it is important to understand how learning models are related as points in a broader space of possibilities. We introduce a mathematical framework, Generalized Belief Transport (GBT), that unifies and generalizes prior models, including Bayesian inference, cooperative communication and classification, as parameterizations of three learning constraints within Unbalanced Optimal Transport (UOT). We visualize the space of learning models encoded by GBT as a cube which includes classic learning models as special points. We derive critical properties of this parameterized space including proving continuity and differentiability which is the basis for model interpolation, and study limiting behavior of the parameters, which allows attaching learning models on the boundaries. Moreover, we investigate the long-run behavior of GBT, explore convergence properties of models in GBT mathematical and computationally, document the ability to learn in the presence of distribution drift, and formulate conjectures about general behavior. We conclude with open questions and implications for more unified models of learning. | Junqi Wang, PEI WANG, Patrick Shafto | null | null | 2,023 | neurips |
Improving Adversarial Robustness by Putting More Regularizations on Less Robust Samples | null | Adversarial training, which is to enhance robustness against adversarial attacks, has received much attention because it is easy to generate human-imperceptible perturbations of data to deceive a given deep neural network. In this paper, we propose a new adversarial training algorithm that is theoretically well motivated and empirically superior to other existing algorithms. A novel feature of the proposed algorithm is to apply more regularization to data vulnerable to adversarial attacks than other existing regularization algorithms do. Theoretically, we show that our algorithm can be understood as an algorithm of minimizing a newly derived upper bound of the robust risk. Numerical experiments illustrate that our proposed algorithm improves the generalization (accuracy on examples) and robustness (accuracy on adversarial attacks) simultaneously to achieve the state-of-the-art performance. | Dongyoon Yang, Insung Kong, Yongdai Kim | null | null | 2,023 | icml |
Bitstream-Corrupted Video Recovery: A Novel Benchmark Dataset and Method | null | The past decade has witnessed great strides in video recovery by specialist technologies, like video inpainting, completion, and error concealment. However, they typically simulate the missing content by manual-designed error masks, thus failing to fill in the realistic video loss in video communication (e.g., telepresence, live streaming, and internet video) and multimedia forensics. To address this, we introduce the bitstream-corrupted video (BSCV) benchmark, the first benchmark dataset with more than 28,000 video clips, which can be used for bitstream-corrupted video recovery in the real world. The BSCV is a collection of 1) a proposed three-parameter corruption model for video bitstream, 2) a large-scale dataset containing rich error patterns, multiple corruption levels, and flexible dataset branches, and 3) a new video recovery framework that serves as a benchmark. We evaluate state-of-the-art video inpainting methods on the BSCV dataset, demonstrating existing approaches' limitations and our framework's advantages in solving the bitstream-corrupted video recovery problem. The benchmark and dataset are released at https://github.com/LIUTIGHE/BSCV-Dataset. | Tianyi Liu, Kejun Wu, Yi Wang, Wenyang Liu, Kim-Hui Yap, Lap-Pui Chau | null | null | 2,023 | neurips |
Language Generation Models Can Cause Harm: So What Can We Do About It? An Actionable Survey | null | Recent advances in the capacity of large language models to generate human-like text have resulted in their increased adoption in user-facing settings. In parallel, these improvements have prompted a heated discourse around the risks of societal harms they introduce, whether inadvertent or malicious. Several studies have explored these harms and called for their mitigation via development of safer, fairer models. Going beyond enumerating the risks of harms, this work provides a survey of practical methods for addressing potential threats and societal harms from language generation models. We draw on several prior works’ taxonomies of language model risks to present a structured overview of strategies for detecting and ameliorating different kinds of risks/harms of language generators. Bridging diverse strands of research, this survey aims to serve as a practical guide for both LM researchers and practitioners, with explanations of different strategies’ motivations, their limitations, and open problems for future research. | Sachin Kumar, Vidhisha Balachandran, Lucille Njoo, Antonios Anastasopoulos, Yulia Tsvetkov | null | null | 2,023 | eacl |
When Does Optimizing a Proper Loss Yield Calibration? | null | Optimizing proper loss functions is popularly believed to yield predictors with good calibration properties; the intuition being that for such losses, the global optimum is to predict the ground-truth probabilities, which is indeed calibrated. However, typical machine learning models are trained to approximately minimize loss over restricted families of predictors, that are unlikely to contain the ground truth. Under what circumstances does optimizing proper loss over a restricted family yield calibrated models? What precise calibration guarantees does it give? In this work, we provide a rigorous answer to these questions. We replace the global optimality with a local optimality condition stipulating that the (proper) loss of the predictor cannot be reduced much by post-processing its predictions with a certain family of Lipschitz functions. We show that any predictor with this local optimality satisfies smooth calibration as defined in [Kakade and Foster, 2008, Błasiok et al., 2023]. Local optimality is plausibly satisfied by well-trained DNNs, which suggests an explanation for why they are calibrated from proper loss minimization alone. Finally, we show that the connection between local optimality and calibration error goes both ways: nearly calibrated predictors are also nearly locally optimal. | Jaroslaw Blasiok, Parikshit Gopalan, Lunjia Hu, Preetum Nakkiran | null | null | 2,023 | neurips |
Discover and Align Taxonomic Context Priors for Open-world Semi-Supervised Learning | null | Open-world Semi-Supervised Learning (OSSL) is a realistic and challenging task, aiming to classify unlabeled samples from both seen and novel classes using partially labeled samples from the seen classes. Previous works typically explore the relationship of samples as priors on the pre-defined single-granularity labels to help novel class recognition. In fact, classes follow a taxonomy and samples can be classified at multiple levels of granularity, which contains more underlying relationships for supervision. We thus argue that learning with single-granularity labels results in sub-optimal representation learning and inaccurate pseudo labels, especially with unknown classes. In this paper, we take the initiative to explore and propose a uniformed framework, called Taxonomic context prIors Discovering and Aligning (TIDA), which exploits the relationship of samples under various granularity. It allows us to discover multi-granularity semantic concepts as taxonomic context priors (i.e., sub-class, target-class, and super-class), and then collaboratively leverage them to enhance representation learning and improve the quality of pseudo labels.Specifically, TIDA comprises two components: i) A taxonomic context discovery module that constructs a set of hierarchical prototypes in the latent space to discover the underlying taxonomic context priors; ii) A taxonomic context-based prediction alignment module that enforces consistency across hierarchical predictions to build the reliable relationship between classes among various granularity and provide additions supervision. We demonstrate that these two components are mutually beneficial for an effective OSSL framework, which is theoretically explained from the perspective of the EM algorithm. Extensive experiments on seven commonly used datasets show that TIDA can significantly improve the performance and achieve a new state of the art. The source codes are publicly available at https://github.com/rain305f/TIDA. | Yu Wang, Zhun Zhong, Pengchong Qiao, Xuxin Cheng, Xiawu Zheng, Chang Liu, Nicu Sebe, Rongrong Ji, Jie Chen | null | null | 2,023 | neurips |
Leveraging Inpainting for Single-Image Shadow Removal | null | Fully-supervised shadow removal methods achieve the best restoration qualities on public datasets but still generate some shadow remnants. One of the reasons is the lack of large-scale shadow & shadow-free image pairs. Unsupervised methods can alleviate the issue but their restoration qualities are much lower than those of fully-supervised methods. In this work, we find that pretraining shadow removal networks on the image inpainting dataset can reduce the shadow remnants significantly: a naive encoder-decoder network gets competitive restoration quality w.r.t. the state-of-the-art methods via only 10% shadow & shadow-free image pairs. After analyzing networks with/without inpainting pretraining via the information stored in the weight (IIW), we find that inpainting pretraining improves restoration quality in non-shadow regions and enhances the generalization ability of networks significantly. Additionally, shadow removal fine-tuning enables networks to fill in the details of shadow regions. Inspired by these observations we formulate shadow removal as an adaptive fusion task that takes advantage of both shadow removal and image inpainting. Specifically, we develop an adaptive fusion network consisting of two encoders, an adaptive fusion block, and a decoder. The two encoders are responsible for extracting the features from the shadow image and the shadow-masked image respectively. The adaptive fusion block is responsible for combining these features in an adaptive manner. Finally, the decoder converts the adaptive fused features to the desired shadow-free result. The extensive experiments show that our method empowered with inpainting outperforms all state-of-the-art methods. | Xiaoguang Li, Qing Guo, Rabab Abdelfattah, Di Lin, Wei Feng, Ivor Tsang, Song Wang; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 13055-13064 | null | null | 2,023 | iccv |
DepGraph: Towards Any Structural Pruning | null | Structural pruning enables model acceleration by removing structurally-grouped parameters from neural networks. However, the parameter-grouping patterns vary widely across different models, making architecture-specific pruners, which rely on manually-designed grouping schemes, non-generalizable to new architectures. In this work, we study a highly-challenging yet barely-explored task, any structural pruning, to tackle general structural pruning of arbitrary architecture like CNNs, RNNs, GNNs and Transformers. The most prominent obstacle towards this goal lies in the structural coupling, which not only forces different layers to be pruned simultaneously, but also expects all removed parameters to be consistently unimportant, thereby avoiding structural issues and significant performance degradation after pruning. To address this problem, we propose a general and fully automatic method, Dependency Graph (DepGraph), to explicitly model the dependency between layers and comprehensively group coupled parameters for pruning. In this work, we extensively evaluate our method on several architectures and tasks, including ResNe(X)t, DenseNet, MobileNet and Vision transformer for images, GAT for graph, DGCNN for 3D point cloud, alongside LSTM for language, and demonstrate that, even with a simple norm-based criterion, the proposed method consistently yields gratifying performances. | Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, Xinchao Wang; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 16091-16101 | null | null | 2,023 | cvpr |
Revisiting Token Dropping Strategy in EfficientBERTPretraining | null | Token dropping is a recently-proposed strategy to speed up the pretraining of masked language models, such as BERT, by skipping the computation of a subset of the input tokens at several middle layers. It can effectively reduce the training time without degrading much performance on downstream tasks. However, we empirically find that token dropping is prone to a semantic loss problem and falls short in handling semantic-intense tasks. Motivated by this, we propose a simple yet effective semantic-consistent learning method (ScTD) to improve the token dropping. ScTD aims to encourage the model to learn how to preserve the semantic information in the representation space. Extensive experiments on 12 tasks show that, with the help of our ScTD, token dropping can achieve consistent and significant performance gains across all task types and model sizes. More encouragingly, ScTD saves up to 57% of pretraining time and brings up to +1.56% average improvement over the vanilla token dropping. | Qihuang Zhong, Liang Ding, Juhua Liu, Xuebo Liu, Min Zhang, Bo Du, Dacheng Tao | null | null | 2,023 | acl |
ESLAM: Efficient Dense SLAM System Based on Hybrid Representation of Signed Distance Fields | null | We present ESLAM, an efficient implicit neural representation method for Simultaneous Localization and Mapping (SLAM). ESLAM reads RGB-D frames with unknown camera poses in a sequential manner and incrementally reconstructs the scene representation while estimating the current camera position in the scene. We incorporate the latest advances in Neural Radiance Fields (NeRF) into a SLAM system, resulting in an efficient and accurate dense visual SLAM method. Our scene representation consists of multi-scale axis-aligned perpendicular feature planes and shallow decoders that, for each point in the continuous space, decode the interpolated features into Truncated Signed Distance Field (TSDF) and RGB values. Our extensive experiments on three standard datasets, Replica, ScanNet, and TUM RGB-D show that ESLAM improves the accuracy of 3D reconstruction and camera localization of state-of-the-art dense visual SLAM methods by more than 50%, while it runs up to 10 times faster and does not require any pre-training. Project page: https://www.idiap.ch/paper/eslam | Mohammad Mahdi Johari, Camilla Carta, François Fleuret; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 17408-17419 | null | null | 2,023 | cvpr |
Cognate Transformer for Automated Phonological Reconstruction and Cognate Reflex Prediction | null | Phonological reconstruction is one of the central problems in historical linguistics where a proto-word of an ancestral language is determined from the observed cognate words of daughter languages. Computational approaches to historical linguistics attempt to automate the task by learning models on available linguistic data. Several ideas and techniques drawn from computational biology have been successfully applied in this area of computational historical linguistics. Following these lines, we adapt MSA Transformer, a protein language model, to the problem of automated phonological reconstruction. MSA Transformer trains on multiple sequence alignments as input and is, thus, apt for application on aligned cognate words. We, hence, name our model as Cognate Transformer. We also apply the model on another associated task, namely, cognate reflex prediction where a reflex word in a daughter language is predicted based on cognate words from other daughter languages. We show that our model outperforms the existing models on both the tasks, especially when it is pre-trained on masked word prediction task. | V.S.D.S.Mahesh Akavarapu, Arnab Bhattacharya | null | null | 2,023 | emnlp |
Paint by Example: Exemplar-Based Image Editing With Diffusion Models | null | Language-guided image editing has achieved great success recently. In this paper, we investigate exemplar-guided image editing for more precise control. We achieve this goal by leveraging self-supervised training to disentangle and re-organize the source image and the exemplar. However, the naive approach will cause obvious fusing artifacts. We carefully analyze it and propose an information bottleneck and strong augmentations to avoid the trivial solution of directly copying and pasting the exemplar image. Meanwhile, to ensure the controllability of the editing process, we design an arbitrary shape mask for the exemplar image and leverage the classifier-free guidance to increase the similarity to the exemplar image. The whole framework involves a single forward of the diffusion model without any iterative optimization. We demonstrate that our method achieves an impressive performance and enables controllable editing on in-the-wild images with high fidelity. | Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin Chen, Xiaoyan Sun, Dong Chen, Fang Wen; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 18381-18391 | null | null | 2,023 | cvpr |
