seq_id
stringlengths
7
7
seq_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
0
0
offset_b
int64
5
5
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-25 01:21:50
filename
stringlengths
29
29
hash
stringlengths
32
32
A002301
a(n) = n! / 3.
[ "2", "8", "40", "240", "1680", "13440", "120960", "1209600", "13305600", "159667200", "2075673600", "29059430400", "435891456000", "6974263296000", "118562476032000", "2134124568576000", "40548366802944000", "810967336058880000", "17030314057236480000", "374666909259202560000" ]
[ "nonn", "easy" ]
52
0
5
null
[ "M1861", "N0737" ]
N. J. A. Sloane
2018-08-23T10:26:38
oeisdata/seq/A002/A002301.seq
ca96ae972477f2037c70676c917a7264
A002302
Generalized tangent numbers.
[ "2", "16", "136", "1232", "12096", "129024", "1491840", "18627840", "250145280", "3597834240", "55212917760", "900842342400", "15575854694400", "284549942476800", "5477586392678400", "110832202594713600", "2351805274570752000" ]
[ "nonn" ]
20
0
5
null
[ "M2093", "N0828" ]
N. J. A. Sloane
2024-09-15T14:12:03
oeisdata/seq/A002/A002302.seq
d82b2be3c400b2873957886f30e357e7
A002303
Generalized tangent numbers.
[ "16", "272", "3968", "56320", "814080", "12207360", "191431680", "3149752320", "54428774400", "987559372800", "18797300121600", "374883257548800", "7822865085235200", "170560590520320000", "3879770715684864000", "91945674412720128000" ]
[ "nonn" ]
30
0
5
[ "A002303", "A059419" ]
[ "M5023", "N2166" ]
N. J. A. Sloane
2024-09-15T14:41:05
oeisdata/seq/A002/A002303.seq
260a8cfba9ed5842f6a9a6889037fc18
A002304
Numerators of coefficients in asymptotic expansion of (2/Pi)*Integral_{0..oo} (sin x / x)^n dx.
[ "1", "-3", "-13", "27", "52791", "482427", "-124996631", "-5270328789", "-7479063506161", "6921977624613", "10703530420192887741", "-31023547697719285017327", "4502691897987538544182239", "-201974203900639732887399429", "632827656013898657214770949567", "-1732419272534268233524732551" ]
[ "sign", "frac" ]
29
0
5
[ "A002297", "A002298", "A002304", "A002305" ]
[ "M2939", "N1182" ]
N. J. A. Sloane
2024-04-05T11:10:14
oeisdata/seq/A002/A002304.seq
c66f2c0d83abfff2691703ba6c18b663
A002305
Denominators of coefficients in asymptotic expansion of (2/Pi)*Integral_{0..oo} (sin x / x)^n dx.
[ "1", "20", "1120", "3200", "3942400", "66560000", "10035200000", "136478720000", "268461670400000", "56518246400000", "23658537943040000000", "51431604224000000", "70718455808000000", "102541760921600000", "23292891381760000000", "8879987916800000", "144993552704000000", "1072952290009600000" ]
[ "nonn", "frac" ]
36
0
5
[ "A002297", "A002298", "A002304", "A002305" ]
[ "M5106", "N2211" ]
N. J. A. Sloane
2024-04-05T11:10:14
oeisdata/seq/A002/A002305.seq
9ce67db079eb06dbbac2b57a408a58cd
A002306
Numerators of Hurwitz numbers H_n (coefficients in expansion of Weierstrass P-function).
[ "1", "3", "567", "43659", "392931", "1724574159", "2498907956391", "1671769422825579", "88417613265912513891", "21857510418232875496803", "2296580829004860630685299", "3133969138162958884235052785487", "6456973729353591041508572318079423" ]
[ "nonn", "easy", "nice", "frac" ]
76
0
5
[ "A002306", "A047817" ]
[ "M3179", "N1288" ]
N. J. A. Sloane
2023-10-28T11:24:57
oeisdata/seq/A002/A002306.seq
02e11064885cc4d1e90a9814a9f722c3
A002307
Consecutive quadratic residues mod p: a(n) is the maximal number of positive reduced quadratic residues which appear consecutively for n-th prime.
[ "1", "1", "1", "2", "3", "2", "2", "4", "4", "4", "4", "4", "3", "5", "4", "3", "5", "5", "6", "6", "4", "6", "7", "4", "4", "7", "7", "6", "5", "5", "7", "8", "6", "5", "4", "7", "6", "6", "6", "6", "6", "6", "6", "4", "7", "6", "7", "7", "7", "5", "6", "6", "6", "7", "6", "7", "8", "7", "10", "6", "9", "9", "7", "10", "5", "5", "8", "5", "8", "6", "6", "8", "9", "6", "8", "8", "8", "5", "7", "6", "8", "7", "6", "7", "10", "8", "8", "5", "8", "8", "11", "12", "8", "8", "10", "8", "9", "8", "10", "7", "9", "9", "10", "10", "7", "6", "9" ]
[ "nonn", "easy", "nice" ]
27
0
5
[ "A002307", "A002308", "A048280", "A097159" ]
[ "M0418", "N0160" ]
N. J. A. Sloane
2021-12-22T00:09:26
oeisdata/seq/A002/A002307.seq
b395a4e66489156f8f3864c169459e46
A002308
Consecutive quadratic nonresidues mod p.
[ "0", "1", "2", "2", "3", "4", "3", "4", "4", "3", "4", "4", "5", "5", "4", "6", "5", "6", "6", "6", "4", "6", "7", "6", "6", "5", "7", "6", "10", "4", "7", "8", "5", "5", "6", "7", "5", "6", "6", "5", "6", "6", "6", "5", "5", "6", "7", "7", "7", "6", "7", "6", "5", "7", "6", "7", "9", "7", "7", "7", "9", "5", "7", "10", "7", "7", "8", "7", "8", "6", "8", "8", "9", "5", "8", "8", "5", "8", "9", "7", "8", "12", "6", "7", "10", "8", "9", "9", "7", "8", "11", "12", "8", "8", "10", "8", "7", "6", "10", "10", "9", "7", "10", "9", "7", "6", "9" ]
[ "nonn", "easy", "nice" ]
32
0
5
[ "A002307", "A002308", "A129201" ]
[ "M0274", "N0097" ]
N. J. A. Sloane
2021-12-22T00:09:01
oeisdata/seq/A002/A002308.seq
8359e7f1cd1e4d8530877167ca0b72ca
A002309
Sum of fourth powers of first n odd numbers.
[ "1", "82", "707", "3108", "9669", "24310", "52871", "103496", "187017", "317338", "511819", "791660", "1182285", "1713726", "2421007", "3344528", "4530449", "6031074", "7905235", "10218676", "13044437", "16463238", "20563863", "25443544", "31208345", "37973546", "45864027", "55014652", "65570653", "77688014" ]
[ "nonn", "nice", "easy" ]
69
0
5
[ "A000027", "A000290", "A000447", "A002309", "A002593", "A005408" ]
[ "M5359", "N2327" ]
N. J. A. Sloane
2024-10-02T14:22:52
oeisdata/seq/A002/A002309.seq
cd445f43e348444b5a42fc0eb1719a58
A002310
a(n) = 5*a(n-1) - a(n-2), with a(0) = 1 and a(1) = 2.
[ "1", "2", "9", "43", "206", "987", "4729", "22658", "108561", "520147", "2492174", "11940723", "57211441", "274116482", "1313370969", "6292738363", "30150320846", "144458865867", "692144008489", "3316261176578", "15889161874401", "76129548195427", "364758579102734", "1747663347318243" ]
[ "nonn", "easy" ]
60
0
5
[ "A002310", "A002320", "A004254", "A049310", "A049685", "A054477", "A107905" ]
null
Joe Keane (jgk(AT)jgk.org)
2024-09-22T17:46:55
oeisdata/seq/A002/A002310.seq
344d3481f1f3faf7b70997c297681e65
A002311
Numbers k such that the k-th tetrahedral number is the sum of 2 tetrahedral numbers.
[ "4", "15", "55", "58", "74", "109", "110", "119", "140", "175", "245", "294", "418", "435", "452", "474", "492", "528", "535", "550", "562", "588", "644", "688", "702", "714", "740", "747", "753", "818", "868", "908", "918", "1098", "1158", "1220", "1241", "1428", "1434", "1444", "1450", "1645", "1708", "1738", "1786", "1868", "2170", "2183", "2220", "2256" ]
[ "nonn", "easy", "nice" ]
45
0
5
[ "A000292", "A002311", "A010330", "A034404" ]
[ "M3498", "N1419" ]
N. J. A. Sloane
2023-12-27T13:19:27
oeisdata/seq/A002/A002311.seq
de5ef525f5f566e483fa6ab0c343c959
A002312
Arc-cotangent reducible numbers or non-Størmer numbers: largest prime factor of k^2 + 1 is less than 2*k.
[ "3", "7", "8", "13", "17", "18", "21", "30", "31", "32", "38", "41", "43", "46", "47", "50", "55", "57", "68", "70", "72", "73", "75", "76", "83", "91", "93", "98", "99", "100", "105", "111", "112", "117", "119", "122", "123", "128", "129", "132", "133", "142", "144", "155", "157", "162", "172", "173", "174", "177", "182", "183", "185", "187", "189", "191", "192", "193", "200" ]
[ "nonn", "nice" ]
53
0
5
[ "A002312", "A005528", "A006530", "A071931" ]
[ "M2613", "N1033" ]
N. J. A. Sloane
2025-03-22T06:36:19
oeisdata/seq/A002/A002312.seq
beee1f2b5ee36217d0c02ac5c124fe1e
A002313
Primes congruent to 1 or 2 modulo 4; or, primes of form x^2 + y^2; or, -1 is a square mod p.
[ "2", "5", "13", "17", "29", "37", "41", "53", "61", "73", "89", "97", "101", "109", "113", "137", "149", "157", "173", "181", "193", "197", "229", "233", "241", "257", "269", "277", "281", "293", "313", "317", "337", "349", "353", "373", "389", "397", "401", "409", "421", "433", "449", "457", "461", "509", "521", "541", "557", "569", "577", "593", "601", "613", "617" ]
[ "nonn", "easy", "nice" ]
146
0
5
[ "A002144", "A002313", "A002330", "A002331", "A008784", "A033203", "A038873", "A038874", "A045331", "A057129", "A084163", "A084165", "A137351" ]
[ "M1430", "N0564" ]
N. J. A. Sloane
2024-02-01T05:04:22
oeisdata/seq/A002/A002313.seq
acf50fabaae2bf370f92600c0f6f5965
A002314
Minimal integer square root of -1 modulo p, where p is the n-th prime of the form 4k+1.
