a-number
stringlengths 7
7
| sequence
sequencelengths 1
377
| description
stringlengths 3
852
|
---|---|---|
A001001 | [
"1",
"7",
"13",
"35",
"31",
"91",
"57",
"155",
"130",
"217",
"133",
"455",
"183",
"399",
"403",
"651",
"307",
"910",
"381",
"1085",
"741",
"931",
"553",
"2015",
"806",
"1281",
"1210",
"1995",
"871",
"2821",
"993",
"2667",
"1729",
"2149",
"1767",
"4550",
"1407",
"2667",
"2379",
"4805",
"1723",
"5187",
"1893",
"4655",
"4030",
"3871",
"2257",
"8463",
"2850",
"5642",
"3991",
"6405",
"2863"
] | Number of sublattices of index n in generic 3-dimensional lattice. |
A001002 | [
"1",
"1",
"3",
"10",
"38",
"154",
"654",
"2871",
"12925",
"59345",
"276835",
"1308320",
"6250832",
"30142360",
"146510216",
"717061938",
"3530808798",
"17478955570",
"86941210950",
"434299921440",
"2177832612120",
"10959042823020",
"55322023332420",
"280080119609550",
"1421744205767418",
"7234759677699954"
] | Number of dissections of a convex (n+2)-gon into triangles and quadrilaterals by nonintersecting diagonals. |
A001003 | [
"1",
"1",
"3",
"11",
"45",
"197",
"903",
"4279",
"20793",
"103049",
"518859",
"2646723",
"13648869",
"71039373",
"372693519",
"1968801519",
"10463578353",
"55909013009",
"300159426963",
"1618362158587",
"8759309660445",
"47574827600981",
"259215937709463",
"1416461675464871"
] | Schroeder's second problem (generalized parentheses); also called super-Catalan numbers or little Schroeder numbers. |
A001004 | [
"1",
"1",
"2",
"3",
"9",
"20",
"75",
"262",
"1117",
"4783",
"21971",
"102249",
"489077",
"2370142",
"11654465",
"57916324",
"290693391",
"1471341341",
"7504177738",
"38532692207",
"199076194985",
"1034236705992",
"5400337050086",
"28329240333758",
"149244907249629"
] | Number of nonequivalent dissections of an (n+2)-gon by nonintersecting diagonals up to rotation and reflection. |
A001005 | [
"1",
"0",
"1",
"1",
"2",
"5",
"8",
"21",
"42",
"96",
"222",
"495",
"1177",
"2717",
"6435",
"15288",
"36374",
"87516",
"210494",
"509694",
"1237736",
"3014882",
"7370860",
"18059899",
"44379535",
"109298070",
"269766655",
"667224480",
"1653266565",
"4103910930",
"10203669285",
"25408828065",
"63364046190",
"158229645720",
"395632288590",
"990419552730"
] | Number of ways of partitioning n points on a circle into subsets only of sizes 2 and 3. |
A001006 | [
"1",
"1",
"2",
"4",
"9",
"21",
"51",
"127",
"323",
"835",
"2188",
"5798",
"15511",
"41835",
"113634",
"310572",
"853467",
"2356779",
"6536382",
"18199284",
"50852019",
"142547559",
"400763223",
"1129760415",
"3192727797",
"9043402501",
"25669818476",
"73007772802",
"208023278209",
"593742784829"
] | Motzkin numbers: number of ways of drawing any number of nonintersecting chords joining n (labeled) points on a circle. |
A001007 | [
"1",
"2",
"15",
"42",
"421",
"1331",
"15119",
"618765",
"2155578",
"98032875",
"1290154807",
"4682196239",
"63117678751",
"3186252107917",
"164886529617695",
"616630679090258",
"32763760653353135",
"467443761039641135",
"1768227793278781667",
"96699391743949360451",
"1402535447576150395335"
] | a(n) = ( Sum C(p,i); i=1,...,floor(2p/3) ) / p^2, where p = prime(n). |
A001008 | [
"1",
"3",
"11",
"25",
"137",
"49",
"363",
"761",
"7129",
"7381",
"83711",
"86021",
"1145993",
"1171733",
"1195757",
"2436559",
"42142223",
"14274301",
"275295799",
"55835135",
"18858053",
"19093197",
"444316699",
"1347822955",
"34052522467",
"34395742267",
"312536252003",
"315404588903",
"9227046511387"
] | Numerators of harmonic numbers H(n) = Sum_{i=1..n} 1/i. |
A001009 | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"4",
"4",
"1",
"11",
"46",
"56",
"56",
"1",
"53",
"1064",
"6552",
"9408",
"9408",
"1",
"309",
"35792",
"1293216",
"11270400",
"16942080",
"16942080",
"1",
"2119",
"1673792",
"420909504",
"27206658048",
"335390189568",
"535281401856",
"535281401856",
"1",
"16687",
"103443808"
] | Triangle giving number L(n,k) of normalized k X n Latin rectangles. |
A001010 | [
"1",
"2",
"2",
"4",
"6",
"8",
"18",
"20",
"56",
"48",
"178",
"132",
"574",
"348",
"1870",
"1008",
"6144",
"2812",
"20314",
"8420",
"67534",
"24396",
"225472",
"74756",
"755672",
"222556",
"2540406",
"693692",
"8564622",
"2107748",
"28941258",
"6656376",
"98011464",
"20548932"
] | Number of symmetric foldings of a strip of n stamps. |
A001011 | [
"1",
"1",
"2",
"5",
"14",
"38",
"120",
"353",
"1148",
"3527",
"11622",
"36627",
"121622",
"389560",
"1301140",
"4215748",
"14146335",
"46235800",
"155741571",
"512559195",
"1732007938",
"5732533570",
"19423092113",
"64590165281",
"219349187968",
"732358098471",
"2492051377341",
"8349072895553",
"28459491475593"
] | Number of ways to fold a strip of n blank stamps. |
A001012 | [
"1",
"1",
"1",
"1",
"2",
"2",
"22",
"563",
"1676257"
] | Erroneous version of A040082. |
A001013 | [
"1",
"2",
"4",
"6",
"8",