Nonlinear Causal Discovery with Latent Confounders | null | Causal discovery, the task of discovering the causal graph over a set of observed variables $X_1,\ldots,X_m$, is a challenging problem. One of the cornerstone assumptions is that of causal sufficiency: that all common causes of all measured variables have been observed. When it does not hold, causal discovery algorithms making this assumption return networks with many spurious edges. In this paper, we propose a nonlinear causal model involving hidden confounders. We show that it is identifiable from only the observed data and propose an efficient method for recovering this causal model. At the heart of our approach is a variational autoencoder which parametrizes both the causal interactions between observed variables as well as the influence of the unobserved confounders. Empirically we show that it outperforms other state-of-the-art methods for causal discovery under latent confounding on synthetic and real-world data. | David Kaltenpoth, Jilles Vreeken | null | null | 2,023 | icml |
Improving the Generalizability of Collaborative Dialogue Analysis With Multi-Feature Embeddings | null | Conflict prediction in communication is integral to the design of virtual agents that support successful teamwork by providing timely assistance. The aim of our research is to analyze discourse to predict collaboration success. Unfortunately, resource scarcity is a problem that teamwork researchers commonly face since it is hard to gather a large number of training examples. To alleviate this problem, this paper introduces a multi-feature embedding (MFeEmb) that improves the generalizability of conflict prediction models trained on dialogue sequences. MFeEmb leverages textual, structural, and semantic information from the dialogues by incorporating lexical, dialogue acts, and sentiment features. The use of dialogue acts and sentiment features reduces performance loss from natural distribution shifts caused mainly by changes in vocabulary. This paper demonstrates the performance of MFeEmb on domain adaptation problems in which the model is trained on discourse from one task domain and applied to predict team performance in a different domain. The generalizability of MFeEmb is quantified using the similarity measure proposed by Bontonou et al. (2021). Our results show that MFeEmb serves as an excellent domain-agnostic representation for meta-pretraining a few-shot model on collaborative multiparty dialogues. | Ayesha Enayet, Gita Sukthankar | null | null | 2,023 | eacl |
ATTA: Anomaly-aware Test-Time Adaptation for Out-of-Distribution Detection in Segmentation | null | Recent advancements in dense out-of-distribution (OOD) detection have primarily focused on scenarios where the training and testing datasets share a similar domain, with the assumption that no domain shift exists between them. However, in real-world situations, domain shift often exits and significantly affects the accuracy of existing out-of-distribution (OOD) detection models. In this work, we propose a dual-level OOD detection framework to handle domain shift and semantic shift jointly. The first level distinguishes whether domain shift exists in the image by leveraging global low-level features, while the second level identifies pixels with semantic shift by utilizing dense high-level feature maps. In this way, we can selectively adapt the model to unseen domains as well as enhance model's capacity in detecting novel classes. We validate the efficacy of our proposed method on several OOD segmentation benchmarks, including those with significant domain shifts and those without, observing consistent performance improvements across various baseline models. Code is available at https://github.com/gaozhitong/ATTA. | Zhitong Gao, Shipeng Yan, Xuming He | null | null | 2,023 | neurips |
Algorithmic Collective Action in Machine Learning | null | We initiate a principled study of algorithmic collective action on digital platforms that deploy machine learning algorithms. We propose a simple theoretical model of a collective interacting with a firm’s learning algorithm. The collective pools the data of participating individuals and executes an algorithmic strategy by instructing participants how to modify their own data to achieve a collective goal. We investigate the consequences of this model in three fundamental learning-theoretic settings: nonparametric optimal learning, parametric risk minimization, and gradient-based optimization. In each setting, we come up with coordinated algorithmic strategies and characterize natural success criteria as a function of the collective’s size. Complementing our theory, we conduct systematic experiments on a skill classification task involving tens of thousands of resumes from a gig platform for freelancers. Through more than two thousand model training runs of a BERT-like language model, we see a striking correspondence emerge between our empirical observations and the predictions made by our theory. Taken together, our theory and experiments broadly support the conclusion that algorithmic collectives of exceedingly small fractional size can exert significant control over a platform’s learning algorithm. | Moritz Hardt, Eric Mazumdar, Celestine Mendler-Dünner, Tijana Zrnic | null | null | 2,023 | icml |
EGformer: Equirectangular Geometry-biased Transformer for 360 Depth Estimation | null | Estimating the depths of equirectangular (i.e., 360) images (EIs) is challenging given the distorted 180 x 360 field-of-view, which is hard to be addressed via convolutional neural network (CNN). Although a transformer with global attention achieves significant improvements over CNN for EI depth estimation task, it is computationally inefficient, which raises the need for transformer with local attention. However, to apply local attention successfully for EIs, a specific strategy, which addresses distorted equirectangular geometry and limited receptive field simultaneously, is required. Prior works have only cared either of them, resulting in unsatisfactory depths occasionally. In this paper, we propose an equirectangular geometry-biased transformer termed EGformer. While limiting the computational cost and the number of network parameters, EGformer enables the extraction of the equirectangular geometry-aware local attention with a large receptive field. To achieve this, we actively utilize the equirectangular geometry as the bias for the local attention instead of struggling to reduce the distortion of EIs. As compared to the most recent EI depth estimation studies, the proposed approach yields the best depth outcomes overall with the lowest computational cost and the fewest parameters, demonstrating the effectiveness of the proposed methods. | Ilwi Yun, Chanyong Shin, Hyunku Lee, Hyuk-Jae Lee, Chae Eun Rhee; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 6101-6112 | null | null | 2,023 | iccv |
BRAINTEASER: Lateral Thinking Puzzles for Large Language Models | null | The success of language models has inspired the NLP community to attend to tasks that require implicit and complex reasoning, relying on human-like commonsense mechanisms. While such vertical thinking tasks have been relatively popular, lateral thinking puzzles have received little attention. To bridge this gap, we devise BrainTeaser: a multiple-choice Question Answering task designed to test the model’s ability to exhibit lateral thinking and defy default commonsense associations. We design a three-step procedure for creating the first lateral thinking benchmark, consisting of data collection, distractor generation, and generation of adversarial examples, leading to 1,100 puzzles with high-quality annotations. To assess the consistency of lateral reasoning by models, we enrich BrainTeaser based on a semantic and contextual reconstruction of its questions. Our experiments with state-of-the-art instruction- and commonsense language models reveal a significant gap between human and model performance, which is further widened when consistency across adversarial formats is considered. We make all of our code and data available to stimulate work on developing and evaluating lateral thinking models. | Yifan Jiang, Filip Ilievski, Kaixin Ma, Zhivar Sourati | null | null | 2,023 | emnlp |
Dialog-Post: Multi-Level Self-Supervised Objectives and Hierarchical Model for Dialogue Post-Training | null | Dialogue representation and understanding aim to convert conversational inputs into embeddings and fulfill discriminative tasks. Compared with free-form text, dialogue has two important characteristics, hierarchical semantic structure and multi-facet attributes. Therefore, directly applying the pretrained language models (PLMs) might result in unsatisfactory performance. Recently, several work focused on the dialogue-adaptive post-training (DialPost) that further trains PLMs to fit dialogues. To model dialogues more comprehensively, we propose a DialPost method, Dialog-Post, with multi-level self-supervised objectives and a hierarchical model. These objectives leverage dialogue-specific attributes and use self-supervised signals to fully facilitate the representation and understanding of dialogues. The novel model is a hierarchical segment-wise self-attention network, which contains inner-segment and inter-segment self-attention sub-layers followed by an aggregation and updating module. To evaluate the effectiveness of our methods, we first apply two public datasets for the verification of representation ability. Then we conduct experiments on a newly-labelled dataset that is annotated with 4 dialogue understanding tasks. Experimental results show that our method outperforms existing SOTA models and achieves a 3.3% improvement on average. | Zhenyu Zhang, Lei Shen, Yuming Zhao, Meng Chen, Xiaodong He | null | null | 2,023 | acl |
CoMAE: Single Model Hybrid Pre-training on Small-Scale RGB-D Datasets | null | Current RGB-D scene recognition approaches often train two standalone backbones for RGB and depth modalities with the same Places or ImageNet pre-training. However, the pre-trained depth network is still biased by RGB-based models which may result in a suboptimal solution. In this paper, we present a single-model self-supervised hybrid pre-training framework for RGB and depth modalities, termed as CoMAE. Our CoMAE presents a curriculum learning strategy to unify the two popular self-supervised representation learning algorithms: contrastive learning and masked image modeling. Specifically, we first build a patch-level alignment task to pre-train a single encoder shared by two modalities via cross-modal contrastive learning. Then, the pre-trained contrastive encoder is passed to a multi-modal masked autoencoder to capture the finer context features from a generative perspective. In addition, our single-model design without requirement of fusion module is very flexible and robust to generalize to unimodal scenario in both training and testing phases. Extensive experiments on SUN RGB-D and NYUDv2 datasets demonstrate the effectiveness of our CoMAE for RGB and depth representation learning. In addition, our experiment results reveal that CoMAE is a data-efficient representation learner. Although we only use the small-scale and unlabeled training set for pre-training, our CoMAE pre-trained models are still competitive to the state-of-the-art methods with extra large-scale and supervised RGB dataset pre-training. Code will be released at https://github.com/MCG-NJU/CoMAE. | Jiange Yang, Sheng Guo, Gangshan Wu, Limin Wang | null | null | 2,023 | aaai |
Fitting trees to $\ell_1$-hyperbolic distances | null | Building trees to represent or to fit distances is a critical component of phylogenetic analysis, metric embeddings, approximation algorithms, geometric graph neural nets, and the analysis of hierarchical data. Much of the previous algorithmic work, however, has focused on generic metric spaces (i.e., those with no \emph{a priori} constraints). Leveraging several ideas from the mathematical analysis of hyperbolic geometry and geometric group theory, we study the tree fitting problem as finding the relation between the hyperbolicity (ultrametricity) vector and the error of tree (ultrametric) embedding. That is, we define a vector of hyperbolicity (ultrametric) values over all triples of points and compare the $\ell_p$ norms of this vector with the $\ell_q$ norm of the distortion of the best tree fit to the distances. This formulation allows us to define the average hyperbolicity (ultrametricity) in terms of a normalized $\ell_1$ norm of the hyperbolicity vector. Furthermore, we can interpret the classical tree fitting result of Gromov as a $p = q = \infty$ result. We present an algorithm \textsc{HCCRootedTreeFit} such that the $\ell_1$ error of the output embedding is analytically bounded in terms of the $\ell_1$-norm of the hyperbolicity vector (i.e., $p = q = 1$) and that this result is tight. Furthermore, this algorithm has significantly different theoretical and empirical performance as compared to Gromov's result and related algorithms. Finally, we show using \textsc{HCCRootedTreeFit} and related tree fitting algorithms, that supposedly standard data sets for hierarchical data analysis and geometric graph neural networks have radically different tree fits than those of synthetic, truly tree-like data sets, suggesting that a much more refined analysis of these standard data sets is called for. | Joon-Hyeok Yim, Anna Gilbert | null | null | 2,023 | neurips |
FELM: Benchmarking Factuality Evaluation of Large Language Models | null | Assessing factuality of text generated by large language models (LLMs) is an emerging yet crucial research area, aimed at alerting users to potential errors and guiding the development of more reliable LLMs. Nonetheless, the evaluators assessing factuality necessitate suitable evaluation themselves to gauge progress and foster advancements. This direction remains under-explored, resulting in substantial impediments to the progress of factuality evaluators. To mitigate this issue, we introduce a benchmark for Factuality Evaluation of large Language Models, referred to as FELM. In this benchmark, we collect responses generated from LLMs and annotate factuality labels in a fine-grained manner. Contrary to previous studies that primarily concentrate on the factuality of world knowledge (e.g. information from Wikipedia), FELM focuses on factuality across diverse domains, spanning from world knowledge to math and reasoning. Our annotation is based on text segments, which can help pinpoint specific factual errors. The factuality annotations are further supplemented by predefined error types and reference links that either support or contradict the statement. In our experiments, we investigate the performance of several LLM-based factuality evaluators on FELM, including both vanilla LLMs and those augmented with retrieval mechanisms and chain-of-thought processes. Our findings reveal that while retrieval aids factuality evaluation, current LLMs are far from satisfactory to faithfully detect factual errors. | shiqi chen, Yiran Zhao, Jinghan Zhang, I-Chun Chern, Siyang Gao, Pengfei Liu, Junxian He | null | null | 2,023 | neurips |
S3IM: Stochastic Structural SIMilarity and Its Unreasonable Effectiveness for Neural Fields | null | Recently, Neural Radiance Field (NeRF) has shown great success in rendering novel-view images of a given scene by learning an implicit representation with only posed RGB images. NeRF and relevant neural field methods (e.g., neural surface representation) typically optimize a point-wise loss and make point-wise predictions, where one data point corresponds to one pixel. Unfortunately, this line of research failed to use the collective supervision of distant pixels, although it is known that pixels in an image or scene can provide rich structural information. To the best of our knowledge, we are the first to design a nonlocal multiplex training paradigm for NeRF and relevant neural field methods via a novel Stochastic Structural SIMilarity (S3IM) loss that processes multiple data points as a whole set instead of process multiple inputs independently. Our extensive experiments demonstrate the unreasonable effectiveness of S3IM in improving NeRF and neural surface representation for nearly free. The improvements of quality metrics can be particularly significant for those relatively difficult tasks: e.g., the test MSE loss unexpectedly drops by more than 90% for TensoRF and DVGO over eight novel view synthesis tasks; a 198% F-score gain and a 64% Chamfer L1 distance reduction for NeuS over eight surface reconstruction tasks. Moreover, S3IM is consistently robust even with sparse inputs, corrupted images, and dynamic scenes. | Zeke Xie, Xindi Yang, Yujie Yang, Qi Sun, Yixiang Jiang, Haoran Wang, Yunfeng Cai, Mingming Sun; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 18024-18034 | null | null | 2,023 | iccv |
