a-number
stringlengths 7
7
| sequence
sequencelengths 1
377
| description
stringlengths 3
852
|
---|---|---|
A001201 | [
"1",
"1",
"30",
"840",
"1197504000",
"60281712691200",
"1348410350618155344199680000"
] | Number of Steiner triple systems (STS's) on 6n+1 or 6n+3 elements. |
A001202 | [
"0",
"1",
"10",
"2",
"100",
"11",
"20",
"3",
"1000",
"101",
"110",
"12",
"200",
"21",
"30",
"4",
"10000",
"1001",
"1010",
"102",
"1100",
"111",
"120",
"13",
"2000",
"201",
"210",
"22",
"300",
"31",
"40",
"5",
"100000",
"10001",
"10010",
"1002",
"10100",
"1011",
"1020",
"103",
"11000",
"1101",
"1110",
"112",
"1200",
"121",
"130",
"14",
"20000",
"2001",
"2010"
] | a(1)=0, a(2n) = a(n)+1, a(2n+1) = 10*a(n+1). |
A001203 | [
"3",
"7",
"15",
"1",
"292",
"1",
"1",
"1",
"2",
"1",
"3",
"1",
"14",
"2",
"1",
"1",
"2",
"2",
"2",
"2",
"1",
"84",
"2",
"1",
"1",
"15",
"3",
"13",
"1",
"4",
"2",
"6",
"6",
"99",
"1",
"2",
"2",
"6",
"3",
"5",
"1",
"1",
"6",
"8",
"1",
"7",
"1",
"2",
"3",
"7",
"1",
"2",
"1",
"1",
"12",
"1",
"1",
"1",
"3",
"1",
"1",
"8",
"1",
"1",
"2",
"1",
"6",
"1",
"1",
"5",
"2",
"2",
"3",
"1",
"2",
"4",
"4",
"16",
"1",
"161",
"45",
"1",
"22",
"1",
"2",
"2",
"1",
"4",
"1",
"2",
"24",
"1",
"2",
"1",
"3",
"1",
"2",
"1"
] | Simple continued fraction expansion of Pi. |
A001204 | [
"7",
"2",
"1",
"1",
"3",
"18",
"5",
"1",
"1",
"6",
"30",
"8",
"1",
"1",
"9",
"42",
"11",
"1",
"1",
"12",
"54",
"14",
"1",
"1",
"15",
"66",
"17",
"1",
"1",
"18",
"78",
"20",
"1",
"1",
"21",
"90",
"23",
"1",
"1",
"24",
"102",
"26",
"1",
"1",
"27",
"114",
"29",
"1",
"1",
"30",
"126",
"32",
"1",
"1",
"33",
"138",
"35",
"1",
"1",
"36",
"150",
"38",
"1",
"1",
"39",
"162",
"41",
"1",
"1",
"42",
"174",
"44",
"1",
"1",
"45",
"186",
"47",
"1",
"1"
] | Continued fraction for e^2. |
A001205 | [
"1",
"0",
"0",
"1",
"3",
"12",
"70",
"465",
"3507",
"30016",
"286884",
"3026655",
"34944085",
"438263364",
"5933502822",
"86248951243",
"1339751921865",
"22148051088480",
"388246725873208",
"7193423109763089",
"140462355821628771",
"2883013994348484940"
] | Number of clouds with n points; number of undirected 2-regular labeled graphs; or number of n X n symmetric matrices with (0,1) entries, trace 0 and all row sums 2. |
A001206 | [
"0",
"1",
"2",
"4",
"12",
"81",
"2646",
"1422564",
"229809982112",
"423295099074735261880"
] | Number of self-dual monotone Boolean functions of n variables. |
A001207 | [
"1",
"3",
"11",
"44",
"186",
"814",
"3652",
"16689",
"77359",
"362671",
"1716033",
"8182213",
"39267086",
"189492795",
"918837374",
"4474080844",
"21866153748",
"107217298977",
"527266673134",
"2599804551168",
"12849503756579",
"63646233127758",
"315876691291677",
"1570540515980274",
"7821755377244303",
"39014584984477092",
"194880246951838595",
"974725768600891269",
"4881251640514912341",
"24472502362094874818",
"122826412768568196148",
"617080993446201431307",
"3103152024451536273288",
"15618892303340118758816",
"78679501136505611375745"
] | Number of fixed hexagonal polyominoes with n cells. |
A001208 | [
"3",
"8",
"15",
"26",
"35",
"52",
"69",
"89",
"112",
"146",
"172",
"212",
"259",
"302",
"354",
"418",
"476",
"548",
"633",
"714",
"805",
"902",
"1012",
"1127",
"1254",
"1382",
"1524",
"1678",
"1841",
"2010",
"2188",
"2382",
"2584",
"2801",
"3020",
"3256",
"3508",
"3772",
"4043",
"4326",
"4628",
"4941",
"5272",
"5606",
"5960",
"6334",
"6723",
"7120"
] | a(n) = solution to the postage stamp problem with 3 denominations and n stamps. |
A001209 | [
"4",
"12",
"24",
"44",
"71",
"114",
"165",
"234",
"326",
"427",
"547",
"708",
"873",
"1094",
"1383",
"1650",
"1935",
"2304",
"2782",
"3324",
"3812",
"4368",
"5130",
"5892",
"6745",
"7880",
"8913",
"9919",
"11081",
"12376",
"13932",
"15657",
"17242",
"18892",
"21061",
"23445",
"25553",
"27978",
"31347",
"33981",
"36806",
"39914",
"43592"
] | a(n) is the solution to the postage stamp problem with 4 denominations and n stamps. |
A001210 | [
"5",
"16",
"36",
"70",
"126",
"216",
"345",
"512",
"797",
"1055",
"1475",
"2047",
"2659",
"3403",
"4422",
"5629",
"6865",
"8669",
"10835",
"12903",
"15785",
"18801",
"22456",
"26469",
"31108",
"36949",
"42744",
"49436",
"57033",
"66771",
"75558",
"86303",
"96852",
"110253",
"123954",
"140688",
"158389",
"178811",
"197293",
"223580"
] | a(n) is the solution to the postage stamp problem with 5 denominations and n stamps. |
A001211 | [
"6",
"20",
"52",
"108",
"211",
"388",
"664",
"1045",
"1617",
"2510",
"3607",
"5118",
"7066",
"9748",
"12793",
"17061",
"22342",
"28874",
"36560",
"45745",
"57814",
"72997",
"87555",
"106888",
"129783"
] | a(n) is the solution to the postage stamp problem with 6 denominations and n stamps. |
A001212 | [
"2",
"4",
"8",
"12",
"16",
"20",
"26",
