seq_id
stringlengths
7
7
seq_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
0
0
offset_b
int64
5
5
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-25 01:21:50
filename
stringlengths
29
29
hash
stringlengths
32
32
A002101
Nearest integer to 4 * Pi * n^3 / 3.
[ "0", "4", "34", "113", "268", "524", "905", "1437", "2145", "3054", "4189", "5575", "7238", "9203", "11494", "14137", "17157", "20580", "24429", "28731", "33510", "38792", "44602", "50965", "57906", "65450", "73622", "82448", "91952", "102160", "113097", "124788", "137258", "150533", "164636", "179594", "195432", "212175", "229847" ]
[ "nonn", "easy" ]
23
0
5
null
[ "M3653", "N1486" ]
N. J. A. Sloane
2021-12-23T22:44:56
oeisdata/seq/A002/A002101.seq
41ce8e6864fba418627e4baaa9cf37ac
A002102
Number of nonnegative solutions to x^2 + y^2 + z^2 = n.
[ "1", "3", "3", "1", "3", "6", "3", "0", "3", "6", "6", "3", "1", "6", "6", "0", "3", "9", "6", "3", "6", "6", "3", "0", "3", "9", "12", "4", "0", "12", "6", "0", "3", "6", "9", "6", "6", "6", "9", "0", "6", "15", "6", "3", "3", "12", "6", "0", "1", "9", "15", "6", "6", "12", "12", "0", "6", "6", "6", "9", "0", "12", "12", "0", "3", "18", "12", "3", "9", "12", "6", "0", "6", "9", "18", "7", "3", "12", "6", "0", "6", "15", "9", "9", "6", "12", "15", "0", "3", "21", "18", "6", "0", "6" ]
[ "nonn" ]
23
0
5
[ "A000606", "A002102" ]
[ "M2265", "N0895" ]
N. J. A. Sloane
2023-10-14T23:45:13
oeisdata/seq/A002/A002102.seq
0751af4bc370510750a218d9761385e2
A002103
Coefficients of expansion of Jacobi nome q in certain powers of (1/2)*(1 - sqrt(k')) / (1 + sqrt(k')).
[ "1", "2", "15", "150", "1707", "20910", "268616", "3567400", "48555069", "673458874", "9481557398", "135119529972", "1944997539623", "28235172753886", "412850231439153", "6074299605748746", "89857589279037102", "1335623521633805028" ]
[ "nonn", "easy", "nice" ]
69
0
5
[ "A001936", "A002103", "A002639", "A079006" ]
[ "M2082", "N0823" ]
N. J. A. Sloane
2019-12-24T00:50:19
oeisdata/seq/A002/A002103.seq
a3ca6e301c7f0029ef4b5a9bdc7f4912
A002104
Logarithmic numbers.
[ "0", "1", "3", "8", "24", "89", "415", "2372", "16072", "125673", "1112083", "10976184", "119481296", "1421542641", "18348340127", "255323504932", "3809950977008", "60683990530225", "1027542662934915", "18430998766219336", "349096664728623336", "6962409983976703337", "145841989688186383359", "3201192743180799343844" ]
[ "nonn", "easy", "nice" ]
121
0
5
[ "A001338", "A002104", "A006231", "A007526", "A030297", "A133942" ]
[ "M2749", "N1105" ]
N. J. A. Sloane
2024-07-20T10:54:29
oeisdata/seq/A002/A002104.seq
81b09a99a7700d9d1ffd4b22af189f54
A002105
Reduced tangent numbers: 2^n*(2^{2n} - 1)*|B_{2n}|/n, where B_n = Bernoulli numbers.
[ "1", "1", "4", "34", "496", "11056", "349504", "14873104", "819786496", "56814228736", "4835447317504", "495812444583424", "60283564499562496", "8575634961418940416", "1411083019275488149504", "265929039218907754399744", "56906245479134057176170496", "13722623393637762299131396096", "3704005473270641755597685653504" ]
[ "easy", "nonn", "nice" ]
220
0
5
[ "A000111", "A000217", "A000364", "A000464", "A002105", "A002439", "A008281", "A008301", "A079144", "A158690", "A210108" ]
[ "M3655", "N1487" ]
N. J. A. Sloane
2025-01-17T19:29:45
oeisdata/seq/A002/A002105.seq
8ed1dd6b478860704037cb1080369ffb
A002106
Number of transitive permutation groups of degree n.
[ "1", "1", "2", "5", "5", "16", "7", "50", "34", "45", "8", "301", "9", "63", "104", "1954", "10", "983", "8", "1117", "164", "59", "7", "25000", "211", "96", "2392", "1854", "8", "5712", "12", "2801324", "162", "115", "407", "121279", "11", "76", "306", "315842", "10", "9491", "10", "2113", "10923", "56", "6" ]
[ "nonn", "core", "hard", "more", "nice" ]
95
0
5
[ "A000001", "A000019", "A002106", "A177244", "A186277" ]
[ "M1316", "N0504" ]
N. J. A. Sloane
2024-09-16T23:58:49
oeisdata/seq/A002/A002106.seq
ef61559ef5f004ba3325eeb4483fb79a
A002107
Expansion of Product_{k>=1} (1 - x^k)^2.
[ "1", "-2", "-1", "2", "1", "2", "-2", "0", "-2", "-2", "1", "0", "0", "2", "3", "-2", "2", "0", "0", "-2", "-2", "0", "0", "-2", "-1", "0", "2", "2", "-2", "2", "1", "2", "0", "2", "-2", "-2", "2", "0", "-2", "0", "-4", "0", "0", "0", "1", "-2", "0", "0", "2", "0", "2", "2", "1", "-2", "0", "2", "2", "0", "0", "-2", "0", "-2", "0", "-2", "2", "0", "-4", "0", "0", "-2", "-1", "2", "0", "2", "0", "0", "0", "-2" ]
[ "sign", "nice" ]
121
0
5
[ "A000594", "A000712", "A000727", "A000731", "A000735", "A000739", "A002107", "A010815", "A010816", "A010840", "A258406" ]
[ "M0091", "N0028" ]
N. J. A. Sloane
2025-02-16T08:32:25
oeisdata/seq/A002/A002107.seq
13d1378835b08298e8b97d74f06cc77a
A002108
4th powers written backwards.
[ "1", "61", "18", "652", "526", "6921", "1042", "6904", "1656", "1", "14641", "63702", "16582", "61483", "52605", "63556", "12538", "679401", "123031", "61", "184491", "652432", "148972", "677133", "526093", "679654", "144135", "656416", "182707", "18", "125329", "6758401", "1295811", "6336331", "5260051", "6169761" ]
[ "nonn", "base" ]
26
0
5
[ "A000583", "A002108", "A002942", "A004086", "A004165", "A186080" ]
null
N. J. A. Sloane
2023-10-14T22:32:45
oeisdata/seq/A002/A002108.seq
46dc793f09b96a83870b42bdb7e9a79a
A002109
Hyperfactorials: Product_{k = 1..n} k^k.
[ "1", "1", "4", "108", "27648", "86400000", "4031078400000", "3319766398771200000", "55696437941726556979200000", "21577941222941856209168026828800000", "215779412229418562091680268288000000000000000", "61564384586635053951550731889313964883968000000000000000" ]
[ "nonn", "easy", "nice" ]
193
0
5
[ "A000142", "A000178", "A000312", "A001358", "A001923", "A002109", "A002981", "A002982", "A005234", "A006794", "A014545", "A018239", "A051675", "A054374", "A057704", "A057705", "A074962", "A100015", "A240993", "A246839", "A255321", "A255323", "A255344", "A261175", "A347345", "A347352" ]
[ "M3706", "N1514" ]
N. J. A. Sloane
2025-03-19T08:22:57
oeisdata/seq/A002/A002109.seq
066b6f0143b32fcd0d7fa3a544eb764a
A002110
Primorial numbers (first definition): product of first n primes. Sometimes written prime(n)#.
[ "1", "2", "6", "30", "210", "2310", "30030", "510510", "9699690", "223092870", "6469693230", "200560490130", "7420738134810", "304250263527210", "13082761331670030", "614889782588491410", "32589158477190044730", "1922760350154212639070", "117288381359406970983270", "7858321551080267055879090" ]
[ "nonn", "easy", "nice", "core" ]
379
0
5
[ "A001008", "A001615", "A002110", "A002182", "A002201", "A002805", "A003418", "A005117", "A005235", "A006862", "A024451", "A033188", "A034386", "A034387", "A034444", "A034448", "A035345", "A035346", "A036691", "A049345", "A053589", "A057588", "A060735", "A061720", "A061742", "A064648", "A064807", "A072938", "A079266", "A083207", "A087315", "A094348", "A106037", "A106830", "A121572", "A132120", "A143293", "A250133", "A260188", "A276085", "A276086", "A282511", "A282512", "A296358" ]
[ "M1691", "N0668" ]
N. J. A. Sloane and J. H. Conway
2025-02-16T08:32:25
oeisdata/seq/A002/A002110.seq
1caae428d71aa5c9c3abe56c5f4b7c38
A002111
Glaisher's G numbers.
[ "1", "5", "49", "809", "20317", "722813", "34607305", "2145998417", "167317266613", "16020403322021", "1848020950359841", "252778977216700025", "40453941942593304589", "7488583061542051450829", "1587688770629724715374457", "382218817191632327375004833" ]
[ "nonn", "nice", "easy" ]
96
0
5
[ "A002111", "A033470", "A083007" ]
[ "M4007", "N1660" ]
N. J. A. Sloane
2023-10-28T11:24:37
oeisdata/seq/A002/A002111.seq
588353cc3bca3c50cdecad6e219442e9
A002112
Glaisher's H numbers.
[ "3", "33", "903", "46113", "3784503", "455538993", "75603118503", "16546026500673", "4616979073434903", "1599868423237443153", "674014138103352845703", "339274210193051498798433", "201097637653063767131142903", "138634566390566081044811718513" ]
[ "nonn", "nice", "easy" ]
53
0
5
null
[ "M3135", "N1272" ]
N. J. A. Sloane
2021-12-24T02:31:10
oeisdata/seq/A002/A002112.seq
880c8efafeeef4d0c1a9b0ab132cfc96
A002113
Palindromes in base 10.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "11", "22", "33", "44", "55", "66", "77", "88", "99", "101", "111", "121", "131", "141", "151", "161", "171", "181", "191", "202", "212", "222", "232", "242", "252", "262", "272", "282", "292", "303", "313", "323", "333", "343", "353", "363", "373", "383", "393", "404", "414", "424", "434", "444", "454", "464", "474", "484", "494", "505", "515" ]
[ "nonn", "base", "easy", "nice", "core" ]
379
0
5
[ "A002113", "A002385", "A004086", "A006995", "A014190", "A014192", "A029742", "A029803", "A029952", "A029953", "A029954", "A029955", "A029956", "A032350", "A056524", "A056525", "A057148", "A061917", "A064834", "A086862", "A088601", "A110745", "A118031", "A118594", "A118595", "A118596", "A118597", "A118598", "A118599", "A118600", "A136522", "A136687", "A178788", "A221221", "A261132", "A261422", "A261423", "A261424", "A261675", "A262038", "A262065", "A262069" ]
[ "M0484", "N0178" ]
N. J. A. Sloane
2025-04-09T08:33:26
oeisdata/seq/A002/A002113.seq
86e7ff38f155f05a6e9a9783dce00294
A002114
Glaisher's H' numbers.
