a-number
stringlengths
7
7
sequence
sequencelengths
1
377
description
stringlengths
3
852
A001101
[ "18", "21", "27", "42", "45", "63", "84", "111", "114", "117", "133", "152", "153", "156", "171", "190", "195", "198", "201", "207", "209", "222", "228", "247", "261", "266", "285", "333", "370", "372", "399", "402", "407", "423", "444", "465", "481", "511", "516", "518", "531", "555", "558", "592", "603" ]
Moran numbers: k such that k/(sum of digits of k) is prime.
A001102
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "12", "24", "36", "48", "81", "100", "144", "150", "192", "200", "225", "288", "300", "320", "324", "375", "400", "441", "500", "512", "600", "640", "648", "700", "704", "735", "800", "832", "882", "900", "960", "1014", "1088", "1200", "1452", "1458", "1521", "1815", "2023" ]
Numbers k such that k / (sum of digits of k) is a square.
A001103
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "11", "15", "24", "36", "115", "175", "212", "624", "735", "816", "1115", "1184", "1197", "1416", "2144", "3171", "3276", "3915", "6624", "7119", "8832", "9612", "11133", "11212", "11331", "12128", "12216", "12768", "13131", "21184", "21728", "24912", "31113", "31488", "32172", "32616", "35175" ]
Numbers n such that (n / product of digits of n) is 1 or a prime.
A001104
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "135", "144", "384", "1575", "1715", "6144", "6912", "11664", "14112", "16224", "18816", "23328", "26136", "31212", "41616", "82944", "83232", "93312", "131424", "131712", "186624", "248832", "371112", "1168128", "2214144", "2239488", "2333772", "3321216", "3881472", "6642432" ]
Numbers n such that n / product of digits of n is a square.
A001105
[ "0", "2", "8", "18", "32", "50", "72", "98", "128", "162", "200", "242", "288", "338", "392", "450", "512", "578", "648", "722", "800", "882", "968", "1058", "1152", "1250", "1352", "1458", "1568", "1682", "1800", "1922", "2048", "2178", "2312", "2450", "2592", "2738", "2888", "3042", "3200", "3362", "3528", "3698", "3872", "4050", "4232", "4418" ]
a(n) = 2*n^2.
A001106
[ "0", "1", "9", "24", "46", "75", "111", "154", "204", "261", "325", "396", "474", "559", "651", "750", "856", "969", "1089", "1216", "1350", "1491", "1639", "1794", "1956", "2125", "2301", "2484", "2674", "2871", "3075", "3286", "3504", "3729", "3961", "4200", "4446", "4699", "4959", "5226", "5500", "5781", "6069", "6364" ]
9-gonal (or enneagonal or nonagonal) numbers: a(n) = n*(7*n-5)/2.
A001107
[ "0", "1", "10", "27", "52", "85", "126", "175", "232", "297", "370", "451", "540", "637", "742", "855", "976", "1105", "1242", "1387", "1540", "1701", "1870", "2047", "2232", "2425", "2626", "2835", "3052", "3277", "3510", "3751", "4000", "4257", "4522", "4795", "5076", "5365", "5662", "5967", "6280", "6601", "6930", "7267", "7612", "7965", "8326" ]
10-gonal (or decagonal) numbers: a(n) = n*(4*n-3).
A001108
[ "0", "1", "8", "49", "288", "1681", "9800", "57121", "332928", "1940449", "11309768", "65918161", "384199200", "2239277041", "13051463048", "76069501249", "443365544448", "2584123765441", "15061377048200", "87784138523761", "511643454094368", "2982076586042449", "17380816062160328", "101302819786919521" ]
a(n)-th triangular number is a square: a(n+1) = 6*a(n) - a(n-1) + 2, with a(0) = 0, a(1) = 1.
A001109
[ "0", "1", "6", "35", "204", "1189", "6930", "40391", "235416", "1372105", "7997214", "46611179", "271669860", "1583407981", "9228778026", "53789260175", "313506783024", "1827251437969", "10650001844790", "62072759630771", "361786555939836", "2108646576008245", "12290092900109634", "71631910824649559" ]
a(n)^2 is a triangular number: a(n) = 6*a(n-1) - a(n-2) with a(0)=0, a(1)=1.
A001110
[ "0", "1", "36", "1225", "41616", "1413721", "48024900", "1631432881", "55420693056", "1882672131025", "63955431761796", "2172602007770041", "73804512832419600", "2507180834294496361", "85170343853180456676", "2893284510173841030625" ]
Square triangular numbers: numbers that are both triangular and square.
A001111
[ "1", "1", "1", "5", "6", "1106", "208310", "10374196953" ]
Number of inequivalent Hadamard designs of order 4n.
A001112
[ "0", "1", "1", "3", "4", "11", "136", "283", "419", "1121", "1540", "38081", "39621", "117323", "156944", "431211", "5331476", "11094163", "16425639", "43945441", "60371080", "1492851361", "1553222441", "4599296243", "6152518684", "16904333611", "209004522016", "434913377643", "643917899659" ]
A continued fraction.