[ "2", "5", "4", "12", "6", "9", "23", "11", "27", "34", "22", "10", "33", "15", "37", "44", "28", "80", "19", "81", "14", "107", "89", "64", "16", "82", "60", "53", "138", "25", "114", "148", "136", "42", "104", "115", "63", "20", "143", "29", "179", "67", "109", "48", "208", "235", "52", "118", "86", "24", "77", "125", "35", "194", "154", "149", "106", "58", "26", "135", "96", "353", "87", "39" ]
[ "nonn" ]
60
0
5
[ "A002144", "A002313", "A002314", "A005528", "A047818", "A057756", "A152676", "A152680" ]
[ "M1314", "N0503" ]
N. J. A. Sloane
2024-10-09T04:33:03
oeisdata/seq/A002/A002314.seq
c5042ac8cc1d06f089023324a803511d
A002315
NSW numbers: a(n) = 6*a(n-1) - a(n-2); also a(n)^2 - 2*b(n)^2 = -1 with b(n) = A001653(n+1).
[ "1", "7", "41", "239", "1393", "8119", "47321", "275807", "1607521", "9369319", "54608393", "318281039", "1855077841", "10812186007", "63018038201", "367296043199", "2140758220993", "12477253282759", "72722761475561", "423859315570607", "2470433131948081", "14398739476117879", "83922003724759193" ]
[ "nonn", "easy", "nice" ]
459
0
5
[ "A000045", "A000129", "A001108", "A001109", "A001333", "A001653", "A002203", "A002315", "A002878", "A003499", "A004146", "A026003", "A053141", "A055997", "A057084", "A065513", "A075870", "A077444", "A084068", "A088014", "A088165", "A097775", "A100047", "A108051", "A119915", "A125650", "A125651", "A125652", "A127675", "A192425", "A301383", "A358682" ]
[ "M4423", "N1869" ]
N. J. A. Sloane
2025-02-16T08:32:25
oeisdata/seq/A002/A002315.seq
d39a2262e50bfcec8cbede443052ae7c
A002316
Related to Bernoulli numbers.
[ "1", "5", "26", "97", "265", "362", "-1351", "-13775", "-70226", "-262087", "-716035", "-978122", "3650401", "37220045", "189750626", "708158977", "1934726305", "2642885282", "-9863382151", "-100568547815", "-512706121226", "-1913445293767", "-5227629760075", "-7141075053842" ]
[ "sign", "easy" ]
36
0
5
[ "A002316", "A002317" ]
[ "M3941", "N1624" ]
N. J. A. Sloane
2017-08-25T03:01:46
oeisdata/seq/A002/A002316.seq
b0dbd06b47e42c01118782eba0865e34
A002317
Related to Genocchi numbers.
[ "2", "5", "7", "-26", "-265", "-1351", "-5042", "-13775", "-18817", "70226", "716035", "3650401", "13623482", "37220045", "50843527", "-189750626", "-1934726305", "-9863382151", "-36810643322", "-100568547815", "-137379191137", "512706121226", "5227629760075", "26650854921601" ]
[ "sign", "easy" ]
37
0
5
[ "A002316", "A002317" ]
[ "M1341", "N0514" ]
N. J. A. Sloane
2023-10-15T00:00:03
oeisdata/seq/A002/A002317.seq
fec444957b3efe37beeef69c0e144ca9
A002318
Expansion of (1/theta_4(q)^2 -1)/4 in powers of q.
[ "1", "3", "8", "19", "42", "88", "176", "339", "633", "1150", "2040", "3544", "6042", "10128", "16720", "27219", "43746", "69483", "109160", "169758", "261504", "399272", "604560", "908248", "1354427", "2005710", "2950544", "4313232", "6267642", "9055856", "13013440", "18603603", "26463168", "37464230" ]
[ "nonn" ]
34
0
5
[ "A001934", "A002318" ]
[ "M2736", "N1098" ]
N. J. A. Sloane
2021-12-20T20:28:12
oeisdata/seq/A002/A002318.seq
8f396a6022ebb0f952ecb9a1bcf1934b
A002319
Order of largest (finite) group with n conjugacy classes.
[ "1", "2", "6", "12", "60", "168", "360", "720", "2520", "20160", "29120", "443520", "1944", "126000" ]
[ "nonn", "nice", "more" ]
27
0
5
[ "A002319", "A003061", "A006379", "A073043" ]
[ "M1592", "N0621" ]
N. J. A. Sloane
2022-01-29T01:08:46
oeisdata/seq/A002/A002319.seq
e0a0c771bfc2eeb5e9fe4b6e91e3a1e3
A002320
a(n) = 5*a(n-1) - a(n-2).
[ "1", "3", "14", "67", "321", "1538", "7369", "35307", "169166", "810523", "3883449", "18606722", "89150161", "427144083", "2046570254", "9805707187", "46981965681", "225104121218", "1078538640409", "5167589080827", "24759406763726", "118629444737803" ]
[ "nonn", "easy" ]
41
0
5
[ "A002320", "A054477" ]
null
Joe Keane (jgk(AT)jgk.org)
2023-12-30T10:56:22
oeisdata/seq/A002/A002320.seq
ed11654b8a6bfb98c8d8994bf065c500
A002321
Mertens's function: Sum_{k=1..n} mu(k), where mu is the Moebius function A008683.
[ "1", "0", "-1", "-1", "-2", "-1", "-2", "-2", "-2", "-1", "-2", "-2", "-3", "-2", "-1", "-1", "-2", "-2", "-3", "-3", "-2", "-1", "-2", "-2", "-2", "-1", "-1", "-1", "-2", "-3", "-4", "-4", "-3", "-2", "-1", "-1", "-2", "-1", "0", "0", "-1", "-2", "-3", "-3", "-3", "-2", "-3", "-3", "-3", "-3", "-2", "-2", "-3", "-3", "-2", "-2", "-1", "0", "-1", "-1", "-2", "-1", "-1", "-1", "0", "-1", "-2", "-2", "-1", "-2", "-3", "-3", "-4", "-3", "-3", "-3", "-2", "-3", "-4", "-4", "-4" ]
[ "sign", "easy", "nice" ]
251
0
5
[ "A002321", "A008683", "A059571", "A084237", "A134541", "A179287", "A209802" ]
[ "M0102", "N0038" ]
N. J. A. Sloane
2025-02-16T08:32:25
oeisdata/seq/A002/A002321.seq
52549f280896c8cfd26a9a078cf6126d
A002322
Reduced totient function psi(n): least k such that x^k == 1 (mod n) for all x prime to n; also known as the Carmichael lambda function (exponent of unit group mod n); also called the universal exponent of n.
[ "1", "1", "2", "2", "4", "2", "6", "2", "6", "4", "10", "2", "12", "6", "4", "4", "16", "6", "18", "4", "6", "10", "22", "2", "20", "12", "18", "6", "28", "4", "30", "8", "10", "16", "12", "6", "36", "18", "12", "4", "40", "6", "42", "10", "12", "22", "46", "4", "42", "20", "16", "12", "52", "18", "20", "6", "18", "28", "58", "4", "60", "30", "6", "16", "12", "10", "66", "16", "22", "12", "70", "6", "72", "36", "20", "18", "30", "12", "78", "4", "54" ]
[ "nonn", "core", "easy", "nice" ]
130
0
5
[ "A002174", "A002322", "A002616", "A011773", "A034380", "A061258", "A062373", "A141258", "A162578", "A218342" ]
[ "M0298", "N0110" ]
N. J. A. Sloane
2025-02-16T08:32:25
oeisdata/seq/A002/A002322.seq
a35b559d3f37907be85ac138fda5ddd2
A002323
((2^m - 1) / p) mod p, where p = prime(n) and m = ord(2,p).
[ "1", "3", "1", "5", "3", "15", "3", "20", "1", "1", "1", "32", "37", "22", "36", "8", "36", "10", "1", "7", "49", "48", "23", "77", "92", "81", "13", "95", "49", "1", "17", "95", "30", "96", "66", "132", "67", "107", "3", "50", "148", "25", "52", "175", "167", "109", "143", "201", "99", "30", "13", "207", "200", "255", "64", "260", "190", "208", "159", "208", "78", "98", "243", "60" ]
[ "nonn", "easy" ]
36
0
5
[ "A001220", "A001917", "A002323" ]
[ "M2223", "N0882" ]
N. J. A. Sloane
2023-07-09T12:14:39
oeisdata/seq/A002/A002323.seq
579a6ed169bd46ce5f93580a84de84c8
A002324
Number of divisors of n == 1 (mod 3) minus number of divisors of n == 2 (mod 3).
[ "1", "0", "1", "1", "0", "0", "2", "0", "1", "0", "0", "1", "2", "0", "0", "1", "0", "0", "2", "0", "2", "0", "0", "0", "1", "0", "1", "2", "0", "0", "2", "0", "0", "0", "0", "1", "2", "0", "2", "0", "0", "0", "2", "0", "0", "0", "0", "1", "3", "0", "0", "2", "0", "0", "0", "0", "2", "0", "0", "0", "2", "0", "2", "1", "0", "0", "2", "0", "0", "0", "0", "0", "2", "0", "1", "2", "0", "0", "2", "0", "1", "0", "0", "2", "0", "0", "0", "0", "0", "0", "4", "0", "2", "0", "0", "0", "2", "0", "0", "1", "0", "0", "2", "0", "0", "0", "0", "1", "2", "0", "2", "2", "0", "0" ]
[ "easy", "nonn", "nice", "mult" ]
146
0
5
[ "A000086", "A002324", "A002325", "A002654", "A003136", "A004016", "A034020", "A035019", "A035170", "A035171", "A035175", "A035179", "A035182", "A035185", "A035187", "A035188", "A035192", "A035194", "A035195", "A035199", "A035203", "A035210", "A035211", "A035215", "A035219", "A073010", "A145377", "A145394", "A293899" ]
[ "M0016", "N0002" ]
N. J. A. Sloane
2024-09-21T10:16:02
oeisdata/seq/A002/A002324.seq
77f6b23a8127b45984f9e00bb267c78f
A002325
Glaisher's J numbers.
[ "1", "1", "2", "1", "0", "2", "0", "1", "3", "0", "2", "2", "0", "0", "0", "1", "2", "3", "2", "0", "0", "2", "0", "2", "1", "0", "4", "0", "0", "0", "0", "1", "4", "2", "0", "3", "0", "2", "0", "0", "2", "0", "2", "2", "0", "0", "0", "2", "1", "1", "4", "0", "0", "4", "0", "0", "4", "0", "2", "0", "0", "0", "0", "1", "0", "4", "2", "2", "0", "0", "0", "3", "2", "0", "2", "2", "0", "0", "0", "0", "5", "2", "2", "0", "0", "2", "0", "2", "2", "0", "0", "0", "0", "0", "0", "2", "2", "1", "6", "1", "0", "4", "0", "0", "0" ]
[ "nonn", "easy", "nice", "mult" ]
73
0
5
[ "A002324", "A002325", "A002654", "A033715", "A035170", "A035171", "A035175", "A035179", "A035182", "A035185", "A035187", "A035188", "A035192", "A035194", "A035195", "A035199", "A035203", "A035210", "A035211", "A035215", "A035219", "A093954" ]
[ "M0043", "N0013" ]
N. J. A. Sloane
2022-10-11T07:41:15
oeisdata/seq/A002/A002325.seq
2b1acd53e0727bc020e13f4a2c88055c
A002326
Multiplicative order of 2 mod 2n+1.