"32",
"40",
"46",
"54",
"64",
"72",
"80",
"92",
"104",
"116",
"128",
"140",
"152",
"164",
"180",
"196",
"212"
] | a(n) = solution to the postage stamp problem with n denominations and 2 stamps. |
A001213 | [
"3",
"7",
"15",
"24",
"36",
"52",
"70",
"93",
"121",
"154",
"186",
"225",
"271",
"323",
"385",
"450",
"515",
"606",
"684",
"788",
"865",
"977",
"1091",
"1201",
"1361"
] | a(n) is the solution to the postage stamp problem with n denominations and 3 stamps. |
A001214 | [
"4",
"10",
"26",
"44",
"70",
"108",
"162",
"228",
"310",
"422",
"550",
"700",
"878",
"1079",
"1344",
"1606",
"1944",
"2337",
"2766",
"3195",
"3668",
"4251",
"4923",
"5631",
"6429"
] | a(n) is the solution to the postage stamp problem with n denominations and 4 stamps. |
A001215 | [
"5",
"14",
"35",
"71",
"126",
"211",
"336",
"524",
"726",
"1016",
"1393",
"1871",
"2494",
"3196",
"4063",
"5113",
"6511",
"7949",
"9865",
"11589"
] | a(n) is the solution to the postage stamp problem with n denominations and 5 stamps. |
A001216 | [
"6",
"18",
"52",
"114",
"216",
"388",
"638",
"1007",
"1545",
"2287"
] | a(n) = solution to the postage stamp problem with n denominations and 6 stamps. |
A001217 | [
"1",
"2",
"4",
"6",
"8",
"12",
"24",
"48",
"120",
"192",
"384",
"720",
"1152",
"1920",
"3840",
"5040",
"23040",
"40320",
"46080",
"51840",
"322560",
"362880",
"645120",
"2903040",
"3628800",
"5160960",
"10321920",
"39916800",
"92897280",
"185794560",
"479001600",
"696729600",
"1857945600",
"3715891200"
] | Sorted list of orders of Weyl groups of types A_n, B_n, D_n, E_n, F_4, G_2. |
A001218 | [
"1",
"3",
"9",
"27",
"81",
"43",
"29",
"87",
"61",
"83",
"49",
"47",
"41",
"23",
"69",
"7",
"21",
"63",
"89",
"67",
"1",
"3",
"9",
"27",
"81",
"43",
"29",
"87",
"61",
"83",
"49",
"47",
"41",
"23",
"69",
"7",
"21",
"63",
"89",
"67",
"1",
"3",
"9",
"27",
"81",
"43",
"29",
"87",
"61",
"83",
"49",
"47",
"41",
"23",
"69",
"7",
"21",
"63",
"89",
"67"
] | a(n) = 3^n mod 100. |
A001219 | [
"0",
"6",
"120",
"210",
"990",
"185136",
"258474216"
] | Triangular numbers of form a(a+1)(a+2). |
A001220 | [
"1093",
"3511"
] | Wieferich primes: primes p such that p^2 divides 2^(p-1) - 1. |
A001221 | [
"0",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"2",
"1",
"1",
"2",
"1",
"2",
"2",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"3",
"1",
"1",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"1",
"3",
"1",
"2",
"2",
"2",
"1",
"2",
"1",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"1",
"3",
"1",
"2",
"2",
"1",
"2",
"3",
"1",
"2",
"2",
"3",
"1",
"2",
"1",
"2",
"2",
"2",
"2",
"3",
"1",
"2",
"1",
"2",
"1",
"3",
"2",
"2",
"2",
"2",
"1",
"3",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"1",
"3",
"1",
"2",
"3",
"2",
"1",
"2",
"1",
"3",
"2"
] | Number of distinct primes dividing n (also called omega(n)). |
A001222 | [
"0",
"1",
"1",
"2",
"1",
"2",
"1",
"3",
"2",
"2",
"1",
"3",
"1",
"2",
"2",
"4",
"1",
"3",
"1",
"3",
"2",
"2",
"1",
"4",
"2",
"2",
"3",
"3",
"1",
"3",
"1",
"5",
"2",
"2",
"2",
"4",
"1",
"2",
"2",
"4",
"1",
"3",
"1",
"3",
"3",
"2",
"1",
"5",
"2",
"3",
"2",
"3",
"1",
"4",
"2",
"4",
"2",
"2",
"1",
"4",
"1",
"2",
"3",
"6",
"2",
"3",
"1",
"3",
"2",
"3",
"1",
"5",
"1",
"2",
"3",
"3",
"2",
"3",
"1",
"5",
"4",
"2",
"1",
"4",
"2",
"2",
"2",
"4",
"1",
"4",
"2",
"3",
"2",
"2",
"2",
"6",
"1",
"3",
"3",
"4",
"1",
"3",
"1",
"4",
"3",
"2",
"1",
"5",
"1",
"3",
"2"
] | Number of prime divisors of n counted with multiplicity (also called big omega of n, bigomega(n) or Omega(n)). |
A001223 | [
"1",
"2",
"2",
"4",
"2",
"4",
"2",
"4",
"6",
"2",
"6",
"4",
"2",
"4",
"6",
"6",
"2",
"6",
"4",
"2",
"6",
"4",
"6",
"8",
"4",
"2",
"4",
"2",
"4",
"14",
"4",
"6",
"2",
"10",
"2",
"6",
"6",
"4",
"6",
"6",
"2",
"10",
"2",
"4",
"2",
"12",
"12",
"4",
"2",
"4",
"6",
"2",
"10",
"6",
"6",
"6",
"2",
"6",
"4",
"2",
"10",
"14",
"4",
"2",
"4",
"14",
"6",
"10",
"2",
"4",
"6",
"8",
"6",
"6",
"4",
"6",
"8",
"4",
"8",
"10",
"2",
"10",
"2",
"6",
"4",
"6",
"8",
"4",
"2",
"4",
"12",
"8",
"4",
"8",
"4",
"6",
"12"
] | Prime gaps: differences between consecutive primes. |
A001224 | [
"1",
"2",
"2",
"4",
"5",
"9",
"12",
"21",
"30",
"51",
"76",
"127",
"195",
"322",
"504",
"826",
"1309",
"2135",
"3410",
"5545",
"8900",
"14445",
"23256",
"37701",
"60813",
"98514",
"159094",
"257608",
"416325",
"673933",
"1089648",
"1763581",
"2852242",
"4615823",
"7466468",
"12082291",
"19546175",
"31628466"
] | If F(n) is the n-th Fibonacci number, then a(2n) = (F(2n+1) + F(n+2))/2 and a(2n+1) = (F(2n+2) + F(n+1))/2. |
A001225 | [
"1",
"2",
"5",
"7",
"11",
"14",
"20",
"24",
"30",
"35",
"44",
"50"
] | Number of consistent arcs in a tournament with n nodes. |
A001226 | [
"1",
"1",
"3",