A001113
[ "2", "7", "1", "8", "2", "8", "1", "8", "2", "8", "4", "5", "9", "0", "4", "5", "2", "3", "5", "3", "6", "0", "2", "8", "7", "4", "7", "1", "3", "5", "2", "6", "6", "2", "4", "9", "7", "7", "5", "7", "2", "4", "7", "0", "9", "3", "6", "9", "9", "9", "5", "9", "5", "7", "4", "9", "6", "6", "9", "6", "7", "6", "2", "7", "7", "2", "4", "0", "7", "6", "6", "3", "0", "3", "5", "3", "5", "4", "7", "5", "9", "4", "5", "7", "1", "3", "8", "2", "1", "7", "8", "5", "2", "5", "1", "6", "6", "4", "2", "7", "4", "2", "7", "4", "6" ]
Decimal expansion of e.
A001114
[ "2", "7", "18", "28", "182", "845", "904", "5235", "36028", "74713", "526624", "977572", "4709369", "9959574", "96696762", "7724076630", "35354759457", "138217852516", "642742746639", "1932003059921", "8174135966290", "43572900334295", "260595630738132", "328627943490763", "2338298807531952", "5101901157383418" ]
Increasing blocks of digits of e.
A001115
[ "1", "2", "3", "4", "6", "9", "14", "23", "38", "64", "113", "200", "358", "653", "1202", "2223", "4151", "7781", "14659", "27721", "52603", "100084", "190969", "365134", "699617", "1342923", "2582172", "4972385", "9588933", "18515328", "35794987", "69278386", "134224480", "260309786", "505302925", "981723316", "1908898002", "3714597352", "7233673969", "14096361346", "27487875487" ]
Maximal number of pairwise relatively prime polynomials of degree n over GF(2).
A001116
[ "0", "2", "6", "12", "24", "40", "72", "126", "240", "272" ]
Maximal kissing number of an n-dimensional lattice.
A001117
[ "1", "0", "0", "6", "36", "150", "540", "1806", "5796", "18150", "55980", "171006", "519156", "1569750", "4733820", "14250606", "42850116", "128746950", "386634060", "1160688606", "3483638676", "10454061750", "31368476700", "94118013006", "282379204836", "847187946150", "2541664501740", "7625194831806" ]
a(n) = 3^n - 3*2^n + 3.
A001118
[ "1", "0", "0", "0", "0", "120", "1800", "16800", "126000", "834120", "5103000", "29607600", "165528000", "901020120", "4809004200", "25292030400", "131542866000", "678330198120", "3474971465400", "17710714165200", "89904730860000", "454951508208120", "2296538629446600" ]
Differences of 0; labeled ordered partitions into 5 parts.
A001119
[ "1", "1", "2", "2", "16", "54" ]
Number of skew-symmetric Hadamard matrices of order 4n.
A001120
[ "1", "1", "3", "8", "33", "164", "985", "6894", "55153", "496376", "4963761", "54601370", "655216441", "8517813732", "119249392249", "1788740883734", "28619854139745", "486537520375664", "8757675366761953", "166395831968477106", "3327916639369542121", "69886249426760384540", "1537497487388728459881" ]
a(0) = a(1) = 1; for n > 1, a(n) = n*a(n-1) + (-1)^n.
A001121
[ "1", "1", "2", "2", "37", "722" ]
Number of doubly-regular tournaments of order 4n-1.
A001122
[ "3", "5", "11", "13", "19", "29", "37", "53", "59", "61", "67", "83", "101", "107", "131", "139", "149", "163", "173", "179", "181", "197", "211", "227", "269", "293", "317", "347", "349", "373", "379", "389", "419", "421", "443", "461", "467", "491", "509", "523", "541", "547", "557", "563", "587", "613", "619", "653", "659", "661", "677", "701", "709", "757", "773", "787", "797" ]
Primes with primitive root 2.
A001123
[ "7", "17", "31", "43", "79", "89", "113", "127", "137", "199", "223", "233", "257", "281", "283", "331", "353", "401", "449", "463", "487", "521", "569", "571", "593", "607", "617", "631", "641", "691", "739", "751", "809", "811", "823", "857", "881", "929", "953", "977", "1013", "1039", "1049", "1063", "1087", "1097", "1193", "1217" ]
Primes with 3 as smallest primitive root.
A001124
[ "23", "47", "73", "97", "103", "157", "167", "193", "263", "277", "307", "383", "397", "433", "503", "577", "647", "673", "683", "727", "743", "863", "887", "937", "967", "983", "1033", "1093", "1103", "1153", "1163", "1223", "1367", "1487", "1543", "1583", "1607", "1777", "1823", "1847", "1933", "1993", "2003", "2017", "2063", "2087", "2113", "2203", "2207" ]
Primes with 5 as smallest primitive root.
A001125
[ "41", "109", "151", "229", "251", "271", "367", "733", "761", "971", "991", "1069", "1289", "1303", "1429", "1471", "1759", "1789", "1811", "1879", "2411", "2441", "2551", "2749", "2791", "3061", "3079", "3109", "3229", "3251", "3301", "3319", "3967", "4211", "4549", "4721", "4783", "4909", "4931", "4951", "5101", "5167", "5581", "5791" ]
Primes with 6 as smallest primitive root.