[ "1", "2", "4", "3", "6", "10", "12", "4", "8", "18", "6", "11", "20", "18", "28", "5", "10", "12", "36", "12", "20", "14", "12", "23", "21", "8", "52", "20", "18", "58", "60", "6", "12", "66", "22", "35", "9", "20", "30", "39", "54", "82", "8", "28", "11", "12", "10", "36", "48", "30", "100", "51", "12", "106", "36", "36", "28", "44", "12", "24", "110", "20", "100", "7", "14", "130", "18", "36", "68", "138", "46", "60", "28" ]
[ "nonn", "easy", "nice" ]
354
0
5
[ "A000010", "A000225", "A001122", "A002326", "A003571", "A003573", "A005420", "A006519", "A006694", "A007733", "A014664", "A024222", "A025192", "A048675", "A053447", "A053451", "A056239", "A070667", "A070683", "A179680", "A216838", "A217469", "A274298", "A274299", "A292239", "A292265", "A359147" ]
[ "M0936", "N0350" ]
N. J. A. Sloane
2025-02-16T08:32:25
oeisdata/seq/A002/A002326.seq
55a935dce0742d812202ebf7f6215e89
A002327
Primes of the form k^2 - k - 1.
[ "5", "11", "19", "29", "41", "71", "89", "109", "131", "181", "239", "271", "379", "419", "461", "599", "701", "811", "929", "991", "1259", "1481", "1559", "1721", "1979", "2069", "2161", "2351", "2549", "2861", "2969", "3079", "3191", "3539", "3659", "4159", "4289", "4421", "4691", "4969", "5851", "6971", "7309", "7481", "8009", "8741", "8929" ]
[ "nonn", "easy" ]
91
0
5
[ "A000217", "A002327", "A002328", "A003601", "A010051", "A028387", "A088502", "A110013" ]
[ "M3810", "N1558" ]
N. J. A. Sloane
2023-10-10T23:01:46
oeisdata/seq/A002/A002327.seq
f2167646f44747ebf63f617be12bf9d7
A002328
Numbers n such that n^2 - n - 1 is prime.
[ "3", "4", "5", "6", "7", "9", "10", "11", "12", "14", "16", "17", "20", "21", "22", "25", "27", "29", "31", "32", "36", "39", "40", "42", "45", "46", "47", "49", "51", "54", "55", "56", "57", "60", "61", "65", "66", "67", "69", "71", "77", "84", "86", "87", "90", "94", "95", "97", "101", "102", "104", "115", "116", "121", "126", "127", "131", "132", "135", "139", "141", "142", "145", "146", "149" ]
[ "nonn", "easy" ]
42
0
5
[ "A002327", "A002328", "A088502", "A110013" ]
[ "M0494", "N0179" ]
N. J. A. Sloane
2022-09-08T08:44:30
oeisdata/seq/A002/A002328.seq
944953347d3c45058e44e9be57cbb97f
A002329
Periods of reciprocals of integers prime to 10.
[ "1", "1", "6", "1", "2", "6", "16", "18", "6", "22", "3", "28", "15", "2", "3", "6", "5", "21", "46", "42", "16", "13", "18", "58", "60", "6", "33", "22", "35", "8", "6", "13", "9", "41", "28", "44", "6", "15", "96", "2", "4", "34", "53", "108", "3", "112", "6", "48", "22", "5", "42", "21", "130", "18", "8", "46", "46", "6", "42", "148", "75", "16", "78", "13", "66", "81", "166", "78", "18", "43" ]
[ "nonn", "base", "nice", "easy" ]
44
0
5
[ "A002329", "A045572", "A084680" ]
[ "M4045", "N1678" ]
N. J. A. Sloane
2025-02-16T08:32:25
oeisdata/seq/A002/A002329.seq
b061d96f58c249434f31bee401411d42
A002330
Value of y in the solution to p = x^2 + y^2, x <= y, with prime p = A002313(n).
[ "1", "2", "3", "4", "5", "6", "5", "7", "6", "8", "8", "9", "10", "10", "8", "11", "10", "11", "13", "10", "12", "14", "15", "13", "15", "16", "13", "14", "16", "17", "13", "14", "16", "18", "17", "18", "17", "19", "20", "20", "15", "17", "20", "21", "19", "22", "20", "21", "19", "20", "24", "23", "24", "18", "19", "25", "22", "25", "23", "26", "26", "22", "27", "26", "20", "25", "22", "26", "28", "25" ]
[ "nonn" ]
53
0
5
[ "A002144", "A002313", "A002330", "A002331" ]
[ "M0462", "N0169" ]
N. J. A. Sloane
2025-02-16T08:32:25
oeisdata/seq/A002/A002330.seq
0974f605c760a97d56c5e74abde48363
A002331
Values of x in the solution to p = x^2 + y^2, x <= y, with prime p = A002313(n).
[ "1", "1", "2", "1", "2", "1", "4", "2", "5", "3", "5", "4", "1", "3", "7", "4", "7", "6", "2", "9", "7", "1", "2", "8", "4", "1", "10", "9", "5", "2", "12", "11", "9", "5", "8", "7", "10", "6", "1", "3", "14", "12", "7", "4", "10", "5", "11", "10", "14", "13", "1", "8", "5", "17", "16", "4", "13", "6", "12", "1", "5", "15", "2", "9", "19", "12", "17", "11", "5", "14", "10", "18", "4", "6", "16", "20", "19", "10", "13", "4", "6", "15", "22", "11", "3", "5" ]
[ "nonn" ]
50
0
5
[ "A002144", "A002313", "A002330", "A002331", "A027862" ]
[ "M0096", "N0033" ]
N. J. A. Sloane
2025-02-16T08:32:25
oeisdata/seq/A002/A002331.seq
870856f7243c3a83045a7ff74ccdd0e8
A002332
Numbers x such that p = x^2 + 2y^2, with prime p = A033203(n).
[ "0", "1", "3", "3", "1", "3", "5", "3", "7", "1", "9", "9", "5", "3", "9", "9", "3", "11", "1", "9", "11", "7", "15", "15", "13", "3", "15", "9", "11", "17", "5", "13", "7", "3", "15", "19", "3", "11", "9", "19", "21", "21", "13", "15", "21", "7", "3", "19", "23", "15", "21", "11", "17", "3", "9", "23", "15", "13", "21", "25", "9", "5", "21", "23", "17", "27", "11", "25", "3", "19", "27", "27", "29", "9", "1", "5", "27", "17", "15", "21", "27" ]
[ "nonn" ]
30
0
5
[ "A002332", "A002333" ]
[ "M2264", "N0894" ]
N. J. A. Sloane
2019-07-14T11:01:24
oeisdata/seq/A002/A002332.seq
b29f134ec0fa7860fbb45a61f4143eae
A002333
Numbers y such that p = x^2 + 2y^2, with prime p = A033203(n).
[ "1", "1", "1", "2", "3", "4", "3", "5", "3", "6", "1", "2", "6", "7", "4", "5", "8", "3", "9", "7", "6", "9", "1", "2", "6", "11", "4", "10", "9", "3", "12", "9", "12", "13", "8", "3", "14", "12", "13", "6", "1", "2", "12", "11", "5", "15", "16", "9", "3", "13", "8", "15", "12", "17", "16", "6", "14", "15", "10", "3", "17", "18", "11", "9", "15", "4", "18", "9", "20", "15", "7", "8", "3", "20", "21", "21", "10", "18", "19", "16", "11", "22", "18" ]
[ "nonn" ]
27
0
5
[ "A002332", "A002333" ]
[ "M0444", "N0166" ]
N. J. A. Sloane
2019-07-14T08:12:24
oeisdata/seq/A002/A002333.seq
d4f26ec5fcf97fb6aa05301d03b684cb
A002334
Least positive integer x such that prime A038873(n) = x^2 - 2y^2 for some y.
[ "2", "3", "5", "5", "7", "7", "7", "11", "9", "9", "11", "13", "11", "11", "15", "13", "13", "13", "17", "15", "19", "15", "19", "17", "21", "17", "19", "17", "17", "19", "21", "25", "19", "19", "23", "25", "23", "21", "23", "21", "21", "29", "23", "25", "23", "27", "29", "23", "31", "33", "25", "29", "27", "25", "25", "27", "29", "35", "31", "31", "27", "29", "33", "31", "29", "29", "29", "29", "37", "31", "41", "35" ]
[ "nonn", "easy" ]
43
0
5
[ "A002334", "A002335", "A035251" ]
[ "M0607", "N0219" ]
N. J. A. Sloane
2019-10-27T14:06:28
oeisdata/seq/A002/A002334.seq
da994687b0a8485667774b35018aa718
A002335
Least positive integer y such that A038873(n) = x^2 - 2y^2 for some x.
[ "1", "1", "2", "1", "3", "2", "1", "5", "2", "1", "4", "6", "3", "2", "7", "4", "3", "1", "7", "4", "9", "1", "8", "5", "10", "4", "7", "3", "2", "5", "8", "12", "2", "1", "9", "11", "8", "4", "7", "2", "1", "14", "6", "9", "5", "11", "13", "2", "14", "16", "4", "11", "8", "3", "2", "7", "10", "17", "12", "11", "1", "7", "13", "10", "6", "4", "3", "1", "16", "7", "20", "13", "5", "15", "4", "12", "2", "21", "14", "11", "7", "16", "13", "18", "5", "20", "9", "1", "8", "17", "14" ]
[ "nonn", "easy" ]
38
0
5
[ "A002334", "A002335", "A035251" ]
[ "M0139", "N0055" ]
N. J. A. Sloane
2019-10-27T14:05:30
oeisdata/seq/A002/A002335.seq
98428c78155d9e69855033dd0af404b9
A002336
Maximal kissing number of n-dimensional laminated lattice.
[ "0", "2", "6", "12", "24", "40", "72", "126", "240", "272", "336", "438", "648", "906", "1422", "2340", "4320", "5346", "7398", "10668", "17400", "27720", "49896", "93150", "196560", "196656" ]
[ "nonn", "nice", "more" ]
25
0
5
[ "A001116", "A002336", "A028923", "A257479" ]
null
N. J. A. Sloane and J. H. Conway
2023-12-07T16:35:56
oeisdata/seq/A002/A002336.seq
431902aa71ce3ee779003534b27a8ec6
A002337
Weight distribution of [8,4,4] Hamming code.
[ "1", "0", "0", "0", "14", "0", "0", "0", "1" ]
[ "nonn", "fini", "full" ]
9
0
5
[ "A002337", "A002393", "A108095" ]
null
N. J. A. Sloane
2023-10-15T00:03:21
oeisdata/seq/A002/A002337.seq
20ee5190f06bf885caff66f745da6474
A002338
x such that p = (x^2 + 27*y^2)/4, where p is the n-th prime of the form 3k+1.