"12",
"16",
"24",
"32",
"36",
"48",
"64",
"72",
"96",
"120",
"128",
"144",
"192",
"216",
"240",
"256",
"288",
"384",
"432",
"480",
"512",
"576",
"720",
"768",
"864",
"960",
"1024",
"1152",
"1296",
"1440",
"1536",
"1728",
"1920",
"2048",
"2304",
"2592",
"2880",
"3072",
"3456",
"3840",
"4096",
"4320",
"4608",
"5040",
"5184",
"5760"
] | Jordan-Polya numbers: products of factorial numbers A000142. |
A001014 | [
"0",
"1",
"64",
"729",
"4096",
"15625",
"46656",
"117649",
"262144",
"531441",
"1000000",
"1771561",
"2985984",
"4826809",
"7529536",
"11390625",
"16777216",
"24137569",
"34012224",
"47045881",
"64000000",
"85766121",
"113379904",
"148035889",
"191102976",
"244140625",
"308915776",
"387420489",
"481890304"
] | Sixth powers: a(n) = n^6. |
A001015 | [
"0",
"1",
"128",
"2187",
"16384",
"78125",
"279936",
"823543",
"2097152",
"4782969",
"10000000",
"19487171",
"35831808",
"62748517",
"105413504",
"170859375",
"268435456",
"410338673",
"612220032",
"893871739",
"1280000000",
"1801088541",
"2494357888",
"3404825447",
"4586471424",
"6103515625",
"8031810176"
] | Seventh powers: a(n) = n^7. |
A001016 | [
"0",
"1",
"256",
"6561",
"65536",
"390625",
"1679616",
"5764801",
"16777216",
"43046721",
"100000000",
"214358881",
"429981696",
"815730721",
"1475789056",
"2562890625",
"4294967296",
"6975757441",
"11019960576",
"16983563041",
"25600000000",
"37822859361",
"54875873536",
"78310985281",
"110075314176"
] | Eighth powers: a(n) = n^8. |
A001017 | [
"0",
"1",
"512",
"19683",
"262144",
"1953125",
"10077696",
"40353607",
"134217728",
"387420489",
"1000000000",
"2357947691",
"5159780352",
"10604499373",
"20661046784",
"38443359375",
"68719476736",
"118587876497",
"198359290368",
"322687697779",
"512000000000",
"794280046581",
"1207269217792"
] | Ninth powers: a(n) = n^9. |
A001018 | [
"1",
"8",
"64",
"512",
"4096",
"32768",
"262144",
"2097152",
"16777216",
"134217728",
"1073741824",
"8589934592",
"68719476736",
"549755813888",
"4398046511104",
"35184372088832",
"281474976710656",
"2251799813685248",
"18014398509481984",
"144115188075855872",
"1152921504606846976",
"9223372036854775808",
"73786976294838206464",
"590295810358705651712",
"4722366482869645213696"
] | Powers of 8: a(n) = 8^n. |
A001019 | [
"1",
"9",
"81",
"729",
"6561",
"59049",
"531441",
"4782969",
"43046721",
"387420489",
"3486784401",
"31381059609",
"282429536481",
"2541865828329",
"22876792454961",
"205891132094649",
"1853020188851841",
"16677181699666569",
"150094635296999121",
"1350851717672992089",
"12157665459056928801"
] | Powers of 9: a(n) = 9^n. |
A001020 | [
"1",
"11",
"121",
"1331",
"14641",
"161051",
"1771561",
"19487171",
"214358881",
"2357947691",
"25937424601",
"285311670611",
"3138428376721",
"34522712143931",
"379749833583241",
"4177248169415651",
"45949729863572161",
"505447028499293771",
"5559917313492231481",
"61159090448414546291"
] | Powers of 11: a(n) = 11^n. |
A001021 | [
"1",
"12",
"144",
"1728",
"20736",
"248832",
"2985984",
"35831808",
"429981696",
"5159780352",
"61917364224",
"743008370688",
"8916100448256",
"106993205379072",
"1283918464548864",
"15407021574586368",
"184884258895036416",
"2218611106740436992"
] | Powers of 12. |
A001022 | [
"1",
"13",
"169",
"2197",
"28561",
"371293",
"4826809",
"62748517",
"815730721",
"10604499373",
"137858491849",
"1792160394037",
"23298085122481",
"302875106592253",
"3937376385699289",
"51185893014090757",
"665416609183179841",
"8650415919381337933",
"112455406951957393129",
"1461920290375446110677",
"19004963774880799438801"
] | Powers of 13. |
A001023 | [
"1",
"14",
"196",
"2744",
"38416",
"537824",
"7529536",
"105413504",
"1475789056",
"20661046784",
"289254654976",
"4049565169664",
"56693912375296",
"793714773254144",
"11112006825558016",
"155568095557812224",
"2177953337809371136",
"30491346729331195904",
"426878854210636742656",
"5976303958948914397184",
"83668255425284801560576"
] | Powers of 14. |
A001024 | [
"1",
"15",
"225",
"3375",
"50625",
"759375",
"11390625",
"170859375",
"2562890625",
"38443359375",
"576650390625",
"8649755859375",
"129746337890625",
"1946195068359375",
"29192926025390625",
"437893890380859375",
"6568408355712890625",
"98526125335693359375",
"1477891880035400390625",
"22168378200531005859375",
"332525673007965087890625"
] | Powers of 15. |
A001025 | [
"1",
"16",
"256",
"4096",
"65536",
"1048576",
"16777216",
"268435456",
"4294967296",
"68719476736",
"1099511627776",
"17592186044416",
"281474976710656",
"4503599627370496",
"72057594037927936",
"1152921504606846976",
"18446744073709551616",
"295147905179352825856",
"4722366482869645213696",
"75557863725914323419136",
"1208925819614629174706176"
] | Powers of 16: a(n) = 16^n. |
A001026 | [
"1",
"17",
"289",
"4913",
"83521",
"1419857",
"24137569",
"410338673",
"6975757441",
