sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A354201
Inverse prime map of A354200.
[ "1", "1", "2", "3", "7", "5", "13", "11", "19", "17", "23", "29", "37", "31", "43", "41", "47", "53", "59", "67", "61", "71", "79", "73", "89", "97", "83", "103", "101", "109", "107", "127", "113", "131", "137", "139", "149", "151", "163", "157", "167", "173", "179", "181", "193", "191", "199", "211", "223", "197", "229", "227", "233", "239", "241", "251", "257", "263", "269", "277", "271", "281", "283", "307", "293", "313", "311", "317", "331", "337" ]
[ "nonn" ]
5
1
3
[ "A000040", "A000720", "A354200", "A354201", "A354203" ]
null
Antti Karttunen, May 23 2022
2022-05-23T17:45:40
oeisdata/seq/A354/A354201.seq
0919f1f920ccc8c530b09734b2c6b295
A354202
Fully multiplicative with a(p^e) = A354200(A000720(p))^e.
[ "1", "5", "7", "25", "13", "35", "11", "125", "49", "65", "19", "175", "17", "55", "91", "625", "29", "245", "23", "325", "77", "95", "31", "875", "169", "85", "343", "275", "37", "455", "43", "3125", "133", "145", "143", "1225", "41", "115", "119", "1625", "53", "385", "47", "475", "637", "155", "59", "4375", "121", "845", "203", "425", "61", "1715", "247", "1375", "161", "185", "67", "2275", "73", "215", "539", "15625", "221", "665", "71", "725" ]
[ "nonn", "mult" ]
7
1
2
[ "A003961", "A007310", "A108548", "A267099", "A332818", "A348746", "A354091", "A354200", "A354202", "A354203", "A354204", "A354205" ]
null
Antti Karttunen, May 23 2022
2022-05-23T17:45:43
oeisdata/seq/A354/A354202.seq
1224d718b6442b73d7dfe5c289b0fe24
A354203
Fully multiplicative with a(p^e) = A354201(A000720(p))^e.
[ "1", "1", "1", "1", "2", "1", "3", "1", "1", "2", "7", "1", "5", "3", "2", "1", "13", "1", "11", "2", "3", "7", "19", "1", "4", "5", "1", "3", "17", "2", "23", "1", "7", "13", "6", "1", "29", "11", "5", "2", "37", "3", "31", "7", "2", "19", "43", "1", "9", "4", "13", "5", "41", "1", "14", "3", "11", "17", "47", "2", "53", "23", "3", "1", "10", "7", "59", "13", "19", "6", "67", "1", "61", "29", "4", "11", "21", "5", "71", "2", "1", "37", "79", "3", "26", "31", "17", "7", "73", "2", "15", "19", "23" ]
[ "nonn", "mult" ]
5
1
5
[ "A354201", "A354202", "A354203", "A354206" ]
null
Antti Karttunen, May 23 2022
2022-05-23T17:45:49
oeisdata/seq/A354/A354203.seq
d1bef28c637256cb717522dd2e9f8820
A354204
a(n) = phi(A354202(n)), where A354202 is fully multiplicative with a(p) = A354200(A000720(p)).
[ "1", "4", "6", "20", "12", "24", "10", "100", "42", "48", "18", "120", "16", "40", "72", "500", "28", "168", "22", "240", "60", "72", "30", "600", "156", "64", "294", "200", "36", "288", "42", "2500", "108", "112", "120", "840", "40", "88", "96", "1200", "52", "240", "46", "360", "504", "120", "58", "3000", "110", "624", "168", "320", "60", "1176", "216", "1000", "132", "144", "66", "1440", "72", "168", "420", "12500", "192", "432", "70", "560", "180" ]
[ "nonn", "mult" ]
6
1
2
[ "A000010", "A008683", "A354200", "A354202", "A354204", "A354205" ]
null
Antti Karttunen, May 23 2022
2022-05-23T17:45:53
oeisdata/seq/A354/A354204.seq
f9c9c640d4755238f7ca62e568136057
A354205
a(n) = sigma(A354202(n)), where A354202 is fully multiplicative with a(p) = A354200(A000720(p)).
[ "1", "6", "8", "31", "14", "48", "12", "156", "57", "84", "20", "248", "18", "72", "112", "781", "30", "342", "24", "434", "96", "120", "32", "1248", "183", "108", "400", "372", "38", "672", "44", "3906", "160", "180", "168", "1767", "42", "144", "144", "2184", "54", "576", "48", "620", "798", "192", "60", "6248", "133", "1098", "240", "558", "62", "2400", "280", "1872", "192", "228", "68", "3472", "74", "264", "684", "19531", "252", "960", "72" ]
[ "nonn", "mult" ]
7
1
2
[ "A000203", "A000290", "A000720", "A003973", "A354089", "A354093", "A354200", "A354202", "A354204", "A354205", "A354206" ]
null
Antti Karttunen, May 23 2022
2022-05-23T17:45:57
oeisdata/seq/A354/A354205.seq
606038624b54af4de5e44ecc86432e74
A354206
a(n) = A354203(sigma(A354202(n))), where A354202 is fully multiplicative with a(p) = A354200(A000720(p)), and A354203 is its left inverse.
[ "1", "1", "1", "23", "3", "1", "1", "5", "11", "3", "2", "23", "1", "1", "3", "469", "2", "11", "1", "69", "1", "2", "1", "5", "53", "1", "4", "23", "11", "3", "7", "69", "2", "2", "3", "253", "3", "1", "1", "15", "1", "1", "1", "46", "33", "1", "2", "469", "33", "53", "2", "23", "23", "4", "6", "5", "1", "11", "13", "69", "29", "7", "11", "19507", "3", "2", "1", "46", "1", "3", "2", "55", "2", "3", "53", "23", "2", "1", "3", "1407", "2797", "1", "5", "23", "6", "1", "11", "10", "9", "33" ]
[ "nonn", "mult" ]
15
1
4
[ "A000203", "A000720", "A326042", "A348750", "A354088", "A354096", "A354200", "A354201", "A354202", "A354203", "A354205", "A354206", "A354207", "A354361" ]
null
Antti Karttunen, May 23 2022
2022-05-24T16:31:53
oeisdata/seq/A354/A354206.seq
e3fa1e77cbb0a22919eca8e9005dd938
A354207
a(n) = n - A354203(sigma(A354202(n))), where A354202 is fully multiplicative with a(p) = A354200(A000720(p)), and A354203 is its left inverse.
[ "0", "1", "2", "-19", "2", "5", "6", "3", "-2", "7", "9", "-11", "12", "13", "12", "-453", "15", "7", "18", "-49", "20", "20", "22", "19", "-28", "25", "23", "5", "18", "27", "24", "-37", "31", "32", "32", "-217", "34", "37", "38", "25", "40", "41", "42", "-2", "12", "45", "45", "-421", "16", "-3", "49", "29", "30", "50", "49", "51", "56", "47", "46", "-9", "32", "55", "52", "-19443", "62", "64", "66", "22", "68", "67", "69", "17", "71", "71", "22", "53", "75", "77", "76" ]
[ "sign" ]
10
1
3
[ "A000203", "A348736", "A354200", "A354201", "A354202", "A354203", "A354205", "A354206", "A354207" ]
null
Antti Karttunen, May 23 2022
2022-05-24T16:32:00
oeisdata/seq/A354/A354207.seq
ed3c113189a2d2558fdc0460eec8e85f
A354208
Number of parity-alternating permutations of [n] avoiding the pattern 321.
[ "1", "1", "1", "1", "2", "3", "6", "11", "22", "44", "89", "185", "382", "808", "1702", "3635", "7779", "16736", "36229", "78466", "171238", "373203", "819186", "1795611", "3958662", "8721086", "19294525", "42691298", "94733886", "210379132", "468084856", "1042703207", "2325575076", "5193931583", "11609749877", "25986720374", "58203955771" ]
[ "nonn" ]
56
0
5
[ "A000108", "A010551", "A354208" ]
null
Per W. Alexandersson, Jun 06 2022
2023-05-04T10:04:45
oeisdata/seq/A354/A354208.seq
149a00ced729e383bb064507e70eb0f0
A354209
Decimal expansion of Pi/gamma, where gamma is Euler's constant (or the Euler-Mascheroni constant).
[ "5", "4", "4", "2", "6", "6", "7", "0", "0", "4", "0", "6", "6", "3", "5", "2", "0", "2", "6", "3", "6", "8", "4", "8", "4", "1", "2", "1", "5", "9", "8", "4", "6", "9", "5", "1", "3", "3", "1", "4", "2", "0", "4", "6", "4", "3", "2", "4", "6", "7", "0", "6", "6", "5", "3", "3", "4", "9", "4", "4", "9", "2", "1", "6", "8", "5", "9", "3", "6", "5", "1", "0", "1", "4", "9", "9", "2", "2", "3", "2", "3", "3", "3", "5", "3", "2", "5" ]
[ "nonn", "cons" ]
8
1
1
[ "A000796", "A001620", "A354209" ]
null
Marco Ripà, May 19 2022
2022-07-01T10:54:24
oeisdata/seq/A354/A354209.seq
87f6f83cc22c01ff12fe8d7d667e1ac7
A354210
a(n) = floor(sqrt(Fibonacci(n+1)*Fibonacci(n))).
[ "0", "1", "1", "2", "3", "6", "10", "16", "26", "43", "69", "113", "183", "296", "479", "775", "1255", "2031", "3286", "5318", "8605", "13923", "22528", "36452", "58981", "95433", "154414", "249847", "404261", "654109", "1058371", "1712480", "2770851", "4483332", "7254184", "11737516", "18991701", "30729217", "49720919", "80450136", "130171055", "210621192" ]
[ "nonn" ]
13
0
4
[ "A000045", "A001654", "A061287", "A199575", "A354210" ]
null
Michel Marcus, May 19 2022
2025-01-05T19:51:42
oeisdata/seq/A354/A354210.seq
dbf24d5480e0d69950b586acf02c656d
A354211
a(n) is the numerator of Sum_{k=0..n} 1 / (2*k+1)!.
[ "1", "7", "47", "5923", "426457", "15636757", "7318002277", "1536780478171", "603180793741", "142957467201379447", "60042136224579367741", "10127106976545720025649", "18228792557782296046168201", "12796612375563171824410077103", "3463616416319098507140327535879", "1380498543075754976417359117871773" ]
[ "nonn", "frac" ]
26
0
2
[ "A009445", "A053557", "A061354", "A073742", "A103816", "A120265", "A143382", "A289381", "A354211", "A354331", "A354332", "A354334" ]
null
Ilya Gutkovskiy, May 24 2022
2022-05-24T12:54:53
oeisdata/seq/A354/A354211.seq
479ec45b1f46ce24b0ee91b939bb98fa
A354212
Numbers k such that A297330(k)*k and k have the same digits but in a different order.