[ "1", "5", "7", "4", "11", "8", "1", "5", "7", "17", "19", "13", "2", "20", "23", "19", "14", "25", "7", "23", "11", "13", "28", "22", "17", "29", "26", "32", "16", "35", "1", "5", "37", "35", "13", "29", "34", "31", "19", "2", "28", "10", "23", "25", "32", "43", "29", "1", "31", "11", "26", "49", "47", "17", "43", "40", "49", "37", "8", "53", "44", "50", "16", "41", "29", "49", "31", "56", "5", "7", "35", "13", "59", "47", "19", "52", "61", "41", "61", "10", "43", "14", "53", "59", "64", "65", "62", "55", "22", "65", "35", "67", "7" ]
[ "nonn" ]
31
0
5
[ "A002338", "A002339", "A123489" ]
[ "M3754", "N1531" ]
N. J. A. Sloane
2018-09-06T08:23:44
oeisdata/seq/A002/A002338.seq
9fbef718c5b9fd1fb634c1321fd8d4af
A002339
Positive y such that p = (x^2 + 27y^2)/4 where p is the n-th prime of the form 6k+1.
[ "1", "1", "1", "2", "1", "2", "3", "3", "3", "1", "1", "3", "4", "2", "1", "3", "4", "1", "5", "3", "5", "5", "2", "4", "5", "3", "4", "2", "6", "1", "7", "7", "1", "3", "7", "5", "4", "5", "7", "8", "6", "8", "7", "7", "6", "3", "7", "9", "7", "9", "8", "1", "3", "9", "5", "6", "3", "7", "10", "1", "6", "4", "10", "7", "9", "5", "9", "2", "11", "11", "9", "11", "1", "7", "11", "6", "1", "9", "3", "12", "9", "12", "7", "5", "2", "1", "4", "7", "12", "3", "11", "1", "13", "13", "7", "13", "13", "11", "9", "11", "5", "13", "9", "3", "14", "13", "6", "14", "5", "13", "7", "10", "2", "13", "1", "15", "3", "15" ]
[ "nonn" ]
34
0
5
[ "A002338", "A002339", "A002476", "A123489" ]
[ "M0058", "N0043" ]
N. J. A. Sloane
2022-07-23T09:45:03
oeisdata/seq/A002/A002339.seq
bb792efe77738b885ccb298bcbb95318
A002340
Numbers x such that p = x^2 - 5y^2, where p == 0, 1, or 4 (mod 5).
[ "5", "4", "8", "7", "6", "11", "8", "9", "14", "18", "13", "11", "17", "16", "12", "13", "14", "28", "19", "14", "18", "16", "27", "22", "31", "16", "17", "26", "19", "34", "24", "23", "22", "28", "37", "41", "27", "32", "21", "26", "22", "23", "31", "22", "44", "48", "23", "29", "39", "43", "24", "38", "51", "32", "26", "31", "28", "29", "36", "41", "27", "58", "28" ]
[ "nonn" ]
23
0
5
[ "A002340", "A002341" ]
[ "M3739", "N1528" ]
N. J. A. Sloane
2023-10-15T01:41:45
oeisdata/seq/A002/A002340.seq
7fe657de26ae29a3779a2925a228c912
A002341
Numbers y such that p = x^2 - 5y^2, where p = 0, 1, or 4 (mod 5).
[ "2", "1", "3", "2", "1", "4", "1", "2", "5", "7", "4", "2", "6", "5", "1", "2", "3", "11", "6", "1", "5", "3", "10", "7", "12", "1", "2", "9", "4", "13", "7", "6", "5", "9", "14", "16", "8", "11", "2", "7", "3", "4", "10", "1", "17", "19", "2", "8", "14", "16", "1", "13", "20", "9", "3", "8", "5", "6", "11", "14" ]
[ "nonn" ]
22
0
5
[ "A002340", "A002341" ]
[ "M0136", "N0054" ]
N. J. A. Sloane
2023-07-24T06:56:02
oeisdata/seq/A002/A002341.seq
0c5709c3fc88470bc2706c9fbe450324
A002342
Least positive integer x such that p = (x^2 - 5*y^2)/4 where p is the n-th odd prime such that 5 is a square mod p.
[ "5", "7", "9", "11", "12", "13", "16", "17", "17", "19", "19", "22", "21", "23", "24", "26", "27", "29", "27", "28", "29", "32", "31", "31", "33", "32", "34", "33", "37", "37", "37", "39", "41", "39", "41", "43", "41", "41", "42", "43", "44", "46", "43", "44", "47", "49", "46", "47", "47", "49", "48", "49", "53", "51", "52", "53", "56", "57", "53", "53", "54", "59", "56", "57", "58", "59", "59", "57", "58", "61" ]
[ "nonn" ]
17
0
5
[ "A002342", "A002343", "A038872" ]
[ "M3758", "N1534" ]
N. J. A. Sloane
2023-10-15T01:41:41
oeisdata/seq/A002/A002342.seq
4bb7b49c61a40e824d9fdc86a8f1cd16
A002343
Least positive integer y such that p = (x^2 - 5*y^2)/4 where p is the n-th odd prime such that 5 is a square mod p.
[ "1", "1", "1", "1", "2", "1", "2", "3", "1", "3", "1", "4", "1", "1", "2", "4", "5", "5", "1", "2", "3", "6", "3", "1", "5", "2", "4", "1", "7", "5", "3", "5", "7", "1", "5", "7", "3", "1", "4", "5", "6", "8", "1", "2", "7", "9", "4", "5", "3", "5", "2", "1", "9", "5", "6", "7", "10", "11", "3", "1", "4", "11", "6", "7", "8", "9", "7", "1", "4", "9", "5", "3", "8", "13", "3", "1", "4", "11", "1", "8", "2", "9", "10", "11", "13", "14", "7", "4", "5", "11", "7", "2", "10", "11", "15", "5", "9" ]
[ "nonn" ]
18
0
5
[ "A002342", "A002343", "A038872" ]
[ "M0109", "N0042" ]
N. J. A. Sloane
2023-10-15T01:41:37
oeisdata/seq/A002/A002343.seq
cfeff9bf9b7f63dd031ba875b8c39cb7
A002344
Numbers x such that p = x^2 + 7y^2, with prime p = A033207(n).
[ "0", "2", "4", "1", "3", "6", "5", "2", "8", "4", "10", "9", "1", "8", "5", "11", "12", "10", "2", "4", "9", "13", "6", "11", "8", "16", "5", "13", "17", "18", "15", "2", "4", "11", "6", "19", "17", "13", "16", "10", "1", "3", "20", "12", "22", "18", "17", "22", "23", "11", "2", "16", "19", "13", "8" ]
[ "nonn", "easy" ]
15
0
5
[ "A002344", "A002345" ]
[ "M0930", "N0349" ]
N. J. A. Sloane
2016-12-26T02:11:39
oeisdata/seq/A002/A002344.seq
de132e2586d5fe7749e7c19f99a782b7
A002345
Numbers y such that p = x^2 + 7y^2, with prime p = A033207(n).
[ "1", "1", "1", "2", "2", "1", "2", "3", "1", "3", "1", "2", "4", "3", "4", "2", "1", "3", "5", "5", "4", "2", "5", "4", "5", "1", "6", "4", "2", "1", "4", "7", "7", "6", "7", "2", "4", "6", "5", "7", "8", "8", "3", "7", "1", "5", "6", "3", "2", "8", "9", "7", "6", "8", "9", "4", "2", "5", "8", "1", "10", "10", "3", "7", "5", "2", "8", "10", "9", "7" ]
[ "nonn" ]
15
0
5
[ "A002344", "A002345" ]
[ "M0197", "N0074" ]
N. J. A. Sloane
2016-12-26T02:11:19
oeisdata/seq/A002/A002345.seq
bce3b0cf10c2005696a5ce256d5c9987
A002346
Consider all primes of form p = (x^2 + 11y^2 )/4; sequence gives values of x.
[ "1", "3", "0", "9", "5", "7", "12", "6", "15", "13", "3", "9", "17", "4", "21", "3", "23", "16", "21", "25", "15", "20", "1", "5", "27", "18", "30", "12", "19", "27", "35", "9", "37", "25", "39", "15", "2", "30", "24", "10", "29", "21", "39", "31", "3", "43", "40", "45", "15", "47", "48", "36", "42", "1", "7", "45", "41", "27", "51", "13", "24", "17", "19", "51", "53", "23", "38", "54", "3", "49", "29", "45" ]
[ "nonn" ]
17
0
5
[ "A002346", "A002347", "A056874" ]
[ "M2206", "N0877" ]
N. J. A. Sloane
2023-07-24T05:51:45
oeisdata/seq/A002/A002346.seq
eafb81b362056484da04a88d14e71bc6
A002347
Consider all primes of form p = (x^2 + 11y^2 )/4; sequence gives values of y.
[ "1", "1", "2", "1", "3", "3", "2", "4", "1", "3", "5", "5", "3", "6", "1", "7", "3", "6", "5", "3", "7", "6", "9", "9", "5", "8", "4", "10", "9", "7", "3", "11", "3", "9", "1", "11", "12", "8", "10", "12", "9", "11", "5", "9", "13", "3", "6", "1", "13", "3", "2", "10", "8", "15", "15", "7", "9", "13", "1", "15", "14", "15", "15", "5", "3", "15", "12", "4", "17", "9", "15", "11", "15", "14", "5", "6", "18", "2", "16", "7", "13", "17", "11", "18" ]
[ "nonn" ]
16
0
5
[ "A002346", "A002347", "A056874" ]
[ "M0151", "N0061" ]
N. J. A. Sloane
2023-07-24T05:51:49
oeisdata/seq/A002/A002347.seq
98269c4d156e85501af9ec75fff24fdd
A002348
Degree of rational Poncelet porism of n-gon.
[ "1", "2", "3", "4", "6", "8", "9", "12", "15", "16", "21", "24", "24", "32", "36", "36", "45", "48", "48", "60", "66", "64", "75", "84", "81", "96", "105", "96", "120", "128", "120", "144", "144", "144", "171", "180", "168", "192", "210", "192", "231", "240", "216", "264", "276", "256", "294", "300", "288", "336", "351", "324", "360", "384", "360", "420", "435", "384", "465" ]
[ "nonn", "nice" ]
30
0
5
[ "A002348", "A027748", "A124010" ]
[ "M0549", "N0198" ]
N. J. A. Sloane
2025-02-16T08:32:25
oeisdata/seq/A002/A002348.seq
ffb421f0946764b295ad122d3b8fb6ba
A002349
Take solution to Pellian equation x^2 - n*y^2 = 1 with smallest positive y and x >= 0; sequence gives a(n) = y, or 0 if n is a square. A002350 gives values of x.