Generalization Matters: Loss Minima Flattening via Parameter Hybridization for Efficient Online Knowledge Distillation | null | Most existing online knowledge distillation(OKD) techniques typically require sophisticated modules to produce diverse knowledge for improving students' generalization ability. In this paper, we strive to fully utilize multi-model settings instead of well-designed modules to achieve a distillation effect with excellent generalization performance. Generally, model generalization can be reflected in the flatness of the loss landscape. Since averaging parameters of multiple models can find flatter minima, we are inspired to extend the process to the sampled convex combinations of multi-student models in OKD. Specifically, by linearly weighting students' parameters in each training batch, we construct a Hybrid-Weight Model(HWM) to represent the parameters surrounding involved students. The supervision loss of HWM can estimate the landscape's curvature of the whole region around students to measure the generalization explicitly. Hence we integrate HWM's loss into students' training and propose a novel OKD framework via parameter hybridization(OKDPH) to promote flatter minima and obtain robust solutions. Considering the redundancy of parameters could lead to the collapse of HWM, we further introduce a fusion operation to keep the high similarity of students. Compared to the state-of-the-art(SOTA) OKD methods and SOTA methods of seeking flat minima, our OKDPH achieves higher performance with fewer parameters, benefiting OKD with lightweight and robust characteristics. Our code is publicly available at https://github.com/tianlizhang/OKDPH. | Tianli Zhang, Mengqi Xue, Jiangtao Zhang, Haofei Zhang, Yu Wang, Lechao Cheng, Jie Song, Mingli Song; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 20176-20185 | null | null | 2,023 | cvpr |
Towards Robust Scene Text Image Super-resolution via Explicit Location Enhancement | null | Scene text image super-resolution (STISR), aiming to improve image quality while boosting downstream scene text recognition accuracy, has recently achieved great success. However, most existing methods treat the foreground (character regions) and background (non-character regions) equally in the forward process, and neglect the disturbance from the complex background, thus limiting the performance. To address these issues, in this paper, we propose a novel method LEMMA that explicitly models character regions to produce high-level text-specific guidance for super-resolution. To model the location of characters effectively, we propose the location enhancement module to extract character region features based on the attention map sequence. Besides, we propose the multi-modal alignment module to perform bidirectional visual-semantic alignment to generate high-quality prior guidance, which is then incorporated into the super-resolution branch in an adaptive manner using the proposed adaptive fusion module. Experiments on TextZoom and four scene text recognition benchmarks demonstrate the superiority of our method over other state-of-the-art methods. Code is available at https://github.com/csguoh/LEMMA. | Hang Guo, Tao Dai, Guanghao Meng, Shu-Tao Xia | null | null | 2,023 | ijcai |
Species196: A One-Million Semi-supervised Dataset for Fine-grained Species Recognition | null | The development of foundation vision models has pushed the general visual recognition to a high level, but cannot well address the fine-grained recognition in specialized domain such as invasive species classification. Identifying and managing invasive species has strong social and ecological value. Currently, most invasive species datasets are limited in scale and cover a narrow range of species, which restricts the development of deep-learning based invasion biometrics systems. To fill the gap of this area, we introduced Species196, a large-scale semi-supervised dataset of 196-category invasive species. It collects over 19K images with expert-level accurate annotations (Species196-L), and 1.2M unlabeled images of invasive species (Species196-U). The dataset provides four experimental settings for benchmarking the existing models and algorithms, namely, supervised learning, semi-supervised learning and self-supervised pretraining. To facilitate future research on these four learning paradigms, we conduct an empirical study of the representative methods on the introduced dataset. The dataset will be made publicly available at https://species-dataset.github.io/. | Wei He, Kai Han, Ying Nie, Chengcheng Wang, Yunhe Wang | null | null | 2,023 | neurips |
Faster Relative Entropy Coding with Greedy Rejection Coding | null | Relative entropy coding (REC) algorithms encode a sample from a target distribution $Q$ using a proposal distribution $P$ using as few bits as possible. Unlike entropy coding, REC does not assume discrete distributions and require quantisation.As such, it can be naturally integrated into communication pipelines such as learnt compression and differentially private federated learning. Unfortunately, despite their practical benefits, REC algorithms have not seen widespread application, due to their prohibitively slow runtimes or restrictive assumptions. In this paper, we make progress towards addressing these issues. We introduce Greedy Rejection Coding (GRC), which generalises the rejection sampling-based algorithm of Harsha et al. (2007) to arbitrary probability spaces and partitioning schemes. We first show that GRC terminates almost surely and returns unbiased samples from $Q$, and then focus on two variants of GRC, namely GRCS and GRCD. We show that for continuous $Q$ and $P$ over $\mathbb{R}$ with unimodal $dQ/dP$, the expected runtime of GRCS is upper bounded by $\beta D_{KL}(Q||P) + \mathcal{O}(1)$ where $\beta \approx 4.82$, and its expected codelength is optimal. This makes GRCS the first REC algorithm with guaranteed optimal runtime for this class of distributions, up to the multiplicative constant $\beta$. This significantly improves upon the previous state-of-the-art method, A* coding (Flamich et al., 2022). Under the same assumptions, we experimentally observe and conjecture that the expected runtime and codelength of GRCD are upper bounded by $D_{KL}(Q||P) + \mathcal{O}(1)$. Finally, we evaluate GRC in a compression pipeline with variational autoencoders on MNIST, and show that a modified training objective and a codelength-compression method can further improve compression efficiency. | Gergely Flamich, Stratis Markou, José Miguel Hernández-Lobato | null | null | 2,023 | neurips |
When Epipolar Constraint Meets Non-Local Operators in Multi-View Stereo | null | Learning-based multi-view stereo (MVS) method heavily relies on feature matching, which requires distinctive and descriptive representations. An effective solution is to apply non-local feature aggregation, e.g., Transformer. Albeit useful, these techniques introduce heavy computation overheads for MVS. Each pixel densely attends to the whole image. In contrast, we propose to constrain non-local feature augmentation within a pair of lines: each point only attends the corresponding pair of epipolar lines. Our idea takes inspiration from the classic epipolar geometry, which shows that one point with different depth hypotheses will be projected to the epipolar line on the other view. This constraint reduces the 2D search space into the epipolar line in stereo matching. Similarly, this suggests that the matching of MVS is to distinguish a series of points lying on the same line. Inspired by this point-to-line search, we devise a line-to-point non-local augmentation strategy. We first devise an optimized searching algorithm to split the 2D feature maps into epipolar line pairs. Then, an Epipolar Transformer (ET) performs non-local feature augmentation among epipolar line pairs. We incorporate the ET into a learning-based MVS baseline, named ET-MVSNet. ET-MVSNet achieves state-of-the-art reconstruction performance on both the DTU and Tanks-and-Temples benchmark with high efficiency. Code is available at https://github.com/TQTQliu/ET-MVSNet. | Tianqi Liu, Xinyi Ye, Weiyue Zhao, Zhiyu Pan, Min Shi, Zhiguo Cao; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 18088-18097 | null | null | 2,023 | iccv |
LORE: Logical Location Regression Network for Table Structure Recognition | null | Table structure recognition (TSR) aims at extracting tables in images into machine-understandable formats. Recent methods solve this problem by predicting the adjacency relations of detected cell boxes, or learning to generate the corresponding markup sequences from the table images. However, they either count on additional heuristic rules to recover the table structures, or require a huge amount of training data and time-consuming sequential decoders. In this paper, we propose an alternative paradigm. We model TSR as a logical location regression problem and propose a new TSR framework called LORE, standing for LOgical location REgression network, which for the first time combines logical location regression together with spatial location regression of table cells. Our proposed LORE is conceptually simpler, easier to train and more accurate than previous TSR models of other paradigms. Experiments on standard benchmarks demonstrate that LORE consistently outperforms prior arts. Code is available at https:// github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/DocumentUnderstanding/LORE-TSR. | Hangdi Xing, Feiyu Gao, Rujiao Long, Jiajun Bu, Qi Zheng, Liangcheng Li, Cong Yao, Zhi Yu | null | null | 2,023 | aaai |
Neural Machine Translation for Mathematical Formulae | null | We tackle the problem of neural machine translation of mathematical formulae between ambiguous presentation languages and unambiguous content languages. Compared to neural machine translation on natural language, mathematical formulae have a much smaller vocabulary and much longer sequences of symbols, while their translation requires extreme precision to satisfy mathematical information needs. In this work, we perform the tasks of translating from LaTeX to Mathematica as well as from LaTeX to semantic LaTeX. While recurrent, recursive, and transformer networks struggle with preserving all contained information, we find that convolutional sequence-to-sequence networks achieve 95.1% and 90.7% exact matches, respectively. | Felix Petersen, Moritz Schubotz, Andre Greiner-Petter, Bela Gipp | null | null | 2,023 | acl |
LANCE: Stress-testing Visual Models by Generating Language-guided Counterfactual Images | null | We propose an automated algorithm to stress-test a trained visual model by generating language-guided counterfactual test images (LANCE). Our method leverages recent progress in large language modeling and text-based image editing to augment an IID test set with a suite of diverse, realistic, and challenging test images without altering model weights. We benchmark the performance of a diverse set of pre-trained models on our generated data and observe significant and consistent performance drops. We further analyze model sensitivity across different types of edits, and demonstrate its applicability at surfacing previously unknown class-level model biases in ImageNet. Code is available at https://github.com/virajprabhu/lance. | Viraj Prabhu, Sriram Yenamandra, Prithvijit Chattopadhyay, Judy Hoffman | null | null | 2,023 | neurips |
Preserving Commonsense Knowledge from Pre-trained Language Models via Causal Inference | null | Fine-tuning has been proven to be a simple and effective technique to transfer the learned knowledge of Pre-trained Language Models (PLMs) to downstream tasks. However, vanilla fine-tuning easily overfits the target data and degrades the generalization ability. Most existing studies attribute it to catastrophic forgetting, and they retain the pre-trained knowledge indiscriminately without identifying what knowledge is transferable. Motivated by this, we frame fine-tuning into a causal graph and discover that the crux of catastrophic forgetting lies in the missing causal effects from the pre-trained data. Based on the causal view, we propose a unified objective for fine-tuning to retrieve the causality back. Intriguingly, the unified objective can be seen as the sum of the vanilla fine-tuning objective, which learns new knowledge from target data, and the causal objective, which preserves old knowledge from PLMs. Therefore, our method is flexible and can mitigate negative transfer while preserving knowledge. Since endowing models with commonsense is a long-standing challenge, we implement our method on commonsense QA with a proposed heuristic estimation to verify its effectiveness. In the experiments, our method outperforms state-of-the-art fine-tuning methods on all six commonsense QA datasets and can be implemented as a plug-in module to inflate the performance of existing QA models. | Junhao Zheng, Qianli Ma, Shengjie Qiu, Yue Wu, Peitian Ma, Junlong Liu, Huawen Feng, Xichen Shang, Haibin Chen | null | null | 2,023 | acl |
DISC: Learning From Noisy Labels via Dynamic Instance-Specific Selection and Correction | null | Existing studies indicate that deep neural networks (DNNs) can eventually memorize the label noise. We observe that the memorization strength of DNNs towards each instance is different and can be represented by the confidence value, which becomes larger and larger during the training process. Based on this, we propose a Dynamic Instance-specific Selection and Correction method (DISC) for learning from noisy labels (LNL). We first use a two-view-based backbone for image classification, obtaining confidence for each image from two views. Then we propose a dynamic threshold strategy for each instance, based on the momentum of each instance's memorization strength in previous epochs to select and correct noisy labeled data. Benefiting from the dynamic threshold strategy and two-view learning, we can effectively group each instance into one of the three subsets (i.e., clean, hard, and purified) based on the prediction consistency and discrepancy by two views at each epoch. Finally, we employ different regularization strategies to conquer subsets with different degrees of label noise, improving the whole network's robustness. Comprehensive evaluations on three controllable and four real-world LNL benchmarks show that our method outperforms the state-of-the-art (SOTA) methods to leverage useful information in noisy data while alleviating the pollution of label noise. | Yifan Li, Hu Han, Shiguang Shan, Xilin Chen; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 24070-24079 | null | null | 2,023 | cvpr |
What Planning Problems Can A Relational Neural Network Solve? | null | Goal-conditioned policies are generally understood to be "feed-forward" circuits, in the form of neural networks that map from the current state and the goal specification to the next action to take. However, under what circumstances such a policy can be learned and how efficient the policy will be are not well understood. In this paper, we present a circuit complexity analysis for relational neural networks (such as graph neural networks and transformers) representing policies for planning problems, by drawing connections with serialized goal regression search (S-GRS). We show that there are three general classes of planning problems, in terms of the growth of circuit width and depth as a function of the number of objects and planning horizon, providing constructive proofs. We also illustrate the utility of this analysis for designing neural networks for policy learning. | Jiayuan Mao, Tomás Lozano-Pérez, Josh Tenenbaum, Leslie Kaelbling | null | null | 2,023 | neurips |
ChildPlay: A New Benchmark for Understanding Children's Gaze Behaviour | null | Gaze behaviors such as eye-contact or shared attention are important markers for diagnosing developmental disorders in children. While previous studies have looked at some of these elements, the analysis is usually performed on private datasets and is restricted to lab settings. Furthermore, all publicly available gaze target prediction benchmarks mostly contain instances of adults, which makes models trained on them less applicable to scenarios with young children. In this paper, we propose the first study for predicting the gaze target of children and interacting adults. To this end, we introduce the ChildPlay dataset: a curated collection of short video clips featuring children playing and interacting with adults in uncontrolled environments (e.g. kindergarten, therapy centers, preschools etc.), which we annotate with rich gaze information. We further propose a new model for gaze target prediction that is geometrically grounded by explicitly identifying the scene parts in the 3D field of view (3DFoV) of the person, leveraging recent geometry preserving depth inference methods. Our model achieves state of the art results on benchmark datasets and ChildPlay. Furthermore, results show that looking at faces prediction performance on children is much worse than on adults, and can be significantly improved by fine-tuning models using child gaze annotations. Our dataset is available at https://www.idiap.ch/en/dataset/childplay-gaze. | Samy Tafasca, Anshul Gupta, Jean-Marc Odobez; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 20935-20946 | null | null | 2,023 | iccv |
Exploring Better Text Image Translation with Multimodal Codebook | null | Text image translation (TIT) aims to translate the source texts embedded in the image to target translations, which has a wide range of applications and thus has important research value. However, current studies on TIT are confronted with two main bottlenecks: 1) this task lacks a publicly available TIT dataset, 2) dominant models are constructed in a cascaded manner, which tends to suffer from the error propagation of optical character recognition (OCR). In this work, we first annotate a Chinese-English TIT dataset named OCRMT30K, providing convenience for subsequent studies. Then, we propose a TIT model with a multimodal codebook, which is able to associate the image with relevant texts, providing useful supplementary information for translation. Moreover, we present a multi-stage training framework involving text machine translation, image-text alignment, and TIT tasks, which fully exploits additional bilingual texts, OCR dataset and our OCRMT30K dataset to train our model. Extensive experiments and in-depth analyses strongly demonstrate the effectiveness of our proposed model and training framework. | Zhibin Lan, Jiawei Yu, Xiang Li, Wen Zhang, Jian Luan, Bin Wang, Degen Huang, Jinsong Su | null | null | 2,023 | acl |