"118587876497",
"2015993900449",
"34271896307633",
"582622237229761",
"9904578032905937",
"168377826559400929",
"2862423051509815793",
"48661191875666868481",
"827240261886336764177",
"14063084452067724991009",
"239072435685151324847153",
"4064231406647572522401601"
] | Powers of 17. |
A001027 | [
"1",
"18",
"324",
"5832",
"104976",
"1889568",
"34012224",
"612220032",
"11019960576",
"198359290368",
"3570467226624",
"64268410079232",
"1156831381426176",
"20822964865671168",
"374813367582081024",
"6746640616477458432",
"121439531096594251776",
"2185911559738696531968",
"39346408075296537575424",
"708235345355337676357632",
"12748236216396078174437376"
] | Powers of 18. |
A001028 | [
"1",
"1",
"2",
"7",
"37",
"269",
"2535",
"29738",
"421790",
"7076459",
"138061343",
"3089950076",
"78454715107",
"2238947459974",
"71253947372202",
"2511742808382105",
"97495087989736907",
"4145502184671892500",
"192200099033324115855",
"9676409879981926733908",
"527029533717566423156698"
] | E.g.f. satisfies A'(x) = 1 + A(A(x)), A(0)=0. |
A001029 | [
"1",
"19",
"361",
"6859",
"130321",
"2476099",
"47045881",
"893871739",
"16983563041",
"322687697779",
"6131066257801",
"116490258898219",
"2213314919066161",
"42052983462257059",
"799006685782884121",
"15181127029874798299",
"288441413567621167681",
"5480386857784802185939",
"104127350297911241532841",
"1978419655660313589123979",
"37589973457545958193355601"
] | Powers of 19. |
A001030 | [
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2"
] | Fixed under 1 -> 21, 2 -> 211. |
A001031 | [
"1",
"2",
"2",
"2",
"2",
"2",
"3",
"2",
"3",
"3",
"3",
"4",
"3",
"2",
"4",
"3",
"4",
"4",
"3",
"3",
"5",
"4",
"4",
"6",
"4",
"3",
"6",
"3",
"4",
"7",
"4",
"5",
"6",
"3",
"5",
"7",
"6",
"5",
"7",
"5",
"5",
"9",
"5",
"4",
"10",
"4",
"5",
"7",
"4",
"6",
"9",
"6",
"6",
"9",
"7",
"7",
"11",
"6",
"6",
"12",
"4",
"5",
"10",
"4",
"7",
"10",
"6",
"5",
"9",
"8",
"8",
"11",
"6",
"5",
"13",
"5",
"8",
"11",
"6",
"8",
"10",
"6",
"6",
"14",
"9",
"6",
"12",
"7",
"7",
"15",
"7",
"8",
"13",
"5",
"8",
"12",
"8",
"9"
] | Goldbach conjecture: a(n) = number of decompositions of 2n into sum of two primes (counting 1 as a prime). |
A001032 | [
"1",
"2",
"11",
"23",
"24",
"26",
"33",
"47",
"49",
"50",
"59",
"73",
"74",
"88",
"96",
"97",
"107",
"121",
"122",
"146",
"169",
"177",
"184",
"191",
"193",
"194",
"218",
"239",
"241",
"242",
"249",
"289",
"297",
"299",
"311",
"312",
"313",
"337",
"338",
"347",
"352",
"361",
"362",
"376",
"383",
"393",
"407",
"409",
"431",
"443",
"457",
"458",
"479",
"481",
"491",
"506"
] | Numbers k such that sum of squares of k consecutive integers >= 1 is a square. |
A001033 | [
"1",
"16",
"25",
"33",
"49",
"52",
"64",
"73",
"97",
"100",
"121",
"148",
"169",
"177",
"193",
"196",
"241",
"244",
"249",
"256",
"276",
"289",
"292",
"297",
"313",
"337",
"361",
"388",
"393",
"400",
"409",
"457",
"481",
"484",
"528",
"529",
"537",
"577",
"592",
"625",
"628",
"649",
"673",
"676",
"708",
"724",
"753",
"772",
"784",
"793",
"832",
"841",
"852",
"897",
"913",
"961",
"964",
"976",
"996"
] | Numbers n such that the sum of the squares of n consecutive positive odd numbers x^2 + (x+2)^2 + ... + (x+2n-2)^2 = k^2 for some integer k. The least values of x and k for each n are in A056131 and A056132, respectively. |
A001034 | [
"60",
"168",
"360",
"504",
"660",
"1092",
"2448",
"2520",
"3420",
"4080",
"5616",
"6048",
"6072",
"7800",
"7920",
"9828",
"12180",
"14880",
"20160",
"25308",
"25920",
"29120",
"32736",
"34440",
"39732",
"51888",
"58800",
"62400",
"74412",
"95040",
"102660",
"113460",
"126000",
"150348",
"175560",
"178920"
] | Orders of noncyclic simple groups (without repetition). |
A001035 | [
"1",
"1",
"3",
"19",
"219",
"4231",
"130023",
"6129859",
"431723379",
"44511042511",
"6611065248783",
"1396281677105899",
"414864951055853499",
"171850728381587059351",
"98484324257128207032183",
"77567171020440688353049939",
"83480529785490157813844256579",
"122152541250295322862941281269151",
"241939392597201176602897820148085023"
] | Number of partially ordered sets ("posets") with n labeled elements (or labeled acyclic transitive digraphs). |
A001036 | [
"1",
"2",
"4",
"7",
"13",
"22",
"40",
"70",
"126",
"225",
"411",
"746",
"1376",
"2537",
"4719",
"8799",
"16509",
"31041",
"58635",
"111012",
"210870",
"401427",
"766149",
"1465019",
"2807195",
"5387990",
"10358998",
"19945393",
"38458183",
"74248450",
"143522116",
"277737796",
"538038782",
"1043325197"
] | Partial sums of A001037, omitting A001037(1). |
A001037 | [
"1",
"2",
"1",
"2",
"3",
"6",
"9",
"18",
"30",
"56",
"99",
"186",
"335",
"630",
"1161",
"2182",
"4080",
"7710",
"14532",
"27594",
"52377",
"99858",
"190557",
"364722",
"698870",
"1342176",
"2580795",
"4971008",
"9586395",
"18512790",
"35790267",
"69273666",