A001126
[ "71", "239", "241", "359", "431", "499", "599", "601", "919", "997", "1051", "1181", "1249", "1439", "1609", "1753", "2039", "2089", "2111", "2179", "2251", "2281", "2341", "2591", "2593", "2671", "2711", "2879", "3119", "3121", "3169", "3181", "3457", "3511", "3541", "3719", "3739", "3769", "4271", "4513", "4799", "4801", "4943", "5197" ]
Primes with 7 as smallest primitive root.
A001127
[ "1", "2", "4", "8", "16", "77", "154", "605", "1111", "2222", "4444", "8888", "17776", "85547", "160105", "661166", "1322332", "3654563", "7309126", "13528163", "49710694", "99312488", "187733887", "976071668", "1842242347", "9274664828", "17559329557", "93151725128", "175304440267", "937348843838", "1775697687577" ]
Trajectory of 1 under map x->x + (x-with-digits-reversed).
A001128
[ "2", "4", "16", "976", "662704", "269896807264", "124883600543123110859968", "108643488775144622666209173128243503963147630528" ]
Reverse digits of previous term and multiply by previous term.
A001129
[ "0", "1", "1", "2", "3", "5", "8", "13", "39", "124", "514", "836", "1053", "4139", "12815", "61135", "104937", "792517", "1454698", "9679838", "17354310", "9735140", "1760750", "986050", "621360", "113815", "581437", "1252496", "7676706", "13019288", "94367798", "178067380", "173537220", "106496242", "265429972", "522619163" ]
Iccanobif numbers: reverse digits of two previous terms and add.
A001130
[ "1", "1", "3", "4", "6", "11", "16", "23", "36", "52", "71", "103", "141", "197", "272", "366", "482", "657", "863", "1140", "1489", "1951", "2511", "3241", "4155", "5317", "6782", "8574", "10786", "13645", "17111", "21313", "26631", "33020", "41005", "50640", "62373", "76510", "94089", "114991", "140376", "170970", "207837", "251552", "305342", "368474", "444360", "534692", "642593", "770278" ]
Number of graphical basis partitions of 2n.
A001131
[ "0", "1", "2", "2", "3", "8", "14", "20", "35", "64", "122", "260", "586", "1296", "2708", "5400", "10468", "19888", "37580", "71960", "140612", "279264", "560544", "1133760", "2310316", "4750368", "9876264", "20788880", "44282696", "95241664", "206150208", "447470464", "970862029", "2100029344" ]
Number of red-black rooted trees with n-1 internal nodes.
A001132
[ "7", "17", "23", "31", "41", "47", "71", "73", "79", "89", "97", "103", "113", "127", "137", "151", "167", "191", "193", "199", "223", "233", "239", "241", "257", "263", "271", "281", "311", "313", "337", "353", "359", "367", "383", "401", "409", "431", "433", "439", "449", "457", "463", "479", "487", "503", "521", "569", "577", "593", "599" ]
Primes == +-1 (mod 8).
A001133
[ "43", "109", "157", "229", "277", "283", "307", "499", "643", "691", "733", "739", "811", "997", "1021", "1051", "1069", "1093", "1459", "1579", "1597", "1627", "1699", "1723", "1789", "1933", "2179", "2203", "2251", "2341", "2347", "2749", "2917", "3163", "3181", "3229", "3259", "3373", "4027", "4339", "4549", "4597", "4651", "4909", "5101", "5197", "5323", "5413", "5437", "5653", "6037" ]
Primes p such that the multiplicative order of 2 modulo p is (p-1)/3.
A001134
[ "113", "281", "353", "577", "593", "617", "1033", "1049", "1097", "1153", "1193", "1201", "1481", "1601", "1889", "2129", "2273", "2393", "2473", "3049", "3089", "3137", "3217", "3313", "3529", "3673", "3833", "4001", "4217", "4289", "4457", "4801", "4817", "4937", "5233", "5393", "5881", "6121", "6521", "6569", "6761", "6793", "6841", "7129", "7481", "7577", "7793", "7817", "7841", "8209" ]
Primes p such that the multiplicative order of 2 modulo p is (p-1)/4.
A001135
[ "251", "571", "971", "1181", "1811", "2011", "2381", "2411", "3221", "3251", "3301", "3821", "4211", "4861", "4931", "5021", "5381", "5861", "6221", "6571", "6581", "8461", "8501", "9091", "9461", "10061", "10211", "10781", "11251", "11701", "11941", "12541", "13171", "13381", "13421", "13781", "14251", "15541", "16091", "16141", "16451", "16661", "16691", "16811", "17291" ]
Primes p such that the multiplicative order of 2 modulo p is (p-1)/5.