Conclusion-based Counter-Argument Generation | null | In real-world debates, the most common way to counter an argument is to reason against its main point, that is, its conclusion. Existing work on the automatic generation of natural language counter-arguments does not address the relation to the conclusion, possibly because many arguments leave their conclusion implicit. In this paper, we hypothesize that the key to effective counter-argument generation is to explicitly model the argument’s conclusion and to ensure that the stance of the generated counter is opposite to that conclusion. In particular, we propose a multitask approach that jointly learns to generate both the conclusion and the counter of an input argument. The approach employs a stance-based ranking component that selects the counter from a diverse set of generated candidates whose stance best opposes the generated conclusion. In both automatic and manual evaluation, we provide evidence that our approach generates more relevant and stance-adhering counters than strong baselines. | Milad Alshomary, Henning Wachsmuth | null | null | 2,023 | eacl |
Searching for Needles in a Haystack: On the Role of Incidental Bilingualism inPaLM’s Translation Capability | null | Large, multilingual language models exhibit surprisingly good zero- or few-shot machine translation capabilities, despite having never seen the intentionally-included translation examples provided to typical neural translation systems. We investigate the role of incidental bilingualism—the unintentional consumption of bilingual signals, including translation examples—in explaining the translation capabilities of large language models, taking the Pathways Language Model (PaLM) as a case study. We introduce a mixed-method approach to measure and understand incidental bilingualism at scale. We show that PaLM is exposed to over 30 million translation pairs across at least 44 languages. Furthermore, the amount of incidental bilingual content is highly correlated with the amount of monolingual in-language content for non-English languages. We relate incidental bilingual content to zero-shot prompts and show that it can be used to mine new prompts to improve PaLM’s out-of-English zero-shot translation quality. Finally, in a series of small-scale ablations, we show that its presence has a substantial impact on translation capabilities, although this impact diminishes with model scale. | Eleftheria Briakou, Colin Cherry, George Foster | null | null | 2,023 | acl |
ClusT3: Information Invariant Test-Time Training | null | Deep Learning models have shown remarkable performance in a broad range of vision tasks. However, they are often vulnerable against domain shifts at test-time. Test-time training (TTT) methods have been developed in an attempt to mitigate these vulnerabilities, where a secondary task is solved at training time simultaneously with the main task, to be later used as an self-supervised proxy task at test-time. In this work, we propose a novel unsupervised TTT technique based on the maximization of Mutual Information between multi-scale feature maps and a discrete latent representation, which can be integrated to the standard training as an auxiliary clustering task. Experimental results demonstrate competitive classification performance on different popular test-time adaptation benchmarks. The code can be found at: https://github.com/dosowiechi/ClusT3.git | Gustavo A. Vargas Hakim, David Osowiechi, Mehrdad Noori, Milad Cheraghalikhani, Ali Bahri, Ismail Ben Ayed, Christian Desrosiers; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 6136-6145 | null | null | 2,023 | iccv |
Causal Intervention for Human Trajectory Prediction with Cross Attention Mechanism | null | Human trajectory Prediction (HTP) in complex social environments plays a crucial and fundamental role in artificial intelligence systems. Conventional methods make use of both history behaviors and social interactions to forecast future trajectories. However, we demonstrate that the social environment is a confounder that misleads the model to learn spurious correlations between history and future trajectories. To end this, we first formulate the social environment, history and future trajectory variables into a structural causal model to analyze the causalities among them. Based on causal intervention rather than conventional likelihood, we propose a Social Environment ADjustment (SEAD) method, to remove the confounding effect of the social environment. The core of our method is implemented by a Social Cross Attention (SCA) module, which is universal, simple and effective. Our method has consistent improvements on ETH-UCY datasets with three baseline models and achieves competitive performances with existing methods. | Chunjiang Ge, Shiji Song, Gao Huang | null | null | 2,023 | aaai |
Conversational Emotion-Cause Pair Extraction with Guided Mixture of Experts | null | Emotion-Cause Pair Extraction (ECPE) task aims to pair all emotions and corresponding causes in documents.ECPE is an important task for developing human-like responses. However, previous ECPE research is conducted based on news articles, which has different characteristics compared to dialogues. To address this issue, we propose a Pair-Relationship Guided Mixture-of-Experts (PRG-MoE) model, which considers dialogue features (e.g., speaker information).PRG-MoE automatically learns relationship between utterances and advises a gating network to incorporate dialogue features in the evaluation, yielding substantial performance improvement. We employ a new ECPE dataset, which is an English dialogue dataset, with more emotion-cause pairs in documents than news articles. We also propose Cause Type Classification that classifies emotion-cause pairs according to the types of the cause of a detected emotion. For reproducing the results, we make available all our code and data. | DongJin Jeong, JinYeong Bak | null | null | 2,023 | eacl |
TopDiG: Class-Agnostic Topological Directional Graph Extraction From Remote Sensing Images | null | Rapid development in automatic vector extraction from remote sensing images has been witnessed in recent years. However, the vast majority of existing works concentrate on a specific target, fragile to category variety, and hardly achieve stable performance crossing different categories. In this work, we propose an innovative class-agnostic model, namely TopDiG, to directly extract topological directional graphs from remote sensing images and solve these issues. Firstly, TopDiG employs a topology-concentrated node detector (TCND) to detect nodes and obtain compact perception of topological components. Secondly, we propose a dynamic graph supervision (DGS) strategy to dynamically generate adjacency graph labels from unordered nodes. Finally, the directional graph (DiG) generator module is designed to construct topological directional graphs from predicted nodes. Experiments on the Inria, CrowdAI, GID, GF2 and Massachusetts datasets empirically demonstrate that TopDiG is class-agnostic and achieves competitive performance on all datasets. | Bingnan Yang, Mi Zhang, Zhan Zhang, Zhili Zhang, Xiangyun Hu; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 1265-1274 | null | null | 2,023 | cvpr |
GRIP: Graph Representation of Immune Repertoire Using Graph Neural Network and Transformer | null | The immune repertoire is a collection of immune recep-tors that has emerged as an important biomarker for both diagnostic and therapeutic of cancer patients. In terms of deep learning, analyzing immune repertoire is a challeng-ing multiple-instance learning problem in which the im-mune repertoire of an individual is a bag, and the immune receptor is an instance. Although several deep learning methods for immune repertoire analysis are introduced, they consider the immune repertoire as a set-like struc-ture that doesn’t take account of the nature of the im-mune response. When the immune response occurs, mu-tations are introduced to the immune receptor sequence sequentially to optimize the immune response against the pathogens that enter our body. As a result, immune receptors for the specific pathogen have the lineage of evolution; thus, immune repertoire is better represented as a graph-like structure. In this work, we present our novel method graph representation of immune repertoire (GRIP), which analyzes the immune repertoire as a hier-archical graph structure and utilize the collection of graph neural network followed by graph pooling and transformer to efficiently represents the immune reper-toire as an embedding vector. We show that GRIP predict the survival probability of cancer patients better than the set-based methods and graph-based structure is critical for performance. Also, GRIP provides interpretable re-sults, which prove that GRIP adequately use the progno-sis-related immune receptor and give further possibility to use the GRIP as the novel biomarker searching tool | Yongju Lee, Hyunho Lee, Kyoungseob Shin, Sunghoon Kwon | null | null | 2,023 | aaai |
Zero-Shot Object Counting | null | Class-agnostic object counting aims to count object instances of an arbitrary class at test time. It is challenging but also enables many potential applications. Current methods require human-annotated exemplars as inputs which are often unavailable for novel categories, especially for autonomous systems. Thus, we propose zero-shot object counting (ZSC), a new setting where only the class name is available during test time. Such a counting system does not require human annotators in the loop and can operate automatically. Starting from a class name, we propose a method that can accurately identify the optimal patches which can then be used as counting exemplars. Specifically, we first construct a class prototype to select the patches that are likely to contain the objects of interest, namely class-relevant patches. Furthermore, we introduce a model that can quantitatively measure how suitable an arbitrary patch is as a counting exemplar. By applying this model to all the candidate patches, we can select the most suitable patches as exemplars for counting. Experimental results on a recent class-agnostic counting dataset, FSC-147, validate the effectiveness of our method. | Jingyi Xu, Hieu Le, Vu Nguyen, Viresh Ranjan, Dimitris Samaras; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 15548-15557 | null | null | 2,023 | cvpr |
Prompting is not a substitute for probability measurements in large language models | null | Prompting is now a dominant method for evaluating the linguistic knowledge of large language models (LLMs). While other methods directly read out models’ probability distributions over strings, prompting requires models to access this internal information by processing linguistic input, thereby implicitly testing a new type of emergent ability: metalinguistic judgment. In this study, we compare metalinguistic prompting and direct probability measurements as ways of measuring models’ linguistic knowledge. Broadly, we find that LLMs’ metalinguistic judgments are inferior to quantities directly derived from representations. Furthermore, consistency gets worse as the prompt query diverges from direct measurements of next-word probabilities. Our findings suggest that negative results relying on metalinguistic prompts cannot be taken as conclusive evidence that an LLM lacks a particular linguistic generalization. Our results also highlight the value that is lost with the move to closed APIs where access to probability distributions is limited. | Jennifer Hu, Roger Levy | null | null | 2,023 | emnlp |
Guiding Pseudo-Labels With Uncertainty Estimation for Source-Free Unsupervised Domain Adaptation | null | Standard Unsupervised Domain Adaptation (UDA) methods assume the availability of both source and target data during the adaptation. In this work, we investigate Source-free Unsupervised Domain Adaptation (SF-UDA), a specific case of UDA where a model is adapted to a target domain without access to source data. We propose a novel approach for the SF-UDA setting based on a loss reweighting strategy that brings robustness against the noise that inevitably affects the pseudo-labels. The classification loss is reweighted based on the reliability of the pseudo-labels that is measured by estimating their uncertainty. Guided by such reweighting strategy, the pseudo-labels are progressively refined by aggregating knowledge from neighbouring samples. Furthermore, a self-supervised contrastive framework is leveraged as a target space regulariser to enhance such knowledge aggregation. A novel negative pairs exclusion strategy is proposed to identify and exclude negative pairs made of samples sharing the same class, even in presence of some noise in the pseudo-labels. Our method outperforms previous methods on three major benchmarks by a large margin. We set the new SF-UDA state-of-the-art on VisDA-C and DomainNet with a performance gain of +1.8% on both benchmarks and on PACS with +12.3% in the single-source setting and +6.6% in multi-target adaptation. Additional analyses demonstrate that the proposed approach is robust to the noise, which results in significantly more accurate pseudo-labels compared to state-of-the-art approaches. | Mattia Litrico, Alessio Del Bue, Pietro Morerio; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 7640-7650 | null | null | 2,023 | cvpr |
On Optimal Strategies for Wordle and General Guessing Games | null | The recent popularity of Wordle has revived interest in guessing games. We develop a general method for finding optimal strategies for guessing games while avoiding an exhaustive search. Our main contribution are several theorems that build towards a general theory to prove optimality of a strategy for a guessing game. This work is developed to apply to any guessing game, but we use Wordle as an example to present concrete results. | Michael Cunanan, Michael Thielscher | null | null | 2,023 | ijcai |
MomentDiff: Generative Video Moment Retrieval from Random to Real | null | Video moment retrieval pursues an efficient and generalized solution to identify the specific temporal segments within an untrimmed video that correspond to a given language description.To achieve this goal, we provide a generative diffusion-based framework called MomentDiff, which simulates a typical human retrieval process from random browsing to gradual localization.Specifically, we first diffuse the real span to random noise, and learn to denoise the random noise to the original span with the guidance of similarity between text and video.This allows the model to learn a mapping from arbitrary random locations to real moments, enabling the ability to locate segments from random initialization.Once trained, MomentDiff could sample random temporal segments as initial guesses and iteratively refine them to generate an accurate temporal boundary.Different from discriminative works (e.g., based on learnable proposals or queries), MomentDiff with random initialized spans could resist the temporal location biases from datasets.To evaluate the influence of the temporal location biases, we propose two ``anti-bias'' datasets with location distribution shifts, named Charades-STA-Len and Charades-STA-Mom.The experimental results demonstrate that our efficient framework consistently outperforms state-of-the-art methods on three public benchmarks, and exhibits better generalization and robustness on the proposed anti-bias datasets. The code, model, and anti-bias evaluation datasets will be released publicly. | Pandeng Li, Chen-Wei Xie, Hongtao Xie, Liming Zhao, Lei Zhang, Yun Zheng, Deli Zhao, Yongdong Zhang | null | null | 2,023 | neurips |
Downscaled Representation Matters: Improving Image Rescaling with Collaborative Downscaled Images | null | Deep networks have achieved great success in image rescaling (IR) task that seeks to learn the optimal downscaled representations, i.e., low-resolution (LR) images, to reconstruct the original high-resolution (HR) images. Compared with super-resolution methods that consider a fixed downscaling scheme, e.g., bicubic, IR often achieves significantly better reconstruction performance thanks to the learned downscaled representations. This highlights the importance of a good downscaled representation. Existing IR methods mainly learn the downscaled representation by jointly optimizing the downscaling and upscaling models. Unlike them, we seek to improve the downscaled representation through a different and more direct way -- directly optimizing the downscaled image itself instead of the down-/upscaling models. Consequently, we propose a Hierarchical Collaborative Downscaling (HCD) method that performs gradient descent w.r.t. the reconstruction loss in both HR and LR domains to improve the downscaled representations, so as to boost IR performance. Extensive experiments show that our HCD significantly improves the reconstruction performance both quantitatively and qualitatively. Particularly, we improve over popular IR methods by >0.57db PSNR on Set5. Moreover, we also highlight the flexibility of our HCD since it can generalize well across diverse image rescaling models. The code is available at https://github.com/xubingna/HCD. | Bingna Xu, Yong Guo, Luoqian Jiang, Mianjie Yu, Jian Chen; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 12237-12247 | null | null | 2,023 | iccv |