[ "11688", "116688", "126888", "1166688", "1266888", "11666688", "12446778", "12666888", "116666688", "123456789", "124466778", "126666888" ]
[ "nonn", "base", "more" ]
18
1
1
[ "A297330", "A354212" ]
null
J. M. Bergot and Robert Israel, May 19 2022
2022-05-31T11:02:10
oeisdata/seq/A354/A354212.seq
b0ab8fb2e8198f007e96c5088a81ae97
A354213
Decimal expansion of Sum_{k>=1} 1/sinh((k - 1/2)*Pi)^4.
[ "0", "3", "5", "6", "5", "4", "0", "7", "2", "9", "2", "1", "2", "8", "5", "1", "1", "6", "4", "7", "7", "7", "0", "6", "1", "3", "2", "5", "9", "3", "9", "8", "9", "2", "3", "2", "8", "5", "0", "3", "2", "5", "6", "2", "5", "9", "6", "6", "3", "9", "0", "5", "9", "6", "6", "3", "8", "1", "5", "8", "9", "4", "6", "0", "9", "2", "5", "4", "9", "6", "1", "6", "1", "8", "3", "4", "8", "5", "2", "9", "7", "1", "8", "1", "0", "2", "2", "6", "2", "6", "0", "3", "2", "4", "9", "5", "9", "9", "2", "7", "6", "6", "2", "3", "0", "6", "9" ]
[ "nonn", "cons" ]
14
0
2
[ "A240964", "A354213", "A354214" ]
null
Vaclav Kotesovec, May 19 2022
2022-05-20T01:53:44
oeisdata/seq/A354/A354213.seq
b7470bdb2816cb51a47e74af6014e719
A354214
Decimal expansion of Sum_{k>=1} 1/sinh(k*Pi)^4.
[ "5", "6", "2", "1", "6", "4", "1", "9", "8", "0", "4", "7", "7", "1", "8", "7", "3", "2", "8", "2", "7", "5", "3", "3", "9", "9", "4", "4", "1", "4", "5", "5", "6", "6", "1", "1", "1", "0", "8", "1", "4", "7", "7", "7", "2", "8", "4", "3", "3", "8", "0", "0", "6", "4", "3", "2", "1", "0", "6", "0", "2", "0", "3", "7", "6", "2", "1", "8", "1", "8", "6", "2", "4", "6", "1", "7", "2", "3", "9", "4", "5", "9", "2", "4", "4", "4", "2", "0", "5", "0", "7", "6", "0", "5", "4", "5", "6", "1", "3", "2", "0", "6", "6", "2", "9", "6" ]
[ "nonn", "cons" ]
9
-4
1
[ "A110191", "A254446", "A335414", "A335415", "A354213", "A354214" ]
null
Vaclav Kotesovec, May 19 2022
2022-05-20T01:54:57
oeisdata/seq/A354/A354214.seq
41f4dd6ebbb14634f82c83213a3bfb40
A354215
a(n) is the row number of the Trithoff (tribonacci) array where we can find the tail of the following sequence: apply the difference operator n times to the tribonacci sequence.
[ "1", "2", "3", "7", "19", "29", "81", "125", "353", "161", "1545", "705", "2001", "3089", "8769", "24897", "38433", "109121", "309825", "478273", "1357953", "2096257", "5951873", "2715905" ]
[ "nonn", "more" ]
13
0
2
[ "A000073", "A136175", "A351685", "A351689", "A353178", "A353193", "A354215" ]
null
Tanya Khovanova and PRIMES STEP Senior group, May 19 2022
2022-11-04T07:31:12
oeisdata/seq/A354/A354215.seq
c1eca654fe3a0b10a3428e77c9e330d3
A354216
Highly composite numbers (A002182) whose number of divisors is not a multiple of 3.
[ "1", "2", "6", "24", "48", "120", "240", "840", "1680", "7560", "15120", "45360", "83160", "166320", "498960", "665280", "1081080", "2162160", "6486480", "8648640", "17297280", "36756720", "110270160", "147026880", "294053760", "698377680", "2095133040", "2793510720", "5587021440", "64250746560", "128501493120", "1606268664000" ]
[ "nonn" ]
16
1
2
[ "A002182", "A002183", "A354216" ]
null
J. Lowell, May 19 2022
2022-06-02T10:45:44
oeisdata/seq/A354/A354216.seq
fc6f7c65cf53af035d61bf494093cc74
A354217
Primes p such that the squarefree kernel of the product of the composite numbers between p and the next prime after p (A076978) sets a new record.
[ "3", "5", "7", "13", "19", "23", "31", "47", "53", "73", "83", "89", "113", "199", "211", "293", "467", "523", "887", "1129", "1327", "2971", "3271", "4297", "4831", "5591", "8467", "9551", "12853", "14107", "15683", "19609", "25471", "31397", "89689", "107377", "134513", "155921", "265621", "338033", "360653", "370261", "492113", "1098847", "1349533" ]
[ "nonn" ]
10
1
1
[ "A007947", "A076978", "A354217", "A354218" ]
null
Hugo Pfoertner, May 19 2022
2022-05-20T09:26:34
oeisdata/seq/A354/A354217.seq
04fd740499d1c24bd28c0e0fca5ffd35
A354218
Records in A076978, divided by 2.
[ "1", "3", "15", "105", "1155", "1365", "19635", "23205", "636405", "10555545", "24484845", "869107785", "14797252681546335", "92442344345566215", "40334203530676690635", "1451417351374223318085", "6087255082617244520985", "469256253416014832182075245585", "1519012498286389398934397206158552189345" ]
[ "nonn" ]
36
1
2
[ "A007947", "A076978", "A354217", "A354218" ]
null
Hugo Pfoertner, May 19 2022
2022-06-14T08:51:05
oeisdata/seq/A354/A354218.seq
645bdcfe372ab19a3ecf1133783b39ca
A354219
Primes p such that the number of distinct prime factors omega of the product of the composite numbers between p and the next prime after p sets a new record.
[ "3", "5", "7", "13", "19", "31", "53", "73", "89", "113", "211", "293", "523", "887", "1129", "1327", "4297", "4831", "5351", "5591", "8467", "12853", "15683", "19609", "25471", "31397", "134513", "155921", "338033", "360653", "370261", "492113", "1349533", "1357201", "1561919", "2010733", "4652353", "8421251", "11113933", "15203977", "17051707" ]
[ "nonn" ]
15
1
1
[ "A001221", "A076978", "A354217", "A354219", "A354220" ]
null
Hugo Pfoertner, May 20 2022
2025-06-20T20:22:23
oeisdata/seq/A354/A354219.seq
ebb804ce17fbc345b1e853eb99a25e3a
A354220
a(n) is the record setting number of distinct prime factors in the product of the composite numbers between p = A354219(n) and the next prime after p.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "14", "15", "16", "20", "25", "27", "37", "38", "39", "40", "41", "45", "49", "56", "64", "66", "89", "90", "114", "120", "131", "145", "154", "164", "174", "187", "207", "217", "218", "222", "225", "266", "302", "328", "329", "330", "351", "364", "369", "377", "381", "437", "447", "449", "454", "461", "468", "497", "530", "535", "548", "551" ]
[ "nonn" ]
10
1
2
[ "A001221", "A076978", "A354219", "A354220" ]
null
Hugo Pfoertner, May 20 2022
2022-05-21T14:07:51
oeisdata/seq/A354/A354220.seq
4fb5f5dec0e1c60ff546a03536674486
A354221
a(n) is the numerator of the sum of reciprocals of the 2*n+1 consecutive primes starting with A353534(n).
[ "31", "2927", "24749279", "52404847006669763041", "264723826652711", "25709009860910962769666716861", "31275582984007762166936591", "9357116090687897728867556889841", "13585328068403621603022853", "4395564666287059721647967305937566473834609232641255659809", "15360643606799479140185671512081451" ]
[ "nonn" ]
18
1
1
[ "A353534", "A354221" ]
null
J. M. Bergot and Robert Israel, May 29 2022
2022-05-31T06:49:07
oeisdata/seq/A354/A354221.seq
e96b0f61abfa5750b84aebbe0f47bfa8
A354222
Decimal expansion of 2 / (Pi+2).
[ "3", "8", "8", "9", "8", "4", "5", "2", "9", "6", "4", "8", "3", "4", "2", "7", "1", "0", "6", "1", "9", "4", "0", "4", "6", "1", "2", "0", "4", "6", "0", "3", "1", "1", "3", "8", "2", "6", "2", "5", "7", "7", "3", "6", "7", "0", "4", "3", "9", "0", "7", "2", "0", "4", "7", "9", "1", "0", "8", "3", "2", "2", "4", "9", "5", "7", "5", "3", "5", "1", "6", "6", "0", "6", "3", "6", "8", "4", "1", "6", "1", "3", "4", "2", "6", "2", "8", "6", "1", "6", "5", "4", "3", "3", "2", "5", "6", "9", "4", "0" ]
[ "nonn", "cons" ]
18
0
1
[ "A060294", "A197686", "A354222" ]
null
Bernard Schott, May 19 2022
2022-05-26T13:16:35
oeisdata/seq/A354/A354222.seq
a501eaccdde69285027cb3385b69e195
A354223
The initial sequence of the positive integers gradually becomes interspersed with the copies of its terms and so is transformed into this sequence. The method is described in the Comments section.
[ "1", "2", "3", "1", "3", "4", "2", "1", "2", "4", "1", "4", "5", "3", "2", "1", "2", "3", "1", "3", "5", "2", "1", "2", "5", "1", "5", "6", "4", "3", "2", "1", "2", "3", "1", "3", "4", "2", "1", "2", "4", "1", "4", "6", "3", "2", "1", "2", "3", "1", "3", "6", "2", "1", "2", "6", "1", "6", "7", "5", "4", "3", "2", "1", "2", "3", "1", "3", "4", "2", "1", "2", "4", "1", "4", "5", "3", "2", "1", "2", "3", "1", "3", "5", "2", "1", "2", "5", "1", "5", "7", "4", "3", "2", "1", "2", "3", "1", "3", "4", "2", "1", "2", "4", "1", "4", "7", "3", "2", "1", "2", "3", "1", "3", "7", "2", "1", "2", "7", "1", "7" ]
[ "nonn" ]
42
1
2
[ "A000027", "A089309", "A090739", "A120738", "A132045", "A195986", "A354223" ]
null
Tamas Sandor Nagy, May 19 2022
2022-07-18T10:00:38
oeisdata/seq/A354/A354223.seq
952e72e0ea47aac5cd0a2c764b656327
A354224
Lexicographically earliest sequence of distinct positive integers such that a(1) = 1 and for any n > 1, the greatest common divisor of n and a(n) is a prime number.