[ "0", "2", "1", "0", "4", "2", "3", "1", "0", "6", "3", "2", "180", "4", "1", "0", "8", "4", "39", "2", "12", "42", "5", "1", "0", "10", "5", "24", "1820", "2", "273", "3", "4", "6", "1", "0", "12", "6", "4", "3", "320", "2", "531", "30", "24", "3588", "7", "1", "0", "14", "7", "90", "9100", "66", "12", "2", "20", "2574", "69", "4", "226153980", "8", "1", "0", "16", "8", "5967", "4", "936", "30", "413", "2", "267000", "430", "3" ]
[ "nonn", "nice", "easy" ]
76
0
5
[ "A002349", "A002350", "A006702", "A006703", "A006704", "A006705", "A033315", "A033316", "A033319" ]
[ "M0046", "N0015" ]
N. J. A. Sloane
2025-02-25T08:49:11
oeisdata/seq/A002/A002349.seq
453b7e2d52180db77bdec4c31014e65e
A002350
Take solution to Pellian equation x^2 - n*y^2 = 1 with smallest positive y and x >= 0; sequence gives a(n) = x, or 1 if n is a square. A002349 gives values of y.
[ "1", "3", "2", "1", "9", "5", "8", "3", "1", "19", "10", "7", "649", "15", "4", "1", "33", "17", "170", "9", "55", "197", "24", "5", "1", "51", "26", "127", "9801", "11", "1520", "17", "23", "35", "6", "1", "73", "37", "25", "19", "2049", "13", "3482", "199", "161", "24335", "48", "7", "1", "99", "50", "649", "66249", "485", "89", "15", "151", "19603", "530", "31", "1766319049", "63", "8", "1" ]
[ "nonn", "nice", "easy" ]
79
0
5
[ "A002349", "A002350", "A006702", "A006703", "A006704", "A006705", "A033315", "A033316", "A033319" ]
[ "M2240", "N0890" ]
N. J. A. Sloane
2025-02-25T08:49:18
oeisdata/seq/A002/A002350.seq
46003fe274ce5b7225761c7c16b45cbc
A002351
Denominators of convergents to cube root of 2.
[ "1", "3", "4", "23", "27", "50", "227", "277", "504", "4309", "4813", "71691", "76504", "836731", "1749966", "2586697", "12096754", "147747745", "307592244", "1070524477", "2448641198", "3519165675", "13006138223", "55543718567", "68549856790", "124093575357", "316737007504" ]
[ "nonn", "frac" ]
31
0
5
[ "A002351", "A002352", "A002945" ]
[ "M2380", "N0945" ]
N. J. A. Sloane
2024-07-04T20:07:42
oeisdata/seq/A002/A002351.seq
0e101cde9b9b8233d2dad1265e9e3cba
A002352
Numerators of convergents to cube root of 2.
[ "1", "4", "5", "29", "34", "63", "286", "349", "635", "5429", "6064", "90325", "96389", "1054215", "2204819", "3259034", "15240955", "186150494", "387541943", "1348776323", "3085094589", "4433870912", "16386707325", "69980700212", "86367407537", "156348107749", "399063623035", "5743238830239", "17628780113752" ]
[ "nonn", "frac" ]
28
0
5
[ "A002351", "A002352", "A002945" ]
[ "M3260", "N1316" ]
N. J. A. Sloane
2024-07-04T20:07:29
oeisdata/seq/A002/A002352.seq
4c77ad5fc53b422621dc2c402a95f563
A002353
Denominators of convergents to cube root of 3.
[ "1", "2", "7", "9", "43", "52", "303", "355", "658", "4303", "9264", "50623", "414248", "1293367", "4294349", "18470763", "41235875", "265886013", "1104779927", "4685005721", "5789785648", "22054362665", "49898510978", "171749895599", "736898093374", "908647988973", "4371490049266", "40252058432367" ]
[ "nonn", "frac" ]
27
0
5
[ "A002353", "A002354", "A002581" ]
[ "M1733", "N0686" ]
N. J. A. Sloane
2024-07-04T20:41:05
oeisdata/seq/A002/A002353.seq
66d0b89af4270c27bb5eaf75fda8e338
A002354
Numerators of convergents to cube root of 3.
[ "1", "3", "10", "13", "62", "75", "437", "512", "949", "6206", "13361", "73011", "597449", "1865358", "6193523", "26639450", "59472423", "383473988", "1593368375", "6756947488", "8350315863", "31807895077", "71966106017", "247706213128", "1062790958529", "1310497171657", "6304779645157", "58053513978070" ]
[ "nonn", "frac" ]
29
0
5
[ "A002353", "A002354", "A002581" ]
[ "M2830", "N1140" ]
N. J. A. Sloane
2024-07-04T20:40:59
oeisdata/seq/A002/A002354.seq
d488f046099a614932c3304c0db6e80e
A002355
Denominators of convergents to cube root of 4.
[ "1", "1", "2", "5", "12", "17", "63", "143", "492", "635", "2397", "3032", "93357", "96389", "478913", "575302", "1629517", "15240955", "93075247", "387541943", "480617190", "868159133", "2216935456", "16386707325", "34990350106", "121357757643", "277705865392", "399063623035", "2672087603602", "3071151226637" ]
[ "nonn", "frac" ]
28
0
5
[ "A002355", "A002356", "A005480" ]
[ "M1407", "N0549" ]
N. J. A. Sloane, Herman P. Robinson
2024-07-04T20:01:15
oeisdata/seq/A002/A002355.seq
181d9f1075f5b5187f1a71a899bf1724
A002356
Numerators of convergents to cube root of 4.
[ "1", "2", "3", "8", "19", "27", "100", "227", "781", "1008", "3805", "4813", "148195", "153008", "760227", "913235", "2586697", "24193508", "147747745", "615184488", "762932233", "1378116721", "3519165675", "26012276446", "55543718567", "192643432147", "440830582861", "633474015008", "4241674672909", "4875148687917" ]
[ "nonn", "frac" ]
27
0
5
[ "A002355", "A002356", "A005480" ]
[ "M0881", "N0335" ]
N. J. A. Sloane
2024-07-04T20:01:29
oeisdata/seq/A002/A002356.seq
ff325873916066f218a7ea2057e42f5b
A002357
Denominators of convergents to cube root of 5.
[ "1", "1", "3", "7", "31", "100", "331", "431", "2486", "2917", "5403", "24529", "250693", "4286310", "4537003", "67804352", "72341355", "140145707", "427797039119", "427937184826", "855734223945", "1283671408771", "2139405632716", "3423077041487", "5562482674203", "14548042389893" ]
[ "nonn", "frac" ]
24
0
5
[ "A002357", "A002358", "A005481" ]
[ "M2692", "N1078" ]
N. J. A. Sloane
2024-07-04T20:06:56
oeisdata/seq/A002/A002357.seq
4a9487fab802ad90c8c2394e2e46970a
A002358
Numerators of convergents to cube root of 5.
[ "1", "2", "5", "12", "53", "171", "566", "737", "4251", "4988", "9239", "41944", "428679", "7329487", "7758166", "115943811", "123701977", "239645788", "731522646953", "731762292741", "1463284939694", "2195047232435", "3658332172129", "5853379404564", "9511711576693", "24876802557950", "59265316692593" ]
[ "nonn", "frac" ]
23
0
5
[ "A002357", "A002358", "A005481" ]
[ "M1429", "N0563" ]
N. J. A. Sloane, Herman P. Robinson
2024-07-04T20:06:46
oeisdata/seq/A002/A002358.seq
22e2b09c4832e8305220679b5cf9ca81
A002359
Denominators of continued fraction convergents to cube root of 6.
[ "1", "1", "5", "11", "82", "257", "130638", "130895", "785113", "4056460", "4841573", "8898033", "13739606", "36377245", "50116851", "86494096", "2125975155", "2212469251", "4338444406", "6550913657", "23991185377", "78524469788", "2379725279017", "9597425585856", "98353981137577" ]
[ "nonn", "easy", "frac" ]
36
0
5
[ "A002359", "A002360", "A002949", "A005486" ]
[ "M3815", "N1561" ]
N. J. A. Sloane
2024-07-05T10:07:29
oeisdata/seq/A002/A002359.seq
00134ce51518ad9d0f92cc83401505c4
A002360
Numerators of continued fraction convergents to cube root of 6.
[ "1", "2", "9", "20", "149", "467", "237385", "237852", "1426645", "7371077", "8797722", "16168799", "24966521", "66101841", "91068362", "157170203", "3863153234", "4020323437", "7883476671", "11903800108", "43594876995", "142688431093", "4324247809785", "17439679670233", "178721044512115", "28255364712584403" ]
[ "nonn", "frac" ]
32
0
5
[ "A002359", "A002360", "A002949", "A005486" ]
[ "M1918", "N0756" ]
N. J. A. Sloane, Herman P. Robinson
2024-07-05T10:07:25
oeisdata/seq/A002/A002360.seq
9e3df0496386cb798b82da04a1151cd9
A002361
Denominators of continued fraction convergents to fifth root of 2.
[ "1", "6", "7", "20", "27", "47", "74", "269", "6799", "7068", "35071", "112281", "371914", "2715679", "141587222", "144302901", "430193024", "1434881973", "3299956970", "50934236523", "105168430016", "261271096555", "1150252816236", "18665316156331", "38480885128898", "288031512058617", "326512397187515" ]
[ "nonn", "frac" ]
32
0
5
[ "A002361", "A002362", "A002950", "A005531" ]
[ "M4062", "N1684" ]
N. J. A. Sloane
2024-07-05T11:04:22
oeisdata/seq/A002/A002361.seq
ed52e5c1c6f1974699eeb16990726395
A002362
Numerators of continued fraction convergents to fifth root of 2.
[ "1", "7", "8", "23", "31", "54", "85", "309", "7810", "8119", "40286", "128977", "427217", "3119496", "162641009", "165760505", "494162019", "1648246562", "3790655143", "58508073707", "120806802557", "300121678821", "1321293517841", "21440817964277", "44202929446395", "330861324089042", "375064253535437" ]
[ "nonn", "frac" ]
32
0
5
[ "A002361", "A002362", "A002950", "A005531" ]
[ "M4336", "N1815" ]
N. J. A. Sloane
2024-07-05T11:04:13
oeisdata/seq/A002/A002362.seq
f8eb620f81f2410d453b07cead075a10
A002363
Denominators of continued fraction convergents to fifth root of 5.
[ "1", "2", "3", "5", "8", "21", "29", "79", "661", "740", "19161", "19901", "118666", "138567", "3167140", "3305707", "29612796", "32918503", "62531299", "595700194", "658231493", "1253931687", "5673958241", "6927889928", "19529738097", "26457628025", "72444994147", "98902622172", "270250238491", "639403099154" ]
[ "nonn", "frac" ]
31
0
5
[ "A002363", "A002364", "A002951", "A005534" ]
[ "M0703", "N0260" ]
N. J. A. Sloane
2024-07-05T11:06:30
oeisdata/seq/A002/A002363.seq
61aea46380ed2d69f5fa02bbeb950d86
A002364
Numerators of continued fraction convergents to fifth root of 5.