Learning to Modulate pre-trained Models in RL | null | Reinforcement Learning (RL) has been successful in various domains like robotics, game playing, and simulation. While RL agents have shown impressive capabilities in their specific tasks, they insufficiently adapt to new tasks. In supervised learning, this adaptation problem is addressed by large-scale pre-training followed by fine-tuning to new down-stream tasks. Recently, pre-training on multiple tasks has been gaining traction in RL. However, fine-tuning a pre-trained model often suffers from catastrophic forgetting. That is, the performance on the pre-training tasks deteriorates when fine-tuning on new tasks. To investigate the catastrophic forgetting phenomenon, we first jointly pre-train a model on datasets from two benchmark suites, namely Meta-World and DMControl. Then, we evaluate and compare a variety of fine-tuning methods prevalent in natural language processing, both in terms of performance on new tasks, and how well performance on pre-training tasks is retained. Our study shows that with most fine-tuning approaches, the performance on pre-training tasks deteriorates significantly. Therefore, we propose a novel method, Learning-to-Modulate (L2M), that avoids the degradation of learned skills by modulating the information flow of the frozen pre-trained model via a learnable modulation pool. Our method achieves state-of-the-art performance on the Continual-World benchmark, while retaining performance on the pre-training tasks. Finally, to aid future research in this area, we release a dataset encompassing 50 Meta-World and 16 DMControl tasks. | Thomas Schmied, Markus Hofmarcher, Fabian Paischer, Razvan Pascanu, Sepp Hochreiter | null | null | 2,023 | neurips |
MM-Diffusion: Learning Multi-Modal Diffusion Models for Joint Audio and Video Generation | null | We propose the first joint audio-video generation framework that brings engaging watching and listening experiences simultaneously, towards high-quality realistic videos. To generate joint audio-video pairs, we propose a novel Multi-Modal Diffusion model (i.e., MM-Diffusion), with two-coupled denoising autoencoders. In contrast to existing single-modal diffusion models, MM-Diffusion consists of a sequential multi-modal U-Net for a joint denoising process by design. Two subnets for audio and video learn to gradually generate aligned audio-video pairs from Gaussian noises. To ensure semantic consistency across modalities, we propose a novel random-shift based attention block bridging over the two subnets, which enables efficient cross-modal alignment, and thus reinforces the audio-video fidelity for each other. Extensive experiments show superior results in unconditional audio-video generation, and zero-shot conditional tasks (e.g., video-to-audio). In particular, we achieve the best FVD and FAD on Landscape and AIST++ dancing datasets. Turing tests of 10k votes further demonstrate dominant preferences for our model. | Ludan Ruan, Yiyang Ma, Huan Yang, Huiguo He, Bei Liu, Jianlong Fu, Nicholas Jing Yuan, Qin Jin, Baining Guo; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 10219-10228 | null | null | 2,023 | cvpr |
Bi-Level Offline Policy Optimization with Limited Exploration | null | We study offline reinforcement learning (RL) which seeks to learn a good policy based on a fixed, pre-collected dataset. A fundamental challenge behind this task is the distributional shift due to the dataset lacking sufficient exploration, especially under function approximation. To tackle this issue, we propose a bi-level structured policy optimization algorithm that models a hierarchical interaction between the policy (upper-level) and the value function (lower-level). The lower level focuses on constructing a confidence set of value estimates that maintain sufficiently small weighted average Bellman errors, while controlling uncertainty arising from distribution mismatch. Subsequently, at the upper level, the policy aims to maximize a conservative value estimate from the confidence set formed at the lower level. This novel formulation preserves the maximum flexibility of the implicitly induced exploratory data distribution, enabling the power of model extrapolation. In practice, it can be solved through a computationally efficient, penalized adversarial estimation procedure. Our theoretical regret guarantees do not rely on any data-coverage and completeness-type assumptions, only requiring realizability. These guarantees also demonstrate that the learned policy represents the ``best effort'' among all policies, as no other policies can outperform it. We evaluate our model using a blend of synthetic, benchmark, and real-world datasets for offline RL, showing that it performs competitively with state-of-the-art methods. | Wenzhuo Zhou | null | null | 2,023 | neurips |
3D Shape Reconstruction of Semi-Transparent Worms | null | 3D shape reconstruction typically requires identifying object features or textures in multiple images of a subject. This approach is not viable when the subject is semi-transparent and moving in and out of focus. Here we overcome these challenges by rendering a candidate shape with adaptive blurring and transparency for comparison with the images. We use the microscopic nematode Caenorhabditis elegans as a case study as it freely explores a 3D complex fluid with constantly changing optical properties. We model the slender worm as a 3D curve using an intrinsic parametrisation that naturally admits biologically-informed constraints and regularisation. To account for the changing optics we develop a novel differentiable renderer to construct images from 2D projections and compare against raw images to generate a pixel-wise error to jointly update the curve, camera and renderer parameters using gradient descent. The method is robust to interference such as bubbles and dirt trapped in the fluid, stays consistent through complex sequences of postures, recovers reliable estimates from blurry images and provides a significant improvement on previous attempts to track C. elegans in 3D. Our results demonstrate the potential of direct approaches to shape estimation in complex physical environments in the absence of ground-truth data. | Thomas P. Ilett, Omer Yuval, Thomas Ranner, Netta Cohen, David C. Hogg; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 12565-12575 | null | null | 2,023 | cvpr |
Encoding Human Behavior in Information Design through Deep Learning | null | We initiate the study of $\textit{behavioral information design}$ through deep learning. In information design, a $\textit{sender}$ aims to persuade a $\textit{receiver}$ to take certain actions by strategically revealing information. We address scenarios in which the receiver might exhibit different behavior patterns other than the standard Bayesian rational assumption. We propose HAIDNet, a neural-network-based optimization framework for information design that can adapt to multiple representations of human behavior. Through extensive simulation, we show that HAIDNet can not only recover information policies that are near-optimal compared with known analytical solutions, but also can extend to designing information policies for settings that are computationally challenging (e.g., when there are multiple receivers) or for settings where there are no known solutions in general (e.g., when the receiver behavior does not follow the Bayesian rational assumption). We also conduct real-world human-subject experiments and demonstrate that our framework can capture human behavior from data and lead to more effective information policy for real-world human receivers. | Guanghui Yu, Wei Tang, Saumik Narayanan, Chien-Ju Ho | null | null | 2,023 | neurips |
ResMem: Learn what you can and memorize the rest | null | The impressive generalization performance of modern neural networks is attributed in part to their ability to implicitly memorize complex training patterns.Inspired by this, we explore a novel mechanism to improve model generalization via explicit memorization.Specifically, we propose the residual-memorization (ResMem) algorithm, a new method that augments an existing prediction model (e.g., a neural network) by fitting the model's residuals with a nearest-neighbor based regressor.The final prediction is then the sum of the original model and the fitted residual regressor.By construction, ResMem can explicitly memorize the training labels.We start by formulating a stylized linear regression problem and rigorously show that ResMem results in a more favorable test risk over a base linear neural network.Then, we empirically show that ResMem consistently improves the test set generalization of the original prediction model across standard vision and natural language processing benchmarks. | Zitong Yang, MICHAL LUKASIK, Vaishnavh Nagarajan, Zonglin Li, Ankit Rawat, Manzil Zaheer, Aditya K. Menon, Sanjiv Kumar | null | null | 2,023 | neurips |
Patch Diffusion: Faster and More Data-Efficient Training of Diffusion Models | null | Diffusion models are powerful, but they require a lot of time and data to train. We propose Patch Diffusion, a generic patch-wise training framework, to significantly reduce the training time costs while improving data efficiency, which thus helps democratize diffusion model training to broader users. At the core of our innovations is a new conditional score function at the patch level, where the patch location in the original image is included as additional coordinate channels, while the patch size is randomized and diversified throughout training to encode the cross-region dependency at multiple scales. Sampling with our method is as easy as in the original diffusion model. Through Patch Diffusion, we could achieve $\mathbf{\ge 2\times}$ faster training, while maintaining comparable or better generation quality. Patch Diffusion meanwhile improves the performance of diffusion models trained on relatively small datasets, $e.g.$, as few as 5,000 images to train from scratch. We achieve outstanding FID scores in line with state-of-the-art benchmarks: 1.77 on CelebA-64$\times$64, 1.93 on AFHQv2-Wild-64$\times$64, and 2.72 on ImageNet-256$\times$256. We share our code and pre-trained models at https://github.com/Zhendong-Wang/Patch-Diffusion. | Zhendong Wang, Yifan Jiang, Huangjie Zheng, Peihao Wang, Pengcheng He, Zhangyang "Atlas" Wang, Weizhu Chen, Mingyuan Zhou | null | null | 2,023 | neurips |
A Diachronic Perspective on User Trust inAIunder Uncertainty | null | In human-AI collaboration, users typically form a mental model of the AI system, which captures the user’s beliefs about when the system performs well and when it does not. The construction of this mental model is guided by both the system’s veracity as well as the system output presented to the user e.g., the system’s confidence and an explanation for the prediction. However, modern NLP systems are seldom calibrated and are often confidently incorrect about their predictions, which violates users’ mental model and erodes their trust. In this work, we design a study where users bet on the correctness of an NLP system, and use it to study the evolution of user trust as a response to these trust-eroding events and how the user trust is rebuilt as a function of time after these events. We find that even a few highly inaccurate confidence estimation instances are enough to damage users’ trust in the system and performance, which does not easily recover over time. We further find that users are more forgiving to the NLP system if it is unconfidently correct rather than confidently incorrect, even though, from a game-theoretic perspective, their payoff is equivalent. Finally, we find that each user can entertain multiple mental models of the system based on the type of the question. These results highlight the importance of confidence calibration in developing user-centered NLP applications to avoid damaging user trust and compromising the collaboration performance. | Shehzaad Dhuliawala, Vilém Zouhar, Mennatallah El-Assady, Mrinmaya Sachan | null | null | 2,023 | emnlp |
RealFusion: 360deg Reconstruction of Any Object From a Single Image | null | We consider the problem of reconstructing a full 360deg photographic model of an object from a single image of it. We do so by fitting a neural radiance field to the image, but find this problem to be severely ill-posed. We thus take an off-the-self conditional image generator based on diffusion and engineer a prompt that encourages it to "dream up" novel views of the object. Using the recent DreamFusion method, we fuse the given input view, the conditional prior, and other regularizers in a final, consistent reconstruction. We demonstrate state-of-the-art reconstruction results on benchmark images when compared to prior methods for monocular 3D reconstruction of objects. Qualitatively, our reconstructions provide a faithful match of the input view and a plausible extrapolation of its appearance and 3D shape, including to the side of the object not visible in the image. | Luke Melas-Kyriazi, Iro Laina, Christian Rupprecht, Andrea Vedaldi; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 8446-8455 | null | null | 2,023 | cvpr |
Diagram Visual Grounding: Learning to See with Gestalt-Perceptual Attention | null | Diagram visual grounding aims to capture the correlation between language expression and local objects in the diagram, and plays an important role in the applications like textbook question answering and cross-modal retrieval. Most diagrams consist of several colors and simple geometries. This results in sparse low-level visual features, which further aggravates the gap between low-level visual and high-level semantic features of diagrams. The phenomenon brings challenges to the diagram visual grounding. To solve the above issues, we propose a gestalt-perceptual attention model to align the diagram objects and language expressions. For low-level visual features, inspired by the gestalt that simulates human visual system, we build a gestalt-perception graph network to make up the features learned by the traditional backbone network. For high-level semantic features, we design a multi-modal context attention mechanism to facilitate the interaction between diagrams and language expressions, so as to enhance the semantics of diagrams. Finally, guided by diagram features and linguistic embedding, the target query is gradually decoded to generate the coordinates of the referred object. By conducting comprehensive experiments on diagrams and natural images, we demonstrate that the proposed model achieves superior performance over the competitors. Our code will be released at https://github.com/AIProCode/GPA. | Xin Hu, Lingling Zhang, Jun Liu, Xinyu Zhang, Wenjun Wu, Qianying Wang | null | null | 2,023 | ijcai |
Stability and Generalization of lp-Regularized Stochastic Learning for GCN | null | Graph convolutional networks (GCN) are viewed as one of the most popular representations among the variants of graph neural networks over graph data and have shown powerful performance in empirical experiments. That l2-based graph smoothing enforces the global smoothness of GCN, while (soft) l1-based sparse graph learning tends to promote signal sparsity to trade for discontinuity. This paper aims to quantify the trade-off of GCN between smoothness and sparsity, with the help of a general lp-regularized (1Keywords:Uncertainty in AI: UAI: Graphical models | Shiyu Liu, Linsen Wei, Shaogao Lv, Ming Li | null | null | 2,023 | ijcai |
State-Action Similarity-Based Representations for Off-Policy Evaluation | null | In reinforcement learning, off-policy evaluation (OPE) is the problem of estimating the expected return of an evaluation policy given a fixed dataset that was collected by running one or more different policies. One of the more empirically successful algorithms for OPE has been the fitted q-evaluation (FQE) algorithm that uses temporal difference updates to learn an action-value function, which is then used to estimate the expected return of the evaluation policy. Typically, the original fixed dataset is fed directly into FQE to learn the action-value function of the evaluation policy. Instead, in this paper, we seek to enhance the data-efficiency of FQE by first transforming the fixed dataset using a learned encoder, and then feeding the transformed dataset into FQE. To learn such an encoder, we introduce an OPE-tailored state-action behavioral similarity metric, and use this metric and the fixed dataset to learn an encoder that models this metric. Theoretically, we show that this metric allows us to bound the error in the resulting OPE estimate. Empirically, we show that other state-action similarity metrics lead to representations that cannot represent the action-value function of the evaluation policy, and that our state-action representation method boosts the data-efficiency of FQE and lowers OPE error relative to other OPE-based representation learning methods on challenging OPE tasks. We also empirically show that the learned representations significantly mitigate divergence of FQE under varying distribution shifts. Our code is available here: https://github.com/Badger-RL/ROPE. | Brahma Pavse, Josiah Hanna | null | null | 2,023 | neurips |