[ "1", "11", "301", "15371", "1261501", "151846331", "25201039501", "5515342166891", "1538993024478301", "533289474412481051", "224671379367784281901", "113091403397683832932811", "67032545884354589043714301", "46211522130188693681603906171" ]
[ "nice", "easy", "nonn" ]
66
0
5
null
[ "M4810", "N2057" ]
N. J. A. Sloane
2021-12-12T20:35:49
oeisdata/seq/A002/A002114.seq
529933e2db1f9528fff1aab3ee4b2604
A002115
Generalized Euler numbers.
[ "1", "1", "19", "1513", "315523", "136085041", "105261234643", "132705221399353", "254604707462013571", "705927677520644167681", "2716778010767155313771539", "14050650308943101316593590153", "95096065132610734223282520762883", "823813936407337360148622860507620561" ]
[ "nonn" ]
58
0
5
[ "A000364", "A002115", "A178963", "A278073" ]
[ "M5082", "N2199" ]
N. J. A. Sloane
2025-01-15T04:16:43
oeisdata/seq/A002/A002115.seq
5946b08fa3ef42d52f3ce109987953a1
A002116
Some special numbers.
[ "2", "20", "402", "14440", "825502", "69055260", "7960285802", "1209873973712" ]
[ "nonn", "more" ]
11
0
5
null
[ "M2125", "N0842" ]
N. J. A. Sloane
2023-10-14T22:33:14
oeisdata/seq/A002/A002116.seq
4d3a4510bfe87ba4c9715958837f4e25
A002117
Apéry's number or Apéry's constant zeta(3). Decimal expansion of zeta(3) = Sum_{m >= 1} 1/m^3.
[ "1", "2", "0", "2", "0", "5", "6", "9", "0", "3", "1", "5", "9", "5", "9", "4", "2", "8", "5", "3", "9", "9", "7", "3", "8", "1", "6", "1", "5", "1", "1", "4", "4", "9", "9", "9", "0", "7", "6", "4", "9", "8", "6", "2", "9", "2", "3", "4", "0", "4", "9", "8", "8", "8", "1", "7", "9", "2", "2", "7", "1", "5", "5", "5", "3", "4", "1", "8", "3", "8", "2", "0", "5", "7", "8", "6", "3", "1", "3", "0", "9", "0", "1", "8", "6", "4", "5", "5", "8", "7", "3", "6", "0", "9", "3", "3", "5", "2", "5", "8", "1", "4", "6", "1", "9", "9", "1", "5" ]
[ "cons", "nonn", "nice" ]
467
0
5
[ "A000578", "A001008", "A002117", "A002805", "A013631", "A013661", "A013663", "A013667", "A013669", "A013671", "A013675", "A013677", "A013679", "A059956", "A084225", "A084226", "A143003", "A143007", "A152623", "A175577", "A175578", "A197070", "A233090", "A233091", "A295421" ]
[ "M0020" ]
N. J. A. Sloane
2025-03-22T13:33:57
oeisdata/seq/A002/A002117.seq
38b4cf4a21d9e5896f67411ead602545
A002118
5th powers written backwards.
[ "0", "1", "23", "342", "4201", "5213", "6777", "70861", "86723", "94095", "1", "150161", "238842", "392173", "428735", "573957", "6758401", "7589141", "8659881", "9906742", "23", "1014804", "2363515", "3436346", "4262697", "5265679", "67318811", "70984341", "86301271", "94111502", "342", "15192682", "23445533", "39353193" ]
[ "nonn", "base" ]
8
0
5
null
null
N. J. A. Sloane
2023-10-14T22:33:34
oeisdata/seq/A002/A002118.seq
418cff32cdf219ea2a087ae8da0b1ea3
A002119
Bessel polynomial y_n(-2).
[ "1", "-1", "7", "-71", "1001", "-18089", "398959", "-10391023", "312129649", "-10622799089", "403978495031", "-16977719590391", "781379079653017", "-39085931702241241", "2111421691000680031", "-122501544009741683039", "7597207150294985028449", "-501538173463478753560673" ]
[ "sign", "easy", "nice" ]
103
0
5
[ "A000806", "A001498", "A001514", "A001517", "A002119", "A006199", "A033815", "A053556", "A053557", "A065707", "A065920", "A065921", "A065922", "A065923" ]
[ "M4444", "N1880" ]
N. J. A. Sloane
2024-07-31T01:50:51
oeisdata/seq/A002/A002119.seq
ac9fd6d7683afd56201035fb78962465
A002120
a(1) = 0, a(2) = -2; for n > 2, a(n) + a(n-2) - a(n-3) - a(n-5) - ... - a(n-p) = (-1)^(n+1)*n if n is prime, otherwise = 0, where p = largest prime < n.
[ "0", "-2", "3", "2", "0", "1", "7", "2", "-6", "8", "22", "-7", "0", "33", "3", "-14", "51", "46", "-19", "12", "94", "42", "-23", "113", "150", "-54", "48", "345", "116", "-109", "403", "498", "-140", "219", "1057", "326", "-259", "1271", "1641", "-308", "656", "3396", "1161", "-790", "4269", "5357", "-987", "2257", "10934", "3958", "-1986", "13678", "17278", "-2492", "7447", "35569", "13778", "-5860", "44368", "56403", "-6405" ]
[ "sign" ]
17
0
5
null
[ "M0414", "N0158" ]
N. J. A. Sloane
2023-10-14T22:34:34
oeisdata/seq/A002/A002120.seq
19d6fd60a0e91ad8ddb0a0e9720ae500
A002121
a(0) = 1, a(1) = 0, a(2) = -1; for n >= 3, a(n) = - a(n-2) + Sum_{ primes p with 3 <= p <= n} a(n-p).
[ "1", "0", "-1", "1", "1", "-1", "0", "2", "0", "-2", "2", "4", "-3", "-2", "8", "1", "-8", "8", "12", "-11", "-4", "25", "4", "-24", "21", "40", "-31", "-16", "82", "14", "-81", "71", "131", "-99", "-48", "258", "46", "-249", "223", "422", "-303", "-162", "825", "169", "-791", "714", "1360", "-955", "-503", "2641", "573", "-2479", "2263", "4365", "-2941", "-1592", "8436", "1978", "-7830", "7212", "14083", "-9133", "-4992", "26970", "6688", "-24590" ]
[ "sign", "easy", "look" ]
26
0
5
[ "A002100", "A002121", "A002125", "A065091" ]
[ "M0023", "N0005" ]
N. J. A. Sloane
2023-10-14T22:35:18
oeisdata/seq/A002/A002121.seq
2b0ebc36a9e01b6823c0711cba2eaa66
A002122
a(n) = Sum_{t=0..n} g(t)*g(n-t) where g(t) = A002121(t).
[ "1", "0", "-2", "2", "3", "-4", "-1", "8", "-1", "-10", "9", "16", "-18", "-12", "42", "4", "-58", "40", "82", "-88", "-54", "188", "18", "-248", "151", "354", "-338", "-260", "760", "120", "-1031", "574", "1460", "-1324", "-1076", "2948", "542", "-3962", "2075", "5644", "-4868", "-4290", "11035", "2418", "-14900", "7346", "21300", "-17652", "-16323", "40442", "9768", "-54476", "25675", "78290", "-62456" ]
[ "sign" ]
25
0
5
[ "A002121", "A002122" ]
[ "M0273", "N0096" ]
N. J. A. Sloane
2023-10-14T22:35:57
oeisdata/seq/A002/A002122.seq
53f3714cceb4359f2534935954dd7b2b
A002123
a(1) = 0, a(2) = 0; for n > 2, a(n) - a(n-3) - a(n-5) - ... - a(n-p) = n if n is prime, otherwise = 0, where p = largest prime < n.
[ "0", "0", "3", "0", "5", "-3", "7", "-8", "3", "-15", "22", "-15", "39", "-35", "38", "-72", "85", "-111", "152", "-175", "241", "-308", "414", "-551", "655", "-897", "1164", "-1463", "2001", "-2538", "3286", "-4296", "5503", "-7259", "9357", "-12147", "15910", "-20406", "26640", "-34703", "44854", "-58481", "75809", "-98340" ]
[ "sign" ]
17
0
5
[ "A002123", "A061397", "A065091" ]
[ "M2198", "N0876" ]
N. J. A. Sloane
2016-12-26T02:01:46
oeisdata/seq/A002/A002123.seq
939911b0e757f0012bec4a7463b747f7
A002124
Number of compositions of n into a sum of odd primes.
[ "1", "0", "0", "1", "0", "1", "1", "1", "2", "1", "3", "4", "3", "7", "7", "8", "14", "15", "21", "28", "33", "47", "58", "76", "103", "125", "169", "220", "277", "373", "476", "616", "810", "1037", "1361", "1763", "2279", "2984", "3846", "5006", "6521", "8428", "10983", "14249", "18480", "24048", "31178", "40520", "52635", "68281", "88765", "115211", "149593", "194381", "252280", "327696", "425587", "552527", "717721" ]
[ "nonn" ]
47
0
5
[ "A002124", "A002125", "A023360", "A024939", "A065091", "A077608" ]
[ "M0154", "N0062" ]
N. J. A. Sloane
2022-04-13T13:25:16
oeisdata/seq/A002/A002124.seq
301f8ed4d7a42bd94c90d8f9984d5fa9
A002125
a(n) = Sum_{k=0..n} f(k)*f(n-k) where f(k) = A002124(k).
[ "1", "0", "0", "2", "0", "2", "3", "2", "6", "4", "9", "14", "11", "26", "29", "34", "62", "68", "99", "140", "169", "252", "322", "430", "607", "764", "1059", "1424", "1845", "2546", "3344", "4442", "6002", "7876", "10575", "14058", "18575", "24878", "32842", "43630", "58073", "76658", "101913", "134964", "178468", "236776", "312874", "414094", "547947", "723646" ]
[ "nonn" ]
25
0
5
null
[ "M0024", "N0006" ]
N. J. A. Sloane
2023-10-14T22:36:36
oeisdata/seq/A002/A002125.seq
e6d5166b4cebcb17ebb8a167876bcefe
A002126
Number of solutions to n=p+q where p and q are primes or zero.