A001136
[ "31", "223", "433", "439", "457", "727", "919", "1327", "1399", "1423", "1471", "1831", "1999", "2017", "2287", "2383", "2671", "2767", "2791", "2953", "3271", "3343", "3457", "3463", "3607", "3631", "3823", "3889", "4129", "4423", "4519", "4567", "4663", "4729", "4759", "5167", "5449", "5503", "5953", "6007", "6079", "6151", "6217", "6271", "6673", "6961", "6967", "7321" ]
Primes p such that the multiplicative order of 2 modulo p is (p-1)/6.
A001137
[ "1", "2", "2", "4", "8", "16", "33", "56", "90", "164", "330", "688", "1440", "3008", "6291", "13168", "27604", "57896", "120730", "248312", "501464", "995664", "1954582", "3821328", "7495996", "14848472", "29815976", "60741680", "125363472", "261452256", "549461078", "1160693056", "2459679936", "5221717888" ]
Number of black-rooted red-black trees with n internal nodes.
A001138
[ "1", "0", "1", "4", "6", "4", "2", "8", "32", "96", "256", "608", "1268", "2392", "4177", "6720", "9976", "14064", "19882", "30952", "59080", "138096", "355734", "929040", "2380268", "5940408", "14466720", "34499984", "80786736", "186018208", "421400951", "939336288", "2060601888", "4450171328", "9468023540" ]
Red rooted red-black trees with n internal nodes.
A001139
[ "1", "3", "21", "6615", "64595475" ]
Number of stable feedback shift registers with n stages.
A001140
[ "4", "14", "1114", "3114", "132114", "1113122114", "311311222114", "13211321322114", "1113122113121113222114", "31131122211311123113322114", "132113213221133112132123222114", "11131221131211132221232112111312111213322114", "31131122211311123113321112131221123113111231121123222114" ]
Describe the previous term! (method A - initial term is 4).
A001141
[ "5", "15", "1115", "3115", "132115", "1113122115", "311311222115", "13211321322115", "1113122113121113222115", "31131122211311123113322115", "132113213221133112132123222115" ]
Describe the previous term! (method A - initial term is 5).
A001142
[ "1", "1", "2", "9", "96", "2500", "162000", "26471025", "11014635520", "11759522374656", "32406091200000000", "231627686043080250000", "4311500661703860387840000", "209706417310526095716965894400", "26729809777664965932590782608648192" ]
a(n) = Product_{k=1..n} k^(2k - 1 - n).
A001143
[ "6", "16", "1116", "3116", "132116", "1113122116", "311311222116", "13211321322116", "1113122113121113222116", "31131122211311123113322116", "132113213221133112132123222116" ]
Describe the previous term! (method A - initial term is 6).
A001144
[ "1", "2", "3", "4", "9", "27", "512", "134217728" ]
An exponential function on partitions (next term is 2^512).
A001145
[ "7", "17", "1117", "3117", "132117", "1113122117", "311311222117", "13211321322117", "1113122113121113222117", "31131122211311123113322117", "132113213221133112132123222117" ]
Describe the previous term! (method A - initial term is 7).
A001146
[ "2", "4", "16", "256", "65536", "4294967296", "18446744073709551616", "340282366920938463463374607431768211456", "115792089237316195423570985008687907853269984665640564039457584007913129639936" ]
a(n) = 2^(2^n).
A001147
[ "1", "1", "3", "15", "105", "945", "10395", "135135", "2027025", "34459425", "654729075", "13749310575", "316234143225", "7905853580625", "213458046676875", "6190283353629375", "191898783962510625", "6332659870762850625", "221643095476699771875", "8200794532637891559375", "319830986772877770815625" ]
Double factorial of odd numbers: a(n) = (2*n-1)!! = 1*3*5*...*(2*n-1).
A001148
[ "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1", "3", "9", "7", "1" ]
Final digit of 3^n.
A001149
[ "1", "2", "3", "5", "8", "13", "17", "26", "34", "45", "54", "67", "81", "97", "115", "132", "153", "171", "198", "228", "256", "288", "323", "357", "400", "439", "488", "530", "581", "627", "681", "732", "790", "843", "908", "963", "1029", "1085", "1152", "1213", "1284", "1346", "1418", "1484", "1561", "1630", "1710", "1785", "1867", "1945", "2034", "2116" ]
A self-generating sequence: a(1)=1, a(2)=2, a(n+1) chosen so that a(n+1)-a(n-1) is the first number not obtainable as a(j)-a(i) for 1<=i<j<=n.
A001150
[ "3", "13", "146", "40422", "232328410830", "2110021709419835241732893678", "88336965390726143627393089434752334013039840509115817923869114" ]
Number of n-input 2-output switching networks with GL(n,2) acting on the input and S(2) and C(2,2) acting on the output.
A001151
[ "8", "18", "1118", "3118", "132118", "1113122118", "311311222118", "13211321322118", "1113122113121113222118", "31131122211311123113322118", "132113213221133112132123222118" ]
Describe the previous term! (method A - initial term is 8).
A001152
[ "4", "36", "3178", "298908192", "165073828103027338592", "6487168790978377311010208151738379048817328948" ]
Number of n-input 3-output switching networks with GL(n,2) acting on the input and S(3) and C(2,3) acting on the output.