"134215680",
"260300986",
"505286415",
"981706806",
"1908866960",
"3714566310",
"7233615333",
"14096302710",
"27487764474"
] | Number of degree-n irreducible polynomials over GF(2); number of n-bead necklaces with beads of 2 colors when turning over is not allowed and with primitive period n; number of binary Lyndon words of length n. |
A001038 | [
"2",
"2",
"10",
"52246",
"2631645209645100680144",
"312242081385925594286511113384607360432260178128338777217975928751832"
] | Invertible Boolean functions with GL(n,2) acting on the domain and range. |
A001039 | [
"3",
"13",
"781",
"137257",
"28531167061",
"25239592216021",
"51702516367896047761",
"109912203092239643840221",
"949112181811268728834319677753",
"91703076898614683377208150526107718802981"
] | a(n) = (p^p-1)/(p-1) where p = prime(n). |
A001040 | [
"0",
"1",
"1",
"3",
"10",
"43",
"225",
"1393",
"9976",
"81201",
"740785",
"7489051",
"83120346",
"1004933203",
"13147251985",
"185066460993",
"2789144166880",
"44811373131073",
"764582487395121",
"13807296146243251",
"263103209266016890",
"5275871481466581051",
"111056404320064218961",
"2448516766522879398193"
] | a(n+1) = n*a(n) + a(n-1) with a(0)=0, a(1)=1. |
A001041 | [
"12",
"24",
"72",
"360",
"2520",
"27720",
"360360",
"6126120",
"116396280",
"2677114440",
"77636318760",
"2406725881560",
"89048857617720",
"3651003162326520",
"156993135980040360",
"7378677391061896920",
"391069901726280536760",
"23073124201850551668840"
] | a(0)=12; thereafter a(n) = 12 times the product of the first n primes. |
A001042 | [
"1",
"2",
"3",
"5",
"16",
"231",
"53105",
"2820087664",
"7952894429824835871",
"63248529811938901240357985099443351745",
"4000376523371723941902615329287219027543200136435757892789536976747706216384"
] | a(n) = a(n-1)^2 - a(n-2)^2. |
A001043 | [
"5",
"8",
"12",
"18",
"24",
"30",
"36",
"42",
"52",
"60",
"68",
"78",
"84",
"90",
"100",
"112",
"120",
"128",
"138",
"144",
"152",
"162",
"172",
"186",
"198",
"204",
"210",
"216",
"222",
"240",
"258",
"268",
"276",
"288",
"300",
"308",
"320",
"330",
"340",
"352",
"360",
"372",
"384",
"390",
"396",
"410",
"434",
"450",
"456",
"462",
"472",
"480",
"492",
"508",
"520"
] | Numbers that are the sum of 2 successive primes. |
A001044 | [
"1",
"1",
"4",
"36",
"576",
"14400",
"518400",
"25401600",
"1625702400",
"131681894400",
"13168189440000",
"1593350922240000",
"229442532802560000",
"38775788043632640000",
"7600054456551997440000",
"1710012252724199424000000",
"437763136697395052544000000",
"126513546505547170185216000000"
] | a(n) = (n!)^2. |
A001045 | [
"0",
"1",
"1",
"3",
"5",
"11",
"21",
"43",
"85",
"171",
"341",
"683",
"1365",
"2731",
"5461",
"10923",
"21845",
"43691",
"87381",
"174763",
"349525",
"699051",
"1398101",
"2796203",
"5592405",
"11184811",
"22369621",
"44739243",
"89478485",
"178956971",
"357913941",
"715827883",
"1431655765",
"2863311531",
"5726623061"
] | Jacobsthal sequence (or Jacobsthal numbers): a(n) = a(n-1) + 2*a(n-2), with a(0) = 0, a(1) = 1; also a(n) = nearest integer to 2^n/3. |
A001046 | [
"1",
"1",
"2",
"7",
"44",
"447",
"6749",
"142176",
"3987677",
"143698548",
"6470422337",
"356016927083",
"23503587609815",
"1833635850492653",
"166884365982441238",
"17524692064006822643",
"2103129932046801158398",
"286043195450428964364771",
"43766712033847678348968361"
] | a(n) = n*(n-1)*a(n-1)/2 + a(n-2), a(0) = a(1) = 1. |
A001047 | [
"0",
"1",
"5",
"19",
"65",
"211",
"665",
"2059",
"6305",
"19171",
"58025",
"175099",
"527345",
"1586131",
"4766585",
"14316139",
"42981185",
"129009091",
"387158345",
"1161737179",
"3485735825",
"10458256051",
"31376865305",
"94134790219",
"282412759265",
"847255055011",
"2541798719465",
"7625463267259",
"22876524019505"
] | a(n) = 3^n - 2^n. |
A001048 | [
"2",
"3",
"8",
"30",
"144",
"840",
"5760",
"45360",
"403200",
"3991680",
"43545600",
"518918400",
"6706022400",
"93405312000",
"1394852659200",
"22230464256000",
"376610217984000",
"6758061133824000",
"128047474114560000",
"2554547108585472000",
"53523844179886080000",
"1175091669949317120000"
] | a(n) = n! + (n-1)!. |
A001049 | [
"8",
"14",
"23",
"28",
"33",
"42",
"51",
"59",
"68",
"77",
"86",
"96",
"103",
"110",
"116",
"125"
] | Numbered stops in Manhattan on the Lexington Avenue subway. |
A001050 | [
"5",
"4",
"5",
"5",
"5",
"5",
"5",
"9",
"9",
"8",
"8",
"10",
"11",
"11",
"11",
"11",
"11",
"15",
"15",
"14",
"13",
"17",
"18",
"18",
"18",
"18",
"18",
"22",
"22",
"21",
"13",
"17",
"18",
"18",
"18",
"18",
"18",
"22",
"22",
"21",
"13",
"17",
"18",
"18",
"18",
"18",
"18",
"22",
"22",
"21",
"13",
"17",
"18",
"18",
"18",
"18",
"18",
"22",
"22",
"21",
"13",
"17",
"18",
"18",
"18",
"18",
"18"
] | Number of letters in n (in Finnish). |
A001051 | [
"1",
"3",
"1",