[ "1", "0", "2", "2", "1", "4", "1", "4", "2", "2", "3", "2", "2", "4", "3", "2", "4", "2", "4", "4", "4", "2", "5", "2", "6", "2", "5", "0", "4", "2", "6", "4", "4", "2", "7", "0", "8", "2", "3", "2", "6", "2", "8", "4", "6", "2", "7", "2", "10", "2", "8", "0", "6", "2", "10", "2", "6", "0", "7", "2", "12", "4", "5", "2", "10", "0", "12", "2", "4", "2", "10", "2", "12", "4", "9", "2", "10", "0", "14", "2", "8", "2", "9", "2", "16", "2", "9", "0", "8", "2", "18", "2", "8", "0", "9", "0", "14" ]
[ "nonn" ]
25
0
5
[ "A002126", "A002375", "A045917", "A061358", "A073610" ]
[ "M0202", "N0075" ]
N. J. A. Sloane
2020-03-09T20:19:12
oeisdata/seq/A002/A002126.seq
a66570f9aad79809f2ca5ca76abbe5e1
A002127
MacMahon's generalized sum of divisors function.
[ "1", "3", "9", "15", "30", "45", "67", "99", "135", "175", "231", "306", "354", "465", "540", "681", "765", "945", "1040", "1305", "1386", "1695", "1779", "2205", "2290", "2754", "2835", "3438", "3480", "4185", "4272", "5076", "5004", "6100", "5985", "7155", "7154", "8325", "8190", "9840", "9471", "11241", "11055", "12870", "12420", "14911" ]
[ "nonn", "easy" ]
22
0
5
[ "A002127", "A060043" ]
[ "M2770", "N1114" ]
N. J. A. Sloane
2017-09-27T02:32:55
oeisdata/seq/A002/A002127.seq
9f050daadd5fd106629dffc63c401fd7
A002128
MacMahon's generalized sum of divisors function.
[ "1", "3", "9", "22", "42", "81", "140", "231", "351", "551", "783", "1134", "1546", "2142", "2835", "3758", "4818", "6237", "7826", "9885", "12159", "14974", "18261", "22113", "26511", "31668", "37611", "44149", "52074", "60660", "70569", "81396", "94311", "107317", "123879", "140049", "160154", "179949", "204867", "228137" ]
[ "nonn", "easy" ]
24
0
5
[ "A002128", "A060043" ]
[ "M2784", "N1119" ]
N. J. A. Sloane
2017-09-28T08:15:48
oeisdata/seq/A002/A002128.seq
c3fa12938802ef564de6c76fdd9b9e57
A002129
Generalized sum of divisors function: excess of sum of odd divisors of n over sum of even divisors of n.
[ "1", "-1", "4", "-5", "6", "-4", "8", "-13", "13", "-6", "12", "-20", "14", "-8", "24", "-29", "18", "-13", "20", "-30", "32", "-12", "24", "-52", "31", "-14", "40", "-40", "30", "-24", "32", "-61", "48", "-18", "48", "-65", "38", "-20", "56", "-78", "42", "-32", "44", "-60", "78", "-24", "48", "-116", "57", "-31", "72", "-70", "54", "-40", "72", "-104", "80", "-30", "60", "-120", "62", "-32", "104", "-125" ]
[ "sign", "easy", "nice", "mult" ]
71
0
5
[ "A002129", "A003462", "A010054", "A024919", "A036563", "A060044", "A113184" ]
[ "M3236", "N1307" ]
N. J. A. Sloane
2022-09-26T20:32:38
oeisdata/seq/A002/A002129.seq
94da288ba8296e919ac73e797878d1f7
A002130
Generalized sum of divisors function.
[ "1", "-1", "1", "3", "-2", "1", "-5", "23", "-25", "27", "-49", "74", "-62", "85", "-132", "165", "-195", "229", "-240", "325", "-374", "379", "-469", "553", "-590", "746", "-805", "854", "-1000", "1085", "-1168", "1284", "-1396", "1668", "-1767", "1815", "-2030", "2297", "-2450", "2480", "-2849", "3293", "-3113", "3278", "-3772", "4091", "-4230", "4213", "-4830", "5607", "-5499", "5430", "-6018", "6922", "-6880" ]
[ "sign", "easy" ]
25
0
5
[ "A002130", "A060044" ]
[ "M2238", "N0888" ]
N. J. A. Sloane
2021-12-24T02:31:14
oeisdata/seq/A002/A002130.seq
da28dfaa5eb02be09f3fd3d91b6824a4
A002131
Sum of divisors d of n such that n/d is odd.
[ "1", "2", "4", "4", "6", "8", "8", "8", "13", "12", "12", "16", "14", "16", "24", "16", "18", "26", "20", "24", "32", "24", "24", "32", "31", "28", "40", "32", "30", "48", "32", "32", "48", "36", "48", "52", "38", "40", "56", "48", "42", "64", "44", "48", "78", "48", "48", "64", "57", "62", "72", "56", "54", "80", "72", "64", "80", "60", "60", "96", "62", "64", "104", "64", "84", "96", "68", "72", "96", "96", "72" ]
[ "nonn", "nice", "easy", "mult" ]
128
0
5
[ "A000203", "A000593", "A002131", "A006519", "A008438", "A026741", "A060047", "A143119", "A192065", "A244051", "A301798", "A326938" ]
[ "M0937", "N0351" ]
N. J. A. Sloane, Simon Plouffe
2023-07-02T13:37:48
oeisdata/seq/A002/A002131.seq
7d9776c444f15b3d3a68c8594b990637
A002132
Generalized sum of divisors function.
[ "1", "2", "4", "8", "14", "18", "28", "40", "52", "70", "88", "104", "140", "168", "196", "240", "278", "320", "380", "440", "504", "562", "644", "720", "808", "910", "1000", "1120", "1240", "1360", "1488", "1600", "1789", "1938", "2100", "2296", "2452", "2660", "2880", "3080", "3292", "3542", "3784", "4048", "4400", "4572", "4868", "5280", "5502", "5850" ]
[ "nonn", "easy" ]
31
0
5
[ "A002132", "A015128", "A060047" ]
[ "M1096", "N0418" ]
N. J. A. Sloane
2023-09-15T10:32:51
oeisdata/seq/A002/A002132.seq
2d1382f47f8b3a9f9e3e314dffff9fdd
A002133
Number of partitions of n with exactly two part sizes.
[ "0", "0", "1", "2", "5", "6", "11", "13", "17", "22", "27", "29", "37", "44", "44", "55", "59", "68", "71", "81", "82", "102", "97", "112", "109", "136", "126", "149", "141", "168", "157", "188", "176", "212", "182", "231", "207", "254", "230", "266", "241", "300", "259", "319", "283", "344", "295", "373", "311", "386", "352", "417", "353", "452", "368", "460", "418", "492", "413" ]
[ "nonn", "look", "easy" ]
68
0
5
[ "A002133", "A002134", "A060177" ]
[ "M1324", "N0507" ]
N. J. A. Sloane
2023-09-15T10:20:54
oeisdata/seq/A002/A002133.seq
edf46405fa659969a4e3680aff0d97ab
A002134
Generalized divisor function. Number of partitions of n with exactly three part sizes.
[ "1", "2", "5", "10", "15", "25", "37", "52", "67", "97", "117", "154", "184", "235", "277", "338", "385", "469", "531", "630", "698", "810", "910", "1038", "1144", "1295", "1425", "1577", "1741", "1938", "2089", "2301", "2505", "2700", "2970", "3189", "3444", "3703", "4004", "4242", "4617", "4882", "5244", "5558", "5999", "6221", "6755", "7050", "7576" ]
[ "nonn", "easy" ]
41
0
5
[ "A002134", "A060177", "A116608" ]
[ "M1367", "N0530" ]
N. J. A. Sloane
2023-09-15T18:45:54
oeisdata/seq/A002/A002134.seq
97e03fcdf11d1bd6b1f12164d6221083
A002135
Number of terms in a symmetrical determinant: a(n) = n*a(n-1) - (n-1)*(n-2)*a(n-3)/2.
[ "1", "1", "2", "5", "17", "73", "388", "2461", "18155", "152531", "1436714", "14986879", "171453343", "2134070335", "28708008128", "415017867707", "6416208498137", "105630583492969", "1844908072865290", "34071573484225549", "663368639907213281", "13580208904207073801" ]
[ "nonn", "nice", "easy" ]
124
0
5
[ "A001147", "A001710", "A002135", "A002137", "A007717", "A037143", "A059422", "A059423", "A059424", "A215771", "A257463", "A260338", "A319225", "A319226", "A320655", "A320656", "A333467" ]
[ "M1513", "N0594" ]
N. J. A. Sloane
2023-01-06T17:48:36
oeisdata/seq/A002/A002135.seq
2e1ca188a063318e632144533294e5c6
A002136
Matrices with 2 rows.
[ "1", "2", "6", "23", "109", "618", "4096", "31133", "267219", "2557502", "27011734", "312115953", "3916844779", "53053052462", "771450742596", "11986779006647", "198204672604489", "3475110017769282", "64396888392712366", "1257612452945760503", "25815617698822423341", "555708180579477963962", "12517189538209383465496" ]
[ "nonn" ]
32
0
5
null
[ "M1668", "N0656" ]
N. J. A. Sloane
2017-09-28T08:15:57
oeisdata/seq/A002/A002136.seq
a4675d082bdf2d61e6112888ceccde05
A002137
Number of n X n symmetric matrices with nonnegative integer entries, trace 0 and all row sums 2.
[ "1", "0", "1", "1", "6", "22", "130", "822", "6202", "52552", "499194", "5238370", "60222844", "752587764", "10157945044", "147267180508", "2282355168060", "37655004171808", "658906772228668", "12188911634495388", "237669544014377896", "4871976826254018760", "104742902332392298296" ]
[ "nonn", "nice", "easy" ]
111
0
5
[ "A000985", "A000986", "A002135", "A002137", "A260340", "A333351" ]
[ "M4154", "N1726" ]
N. J. A. Sloane
2025-01-13T11:10:14
oeisdata/seq/A002/A002137.seq
f1b400bfb73f0516ecd2d65602792713
A002138
6th powers written backwards.
[ "0", "1", "46", "927", "6904", "52651", "65664", "946711", "441262", "144135", "1", "1651771", "4895892", "9086284", "6359257", "52609311", "61277761", "96573142", "42221043", "18854074", "46", "12166758", "409973311", "988530841", "679201191", "526041442", "677519803", "984024783", "403098184", "123328495", "927" ]
[ "nonn", "base", "look" ]
13
0
5
null
null
N. J. A. Sloane
2023-10-14T23:43:14
oeisdata/seq/A002/A002138.seq
e713bef761922935d37cd4b45ec054e1
A002139
Shuffling 2n cards.