A001153
[ "2", "3", "5", "7", "17", "31", "89", "127", "521", "607", "1279", "2281", "3217", "4423", "9689", "19937", "23209", "44497", "110503", "132049", "756839", "859433", "3021377", "6972593", "24036583", "25964951", "30402457", "32582657", "42643801", "43112609" ]
Degrees of primitive irreducible trinomials: n such that 2^n - 1 is a Mersenne prime and x^n + x^k + 1 is a primitive irreducible polynomial over GF(2) for some k with 0 < k < n.
A001154
[ "9", "19", "1119", "3119", "132119", "1113122119", "311311222119", "13211321322119", "1113122113121113222119", "31131122211311123113322119", "132113213221133112132123222119" ]
Describe the previous term! (method A - initial term is 9).
A001155
[ "0", "10", "1110", "3110", "132110", "1113122110", "311311222110", "13211321322110", "1113122113121113222110", "31131122211311123113322110", "132113213221133112132123222110", "11131221131211132221232112111312111213322110", "31131122211311123113321112131221123113111231121123222110" ]
Describe the previous term! (method A - initial term is 0).
A001156
[ "1", "1", "1", "1", "2", "2", "2", "2", "3", "4", "4", "4", "5", "6", "6", "6", "8", "9", "10", "10", "12", "13", "14", "14", "16", "19", "20", "21", "23", "26", "27", "28", "31", "34", "37", "38", "43", "46", "49", "50", "55", "60", "63", "66", "71", "78", "81", "84", "90", "98", "104", "107", "116", "124", "132", "135", "144", "154", "163", "169", "178", "192", "201", "209", "220", "235", "247", "256" ]
Number of partitions of n into squares.
A001157
[ "1", "5", "10", "21", "26", "50", "50", "85", "91", "130", "122", "210", "170", "250", "260", "341", "290", "455", "362", "546", "500", "610", "530", "850", "651", "850", "820", "1050", "842", "1300", "962", "1365", "1220", "1450", "1300", "1911", "1370", "1810", "1700", "2210", "1682", "2500", "1850", "2562", "2366", "2650", "2210", "3410", "2451", "3255" ]
a(n) = sigma_2(n): sum of squares of divisors of n.
A001158
[ "1", "9", "28", "73", "126", "252", "344", "585", "757", "1134", "1332", "2044", "2198", "3096", "3528", "4681", "4914", "6813", "6860", "9198", "9632", "11988", "12168", "16380", "15751", "19782", "20440", "25112", "24390", "31752", "29792", "37449", "37296", "44226", "43344", "55261", "50654", "61740", "61544", "73710", "68922", "86688" ]
sigma_3(n): sum of cubes of divisors of n.
A001159
[ "1", "17", "82", "273", "626", "1394", "2402", "4369", "6643", "10642", "14642", "22386", "28562", "40834", "51332", "69905", "83522", "112931", "130322", "170898", "196964", "248914", "279842", "358258", "391251", "485554", "538084", "655746", "707282", "872644", "923522", "1118481", "1200644" ]
sigma_4(n): sum of 4th powers of divisors of n.
A001160
[ "1", "33", "244", "1057", "3126", "8052", "16808", "33825", "59293", "103158", "161052", "257908", "371294", "554664", "762744", "1082401", "1419858", "1956669", "2476100", "3304182", "4101152", "5314716", "6436344", "8253300", "9768751", "12252702", "14408200", "17766056", "20511150" ]
sigma_5(n), the sum of the 5th powers of the divisors of n.
A001161
[ "0", "4", "5", "9", "11", "12", "13", "14", "18", "19", "20", "24", "25", "29", "30", "34", "35", "39", "41", "42", "43", "46", "47", "48", "51", "52", "53", "56", "57", "58", "61", "62", "63", "66", "67", "68", "71", "72", "73", "76", "77", "78", "80", "84", "85", "89", "90", "94", "95", "99" ]
Numbers containing an even number of letters.
A001162
[ "1", "2", "3", "6", "7", "8", "10", "15", "16", "17", "21", "22", "23", "26", "27", "28", "31", "32", "33", "36", "37", "38", "40", "44", "45", "49", "50", "54", "55", "59", "60", "64", "65", "69", "70", "74", "75", "79", "81", "82", "83", "86", "87", "88", "91", "92", "93", "96", "97", "98" ]
Numbers containing an odd number of letters.
A001163
[ "1", "1", "1", "-139", "-571", "163879", "5246819", "-534703531", "-4483131259", "432261921612371", "6232523202521089", "-25834629665134204969", "-1579029138854919086429", "746590869962651602203151", "1511513601028097903631961", "-8849272268392873147705987190261", "-142801712490607530608130701097701" ]
Stirling's formula: numerators of asymptotic series for Gamma function.
A001164
[ "1", "12", "288", "51840", "2488320", "209018880", "75246796800", "902961561600", "86684309913600", "514904800886784000", "86504006548979712000", "13494625021640835072000", "9716130015581401251840000", "116593560186976815022080000", "2798245444487443560529920000", "299692087104605205332754432000000", "57540880724084199423888850944000000" ]
Stirling's formula: denominators of asymptotic series for Gamma function.