Three Stream Based Multi-level Event Contrastive Learning for Text-Video Event Extraction | null | Text-video based multimodal event extraction refers to identifying event information from the given text-video pairs. Existing methods predominantly utilize video appearance features (VAF) and text sequence features (TSF) as input information. Some of them employ contrastive learning to align VAF with the event types extracted from TSF. However, they disregard the motion representations in videos and the optimization of contrastive objective could be misguided by the background noise from RGB frames. We observe that the same event triggers correspond to similar motion trajectories, which are hardly affected by the background noise. Moviated by this, we propose a Three Stream Multimodal Event Extraction framework (TSEE) that simultaneously utilizes the features of text sequence and video appearance, as well as the motion representations to enhance the event extraction capacity. Firstly, we extract the optical flow features (OFF) as motion representations from videos to incorporate with VAF and TSF. Then we introduce a Multi-level Event Contrastive Learning module to align the embedding space between OFF and event triggers, as well as between event triggers and types. Finally, a Dual Querying Text module is proposed to enhance the interaction between modalities. Experimental results show that TSEE outperforms the state-of-the-art methods, which demonstrates its superiority. | Jiaqi Li, Chuanyi Zhang, Miaozeng Du, Dehai Min, Yongrui Chen, Guilin Qi | null | null | 2,023 | emnlp |
Transformers learn to implement preconditioned gradient descent for in-context learning | null | Several recent works demonstrate that transformers can implement algorithms like gradient descent. By a careful construction of weights, these works show that multiple layers of transformers are expressive enough to simulate iterations of gradient descent. Going beyond the question of expressivity, we ask: \emph{Can transformers learn to implement such algorithms by training over random problem instances?} To our knowledge, we make the first theoretical progress on this question via an analysis of the loss landscape for linear transformers trained over random instances of linear regression. For a single attention layer, we prove the global minimum of the training objective implements a single iteration of preconditioned gradient descent. Notably, the preconditioning matrix not only adapts to the input distribution but also to the variance induced by data inadequacy. For a transformer with $L$ attention layers, we prove certain critical points of the training objective implement $L$ iterations of preconditioned gradient descent. Our results call for future theoretical studies on learning algorithms by training transformers. | Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, Suvrit Sra | null | null | 2,023 | neurips |
Concurrent Shuffle Differential Privacy Under Continual Observation | null | We introduce the concurrent shuffle model of differential privacy. In this model we have multiple concurrent shufflers permuting messages from different, possibly overlapping, batches of users. Similarly to the standard (single) shuffler model, the privacy requirement is that the concatenation of all shuffled messages should be differentially private. We study the private continual summation problem (a.k.a. the counter problem) and show that the concurrent shuffle model allows for significantly improved error compared to a standard (single) shuffler model. Specifically, we give a summation algorithm with error $\tilde{O}(n^{1/(2k+1)})$ with $k$ concurrent shufflers on a sequence of length $n$. Furthermore, we prove that this bound is tight for any $k$, even if the algorithm can choose the sizes of the batches adaptively. For $k=\log n$ shufflers, the resulting error is polylogarithmic, much better than $\tilde{\Theta}(n^{1/3})$ which we show is the smallest possible with a single shuffler. We use our online summation algorithm to get algorithms with improved regret bounds for the contextual linear bandit problem. In particular we get optimal $\tilde{O}(\sqrt{n})$ regret with $k= \tilde{\Omega}(\log n)$ concurrent shufflers. | Jay Tenenbaum, Haim Kaplan, Yishay Mansour, Uri Stemmer | null | null | 2,023 | icml |
MSI: Maximize Support-Set Information for Few-Shot Segmentation | null | FSS (Few-shot segmentation) aims to segment a target class using a small number of labeled images (support set). To extract the information relevant to target class, a dominant approach in best performing FSS methods removes background features using a support mask. We observe that this feature excision through a limiting support mask introduces an information bottleneck in several challenging FSS cases, e.g., for small targets and/or inaccurate target boundaries. To this end, we present a novel method (MSI), which maximizes the support-set information by exploiting two complementary sources of features to generate super correlation maps. We validate the effectiveness of our approach by instantiating it into three recent and strong FSS methods. Experimental results on several publicly available FSS benchmarks show that our proposed method consistently improves performance by visible margins and leads to faster convergence. Our code and trained models are available at: https://github.com/moonsh/MSI-Maximize-Support-Set-Information | Seonghyeon Moon, Samuel S. Sohn, Honglu Zhou, Sejong Yoon, Vladimir Pavlovic, Muhammad Haris Khan, Mubbasir Kapadia; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 19266-19276 | null | null | 2,023 | iccv |
Neural Reconstruction of Relightable Human Model from Monocular Video | null | Creating relightable and animatable human characters from monocular video at a low cost is a critical task for digital human modeling and virtual reality applications. This task is complex due to intricate articulation motion, a wide range of ambient lighting conditions, and pose-dependent clothing deformations. In this paper, we introduce a novel self-supervised framework that takes a monocular video of a moving human as input and generates a 3D neural representation capable of being rendered with novel poses under arbitrary lighting conditions. Our framework decomposes dynamic humans under varying illumination into neural fields in canonical space, taking into account geometry and spatially varying BRDF material properties. Additionally, we introduce pose-driven deformation fields, enabling bidirectional mapping between canonical space and observation. Leveraging the proposed appearance decomposition and deformation fields, our framework learns in a self-supervised manner. Ultimately, based on pose-driven deformation, recovered appearance, and physically-based rendering, the reconstructed human figure becomes relightable and can be explicitly driven by novel poses. We demonstrate significant performance improvements over previous works and provide compelling examples of relighting from monocular videos of moving humans in challenging, uncontrolled capture scenarios. | Wenzhang Sun, Yunlong Che, Han Huang, Yandong Guo; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 397-407 | null | null | 2,023 | iccv |
COMCAT: Towards Efficient Compression and Customization of Attention-Based Vision Models | null | Attention-based vision models, such as Vision Transformer (ViT) and its variants, have shown promising performance in various computer vision tasks. However, these emerging architectures suffer from large model sizes and high computational costs, calling for efficient model compression solutions. To date, pruning ViTs has been well studied, while other compression strategies that have been widely applied in CNN compression, e.g., model factorization, is little explored in the context of ViT compression. This paper explores an efficient method for compressing vision transformers to enrich the toolset for obtaining compact attention-based vision models. Based on the new insight on the multi-head attention layer, we develop a highly efficient ViT compression solution, which outperforms the state-of-the-art pruning methods. For compressing DeiT-small and DeiT-base models on ImageNet, our proposed approach can achieve $0.45%$ and $0.76%$ higher top-1 accuracy even with fewer parameters. Our finding can also be applied to improve the customization efficiency of text-to-image diffusion models, with much faster training (up to $2.6\times$ speedup) and lower extra storage cost (up to $1927.5\times$ reduction) than the existing works. | Jinqi Xiao, Miao Yin, Yu Gong, Xiao Zang, Jian Ren, Bo Yuan | null | null | 2,023 | icml |
Zero-Shot Linear Combinations of Grounded Social Interactions with Linear Social MDPs | null | Humans and animals engage in rich social interactions. It is often theorized that a relatively small number of basic social interactions give rise to the full range of behavior observed. But no computational theory explaining how social interactions combine together has been proposed before. We do so here. We take a model, the Social MDP, which is able to express a range of social interactions, and extend it to represent linear combinations of social interactions. Practically for robotics applications, such models are now able to not just express that an agent should help another agent, but to express goal-centric social interactions. Perhaps an agent is helping someone get dressed, but preventing them from falling, and is happy to exchange stories in the meantime. How an agent responds socially, should depend on what it thinks the other agent is doing at that point in time. To encode this notion, we take linear combinations of social interactions as defined in Social MDPs, and compute the weights on those combinations on the fly depending on the estimated goals of other agents. This new model, the Linear Social MDP, enables zero-shot reasoning about complex social interactions, provides a mathematical basis for the long-standing intuition that social interactions should compose, and leads to interesting new behaviors that we validate using human observers. Complex social interactions are part of the future of intelligent agents, and having principled mathematical models built on a foundation like MDPs will make it possible to bring social interactions to every robotic application. | Ravi Tejwani, Yen-Ling Kuo, Tianmin Shu, Bennett Stankovits, Dan Gutfreund, Joshua B. Tenenbaum, Boris Katz, Andrei Barbu | null | null | 2,023 | aaai |
“Let’s not Quote out of Context”: Unified Vision-Language Pretraining for Context Assisted Image Captioning | null | Well-formed context aware image captions and tags in enterprise content such as marketing material are critical to ensure their brand presence and content recall. Manual creation and updates to ensure the same is non trivial given the scale and the tedium towards this task. We propose a new unified Vision-Language (VL) model based on the One For All (OFA) model, with a focus on context-assisted image captioning where the caption is generated based on both the image and its context. Our approach aims to overcome the context-independent (image and text are treated independently) nature of the existing approaches. We exploit context by pretraining our model with datasets of three tasks- news image captioning where the news article is the context, contextual visual entailment, and keyword extraction from the context. The second pretraining task is a new VL task, and we construct and release two datasets for the task with 1.1M and 2.2K data instances. Our system achieves state-of-the-art results with an improvement of up to 8.34 CIDEr score on the benchmark news image captioning datasets. To the best of our knowledge, ours is the first effort at incorporating contextual information in pretraining the models for the VL tasks. | Abisek Rajakumar Kalarani, Pushpak Bhattacharyya, Niyati Chhaya, Sumit Shekhar | null | null | 2,023 | acl |
Selective Sampling and Imitation Learning via Online Regression | null | We consider the problem of Imitation Learning (IL) by actively querying noisy expert for feedback. While imitation learning has been empirically successful, much of prior work assumes access to noiseless expert feedback which is not practical in many applications. In fact, when one only has access to noisy expert feedback, algorithms that rely on purely offline data (non-interactive IL) can be shown to need a prohibitively large number of samples to be successful. In contrast, in this work, we provide an interactive algorithm for IL that uses selective sampling to actively query the noisy expert for feedback. Our contributions are twofold: First, we provide a new selective sampling algorithm that works with general function classes and multiple actions, and obtains the best-known bounds for the regret and the number of queries. Next, we extend this analysis to the problem of IL with noisy expert feedback and provide a new IL algorithm that makes limited queries. Our algorithm for selective sampling leverages function approximation, and relies on an online regression oracle w.r.t.~the given model class to predict actions, and to decide whether to query the expert for its label. On the theoretical side, the regret bound of our algorithm is upper bounded by the regret of the online regression oracle, while the query complexity additionally depends on the eluder dimension of the model class. We complement this with a lower bound that demonstrates that our results are tight. We extend our selective sampling algorithm for IL with general function approximation and provide bounds on both the regret and the number of queries made to the noisy expert. A key novelty here is that our regret and query complexity bounds only depend on the number of times the optimal policy (and not the noisy expert, or the learner) go to states that have a small margin. | Ayush Sekhari, Karthik Sridharan, Wen Sun, Runzhe Wu | null | null | 2,023 | neurips |
Memory-Constrained Algorithms for Convex Optimization | null | We propose a family of recursive cutting-plane algorithms to solve feasibility problems with constrained memory, which can also be used for first-order convex optimization. Precisely, in order to find a point within a ball of radius $\epsilon$ with a separation oracle in dimension $d$---or to minimize $1$-Lipschitz convex functions to accuracy $\epsilon$ over the unit ball---our algorithms use $\mathcal O(\frac{d^2}{p}\ln \frac{1}{\epsilon})$ bits of memory, and make $\mathcal O((C\frac{d}{p}\ln \frac{1}{\epsilon})^p)$ oracle calls. The family is parametrized by $p\in[d]$ and provides an oracle-complexity/memory trade-off in the sub-polynomial regime $\ln\frac{1}{\epsilon}\gg\ln d$. While several works gave lower-bound trade-offs (impossibility results)---we explicit here their dependence with $\ln\frac{1}{\epsilon}$, showing that these also hold in any sub-polynomial regime---to the best of our knowledge this is the first class of algorithms that provides a positive trade-off between gradient descent and cutting-plane methods in any regime with $\epsilon\leq 1/\sqrt d$. The algorithms divide the $d$ variables into $p$ blocks and optimize over blocks sequentially, with approximate separation vectors constructed using a variant of Vaidya's method. In the regime $\epsilon \leq d^{-\Omega(d)}$, our algorithm with $p=d$ achieves the information-theoretic optimal memory usage and improves the oracle-complexity of gradient descent. | Moise Blanchard, Junhui Zhang, Patrick Jaillet | null | null | 2,023 | neurips |
Exploring Non-target Knowledge for Improving Ensemble Universal Adversarial Attacks | null | The ensemble attack with average weights can be leveraged for increasing the transferability of universal adversarial perturbation (UAP) by training with multiple Convolutional Neural Networks (CNNs). However, after analyzing the Pearson Correlation Coefficients (PCCs) between the ensemble logits and individual logits of the crafted UAP trained by the ensemble attack, we find that one CNN plays a dominant role during the optimization. Consequently, this average weighted strategy will weaken the contributions of other CNNs and thus limit the transferability for other black-box CNNs. To deal with this bias issue, the primary attempt is to leverage the Kullback–Leibler (KL) divergence loss to encourage the joint contribution from different CNNs, which is still insufficient. After decoupling the KL loss into a target-class part and a non-target-class part, the main issue lies in that the non-target knowledge will be significantly suppressed due to the increasing logit of the target class.
In this study, we simply adopt a KL loss that only considers the non-target classes for addressing the dominant bias issue. Besides, to further boost the transferability, we incorporate the min-max learning framework to self-adjust the ensemble weights for each CNN. Experiments results validate that considering the non-target KL loss can achieve superior transferability than the original KL loss by a large margin, and the min-max training can provide a mutual benefit in adversarial ensemble attacks.