"5",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"8",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"10",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"8",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"8",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"7",
"1",
"5",
"1",
"8"
] | Number of subgroups of order n in orthogonal group O(3). |
A001052 | [
"1",
"2",
"3",
"11",
"69",
"701",
"10584",
"222965",
"6253604",
"225352709",
"10147125509",
"558317255704",
"36859086001973",
"2875567025409598",
"261713458398275391",
"27482788698844325653",
"3298196357319717353751",
"448582187384180404435789",
"68636372866136921596029468"
] | a(n) = n*(n-1)*a(n-1)/2 + a(n-2), a(0) = 1, a(1) = 2. |
A001053 | [
"1",
"0",
"1",
"2",
"7",
"30",
"157",
"972",
"6961",
"56660",
"516901",
"5225670",
"57999271",
"701216922",
"9173819257",
"129134686520",
"1946194117057",
"31268240559432",
"533506283627401",
"9634381345852650",
"183586751854827751",
"3681369418442407670",
"77492344539145388821",
"1708512949279640961732"
] | a(n+1) = n*a(n) + a(n-1) with a(0)=1, a(1)=0. |
A001054 | [
"0",
"1",
"-1",
"-2",
"1",
"-3",
"-4",
"11",
"-45",
"-496",
"22319",
"-11070225",
"-247076351776",
"2735190806339469599",
"-675800965841611881515781657825",
"-1848444588685310753420392017318175868503407962176"
] | a(n) = a(n-1)*a(n-2) - 1. |
A001055 | [
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"3",
"2",
"2",
"1",
"4",
"1",
"2",
"2",
"5",
"1",
"4",
"1",
"4",
"2",
"2",
"1",
"7",
"2",
"2",
"3",
"4",
"1",
"5",
"1",
"7",
"2",
"2",
"2",
"9",
"1",
"2",
"2",
"7",
"1",
"5",
"1",
"4",
"4",
"2",
"1",
"12",
"2",
"4",
"2",
"4",
"1",
"7",
"2",
"7",
"2",
"2",
"1",
"11",
"1",
"2",
"4",
"11",
"2",
"5",
"1",
"4",
"2",
"5",
"1",
"16",
"1",
"2",
"4",
"4",
"2",
"5",
"1",
"12",
"5",
"2",
"1",
"11",
"2",
"2",
"2",
"7",
"1",
"11",
"2",
"4",
"2",
"2",
"2",
"19",
"1",
"4",
"4",
"9",
"1",
"5",
"1"
] | The multiplicative partition function: number of ways of factoring n with all factors greater than 1 (a(1) = 1 by convention). |
A001056 | [
"1",
"3",
"4",
"13",
"53",
"690",
"36571",
"25233991",
"922832284862",
"23286741570717144243",
"21489756930695820973683319349467",
"500426416062641238759467086706254193219790764168482",
"10754042042885415070816603338436200915110904821126871858491675028294447933424899095"
] | a(n) = a(n-1)*a(n-2) + 1, a(0) = 1, a(1) = 3. |
A001057 | [
"0",
"1",
"-1",
"2",
"-2",
"3",
"-3",
"4",
"-4",
"5",
"-5",
"6",
"-6",
"7",
"-7",
"8",
"-8",
"9",
"-9",
"10",
"-10",
"11",
"-11",
"12",
"-12",
"13",
"-13",
"14",
"-14",
"15",
"-15",
"16",
"-16",
"17",
"-17",
"18",
"-18",
"19",
"-19",
"20",
"-20",
"21",
"-21",
"22",
"-22",
"23",
"-23",
"24",
"-24",
"25",
"-25",
"26",
"-26",
"27",
"-27",
"28",
"-28",
"29",
"-29",
"30",
"-30",
"31",
"-31"
] | Canonical enumeration of integers: interleaved positive and negative integers with zero prepended. |
A001058 | [
"0",
"2",
"3",
"6",
"7",
"1",
"9",
"4",
"5",
"8",
"22",
"23",
"26",
"27",
"21",
"29",
"24",
"25",
"28",
"20",
"12",
"32",
"33",
"36",
"37",
"31",
"39",
"34",
"35",
"38",
"30",
"13",
"10",
"62",
"63",
"66",
"67",
"61",
"69",
"64",
"65",
"68",
"60",
"16",
"72",
"73",
"76",
"77",
"71",
"79",
"74",
"75",
"78",
"70",
"17",
"92",
"93",
"96",
"97",
"91",
"99",
"94",
"95",
"98",
"90",
"19",
"14",
"42",
"43",
"46",
"47",
"41"
] | 1-digit numbers in reverse alphabetical order, then 2-digit numbers, etc. |
A001059 | [
"1",
"1",
"5",
"59",
"1263",
"42713",
"2094399",
"140434335",
"12340275539",
"1375857855221",
"189751578038547",
"31714568837559539",
"6316261763436325285",
"1477890415844440910325",
"401400487846091289175217",
"125247016772173387008904623",
"44493481073675052201518261955"
] | Number of doubly labeled heap-ordered trees. |
A001060 | [
"2",
"5",
"7",
"12",
"19",
"31",
"50",
"81",
"131",
"212",
"343",
"555",
"898",
"1453",
"2351",
"3804",
"6155",
"9959",
"16114",
"26073",
"42187",
"68260",
"110447",
"178707",
"289154",
"467861",
"757015",
"1224876",
"1981891",
"3206767",
"5188658",
"8395425",
"13584083",
"21979508",
"35563591",
"57543099",
"93106690",
"150649789"
] | a(n) = a(n-1) + a(n-2) with a(0)=2, a(1)=5. Sometimes called the Evangelist Sequence. |
A001061 | [
"8",
"3",
"1",
"5",
"9",
"0",
"6",
"7",
"4",
"2",
"88",
"38",
"58",
"98",
"68",
"78",
"48",
"28",
"18",
"80",
"30",
"83",
"33",
"53",
"93",
"63",
"73",
"43",
"23",
"13",
"81",
"31",
"51",
"91",
"61",
"71",
"41",
"21",
"11",
"85",
"35",
"55",
"95",
"65",
"75",
"45",
"25",
"15",
"50",
"89",
"39",
"59",
"99",
"69",
"79",
"49",
"29",
"19",
"90"
] | 1-, 2-, 3-, ... digit numbers in alphabetical order in German. |
A001062 | [
"5",
"2",
"8",
"9",
"4",
"7",
"6",
"3",
"1",
"0",
"50",
"55",
"52",
"51",
"58",
"59",
"54",
"57",
"56",
"53",
"10",
"18",
"19",
"17",
"12",
"11",
"40",
"45",
"42",
"41",
"48",
"49",
"44",
"47",
"46",
"43",
"14",
"80",
"85",
"82",
"90",