A001165
[ "1", "1", "3", "1", "1", "1", "1", "1", "1", "2", "3", "1", "1", "2", "1", "1", "2", "1", "3", "1", "2", "1", "4", "1", "1", "1", "3", "1", "2", "1", "2", "1", "2", "1", "3", "1", "1", "2", "1", "2", "1", "1", "4", "1", "2", "2", "1", "2", "1", "1", "2", "1", "1", "2", "1", "1", "2", "1", "1", "2", "1", "1", "4", "1", "1", "2", "2", "1", "2", "2", "1", "1", "2", "1", "1", "7", "3", "1", "1", "2", "1", "1", "3", "2", "1", "1", "2" ]
Position of first even digit after decimal point in sqrt(n).
A001166
[ "1", "4", "3", "11", "15", "13", "17", "24", "23", "73", "3000", "11000", "15000", "101", "104", "103", "111", "115", "113", "117", "124", "123", "173", "323", "373", "1104", "1103", "1111", "1115", "1113", "1117", "1124", "1123", "1173", "1323", "1373", "3323", "3373", "11373", "13323", "13373", "17373", "23323", "23373", "73373", "101123", "101173", "101323", "101373", "103323", "103373", "111373", "113323", "113373", "117373" ]
Smallest natural number requiring n letters in English.
A001167
[ "1", "21", "21000", "101", "121", "1101", "1121", "21121", "101101", "101121", "121121", "1101121", "1121121", "21121121", "101101121", "101121121", "121121121", "1101121121", "1121121121", "21121121121", "101101121121", "101121121121", "121121121121", "1101121121121", "1121121121121", "21121121121121" ]
Smallest natural number requiring n words in English (as spoken in England).
A001168
[ "1", "1", "2", "6", "19", "63", "216", "760", "2725", "9910", "36446", "135268", "505861", "1903890", "7204874", "27394666", "104592937", "400795844", "1540820542", "5940738676", "22964779660", "88983512783", "345532572678", "1344372335524", "5239988770268", "20457802016011", "79992676367108", "313224032098244", "1228088671826973" ]
Number of fixed polyominoes with n cells.
A001169
[ "1", "2", "6", "19", "61", "196", "629", "2017", "6466", "20727", "66441", "212980", "682721", "2188509", "7015418", "22488411", "72088165", "231083620", "740754589", "2374540265", "7611753682", "24400004911", "78215909841", "250726529556", "803721298537", "2576384425157", "8258779154250", "26474089989299" ]
Number of board-pile polyominoes with n cells.
A001170
[ "1", "2", "6", "19", "63", "216", "760", "2723", "9880", "36168", "133237", "492993", "1829670", "6804267", "25336611", "94416842", "351989967", "1312471879", "4894023222", "18248301701", "68036380665", "253638655582", "945464013411", "3523978989671", "13133649924269" ]
Number of board-pair-pile polyominoes with n cells.
A001171
[ "1", "1", "4", "20", "148", "1348", "15104", "198144", "2998656", "51290496", "979732224", "20661458688", "476936766720", "11959743432960", "323764901314560", "9410647116349440", "292316310979706880", "9663569062008422400", "338760229843058688000" ]
From least significant term in expansion of E( tr (X'*X)^n ), X rectangular and Gaussian. Also number of types of sequential n-swap moves for traveling salesman problem.
A001172
[ "0", "6", "10", "22", "34", "48", "60", "78", "84", "90", "114", "144", "120", "168", "180", "234", "246", "288", "240", "210", "324", "300", "360", "474", "330", "528", "576", "390", "462", "480", "420", "570", "510", "672", "792", "756", "876", "714", "798", "690", "1038", "630", "1008", "930", "780", "960", "870", "924", "900", "1134", "1434", "840", "990", "1302" ]
Smallest even number that is an unordered sum of two odd primes in exactly n ways.
A001173
[ "1", "5", "52", "1522", "145984", "48464496", "56141454464", "229148550030864", "3333310786076963968", "174695272746749919580928", "33301710992539090379269318144", "23278728241293494533015563325552128", "60084295633556503802059558812644803074048", "576025077880237078776946730871618386151571214336" ]
Half the number of binary relations on n unlabeled points.
A001174
[ "1", "2", "7", "42", "582", "21480", "2142288", "575016219", "415939243032", "816007449011040", "4374406209970747314", "64539836938720749739356", "2637796735571225009053373136", "300365896158980530053498490893399" ]
Number of oriented graphs (i.e., digraphs with no bidirected edges) on n unlabeled nodes. Also number of complete digraphs on n unlabeled nodes. Number of antisymmetric relations (i.e., oriented graphs with loops) on n unlabeled nodes is A083670.