"9",
"7",
"93",
"315",
"17",
"3855",
"13797",
"195",
"182361",
"41943",
"9709",
"9256395",
"34636833",
"31775",
"479349",
"1857283155",
"430185",
"26817356775",
"102280151421",
"372827",
"1497207322929",
"89756051247",
"84215045",
"84973577874915",
"19991120505",
"1205604855",
"4885260612740877"
] | Lerch's function q_2(n) = (2^{phi(t)} - 1)/t where t = 2*n - 1. |
A001227 | [
"1",
"1",
"2",
"1",
"2",
"2",
"2",
"1",
"3",
"2",
"2",
"2",
"2",
"2",
"4",
"1",
"2",
"3",
"2",
"2",
"4",
"2",
"2",
"2",
"3",
"2",
"4",
"2",
"2",
"4",
"2",
"1",
"4",
"2",
"4",
"3",
"2",
"2",
"4",
"2",
"2",
"4",
"2",
"2",
"6",
"2",
"2",
"2",
"3",
"3",
"4",
"2",
"2",
"4",
"4",
"2",
"4",
"2",
"2",
"4",
"2",
"2",
"6",
"1",
"4",
"4",
"2",
"2",
"4",
"4",
"2",
"3",
"2",
"2",
"6",
"2",
"4",
"4",
"2",
"2",
"5",
"2",
"2",
"4",
"4",
"2",
"4",
"2",
"2",
"6",
"4",
"2",
"4",
"2",
"4",
"2",
"2",
"3",
"6",
"3",
"2",
"4",
"2",
"2",
"8"
] | Number of odd divisors of n. |
A001228 | [
"7920",
"95040",
"175560",
"443520",
"604800",
"10200960",
"44352000",
"50232960",
"244823040",
"898128000",
"4030387200",
"145926144000",
"448345497600",
"460815505920",
"495766656000",
"42305421312000",
"64561751654400",
"273030912000000",
"51765179004000000",
"90745943887872000",
"4089470473293004800",
"4157776806543360000",
"86775571046077562880",
"1255205709190661721292800",
"4154781481226426191177580544000000",
"808017424794512875886459904961710757005754368000000000"
] | Orders of sporadic simple groups. |
A001229 | [
"1",
"2",
"8",
"12",
"128",
"240",
"720",
"6912",
"32768",
"142560",
"712800",
"1140480",
"1190400",
"3345408",
"3571200",
"5702400",
"14859936",
"29719872",
"50319360",
"118879488",
"2147483648",
"3889036800",
"4389396480",
"21946982400",
"47416320000",
"92177326080",
"133145026560",
"331914240000"
] | Numbers n such that phi(sigma(n)) = n. |
A001230 | [
"0",
"0",
"9862",
"13267364410532"
] | Number of undirected closed knight's tours on a 2n X 2n chessboard. |
A001231 | [
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"4",
"0"
] | Number of nonisomorphic projective planes of order n. |
A001232 | [
"1089",
"10989",
"109989",
"1099989",
"10891089",
"10999989",
"108901089",
"109999989",
"1089001089",
"1098910989",
"1099999989",
"10890001089",
"10989010989",
"10999999989",
"108900001089",
"108910891089",
"109890010989",
"109989109989",
"109999999989",
"1089000001089",
"1089109891089"
] | Numbers k such that 9*k = (k written backwards), k > 0. |
A001233 | [
"1",
"21",
"322",
"4536",
"63273",
"902055",
"13339535",
"206070150",
"3336118786",
"56663366760",
"1009672107080",
"18861567058880",
"369012649234384",
"7551527592063024",
"161429736530118960",
"3599979517947607200",
"83637381699544802976",
"2021687376910682741568",
"50779532534302850198976",
"1323714091579185857760000"
] | Unsigned Stirling numbers of first kind s(n,6). |
A001234 | [
"1",
"28",
"546",
"9450",
"157773",
"2637558",
"44990231",
"790943153",
"14409322928",
"272803210680",
"5374523477960",
"110228466184200",
"2353125040549984",
"52260903362512720",
"1206647803780373360",
"28939583397335447760"
] | Unsigned Stirling numbers of the first kind s(n,7). |
A001235 | [
"1729",
"4104",
"13832",
"20683",
"32832",
"39312",
"40033",
"46683",
"64232",
"65728",
"110656",
"110808",
"134379",
"149389",
"165464",
"171288",
"195841",
"216027",
"216125",
"262656",
"314496",
"320264",
"327763",
"373464",
"402597",
"439101",
"443889",
"513000",
"513856",
"515375",
"525824",
"558441",
"593047",
"684019",
"704977"
] | Taxi-cab numbers: sums of 2 cubes in more than 1 way. |
A001236 | [
"15",
"575",
"46760",
"6998824",
"1744835904",
"673781602752",
"381495483224064",
"303443622431870976",
"327643295527342080000",
"466962174913357393920000",
"858175477913267353681920000",
"1993920215002599923346309120000",
"5758788816015998806424467537920000"
] | Differences of reciprocals of unity. |
A001237 | [
"31",
"3661",
"1217776",
"929081776",
"1413470290176",
"3878864920694016",
"17810567950611972096",
"129089983180418186674176",
"1409795030885143760732160000",
"22335321387514981111936450560000"
] | Differences of reciprocals of unity. |
A001238 | [
"63",
"22631",
"30480800",
"117550462624",
"1083688832185344",
"21006340945438768128",
"778101042571221893382144",
"51150996584622542869024997376",
"5626686079269855254796985958400000",
"987233834003503822099304377378406400000"
] | Differences of reciprocals of unity. |
A001239 | [
"216",
"251",
"344",
"729",
"855",
"1009",
"1072",
"1366",
"1457",
"1459",
"1520",
"1674",
"1728",
"1729",
"1730",
"1737",
"1756",
"1763",
"1793",
"1854",
"1945",
"2008",
"2072",
"2241",
"2414",
"2456",
"2458",
"2729",
"2736",
"2752",
"3060",
"3391",
"3402",
"3457",