[ "2", "3", "5", "12", "14", "11", "13", "20", "72", "19", "42", "132", "84", "114", "29", "30", "110", "156", "37", "156", "420", "210", "156", "552", "462", "72", "53", "420", "342", "59", "61", "42", "156", "67", "506", "1260", "90", "420", "930", "1560", "990", "83", "72", "812", "132", "156", "110", "1332", "2352", "930", "101", "2652", "156" ]
[ "nonn", "nice" ]
23
0
5
[ "A002139", "A002326" ]
[ "M0737", "N0276" ]
N. J. A. Sloane
2017-06-18T08:49:54
oeisdata/seq/A002/A002139.seq
0339b5a2a5b7d14b956af57176a7a6b8
A002140
7th powers written backwards.
[ "0", "1", "821", "7812", "48361", "52187", "639972", "345328", "2517902", "9692874", "1", "17178491", "80813853", "71584726", "405314501", "573958071", "654534862", "376833014", "230022216", "937178398", "821", "1458801081", "8887534942", "7445284043", "4241746854", "5265153016", "6710181308", "30235306401" ]
[ "nonn", "base", "look" ]
19
0
5
null
null
N. J. A. Sloane
2023-10-14T23:43:34
oeisdata/seq/A002/A002140.seq
6b86f836ce2314e23622524f1743ed7e
A002141
Class numbers of quadratic fields.
[ "1", "1", "5", "6", "7", "7", "9", "53", "60", "66", "83", "83", "136", "136", "185", "185", "185", "312", "312", "312", "3064", "3718", "3718", "3718", "8096", "9826", "12384", "16602", "16602", "16602", "16760", "16760", "182424", "323392", "323392", "323392", "323392" ]
[ "nonn" ]
20
0
5
null
[ "M3745", "N1530" ]
N. J. A. Sloane
2023-10-14T23:44:12
oeisdata/seq/A002/A002141.seq
9150049c8eb38aff5f7f8104ea895671
A002142
Primes p == 1 (mod 4) where class number of Q(sqrt p) increases.
[ "5", "229", "401", "577", "1129", "1297", "7057", "8761", "14401", "32401", "41617", "57601", "90001" ]
[ "nonn" ]
16
0
5
null
[ "M4032", "N1673" ]
N. J. A. Sloane
2023-10-14T23:44:46
oeisdata/seq/A002/A002142.seq
075c568edeffdfb38e339162a7eec7f2
A002143
Class numbers h(-p) where p runs through the primes p == 3 (mod 4).
[ "1", "1", "1", "1", "3", "3", "1", "5", "3", "1", "7", "5", "3", "5", "3", "5", "5", "3", "7", "1", "11", "5", "13", "9", "3", "7", "5", "15", "7", "13", "11", "3", "3", "19", "3", "5", "19", "9", "3", "17", "9", "21", "15", "5", "7", "7", "25", "7", "9", "3", "21", "5", "3", "9", "5", "7", "25", "13", "5", "13", "3", "23", "11", "5", "5", "31", "13", "5", "21", "15", "5", "7", "9", "7", "33", "7", "21", "3", "29", "3", "31", "19", "5", "11", "15", "27", "17", "13" ]
[ "nonn" ]
57
0
5
[ "A002143", "A002145", "A002146", "A101435" ]
[ "M2266", "N0896" ]
N. J. A. Sloane
2019-08-06T05:02:26
oeisdata/seq/A002/A002143.seq
f547dbb3b416f6236a43b5b5d08549d6
A002144
Pythagorean primes: primes of the form 4*k + 1.
[ "5", "13", "17", "29", "37", "41", "53", "61", "73", "89", "97", "101", "109", "113", "137", "149", "157", "173", "181", "193", "197", "229", "233", "241", "257", "269", "277", "281", "293", "313", "317", "337", "349", "353", "373", "389", "397", "401", "409", "421", "433", "449", "457", "461", "509", "521", "541", "557", "569", "577", "593", "601", "613", "617" ]
[ "nonn", "easy", "nice" ]
478
0
5
[ "A002144", "A002145", "A002313", "A002314", "A002476", "A002972", "A002973", "A003658", "A004431", "A004613", "A005098", "A007519", "A010051", "A016813", "A020668", "A076339", "A094407", "A114200", "A133870", "A142925", "A152676", "A152680", "A173330", "A173331", "A208177", "A208178", "A334912" ]
[ "M3823", "N1566" ]
N. J. A. Sloane
2025-03-15T10:59:03
oeisdata/seq/A002/A002144.seq
97b6d847fe51e539fc33e0ffbee32d30
A002145
Primes of the form 4*k + 3.
[ "3", "7", "11", "19", "23", "31", "43", "47", "59", "67", "71", "79", "83", "103", "107", "127", "131", "139", "151", "163", "167", "179", "191", "199", "211", "223", "227", "239", "251", "263", "271", "283", "307", "311", "331", "347", "359", "367", "379", "383", "419", "431", "439", "443", "463", "467", "479", "487", "491", "499", "503", "523", "547", "563", "571" ]
[ "nonn", "easy" ]
307
0
5
[ "A000032", "A000408", "A002144", "A002145", "A003657", "A004614", "A005098", "A016105", "A016754", "A045326", "A085992", "A095278", "A122869", "A122870", "A334912" ]
[ "M2624", "N1039" ]
N. J. A. Sloane
2025-03-15T14:43:52
oeisdata/seq/A002/A002145.seq
4a182320eda7995fdaa8e3c848008cbc
A002146
Smallest prime == 7 (mod 8) where Q(sqrt(-p)) has class number 2n+1.
[ "7", "23", "47", "71", "199", "167", "191", "239", "383", "311", "431", "647", "479", "983", "887", "719", "839", "1031", "1487", "1439", "1151", "1847", "1319", "3023", "1511", "1559", "2711", "4463", "2591", "2399", "3863", "2351", "3527", "3719" ]
[ "nonn" ]
32
0
5
[ "A002143", "A002146", "A002147", "A002148", "A060651" ]
[ "M4377", "N1841" ]
N. J. A. Sloane, Mira Bernstein
2022-08-06T07:17:22
oeisdata/seq/A002/A002146.seq
e96e223d9f9c27128756494b89e28ba3
A002147
Largest prime == 7 (mod 8) with class number 2n+1.
[ "7", "31", "127", "487", "1423", "1303", "2143", "2647", "4447", "5527", "5647", "6703", "5503", "11383", "8863", "13687", "13183", "12007", "22807", "18127", "21487", "22303", "29863", "25303", "27127" ]
[ "nonn" ]
21
0
5
[ "A002146", "A002147" ]
[ "M4402", "N1857" ]
N. J. A. Sloane
2022-08-06T07:17:52
oeisdata/seq/A002/A002147.seq
c139785d6a05132e33f004affe1cbe1d
A002148
Smallest prime p==3 (mod 8) such that Q(sqrt(-p)) has class number 2n+1.
[ "3", "59", "131", "251", "419", "659", "1019", "971", "1091", "2099", "1931", "1811", "3851", "3299", "2939", "3251", "4091", "4259", "8147", "5099", "9467", "6299", "6971", "8291", "8819", "14771", "22619", "9539", "13331", "18443", "11171", "16979", "12011", "13859", "16931", "17939", "28211", "19211", "24251", "20411" ]
[ "nonn" ]
29
0
5
[ "A002143", "A002148", "A002149", "A003173", "A006203" ]
[ "M3164", "N1282" ]
N. J. A. Sloane and Mira Bernstein
2022-08-06T07:17:33
oeisdata/seq/A002/A002148.seq
de81b5002ac15f26b02baac498f44b95
A002149
Largest prime p==3 (mod 8) such that Q(sqrt(-p)) has class number 2n+1.
[ "163", "907", "2683", "5923", "10627", "15667", "20563", "34483", "37123", "38707", "61483", "90787", "93307", "103387", "166147", "133387", "222643", "210907", "158923", "253507", "296587" ]
[ "nonn" ]
26
0
5
[ "A002148", "A002149", "A003173", "A006203" ]
[ "M5407", "N2350" ]
N. J. A. Sloane
2022-08-06T07:17:56
oeisdata/seq/A002/A002149.seq
fbd2a72b57ec554956cefe79feccd28d
A002150
Numbers k for which the rank of the elliptic curve y^2 = x^3 - k is 0.
[ "1", "3", "5", "6", "8", "9", "10", "12", "14", "16", "17", "24", "27", "31", "32", "33", "34", "36", "37", "41", "42", "46", "52", "62", "64", "68", "69", "70", "73", "77", "78", "80", "82", "86", "88", "90", "92", "96", "97", "98", "99", "103", "105", "108", "111", "113", "114", "117", "119", "122", "125", "132", "133", "134", "136", "141", "142", "144", "145", "149", "154", "156", "158", "160" ]
[ "nonn" ]
35
0
5
[ "A002150", "A002152", "A002154", "A060951", "A179136", "A179137" ]
[ "M2391", "N0949" ]
N. J. A. Sloane
2023-10-14T17:21:55
oeisdata/seq/A002/A002150.seq
48550487be467a811a7edd171d3c28e9
A002151
Numbers k for which rank of the elliptic curve y^2 = x^3 + k is 0.
[ "1", "4", "6", "7", "13", "14", "16", "20", "21", "23", "25", "27", "29", "32", "34", "42", "45", "49", "51", "53", "59", "60", "64", "70", "75", "78", "81", "84", "85", "86", "87", "88", "90", "93", "95", "96", "104", "109", "114", "115", "116", "123", "124", "125", "135", "137", "140", "144", "153", "157", "158", "159", "160", "162", "165", "167", "173", "175", "176", "178" ]
[ "nonn" ]
38
0
5
[ "A002151", "A002153", "A002155", "A060748", "A060838", "A060950", "A060951", "A060952", "A060953", "A102833" ]
[ "M3271", "N1321" ]
N. J. A. Sloane
2023-10-14T17:22:28
oeisdata/seq/A002/A002151.seq
039a33cb96ad5836c6008e02a4649dbb
A002152
Numbers k for which the rank of the elliptic curve y^2 = x^3 - k is 1.