[ "1", "3", "4", "7", "11", "29", "40", "109", "912", "1021", "26437", "27458", "163727", "191185", "4369797", "4560982", "40857653", "45418635", "86276288", "821905227", "908181515", "1730086742", "7828528483", "9558615225", "26945758933", "36504374158", "99954507249", "136458881407", "372872270063", "882203421533" ]
[ "nonn", "frac" ]
25
0
5
[ "A002363", "A002364", "A002951", "A005534" ]
[ "M2342", "N0925" ]
N. J. A. Sloane, Herman P. Robinson
2024-08-05T22:01:22
oeisdata/seq/A002/A002364.seq
2c9e949a434c52bf3aecc105c3d8c6c1
A002365
Numbers y such that p^2 = x^2 + y^2, 0 < x < y, p = A002144(n).
[ "4", "12", "15", "21", "35", "40", "45", "60", "55", "80", "72", "99", "91", "112", "105", "140", "132", "165", "180", "168", "195", "221", "208", "209", "255", "260", "252", "231", "285", "312", "308", "288", "299", "272", "275", "340", "325", "399", "391", "420", "408", "351", "425", "380", "459", "440", "420", "532", "520", "575", "465", "551", "612", "608", "609" ]
[ "nonn" ]
26
0
5
[ "A002144", "A002365", "A002366", "A376429" ]
[ "M3430", "N1391" ]
N. J. A. Sloane
2024-09-23T00:23:46
oeisdata/seq/A002/A002365.seq
18b0ba20f72cf8a297a8d87a90f38b5b
A002366
Numbers x such that x^2 + y^2 = p^2 = A002144(n)^2, x < y.
[ "3", "5", "8", "20", "12", "9", "28", "11", "48", "39", "65", "20", "60", "15", "88", "51", "85", "52", "19", "95", "28", "60", "105", "120", "32", "69", "115", "160", "68", "25", "75", "175", "180", "225", "252", "189", "228", "40", "120", "29", "145", "280", "168", "261", "220", "279", "341", "165", "231", "48", "368", "240", "35", "105", "200", "315", "300", "385", "52", "260", "259" ]
[ "nonn" ]
29
0
5
[ "A002313", "A002330", "A002331", "A002366", "A376428" ]
[ "M2442", "N0970" ]
N. J. A. Sloane
2024-09-23T08:07:56
oeisdata/seq/A002/A002366.seq
ad61fe60aaba6846a4f121ab845c775a
A002367
Let p = A007645(n) be the n-th generalized cuban prime and write p^2 = x^2 + 3*y^2 with y > 0; a(n) = x.
[ "1", "11", "13", "23", "13", "11", "37", "61", "23", "71", "1", "97", "107", "73", "11", "143", "59", "131", "157", "191", "193", "83", "169", "13", "143", "121", "61", "229", "179", "71", "181", "241", "251", "359", "349", "347", "181", "313", "179", "431", "47", "407", "263", "481", "13", "491", "517", "253", "443", "481", "263", "407", "563", "107", "337", "157", "61" ]
[ "nonn" ]
27
0
5
[ "A002367", "A002368", "A007645" ]
[ "M4773", "N1377" ]
N. J. A. Sloane
2023-10-15T01:41:13
oeisdata/seq/A002/A002367.seq
e86d8cf63e24d2670cf61a1767ccf9f6
A002368
Let p = A007645(n) be the n-th generalized cuban prime and write p^2 = x^2 + 3*y^2 with y > 0; a(n) = y.
[ "4", "4", "8", "12", "20", "24", "28", "16", "40", "20", "56", "20", "12", "60", "80", "28", "84", "56", "52", "16", "28", "112", "84", "132", "112", "140", "156", "96", "144", "176", "160", "136", "140", "44", "76", "88", "204", "152", "220", "24", "252", "120", "220", "44", "288", "104", "92", "280", "208", "184", "312", "260", "140", "352", "308", "360", "380", "200" ]
[ "nonn" ]
23
0
5
[ "A002367", "A002368", "A007645" ]
[ "M3228", "N1337" ]
N. J. A. Sloane
2023-10-15T02:00:06
oeisdata/seq/A002/A002368.seq
3d5170080ab11c5a473c7d32254aa462
A002369
Number of ways of folding a strip of n rectangular stamps.
[ "1", "2", "3", "8", "18", "44", "115", "294", "783" ]
[ "nonn", "nice", "more" ]
56
0
5
[ "A002369", "A056780", "A326301" ]
[ "M0879", "N0334" ]
N. J. A. Sloane
2019-10-18T04:15:02
oeisdata/seq/A002/A002369.seq
fadff0e563f652ef43ffd5a882b76eca
A002370
a(n) = (2*n-1)^2 * a(n-1) - 3*C(2*n-1,3) * a(n-2) for n>1; a(0) = a(1) = 1.
[ "1", "1", "6", "120", "5250", "395010", "45197460", "7299452160", "1580682203100", "441926274289500", "154940341854097800", "66565404923242024800", "34389901168124209507800", "21034386936107260971255000", "15032296693671903309613950000", "12411582569784462888618434640000" ]
[ "nonn", "easy" ]
50
0
5
[ "A002370", "A167028" ]
[ "M4296", "N1796" ]
N. J. A. Sloane
2022-12-28T09:04:25
oeisdata/seq/A002/A002370.seq
aa28c5a0e2513ecd54e4555de4596dae
A002371
Period of decimal expansion of 1/(n-th prime) (0 by convention for the primes 2 and 5).
[ "0", "1", "0", "6", "2", "6", "16", "18", "22", "28", "15", "3", "5", "21", "46", "13", "58", "60", "33", "35", "8", "13", "41", "44", "96", "4", "34", "53", "108", "112", "42", "130", "8", "46", "148", "75", "78", "81", "166", "43", "178", "180", "95", "192", "98", "99", "30", "222", "113", "228", "232", "7", "30", "50", "256", "262", "268", "5", "69", "28", "141", "146", "153", "155", "312", "79", "110" ]
[ "nonn", "nice", "easy", "base" ]
116
0
5
[ "A000040", "A001913", "A002275", "A002371", "A006883", "A007732", "A014664", "A048595", "A051626", "A060257", "A062117", "A071126", "A097443", "A211241", "A211242", "A211243", "A211244", "A211245" ]
[ "M4050", "N1680" ]
N. J. A. Sloane
2025-02-20T14:46:50
oeisdata/seq/A002/A002371.seq
b12221a70011add0ff8b522877fa78f7
A002372
Goldbach conjecture: number of decompositions of 2n into ordered sums of two odd primes.
[ "0", "0", "1", "2", "3", "2", "3", "4", "4", "4", "5", "6", "5", "4", "6", "4", "7", "8", "3", "6", "8", "6", "7", "10", "8", "6", "10", "6", "7", "12", "5", "10", "12", "4", "10", "12", "9", "10", "14", "8", "9", "16", "9", "8", "18", "8", "9", "14", "6", "12", "16", "10", "11", "16", "12", "14", "20", "12", "11", "24", "7", "10", "20", "6", "14", "18", "11", "10", "16", "14", "15", "22", "11", "10", "24", "8", "16", "22", "9", "16", "20", "10" ]
[ "nonn", "nice", "easy" ]
156
0
5
[ "A001031", "A002372", "A002373", "A002374", "A002375", "A006307", "A010051", "A014092", "A035026", "A045917", "A059998", "A065091", "A069360", "A085090" ]
[ "M0421", "N0161" ]
N. J. A. Sloane
2025-02-16T08:32:25
oeisdata/seq/A002/A002372.seq
3527e584dcc7c678557162471f958496
A002373
Smallest prime in decomposition of 2n into sum of two odd primes.
[ "3", "3", "3", "5", "3", "3", "5", "3", "3", "5", "3", "5", "7", "3", "3", "5", "7", "3", "5", "3", "3", "5", "3", "5", "7", "3", "5", "7", "3", "3", "5", "7", "3", "5", "3", "3", "5", "7", "3", "5", "3", "5", "7", "3", "5", "7", "19", "3", "5", "3", "3", "5", "3", "3", "5", "3", "5", "7", "13", "11", "13", "19", "3", "5", "3", "5", "7", "3", "3", "5", "7", "11", "11", "3", "3", "5", "7", "3", "5", "7", "3", "5", "3", "5", "7", "3", "5", "7", "3", "3", "5", "7", "11", "11", "3", "3", "5", "3" ]
[ "nonn", "nice", "easy" ]
53
0
5
[ "A002372", "A002373", "A002374", "A010051", "A014092", "A065091" ]
[ "M2273", "N0899" ]
N. J. A. Sloane
2025-02-16T08:32:25
oeisdata/seq/A002/A002373.seq
eed7759c06dd74c13c6c034a9d3debc0
A002374
Largest prime <= n in any decomposition of 2n into a sum of two odd primes.
[ "3", "3", "5", "5", "7", "5", "7", "7", "11", "11", "13", "11", "13", "13", "17", "17", "19", "17", "19", "13", "23", "19", "19", "23", "23", "19", "29", "29", "31", "23", "29", "31", "29", "31", "37", "29", "37", "37", "41", "41", "43", "41", "43", "31", "47", "43", "37", "47", "43", "43", "53", "47", "43", "53", "53", "43", "59", "59", "61", "53", "59", "61", "59", "61", "67", "53", "67", "67", "71", "71", "73", "59" ]
[ "nonn", "nice", "easy" ]
49
0
5
[ "A002372", "A002373", "A002374", "A014092", "A112823", "A234345" ]
[ "M2278", "N0900" ]
N. J. A. Sloane
2020-11-08T06:55:43
oeisdata/seq/A002/A002374.seq
15bd90e877b37baa1b5174beeb438e61
A002375
From Goldbach conjecture: number of decompositions of 2n into an unordered sum of two odd primes.
[ "0", "0", "1", "1", "2", "1", "2", "2", "2", "2", "3", "3", "3", "2", "3", "2", "4", "4", "2", "3", "4", "3", "4", "5", "4", "3", "5", "3", "4", "6", "3", "5", "6", "2", "5", "6", "5", "5", "7", "4", "5", "8", "5", "4", "9", "4", "5", "7", "3", "6", "8", "5", "6", "8", "6", "7", "10", "6", "6", "12", "4", "5", "10", "3", "7", "9", "6", "5", "8", "7", "8", "11", "6", "5", "12", "4", "8", "11", "5", "8", "10", "5", "6", "13", "9", "6", "11", "7", "7", "14", "6", "8", "13", "5", "8", "11", "7", "9" ]
[ "nonn", "easy", "look", "nice" ]
171
0
5
[ "A000954", "A001031", "A002372", "A002373", "A002374", "A002375", "A010051", "A023036", "A045917", "A061358", "A065091" ]
[ "M0104", "N0040" ]
N. J. A. Sloane
2025-02-20T16:56:52
oeisdata/seq/A002/A002375.seq
53a7673bf6b8f133dd7b78aa1c9ced46
A002376
Least number of positive cubes needed to sum to n.