"3500",
"3592",
"3599",
"3655",
"3744",
"3745"
] | Numbers that are the sum of 3 nonnegative cubes in more than 1 way. |
A001240 | [
"1",
"11",
"85",
"575",
"3661",
"22631",
"137845",
"833375",
"5019421",
"30174551",
"181222405",
"1087861775",
"6528756781",
"39177307271",
"235078159765",
"1410511939775",
"8463200647741",
"50779591044791",
"304678708005925"
] | Expansion of 1/((1-2x)(1-3x)(1-6x)). |
A001241 | [
"1",
"50",
"1660",
"46760",
"1217776",
"30480800",
"747497920",
"18139003520",
"437786795776",
"10536798272000",
"253246254177280",
"6082300519393280",
"146028165842661376",
"3505313580591718400",
"84135194495708938240",
"2019336829962040279040"
] | Differences of reciprocals of unity. |
A001242 | [
"1",
"274",
"48076",
"6998824",
"929081776",
"117550462624",
"14500866102976",
"1765130436471424",
"213373597575314176",
"25700650466807540224",
"3089923562153380965376",
"371145495540181143169024",
"44558899569395347436056576",
"5348360831598738338465357824"
] | Differences of reciprocals of unity. |
A001243 | [
"1",
"247",
"14608",
"455192",
"9738114",
"162512286",
"2275172004",
"27971176092",
"311387598411",
"3207483178157",
"31055652948388",
"285997074307300",
"2527925001876036",
"21598596303099900",
"179385804170146680"
] | Eulerian numbers (Euler's triangle: column k=7 of A008292, column k=6 of A173018). |
A001244 | [
"1",
"502",
"47840",
"2203488",
"66318474",
"1505621508",
"27971176092",
"447538817472",
"6382798925475",
"83137223185370",
"1006709967915228",
"11485644635009424",
"124748182104463860",
"1300365805079109480",
"13093713503185076040"
] | Eulerian numbers (Euler's triangle: column k=8 of A008292, column k=7 of A173018). |
A001245 | [
"81",
"126",
"128",
"216",
"217",
"219",
"224",
"243",
"251",
"252",
"259",
"278",
"280",
"315",
"341",
"343",
"344",
"345",
"352",
"371",
"376",
"378",
"405",
"408",
"432",
"434",
"467",
"469",
"496",
"522",
"540",
"559",
"560",
"567",
"584",
"593",
"594",
"648",
"687",
"702",
"728",
"729",
"730",
"737",
"756",
"758",
"763",
"765",
"783",
"793",
"802"
] | Numbers that are the sum of 4 cubes in more than 1 way. |
A001246 | [
"1",
"1",
"4",
"25",
"196",
"1764",
"17424",
"184041",
"2044900",
"23639044",
"282105616",
"3455793796",
"43268992144",
"551900410000",
"7152629313600",
"93990019574025",
"1250164827828900",
"16807771574144100",
"228138727737690000",
"3123219182728976100",
"43087676888260976400",
"598598221893939680400",
"8369059450146650049600"
] | Squares of Catalan numbers. |
A001247 | [
"1",
"1",
"4",
"25",
"225",
"2704",
"41209",
"769129",
"17139600",
"447195609",
"13450200625",
"460457244900",
"17754399678409",
"764214897046969",
"36442551140059684",
"1912574337188517025",
"109833379421325769609",
"6866586647633870998416",
"465228769500062060333281"
] | Squares of Bell numbers. |
A001248 | [
"4",
"9",
"25",
"49",
"121",
"169",
"289",
"361",
"529",
"841",
"961",
"1369",
"1681",
"1849",
"2209",
"2809",
"3481",
"3721",
"4489",
"5041",
"5329",
"6241",
"6889",
"7921",
"9409",
"10201",
"10609",
"11449",
"11881",
"12769",
"16129",
"17161",
"18769",
"19321",
"22201",
"22801",
"24649",
"26569",
"27889",
"29929",
"32041",
"32761",
"36481"
] | Squares of primes. |
A001249 | [
"1",
"16",
"100",
"400",
"1225",
"3136",
"7056",
"14400",
"27225",
"48400",
"81796",
"132496",
"207025",
"313600",
"462400",
"665856",
"938961",
"1299600",
"1768900",
"2371600",
"3136441",
"4096576",
"5290000",
"6760000",
"8555625",
"10732176",
"13351716",
"16483600",
"20205025",
"24601600",
"29767936",
"35808256"
] | Squares of tetrahedral numbers: a(n) = binomial(n+3,n)^2. |
A001250 | [
"1",
"1",
"2",
"4",
"10",
"32",
"122",
"544",
"2770",
"15872",
"101042",
"707584",
"5405530",
"44736512",
"398721962",
"3807514624",
"38783024290",
"419730685952",
"4809759350882",
"58177770225664",
"740742376475050",
"9902996106248192",
"138697748786275802",
"2030847773013704704",
"31029068327114173810"
] | Number of alternating permutations of order n. |
A001251 | [
"0",
"0",
"2",
"12",
"70",
"442",
"3108",
"24216",
"208586",
"1972904",
"20373338",
"228346522",
"2763212980",
"35926266244",
"499676669254",
"7405014187564",
"116511984902094",
"1940073930857802",
"34087525861589564",
"630296344519286304",
"12235215845125112122",
"248789737587365945992"
] | Number of permutations of order n with the length of longest run equal 3. |
A001252 | [
"0",
"0",
"0",
"2",
"16",
"134",
"1164",
"10982",
"112354",
"1245676",
"14909340",
"191916532",
"2646100822",
"38932850396",
"609137502242",
"10101955358506",
"177053463254274",
"3270694371428814",
"63524155236581118",
"1294248082658393546",
"27604013493657933856",
"615135860462018980316"
] | Number of permutations of order n with the length of longest run equal 4. |