"98",
"99",
"97",
"92",
"88",
"89",
"91",
"94",
"84",
"95",
"96",
"87",
"86",
"93",
"83",
"81",
"15",
"16",
"60",
"70",
"78",
"79",
"77",
"72",
"71",
"74",
"75",
"76",
"73",
"13",
"30"
] | 1-, 2-, 3- ... digit numbers in alphabetical order in French (incorrect version, see A187876 for the correct version). |
A001063 | [
"1",
"1",
"1",
"3",
"15",
"111",
"1131",
"15081",
"253473",
"5220225",
"128886921",
"3749014251",
"126648293391",
"4909623331023",
"216189866951235",
"10718939718977121",
"593865369943409601",
"36520856568972350721",
"2478236630512178688273",
"184588566642520989171795",
"15020141103053997234030351"
] | E.g.f. satisfies A'(x) = A(x/(1-x)). |
A001064 | [
"1",
"1",
"0",
"1",
"1",
"1",
"2",
"3",
"7",
"23",
"164",
"3779",
"619779",
"2342145005",
"1451612289057674",
"3399886472013047316638149",
"4935316984175079105557291745555191750431",
"16779517449593082173916263081219908459297087421776218065830849893"
] | a(n) = a(n-1)*a(n-2) + a(n-3). |
A001065 | [
"0",
"1",
"1",
"3",
"1",
"6",
"1",
"7",
"4",
"8",
"1",
"16",
"1",
"10",
"9",
"15",
"1",
"21",
"1",
"22",
"11",
"14",
"1",
"36",
"6",
"16",
"13",
"28",
"1",
"42",
"1",
"31",
"15",
"20",
"13",
"55",
"1",
"22",
"17",
"50",
"1",
"54",
"1",
"40",
"33",
"26",
"1",
"76",
"8",
"43",
"21",
"46",
"1",
"66",
"17",
"64",
"23",
"32",
"1",
"108",
"1",
"34",
"41",
"63",
"19",
"78",
"1",
"58",
"27",
"74",
"1",
"123",
"1",
"40",
"49",
"64",
"19",
"90",
"1",
"106"
] | Sum of proper divisors (or aliquot parts) of n: sum of divisors of n that are less than n. |
A001066 | [
"3",
"6",
"8",
"10",
"14",
"15",
"16",
"20",
"21",
"24",
"28",
"30",
"35",
"36",
"42",
"45",
"48",
"52",
"55",
"56",
"63",
"66",
"70",
"72",
"78",
"80",
"90",
"91",
"96",
"99",
"104",
"105",
"110",
"120",
"126",
"132",
"133",
"136",
"143",
"153",
"156",
"160",
"168",
"171",
"182",
"190",
"195",
"198",
"210",
"224",
"231",
"240",
"248",
"253",
"255",
"266",
"272",
"276",
"286",
"288",
"300",
"306"
] | Dimensions (sorted, with duplicates removed) of real simple Lie algebras. |
A001067 | [
"1",
"-1",
"1",
"-1",
"1",
"-691",
"1",
"-3617",
"43867",
"-174611",
"77683",
"-236364091",
"657931",
"-3392780147",
"1723168255201",
"-7709321041217",
"151628697551",
"-26315271553053477373",
"154210205991661",
"-261082718496449122051",
"1520097643918070802691",
"-2530297234481911294093"
] | Numerator of Bernoulli(2*n)/(2*n). |
A001068 | [
"0",
"1",
"2",
"3",
"5",
"6",
"7",
"8",
"10",
"11",
"12",
"13",
"15",
"16",
"17",
"18",
"20",
"21",
"22",
"23",
"25",
"26",
"27",
"28",
"30",
"31",
"32",
"33",
"35",
"36",
"37",
"38",
"40",
"41",
"42",
"43",
"45",
"46",
"47",
"48",
"50",
"51",
"52",
"53",
"55",
"56",
"57",
"58",
"60",
"61",
"62",
"63",
"65",
"66",
"67",
"68",
"70",
"71",
"72",
"73",
"75",
"76",
"77",
"78",
"80",
"81",
"82",
"83",
"85",
"86",
"87",
"88"
] | a(n) = floor(5*n/4), numbers that are congruent to {0, 1, 2, 3} mod 5. |
A001069 | [
"0",
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3"
] | Log2*(n) (version 2): take log_2 of n this many times to get a number < 2. |
A001070 | [
"0",
"0",
"1",
"2",
"36",
"4704",
"8501760",
"267533746176",
"188809932117639168",
"3790336726450693283512320"
] | Number of normalized Latin squares with second row even. |
A001071 | [
"2",
"1",
"4",
"10",
"36",
"108",
"392",
"1363",
"5000",
"18223",
"67792",
"252938",
"952540",
"3602478",
"13699554",
"52296713",
"200406388",
"770411478",
"2970401696",
"11482395526",
"44491881090",
"172766311857",
"672186650116"
] | Number of one-sided chessboard polyominoes with n cells. |
A001072 | [
"1",
"1",
"3",
"4",
"11",
"23",
"63",
"159",
"459",
"1331",
"4083",
"12750"
] | Number of minimally 2-edge-connected non-isomorphic graphs with n nodes. |
A001073 | [
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"1",
"0",
"1",
"2",
"1",
"4",
"1",
"6",
"1",
"8",
"2",
"0",
"2",
"2",
"2",
"4",
"2",
"6",
"2",
"8",
"3",
"0",
"3",
"2",
"3",
"4",
"3",
"6",
"3",
"8",
"4",
"0",
"4",
"2",
"4",
"4",
"4",
"6",
"4",
"8",
"5",
"0",
"5",
"2",
"5",
"4",
"5",
"6",
"5",
"8",
"6",
"0",
"6",
"2",
"6",
"4",
"6",
"6",
"6",
"8",
"7",
"0",
"7",
"2",
"7",
"4",
"7",
"6",
"7",
"8",
"8",
"0",
"8",
"2",
"8",
"4",
"8",
"6",
"8",
"8",
"9",
"0",
"9",
"2",
"9",
"4",
"9",
"6",
"9",
"8",
"1",
"0",
"0",
"1",
"0",
"3"
] | Label a 1-cm ruler with digits 1 cm wide. |
A001074 | [
"1",
"4",
"7",
"8",
"9",
"13",
"19",
"25",
"27",
"28",
"31",
"32",
"36",
"37",
"43",
"49",
"52",
"56",
"61",
"63",
"64",
"67",
"72",
"73",
"76",
"79",
"91",
"97",
"100",
"103",
"104",
"108",
"109",
"117",
"121",
"124",
"125",
"127",
"133",
"139",
"148",
"151",
"152",
"157",
"163",
"169",
"171",
"172",
"175",
"181",
"189",
"193",
"196",
"199",
"200",
"211",
"216",
"217"
] | Numbers m such that Sum_{k=0..m-1} exp(2*Pi*i*k^3/m) != 0. |
A001075 | [
"1",
"2",
"7",