[ "1", "2", "3", "4", "5", "6", "7", "1", "2", "3", "4", "5", "6", "7", "8", "2", "3", "4", "5", "6", "7", "8", "9", "3", "4", "5", "1", "2", "3", "4", "5", "4", "5", "6", "2", "3", "4", "5", "6", "5", "6", "7", "3", "4", "5", "6", "7", "6", "7", "8", "4", "5", "6", "2", "3", "4", "5", "6", "5", "6", "7", "3", "4", "1", "2", "3", "4", "5", "6", "4", "5", "2", "3", "4", "5", "6", "7", "5", "6", "3", "3", "4", "5", "6", "7", "6", "7", "4", "4", "5", "2", "3", "4", "5", "6", "5", "5", "6", "3", "4", "5", "6", "7", "6", "6" ]
[ "nonn", "nice" ]
68
0
5
[ "A000578", "A002376", "A003325", "A018888", "A018890", "A046040", "A047702", "A047703", "A047704", "A055401" ]
[ "M0466", "N0170" ]
N. J. A. Sloane
2025-02-16T08:32:25
oeisdata/seq/A002/A002376.seq
e391f86d87e3903b36a68310a207b41a
A002377
Least number of 4th powers needed to represent n.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "5", "1", "2", "3" ]
[ "nonn", "nice" ]
63
0
5
[ "A002376", "A002377", "A002828", "A046049", "A046050", "A099591", "A188462", "A374012" ]
[ "M0471", "N0172" ]
N. J. A. Sloane
2025-02-16T08:32:25
oeisdata/seq/A002/A002377.seq
fa4c35b67c367185d8478b24a24b3ef5
A002378
Oblong (or promic, pronic, or heteromecic) numbers: a(n) = n*(n+1).
[ "0", "2", "6", "12", "20", "30", "42", "56", "72", "90", "110", "132", "156", "182", "210", "240", "272", "306", "342", "380", "420", "462", "506", "552", "600", "650", "702", "756", "812", "870", "930", "992", "1056", "1122", "1190", "1260", "1332", "1406", "1482", "1560", "1640", "1722", "1806", "1892", "1980", "2070", "2162", "2256", "2352", "2450", "2550" ]
[ "nonn", "easy", "core", "nice" ]
787
0
5
[ "A000217", "A000290", "A000384", "A001082", "A001107", "A002061", "A002378", "A002620", "A002939", "A002943", "A003506", "A005369", "A005563", "A005843", "A007742", "A007745", "A014105", "A016742", "A016754", "A028896", "A033951", "A033954", "A033991", "A033996", "A035106", "A035608", "A036689", "A036690", "A045943", "A046092", "A049450", "A049598", "A053755", "A054552", "A054554", "A054556", "A054567", "A054569", "A059297", "A059298", "A059300", "A061928", "A078358", "A080335", "A087811", "A119462", "A124080", "A127235", "A137932", "A152773", "A152811", "A156859", "A166373", "A169810", "A185651", "A213541", "A226488", "A267682", "A281026", "A317186", "A335064", "A347213", "A371912" ]
[ "M1581", "N0616" ]
N. J. A. Sloane
2025-03-24T02:12:14
oeisdata/seq/A002/A002378.seq
8f0c406a4f9b420021eec47785319343
A002379
a(n) = floor(3^n / 2^n).
[ "1", "1", "2", "3", "5", "7", "11", "17", "25", "38", "57", "86", "129", "194", "291", "437", "656", "985", "1477", "2216", "3325", "4987", "7481", "11222", "16834", "25251", "37876", "56815", "85222", "127834", "191751", "287626", "431439", "647159", "970739", "1456109", "2184164", "3276246", "4914369", "7371554", "11057332" ]
[ "nonn", "easy" ]
129
0
5
[ "A000079", "A000217", "A000244", "A002379", "A002380", "A046037", "A060692", "A064628", "A067904", "A070758", "A070759", "A081464", "A094500", "A094969", "A153662", "A153665", "A153666" ]
[ "M0666", "N0245" ]
N. J. A. Sloane
2025-02-16T08:32:25
oeisdata/seq/A002/A002379.seq
e02e84a0c5d3c2c63c083944e16ee3a6
A002380
a(n) = 3^n reduced modulo 2^n.
[ "0", "1", "1", "3", "1", "19", "25", "11", "161", "227", "681", "1019", "3057", "5075", "15225", "29291", "55105", "34243", "233801", "439259", "269201", "1856179", "3471385", "6219851", "1882337", "5647011", "50495465", "17268667", "186023729", "21200275", "63600825", "1264544299", "3793632897", "7085931395" ]
[ "nonn", "easy" ]
78
0
5
[ "A000079", "A000244", "A002379", "A002380", "A060692", "A064629", "A138589", "A138649", "A138973", "A139733", "A139786" ]
[ "M2235", "N0887" ]
N. J. A. Sloane
2025-02-16T08:32:25
oeisdata/seq/A002/A002380.seq
b4366db5c2641773ff3b09adfb3d311c
A002381
Numbers of the form (p^2 - 1)/120 where p is 1 or prime.
[ "0", "1", "3", "7", "8", "14", "29", "31", "42", "52", "66", "85", "99", "143", "161", "185", "190", "267", "273", "304", "330", "371", "437", "476", "484", "525", "603", "612", "658", "806", "913", "1015", "1074", "1197", "1261", "1340", "1394", "1463", "1477", "1548", "1606", "1680", "1771", "1912", "2009", "2075", "2159", "2262", "2439", "2698", "2717" ]
[ "nonn" ]
28
0
5
[ "A002381", "A002382", "A002855", "A038872", "A045468", "A093722", "A141158" ]
[ "M2614", "N1034" ]
N. J. A. Sloane
2022-12-20T09:18:18
oeisdata/seq/A002/A002381.seq
7d8d1af4d9161bae90fb48c140f2d5a2
A002382
Numbers of the form (p^2 - 49)/120 where p is prime.
[ "0", "1", "2", "4", "11", "15", "18", "23", "37", "44", "57", "78", "88", "95", "106", "134", "156", "205", "221", "232", "249", "310", "323", "414", "429", "452", "550", "576", "639", "667", "715", "785", "816", "837", "946", "1003", "1038", "1122", "1159", "1222", "1313", "1562", "1635", "1740", "1786", "1817", "1976", "2108", "2279", "2493", "2585", "2641" ]
[ "nonn" ]
36
0
5
[ "A002381", "A002382", "A002855", "A003631", "A042993", "A097957" ]
[ "M1242", "N0476" ]
N. J. A. Sloane
2019-07-29T16:10:11
oeisdata/seq/A002/A002382.seq
67d3b18f07db1baaf8851c008350ff05
A002383
Primes of form k^2 + k + 1.
[ "3", "7", "13", "31", "43", "73", "157", "211", "241", "307", "421", "463", "601", "757", "1123", "1483", "1723", "2551", "2971", "3307", "3541", "3907", "4423", "4831", "5113", "5701", "6007", "6163", "6481", "8011", "8191", "9901", "10303", "11131", "12211", "12433", "13807", "14281", "17293", "19183", "20023", "20593", "21757", "22651", "23563" ]
[ "nonn", "easy" ]
109
0
5
[ "A002383", "A002384", "A034101", "A085104", "A088503", "A110284", "A237037", "A237038", "A237039", "A237040" ]
[ "M2641", "N1051" ]
N. J. A. Sloane
2022-09-07T18:58:14
oeisdata/seq/A002/A002383.seq
975a433ebfa1bd641bce09d8f1b5d7b4
A002384
Numbers m such that m^2 + m + 1 is prime.
[ "1", "2", "3", "5", "6", "8", "12", "14", "15", "17", "20", "21", "24", "27", "33", "38", "41", "50", "54", "57", "59", "62", "66", "69", "71", "75", "77", "78", "80", "89", "90", "99", "101", "105", "110", "111", "117", "119", "131", "138", "141", "143", "147", "150", "153", "155", "161", "162", "164", "167", "168", "173", "176", "188", "189", "192", "194", "203", "206", "209", "215" ]
[ "nonn", "easy" ]
78
0
5
[ "A002383", "A002384", "A049407", "A049408", "A075723", "A088503", "A110284" ]
[ "M0626", "N0228" ]
N. J. A. Sloane
2023-10-28T11:47:51
oeisdata/seq/A002/A002384.seq
c6b117faea30ebc42561aac9bdc7f9cf
A002385
Palindromic primes: prime numbers whose decimal expansion is a palindrome.
[ "2", "3", "5", "7", "11", "101", "131", "151", "181", "191", "313", "353", "373", "383", "727", "757", "787", "797", "919", "929", "10301", "10501", "10601", "11311", "11411", "12421", "12721", "12821", "13331", "13831", "13931", "14341", "14741", "15451", "15551", "16061", "16361", "16561", "16661", "17471", "17971", "18181", "18481", "19391", "19891", "19991" ]
[ "nonn", "base", "nice", "easy", "changed" ]
186
0
5
[ "A002385", "A006567", "A007500", "A016041", "A016115", "A029732", "A032350", "A033620", "A046942", "A069469", "A117697", "A188649", "A188650" ]
[ "M0670", "N0247" ]
N. J. A. Sloane, Simon Plouffe
2025-04-13T16:34:11
oeisdata/seq/A002/A002385.seq
099fef8999e8b6514f81566b981cd4eb
A002386
Primes (lower end) with record gaps to the next consecutive prime: primes p(k) where p(k+1) - p(k) exceeds p(j+1) - p(j) for all j < k.
[ "2", "3", "7", "23", "89", "113", "523", "887", "1129", "1327", "9551", "15683", "19609", "31397", "155921", "360653", "370261", "492113", "1349533", "1357201", "2010733", "4652353", "17051707", "20831323", "47326693", "122164747", "189695659", "191912783", "387096133", "436273009", "1294268491" ]
[ "nonn", "nice" ]
165
0
5
[ "A000040", "A000101", "A000230", "A001223", "A002386", "A005250", "A005669", "A070866", "A111870", "A111943", "A134266", "A182514", "A205827", "A214935", "A241540" ]
[ "M0858", "N0327" ]
N. J. A. Sloane
2025-02-16T08:32:25
oeisdata/seq/A002/A002386.seq
e833901d45d8bf5856a854df7ff95c9f
A002387
Least k such that H(k) > n, where H(k) is the harmonic number Sum_{i=1..k} 1/i.