A001253 | [
"0",
"0",
"0",
"0",
"2",
"20",
"198",
"2048",
"22468",
"264538",
"3340962",
"45173518",
"652209564",
"10024669626",
"163546399460",
"2823941647390",
"51468705947590",
"987671243816650",
"19909066390361346",
"420650676776338140",
"9297308938203169622",
"214562999510569012168"
] | Number of permutations of order n with the length of longest run equal 5. |
A001254 | [
"4",
"1",
"9",
"16",
"49",
"121",
"324",
"841",
"2209",
"5776",
"15129",
"39601",
"103684",
"271441",
"710649",
"1860496",
"4870849",
"12752041",
"33385284",
"87403801",
"228826129",
"599074576",
"1568397609",
"4106118241",
"10749957124",
"28143753121",
"73681302249",
"192900153616",
"505019158609",
"1322157322201",
"3461452808004",
"9062201101801",
"23725150497409"
] | Squares of Lucas numbers. |
A001255 | [
"1",
"1",
"4",
"9",
"25",
"49",
"121",
"225",
"484",
"900",
"1764",
"3136",
"5929",
"10201",
"18225",
"30976",
"53361",
"88209",
"148225",
"240100",
"393129",
"627264",
"1004004",
"1575025",
"2480625",
"3833764",
"5934096",
"9060100",
"13823524",
"20839225",
"31404816",
"46812964",
"69705801",
"102880449",
"151536100"
] | Squares of partition numbers. |
A001256 | [
"1",
"1",
"1",
"1",
"4",
"9",
"36",
"121",
"529",
"2209",
"11236",
"55225",
"303601",
"1692601",
"9979281",
"59923081",
"373262400",
"2364779641",
"15343033689",
"101095382025",
"677435994225",
"4598901695025",
"31626631547536",
"219871778549476",
"1544481904210609",
"10948878748872100",
"78284374662902500"
] | Squares of numbers of trees. |
A001257 | [
"1",
"1",
"4",
"16",
"81",
"400",
"2304",
"13225",
"81796",
"516961",
"3392964",
"22714756",
"155900196",
"1087218729",
"7710771721",
"55404215161",
"403030713409",
"2962388303281",
"21983682632976",
"164512124707984",
"1240577449436224"
] | Squares of numbers of rooted trees. |
A001258 | [
"1",
"1",
"2",
"6",
"25",
"135",
"892",
"6937",
"61886",
"621956",
"6946471",
"85302935",
"1141820808",
"16540534553",
"257745010762",
"4298050731298",
"76356627952069",
"1439506369337319",
"28699241994332940",
"603229325513240569",
"13330768181611378558",
"308967866671489907656",
"7493481669479297191451",
"189793402599733802743015",
"5010686896406348299630712"
] | Number of labeled n-node trees with unlabeled end-points. |
A001259 | [
"3",
"5",
"7",
"17",
"19",
"37",
"97",
"113",
"257",
"401",
"487",
"631",
"971",
"1297",
"1801",
"19457",
"22051",
"28817",
"65537",
"157303",
"160001"
] | A sequence of sorted odd primes 3 = p_1 < p_2 < ... < p_m such that p_i-2 divides the product p_1*p_2*...*p_(i-1) of the earlier primes and each prime factor of p_i-1 is a prime factor of twice the product. |
A001260 | [
"0",
"0",
"0",
"0",
"1",
"5",
"45",
"385",
"3710",
"38934",
"444990",
"5506710",
"73422855",
"1049946755",
"16035550531",
"260577696015",
"4489954146860",
"81781307674780",
"1570201107355980",
"31698434854748604",
"671260973394676605",
"14879618243581997745"
] | Number of permutations of length n with 4 consecutive ascending pairs. |
A001261 | [
"0",
"0",
"0",
"0",
"0",
"1",
"6",
"63",
"616",
"6678",
"77868",
"978978",
"13216104",
"190899423",
"2939850914",
"48106651593",
"833848627248",
"15265844099324",
"294412707629208",
"5966764207952724",
"126793739418994416",
"2819296088257641741",
"65470320271760790078"
] | Number of permutations of length n with 5 consecutive ascending pairs. |
A001262 | [
"2047",
"3277",
"4033",
"4681",
"8321",
"15841",
"29341",
"42799",
"49141",
"52633",
"65281",
"74665",
"80581",
"85489",
"88357",
"90751",
"104653",
"130561",
"196093",
"220729",
"233017",
"252601",
"253241",
"256999",
"271951",
"280601",
"314821",
"357761",
"390937",
"458989",
"476971",
"486737"
] | Strong pseudoprimes to base 2. |
A001263 | [
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"6",
"6",
"1",
"1",
"10",
"20",
"10",
"1",
"1",
"15",
"50",
"50",
"15",
"1",
"1",
"21",
"105",
"175",
"105",
"21",
"1",
"1",
"28",
"196",
"490",
"490",
"196",
"28",
"1",
"1",
"36",
"336",
"1176",
"1764",
"1176",
"336",
"36",
"1",
"1",
"45",
"540",
"2520",
"5292",
"5292",
"2520",
"540",
"45",
"1",
"1",
"55",
"825",
"4950",
"13860",
"19404",
"13860",
"4950",
"825"
] | Triangle of Narayana numbers T(n,k) = C(n-1,k-1)*C(n,k-1)/k with 1 <= k <= n, read by rows. Also called the Catalan triangle. |
A001264 | [
"1",
"4",
"16",
"64",
"56",
"24",
"96",
"84",
"36",
"44",
"76",
"4",
"16",
"64",
"56",
"24",
"96",
"84",
"36",
"44",
"76",
"4",
"16",
"64",
"56",
"24",
"96",
"84",
"36",
"44",
"76",
"4",
"16",
"64",
"56",
"24",
"96",
"84",
"36",
"44",
"76",
"4",
"16",
"64",
"56",
"24",
"96",
"84",
"36",
"44",
"76",
"4",
"16",
"64",
"56",
"24",
"96"
] | Final 2 digits of 4^n. |
A001265 | [
"0",
"1",
"3",