"26",
"97",
"362",
"1351",
"5042",
"18817",
"70226",
"262087",
"978122",
"3650401",
"13623482",
"50843527",
"189750626",
"708158977",
"2642885282",
"9863382151",
"36810643322",
"137379191137",
"512706121226",
"1913445293767",
"7141075053842",
"26650854921601",
"99462344632562",
"371198523608647"
] | a(0) = 1, a(1) = 2, a(n) = 4*a(n-1) - a(n-2). |
A001076 | [
"0",
"1",
"4",
"17",
"72",
"305",
"1292",
"5473",
"23184",
"98209",
"416020",
"1762289",
"7465176",
"31622993",
"133957148",
"567451585",
"2403763488",
"10182505537",
"43133785636",
"182717648081",
"774004377960",
"3278735159921",
"13888945017644",
"58834515230497",
"249227005939632",
"1055742538989025"
] | Denominators of continued fraction convergents to sqrt(5). |
A001077 | [
"1",
"2",
"9",
"38",
"161",
"682",
"2889",
"12238",
"51841",
"219602",
"930249",
"3940598",
"16692641",
"70711162",
"299537289",
"1268860318",
"5374978561",
"22768774562",
"96450076809",
"408569081798",
"1730726404001",
"7331474697802",
"31056625195209"
] | Numerators of continued fraction convergents to sqrt(5). |
A001078 | [
"0",
"2",
"20",
"198",
"1960",
"19402",
"192060",
"1901198",
"18819920",
"186298002",
"1844160100",
"18255302998",
"180708869880",
"1788833395802",
"17707625088140",
"175287417485598",
"1735166549767840",
"17176378080192802",
"170028614252160180",
"1683109764441408998"
] | a(n) = 10*a(n-1) - a(n-2) with a(0) = 0, a(1) = 2. |
A001079 | [
"1",
"5",
"49",
"485",
"4801",
"47525",
"470449",
"4656965",
"46099201",
"456335045",
"4517251249",
"44716177445",
"442644523201",
"4381729054565",
"43374646022449",
"429364731169925",
"4250272665676801",
"42073361925598085",
"416483346590304049"
] | a(n) = 10*a(n-1) - a(n-2); a(0) = 1, a(1) = 5. |
A001080 | [
"0",
"3",
"48",
"765",
"12192",
"194307",
"3096720",
"49353213",
"786554688",
"12535521795",
"199781794032",
"3183973182717",
"50743789129440",
"808716652888323",
"12888722657083728",
"205410845860451325",
"3273684811110137472",
"52173546131901748227",
"831503053299317834160"
] | a(n) = 16*a(n-1) - a(n-2) with a(0) = 0, a(1) = 3. |
A001081 | [
"1",
"8",
"127",
"2024",
"32257",
"514088",
"8193151",
"130576328",
"2081028097",
"33165873224",
"528572943487",
"8424001222568",
"134255446617601",
"2139663144659048",
"34100354867927167",
"543466014742175624",
"8661355881006882817"
] | a(n) = 16*a(n-1) - a(n-2). |
A001082 | [
"0",
"1",
"5",
"8",
"16",
"21",
"33",
"40",
"56",
"65",
"85",
"96",
"120",
"133",
"161",
"176",
"208",
"225",
"261",
"280",
"320",
"341",
"385",
"408",
"456",
"481",
"533",
"560",
"616",
"645",
"705",
"736",
"800",
"833",
"901",
"936",
"1008",
"1045",
"1121",
"1160",
"1240",
"1281",
"1365",
"1408",
"1496",
"1541",
"1633",
"1680",
"1776",
"1825",
"1925",
"1976"
] | Generalized octagonal numbers: k*(3*k-2), k=0, +- 1, +- 2, +-3, ... |
A001083 | [
"1",
"2",
"2",
"3",
"5",
"7",
"10",
"15",
"23",
"34",
"50",
"75",
"113",
"170",
"255",
"382",
"574",
"863",
"1293",
"1937",
"2903",
"4353",
"6526",
"9789",
"14688",
"22029",
"33051",
"49577",
"74379",
"111580",
"167388",
"251090",
"376631",
"564932",
"847376",
"1271059",
"1906628",
"2859984"
] | Length of one version of Kolakoski sequence {A000002(i)} at n-th growth stage. |
A001084 | [
"0",
"3",
"60",
"1197",
"23880",
"476403",
"9504180",
"189607197",
"3782639760",
"75463188003",
"1505481120300",
"30034159217997",
"599177703239640",
"11953519905574803",
"238471220408256420",
"4757470888259553597",
"94910946544782815520",
"1893461460007396756803",
"37774318253603152320540"
] | a(n) = 20*a(n-1) - a(n-2) with a(0) = 0, a(1) = 3. |
A001085 | [
"1",
"10",
"199",
"3970",
"79201",
"1580050",
"31521799",
"628855930",
"12545596801",
"250283080090",
"4993116004999",
"99612037019890",
"1987247624392801",
"39645340450836130",
"790919561392329799",
"15778745887395759850",
"314783998186522867201",
"6279901217843061584170"
] | a(n) = 20*a(n-1) - a(n-2). |
A001086 | [
"0",
"3",
"4",
"1",
"1",
"5",
"2",
"168",
"46793",
"1",
"7",
"1",
"51",
"1",
"7",
"1",
"6",
"2",
"1",
"1",
"1",
"10",
"1",
"2",
"10",
"1",
"2",
"11",
"16",
"3",
"1",
"1",
"1",
"1",
"4",
"1",
"1",
"3",
"1",
"1",
"5",
"5",
"25",
"1",
"34",
"10",
"2",
"18",
"10",
"585",
"1",
"2",
"3",
"1",
"1",
"440",
"1",
"1",
"7",
"2",
"1",
"4",
"6",
"16",
"5",
"2",
"3",
"2",
"5",
"1",
"1",
"77",
"1"
] | Continued fraction associated with y(y+1) = x(x^2 -1). |
A001087 | [
"1",
"2",
"3",
"4",
"5",
"7",
"11",
"12",
"13",
"18",
"26",
"31",
"49",
"62",
"80",
"81",
"82",
"101",
"126",
"167",
"215",
"295",
"417",
"436",
"602",
"887",
"1371",
"1454",
"2332",
"2479",
"2645",
"2646"
] | Related to S(n), the number of self-dual monotone Boolean functions of n variables (A001206): 2^n-th term is S(n). |
A001088 | [
"1",
"1",
"2",
"4",
"16",
"32",
"192",
"768",
"4608",
"18432",
"184320",
"737280",
"8847360",