[ "2", "4", "7", "13", "15", "18", "19", "20", "21", "22", "23", "25", "28", "29", "30", "35", "38", "40", "43", "44", "45", "48", "49", "50", "51", "54", "55", "56", "57", "58", "59", "60", "63", "65", "66", "71", "72", "74", "75", "79", "81", "84", "85", "87", "91", "93", "94", "95", "100", "101", "102", "107", "110", "112", "115", "120", "123", "124", "126", "127", "128", "129", "130", "131", "135", "137" ]
[ "nonn" ]
32
0
5
null
[ "M1065", "N0401" ]
N. J. A. Sloane
2023-10-14T23:51:22
oeisdata/seq/A002/A002152.seq
a046772a7bd5a772bd45545e4e2300f0
A002153
Numbers k for which the rank of the elliptic curve y^2 = x^3 + k is 1.
[ "2", "3", "5", "8", "9", "10", "11", "12", "18", "19", "22", "26", "28", "30", "31", "33", "35", "36", "38", "39", "40", "41", "44", "46", "47", "48", "50", "52", "54", "55", "56", "58", "61", "62", "66", "67", "68", "69", "71", "72", "74", "76", "77", "80", "82", "83", "91", "92", "94", "97", "98", "99", "100", "102", "103", "105", "107", "108", "110", "111", "112", "117", "118", "119" ]
[ "nonn" ]
34
0
5
[ "A002151", "A002153", "A002155", "A060748", "A060838", "A060950", "A060951", "A060953", "A102833" ]
[ "M0682", "N0251" ]
N. J. A. Sloane
2024-07-06T12:02:28
oeisdata/seq/A002/A002153.seq
286be040101206c0f21fa1f1761e2242
A002154
Numbers k for which the rank of the elliptic curve y^2 = x^3 - k is 2.
[ "11", "26", "39", "47", "53", "61", "67", "76", "83", "89", "104", "106", "109", "116", "118", "121", "139", "147", "152", "155", "170", "186", "191", "200", "207", "211", "212", "214", "219", "222", "233", "236", "244", "249", "262", "277", "286", "291", "293", "294", "298", "299", "327", "329", "334", "355", "356", "364", "366", "368", "370", "371", "391", "393", "397" ]
[ "nonn" ]
32
0
5
null
[ "M4782", "N2040" ]
N. J. A. Sloane
2023-10-14T23:49:16
oeisdata/seq/A002/A002154.seq
a75593ae510a69488480be49ec90a18f
A002155
Numbers k for which the rank of the elliptic curve y^2 = x^3 + k is 2.
[ "15", "17", "24", "37", "43", "57", "63", "65", "73", "79", "89", "101", "106", "122", "129", "131", "142", "145", "148", "151", "161", "164", "168", "171", "186", "195", "197", "198", "204", "217", "222", "223", "225", "229", "232", "233", "248", "252", "260", "265", "268", "269", "281", "294", "295", "297", "303", "322", "331", "337", "347", "350", "353", "360", "366", "369", "373", "377", "381", "388", "389", "392", "404", "409", "412", "414", "433", "449", "464", "469", "481", "483", "485", "492" ]
[ "nonn" ]
35
0
5
[ "A002151", "A002153", "A002155", "A060748", "A060838", "A060950", "A060951", "A060953", "A102833" ]
[ "M4957", "N2125" ]
N. J. A. Sloane
2024-07-06T12:02:28
oeisdata/seq/A002/A002155.seq
7bdfad83167ddfd8fecee177b07d751b
A002156
Numbers k for which the rank of the elliptic curve y^2 = x^3 - k*x is 0.
[ "1", "3", "4", "8", "9", "11", "13", "16", "18", "19", "24", "27", "28", "29", "33", "35", "40", "43", "44", "48", "51", "59", "61", "63", "64", "67", "68", "75", "81", "83", "88", "91", "92", "93", "98", "100", "104", "107", "108", "109", "113", "115", "120", "121", "123", "125", "126", "128", "129", "131", "139", "144", "152", "153", "157", "163", "164", "168", "172", "173", "176", "177", "179", "180", "187", "189", "193", "195", "198", "200" ]
[ "nonn" ]
34
0
5
[ "A002156", "A060952" ]
[ "M2345", "N0926" ]
N. J. A. Sloane
2023-10-14T15:58:38
oeisdata/seq/A002/A002156.seq
fffaad6bd330d2849ba20ac35fc8d6a2
A002157
Numbers k for which the rank of the elliptic curve y^2 = x^3 - k*x is 1.
[ "2", "5", "6", "7", "10", "12", "14", "15", "20", "21", "22", "23", "25", "26", "30", "31", "32", "34", "36", "37", "38", "39", "41", "42", "45", "46", "47", "49", "50", "52", "53", "54", "55", "57", "58", "60", "62", "66", "69", "70", "71", "72", "73", "74", "76", "78", "79", "80", "84", "85", "86", "87", "89", "94", "95", "96", "99", "101", "102", "103", "105", "106", "110", "111", "112", "114", "116" ]
[ "nonn" ]
28
0
5
[ "A002157", "A060952" ]
[ "M1317", "N0505" ]
N. J. A. Sloane
2023-10-15T13:15:37
oeisdata/seq/A002/A002157.seq
6c26d6f98e6217e2272460834d9e92c4
A002158
Numbers k for which the rank of the elliptic curve y^2 = x^3 + k*x is 0.
[ "1", "2", "4", "6", "7", "10", "11", "12", "16", "17", "22", "23", "25", "26", "27", "30", "32", "36", "38", "41", "42", "43", "44", "45", "50", "52", "54", "57", "58", "59", "62", "64", "70", "71", "72", "74", "75", "76", "78", "81", "82", "86", "87", "91", "96", "97", "102", "103", "106", "107", "108", "110", "112", "116", "117", "118", "119", "122", "123", "130", "132", "134", "135", "137", "139", "140", "142", "146", "147", "151", "160", "161", "162", "166", "167", "169", "170", "172", "174", "176", "177", "182", "186", "187", "190", "192", "193", "194", "199" ]
[ "nonn" ]
29
0
5
[ "A002158", "A002159", "A060953", "A076329" ]
[ "M0981", "N0369" ]
N. J. A. Sloane
2023-10-14T16:00:10
oeisdata/seq/A002/A002158.seq
332d4b926a21369e3a5b1e08c2033b70
A002159
Numbers k for which the rank of the elliptic curve y^2 = x^3 + k*x is 1.
[ "3", "5", "8", "9", "13", "15", "18", "19", "20", "21", "24", "28", "29", "31", "35", "37", "40", "47", "48", "49", "51", "53", "56", "60", "61", "67", "69", "77", "79", "80", "83", "84", "85", "88", "90", "92", "93", "95", "98", "100", "101", "104", "109", "111", "115", "120", "121", "124", "125", "126", "127", "128", "131", "133", "136", "141", "143", "144", "148", "149", "152", "153", "156" ]
[ "nonn" ]
32
0
5
[ "A002159", "A060953", "A076329" ]
[ "M2429", "N0962" ]
N. J. A. Sloane
2023-10-14T16:01:22
oeisdata/seq/A002/A002159.seq
7e2c23e51921319ad5c73d3af659cb48
A002160
Nearest integer to Pi^n.
[ "1", "3", "10", "31", "97", "306", "961", "3020", "9489", "29809", "93648", "294204", "924269", "2903677", "9122171", "28658146", "90032221", "282844564", "888582403", "2791563950", "8769956796", "27551631843", "86556004192", "271923706894", "854273519914", "2683779414318", "8431341691876", "26487841119104", "83214007069230" ]
[ "nonn", "easy" ]
28
0
5
[ "A000227", "A001672", "A001673", "A002160" ]
[ "M2841", "N1142" ]
N. J. A. Sloane
2025-01-15T17:05:50
oeisdata/seq/A002/A002160.seq
0c5955e5c2c6093d041729e0dab8318a
A002161
Decimal expansion of square root of Pi.
[ "1", "7", "7", "2", "4", "5", "3", "8", "5", "0", "9", "0", "5", "5", "1", "6", "0", "2", "7", "2", "9", "8", "1", "6", "7", "4", "8", "3", "3", "4", "1", "1", "4", "5", "1", "8", "2", "7", "9", "7", "5", "4", "9", "4", "5", "6", "1", "2", "2", "3", "8", "7", "1", "2", "8", "2", "1", "3", "8", "0", "7", "7", "8", "9", "8", "5", "2", "9", "1", "1", "2", "8", "4", "5", "9", "1", "0", "3", "2", "1", "8", "1", "3", "7", "4", "9", "5", "0", "6", "5", "6", "7", "3", "8", "5", "4", "4", "6", "6", "5" ]
[ "nonn", "cons" ]
90
0
5
[ "A000796", "A002161", "A002388", "A068466", "A073005", "A073006", "A175379", "A175380", "A195907", "A203142", "A203145", "A220086" ]
[ "M4332", "N1814" ]
N. J. A. Sloane
2025-01-29T09:38:08
oeisdata/seq/A002/A002161.seq
dd62bce55dc30ec50a191382a529e0a0
A002162
Decimal expansion of the natural logarithm of 2.
[ "6", "9", "3", "1", "4", "7", "1", "8", "0", "5", "5", "9", "9", "4", "5", "3", "0", "9", "4", "1", "7", "2", "3", "2", "1", "2", "1", "4", "5", "8", "1", "7", "6", "5", "6", "8", "0", "7", "5", "5", "0", "0", "1", "3", "4", "3", "6", "0", "2", "5", "5", "2", "5", "4", "1", "2", "0", "6", "8", "0", "0", "0", "9", "4", "9", "3", "3", "9", "3", "6", "2", "1", "9", "6", "9", "6", "9", "4", "7", "1", "5", "6", "0", "5", "8", "6", "3", "3", "2", "6", "9", "9", "6", "4", "1", "8", "6", "8", "7" ]
[ "nonn", "cons" ]
321
0
5
[ "A002162", "A002939", "A008288", "A016730", "A142979", "A142992" ]
[ "M4074", "N1689" ]
N. J. A. Sloane
2025-03-31T04:50:15
oeisdata/seq/A002/A002162.seq
ca5c0778fc0b1e48ba0cf7231e228f34
A002163
Decimal expansion of square root of 5.
[ "2", "2", "3", "6", "0", "6", "7", "9", "7", "7", "4", "9", "9", "7", "8", "9", "6", "9", "6", "4", "0", "9", "1", "7", "3", "6", "6", "8", "7", "3", "1", "2", "7", "6", "2", "3", "5", "4", "4", "0", "6", "1", "8", "3", "5", "9", "6", "1", "1", "5", "2", "5", "7", "2", "4", "2", "7", "0", "8", "9", "7", "2", "4", "5", "4", "1", "0", "5", "2", "0", "9", "2", "5", "6", "3", "7", "8", "0", "4", "8", "9", "9", "4", "1", "4", "4", "1", "4", "4", "0", "8", "3", "7", "8", "7", "8", "2", "2", "7" ]
[ "nonn", "cons" ]
143
0
5
[ "A000032", "A000045", "A001622", "A002163", "A040002" ]
[ "M0293", "N0105" ]
N. J. A. Sloane
2025-03-16T08:18:26
oeisdata/seq/A002/A002163.seq
63d8aaa7d4db7c60b61c910e1765e57d
A002164
E.g.f.: high-temperature series in J/2kT for logarithm of partition function for the spin-1/2 linear (1D) Heisenberg model.