[ "1", "2", "3", "6", "5", "4", "7", "10", "12", "8", "11", "9", "13", "16", "18", "14", "17", "15", "19", "22", "24", "20", "23", "21", "30", "28", "33", "26", "29", "25", "31", "34", "27", "32", "40", "38", "37", "36", "42", "35", "41", "39", "43", "46", "48", "44", "47", "45", "56", "52", "54", "50", "53", "51", "60", "49", "63", "62", "59", "55", "61", "58", "57", "66", "70", "64", "67" ]
[ "nonn" ]
12
1
2
[ "A238758", "A354224" ]
null
Rémy Sigrist, May 20 2022
2022-06-07T11:12:22
oeisdata/seq/A354/A354224.seq
184942958222edcddf6161b208fbb37c
A354225
Lexicographically earliest sequence of distinct positive integers such that a(1) = 1 and for any n > 1, n / gcd(n, a(n)) and a(n) / gcd(n, a(n)) are prime.
[ "1", "3", "2", "6", "7", "4", "5", "12", "15", "14", "13", "8", "11", "10", "9", "24", "19", "27", "17", "28", "33", "26", "29", "16", "35", "22", "18", "20", "23", "42", "37", "48", "21", "38", "25", "54", "31", "34", "51", "56", "43", "30", "41", "52", "63", "58", "53", "32", "77", "70", "39", "44", "47", "36", "65", "40", "69", "46", "61", "84", "59", "74", "45", "96", "55", "78", "71" ]
[ "nonn" ]
13
1
2
[ "A122280", "A354225" ]
null
Rémy Sigrist, May 20 2022
2022-05-22T14:05:46
oeisdata/seq/A354/A354225.seq
4eac681de93ee96e54cf68297dc1a6b2
A354226
a(n) is the number of distinct prime factors of (p^p - 1)/(p - 1) where p = prime(n).
[ "1", "1", "2", "2", "2", "3", "3", "1", "4", "7", "1", "7", "5", "3", "3", "5", "3", "4", "6", "4", "10", "5", "4", "6", "6", "9", "5", "4", "5", "8", "6", "4", "11" ]
[ "nonn", "more" ]
71
1
3
[ "A000040", "A001039", "A001221", "A088790", "A125135", "A212552", "A214812", "A354226" ]
null
Luis H. Gallardo, May 20 2022
2023-01-23T14:23:42
oeisdata/seq/A354/A354226.seq
49a7d8ca3e1bd24f8a8a6dbcf6f67e62
A354227
Odd numbers whose Collatz trajectory contains exactly 12 odd numbers.
[ "39", "79", "153", "157", "305", "307", "315", "317", "611", "613", "629", "631", "647", "683", "687", "1221", "1229", "1241", "1257", "1261", "1265", "1269", "1295", "1353", "1367", "1369", "1375", "1505", "2445", "2453", "2481", "2483", "2489", "2507", "2515", "2517", "2521", "2525", "2531", "2545", "2589", "2593", "2633", "2705", "2707", "2733" ]
[ "nonn" ]
21
1
1
[ "A005408", "A072122", "A354227" ]
null
Krishna Kumar Arumugam, May 20 2022
2022-07-18T19:07:25
oeisdata/seq/A354/A354227.seq
a9032c62b827f66995432e87d58bbce5
A354228
Number of partitions of the multigraph G_n (defined below) into "strokes".
[ "1", "6", "58", "578", "5766", "57810", "580310", "5829538", "58575686", "588641522", "5915670070", "59451845314", "597489270438", "6004768803090", "60348023150742", "606498938168290", "6095328830488582", "61258206225329970", "615646518692614390", "6187263150038580994" ]
[ "nonn" ]
26
1
2
[ "A131518", "A131519", "A131520", "A354228" ]
null
Yasutoshi Kohmoto and Max Alekseyev, Jul 18 2022
2024-10-31T13:32:20
oeisdata/seq/A354/A354228.seq
9a8ba0ddfe45d2bcfdfd6b3308f07d85
A354229
Expansion of e.g.f. 1/(1 - log(1 + x)^3).
[ "1", "0", "0", "6", "-36", "210", "-630", "-5376", "153048", "-2194296", "22190760", "-93956544", "-2677330656", "97821857952", "-2019503487456", "27899293618944", "-98409183995520", "-9548919666829440", "410311098024923520", "-10652005874894469120", "176525303194482117120", "-46197517147757867520" ]
[ "sign" ]
10
0
4
[ "A006252", "A353118", "A354134", "A354229", "A354230", "A354231" ]
null
Seiichi Manyama, May 20 2022
2022-05-20T08:50:25
oeisdata/seq/A354/A354229.seq
e2e9c9769770da3fb0319858c2f06bf2
A354230
Expansion of e.g.f. 1/(1 - log(1 + x)^5).
[ "1", "0", "0", "0", "0", "120", "-1800", "21000", "-235200", "2693880", "-28690200", "210447600", "1465952400", "-123513355680", "4155643171680", "-114924516470400", "2886135295680000", "-66750668391381120", "1375830884058456960", "-22036006671394705920", "70186623981895296000", "16180846322732941893120" ]
[ "sign" ]
10
0
6
[ "A006252", "A353200", "A354135", "A354229", "A354230", "A354232" ]
null
Seiichi Manyama, May 20 2022
2024-09-20T17:14:06
oeisdata/seq/A354/A354230.seq
de4ee3c887453cb09507467e3dd24dff
A354231
Expansion of e.g.f. exp(log(1 + x)^3).
[ "1", "0", "0", "6", "-36", "210", "-990", "2184", "37128", "-863736", "13020480", "-168384744", "1940801544", "-18825129648", "107706637584", "1386022834944", "-73429347222720", "2034345021802560", "-46869707752067520", "976421492688165120", "-18675350766042871680", "319467427583225518080" ]
[ "sign" ]
16
0
4
[ "A009199", "A353344", "A354136", "A354229", "A354231", "A354232" ]
null
Seiichi Manyama, May 20 2022
2023-02-24T11:17:57
oeisdata/seq/A354/A354231.seq
27ebaa43c93afb2cc0418038cfd6437f
A354232
Expansion of e.g.f. exp(log(1 + x)^5).
[ "1", "0", "0", "0", "0", "120", "-1800", "21000", "-235200", "2693880", "-30504600", "310239600", "-2026767600", "-22324267680", "1480359360480", "-48314853350400", "1332965821824000", "-34178451017685120", "837433109548661760", "-19671723873906894720", "436228097513559408000" ]
[ "sign" ]
9
0
6
[ "A009199", "A354137", "A354230", "A354231", "A354232" ]
null
Seiichi Manyama, May 20 2022
2022-05-20T08:50:39
oeisdata/seq/A354/A354232.seq
142bc8543d460f4093c6a3e54872dcd3
A354233
Least number with n runs in ordered prime signature.
[ "1", "2", "12", "90", "2100", "48510", "3303300", "139369230", "18138420300", "1157182716690", "278261505822300", "30168910606824990", "9894144362523521100", "1693350783450479863710", "715178436956287675671300", "147157263134197051595990130", "83730945863531292204568790100" ]
[ "nonn" ]
6
0
2
[ "A001221", "A001222", "A005361", "A005811", "A056239", "A085629", "A097318", "A098859", "A112798", "A118914", "A124010", "A130091", "A181819", "A181821", "A182850", "A225485", "A296150", "A304678", "A323014", "A325280", "A325755", "A353500", "A353507", "A353742", "A353745", "A354233" ]
null
Gus Wiseman, May 20 2022
2022-05-21T19:40:16
oeisdata/seq/A354/A354233.seq
241694496c09d0d818741cb36445b059
A354234
Triangle read by rows where T(n,k) is the number of integer partitions of n with at least one part divisible by k.
[ "1", "2", "1", "3", "1", "1", "5", "3", "1", "1", "7", "4", "2", "1", "1", "11", "7", "4", "2", "1", "1", "15", "10", "6", "3", "2", "1", "1", "22", "16", "9", "6", "3", "2", "1", "1", "30", "22", "14", "8", "5", "3", "2", "1", "1", "42", "32", "20", "13", "8", "5", "3", "2", "1", "1", "56", "44", "29", "18", "12", "7", "5", "3", "2", "1", "1", "77", "62", "41", "27", "17", "12", "7", "5", "3", "2", "1", "1" ]
[ "nonn", "tabl" ]
13
1
2
[ "A000009", "A000041", "A002033", "A006918", "A013929", "A046099", "A047966", "A047967", "A061199", "A064410", "A091602", "A117485", "A238394", "A238395", "A295341", "A295342", "A324929", "A325534", "A354234", "A354235" ]
null
Gus Wiseman, May 22 2022
2023-01-19T22:36:27
oeisdata/seq/A354/A354234.seq
1ea8b6102a625cfde29a430e46ee920d
A354235
Heinz numbers of integer partitions with at least one part divisible by 3.
[ "5", "10", "13", "15", "20", "23", "25", "26", "30", "35", "37", "39", "40", "45", "46", "47", "50", "52", "55", "60", "61", "65", "69", "70", "73", "74", "75", "78", "80", "85", "89", "90", "91", "92", "94", "95", "100", "103", "104", "105", "110", "111", "113", "115", "117", "120", "122", "125", "130", "135", "137", "138", "140", "141", "143", "145", "146", "148", "150" ]
[ "nonn" ]
10
1
1
[ "A000720", "A000726", "A001221", "A001222", "A003963", "A004250", "A004709", "A008466", "A008483", "A013929", "A018256", "A036966", "A046099", "A046101", "A047967", "A056239", "A062739", "A064428", "A100405", "A112798", "A117485", "A118914", "A124010", "A181819", "A295341", "A295342", "A296150", "A324929", "A335464", "A339222", "A353508", "A354234", "A354235" ]
null
Gus Wiseman, May 23 2022
2022-09-05T22:38:23
oeisdata/seq/A354/A354235.seq
4e12b8233c2a90e63457997216a60c12
A354236
A(n,k) is the n-th number m such that the Collatz (or 3x+1) trajectory starting at m contains exactly k odd integers; square array A(n,k), n>=1, k>=1, read by antidiagonals.