"53084160",
"424673280",
"3397386240",
"54358179840",
"326149079040",
"5870683422720",
"46965467381760",
"563585608581120",
"5635856085811200",
"123988833887846400",
"991910671102771200",
"19838213422055424000"
] | Product of totient function: a(n) = Product_{k=1..n} phi(k) (cf. A000010). |
A001089 | [
"0",
"0",
"0",
"0",
"3",
"24",
"133",
"635",
"2807",
"11864",
"48756",
"196707",
"783750",
"3095708",
"12152855",
"47500635",
"185082495",
"719559600",
"2793121080",
"10830450780",
"41965864794",
"162539516448",
"629399492330",
"2437072038302",
"9437097796918"
] | Number of permutations of [n] containing exactly 2 increasing subsequences of length 3. |
A001090 | [
"0",
"1",
"8",
"63",
"496",
"3905",
"30744",
"242047",
"1905632",
"15003009",
"118118440",
"929944511",
"7321437648",
"57641556673",
"453811015736",
"3572846569215",
"28128961537984",
"221458845734657",
"1743541804339272",
"13726875588979519",
"108071462907496880",
"850844827670995521",
"6698687158460467288"
] | a(n) = 8*a(n-1) - a(n-2); a(0) = 0, a(1) = 1. |
A001091 | [
"1",
"4",
"31",
"244",
"1921",
"15124",
"119071",
"937444",
"7380481",
"58106404",
"457470751",
"3601659604",
"28355806081",
"223244789044",
"1757602506271",
"13837575261124",
"108942999582721",
"857706421400644",
"6752708371622431",
"53163960551578804"
] | a(n) = 8*a(n-1) - a(n-2); a(0) = 1, a(1) = 4. |
A001092 | [
"1",
"2",
"3",
"4",
"5",
"7",
"9",
"11",
"13",
"17",
"19",
"23",
"25",
"27",
"29",
"31",
"41",
"43",
"47",
"49",
"59",
"61",
"71",
"73",
"79",
"81",
"83",
"101",
"103",
"107",
"109",
"125",
"127",
"137",
"139",
"149",
"151",
"167",
"169",
"179",
"181",
"191",
"193",
"197",
"199",
"227",
"229",
"239",
"241",
"243",
"269",
"271",
"281",
"283",
"311",
"313",
"347",
"349",
"359"
] | Union of all numbers {p, q} where p and q are both primes or powers of primes and q = p+2. |
A001093 | [
"0",
"1",
"2",
"9",
"28",
"65",
"126",
"217",
"344",
"513",
"730",
"1001",
"1332",
"1729",
"2198",
"2745",
"3376",
"4097",
"4914",
"5833",
"6860",
"8001",
"9262",
"10649",
"12168",
"13825",
"15626",
"17577",
"19684",
"21953",
"24390",
"27001",
"29792",
"32769",
"35938",
"39305",
"42876",
"46657",
"50654",
"54873",
"59320"
] | a(n) = n^3 + 1. |
A001094 | [
"0",
"1",
"2",
"3",
"28",
"125",
"366",
"847",
"1688",
"3033",
"5050",
"7931",
"11892",
"17173",
"24038",
"32775",
"43696",
"57137",
"73458",
"93043",
"116300",
"143661",
"175582",
"212543",
"255048",
"303625",
"358826",
"421227",
"491428",
"570053",
"657750",
"755191",
"863072",
"982113",
"1113058"
] | a(n) = n + n*(n-1)*(n-2)*(n-3). |
A001095 | [
"0",
"1",
"2",
"3",
"4",
"125",
"726",
"2527",
"6728",
"15129",
"30250",
"55451",
"95052",
"154453",
"240254",
"360375",
"524176",
"742577",
"1028178",
"1395379",
"1860500",
"2441901",
"3160102",
"4037903",
"5100504",
"6375625",
"7893626",
"9687627",
"11793628",
"14250629",
"17100750",
"20389351"
] | a(n) = n + n*(n-1)*(n-2)*(n-3)*(n-4). |
A001096 | [
"0",
"1",
"2",
"3",
"4",
"5",
"726",
"5047",
"20168",
"60489",
"151210",
"332651",
"665292",
"1235533",
"2162174",
"3603615",
"5765776",
"8910737",
"13366098",
"19535059",
"27907220",
"39070101",
"53721382",
"72681863",
"96909144",
"127512025",
"165765626",
"213127227",
"271252828",
"342014429"
] | a(n) = n + n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5). |
A001097 | [
"3",
"5",
"7",
"11",
"13",
"17",
"19",
"29",
"31",
"41",
"43",
"59",
"61",
"71",
"73",
"101",
"103",
"107",
"109",
"137",
"139",
"149",
"151",
"179",
"181",
"191",
"193",
"197",
"199",
"227",
"229",
"239",
"241",
"269",
"271",
"281",
"283",
"311",
"313",
"347",
"349",
"419",
"421",
"431",
"433",
"461",
"463",
"521",
"523",
"569",
"571",
"599",
"601",
"617",
"619",
"641",
"643"
] | Twin primes. |
A001098 | [
"1",
"10",
"10100",
"100111011101000",
"101101100001100111010010100000100111001010010000"
] | Multiply previous term by 2 and write in binary. |
A001099 | [
"1",
"3",
"24",
"232",
"2893",
"43763",
"779780",
"15997436",
"371423053",
"9628576947",
"275683093664",
"8640417354592",
"294234689237661",
"10817772136320355",
"427076118244539020",
"18019667955465012596",
"809220593930871751581",
"38537187481365665823843",
"1939882468178947923300136"
] | a(n) = n^n - a(n-1), with a(1) = 1. |
A001100 | [
"1",
"0",
"2",
"0",
"4",
"2",
"2",
"10",
"10",
"2",
"14",
"40",
"48",
"16",
"2",
"90",
"230",
"256",
"120",
"22",
"2",
"646",
"1580",
"1670",
"888",
"226",
"28",
"2",
"5242",
"12434",
"12846",
"7198",
"2198",
"366",
"34",
"2",
"47622",
"110320",
"112820",
"64968",
"22120",
"4448",
"540",
"40",
"2",
"479306",
"1090270",
"1108612",
"650644",
"236968",
"54304",
"7900",
"748",
"46",
"2"
] | Triangle read by rows: T(n,k) = number of permutations of length n with exactly k rising or falling successions, for n >= 1, 0 <= k <= n-1. |
Subsets and Splits