[ "0", "3", "-6", "-30", "360", "504", "-44016", "204048", "8261760", "-128422272", "-1816480512", "76562054400", "124207469568", "-51042832542720", "580686719698944", "36632422458820608", "-1141184282933624832", "-23612862502431719424", "1881307594631033978880", "253019693533000826880" ]
[ "sign" ]
25
0
5
[ "A002164", "A005399" ]
[ "M2601", "N1028" ]
N. J. A. Sloane
2022-02-24T08:19:17
oeisdata/seq/A002/A002164.seq
3c335ebe6fba8d1343fa6a1135b3df40
A002165
High temperature series for spin-1/2 Heisenberg specific heat on 3-dimensional f.c.c. lattice.
[ "0", "18", "108", "180", "-5040", "162000", "14565600", "563253408", "17544639744", "750412309248", "56646776913408", "4973976625190400", "421817449494804480" ]
[ "sign", "more" ]
34
0
5
[ "A002165", "A002166", "A002167", "A002169" ]
[ "M5057", "N2187" ]
N. J. A. Sloane
2023-10-09T11:30:03
oeisdata/seq/A002/A002165.seq
62ead277ccee71b172747f4bbdf70739
A002166
Susceptibility series for f.c.c. lattice.
[ "12", "240", "6624", "234720", "10208832", "526810176", "31434585600", "2127785025024", "161064469168128", "13483480670745600", "1237073710591635456", "123437675536945410048", "13308034251238570770432", "1541580126710320881573888" ]
[ "nonn", "more" ]
19
0
5
null
[ "M4877", "N2090" ]
N. J. A. Sloane
2021-10-21T01:07:13
oeisdata/seq/A002/A002166.seq
d7a5798cf22933082498417c3e262724
A002167
High temperature series for spin-1/2 Heisenberg specific heat on 3-dimensional b.c.c. lattice.
[ "0", "12", "-24", "168", "1440", "24480", "-297024", "28017216", "-533681664", "41156316672", "-503287538688", "53001415916544", "-1839416689004544", "246102905022713856", "-9001661201883684864" ]
[ "sign", "more" ]
34
0
5
[ "A002165", "A002167", "A002168", "A002169" ]
[ "M4830", "N2066" ]
N. J. A. Sloane
2023-10-09T11:30:21
oeisdata/seq/A002/A002167.seq
b9d316c2f45256b90da83c476a8ea988
A002168
High-temperature series for spin-1/2 Heisenberg susceptibility on b.c.c. lattice.
[ "1", "8", "96", "1664", "36800", "1008768", "32626560", "1221399040", "51734584320", "2459086364672", "129082499311616", "7432690738003968", "464885622793134080", "31456185663820136448", "2284815238218471260160", "177611252880786297913344" ]
[ "nonn", "more" ]
35
0
5
[ "A002167", "A002168" ]
[ "M4566", "N1943" ]
N. J. A. Sloane
2023-10-09T11:30:35
oeisdata/seq/A002/A002168.seq
f1dbe3dc34cdee2c676896535d8a4a7c
A002169
High temperature series for spin-1/2 Heisenberg specific heat on 3-dimensional simple cubic lattice.
[ "0", "9", "-18", "-162", "2520", "33192", "-1019088", "-7804944", "723961728", "2596523904", "-856142090496", "6383648984832", "1356696930401280", "-27667884260938752", "-2908030732698175488", "122264703581556307968", "7238339805811283361792" ]
[ "sign", "more" ]
43
0
5
[ "A002165", "A002167", "A002169", "A002170", "A002916", "A002922", "A005402" ]
[ "M4602", "N1963" ]
N. J. A. Sloane
2023-10-09T11:29:47
oeisdata/seq/A002/A002169.seq
f851b7bc27c5f6455648994bb3458761
A002170
High temperature series for spin-1/2 Heisenberg susceptibility on 3-dimensional simple cubic lattice.
[ "6", "48", "528", "7920", "149856", "3169248", "77046528", "2231209728", "71938507776", "2446325534208", "92886269386752", "3995799894239232", "180512165153832960", "8443006907441565696", "440473891771339603968", "25125124946211876962304", "1444211070518302580146176" ]
[ "nonn", "more" ]
31
0
5
[ "A002169", "A002170" ]
[ "M4257", "N1778" ]
N. J. A. Sloane
2023-10-09T11:30:53
oeisdata/seq/A002/A002170.seq
9f7206dbddf0fd20ccb65c92cf14aec2
A002171
Glaisher's chi numbers. a(n) = chi(4*n + 1).
[ "1", "-2", "-3", "6", "2", "0", "-1", "-10", "0", "-2", "10", "6", "-7", "14", "0", "-10", "-12", "0", "-6", "0", "9", "-4", "10", "0", "18", "-2", "0", "6", "-14", "-18", "-11", "12", "0", "0", "-22", "0", "20", "14", "-6", "22", "0", "0", "23", "-26", "0", "-18", "4", "0", "-14", "-2", "0", "-20", "0", "0", "0", "12", "3", "30", "26", "0", "-30", "14", "0", "0", "2", "30", "-28", "-26", "0", "-18", "10", "0", "-13", "-34", "0", "0", "20", "0", "26", "22", "0", "-6", "0", "6", "18", "0" ]
[ "sign", "easy", "nice" ]
96
0
5
[ "A000203", "A002171", "A002172", "A278720", "A279955" ]
[ "M0745", "N0280" ]
N. J. A. Sloane
2025-03-28T17:32:08
oeisdata/seq/A002/A002171.seq
640b0df29381c245d78e98f4140864ca
A002172
Glaisher's chi numbers chi(p) for p a prime of the form 4m+1.
[ "-2", "6", "2", "-10", "-2", "10", "14", "-10", "-6", "10", "18", "-2", "6", "-14", "-22", "14", "22", "-26", "-18", "-14", "-2", "30", "26", "-30", "2", "-26", "-18", "10", "-34", "26", "22", "18", "-10", "34", "14", "-34", "38", "2", "-6", "30", "34", "-14", "42", "38", "-10", "-22", "-42", "38", "26", "2", "-46", "10", "-34", "-38", "50", "-26", "-50", "-46", "-2", "-10", "30", "54", "-18", "-38", "50", "-34", "22", "10", "-50", "54", "46", "58", "-58", "50" ]
[ "nice", "sign" ]
34
0
5
[ "A002171", "A002172" ]
[ "M1556", "N0607" ]
N. J. A. Sloane
2017-10-02T03:08:09
oeisdata/seq/A002/A002172.seq
43e4271b7f181a8a34b0c2196530ad11
A002173
a(n) = Sum_{d|n, d == 1 mod 4} d^2 - Sum_{d|n, d == 3 mod 4} d^2.
[ "1", "1", "-8", "1", "26", "-8", "-48", "1", "73", "26", "-120", "-8", "170", "-48", "-208", "1", "290", "73", "-360", "26", "384", "-120", "-528", "-8", "651", "170", "-656", "-48", "842", "-208", "-960", "1", "960", "290", "-1248", "73", "1370", "-360", "-1360", "26", "1682", "384", "-1848", "-120", "1898", "-528", "-2208", "-8", "2353", "651", "-2320", "170" ]
[ "sign", "easy", "mult", "look" ]
76
0
5
[ "A002173", "A050450", "A050453", "A056594", "A120030" ]
[ "M4467", "N1895" ]
N. J. A. Sloane
2024-11-16T17:39:59
oeisdata/seq/A002/A002173.seq
972934baeb0e69f580d5acf5e06e94bc
A002174
Values taken by reduced totient function psi(n).
[ "1", "2", "4", "6", "8", "10", "12", "16", "18", "20", "22", "24", "28", "30", "32", "36", "40", "42", "44", "46", "48", "52", "54", "56", "58", "60", "64", "66", "70", "72", "78", "80", "82", "84", "88", "90", "92", "96", "100", "102", "104", "106", "108", "110", "112", "116", "120", "126", "128", "130", "132", "136", "138", "140", "144", "148", "150", "156", "160", "162", "164", "166", "168" ]
[ "nonn", "nice" ]
52
0
5
[ "A002174", "A002322", "A002396", "A143407", "A143408" ]
[ "M0986", "N0370" ]
N. J. A. Sloane
2017-07-03T11:43:02
oeisdata/seq/A002/A002174.seq
75672940bf9c04e51319bcc790708af8
A002175
Excess of number of divisors of 12n+1 of form 4k+1 over those of form 4k+3.
[ "1", "2", "3", "2", "1", "2", "2", "4", "2", "2", "1", "0", "4", "2", "3", "2", "2", "4", "0", "2", "2", "0", "4", "2", "3", "0", "2", "6", "2", "2", "1", "2", "0", "2", "2", "2", "2", "4", "2", "0", "4", "4", "4", "0", "1", "2", "0", "4", "2", "0", "2", "2", "5", "2", "0", "2", "2", "4", "4", "2", "0", "2", "4", "2", "2", "0", "4", "0", "0", "2", "3", "2", "4", "2", "0", "4", "0", "6", "2", "4", "1", "0", "4", "2", "2", "2", "2", "0", "0", "2", "0", "2", "8", "2", "2", "0", "2", "4", "0", "4", "2", "2", "3", "2", "2" ]
[ "nonn" ]
50
0
5
[ "A002175", "A002654", "A008441", "A008442", "A035154", "A035181", "A035184", "A112301", "A113406", "A113652", "A116604", "A121363", "A121450", "A122856", "A122864", "A122865", "A125061", "A125079", "A129447", "A129448", "A132004", "A134013", "A134015", "A138741", "A138746", "A138950", "A138952", "A163746", "A258210", "A258228", "A258256", "A258279", "A258292" ]
[ "M0416", "N0159" ]
N. J. A. Sloane
2025-02-16T08:32:25
oeisdata/seq/A002/A002175.seq
02eda36883e5a254592b28a6d1727747
A002176
a(n) = LCM of denominators of Cotesian numbers {C(n,k), 0 <= k <= n}.
[ "2", "6", "8", "90", "288", "840", "17280", "28350", "89600", "598752", "87091200", "63063000", "402361344000", "5003856000", "2066448384", "976924698750", "3766102179840000", "15209113920000", "5377993912811520000", "1646485441080480", "89903156428800000" ]
[ "nonn", "nice", "easy" ]
29
0
5
[ "A002176", "A002177", "A002179", "A100620", "A100621", "A100640", "A100641", "A100642" ]
[ "M1569", "N0612" ]
N. J. A. Sloane
2022-01-29T01:14:16
oeisdata/seq/A002/A002176.seq
b2f8d3a32c9db6b9220d9e256974ff14
A002177
Numerators of Cotesian numbers (not in lowest terms): A002176(n)*C(n,0).