[ "1", "2", "4", "11", "31", "83", "227", "616", "1674", "4550", "12367", "33617", "91380", "248397", "675214", "1835421", "4989191", "13562027", "36865412", "100210581", "272400600", "740461601", "2012783315", "5471312310", "14872568831", "40427833596", "109894245429", "298723530401", "812014744422" ]
[ "nonn", "nice" ]
126
0
5
[ "A002387", "A004080", "A006509", "A055980", "A115515", "A242654" ]
[ "M1249", "N1385" ]
N. J. A. Sloane
2024-04-10T22:01:01
oeisdata/seq/A002/A002387.seq
25d2025a7a6abb4d68ebd8ce1e92bcb7
A002388
Decimal expansion of Pi^2.
[ "9", "8", "6", "9", "6", "0", "4", "4", "0", "1", "0", "8", "9", "3", "5", "8", "6", "1", "8", "8", "3", "4", "4", "9", "0", "9", "9", "9", "8", "7", "6", "1", "5", "1", "1", "3", "5", "3", "1", "3", "6", "9", "9", "4", "0", "7", "2", "4", "0", "7", "9", "0", "6", "2", "6", "4", "1", "3", "3", "4", "9", "3", "7", "6", "2", "2", "0", "0", "4", "4", "8", "2", "2", "4", "1", "9", "2", "0", "5", "2", "4", "3", "0", "0", "1", "7", "7", "3", "4", "0", "3", "7", "1", "8", "5", "5", "2", "2", "3", "1", "8", "2", "4", "0", "2" ]
[ "nonn", "cons" ]
145
0
5
[ "A002388", "A019670", "A058284", "A091925", "A093602", "A093954", "A102753", "A304656" ]
[ "M4596", "N1961" ]
N. J. A. Sloane
2024-09-03T00:58:32
oeisdata/seq/A002/A002388.seq
3799921bc1206d30adfbbdb4373a097d
A002389
Decimal expansion of -log(gamma), where gamma is Euler's constant A001620.
[ "5", "4", "9", "5", "3", "9", "3", "1", "2", "9", "8", "1", "6", "4", "4", "8", "2", "2", "3", "3", "7", "6", "6", "1", "7", "6", "8", "8", "0", "2", "9", "0", "7", "7", "8", "8", "3", "3", "0", "6", "9", "8", "9", "8", "1", "2", "6", "3", "0", "6", "4", "7", "9", "1", "0", "9", "0", "1", "5", "1", "3", "0", "4", "5", "7", "6", "6", "3", "1", "4", "2", "0", "0", "5", "5", "7", "5", "3", "0", "4", "7", "5", "6", "2", "6", "1", "8" ]
[ "nonn", "cons" ]
37
0
5
[ "A001620", "A002389", "A213440" ]
[ "M3740" ]
N. J. A. Sloane
2022-09-08T08:44:30
oeisdata/seq/A002/A002389.seq
47db563cc296f1d7d1acde90fb9f2f81
A002390
Decimal expansion of natural logarithm of golden ratio.
[ "4", "8", "1", "2", "1", "1", "8", "2", "5", "0", "5", "9", "6", "0", "3", "4", "4", "7", "4", "9", "7", "7", "5", "8", "9", "1", "3", "4", "2", "4", "3", "6", "8", "4", "2", "3", "1", "3", "5", "1", "8", "4", "3", "3", "4", "3", "8", "5", "6", "6", "0", "5", "1", "9", "6", "6", "1", "0", "1", "8", "1", "6", "8", "8", "4", "0", "1", "6", "3", "8", "6", "7", "6", "0", "8", "2", "2", "1", "7", "7", "4", "4", "1", "2", "0", "0", "9", "4", "2", "9", "1", "2", "2", "7", "2", "3", "4", "7", "4" ]
[ "nonn", "cons" ]
148
0
5
[ "A000108", "A001622", "A002390", "A013661", "A086463", "A086466", "A263401" ]
[ "M3318", "N1334" ]
N. J. A. Sloane
2025-02-16T08:32:25
oeisdata/seq/A002/A002390.seq
87778b92ddb373fc888f094c00518c77
A002391
Decimal expansion of natural logarithm of 3.
[ "1", "0", "9", "8", "6", "1", "2", "2", "8", "8", "6", "6", "8", "1", "0", "9", "6", "9", "1", "3", "9", "5", "2", "4", "5", "2", "3", "6", "9", "2", "2", "5", "2", "5", "7", "0", "4", "6", "4", "7", "4", "9", "0", "5", "5", "7", "8", "2", "2", "7", "4", "9", "4", "5", "1", "7", "3", "4", "6", "9", "4", "3", "3", "3", "6", "3", "7", "4", "9", "4", "2", "9", "3", "2", "1", "8", "6", "0", "8", "9", "6", "6", "8", "7", "3", "6", "1", "5", "7", "5", "4", "8", "1", "3", "7", "3", "2", "0", "8", "8", "7", "8", "7", "9", "7" ]
[ "nonn", "cons" ]
105
0
5
[ "A002162", "A002391", "A016731", "A058962", "A073000", "A105531", "A154920", "A254619" ]
[ "M4595", "N1960" ]
N. J. A. Sloane
2024-07-01T13:16:30
oeisdata/seq/A002/A002391.seq
1199b9074599b7b14629eabf4e565710
A002392
Decimal expansion of natural logarithm of 10.
[ "2", "3", "0", "2", "5", "8", "5", "0", "9", "2", "9", "9", "4", "0", "4", "5", "6", "8", "4", "0", "1", "7", "9", "9", "1", "4", "5", "4", "6", "8", "4", "3", "6", "4", "2", "0", "7", "6", "0", "1", "1", "0", "1", "4", "8", "8", "6", "2", "8", "7", "7", "2", "9", "7", "6", "0", "3", "3", "3", "2", "7", "9", "0", "0", "9", "6", "7", "5", "7", "2", "6", "0", "9", "6", "7", "7", "3", "5", "2", "4", "8", "0", "2", "3", "5", "9", "9" ]
[ "cons", "nonn" ]
66
0
5
[ "A002392", "A016738" ]
[ "M0394", "N0151" ]
N. J. A. Sloane
2025-03-13T16:39:26
oeisdata/seq/A002/A002392.seq
790f813c23d7bf162fb42f7696417f7f
A002393
Weight distribution of [8,4,4] Hamming code omitting 0 terms.
[ "1", "14", "1" ]
[ "nonn", "fini", "full", "bref" ]
11
0
5
[ "A002337", "A002393", "A108095" ]
null
N. J. A. Sloane
2025-01-12T20:21:39
oeisdata/seq/A002/A002393.seq
ef3499b491545d4fc385e44e74e0a543
A002394
Weight distribution of [ 7,4,3 ] Hamming code.
[ "1", "0", "0", "7", "7", "0", "0", "1" ]
[ "nonn", "fini", "full" ]
11
0
5
[ "A002394", "A340030" ]
null
N. J. A. Sloane
2021-01-11T13:22:26
oeisdata/seq/A002/A002394.seq
fc450a2c5d0069aea335a77a66fe24ee
A002395
a(n) is the number of crystal forms in n dimensions.
[ "1", "2", "9", "47" ]
[ "nonn", "hard", "changed" ]
13
0
5
null
null
N. J. A. Sloane
2025-04-16T09:02:58
oeisdata/seq/A002/A002395.seq
0d35ae78dc625aaa4c13b752d8f69bcf
A002396
Inverse of reduced totient function.
[ "1", "3", "5", "7", "32", "11", "13", "17", "19", "25", "23", "224", "29", "31", "128", "37", "41", "43", "115", "47", "119", "53", "81", "928", "59", "61", "256", "67", "71", "73", "79", "187", "83", "203", "89", "209", "235", "97", "101", "103", "1696", "107", "109", "121", "113", "295", "287", "127", "512", "131", "299", "137", "139", "319", "323", "149", "151", "157", "1408" ]
[ "nonn", "nice", "easy" ]
24
0
5
null
[ "M2428", "N0961" ]
N. J. A. Sloane
2021-12-19T10:07:03
oeisdata/seq/A002/A002396.seq
fd6abff52745ea91683ec211ef5cf967
A002397
a(n) = n! * lcm({1, 2, ..., n+1}).
[ "1", "2", "12", "72", "1440", "7200", "302400", "4233600", "101606400", "914457600", "100590336000", "1106493696000", "172613016576000", "2243969215488000", "31415569016832000", "942467070504960000", "256351043177349120000", "4357967734014935040000", "1490424965033107783680000" ]
[ "nonn" ]
43
0
5
[ "A002397", "A002398", "A002399", "A002400", "A002401", "A002402", "A002403", "A002404", "A002405", "A002406", "A010796", "A260780", "A260781" ]
[ "M2036", "N0807" ]
N. J. A. Sloane
2023-10-15T02:54:27
oeisdata/seq/A002/A002397.seq
ed44fd6efb20e32f76fa5aca303a27aa
A002398
Coefficients for step-by-step integration.
[ "1", "3", "23", "165", "3802", "21385", "993605", "15198435", "394722916", "3814933122", "447827009070", "5229570190845", "862250830559382", "11802457085079375", "173406732097447849", "5443765223302501095", "1545512798280174555832", "27361456077246355572508", "9725198808628092900136884", "191684785790597591594500398" ]
[ "nonn" ]
29
0
5
[ "A002397", "A002398", "A002399", "A002400", "A002401", "A002402", "A002403", "A002404", "A002405", "A002406", "A027486", "A260780", "A260781" ]
[ "M3101", "N1256" ]
N. J. A. Sloane
2023-10-15T00:24:30
oeisdata/seq/A002/A002398.seq
1fbf6fd657e99c1eff4144ed8144d63d
A002399
Coefficients for step-by-step integration.
[ "1", "16", "177", "5548", "39615", "2236440", "40325915", "1207505768", "13229393814", "1737076976040", "22446050738265", "4058838484620084", "60476452041557409", "961082989270516112", "32455938583801467735", "9864953815464307351792", "186195769473110823077652", "70295408103581008790661648", "1466826914074651870368663750" ]
[ "nonn" ]
23
0
5
[ "A002397", "A002398", "A002399", "A002400", "A002401", "A002402", "A002403", "A002404", "A002405", "A002406", "A260780", "A260781" ]
[ "M5015", "N2160" ]
N. J. A. Sloane
2023-10-15T00:25:06
oeisdata/seq/A002/A002399.seq
94d7a9aabc4dc26ec897111db4f02f4d
A002400
Coefficients for step-by-step integration.
[ "5", "111", "5232", "49910", "3527745", "76435695", "2673350008", "33507517680", "4954123399050", "71186377398675", "14169975006172392", "230478985529218998", "3970388091885696481", "144475785096372785055", "47074452451240708494000", "948198128552832829175504", "380523626987174239611912012", "8410876353715824882741160170" ]
[ "nonn" ]
23
0
5
[ "A002397", "A002398", "A002399", "A002400", "A002401", "A002402", "A002403", "A002404", "A002405", "A002406", "A260780", "A260781" ]
[ "M4025", "N1670" ]
N. J. A. Sloane
2023-10-15T00:25:42
oeisdata/seq/A002/A002400.seq
eacfa4befca5fd55e44438fe059887f6