[ "1", "5", "2", "3", "10", "4", "17", "6", "20", "8", "11", "34", "12", "21", "16", "7", "22", "35", "13", "40", "32", "9", "14", "23", "68", "24", "42", "64", "25", "18", "15", "44", "69", "26", "80", "128", "33", "49", "19", "28", "45", "70", "48", "84", "256", "43", "65", "50", "36", "29", "46", "75", "52", "85", "512", "57", "86", "66", "51", "37", "30", "88", "136", "53", "160", "1024" ]
[ "nonn", "tabl" ]
27
1
2
[ "A006577", "A006667", "A011782", "A062052", "A062053", "A062054", "A062055", "A062056", "A062057", "A062058", "A062059", "A062060", "A072122", "A072466", "A078719", "A092893", "A354236", "A380244" ]
null
Alois P. Heinz, May 20 2022
2025-01-17T16:39:20
oeisdata/seq/A354/A354236.seq
25ba23ba124bb58e35bab8534c9e8684
A354237
Expansion of e.g.f. 1 / (1 - log(1 + 2*x) / 2).
[ "1", "1", "0", "2", "-8", "64", "-592", "6768", "-90624", "1395840", "-24292608", "471453696", "-10094066688", "236340378624", "-6007053852672", "164713554069504", "-4846361933021184", "152300800682754048", "-5091189648734748672", "180386551596145508352", "-6752521487083688165376" ]
[ "sign" ]
24
0
4
[ "A006252", "A088500", "A088501", "A122704", "A155585", "A227917", "A354237", "A354750", "A354751" ]
null
Ilya Gutkovskiy, Jun 06 2022
2022-06-06T08:07:42
oeisdata/seq/A354/A354237.seq
8cc66f43266e2a7fe6effb4d5ed15753
A354238
Decimal expansion of 1 - Pi^2/12.
[ "1", "7", "7", "5", "3", "2", "9", "6", "6", "5", "7", "5", "8", "8", "6", "7", "8", "1", "7", "6", "3", "7", "9", "2", "4", "1", "6", "6", "7", "6", "9", "8", "7", "4", "0", "5", "3", "9", "0", "5", "2", "5", "0", "4", "9", "3", "9", "6", "6", "0", "0", "7", "8", "1", "1", "3", "2", "2", "2", "0", "8", "8", "5", "3", "1", "4", "9", "9", "6", "2", "6", "4", "7", "9", "8", "3", "9", "9", "5", "6", "3", "0", "8", "3", "1", "8", "5", "5", "4", "9", "6", "9", "0", "1", "2", "0", "6", "4", "7", "3", "4", "7", "9", "9", "7" ]
[ "nonn", "cons", "easy" ]
42
0
2
[ "A000290", "A004125", "A013661", "A024916", "A072691", "A152416", "A237593", "A245092", "A353908", "A354238" ]
null
Omar E. Pol, May 20 2022
2024-05-22T12:56:38
oeisdata/seq/A354/A354238.seq
1917f8835f65b26d01cec13dc42fd484
A354239
Expansion of e.g.f. (2 - exp(x))^(x/2).
[ "1", "0", "-1", "-3", "-9", "-35", "-195", "-1477", "-13839", "-151335", "-1877745", "-26022491", "-398318481", "-6674043961", "-121496905803", "-2387748622365", "-50382638237343", "-1136006690370371", "-27257495551671753", "-693436310776781083", "-18643640290958926785", "-528196548501606911913" ]
[ "sign" ]
73
0
4
[ "A052862", "A354239", "A354412" ]
null
Seiichi Manyama, May 26 2022
2022-06-08T09:45:49
oeisdata/seq/A354/A354239.seq
e1ff2e7ff7fa728a57458a5befe268ff
A354240
Expansion of e.g.f. 1/sqrt(1 - 4 * log(1+x)).
[ "1", "2", "10", "88", "1080", "17088", "330528", "7558752", "199487136", "5967529152", "199533657792", "7374470138880", "298520508249600", "13135454575464960", "624240306760343040", "31864146725023718400", "1738698154646011499520", "100996114388088994007040" ]
[ "nonn" ]
23
0
2
[ "A009199", "A320343", "A354240", "A354241", "A354242", "A354243" ]
null
Seiichi Manyama, May 20 2022
2025-07-04T18:57:04
oeisdata/seq/A354/A354240.seq
ee639566bddd836b650e70b6c210844f
A354241
Expansion of e.g.f. 1/sqrt(1 + 4 * log(1-x)).
[ "1", "2", "14", "160", "2544", "51888", "1292208", "38012448", "1289847456", "49593778368", "2130914229312", "101188640375040", "5262325852773120", "297450338175682560", "18157597034693207040", "1190483599149657584640", "83433723762978141189120", "6224485980052510972692480" ]
[ "nonn" ]
19
0
2
[ "A354240", "A354241", "A354242", "A354244" ]
null
Seiichi Manyama, May 20 2022
2023-09-10T08:39:29
oeisdata/seq/A354/A354241.seq
8a7e859b24824fea568bc8ff8380c3df
A354242
Expansion of e.g.f. 1/sqrt(5 - 4 * exp(x)).
[ "1", "2", "14", "158", "2486", "50222", "1239254", "36126638", "1214933846", "46299580142", "1971815255894", "92809525295918", "4784166929982806", "268050260650705262", "16219498558371118934", "1054102762745609325998", "73229184033780135425366", "5415407651703010175897582" ]
[ "nonn" ]
37
0
2
[ "A000670", "A001813", "A094417", "A305404", "A316747", "A354240", "A354241", "A354242", "A354252", "A354253" ]
null
Seiichi Manyama, May 20 2022
2023-11-16T11:50:46
oeisdata/seq/A354/A354242.seq
8a3f09bc2d653957443a061eb907e3b2
A354243
Expansion of e.g.f. Sum_{k>=0} (2*k)! * log(1+x)^k / k!.
[ "1", "2", "22", "652", "36252", "3249648", "427841136", "77725790784", "18629187576192", "5694658698037824", "2162203542669622464", "998275836346954738560", "550745779092109449586560", "357819370067278253918223360", "270404811566689476740771496960" ]
[ "nonn" ]
11
0
2
[ "A006252", "A316747", "A354240", "A354243", "A354244", "A354250" ]
null
Seiichi Manyama, May 20 2022
2022-05-21T08:30:47
oeisdata/seq/A354/A354243.seq
e6457807c25f2c3c4ec27e68bfe7f75b
A354244
Expansion of e.g.f. Sum_{k>=0} (2*k)! * (-log(1-x))^k / k!.
[ "1", "2", "26", "796", "44916", "4058448", "537029616", "97903213056", "23525415709632", "7205450503530816", "2740066802232081984", "1266655419369548369280", "699532666466320784246400", "454880976674201215672273920", "344008843780994236543882521600" ]
[ "nonn" ]
9
0
2
[ "A007840", "A316747", "A354241", "A354244", "A354251" ]
null
Seiichi Manyama, May 20 2022
2022-05-21T08:30:51
oeisdata/seq/A354/A354244.seq
7229c1b529fa62e8f3dcda443c1e6e33
A354245
E.g.f.: Integral exp(-x*tan(x)) / cos(x) dx.
[ "1", "-1", "-3", "-5", "441", "25911", "1384757", "74436531", "3175224945", "-135369432209", "-89771310955155", "-25527579751884693", "-6567045994040209879", "-1678101422880410465625", "-427686430807976068014939", "-102728760825086263958009309", "-18156608776369804213731821343", "2585946334251026101959272934111" ]
[ "sign" ]
42
1
3
[ "A009244", "A009264", "A009273", "A354020", "A354245", "A354246" ]
null
Paul D. Hanna, May 20 2022
2022-05-25T02:21:28
oeisdata/seq/A354/A354245.seq
8992bec2a7577e25c8213c20c15625bb
A354246
Indices of coefficients of x^(2*k-1) in Integral exp(-x*tan(x))/cos(x) dx at which the signs of the coefficients change: list of k such that sign(A354245(k)) != sign(A354245(k-1)), starting with 1.
[ "1", "2", "5", "10", "18", "29", "42", "57", "75", "95", "118", "143", "171", "201", "234", "269", "307", "347", "390", "435", "482", "532", "585", "639", "697", "757", "819", "884", "951", "1021", "1093", "1167", "1245", "1324", "1406", "1491", "1578", "1667", "1759", "1853", "1950", "2050", "2151", "2256", "2362", "2471", "2583", "2697", "2814", "2933", "3054", "3178", "3305", "3434", "3565", "3699", "3835", "3974", "4115", "4259", "4405", "4554", "4705", "4859" ]
[ "nonn" ]
40
1
2
[ "A354245", "A354246", "A354399", "A354425" ]
null
Paul D. Hanna, May 20 2022
2025-03-22T19:03:33
oeisdata/seq/A354/A354246.seq
0be9d455cde392561aababc06444a4aa
A354247
G.f. (1-x) * Sum_{n>=0} x^n * (1 + x^n)^n / (1 + x^(n+1))^(n+1).
[ "1", "-1", "3", "-5", "4", "-2", "9", "-23", "22", "-8", "12", "-24", "27", "-67", "128", "-112", "38", "-2", "50", "-154", "183", "-219", "464", "-600", "404", "-272", "262", "-146", "100", "-408", "993", "-1459", "1986", "-2752", "2654", "-1374", "590", "-1334", "2244", "-1692", "622", "-1150", "3797", "-6495", "8208", "-12542", "17574", "-14666", "6298", "-1710", "1322", "-3470", "9206", "-14418", "13250", "-9726", "14059" ]
[ "sign" ]
6
0
3
[ "A354124", "A354247" ]
null
Paul D. Hanna, May 23 2022
2022-06-10T11:38:43
oeisdata/seq/A354/A354247.seq
2ad7cff6a107f439335d2b3cfc6c3197
A354248
G.f. A(x) satisfies: 1 = Sum_{n=-oo..+oo} (-x)^(n^2) * A(x)^((n-1)^2).
[ "1", "2", "8", "56", "446", "3892", "35904", "344560", "3404596", "34404674", "353918256", "3693791848", "39016573992", "416304888148", "4480415851648", "48580221470672", "530179054137166", "5819280845268420", "64197617764575032", "711435650735024792", "7916252834038848088", "88409756229441531072" ]
[ "nonn" ]
14
0
2
null
null
Paul D. Hanna, Jun 18 2022
2024-01-18T07:28:39
oeisdata/seq/A354/A354248.seq
73f5679d031ce86b71bc9346e36bdffb
A354249
Decimal expansion of 27*sqrt(3) / (2*Pi).