"7",
"3",
"5",
"31",
"3",
"3",
"7",
"127",
"3",
"5",
"17",
"7",
"73",
"3",
"11",
"31",
"23",
"89",
"3",
"3",
"5",
"7",
"13",
"8191",
"3",
"43",
"127",
"7",
"31",
"151",
"3",
"5",
"17",
"257",
"131071",
"3",
"3",
"3",
"7",
"19",
"73",
"524287",
"3",
"5",
"5",
"11",
"31",
"41",
"7",
"7",
"127",
"337",
"3",
"23",
"89",
"683",
"47",
"178481",
"3",
"3",
"5",
"7",
"13",
"17",
"241"
] | Table T(n,k) in which n-th row lists prime factors of 2^n - 1 (n >= 2), with repetition. |
A001266 | [
"0",
"0",
"1",
"7",
"45",
"323",
"2621",
"23811",
"239653",
"2648395",
"31889517",
"415641779",
"5830753109",
"87601592187",
"1403439027805",
"23883728565283",
"430284458893701",
"8181419271349931",
"163730286973255373",
"3440164703027845395",
"75718273707281368117",
"1742211593431076483419"
] | One-half the number of permutations of length n without rising or falling successions. |
A001267 | [
"0",
"0",
"0",
"0",
"1",
"8",
"60",
"444",
"3599",
"32484",
"325322",
"3582600",
"43029621",
"559774736",
"7841128936",
"117668021988",
"1883347579515",
"32026067455084",
"576605574327174",
"10957672400252944",
"219190037987444577",
"4603645435776504120",
"101292568208941883236",
"2329975164242735146316"
] | One-half the number of permutations of length n with exactly 3 rising or falling successions. |
A001268 | [
"0",
"0",
"0",
"0",
"0",
"1",
"11",
"113",
"1099",
"11060",
"118484",
"1366134",
"16970322",
"226574211",
"3240161105",
"49453685911",
"802790789101",
"13815657556958",
"251309386257874",
"4818622686395380",
"97145520138758844",
"2054507019515346789",
"45484006970415223287",
"1052036480881734378541"
] | One-half the number of permutations of length n with exactly 4 rising or falling successions. |
A001269 | [
"2",
"3",
"5",
"3",
"3",
"17",
"3",
"11",
"5",
"13",
"3",
"43",
"257",
"3",
"3",
"3",
"19",
"5",
"5",
"41",
"3",
"683",
"17",
"241",
"3",
"2731",
"5",
"29",
"113",
"3",
"3",
"11",
"331",
"65537",
"3",
"43691",
"5",
"13",
"37",
"109",
"3",
"174763",
"17",
"61681",
"3",
"3",
"43",
"5419",
"5",
"397",
"2113",
"3",
"2796203",
"97",
"257",
"673",
"3",
"11",
"251",
"4051"
] | Table T(n,k) in which n-th row lists prime factors of 2^n + 1 (n >= 0), with repetition. |
A001270 | [
"3",
"3",
"3",
"3",
"11",
"3",
"3",
"3",
"37",
"3",
"3",
"11",
"101",
"3",
"3",
"41",
"271",
"3",
"3",
"3",
"7",
"11",
"13",
"37",
"3",
"3",
"239",
"4649",
"3",
"3",
"11",
"73",
"101",
"137",
"3",
"3",
"3",
"3",
"37",
"333667",
"3",
"3",
"11",
"41",
"271",
"9091",
"3",
"3",
"21649",
"513239",
"3",
"3",
"3",
"7",
"11",
"13",
"37",
"101",
"9901",
"3",
"3",
"53",
"79",
"265371653"
] | Table of prime factors of 10^n - 1 (with multiplicity). |
A001271 | [
"2",
"11",
"101",
"7",
"11",
"13",
"73",
"137",
"11",
"9091",
"101",
"9901",
"11",
"909091",
"17",
"5882353",
"7",
"11",
"13",
"19",
"52579",
"101",
"3541",
"27961",
"11",
"11",
"23",
"4093",
"8779",
"73",
"137",
"99990001",
"11",
"859",
"1058313049",
"29",
"101",
"281",
"121499449",
"7",
"11",
"13",
"211",
"241",
"2161",
"9091",
"353",
"449",
"641",
"1409",
"69857"
] | Irregular table read by rows: row n lists prime factors of 10^n +1, with multiplicity. |
A001272 | [
"3",
"4",
"5",
"6",
"7",
"8",
"10",
"15",
"19",
"41",
"59",
"61",
"105",
"160",
"661",
"2653",
"3069",
"3943",
"4053",
"4998",
"8275",
"9158",
"11164",
"43592",
"59961"
] | Numbers k such that k! - (k-1)! + (k-2)! - (k-3)! + ... - (-1)^k*1! is prime. |
A001273 | [
"1",
"10",
"13",
"23",
"19",
"7",
"356",
"78999"
] | Smallest number that takes n steps to reach 1 under iteration of sum-of-squares-of-digits map (= smallest "happy number" of height n). |
A001274 | [
"1",
"3",
"15",
"104",
"164",
"194",
"255",
"495",
"584",
"975",
"2204",
"2625",
"2834",
"3255",
"3705",
"5186",
"5187",
"10604",
"11715",
"13365",
"18315",
"22935",
"25545",
"32864",
"38804",
"39524",
"46215",
"48704",
"49215",
"49335",
"56864",
"57584",
"57645",
"64004",
"65535",
"73124",
"105524",
"107864",
"123824",
"131144",
"164175",
"184635"
] | Numbers k such that phi(k) = phi(k+1). |
A001275 | [
"3",
"7",
"23",
"61",
"127",
"199",
"337",
"479",
"677",
"937",
"1193",
"1511",
"1871",
"2267",
"2707",
"3251",
"3769",
"4349",
"5009",
"5711",
"6451",
"7321",
"8231",
"9173",
"10151",
"11197",
"12343",
"13487",
"14779",
"16097",
"17599",
"19087",
"20563",
"22109",
"23761",
"25469",
"27259",
"29123",
"31081",
"33029"
] | Smallest prime p such that the product of q/(q-1) over the primes from prime(n) to p is greater than 2. |
A001276 | [
"2",
"3",
"7",
"15",
"27",
"41",
"62",
"85",
"115",
"150",
"186",
"229",
"274",
"323",
"380",
"443",
"509",
"577",
"653",
"733",
"818",
"912",
"1010",
"1114",
"1222",
"1331",
"1448",
"1572",
"1704",
"1845",
"1994",
"2138",
"2289",