The source code is available at: https://github.com/WJJLL/ND-MM. | Juanjuan Weng, Zhiming Luo, Zhun Zhong, Dazhen Lin, Shaozi Li | null | null | 2,023 | aaai |
RobuT: A Systematic Study of TableQARobustness Against Human-Annotated Adversarial Perturbations | null | Despite significant progress having been made in question answering on tabular data (Table QA), it’s unclear whether, and to what extent existing Table QA models are robust to task-specific perturbations, e.g., replacing key question entities or shuffling table columns. To systematically study the robustness of Table QA models, we propose a benchmark called RobuT, which builds upon existing Table QA datasets (WTQ, WikiSQL-Weak, and SQA) and includes human-annotated adversarial perturbations in terms of table header, table content, and question. Our results indicate that both state-of-the-art Table QA models and large language models (e.g., GPT-3) with few-shot learning falter in these adversarial sets. We propose to address this problem by using large language models to generate adversarial examples to enhance training, which significantly improves the robustness of Table QA models. | Yilun Zhao, Chen Zhao, Linyong Nan, Zhenting Qi, Wenlin Zhang, Xiangru Tang, Boyu Mi, Dragomir Radev | null | null | 2,023 | acl |
SparseBEV: High-Performance Sparse 3D Object Detection from Multi-Camera Videos | null | Camera-based 3D object detection in BEV (Bird's Eye View) space has drawn great attention over the past few years. Dense detectors typically follow a two-stage pipeline by first constructing a dense BEV feature and then performing object detection in BEV space, which suffers from complex view transformations and high computation cost. On the other side, sparse detectors follow a query-based paradigm without explicit dense BEV feature construction, but achieve worse performance than the dense counterparts. In this paper, we find that the key to mitigate this performance gap is the adaptability of the detector in both BEV and image space. To achieve this goal, we propose SparseBEV, a fully sparse 3D object detector that outperforms the dense counterparts. SparseBEV contains three key designs, which are (1) scale-adaptive self attention to aggregate features with adaptive receptive field in BEV space, (2) adaptive spatio-temporal sampling to generate sampling locations under the guidance of queries, and (3) adaptive mixing to decode the sampled features with dynamic weights from the queries. On the test split of nuScenes, SparseBEV achieves the state-of-the-art performance of 67.5 NDS. On the val split, SparseBEV achieves 55.8 NDS while maintaining a real-time inference speed of 23.5 FPS. Code is available at https://github.com/MCG-NJU/SparseBEV. | Haisong Liu, Yao Teng, Tao Lu, Haiguang Wang, Limin Wang; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 18580-18590 | null | null | 2,023 | iccv |
Query Refinement Prompts for Closed-Book Long-FormQA | null | Large language models (LLMs) have been shown to perform well in answering questions and in producing long-form texts, both in few-shot closed-book settings. While the former can be validated using well-known evaluation metrics, the latter is difficult to evaluate. We resolve the difficulties to evaluate long-form output by doing both tasks at once – to do question answering that requires long-form answers. Such questions tend to be multifaceted, i.e., they may have ambiguities and/or require information from multiple sources. To this end, we define query refinement prompts that encourage LLMs to explicitly express the multifacetedness in questions and generate long-form answers covering multiple facets of the question. Our experiments on two long-form question answering datasets, ASQA and AQuAMuSe, show that using our prompts allows us to outperform fully finetuned models in the closed book setting, as well as achieve results comparable to retrieve-then-generate open-book models. | Reinald Kim Amplayo, Kellie Webster, Michael Collins, Dipanjan Das, Shashi Narayan | null | null | 2,023 | acl |
Label efficient semi-supervised conversational intent classification | null | To provide a convenient shopping experience and to answer user queries at scale, conversational platforms are essential for e-commerce. The user queries can be pre-purchase questions, such as product specifications and delivery time related, or post-purchase queries, such as exchange and return. A chatbot should be able to understand and answer a variety of such queries to help users with relevant information. One of the important modules in the chatbot is automated intent identification, i.e., understanding the user’s intention from the query text. Due to non-English speaking users interacting with the chatbot, we often get a significant percentage of code mix queries and queries with grammatical errors, which makes the problem more challenging. This paper proposes a simple yet competent Semi-Supervised Learning (SSL) approach for label-efficient intent classification. We use a small labeled corpus and relatively larger unlabeled query data to train a transformer model. For training the model with labeled data, we explore supervised MixUp data augmentation. To train with unlabeled data, we explore label consistency with dropout noise. We experiment with different pre-trained transformer architectures, such as BERT and sentence-BERT. Experimental results demonstrate that the proposed approach significantly improves over the supervised baseline, even with a limited labeled set. A variant of the model is currently deployed in production. | Mandar Kulkarni, Kyung Kim, Nikesh Garera, Anusua Trivedi | null | null | 2,023 | acl |
Specializing Smaller Language Models towards Multi-Step Reasoning | null | The surprising ability of Large Language Models (LLMs) to perform well on complex reasoning with only few-shot chain-of-thought prompts is believed to emerge only in very large-scale models. We show that such abilities can, in fact, be distilled down from GPT-3.5 (≥ 175B) to T5 variants (≤ 11B). We propose model specialization, to specialize the model’s ability towards a target task. The hypothesis is that large models (commonly viewed as larger than 100B) have strong modeling power such that they can perform a large spectrum of tasks. Small models (commonly viewed as smaller than 10B) have limited model capacity, but if we specialize their capacity towards a target task, the model can achieve decent performance improvements. We use multi-step math reasoning as our testbed because it is a very typical emergent ability. We show two important aspects of model abilities: (1) balancing language model’s performance on multiple tasks is a delicate matter, as improvements on one task may compromise other tasks; (2) yet by intentionally paying the price of decreased generic ability, we can clearly improve across different model scales smaller than 10B towards a specialized multi-step math reasoning ability. We further give comprehensive discussions about important design choices for better generalization, including the data format mixture and the start model checkpoint. We hope our practice and discoveries can serve as an important attempt towards specialized smaller models in the new research paradigm set by LLMs. | Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, Tushar Khot | null | null | 2,023 | icml |
Are We Ready for Vision-Centric Driving Streaming Perception? The ASAP Benchmark | null | In recent years, vision-centric perception has flourished in various autonomous driving tasks, including 3D detection, semantic map construction, motion forecasting, and depth estimation. Nevertheless, the latency of vision-centric approaches is too high for practical deployment (e.g., most camera-based 3D detectors have a runtime greater than 300ms). To bridge the gap between ideal researches and real-world applications, it is necessary to quantify the trade-off between performance and efficiency. Traditionally, autonomous-driving perception benchmarks perform the online evaluation, neglecting the inference time delay. To mitigate the problem, we propose the Autonomous-driving StreAming Perception (ASAP) benchmark, which is the first benchmark to evaluate the online performance of vision-centric perception in autonomous driving. On the basis of the 2Hz annotated nuScenes dataset, we first propose an annotation-extending pipeline to generate high-frame-rate labels for the 12Hz raw images. Referring to the practical deployment, the Streaming Perception Under constRained-computation (SPUR) evaluation protocol is further constructed, where the 12Hz inputs are utilized for streaming evaluation under the constraints of different computational resources. In the ASAP benchmark, comprehensive experiment results reveal that the model rank alters under different constraints, suggesting that the model latency and computation budget should be considered as design choices to optimize the practical deployment. To facilitate further research, we establish baselines for camera-based streaming 3D detection, which consistently enhance the streaming performance across various hardware. The ASAP benchmark will be made publicly available. | Xiaofeng Wang, Zheng Zhu, Yunpeng Zhang, Guan Huang, Yun Ye, Wenbo Xu, Ziwei Chen, Xingang Wang; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 9600-9610 | null | null | 2,023 | cvpr |
Simplicity Level Estimate (SLE): A Learned Reference-Less Metric for Sentence Simplification | null | Automatic evaluation for sentence simplification remains a challenging problem. Most popular evaluation metrics require multiple high-quality references – something not readily available for simplification – which makes it difficult to test performance on unseen domains. Furthermore, most existing metrics conflate simplicity with correlated attributes such as fluency or meaning preservation. We propose a new learned evaluation metric — SLE — which focuses on simplicity, outperforming almost all existing metrics in terms of correlation with human judgements. | Liam Cripwell, Joël Legrand, Claire Gardent | null | null | 2,023 | emnlp |
Motion-X: A Large-scale 3D Expressive Whole-body Human Motion Dataset | null | In this paper, we present Motion-X, a large-scale 3D expressive whole-body motion dataset. Existing motion datasets predominantly contain body-only poses, lacking facial expressions, hand gestures, and fine-grained pose descriptions. Moreover, they are primarily collected from limited laboratory scenes with textual descriptions manually labeled, which greatly limits their scalability. To overcome these limitations, we develop a whole-body motion and text annotation pipeline, which can automatically annotate motion from either single- or multi-view videos and provide comprehensive semantic labels for each video and fine-grained whole-body pose descriptions for each frame. This pipeline is of high precision, cost-effective, and scalable for further research. Based on it, we construct Motion-X, which comprises 15.6M precise 3D whole-body pose annotations (i.e., SMPL-X) covering 81.1K motion sequences from massive scenes. Besides, Motion-X provides 15.6M frame-level whole-body pose descriptions and 81.1K sequence-level semantic labels. Comprehensive experiments demonstrate the accuracy of the annotation pipeline and the significant benefit of Motion-X in enhancing expressive, diverse, and natural motion generation, as well as 3D whole-body human mesh recovery. | Jing Lin, Ailing Zeng, Shunlin Lu, Yuanhao Cai, Ruimao Zhang, Haoqian Wang, Lei Zhang | null | null | 2,023 | neurips |
Decoder Tuning: Efficient Language Understanding as Decoding | null | With the evergrowing sizes of pre-trained models (PTMs), it has been an emerging practice to only provide the inference APIs for users, namely model-as-a-service (MaaS) setting. To adapt PTMs with model parameters frozen, most current approaches focus on the input side, seeking powerful prompts to stimulate models for correct answers. However, we argue that input-side adaptation could be arduous due to the lack of gradient signals and they usually require thousands of API queries, resulting in high computation and time costs. Specifically, DecT first extracts prompt-stimulated output scores for initial predictions. On top of that, we train an additional decoder network on the output representations to incorporate posterior data knowledge. By gradient-based optimization, DecT can be trained within several seconds and requires only one PTM query per sample. Empirically, we conduct extensive natural language understanding experiments and show that DecT significantly outperforms state-of-the-art algorithms with a 200x speed-up. Our code is available at | Ganqu Cui, Wentao Li, Ning Ding, Longtao Huang, Zhiyuan Liu, Maosong Sun | null | null | 2,023 | acl |
Which One Are You Referring To? Multimodal Object Identification in Situated Dialogue | null | The demand for multimodal dialogue systems has been rising in various domains, emphasizing the importance of interpreting multimodal inputs from conversational and situational contexts. One main challenge in multimodal dialogue understanding is multimodal object identification, which constitutes the ability to identify objects relevant to a multimodal user-system conversation. We explore three methods to tackle this problem and evaluate them on the largest situated dialogue dataset, SIMMC 2.1. Our best method, scene-dialogue alignment, improves the performance by ~20% F1-score compared to the SIMMC 2.1 baselines. We provide analysis and discussion regarding the limitation of our methods and the potential directions for future works. | Holy Lovenia, Samuel Cahyawijaya, Pascale Fung | null | null | 2,023 | eacl |
Compositional Abilities Emerge Multiplicatively: Exploring Diffusion Models on a Synthetic Task | null | Modern generative models exhibit unprecedented capabilities to generate extremely realistic data. However, given the inherent compositionality of the real world, reliable use of these models in practical applications requires that they exhibit the capability to compose a novel set of concepts to generate outputs not seen in the training data set. Prior work demonstrates that recent diffusion models do exhibit intriguing compositional generalization abilities, but also fail unpredictably. Motivated by this, we perform a controlled study for understanding compositional generalization in conditional diffusion models in a synthetic setting, varying different attributes of the training data and measuring the model's ability to generate samples out-of-distribution. Our results show: (i) the order in which the ability to generate samples from a concept and compose them emerges is governed by the structure of the underlying data-generating process; (ii) performance on compositional tasks exhibits a sudden "emergence" due to multiplicative reliance on the performance of constituent tasks, partially explaining emergent phenomena seen in generative models; and (iii) composing concepts with lower frequency in the training data to generate out-of-distribution samples requires considerably more optimization steps compared to generating in-distribution samples. Overall, our study lays a foundation for understanding emergent capabilities and compositionality in generative models from a data-centric perspective. | Maya Okawa, Ekdeep S Lubana, Robert Dick, Hidenori Tanaka | null | null | 2,023 | neurips |
Connected Superlevel Set in (Deep) Reinforcement Learning and its Application to Minimax Theorems | null | The aim of this paper is to improve the understanding of the optimization landscape for policy optimization problems in reinforcement learning. Specifically, we show that the superlevel set of the objective function with respect to the policy parameter is always a connected set both in the tabular setting and under policies represented by a class of neural networks. In addition, we show that the optimization objective as a function of the policy parameter and reward satisfies a stronger “equiconnectedness” property. To our best knowledge, these are novel and previously unknown discoveries.We present an application of the connectedness of these superlevel sets to the derivation of minimax theorems for robust reinforcement learning. We show that any minimax optimization program which is convex on one side and is equiconnected on the other side observes the minimax equality (i.e. has a Nash equilibrium). We find that this exact structure is exhibited by an interesting class of robust reinforcement learning problems under an adversarial reward attack, and the validity of its minimax equality immediately follows. This is the first time such a result is established in the literature. | Sihan Zeng, Thinh Doan, Justin Romberg | null | null | 2,023 | neurips |
Multivariate, Multi-Frequency and Multimodal: Rethinking Graph Neural Networks for Emotion Recognition in Conversation | null | Complex relationships of high arity across modality and context dimensions is a critical challenge in the Emotion Recognition in Conversation (ERC) task. Yet, previous works tend to encode multimodal and contextual relationships in a loosely-coupled manner, which may harm relationship modelling. Recently, Graph Neural Networks (GNN) which show advantages in capturing data relations, offer a new solution for ERC. However, existing GNN-based ERC models fail to address some general limits of GNNs, including assuming pairwise formulation and erasing high-frequency signals, which may be trivial for many applications but crucial for the ERC task. In this paper, we propose a GNN-based model that explores multivariate relationships and captures the varying importance of emotion discrepancy and commonality by valuing multi-frequency signals. We empower GNNs to better capture the inherent relationships among utterances and deliver more sufficient multimodal and contextual modelling. Experimental results show that our proposed method outperforms previous state-of-the-art works on two popular multimodal ERC datasets. | Feiyu Chen, Jie Shao, Shuyuan Zhu, Heng Tao Shen; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 10761-10770 | null | null | 2,023 | cvpr |
Calibrating Neural Simulation-Based Inference with Differentiable Coverage Probability | null | Bayesian inference allows expressing the uncertainty of posterior belief under a probabilistic model given prior information and the likelihood of the evidence. Predominantly, the likelihood function is only implicitly established by a simulator posing the need for simulation-based inference (SBI). However, the existing algorithms can yield overconfident posteriors (Hermans et al., 2022) defeating the whole purpose of credibility if the uncertainty quantification is inaccurate. We propose to include a calibration term directly into the training objective of the neural model in selected amortized SBI techniques. By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation. The proposed method is not tied to any particular neural model and brings moderate computational overhead compared to the profits it introduces. It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference. We empirically show on six benchmark problems that the proposed method achieves competitive or better results in terms of coverage and expected posterior density than the previously existing approaches. | Maciej Falkiewicz, Naoya Takeishi, Imahn Shekhzadeh, Antoine Wehenkel, Arnaud Delaunoy, Gilles Louppe, Alexandros Kalousis | null | null | 2,023 | neurips |
Extreme Q-Learning: MaxEnt RL without Entropy | null | Modern Deep Reinforcement Learning (RL) algorithms require estimates of the maximal Q-value, which are difficult to compute in continuous domains with an infinite number of possible actions. In this work, we introduce a new update rule for online and offline RL which directly models the maximal value using Extreme Value Theory (EVT), drawing inspiration from economics. By doing so, we avoid computing Q-values using out-of-distribution actions which is often a substantial source of error. Our key insight is to introduce an objective that directly estimates the optimal soft-value functions (LogSumExp) in the maximum entropy RL setting without needing to sample from a policy. Using EVT, we derive our \emph{Extreme Q-Learning} framework and consequently online and, for the first time, offline MaxEnt Q-learning algorithms, that do not explicitly require access to a policy or its entropy. Our method obtains consistently strong performance in the D4RL benchmark, outperforming prior works by \emph{10+ points} on the challenging Franka Kitchen tasks while offering moderate improvements over SAC and TD3 on online DM Control tasks. Visualizations and code can be found on our website. | Divyansh Garg, Joey Hejna, Matthieu Geist, Stefano Ermon | null | null | 2,023 | iclr |
Hyperbolic Representation Learning: Revisiting and Advancing | null | The non-Euclidean geometry of hyperbolic spaces has recently garnered considerable attention in the realm of representation learning. Current endeavors in hyperbolic representation largely presuppose that the underlying hierarchies can be automatically inferred and preserved through the adaptive optimization process. This assumption, however, is questionable and requires further validation. In this work, we first introduce a position-tracking mechanism to scrutinize existing prevalent hyperbolic models, revealing that the learned representations are sub-optimal and unsatisfactory. To address this, we propose a simple yet effective method, hyperbolic informed embedding (HIE), by incorporating cost-free hierarchical information deduced from the hyperbolic distance of the node to the origin (i.e., induced hyperbolic norm) to advance existing hyperbolic models. The proposed method HIE is both task-agnostic and model-agnostic, enabling its seamless integration with a broad spectrum of models and tasks. Extensive experiments across various models and different tasks demonstrate the versatility and adaptability of the proposed method. Remarkably, our method achieves a remarkable improvement of up to 21.4% compared to the competing baselines. | Menglin Yang, Min Zhou, Rex Ying, Yankai Chen, Irwin King | null | null | 2,023 | icml |
NeRF-DS: Neural Radiance Fields for Dynamic Specular Objects | null | Dynamic Neural Radiance Field (NeRF) is a powerful algorithm capable of rendering photo-realistic novel view images from a monocular RGB video of a dynamic scene. Although it warps moving points across frames from the observation spaces to a common canonical space for rendering, dynamic NeRF does not model the change of the reflected color during the warping. As a result, this approach often fails drastically on challenging specular objects in motion. We address this limitation by reformulating the neural radiance field function to be conditioned on surface position and orientation in the observation space. This allows the specular surface at different poses to keep the different reflected colors when mapped to the common canonical space. Additionally, we add the mask of moving objects to guide the deformation field. As the specular surface changes color during motion, the mask mitigates the problem of failure to find temporal correspondences with only RGB supervision. We evaluate our model based on the novel view synthesis quality with a self-collected dataset of different moving specular objects in realistic environments. The experimental results demonstrate that our method significantly improves the reconstruction quality of moving specular objects from monocular RGB videos compared to the existing NeRF models. Our code and data are available at the project website https://github.com/JokerYan/NeRF-DS. | Zhiwen Yan, Chen Li, Gim Hee Lee; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 8285-8295 | null | null | 2,023 | cvpr |
CycleNet: Rethinking Cycle Consistency in Text-Guided Diffusion for Image Manipulation | null | Diffusion models (DMs) have enabled breakthroughs in image synthesis tasks but lack an intuitive interface for consistent image-to-image (I2I) translation. Various methods have been explored to address this issue, including mask-based methods, attention-based methods, and image-conditioning. However, it remains a critical challenge to enable unpaired I2I translation with pre-trained DMs while maintaining satisfying consistency. This paper introduces Cyclenet, a novel but simple method that incorporates cycle consistency into DMs to regularize image manipulation. We validate Cyclenet on unpaired I2I tasks of different granularities. Besides the scene and object level translation, we additionally contribute a multi-domain I2I translation dataset to study the physical state changes of objects. Our empirical studies show that Cyclenet is superior in translation consistency and quality, and can generate high-quality images for out-of-domain distributions with a simple change of the textual prompt. Cyclenet is a practical framework, which is robust even with very limited training data (around 2k) and requires minimal computational resources (1 GPU) to train. Project homepage: https://cyclenetweb.github.io/ | Sihan Xu, Ziqiao Ma, Yidong Huang, Honglak Lee, Joyce Chai | null | null | 2,023 | neurips |
Adverse Weather Removal with Codebook Priors | null | Despite recent advancements in unified adverse weather removal methods, there remains a significant challenge of achieving realistic fine-grained texture and reliable background reconstruction to mitigate serious distortions.