A001175
[ "1", "3", "8", "6", "20", "24", "16", "12", "24", "60", "10", "24", "28", "48", "40", "24", "36", "24", "18", "60", "16", "30", "48", "24", "100", "84", "72", "48", "14", "120", "30", "48", "40", "36", "80", "24", "76", "18", "56", "60", "40", "48", "88", "30", "120", "48", "32", "24", "112", "300", "72", "84", "108", "72", "20", "48", "72", "42", "58", "120", "60", "30", "48", "96", "140", "120", "136" ]
Pisano periods (or Pisano numbers): period of Fibonacci numbers mod n.
A001176
[ "1", "1", "2", "1", "4", "2", "2", "2", "2", "4", "1", "2", "4", "2", "2", "2", "4", "2", "1", "2", "2", "1", "2", "2", "4", "4", "2", "2", "1", "2", "1", "2", "2", "4", "2", "2", "4", "1", "2", "2", "2", "2", "2", "1", "2", "2", "2", "2", "2", "4", "2", "2", "4", "2", "2", "2", "2", "1", "1", "2", "4", "1", "2", "2", "4", "2", "2", "2", "2", "2", "1", "2", "4", "4", "2", "1", "2", "2", "1", "2", "2", "2", "2", "2", "4", "2", "2", "2", "4", "2", "2", "2", "2", "2", "2", "2", "4", "2", "2", "2", "1", "2", "2", "2", "2" ]
Number of zeros in fundamental period of Fibonacci numbers mod n.
A001177
[ "1", "3", "4", "6", "5", "12", "8", "6", "12", "15", "10", "12", "7", "24", "20", "12", "9", "12", "18", "30", "8", "30", "24", "12", "25", "21", "36", "24", "14", "60", "30", "24", "20", "9", "40", "12", "19", "18", "28", "30", "20", "24", "44", "30", "60", "24", "16", "12", "56", "75", "36", "42", "27", "36", "10", "24", "36", "42", "58", "60", "15", "30", "24", "48", "35", "60", "68", "18", "24", "120" ]
Fibonacci entry points: a(n) = least k >= 1 such that n divides Fibonacci number F_k (=A000045(k)).
A001178
[ "0", "4", "3", "2", "3", "1", "2", "2", "1", "2", "3", "1", "3", "2", "3", "1", "2", "1", "2", "2", "2", "2", "2", "0", "3", "3", "2", "2", "3", "1", "2", "2", "3", "2", "2", "1", "3", "2", "3", "2", "3", "2", "3", "2", "1", "2", "3", "1", "3", "2", "2", "3", "3", "2", "3", "2", "2", "3", "4", "1", "2", "2", "2", "3", "3", "1", "3", "2", "2" ]
Fibonacci frequency of n.
A001179
[ "0", "1", "1", "1", "2", "1", "1", "1", "1", "2", "2", "1", "1", "1", "2", "1", "1", "1", "1", "2", "1", "2", "1", "1", "3", "1", "1", "1", "1", "2", "2", "1", "2", "1", "2", "1", "1", "1", "1", "2", "2", "1", "2", "2", "2", "1", "1", "1", "1", "3", "1", "1", "1", "1", "2", "1", "1", "1", "1", "2", "2", "2", "1", "1", "2", "2", "1", "1", "1", "2", "2", "1" ]
Leonardo logarithm of n.
A001180
[ "1", "1", "2", "3", "3", "5", "9", "16", "28", "50", "89", "159", "285", "510", "914", "1639", "2938", "5269", "9451", "16952" ]
Erroneous version of A002572.
A001181
[ "1", "1", "2", "6", "22", "92", "422", "2074", "10754", "58202", "326240", "1882960", "11140560", "67329992", "414499438", "2593341586", "16458756586", "105791986682", "687782586844", "4517543071924", "29949238543316", "200234184620736", "1349097425104912", "9154276618636016", "62522506583844272" ]
Number of Baxter permutations of length n (also called Baxter numbers).
A001182
[ "0", "1", "4", "8", "15", "22", "30", "41", "54", "69", "83", "98", "119", "139", "162", "183", "208", "234", "263", "294", "322", "357", "390", "424", "465", "504", "545", "585", "628", "675", "719", "770", "819", "872", "928", "977", "1036", "1090", "1155", "1216", "1274", "1339", "1404", "1475", "1545", "1610", "1683", "1755", "1832", "1911", "1992", "2072" ]
Number of cells of square lattice of edge 1/n inside quadrant of unit circle centered at 0.
A001183
[ "0", "2", "2", "18", "66", "374", "1694", "9822", "51698" ]
Number of nontrivial Baxter permutations of length 2n-1.
A001184
[ "1", "2", "104", "111712", "2688307514", "1445778936756068", "17337631013706758184626", "4628650743368437273677525554148", "27478778338807945303765092195103685118924" ]
Number of simple Hamiltonian paths connecting opposite corners of a 2n+1 X 2n+1 grid.
A001185
[ "0", "1", "1", "7", "21", "112", "456", "2603", "13203" ]
Number of nontrivial Baxter permutations of length 2n-1.
A001186
[ "1", "2", "5", "17", "80", "474", "3841", "39635", "495991", "7170657", "116171803", "2070451150", "40130198979", "839266928707", "18826133329753" ]
Number of cubic Hamiltonian graphs with 2n nodes.