[ "7", "4", "4", "2", "9", "4", "0", "0", "8", "8", "1", "9", "4", "1", "9", "2", "6", "6", "8", "4", "0", "2", "9", "0", "7", "7", "2", "7", "2", "2", "5", "0", "8", "7", "4", "5", "8", "8", "6", "4", "7", "1", "7", "4", "8", "4", "9", "4", "9", "6", "4", "8", "8", "1", "2", "7", "9", "1", "4", "4", "1", "2", "7", "3", "9", "2", "8", "9", "0", "9", "0", "9", "6", "8", "3", "5", "1", "4", "2", "2", "3", "0", "3", "4", "5", "1", "3", "0", "3", "8", "9", "1", "1", "2", "8", "0", "7", "0", "0", "4", "3" ]
[ "nonn", "cons" ]
23
1
1
[ "A010527", "A132702", "A132717", "A354249" ]
null
Bernard Schott, May 20 2022
2024-08-04T08:46:21
oeisdata/seq/A354/A354249.seq
35272e2c2c7c0df9a95c099306c53f14
A354250
Expansion of e.g.f. Sum_{k>=0} (3*k)! * log(1+x)^k / k!.
[ "1", "6", "714", "360732", "476832204", "1302897016944", "6382799223892560", "50956720815425427360", "619019914356960664044960", "10866561174598537960652828160", "264763399994627082733034386813440", "8668743073576807048450006051943930880" ]
[ "nonn" ]
9
0
2
[ "A006252", "A316748", "A354229", "A354243", "A354250", "A354251" ]
null
Seiichi Manyama, May 21 2022
2022-05-21T08:30:55
oeisdata/seq/A354/A354250.seq
366703242c5b5a0acd4e8302f49fdf2e
A354251
Expansion of e.g.f. Sum_{k>=0} (3*k)! * (-log(1-x))^k / k!.
[ "1", "6", "726", "365052", "481186836", "1312477120944", "6422029618230000", "51225621215200895520", "621881012244669445985760", "10911233517605729917096273920", "265743399210784245852461349120000", "8697920910678436598411074217669652480" ]
[ "nonn" ]
9
0
2
[ "A007840", "A316748", "A353118", "A354244", "A354250", "A354251" ]
null
Seiichi Manyama, May 21 2022
2022-05-21T08:31:00
oeisdata/seq/A354/A354251.seq
e416e75f28a66f26aaf697f928a0da1c
A354252
Expansion of e.g.f. 1/sqrt(7 - 6 * exp(x)).
[ "1", "3", "30", "489", "11127", "325218", "11612595", "489926559", "23846152332", "1315294430043", "81078316924035", "5523729981650004", "412148874577007037", "33425421047034028743", "2927620572178735480350", "275410244285003264624949", "27695140477706524122414867" ]
[ "nonn" ]
23
0
2
[ "A011781", "A094419", "A305404", "A346985", "A354242", "A354252", "A354253", "A365556", "A365557" ]
null
Seiichi Manyama, May 21 2022
2023-11-17T11:20:34
oeisdata/seq/A354/A354252.seq
af16524a8751572d4fc8625cfa8c93a8
A354253
Expansion of e.g.f. 1/sqrt(9 - 8 * exp(x)).
[ "1", "4", "52", "1108", "32980", "1261204", "58928212", "3253363348", "207225008980", "14958174725524", "1206698072485972", "107589343503498388", "10505997552329149780", "1115087729794287434644", "127819745001180490920532", "15736779719362919373550228", "2071062794354825889656471380" ]
[ "nonn" ]
30
0
2
[ "A144828", "A238465", "A305404", "A354242", "A354252", "A354253" ]
null
Seiichi Manyama, May 21 2022
2023-11-17T11:20:13
oeisdata/seq/A354/A354253.seq
d1d969fa8ed894db38c663581c60c8f6
A354254
a(n) is the least m >= 0 such that n = f^k(m) for some k >= 0 (where f^k denotes the k-th iterate of A092391).
[ "0", "1", "1", "1", "4", "1", "6", "1", "6", "6", "1", "6", "1", "13", "1", "15", "13", "1", "18", "1", "18", "21", "1", "23", "21", "1", "21", "23", "1", "21", "30", "1", "32", "21", "30", "21", "1", "37", "1", "39", "37", "1", "37", "39", "1", "37", "46", "1", "48", "37", "46", "51", "1", "46", "54", "1", "56", "46", "54", "56", "1", "46", "54", "63", "1", "1", "46", "1", "46", "63", "1", "71", "63" ]
[ "nonn", "base" ]
5
0
5
[ "A010061", "A010062", "A092391", "A179016", "A354254" ]
null
Rémy Sigrist, May 21 2022
2022-05-27T14:37:25
oeisdata/seq/A354/A354254.seq
d24e8744cd8411fbe1f1e6115b7149c4
A354255
Even numbers in A090252 in order of appearance.
[ "2", "4", "8", "16", "26", "32", "64", "128", "206", "256", "478", "512", "998", "1024", "2048", "3134", "4096", "6514", "8192", "13942", "16384", "28894", "32768", "60518", "65536", "126634", "131072", "261398", "262144" ]
[ "nonn", "more" ]
47
1
1
[ "A083329", "A090252", "A247665", "A248379", "A353730", "A354146", "A354159", "A354255" ]
null
Michael S. Branicky, May 21 2022
2022-07-15T10:37:18
oeisdata/seq/A354/A354255.seq
476ecd2bb802c890b39abf5870149985
A354256
Squares that remain square when written backward, are not divisible by 10, and have an even number of digits.
[ "1089", "9801", "698896", "10036224", "42263001", "637832238736", "1021178969603881", "1883069698711201", "4099923883299904", "6916103777337773016196" ]
[ "nonn", "base", "more" ]
20
1
1
[ "A027829", "A033294", "A354256" ]
null
Jon E. Schoenfield, May 21 2022
2024-07-28T11:45:40
oeisdata/seq/A354/A354256.seq
ab3bc2a338ada622c298d8e6b36483d5
A354257
a(n) is the smallest k such that there exists a degree-k primitive Dirichlet characters modulo n, or -1 no such k exists.
[ "1", "-1", "2", "2", "2", "-1", "2", "2", "3", "-1", "2", "2", "2", "-1", "2", "4", "2", "-1", "2", "2", "2", "-1", "2", "2", "5", "-1", "9", "2", "2", "-1", "2", "8", "2", "-1", "2", "6", "2", "-1", "2", "2", "2", "-1", "2", "2", "6", "-1", "2", "4", "7", "-1", "2", "2", "2", "-1", "2", "2", "2", "-1", "2", "2", "2", "-1", "3", "16", "2", "-1", "2", "2", "2", "-1", "2", "6", "2", "-1", "10", "2", "2", "-1", "2", "4", "27", "-1", "2", "2", "2", "-1", "2", "2", "2", "-1" ]
[ "sign" ]
13
1
3
[ "A003657", "A003658", "A008683", "A354058", "A354061", "A354257", "A354258" ]
null
Jianing Song, May 21 2022
2022-05-22T00:02:08
oeisdata/seq/A354/A354257.seq
737314db42c5a453c9fd8e17114fdc91
A354258
Earliest occurrence of n in A354257.
[ "1", "3", "9", "16", "25", "36", "49", "32", "27", "75", "121", "144", "169", "147", "225", "64", "289", "108", "361", "400", "441", "363", "529", "288", "125", "507", "81", "784", "841", "900", "961", "128", "1089", "867", "1225", "432", "1369", "1083", "1521", "800", "1681", "1764", "1849", "1936", "675", "1587", "2209", "576", "343", "375", "2601", "2704" ]
[ "nonn", "easy" ]
9
1
2
[ "A007947", "A354257", "A354258", "A354270" ]
null
Jianing Song, May 21 2022
2022-05-22T00:02:14
oeisdata/seq/A354/A354258.seq
bd94a229f940d8efd3713505c8588baa
A354259
Expansion of e.g.f. 1/sqrt(1 - 6 * log(1+x)).
[ "1", "3", "24", "330", "6354", "157482", "4772268", "170950392", "7066790676", "331108863372", "17340063707952", "1003726452207960", "63635982830437320", "4385439331442232840", "326404115258791793040", "26093904013675118381760", "2229931839713559043435920" ]
[ "nonn" ]
13
0
2
[ "A320343", "A354240", "A354252", "A354259", "A354260", "A354261" ]
null
Seiichi Manyama, May 21 2022
2023-10-06T16:44:50
oeisdata/seq/A354/A354259.seq
cd324f6c618d8829202fedc5780a83b5
A354260
Expansion of e.g.f. 1/sqrt(1 - 8 * log(1+x)).
[ "1", "4", "44", "824", "21624", "730176", "30144192", "1470979968", "82833047424", "5286741547008", "377135779749888", "29736359948175360", "2568013599548037120", "241061197802997288960", "24439230397588083240960", "2661258811775918180474880", "309780832909692738794987520" ]
[ "nonn" ]
11
0
2
[ "A320343", "A354240", "A354253", "A354259", "A354260", "A354262" ]
null
Seiichi Manyama, May 21 2022
2022-06-04T04:20:58
oeisdata/seq/A354/A354260.seq
814c2230d8b3770c5151b8420caac3ff
A354261
Expansion of e.g.f. 1/sqrt(1 + 6 * log(1-x)).
[ "1", "3", "30", "492", "11250", "330282", "11844288", "501822108", "24527880756", "1358556883308", "84094256900232", "5753027212816320", "431039748845205000", "35102411472973316040", "3087236653107610062240", "291627772873980244894800", "29447260745861893561906320" ]
[ "nonn" ]
10
0
2
[ "A346978", "A354241", "A354252", "A354259", "A354261", "A354262" ]
null
Seiichi Manyama, May 21 2022
2022-06-04T04:22:49
oeisdata/seq/A354/A354261.seq
acd9912408bb45557e513d4d085220df
A354262
Expansion of e.g.f. 1/sqrt(1 + 8 * log(1-x)).
[ "1", "4", "52", "1112", "33192", "1272576", "59607552", "3298935552", "210638509824", "15241340093952", "1232504690492928", "110154484622208000", "10782300230031713280", "1147157496053856645120", "131810751499551281786880", "16266976762439018716323840", "2145960434809665656603320320" ]
[ "nonn" ]
12
0
2
[ "A346978", "A354241", "A354253", "A354260", "A354261", "A354262" ]
null
Seiichi Manyama, May 21 2022
2024-12-14T12:29:36
oeisdata/seq/A354/A354262.seq
5ae6195757bc172f4768425d0e17e5d9
A354263
Expansion of e.g.f. 1/(1 + 3 * log(1-x)).