"2445",
"2609",
"2774",
"2948",
"3127",
"3311",
"3502",
"3699",
"3900",
"4112",
"4324",
"4546",
"4775",
"5016",
"5255",
"5493"
] | Smallest k such that the product of q/(q-1) over the primes from prime(n) to prime(n+k-1) is greater than 2. |
A001277 | [
"1",
"3",
"12",
"56",
"321",
"2175",
"17008",
"150504",
"1485465",
"16170035",
"192384876",
"2483177808",
"34554278857",
"515620794591",
"8212685046336",
"139062777326000",
"2494364438359953",
"47245095998005059",
"942259727190907180",
"19737566982241851720",
"433234326593362631601",
"9943659797649140568863"
] | Number of permutations of length n by rises. |
A001278 | [
"1",
"11",
"87",
"693",
"5934",
"55674",
"572650",
"6429470",
"78366855",
"1031378445",
"14583751161",
"220562730171",
"3553474061452",
"60765835154948",
"1099353888345924",
"20980355229808524",
"421242574828254525",
"8876636475162819615",
"195887449298481357835",
"4517865858233007694865",
"108699311713253202373146",
"2723633081926998772488606"
] | Number of permutations of length n by rises. |
A001279 | [
"3",
"53",
"680",
"8064",
"96370",
"1200070",
"15778800",
"220047400",
"3257228485",
"51125192475",
"849388162448",
"14905775547488",
"275697902983860",
"5362979000259804",
"109488815508733440",
"2341353038132316240",
"52346701837709016375",
"1221458048752142672625",
"29697803502485749344120",
"751211166036942984639200"
] | Number of permutations of length n by rises. |
A001280 | [
"11",
"309",
"5805",
"95575",
"1516785",
"24206055",
"396475975",
"6733084365",
"119143997490",
"2201649739310",
"42514526708766",
"857750898213594",
"18068801884373310",
"397038791150060850",
"9090755207499817170",
"216635190303090215910"
] | Number of permutations of length n by rises. |
A001281 | [
"0",
"2",
"1",
"8",
"2",
"14",
"3",
"20",
"4",
"26",
"5",
"32",
"6",
"38",
"7",
"44",
"8",
"50",
"9",
"56",
"10",
"62",
"11",
"68",
"12",
"74",
"13",
"80",
"14",
"86",
"15",
"92",
"16",
"98",
"17",
"104",
"18",
"110",
"19",
"116",
"20",
"122",
"21",
"128",
"22",
"134",
"23",
"140",
"24",
"146",
"25",
"152",
"26",
"158",
"27",
"164",
"28",
"170",
"29",
"176",
"30",
"182",
"31",
"188"
] | Image of n under the map n->n/2 if n even, n->3n-1 if n odd. |
A001282 | [
"17",
"259",
"2770",
"27978",
"294602",
"3331790",
"40682144",
"535206440",
"7557750635",
"114101726625",
"1834757172082",
"31313852523634",
"565434670633580",
"10771030900532868",
"215881317066455232",
"4541623615098815280"
] | Number of permutations of length n by rises. |
A001283 | [
"6",
"12",
"15",
"20",
"24",
"28",
"30",
"35",
"40",
"45",
"42",
"48",
"54",
"60",
"66",
"56",
"63",
"70",
"77",
"84",
"91",
"72",
"80",
"88",
"96",
"104",
"112",
"120",
"90",
"99",
"108",
"117",
"126",
"135",
"144",
"153",
"110",
"120",
"130",
"140",
"150",
"160",
"170",
"180",
"190",
"132",
"143",
"154",
"165",
"176",
"187",
"198",
"209",
"220",
"231",
"156",
"168",
"180"
] | Triangle read by rows, in which row n consists of n(n+m) for m = 1 .. n-1. |
A001284 | [
"6",
"12",
"15",
"20",
"24",
"28",
"30",
"35",
"40",
"42",
"45",
"48",
"54",
"56",
"60",
"63",
"66",
"70",
"72",
"77",
"80",
"84",
"88",
"90",
"91",
"96",
"99",
"104",
"108",
"110",
"112",
"117",
"120",
"126",
"130",
"132",
"135",
"140",
"143",
"144",
"150",
"153",
"154",
"156",
"160",
"165",
"168",
"170",
"176",
"180",
"182",
"187",
"190",
"192",
"195",
"198",
"204",
"208",
"209",
"210",
"216",
"220",
"221",
"224",
"228",
"231"
] | Numbers of form m*k with m+1 <= k <= 2m-1. |
A001285 | [
"1",
"2",
"2",
"1",
"2",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"1",
"2",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"2",
"1",
"1",
"2",
"2",
"1",
"2",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"1",
"2",
"2",
"1",
"1",
"2",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"2",
"1",
"2",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"1",
"2",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"2",
"1",
"1",
"2",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"2",
"2",
"1",
"2",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"1",
"2",
"2",
"1",
"1",
"2",
"2",
"1",
"2",
"1"
] | Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 1 and for k >= 0, A_{k+1} = A_k B_k, where B_k is obtained from A_k by interchanging 1's and 2's. |
A001286 | [
"1",
"6",
"36",
"240",
"1800",
"15120",
"141120",
"1451520",
"16329600",
"199584000",
"2634508800",
"37362124800",
"566658892800",
"9153720576000",
"156920924160000",
"2845499424768000",
"54420176498688000",
"1094805903679488000",
"23112569077678080000"
] | Lah numbers: a(n) = (n-1)*n!/2. |
A001287 | [
"1",
"11",
"66",
"286",
"1001",
"3003",
"8008",
"19448",
"43758",
"92378",
"184756",
"352716",
"646646",
"1144066",