A001187
[ "1", "1", "1", "4", "38", "728", "26704", "1866256", "251548592", "66296291072", "34496488594816", "35641657548953344", "73354596206766622208", "301272202649664088951808", "2471648811030443735290891264", "40527680937730480234609755344896", "1328578958335783201008338986845427712" ]
Number of connected labeled graphs with n nodes.
A001188
[ "1", "2", "8", "60", "672", "9953", "184557", "4142631", "109813842", "3373122370", "118280690398", "4678086540493", "206625802351035", "10107719377251109", "543762148079927802", "31975474310851749920", "2044501883873268414092", "141485408653554069693421" ]
Number of even graphs with n edges.
A001189
[ "0", "1", "3", "9", "25", "75", "231", "763", "2619", "9495", "35695", "140151", "568503", "2390479", "10349535", "46206735", "211799311", "997313823", "4809701439", "23758664095", "119952692895", "618884638911", "3257843882623", "17492190577599", "95680443760575", "532985208200575", "3020676745975551" ]
Number of degree-n permutations of order exactly 2.
A001190
[ "0", "1", "1", "1", "2", "3", "6", "11", "23", "46", "98", "207", "451", "983", "2179", "4850", "10905", "24631", "56011", "127912", "293547", "676157", "1563372", "3626149", "8436379", "19680277", "46026618", "107890609", "253450711", "596572387", "1406818759", "3323236238", "7862958391", "18632325319", "44214569100" ]
Wedderburn-Etherington numbers: unlabeled binary rooted trees (every node has outdegree 0 or 2) with n endpoints (and 2n-1 nodes in all).
A001191
[ "1", "4", "9", "1", "6", "2", "5", "3", "6", "4", "9", "6", "4", "8", "1", "1", "0", "0", "1", "2", "1", "1", "4", "4", "1", "6", "9", "1", "9", "6", "2", "2", "5", "2", "5", "6", "2", "8", "9", "3", "2", "4", "3", "6", "1", "4", "0", "0", "4", "4", "1", "4", "8", "4", "5", "2", "9", "5", "7", "6", "6", "2", "5", "6", "7", "6", "7", "2", "9", "7", "8", "4", "8", "4", "1", "9", "0", "0" ]
Digits of positive squares.
A001192
[ "1", "1", "1", "2", "9", "88", "1802", "75598", "6421599", "1097780312", "376516036188", "258683018091900", "355735062429124915", "978786413996934006272", "5387230452634185460127166", "59308424712939278997978128490", "1305926814154452720947815884466579" ]
Number of full sets of size n.
A001193
[ "1", "2", "9", "60", "525", "5670", "72765", "1081080", "18243225", "344594250", "7202019825", "164991726900", "4111043861925", "110681950128750", "3201870700153125", "99044533658070000", "3262279327362680625", "113987877673731311250", "4211218814057295665625", "164015890652757831187500" ]
a(n) = (n+1)*(2*n)!/(2^n*n!) = (n+1)*(2n-1)!!.
A001194
[ "3", "9", "54", "450", "4725", "59535", "873180", "14594580", "273648375", "5685805125", "129636356850", "3217338674550", "86331921100425", "2490343877896875", "76844896803675000", "2525635608280785000", "88081541838792376875", "3248654513701342370625" ]
a(n) = A059366(n,n-2) = A059366(n,2) for n >= 2, where the triangle A059366 arises in the expansion of a trigonometric integral.
A001195
[ "0", "2", "4", "7", "10", "13", "16", "20", "24", "27", "31", "36", "40", "44", "48", "53", "57", "62", "66", "71", "76", "80", "85", "90", "95", "100", "105", "110", "115", "120", "125", "130", "136", "141", "146", "152", "157", "162", "168", "173", "179", "184", "190", "195", "201", "206", "212", "218", "223", "229" ]
Int(n*log((14/11)*n^(10/9))).
A001196
[ "0", "3", "12", "15", "48", "51", "60", "63", "192", "195", "204", "207", "240", "243", "252", "255", "768", "771", "780", "783", "816", "819", "828", "831", "960", "963", "972", "975", "1008", "1011", "1020", "1023", "3072", "3075", "3084", "3087", "3120", "3123", "3132", "3135", "3264", "3267", "3276", "3279", "3312", "3315", "3324", "3327", "3840", "3843" ]
Double-bitters: only even length runs in binary expansion.
A001197
[ "4", "7", "10", "13", "17", "22", "25", "30", "35", "40", "46", "53", "57", "62", "68", "75", "82", "89", "97", "106", "109", "116", "123" ]
Zarankiewicz's problem k_2(n).
A001198
[ "9", "14", "21", "27", "34", "43", "50", "61", "70", "81", "93", "106", "121", "129" ]
Zarankiewicz's problem k_3(n).
A001199
[ "1", "1", "2", "6", "32", "353", "8390", "436399", "50468754" ]
Erroneous version of A056642.
A001200
[ "1", "1", "1", "2", "3", "5", "10", "24", "69", "384", "5250", "232929", "28872973" ]
Number of linear geometries on n (unlabeled) points.