[ "1", "3", "21", "222", "3132", "55242", "1169262", "28873800", "814870584", "25871762016", "912684973968", "35416732159872", "1499286521185776", "68757945743286576", "3395829155786528976", "179693346163010491008", "10142543588881013369856", "608262031900883147262336" ]
[ "nonn" ]
15
0
2
[ "A320079", "A335531", "A354263" ]
null
Seiichi Manyama, May 21 2022
2022-06-04T02:37:29
oeisdata/seq/A354/A354263.seq
3e17a80d7e13af3318ef7665509ee136
A354264
Expansion of e.g.f. 1/(1 + 4 * log(1-x)).
[ "1", "4", "36", "488", "8824", "199456", "5410208", "171209664", "6192052800", "251937937920", "11389639660032", "566394573855744", "30726758349800448", "1805828538127687680", "114293350061315678208", "7750480651439579529216", "560615413313367534698496", "43085423893717998388740096" ]
[ "nonn" ]
20
0
2
[ "A094417", "A320079", "A354147", "A354241", "A354264" ]
null
Seiichi Manyama, May 21 2022
2023-03-15T15:02:44
oeisdata/seq/A354/A354264.seq
cb87999aceb1016af8154dd8ac55d271
A354265
Array read by ascending antidiagonals for n >= 0 and k >= 0. Generalized Lucas numbers, L(n, k) = (psi^(k - 1)*(phi + n) - phi^(k - 1)*(psi + n)), where phi = (1 + sqrt(5))/2 and psi = (1 - sqrt(5))/2.
[ "2", "3", "1", "4", "4", "3", "5", "7", "7", "4", "6", "10", "11", "11", "7", "7", "13", "15", "18", "18", "11", "8", "16", "19", "25", "29", "29", "18", "9", "19", "23", "32", "40", "47", "47", "29", "10", "22", "27", "39", "51", "65", "76", "76", "47", "11", "25", "31", "46", "62", "83", "105", "123", "123", "76", "12", "28", "35", "53", "73", "101", "134", "170", "199", "199", "123" ]
[ "nonn", "tabl" ]
11
0
1
[ "A000032", "A000204", "A022088", "A022388", "A190995", "A206420", "A206609", "A352744", "A354265" ]
null
Peter Luschny, May 29 2022
2022-11-22T09:40:39
oeisdata/seq/A354/A354265.seq
5d042955ba02d5dc113b17de54daac0c
A354266
Pairs of integers (s, t) such that 0 < s < t and gcd(s, t) > 1, where the pairs are generated by the boustrophedonic Cantor enumeration A319571.
[ "2", "4", "2", "6", "3", "6", "2", "8", "4", "6", "2", "10", "3", "9", "4", "8", "2", "12", "4", "10", "6", "8", "3", "12", "5", "10", "6", "9", "2", "14", "4", "12", "6", "10", "2", "16", "3", "15", "4", "14", "6", "12", "8", "10", "2", "18", "4", "16", "5", "15", "6", "14", "8", "12", "3", "18", "6", "15", "7", "14", "9", "12", "2", "20", "4", "18", "6", "16", "8", "14", "10", "12", "2", "22", "3", "21" ]
[ "nonn" ]
7
1
1
[ "A319571", "A354266" ]
null
Peter Luschny, May 21 2022
2022-05-22T05:33:46
oeisdata/seq/A354/A354266.seq
6d7671b515ee29b6ada3b5859656ecd4
A354267
A Fibonacci-Pascal triangle read by rows: T(n, n) = 1, T(n, n-1) = n - 1, T(n, 0) = T(n-1, 1) and T(n, k) = T(n-1, k-1) + T(n-1, k) for 0 < k < n-1.
[ "1", "0", "1", "1", "1", "1", "1", "2", "2", "1", "2", "3", "4", "3", "1", "3", "5", "7", "7", "4", "1", "5", "8", "12", "14", "11", "5", "1", "8", "13", "20", "26", "25", "16", "6", "1", "13", "21", "33", "46", "51", "41", "22", "7", "1", "21", "34", "54", "79", "97", "92", "63", "29", "8", "1", "34", "55", "88", "133", "176", "189", "155", "92", "37", "9", "1", "55", "89", "143", "221", "309", "365", "344", "247", "129", "46", "10", "1" ]
[ "nonn", "tabl" ]
16
0
8
[ "A000045", "A099036", "A212804", "A228074", "A352744", "A354267", "A371870" ]
null
Peter Luschny, May 31 2022
2024-04-25T12:27:26
oeisdata/seq/A354/A354267.seq
67758e28e98e416e7a0bf28cd4de5161
A354268
Table read by rows. T(n, k) = (n + k)^(n - 1) for n >= 1 and 0 <= k <= n, T(0, 0) = 0.
[ "0", "1", "1", "2", "3", "4", "9", "16", "25", "36", "64", "125", "216", "343", "512", "625", "1296", "2401", "4096", "6561", "10000", "7776", "16807", "32768", "59049", "100000", "161051", "248832", "117649", "262144", "531441", "1000000", "1771561", "2985984", "4826809", "7529536", "2097152", "4782969", "10000000", "19487171", "35831808", "62748517", "105413504", "170859375", "268435456" ]
[ "nonn", "tabl" ]
5
0
4
[ "A000169", "A052746", "A354268" ]
null
Peter Luschny, Jun 12 2022
2022-06-15T01:47:06
oeisdata/seq/A354/A354268.seq
6f7ea425c33d02c4b1aeba43fc365ae4
A354269
Numbers b such that b^(11-1) == 1 (mod 11^2) and b^(1006003-1) == 1 (mod 1006003^2), i.e., common Wieferich bases of 11 and 1006003.
[ "1", "3", "9", "27", "81", "243", "729", "2187", "6561", "19683", "59049", "177147", "531441", "1594323", "4782969", "14348907", "31098449", "34970654", "35236643", "43046721", "58883189", "73220005", "93295347", "102199060", "104911962", "105709929", "112028791", "112870007", "115196746", "117560414", "129140163", "144185176" ]
[ "nonn" ]
23
1
2
[ "A000244", "A014127", "A247208", "A354269" ]
null
Felix Fröhlich, May 25 2022
2022-05-30T01:47:42
oeisdata/seq/A354/A354269.seq
2e0bc2f976f8e042f4314f4f2ee2009d
A354270
Numbers k such that min{m: A354257(m) = k} = k^2.
[ "1", "3", "4", "5", "6", "7", "11", "12", "13", "15", "17", "19", "20", "21", "23", "28", "29", "30", "31", "33", "35", "37", "39", "41", "42", "43", "44", "47", "51", "52", "53", "55", "57", "59", "60", "61", "65", "66", "67", "68", "69", "71", "73", "76", "77", "78", "79", "83", "84", "85", "87", "89", "91", "92", "93", "95", "97", "101", "102", "103", "105", "107", "109", "111", "113" ]
[ "nonn", "easy" ]
14
1
2
[ "A354257", "A354258", "A354270" ]
null
Jianing Song, May 21 2022
2022-05-22T01:52:20
oeisdata/seq/A354/A354270.seq
d76a0b2f34ede9ab4a6c9fd56d4dd59d
A354271
Irregular array of the prime numbers read by rows.
[ "2", "3", "2", "5", "7", "3", "11", "2", "5", "13", "17", "3", "11", "19", "2", "7", "23", "17", "29", "5", "13", "31", "7", "37", "3", "11", "19", "29", "41", "2", "5", "13", "43", "17", "47", "3", "11", "23", "41", "53", "2", "7", "37", "59", "31", "61", "5", "13", "23", "43", "67", "7", "19", "29", "37", "59", "71", "3", "11", "41", "73", "2", "5", "17", "47", "79", "19", "31", "53", "71", "83", "3", "67" ]
[ "nonn", "tabf" ]
50
1
1
[ "A000040", "A037126", "A256491", "A354271" ]
null
Tamas Sandor Nagy, May 22 2022
2022-05-25T13:00:12
oeisdata/seq/A354/A354271.seq
db0fec71d51b6bd5b5a23c0aa5467eca
A354272
Irregular triangle read by rows: coefficients of polynomials which are the product of all possible monic Littlewood polynomials of degree n.
[ "1", "-1", "0", "1", "1", "0", "-2", "0", "-1", "0", "-2", "0", "1", "1", "0", "-4", "0", "2", "0", "-4", "0", "15", "0", "8", "0", "-36", "0", "8", "0", "15", "0", "-4", "0", "2", "0", "-4", "0", "1", "1", "0", "-8", "0", "20", "0", "-24", "0", "58", "0", "-80", "0", "-92", "0", "120", "0", "147", "0", "384", "0", "-2108", "0", "880", "0", "3940", "0", "-3096", "0", "2288", "0", "-2136", "0", "-1803", "0", "-2136", "0", "2288", "0", "-3096", "0", "3940", "0", "880", "0", "-2108", "0", "384", "0", "147", "0", "120", "0", "-92", "0", "-80", "0", "58", "0", "-24", "0", "20", "0", "-8", "0", "1" ]
[ "sign", "tabf" ]
23
0
7
[ "A002064", "A020985", "A354272" ]
null
Gleb Ivanov, May 22 2022
2022-08-24T10:12:27
oeisdata/seq/A354/A354272.seq
b15ce783d9b8587ce25a4993842af67d
A354273
Square array read by ascending antidiagonals: A(n,k) = k^Omega(n).
[ "1", "1", "1", "1", "2", "1", "1", "2", "3", "1", "1", "4", "3", "4", "1", "1", "2", "9", "4", "5", "1", "1", "4", "3", "16", "5", "6", "1", "1", "2", "9", "4", "25", "6", "7", "1", "1", "8", "3", "16", "5", "36", "7", "8", "1", "1", "4", "27", "4", "25", "6", "49", "8", "9", "1", "1", "4", "9", "64", "5", "36", "7", "64", "9", "10", "1", "1", "2", "9", "16", "125", "6", "49", "8", "81", "10", "11", "1", "1", "8", "3", "16", "25", "216", "7", "64", "9", "100", "11", "12", "1" ]
[ "nonn", "tabl", "easy" ]
18
1
5
[ "A000012", "A001222", "A051129", "A061142", "A165824", "A165871", "A176029", "A354273" ]
null
Stefano Spezia, May 22 2022
2022-07-02T14:49:01
oeisdata/seq/A354/A354273.seq
6497a95c6f320c4fa08a7309b8b97fea
A354274
Product_{n>=1} (1 + x^n)^(a(n)/n!) = 1 + arcsinh(x).