"1961256",
"3268760",
"5311735",
"8436285",
"13123110",
"20030010",
"30045015",
"44352165",
"64512240",
"92561040",
"131128140",
"183579396",
"254186856",
"348330136",
"472733756",
"635745396"
] | a(n) = binomial coefficient C(n,10). |
A001288 | [
"1",
"12",
"78",
"364",
"1365",
"4368",
"12376",
"31824",
"75582",
"167960",
"352716",
"705432",
"1352078",
"2496144",
"4457400",
"7726160",
"13037895",
"21474180",
"34597290",
"54627300",
"84672315",
"129024480",
"193536720",
"286097760",
"417225900",
"600805296",
"854992152",
"1203322288",
"1676056044"
] | a(n) = binomial(n,11). |
A001289 | [
"1",
"2",
"3",
"8",
"48",
"150357",
"63379147320777408548"
] | Number of equivalence classes of Boolean functions modulo linear functions. |
A001290 | [
"192",
"21504",
"10321924"
] | Order of "Restricted Affine Group" on n variables. |
A001291 | [
"13",
"28",
"62",
"124"
] | Number of conjugacy classes in Restricted Affine Group on n variables. |
A001292 | [
"1",
"12",
"21",
"123",
"231",
"312",
"1234",
"2341",
"3412",
"4123",
"12345",
"23451",
"34512",
"45123",
"51234",
"123456",
"234561",
"345612",
"456123",
"561234",
"612345",
"1234567",
"2345671",
"3456712",
"4567123",
"5671234",
"6712345",
"7123456"
] | Concatenations of cyclic permutations of initial positive integers. |
A001293 | [
"759",
"506",
"253",
"330",
"176",
"77",
"210",
"120",
"56",
"21",
"130",
"80",
"40",
"16",
"5",
"78",
"52",
"28",
"12",
"4",
"1",
"46",
"32",
"20",
"8",
"4",
"0",
"1",
"30",
"16",
"16",
"4",
"4",
"0",
"0",
"1",
"30",
"0",
"16",
"0",
"4",
"0",
"0",
"0",
"1"
] | Leech triangle: k-th number (0 <= k <= n) in n-th row (0 <= n) is number of octads in S(5,8,24) containing k given points and missing n-k given points. |
A001294 | [
"2576",
"1288",
"1288",
"616",
"672",
"616",
"280",
"336",
"336",
"280",
"120",
"160",
"176",
"160",
"120",
"48",
"72",
"88",
"88",
"72",
"48",
"16",
"32",
"40",
"48",
"40",
"32",
"16",
"0",
"16",
"16",
"24",
"24",
"16",
"16",
"0",
"0",
"0",
"16",
"0",
"24",
"0",
"16",
"0",
"0"
] | Triangle in which k-th number (0<=k<=n) in n-th row (0<=n) is number of dodecads in Golay code G_24 containing k given points and missing n-k given points. |
A001295 | [
"132",
"66",
"66",
"30",
"36",
"30",
"12",
"18",
"18",
"12",
"4",
"8",
"10",
"8",
"4",
"1",
"3",
"5",
"5",
"3",
"1",
"1",
"0",
"3",
"2",
"3",
"0",
"1"
] | Triangle in which k-th number (0<=k<=n) in n-th row (0<=n) is number of hexads in S(5,6,12) containing k given points and missing n-k given points. |
A001296 | [
"0",
"1",
"7",
"25",
"65",
"140",
"266",
"462",
"750",
"1155",
"1705",
"2431",
"3367",
"4550",
"6020",
"7820",
"9996",
"12597",
"15675",
"19285",
"23485",
"28336",
"33902",
"40250",
"47450",
"55575",
"64701",
"74907",
"86275",
"98890",
"112840",
"128216",
"145112",
"163625",
"183855",
"205905",
"229881",
"255892",
"284050",
"314470"
] | 4-dimensional pyramidal numbers: a(n) = (3*n+1)*binomial(n+2, 3)/4. Also Stirling2(n+2, n). |
A001297 | [
"0",
"1",
"15",
"90",
"350",
"1050",
"2646",
"5880",
"11880",
"22275",
"39325",
"66066",
"106470",
"165620",
"249900",
"367200",
"527136",
"741285",
"1023435",
"1389850",
"1859550",
"2454606",
"3200450",
"4126200",
"5265000",
"6654375",
"8336601",
"10359090",
"12774790",
"15642600",
"19027800"
] | Stirling numbers of the second kind S(n+3, n). |
A001298 | [
"0",
"1",
"31",
"301",
"1701",
"6951",
"22827",
"63987",
"159027",
"359502",
"752752",
"1479478",
"2757118",
"4910178",
"8408778",
"13916778",
"22350954",
"34952799",
"53374629",
"79781779",
"116972779",
"168519505",
"238929405",
"333832005",
"460192005",
"626551380",
"843303006",
"1122998436",
"1480692556"
] | Stirling numbers of the second kind S(n+4, n). |
A001299 | [
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"4",
"4",
"4",
"4",
"4",
"6",
"6",
"6",
"6",
"6",
"9",
"9",
"9",
"9",
"9",
"13",
"13",
"13",
"13",
"13",
"18",
"18",
"18",
"18",
"18",
"24",
"24",
"24",
"24",
"24",
"31",
"31",
"31",
"31",
"31",
"39",
"39",
"39",
"39",
"39",
"49",
"49",
"49",
"49",
"49",
"60",
"60",
"60",
"60",
"60",
"73",
"73",
"73",
"73",
"73",
"87",
"87",
"87",
"87",
"87",
"103",
"103",
"103",
"103",
"103"
] | Number of ways of making change for n cents using coins of 1, 5, 10, 25 cents. |
A001300 | [
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"4",
"4",
"4",
"4",
"4",
"6",
"6",
"6",
"6",
"6",
"9",
"9",
"9",
"9",
"9",
"13",
"13",
"13",
"13",
"13",
"18",
"18",
"18",
"18",
"18",
"24",
"24",
"24",
"24",
"24",
"31",
"31",
"31",
"31",
"31",
"39",
"39",
"39",
"39",
"39",
"50",
"50",
"50",
"50",
"50",
"62",
"62",
"62",
"62",
"62",
"77",
"77",
"77"
] | Number of ways of making change for n cents using coins of 1, 5, 10, 25, 50 cents. |
Subsets and Splits