[ "1", "1", "1", "7", "19", "41", "751", "989", "2857", "16067", "2171465", "1364651", "8181904909", "90241897", "35310023", "15043611773", "55294720874657", "203732352169", "69028763155644023", "19470140241329", "1022779523247467", "396760150748100749" ]
[ "nonn", "easy", "nice" ]
26
0
5
[ "A002176", "A002177", "A002179", "A100620", "A100621", "A100640", "A100641" ]
[ "M4364", "N1829" ]
N. J. A. Sloane
2022-01-29T01:14:29
oeisdata/seq/A002/A002177.seq
daf8bbca500e90b12f5c61e78468f0bc
A002178
Numerators of Cotesian numbers (not in lowest terms): A002176*C(n,1).
[ "1", "4", "3", "32", "75", "216", "3577", "5888", "15741", "106300", "13486539", "9903168", "56280729661", "710986864", "265553865", "127626606592", "450185515446285", "1848730221900", "603652082270808125", "187926090380000", "9545933933230947" ]
[ "nonn", "easy", "nice" ]
22
0
5
[ "A002176", "A002178", "A002179", "A100620", "A100621", "A100640", "A100641" ]
[ "M3216", "N1302" ]
N. J. A. Sloane
2022-01-29T01:14:03
oeisdata/seq/A002/A002178.seq
4004b7a264911236fc0040e0e222f0a6
A002179
Numerators of Cotesian numbers (not in lowest terms): A002176*C(n,2).
[ "0", "1", "3", "12", "50", "27", "1323", "-928", "1080", "-48525", "-3237113", "-7587864", "-31268252574", "-770720657", "-232936065", "-179731134720", "-542023437008852", "-3212744374395", "-926840515700222955", "-389358194177500", "-17858352159793110" ]
[ "sign", "easy" ]
23
0
5
[ "A002176", "A002177", "A002178", "A002179", "A100620", "A100621", "A100640", "A100641" ]
[ "M2921", "N1172" ]
N. J. A. Sloane
2023-10-14T21:15:32
oeisdata/seq/A002/A002179.seq
366fe2992a2110645344414930cecfe1
A002180
Values taken by the half-totient function phi(m)/2.
[ "1", "2", "3", "4", "5", "6", "8", "9", "10", "11", "12", "14", "15", "16", "18", "20", "21", "22", "23", "24", "26", "27", "28", "29", "30", "32", "33", "35", "36", "39", "40", "41", "42", "44", "46", "48", "50", "51", "52", "53", "54", "55", "56", "58", "60", "63", "64", "65", "66", "68", "69", "70", "72", "74", "75", "78", "80", "81", "82", "83", "84", "86", "88", "89", "90", "92" ]
[ "nonn", "nice", "easy" ]
42
0
5
[ "A002180", "A002202", "A079695" ]
[ "M0500", "N0180" ]
N. J. A. Sloane
2018-05-08T15:11:53
oeisdata/seq/A002/A002180.seq
e01f4262701eb91c8e9bfe68c39b259b
A002181
Least number k such that phi(k) = m, where m runs through the values (A002202) taken by phi.
[ "1", "3", "5", "7", "15", "11", "13", "17", "19", "25", "23", "35", "29", "31", "51", "37", "41", "43", "69", "47", "65", "53", "81", "87", "59", "61", "85", "67", "71", "73", "79", "123", "83", "129", "89", "141", "97", "101", "103", "159", "107", "109", "121", "113", "177", "143", "127", "255", "131", "161", "137", "139", "213", "185", "149", "151", "157", "187", "163", "249", "167", "203", "173" ]
[ "nonn" ]
44
0
5
[ "A002181", "A002202", "A006511", "A058277", "A061026" ]
[ "M2421", "N0957" ]
N. J. A. Sloane
2023-10-10T16:26:10
oeisdata/seq/A002/A002181.seq
b2d16bcd044c67634c1f2adbd32b87ca
A002182
Highly composite numbers: numbers n where d(n), the number of divisors of n (A000005), increases to a record.
[ "1", "2", "4", "6", "12", "24", "36", "48", "60", "120", "180", "240", "360", "720", "840", "1260", "1680", "2520", "5040", "7560", "10080", "15120", "20160", "25200", "27720", "45360", "50400", "55440", "83160", "110880", "166320", "221760", "277200", "332640", "498960", "554400", "665280", "720720", "1081080", "1441440", "2162160" ]
[ "nonn", "nice" ]
296
0
5
[ "A000005", "A002110", "A002182", "A002183", "A002201", "A002473", "A002808", "A003418", "A004394", "A006218", "A025487", "A037992", "A068507", "A072938", "A094348", "A106037", "A108602", "A108951", "A112778", "A112779", "A112780", "A112781", "A126098", "A161184", "A199337", "A261100", "A279930", "A329902", "A352418" ]
[ "M1025", "N0385" ]
N. J. A. Sloane
2025-02-16T08:32:25
oeisdata/seq/A002/A002182.seq
2be28d504a56a3f9726d9c8249d2f262
A002183
Number of divisors of n-th highly composite number.
[ "1", "2", "3", "4", "6", "8", "9", "10", "12", "16", "18", "20", "24", "30", "32", "36", "40", "48", "60", "64", "72", "80", "84", "90", "96", "100", "108", "120", "128", "144", "160", "168", "180", "192", "200", "216", "224", "240", "256", "288", "320", "336", "360", "384", "400", "432", "448", "480", "504", "512", "576", "600", "640", "672", "720", "768", "800", "864", "896" ]
[ "nonn", "nice" ]
70
0
5
[ "A000005", "A002182", "A002183", "A002201", "A006218", "A061799", "A070319", "A243220", "A261100", "A329605", "A329902" ]
[ "M0546", "N0196" ]
N. J. A. Sloane
2025-02-16T08:32:25
oeisdata/seq/A002/A002183.seq
64c4bcf739b6f2cf761ed86f69111e43
A002184
a(n) = least primitive factor of 2^(2n+1) - 1.
[ "1", "7", "31", "127", "73", "23", "8191", "151", "131071", "524287", "337", "47", "601", "262657", "233", "2147483647", "599479", "71", "223", "79", "13367", "431", "631", "2351", "4432676798593", "103", "6361", "881", "32377", "179951", "2305843009213693951", "92737", "145295143558111", "193707721", "10052678938039", "228479", "439", "100801", "581283643249112959", "2687", "2593", "167" ]
[ "nonn" ]
33
0
5
[ "A002184", "A002588", "A112927" ]
[ "M4400", "N1855" ]
N. J. A. Sloane
2022-04-26T21:48:40
oeisdata/seq/A002/A002184.seq
58ca3dfd4dbe4ded482549d6910b86aa
A002185
Smallest primitive factor of 2^(2n+1) + 1.
[ "3", "1", "11", "43", "19", "683", "2731", "331", "43691", "174763", "5419", "2796203", "251", "87211", "59", "715827883", "67", "281", "1777", "22366891", "83", "2932031007403", "18837001", "283", "4363953127297", "307", "107", "2971", "571", "2833", "768614336404564651", "77158673929", "131", "7327657", "139", "56409643", "1753" ]
[ "nonn" ]
27
0
5
[ "A002185", "A002589", "A086257", "A112927" ]
[ "M2233", "N0885" ]
N. J. A. Sloane
2025-02-25T23:16:39
oeisdata/seq/A002/A002185.seq
de215bd8aa246a1294edb2155e64ca2e
A002186
Sprague-Grundy values for the game of Kayles (octal games .77 and .771).
[ "0", "1", "2", "3", "1", "4", "3", "2", "1", "4", "2", "6", "4", "1", "2", "7", "1", "4", "3", "2", "1", "4", "6", "7", "4", "1", "2", "8", "5", "4", "7", "2", "1", "8", "6", "7", "4", "1", "2", "3", "1", "4", "7", "2", "1", "8", "2", "7", "4", "1", "2", "8", "1", "4", "7", "2", "1", "4", "2", "7", "4", "1", "2", "8", "1", "4", "7", "2", "1", "8", "6", "7", "4", "1", "2", "8", "1", "4", "7", "2", "1", "8", "2", "7", "4", "1", "2", "8", "1", "4", "7", "2", "1", "8", "2", "7", "4", "1", "2", "8", "1", "4", "7", "2", "1" ]
[ "nonn", "nice", "easy" ]
41
0
5
[ "A002186", "A071074", "A071434" ]
[ "M0410", "N0156" ]
N. J. A. Sloane
2022-01-29T01:13:29
oeisdata/seq/A002/A002186.seq
72fdf2938830a8b69d84b8c15a27ccac
A002187
Sprague-Grundy values for Dawson's Chess (octal game .137).
[ "0", "1", "1", "2", "0", "3", "1", "1", "0", "3", "3", "2", "2", "4", "0", "5", "2", "2", "3", "3", "0", "1", "1", "3", "0", "2", "1", "1", "0", "4", "5", "2", "7", "4", "0", "1", "1", "2", "0", "3", "1", "1", "0", "3", "3", "2", "2", "4", "4", "5", "5", "2", "3", "3", "0", "1", "1", "3", "0", "2", "1", "1", "0", "4", "5", "3", "7", "4", "8", "1", "1", "2", "0", "3", "1", "1", "0", "3", "3", "2", "2", "4", "4", "5", "5", "9", "3", "3", "0", "1", "1", "3", "0", "2", "1", "1", "0", "4", "5", "3", "7", "4", "8", "1", "1", "2", "0", "3", "1", "1", "0", "3", "3", "2", "2", "4", "4", "5", "5", "9", "3", "3", "0", "1", "1", "3", "0", "2", "1", "1", "0", "4" ]
[ "nonn", "nice", "easy" ]
27
0
5
null
[ "M0025", "N0007" ]
N. J. A. Sloane
2020-07-06T16:55:26
oeisdata/seq/A002/A002187.seq
ce75a6142e452513d8f400a3805c1e53
A002188
Sprague-Grundy value for Grundy's game when starting with n tokens.