Inspired by recent advancements in codebook and vector quantization (VQ) techniques, we present a novel Adverse Weather Removal network with Codebook Priors (AWRCP) to address the problem of unified adverse weather removal. AWRCP leverages high-quality codebook priors derived from undistorted images to recover vivid texture details and faithful background structures. However, simply utilizing high-quality features from the codebook does not guarantee good results in terms of fine-grained details and structural fidelity. Therefore, we develop a deformable cross-attention with sparse sampling mechanism for flexible perform feature interaction between degraded features and high-quality features from codebook priors. In order to effectively incorporate high-quality texture features while maintaining the realism of the details generated by codebook priors, we propose a hierarchical texture warping head that gradually fuses hierarchical codebook prior features into high-resolution features at final restoring stage.
With the utilization of the VQ codebook as a feature dictionary of high quality and the proposed designs, AWRCP can largely improve the restored quality of texture details, achieving the state-of-the-art performance across multiple adverse weather removal benchmark. | Tian Ye, Sixiang Chen, Jinbin Bai, Jun Shi, Chenghao Xue, Jingxia Jiang, Junjie Yin, Erkang Chen, Yun Liu; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 12653-12664 | null | null | 2,023 | iccv |
CVTP3D: Cross-view Trajectory Prediction Using Shared 3D Queries for Autonomous Driving | null | Trajectory prediction with uncertainty is a critical and challenging task for autonomous driving. Nowadays, we can easily access sensor data represented in multiple views. However, cross-view consistency has not been evaluated by the existing models, which might lead to divergences between the multimodal predictions from different views. It is not practical and effective when the network does not comprehend the 3D scene, which could cause the downstream module in a dilemma. Instead, we predicts multimodal trajectories while maintaining cross-view consistency. We presented a cross-view trajectory prediction method using shared 3D Queries (XVTP3D). We employ a set of 3D queries shared across views to generate multi-goals that are cross-view consistent. We also proposed a random mask method and coarse-to-fine cross-attention to capture robust cross-view features. As far as we know, this is the first work that introduces the outstanding top-down paradigm in BEV detection field to a trajectory prediction problem. The results of experiments on two publicly available datasets show that XVTP3D achieved state-of-the-art performance with consistent cross-view predictions. | Zijian Song, Huikun Bi, Ruisi Zhang, Tianlu Mao, Zhaoqi Wang | null | null | 2,023 | ijcai |
Penguin: Parallel-Packed Homomorphic Encryption for Fast Graph Convolutional Network Inference | null | The marriage of Graph Convolutional Network (GCN) and Homomorphic Encryption (HE) enables the inference of graph data on the cloud with significantly enhanced client data privacy. However, the tremendous computation and memory overhead associated with HE operations challenges the practicality of HE-based GCN inference. GCN inference involves a sequence of expensive matrix-matrix multiplications, and we observe that directly applying the state-of-the-art HE-based secure matrix-matrix multiplication solutions to accelerate HE-GCN inference is far less efficient as it does not exploit the unique aggregation mechanism of two-dimension graph node-features in GCN layer computation. As a result, in this paper, we propose a novel HE-based ciphertext packing technique, i.e., Penguin, that can take advantage of the unique computation pattern during the HE-GCN inference to significantly reduce the computation and memory overhead associated with HE operations.Specifically, Penguin employs (i) an effective two-dimension parallel packing technique for feature ciphertext with optimal graph node partitioning and graph feature interleaving, and (ii) an interleaved assembly technique that can effectively make use of the blank slots to merge ciphertexts after feature reduction and significantly reduce the costly rotation operation.We provide theoretical analysis and experimental validation to demonstrate the speedup achieved by Penguin in accelerating GCN inference using popular GCN models and datasets. Our results show that Penguin can achieve up to $\sim10\times$ speedup and around $\sim79$% reduction in computational memory overhead, significantly outperforming state-of-the-art solutions. To the best of our knowledge, this is the first work that can ensure the protection of both graph structure and features when accelerating HE-GCN inference on encrypted data. Our code is publicly available at https://github.com/ranran0523/Penguin. | Ran Ran, Nuo Xu, Tao Liu, Wei Wang, Gang Quan, Wujie Wen | null | null | 2,023 | neurips |
Fair Division with Two-Sided Preferences | null | We study a fair division setting in which a number of players are to be fairly distributed among a set of teams. In our model, not only do the teams have preferences over the players as in the canonical fair division setting, but the players also have preferences over the teams. We focus on guaranteeing envy-freeness up to one player (EF1) for the teams together with a stability condition for both sides. We show that an allocation satisfying EF1, swap stability, and individual stability always exists and can be computed in polynomial time, even when teams may have positive or negative values for players. Similarly, a balanced and swap stable allocation that satisfies a relaxation of EF1 can be computed efficiently. When teams have nonnegative values for players, we prove that an EF1 and Pareto optimal allocation exists and, if the valuations are binary, can be found in polynomial time. We also examine the compatibility between EF1 and justified envy-freeness. | Ayumi Igarashi, Yasushi Kawase, Warut Suksompong, Hanna Sumita | null | null | 2,023 | ijcai |
Task-Robust Pre-Training for Worst-Case Downstream Adaptation | null | Pre-training has achieved remarkable success when transferred to downstream tasks. In machine learning, we care about not only the good performance of a model but also its behavior under reasonable shifts of condition. The same philosophy holds when pre-training a foundation model. However, the foundation model may not uniformly behave well for a series of related downstream tasks. This happens, for example, when conducting mask recovery regression where the recovery ability or the training instances diverge like pattern features are extracted dominantly on pre-training, but semantic features are also required on a downstream task. This paper considers pre-training a model that guarantees a uniformly good performance over the downstream tasks. We call this goal as downstream-task robustness.Our method first separates the upstream task into several representative ones and applies a simple minimax loss for pre-training. We then design an efficient algorithm to solve the minimax lossand prove its convergence in the convex setting. In the experiments, we show both on large-scale natural language processing and computer vision datasets our method increases the metrics on worse-case downstream tasks. Additionally, some theoretical explanations for why our loss is beneficial are provided. Specifically, we show fewer samples are inherently required for the most challenging downstream task in some cases. | Jianghui Wang, Yang Chen, Xingyu Xie, Cong Fang, Zhouchen Lin | null | null | 2,023 | neurips |
Imitation Learning from Vague Feedback | null | Imitation learning from human feedback studies how to train well-performed imitation agents with an annotator's relative comparison of two demonstrations (one demonstration is better/worse than the other), which is usually easier to collect than the perfect expert data required by traditional imitation learning. However, in many real-world applications, it is still expensive or even impossible to provide a clear pairwise comparison between two demonstrations with similar quality. This motivates us to study the problem of imitation learning with vague feedback, where the data annotator can only distinguish the paired demonstrations correctly when their quality differs significantly, i.e., one from the expert and another from the non-expert. By modeling the underlying demonstration pool as a mixture of expert and non-expert data, we show that the expert policy distribution can be recovered when the proportion $\alpha$ of expert data is known. We also propose a mixture proportion estimation method for the unknown $\alpha$ case. Then, we integrate the recovered expert policy distribution with generative adversarial imitation learning to form an end-to-end algorithm. Experiments show that our methods outperform standard and preference-based imitation learning methods on various tasks. | Xin-Qiang Cai, Yu-Jie Zhang, Chao-Kai Chiang, Masashi Sugiyama | null | null | 2,023 | neurips |
Evaluating Human-AI Interaction via Usability, User Experience and Acceptance Measures for MMM-C: A Creative AI System for Music Composition | null | With the rise of artificial intelligence (AI), there has been increasing interest in human-AI co-creation in a variety of artistic domains including music as AI-driven systems are frequently able to generate human-competitive artifacts. Now, the implications of such systems for the musical practice are being investigated. This paper reports on a thorough evaluation of the user adoption of the Multi-Track Music Machine (MMM) as a minimal co-creative AI tool for music composers. To do this, we integrate MMM into Cubase, a popular Digital Audio Workstation (DAW), by producing a "1-parameter" plugin interface named MMM-Cubase, which enables human-AI co-composition. We conduct a 3-part mixed method study measuring usability, user experience and technology acceptance of the system across two groups of expert-level composers: hobbyists and professionals. Results show positive usability and acceptance scores. Users report experiences of novelty, surprise and ease of use from using the system, and limitations on controllability and predictability of the interface when generating music. Findings indicate no significant difference between the two user groups. | Renaud Bougueng Tchemeube, Jeffrey Ens, Cale Plut, Philippe Pasquier, Maryam Safi, Yvan Grabit, Jean-Baptiste Rolland | null | null | 2,023 | ijcai |
Masked Two-channel Decoupling Framework for Incomplete Multi-view Weak Multi-label Learning | null | Multi-view learning has become a popular research topic in recent years, but research on the cross-application of classic multi-label classification and multi-view learning is still in its early stages. In this paper, we focus on the complex yet highly realistic task of incomplete multi-view weak multi-label learning and propose a masked two-channel decoupling framework based on deep neural networks to solve this problem. The core innovation of our method lies in decoupling the single-channel view-level representation, which is common in deep multi-view learning methods, into a shared representation and a view-proprietary representation. We also design a cross-channel contrastive loss to enhance the semantic property of the two channels. Additionally, we exploit supervised information to design a label-guided graph regularization loss, helping the extracted embedding features preserve the geometric structure among samples. Inspired by the success of masking mechanisms in image and text analysis, we develop a random fragment masking strategy for vector features to improve the learning ability of encoders. Finally, it is important to emphasize that our model is fully adaptable to arbitrary view and label absences while also performing well on the ideal full data. We have conducted sufficient and convincing experiments to confirm the effectiveness and advancement of our model. | Chengliang Liu, Jie Wen, Yabo Liu, Chao Huang, Zhihao Wu, Xiaoling Luo, Yong Xu | null | null | 2,023 | neurips |
StyLEx: Explaining Style Using Human Lexical Annotations | null | Large pre-trained language models have achieved impressive results on various style classification tasks, but they often learn spurious domain-specific words to make predictions (Hayati et al., 2021). While human explanation highlights stylistic tokens as important features for this task, we observe that model explanations often do not align with them. To tackle this issue, we introduce StyLEx, a model that learns from human annotated explanations of stylistic features and jointly learns to perform the task and predict these features as model explanations. Our experiments show that StyLEx can provide human like stylistic lexical explanations without sacrificing the performance of sentence-level style prediction on both in-domain and out-of-domain datasets. Explanations from StyLEx show significant improvements in explanation metrics (sufficiency, plausibility) and when evaluated with human annotations. They are also more understandable by human judges compared to the widely-used saliency-based explanation baseline. | Shirley Anugrah Hayati, Kyumin Park, Dheeraj Rajagopal, Lyle Ungar, Dongyeop Kang | null | null | 2,023 | eacl |
Subsets and Splits