[ "1", "0", "-1", "4", "-11", "-4", "-547", "7680", "-7751", "81744", "-3258663", "-9474816", "-390445563", "233029824", "-964154427", "4193551958016", "-18431412645519", "71090090006784", "-6436900596281679", "17349989459410944", "834261829219880829", "-241960391975347200", "-1149793471388581053219" ]
[ "sign" ]
7
1
4
[ "A001818", "A067856", "A353819", "A353914", "A353972", "A354116", "A354172", "A354274", "A354275", "A354276" ]
null
Ilya Gutkovskiy, May 22 2022
2022-05-23T09:12:52
oeisdata/seq/A354/A354274.seq
fbf4563cbc4f9f20742b0e20ec469819
A354275
Product_{n>=1} (1 + x^n)^(a(n)/n!) = 1 + arctan(x).
[ "1", "0", "-2", "8", "-16", "-64", "-832", "13824", "8192", "-36096", "-4228608", "-58438656", "-398991360", "-3452915712", "44581613568", "7144463302656", "-17762113880064", "126440605483008", "-7331825098948608", "-88237584523984896", "3154526750647517184", "-27279757707305287680", "-1278044473427380666368" ]
[ "sign" ]
6
1
3
[ "A010050", "A067856", "A353820", "A353915", "A353972", "A354117", "A354175", "A354274", "A354275", "A354276" ]
null
Ilya Gutkovskiy, May 22 2022
2022-05-23T09:12:30
oeisdata/seq/A354/A354275.seq
907567bcc11ab0290a4bb9e2246124df
A354276
Product_{n>=1} (1 + x^n)^(a(n)/n!) = 1 + arctanh(x).
[ "1", "0", "2", "-8", "64", "-304", "3968", "-43392", "378880", "-4002816", "68247552", "-995736576", "15949529088", "-238273241088", "4760383438848", "-113132156780544", "2119956936523776", "-42743492966350848", "1123874181449515008", "-28901050300546154496", "722523072906903158784", "-19401957422023594475520", "589068777481530305937408" ]
[ "sign" ]
6
1
3
[ "A010050", "A067856", "A353821", "A353928", "A353972", "A354118", "A354176", "A354274", "A354275", "A354276" ]
null
Ilya Gutkovskiy, May 22 2022
2022-05-23T09:12:25
oeisdata/seq/A354/A354276.seq
748c85b771749ff7d7b19e8441383284
A354277
Product_{n>=1} 1 / (1 - x^n/n!)^a(n) = exp(-x) / (1 - x).
[ "0", "1", "2", "3", "24", "70", "720", "4305", "39200", "337176", "3628800", "38417610", "479001600", "6128488080", "87104969952", "1297383162075", "20922789888000", "354250929192160", "6402373705728000", "121407227453840328", "2432849766865689600", "51041047393559059200", "1124000727777607680000" ]
[ "nonn" ]
7
1
3
[ "A000166", "A006973", "A137852", "A353822", "A354277", "A354278" ]
null
Ilya Gutkovskiy, May 22 2022
2022-05-23T05:38:45
oeisdata/seq/A354/A354277.seq
b845567a91f3fe551d07408d96d0d862
A354278
Product_{n>=1} 1 / (1 - a(n)*x^n/n!) = exp(-x) / (1 - x).
[ "0", "1", "2", "3", "24", "50", "720", "4095", "35840", "267624", "3628800", "35724150", "479001600", "5240149200", "82614884352", "1188272460375", "20922789888000", "320893244672000", "6402373705728000", "113803149223980216", "2379913632645120000", "46396417566975840000", "1124000727777607680000" ]
[ "nonn" ]
6
1
3
[ "A000166", "A006973", "A137852", "A353822", "A354277", "A354278" ]
null
Ilya Gutkovskiy, May 22 2022
2022-05-23T05:37:56
oeisdata/seq/A354/A354278.seq
dfdb037f3cd84cc9475b979311cc7f0a
A354279
Number of regular elements in the semigroup of all binary relations on [n].
[ "1", "2", "16", "470", "40408", "8683982" ]
[ "nonn", "more" ]
11
0
2
[ "A003425", "A354279" ]
null
Geoffrey Critzer, May 22 2022
2022-06-17T15:55:46
oeisdata/seq/A354/A354279.seq
ff4a216cb5455089487f761bdafcb442
A354280
a(n) is the numerator of Cesàro means sequence c(n) of A237420 when the denominator is A141310(n).
[ "0", "0", "2", "1", "6", "2", "12", "3", "20", "4", "30", "5", "42", "6", "56", "7", "72", "8", "90", "9", "110", "10", "132", "11", "156", "12", "182", "13", "210", "14", "240", "15", "272", "16", "306", "17", "342", "18", "380", "19", "420", "20", "462", "21", "506", "22", "552", "23", "600", "24", "650", "25", "702", "26", "756", "27", "812", "28", "870", "29", "930", "30", "992", "31", "1056", "32", "1122", "33", "1190" ]
[ "nonn", "easy" ]
53
0
3
[ "A001477", "A002378", "A033999", "A141310", "A237420", "A354280" ]
null
Bernard Schott, May 22 2022
2023-09-18T14:05:07
oeisdata/seq/A354/A354280.seq
a3db79b6dd108deabfaecf95957d1fc7
A354281
Weird numbers k such that k-1 is the sum of a subset of the aliquot divisors of k.
[ "70", "4030", "5830", "9272", "17272", "243892", "351956", "407132", "1901728", "2189024", "4199030", "11339816", "11547352", "12872512", "13885970", "24450010", "31699430", "32284330", "34041370", "34169630", "34315712", "38546576", "42251930", "50761810", "67727110", "67820390", "68000392", "72986296", "85389368" ]
[ "nonn" ]
9
1
1
[ "A005835", "A006037", "A354281", "A354282", "A354283" ]
null
Amiram Eldar, May 22 2022
2022-05-24T06:14:38
oeisdata/seq/A354/A354281.seq
2456b6158ab715b5ffe0f079cd61bf2a
A354282
Weird numbers k such that k+1 is the sum of a subset of the aliquot divisors of k.
[ "70", "836", "4030", "5830", "7192", "7912", "10792", "17272", "45356", "83312", "91388", "113072", "222952", "243892", "254012", "388076", "410476", "786208", "1713592", "4145216", "4199030", "4632896", "6911512", "7257530", "7354304", "7607530", "9928792", "10402490", "10580624", "11339816", "11547352", "12052390", "13086016" ]
[ "nonn" ]
8
1
1
[ "A005835", "A006037", "A258250", "A329190", "A354281", "A354282", "A354283" ]
null
Amiram Eldar, May 22 2022
2022-05-24T06:14:35
oeisdata/seq/A354/A354282.seq
0fdc5a705a11bb668969e82559d3eec4
A354283
Weird numbers k such that k-1 and k+1 are both sums of subsets of the aliquot divisors of k.
[ "70", "4030", "5830", "17272", "243892", "4199030", "11339816", "11547352", "13885970", "24450010", "31699430", "32284330", "34041370", "34169630", "42251930", "50761810", "67727110", "67820390", "85389368", "89283592", "141659096", "146764264", "162079768", "173482552", "259858324", "410832532", "411643576", "486224072" ]
[ "nonn" ]
8
1
1
[ "A005835", "A006037", "A354281", "A354282", "A354283" ]
null
Amiram Eldar, May 22 2022
2022-05-24T06:14:32
oeisdata/seq/A354/A354283.seq
9f3a28a15bab1c2ae4e55ad06362395f
A354284
The first of four consecutive primes p1, p2, p3, p4 such that (p4-p3)*(p2-p1) = (p3-p2)^2.
[ "89", "251", "449", "1061", "1439", "1741", "1997", "2237", "2239", "2267", "2593", "2657", "2699", "3301", "3433", "3449", "5101", "5189", "5237", "5381", "6197", "6311", "6361", "6599", "6827", "6829", "6883", "7433", "8087", "8171", "8311", "9067", "10259", "12149", "12611", "12641", "13451", "14741", "15791", "15901", "16787", "17027", "17291", "17387", "17389", "17471", "18211" ]
[ "nonn" ]
12
1
1
null
null
J. M. Bergot and Robert Israel, May 22 2022
2022-05-31T08:09:03
oeisdata/seq/A354/A354284.seq
7c1ab5ad7440fc74150bc1afecfa25bc
A354285
Numbers k such that one of k, k+1, k+2 is prime and the other two are semiprimes, and one of R(n), R(n+1), R(n+2) is prime and the other two are semiprimes, where R = A004086.
[ "4", "157", "177", "1381", "1437", "7417", "9661", "9901", "12757", "15297", "15681", "16921", "35961", "36901", "39777", "75741", "77277", "93097", "94441", "103317", "108201", "111261", "117541", "121377", "127597", "128461", "128901", "130197", "134677", "146841", "147417", "151377", "156601", "160077", "165441", "166861", "169177", "178537", "185901", "187881", "306541" ]
[ "nonn", "base" ]
49
1
1
[ "A004086", "A354285" ]
null
J. M. Bergot and Robert Israel, May 29 2022
2022-05-30T19:35:40
oeisdata/seq/A354/A354285.seq
8c0637d156662f1359d4ac9f1db98f57
A354286
Expansion of e.g.f. 1/(1 - x)^(2/(1 + 2 * log(1-x))).
[ "1", "2", "14", "144", "1936", "32000", "625952", "14117152", "360175584", "10246079616", "321313928448", "11006050602624", "408662128569984", "16344011453662464", "700254206319007488", "31990601456727585792", "1551985176120589820928", "79669906174753878177792" ]
[ "nonn" ]
15
0
2
[ "A000262", "A088500", "A088815", "A354286", "A354287", "A354288", "A354290" ]
null
Seiichi Manyama, May 23 2022
2022-05-23T09:14:29
oeisdata/seq/A354/A354286.seq
c152f899b16df4c785affbfe7677cb6f
A354287
Expansion of e.g.f. 1/(1 - x)^(3/(1 + 3 * log(1-x))).
[ "1", "3", "30", "438", "8334", "194580", "5368662", "170591022", "6126386724", "245127214548", "10804866210648", "519910458588576", "27105081897342816", "1521393008601586536", "91445577404393807928", "5858664681621903625368", "398467273528657973600208", "28668189882264862351707504" ]
[ "nonn" ]
15
0
2
[ "A000262", "A088815", "A354263", "A354286", "A354287", "A354289", "A354291" ]
null
Seiichi Manyama, May 23 2022
2022-05-23T09:24:22
oeisdata/seq/A354/A354287.seq
0d5b0c5002bcbc2af75cabd59eeffd98
A354288
Expansion of e.g.f. (1 + x)^(2/(1 - 2 * log(1+x))).