[ "0", "0", "0", "1", "0", "2", "1", "0", "2", "1", "0", "2", "1", "3", "2", "1", "3", "2", "4", "3", "0", "4", "3", "0", "4", "3", "0", "4", "1", "2", "3", "1", "2", "4", "1", "2", "4", "1", "2", "4", "1", "5", "4", "1", "5", "4", "1", "5", "4", "1", "0", "2", "1", "0", "2", "1", "5", "2", "1", "3", "2", "1", "3", "2", "4", "3", "2", "4", "3", "2", "4", "3", "2", "4", "3", "2", "4", "3", "2", "4", "5", "2", "4", "5", "2", "4", "3", "7", "4", "3", "7", "4", "3", "7", "4", "3", "5", "2", "3", "5", "2", "3", "5", "2", "3" ]
[ "nonn", "easy", "look", "nice" ]
79
0
5
[ "A002188", "A036685", "A180120", "A180121" ]
[ "M0044", "N0014" ]
N. J. A. Sloane
2025-03-23T01:12:37
oeisdata/seq/A002/A002188.seq
154a406a4ae871f1c5fa094c5c74cbce
A002189
Pseudo-squares: a(n) = the least nonsquare positive integer which is 1 mod 8 and is a (nonzero) quadratic residue modulo the first n odd primes.
[ "17", "73", "241", "1009", "2641", "8089", "18001", "53881", "87481", "117049", "515761", "1083289", "3206641", "3818929", "9257329", "22000801", "48473881", "48473881", "175244281", "427733329", "427733329", "898716289", "2805544681", "2805544681", "2805544681" ]
[ "nonn", "nice" ]
68
0
5
[ "A002189", "A018883", "A045535", "A090983" ]
[ "M5039", "N2175", "N2326" ]
N. J. A. Sloane
2025-02-16T08:32:25
oeisdata/seq/A002/A002189.seq
c70ad6b20da2742e54b604043a0926be
A002190
Sum_{n>=0} a(n)*x^n/n!^2 = -log(BesselJ(0,2*sqrt(x))).
[ "0", "1", "1", "4", "33", "456", "9460", "274800", "10643745", "530052880", "32995478376", "2510382661920", "229195817258100", "24730000147369440", "3113066087894608560", "452168671458789789504", "75059305956331837485345", "14121026957032156557396000", "2988687741694684876495689040" ]
[ "nonn", "nice" ]
87
0
5
[ "A002190", "A101981", "A115368", "A217940" ]
[ "M3651", "N1484" ]
N. J. A. Sloane
2024-12-26T12:28:54
oeisdata/seq/A002/A002190.seq
9d9745e7586cee16eb9835045a0c1e62
A002191
Possible values for sum of divisors of n.
[ "1", "3", "4", "6", "7", "8", "12", "13", "14", "15", "18", "20", "24", "28", "30", "31", "32", "36", "38", "39", "40", "42", "44", "48", "54", "56", "57", "60", "62", "63", "68", "72", "74", "78", "80", "84", "90", "91", "93", "96", "98", "102", "104", "108", "110", "112", "114", "120", "121", "124", "126", "127", "128", "132", "133", "138", "140", "144", "150", "152", "156" ]
[ "nonn" ]
67
0
5
[ "A000203", "A002191", "A007369", "A007609", "A054973", "A083531", "A175192", "A211347" ]
[ "M2318", "N0916" ]
N. J. A. Sloane
2023-10-14T16:05:00
oeisdata/seq/A002/A002191.seq
ae31dd4ef4c1075a7556056ffa1922fd
A002192
Least integer with A000203(a(n)) = A002191(n), where A002191 = range of the sum-of-divisors function A000203.
[ "1", "2", "3", "5", "4", "7", "6", "9", "13", "8", "10", "19", "14", "12", "29", "16", "21", "22", "37", "18", "27", "20", "43", "33", "34", "28", "49", "24", "61", "32", "67", "30", "73", "45", "57", "44", "40", "36", "50", "42", "52", "101", "63", "85", "109", "91", "74", "54" ]
[ "nonn", "nice", "easy" ]
39
0
5
[ "A000203", "A002191", "A002192", "A007609", "A007626", "A051444", "A054973", "A085790" ]
[ "M0604", "N0218" ]
N. J. A. Sloane
2024-12-26T03:52:37
oeisdata/seq/A002/A002192.seq
28b107025e0f7b6a52c8bbb974e06200
A002193
Decimal expansion of square root of 2.
[ "1", "4", "1", "4", "2", "1", "3", "5", "6", "2", "3", "7", "3", "0", "9", "5", "0", "4", "8", "8", "0", "1", "6", "8", "8", "7", "2", "4", "2", "0", "9", "6", "9", "8", "0", "7", "8", "5", "6", "9", "6", "7", "1", "8", "7", "5", "3", "7", "6", "9", "4", "8", "0", "7", "3", "1", "7", "6", "6", "7", "9", "7", "3", "7", "9", "9", "0", "7", "3", "2", "4", "7", "8", "4", "6", "2", "1", "0", "7", "0", "3", "8", "8", "5", "0", "3", "8", "7", "5", "3", "4", "3", "2", "7", "6", "4", "1", "5", "7" ]
[ "nonn", "cons" ]
278
0
5
[ "A001790", "A002193", "A004539", "A005187", "A010503", "A020807" ]
[ "M3195", "N1291" ]
N. J. A. Sloane
2025-03-15T14:44:01
oeisdata/seq/A002/A002193.seq
9e634fd93df8bcc94a18093e21e53dd3
A002194
Decimal expansion of sqrt(3).
[ "1", "7", "3", "2", "0", "5", "0", "8", "0", "7", "5", "6", "8", "8", "7", "7", "2", "9", "3", "5", "2", "7", "4", "4", "6", "3", "4", "1", "5", "0", "5", "8", "7", "2", "3", "6", "6", "9", "4", "2", "8", "0", "5", "2", "5", "3", "8", "1", "0", "3", "8", "0", "6", "2", "8", "0", "5", "5", "8", "0", "6", "9", "7", "9", "4", "5", "1", "9", "3", "3", "0", "1", "6", "9", "0", "8", "8", "0", "0", "0", "3", "7", "0", "8", "1", "1", "4", "6", "1", "8", "6", "7", "5", "7", "2", "4", "8", "5", "7", "5", "6", "7", "5", "6", "2", "6", "1", "4", "1", "4", "1", "5", "4" ]
[ "cons", "nonn", "easy" ]
157
0
5
[ "A002194", "A010469", "A010527", "A040001", "A131595", "A220335" ]
[ "M4326", "N1812" ]
N. J. A. Sloane
2025-03-15T14:44:09
oeisdata/seq/A002/A002194.seq
a477a54027a01fe2327bff322c3e1a2f
A002195
Numerators of coefficients for numerical integration.
[ "1", "-1", "11", "-191", "2497", "-14797", "92427157", "-36740617", "61430943169", "-23133945892303", "16399688681447", "-3098811853954483", "312017413700271173731", "-69213549869569446541", "53903636903066465730877", "-522273861988577772410712439", "644962185719868974672135609261" ]
[ "sign", "frac" ]
59
0
5
[ "A000367", "A002195", "A002196", "A006954", "A008955", "A009445" ]
[ "M4809", "N2056" ]
N. J. A. Sloane
2024-06-01T11:44:34
oeisdata/seq/A002/A002195.seq
219c6553ae0244e522ac1051e1a610f1
A002196
Denominators of coefficients for numerical integration.
[ "1", "12", "720", "60480", "3628800", "95800320", "2615348736000", "4483454976000", "32011868528640000", "51090942171709440000", "152579284313702400000", "120866571766215475200000", "50814724101952310083584000000" ]
[ "nonn", "frac" ]
47
0
5
[ "A000367", "A002195", "A002196", "A006954", "A008955", "A009445", "A160474", "S1" ]
[ "M4880", "N2093" ]
N. J. A. Sloane
2023-06-11T12:12:01
oeisdata/seq/A002/A002196.seq
a78dbca276dab9df3b7c44476dc28640
A002197
Numerators of coefficients for numerical integration.
[ "1", "17", "367", "27859", "1295803", "5329242827", "25198857127", "11959712166949", "11153239773419941", "31326450596954510807", "3737565567167418110609", "2102602044094540855003573", "189861334343507894443216783" ]
[ "nonn" ]
51
0
5
[ "A000367", "A002197", "A002198", "A002671", "A006954", "A008956", "A160487", "S1" ]
[ "M5049", "N2183" ]
N. J. A. Sloane
2019-03-13T11:33:31
oeisdata/seq/A002/A002197.seq
37a8e95194d954159f97ffd3e9827ffe
A002198
Denominators of coefficients for numerical integration.
[ "24", "5760", "967680", "464486400", "122624409600", "2678117105664000", "64274810535936000", "149852129706639360000", "669659197233029971968000", "8839501403475995629977600000", "4879404774718749587747635200000" ]
[ "nonn" ]
31
0
5
[ "A000367", "A002197", "A002198", "A002671", "A006954", "A008956", "A160487", "S1" ]
[ "M5178", "N2250" ]
N. J. A. Sloane
2019-03-13T11:33:36
oeisdata/seq/A002/A002198.seq
812dc1d659c6d41d28e5581b5d0912b8
A002199
Least negative primitive root of n-th prime.
[ "1", "1", "2", "2", "3", "2", "3", "4", "2", "2", "7", "2", "6", "9", "2", "2", "3", "2", "4", "2", "5", "2", "3", "3", "5", "2", "2", "3", "6", "3", "9", "3", "3", "4", "2", "5", "5", "4", "2", "2", "3", "2", "2", "5", "2", "2", "4", "9", "3", "6", "3", "2", "7", "3", "3", "2", "2", "2", "5", "3", "6", "2", "7", "2", "10", "2", "5", "10", "3", "2", "3", "2", "2", "2", "4", "2", "2", "5", "3", "21", "3", "2", "5", "5", "5", "3", "3", "13", "2", "2", "3", "2", "2", "4", "5", "2", "2", "3", "4", "2", "4", "2", "3" ]
[ "nonn" ]
32
0
5
[ "A001918", "A002199", "A060749" ]
[ "M0245", "N0085" ]
N. J. A. Sloane
2024-12-19T05:33:24
oeisdata/seq/A002/A002199.seq
7ddf9fd25f1a3193b25cde18989718ca
A002200
Primes of the form 2^q*3^r*5^s + 1.
[ "2", "3", "5", "7", "11", "13", "17", "19", "31", "37", "41", "61", "73", "97", "101", "109", "151", "163", "181", "193", "241", "251", "257", "271", "401", "433", "487", "541", "577", "601", "641", "751", "769", "811", "1153", "1201", "1297", "1459", "1601", "1621", "1801", "2161", "2251", "2593", "2917", "3001", "3457", "3889", "4001", "4051", "4801", "4861" ]
[ "nonn" ]
39
0
5
[ "A002200", "A005109", "A077497", "A174144" ]
[ "M0654", "N0242" ]
N. J. A. Sloane
2023-10-28T11:24:53
oeisdata/seq/A002/A002200.seq
74db7b1350c0263dbb4b71e0e7e75e87