[ "1", "2", "10", "72", "664", "7440", "97712", "1468768", "24825184", "465516672", "9582002688", "214642099584", "5195322070656", "135064965744384", "3752151488840448", "110892824334154752", "3473236656134243328", "114893633354895538176", "4002000861023966189568", "146388324613230926979072" ]
[ "nonn" ]
15
0
2
[ "A000262", "A088501", "A088819", "A354286", "A354288", "A354289", "A354290" ]
null
Seiichi Manyama, May 23 2022
2022-10-13T14:29:33
oeisdata/seq/A354/A354288.seq
5c74d8e48ee85832d5e34d23d75c836e
A354289
Expansion of e.g.f. (1 + x)^(3/(1 - 3 * log(1+x))).
[ "1", "3", "24", "276", "4086", "73620", "1557702", "37770138", "1030916484", "31245154164", "1040274476208", "37716394860936", "1478413316987424", "62274364390387656", "2804282634867538248", "134397620584518275928", "6828489621874434752208", "366547074721109281366128" ]
[ "nonn" ]
14
0
2
[ "A000262", "A088819", "A335531", "A354287", "A354288", "A354289", "A354291" ]
null
Seiichi Manyama, May 23 2022
2022-05-23T09:46:22
oeisdata/seq/A354/A354289.seq
1cc4db03faf7fb88e1648cf117b807aa
A354290
Expansion of e.g.f. exp(f(x) - 1) where f(x) = 1/(3 - 2*exp(x)).
[ "1", "2", "14", "142", "1878", "30494", "585398", "12946910", "323717622", "9020101470", "276940926646", "9283709731806", "337237965060982", "13191050077634654", "552593521885522486", "24677110613547498718", "1169994350288769049334", "58684818937875321715038" ]
[ "nonn" ]
13
0
2
[ "A004123", "A075729", "A354286", "A354288", "A354290", "A354291" ]
null
Seiichi Manyama, May 23 2022
2022-05-23T10:05:27
oeisdata/seq/A354/A354290.seq
ce0630ededf048164c901ebb08dbec94
A354291
Expansion of e.g.f. exp(f(x) - 1) where f(x) = 1/(4 - 3*exp(x)) = e.g.f. for A032033.
[ "1", "3", "30", "435", "8211", "190056", "5196099", "163541055", "5815620696", "230350071189", "10048990989747", "478467217544322", "24678559536271581", "1370217125170670367", "81457311857722336614", "5160975525978898855143", "347090708803947931122807", "24690132231344937537382560" ]
[ "nonn" ]
14
0
2
[ "A032033", "A075729", "A354287", "A354289", "A354290", "A354291" ]
null
Seiichi Manyama, May 23 2022
2022-05-23T11:27:26
oeisdata/seq/A354/A354291.seq
111cbde06f43f356d81d1807016d1429
A354292
Primes p such that for all m, M(m) is not divisible by p^2 where M(n) is the n-th Motzkin number A001006.
[ "5", "13", "31", "37", "61", "79", "97", "103" ]
[ "nonn", "more" ]
11
1
1
[ "A001006", "A001248", "A039963", "A039964", "A258710", "A258711", "A258712", "A299918", "A299919", "A299920", "A354292", "A354293" ]
null
Michel Marcus, May 23 2022
2022-05-23T12:12:01
oeisdata/seq/A354/A354292.seq
bb7adc0f917409f9d698d86f18c01244
A354293
a(n) is the least integer m such that A001006(m) is divisible by prime(n)^2 or -1 if no such m exists.
[ "3", "4", "-1", "23", "21", "-1", "188", "65", "1010", "2231", "-1", "-1", "1326", "389", "1092", "13196", "1450", "-1", "40466", "85553", "665", "-1", "5139193", "333", "-1", "408241", "-1", "3072", "6702", "1393", "5832", "935", "1071", "77421", "292187", "775383", "493135", "4185", "1784560", "10632", "7935", "743003", "13418", "64499", "1746798", "12176", "152551" ]
[ "sign" ]
24
1
1
[ "A000040", "A001006", "A001248", "A039963", "A039964", "A258710", "A258711", "A258712", "A299918", "A299919", "A299920", "A354292", "A354293" ]
null
Michel Marcus, May 23 2022
2022-05-25T02:55:35
oeisdata/seq/A354/A354293.seq
39064ce3784de5d85ae401c54cc5dcdc
A354294
Number of palindromic compositions of 2*n into parts <= n.
[ "1", "1", "3", "6", "14", "28", "60", "120", "248", "496", "1008", "2016", "4064", "8128", "16320", "32640", "65408", "130816", "261888", "523776", "1048064", "2096128", "4193280", "8386560", "16775168", "33550336", "67104768", "134209536", "268427264", "536854528", "1073725440", "2147450880", "4294934528", "8589869056", "17179803648" ]
[ "nonn", "easy" ]
26
0
3
[ "A000079", "A008464", "A016116", "A354294" ]
null
Gerhard Kirchner, May 23 2022
2025-03-28T16:13:45
oeisdata/seq/A354/A354294.seq
daf8ef7b97289fdf00af35c972778ba1
A354295
Decimal expansion of Sum_{k>=1} (-1)^k * log(k) / (k+1).
[ "0", "9", "6", "6", "1", "4", "9", "3", "4", "7", "3", "2", "2", "2", "6", "8", "8", "7", "0", "1", "3", "5", "7", "1", "8", "2", "8", "6", "7", "7", "6", "6", "1", "5", "5", "0", "0", "5", "6", "3", "3", "8", "3", "1", "9", "4", "9", "6", "8", "3", "5", "5", "3", "5", "4", "7", "3", "1", "5", "6", "8", "0", "3", "8", "6", "1", "3", "2", "3", "8", "8", "5", "6", "5", "9", "8", "9", "6", "1", "7", "9", "1", "7", "1", "9", "3", "4", "3", "6", "0", "4", "8", "4", "8", "9", "8", "1", "7", "2", "7", "8", "1", "9", "8", "5", "8" ]
[ "nonn", "cons" ]
9
0
2
[ "A091812", "A257812", "A354295" ]
null
Vaclav Kotesovec, May 23 2022
2022-05-23T08:51:27
oeisdata/seq/A354/A354295.seq
eacf59491aaffa3326ff90b5c6e4a9ee
A354296
Decimal expansion of Product_{k>=1} (1 - exp(-2*k*Pi/sqrt(3))).
[ "9", "7", "2", "7", "1", "3", "5", "8", "6", "9", "3", "6", "2", "4", "2", "3", "7", "1", "5", "1", "3", "0", "5", "5", "0", "2", "4", "3", "3", "4", "5", "3", "8", "0", "8", "2", "8", "4", "9", "5", "4", "7", "5", "8", "8", "6", "1", "9", "1", "0", "1", "3", "1", "8", "6", "8", "3", "9", "9", "3", "4", "7", "2", "8", "0", "2", "5", "9", "4", "7", "5", "7", "5", "2", "9", "6", "7", "4", "1", "1", "4", "1", "5", "6", "8", "7", "3", "6", "4", "6", "6", "6", "1", "9", "4", "3", "1", "2", "5", "5", "1", "0", "2", "8", "7", "1" ]
[ "nonn", "cons" ]
11
0
1
[ "A292828", "A354296" ]
null
Vaclav Kotesovec, May 23 2022
2025-02-16T08:34:03
oeisdata/seq/A354/A354296.seq
b26c7c473b1528222b3092acb280016f
A354297
Minimal numbers of states for finite state automata for Motzkin numbers modulo 2^n.
[ "5", "15", "24", "76", "225", "701", "2810", "8090" ]
[ "nonn", "more" ]
6
1
1
[ "A001006", "A354297" ]
null
Michel Marcus, May 23 2022
2022-05-23T15:54:08
oeisdata/seq/A354/A354297.seq
20b7ff9944eb081ff16dcb25a5d75bbf
A354298
a(n) is the numerator of Sum_{k=1..n} (-1)^(k+1) / (2*k-1)!!.
[ "1", "2", "11", "76", "137", "7534", "97943", "1469144", "24975449", "94906706", "9965204131", "229199695012", "5729992375301", "9100576125478", "897316805972131", "563093542209232", "4589775462547450033", "5539384178936577626", "5943759223998947792699", "46361321947191792783052", "9504070999174317520525661" ]
[ "nonn", "frac" ]
18
1
2
[ "A001147", "A053557", "A061354", "A064646", "A103816", "A113012", "A120265", "A143382", "A289381", "A306858", "A354298", "A354299" ]
null
Ilya Gutkovskiy, May 23 2022
2024-01-10T23:55:37
oeisdata/seq/A354/A354298.seq
3896024d60a0c21caa4219949018a5d3
A354299
a(n) is the denominator of Sum_{k=1..n} (-1)^(k+1) / (2*k-1)!!.
[ "1", "3", "15", "105", "189", "10395", "135135", "2027025", "34459425", "130945815", "13749310575", "316234143225", "7905853580625", "12556355686875", "1238056670725875", "776918153694375", "6332659870762850625", "7642865361265509375", "8200794532637891559375", "63966197354575554163125", "13113070457687988603440625" ]
[ "nonn", "frac" ]
10
1
2
[ "A001147", "A053556", "A061355", "A064647", "A113013", "A143383", "A289488", "A306858", "A354298", "A354299" ]
null
Ilya Gutkovskiy, May 23 2022
2024-01-10T23:55:50
oeisdata/seq/A354/A354299.seq
e8858eddbfe8de1f1daeccb8833853c2
A354300
Numbers k such that k! and (k+1)! have the same binary weight (A000120).
[ "0", "1", "3", "5", "7", "8", "12", "13", "15", "31", "63", "88", "127", "129", "131", "244", "255", "262", "263", "288", "300", "344", "511", "793", "914", "1012", "1023", "1045", "1116", "1196", "1538", "1549", "1565", "1652", "1817", "1931", "1989", "2047", "2067", "2096", "2459", "2548", "2862", "2918", "2961", "3372", "3478", "3540", "3588", "3673", "3707" ]
[ "nonn", "base" ]
19
1
3
[ "A000120", "A000142", "A000225", "A079584", "A353986", "A354300", "A354301" ]
null
Amiram Eldar, May 23 2022
2022-05-23T17:22:25
oeisdata/seq/A354/A354300.seq
925eb2079c179e3dc29b02444ef52c9f