sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A354301
Numbers k such that k!, (k+1)! and (k+2)! have the same binary weight (A000120).
[ "0", "7", "12", "262", "12887667" ]
[ "nonn", "base", "more" ]
9
1
2
[ "A000120", "A000142", "A079584", "A353987", "A354300", "A354301" ]
null
Amiram Eldar, May 23 2022
2022-05-23T17:22:35
oeisdata/seq/A354/A354301.seq
0c7448e3c8854e620a030eb30c3f8243
A354302
a(n) is the numerator of Sum_{k=0..n} 1 / (k!)^2.
[ "1", "2", "9", "41", "1313", "5471", "1181737", "28952557", "1235309099", "150090055529", "30018011105801", "201787741322329", "523033825507476769", "44196358255381786981", "5774990812036553498851", "1949059399062336805862213", "997918412319916444601453057", "3697415655903280160125896583" ]
[ "nonn", "frac" ]
7
0
2
[ "A001044", "A006040", "A053557", "A061354", "A070910", "A103816", "A120265", "A143382", "A354302", "A354303", "A354304" ]
null
Ilya Gutkovskiy, May 23 2022
2022-05-24T02:38:47
oeisdata/seq/A354/A354302.seq
6db57544d0746157e3dbeab49faf0b6e
A354303
a(n) is the denominator of Sum_{k=0..n} 1 / (k!)^2.
[ "1", "1", "4", "18", "576", "2400", "518400", "12700800", "541900800", "65840947200", "13168189440000", "88519495680000", "229442532802560000", "19387894021816320000", "2533351485517332480000", "855006126362099712000000", "437763136697395052544000000", "1621968544942912438272000000" ]
[ "nonn", "frac" ]
6
0
3
[ "A001044", "A006040", "A053556", "A061355", "A070910", "A143383", "A354302", "A354303", "A354305" ]
null
Ilya Gutkovskiy, May 23 2022
2022-05-24T02:39:07
oeisdata/seq/A354/A354303.seq
df855fa1fddfc5e560f32a9c280b14ae
A354304
a(n) is the numerator of Sum_{k=0..n} (-1)^k / (k!)^2.
[ "1", "0", "1", "2", "43", "403", "23213", "118483", "51997111", "1842647621", "327581799289", "8918414485643", "4670006130663971", "361730891537680087", "130890931830249779173", "427294615628884602769", "6534075316966068976316143", "885163015595247156635327497", "41526561745210509140249210357" ]
[ "nonn", "frac" ]
6
0
4
[ "A001044", "A053557", "A061354", "A073701", "A091681", "A103816", "A120265", "A143382", "A354302", "A354304", "A354305" ]
null
Ilya Gutkovskiy, May 23 2022
2022-05-24T02:39:24
oeisdata/seq/A354/A354304.seq
6638bf09d7629d4956f09d259fe0bc55
A354305
a(n) is the denominator of Sum_{k=0..n} (-1)^k / (k!)^2.
[ "1", "1", "4", "9", "192", "1800", "103680", "529200", "232243200", "8230118400", "1463132160000", "39833773056000", "20858412072960000", "1615657835151360000", "584619573580922880000", "1908495817772544000000", "29184209113159670169600000", "3953548328298349068288000000", "185476873609942457647104000000" ]
[ "nonn", "frac" ]
7
0
3
[ "A001044", "A053556", "A061355", "A073701", "A091681", "A143383", "A354303", "A354304", "A354305" ]
null
Ilya Gutkovskiy, May 23 2022
2023-04-25T15:02:15
oeisdata/seq/A354/A354305.seq
0e76ccc2f8c84e63ce59588d4ff2543b
A354306
Number of one-sided polypentagrams with n cells.
[ "1", "2", "7", "62", "459", "4040", "35386", "321639", "2958100", "27585931", "259670736" ]
[ "nonn", "hard", "more" ]
7
1
2
[ "A000105", "A000988", "A103465", "A211179", "A354306" ]
null
Aaron N. Siegel, May 23 2022
2023-04-26T07:06:14
oeisdata/seq/A354/A354306.seq
9292f379b3bb7fae94ac22bf1f8fa502
A354307
Number of fixed polypentagrams with n cells.
[ "2", "10", "70", "550", "4590", "39774", "353860", "3210940", "29581000", "275808700", "2596707296" ]
[ "nonn", "more", "hard" ]
9
1
1
[ "A211179", "A354306", "A354307" ]
null
Aaron N. Siegel, May 23 2022
2023-04-26T07:06:28
oeisdata/seq/A354/A354307.seq
c9986263be60d3c775ea3d22287fa878
A354308
Number of free polyjogs with n cells.
[ "1", "1", "4", "17", "88", "503", "3071", "19372", "124575", "813020", "5361539", "35662727", "238864272", "1609398564" ]
[ "nonn", "hard", "more" ]
8
1
3
[ "A000105", "A216583", "A354308" ]
null
Aaron N. Siegel, May 23 2022
2022-05-24T02:18:45
oeisdata/seq/A354/A354308.seq
709cbe44f01aff5f6199f10595c41ac3
A354309
Expansion of e.g.f. 1/(1 - 2*x)^(x/2).
[ "1", "0", "2", "6", "44", "360", "3744", "46200", "662864", "10838016", "198943200", "4050937440", "90613710912", "2208677328000", "58265734055424", "1653914478303360", "50263564166365440", "1628300694034022400", "56012708047907510784", "2039053421375533094400", "78314004507947110456320" ]
[ "nonn" ]
21
0
3
[ "A053491", "A066166", "A354309", "A354310", "A354311", "A354315", "A354319" ]
null
Seiichi Manyama, May 23 2022
2025-01-10T15:00:46
oeisdata/seq/A354/A354309.seq
608064eed74bcce715f5e671c482ec68
A354310
Expansion of e.g.f. 1/(1 - 3*x)^(x/3).
[ "1", "0", "2", "9", "84", "990", "14754", "264600", "5549424", "133217784", "3601384200", "108249692760", "3580724721672", "129250420556400", "5055196156459344", "212951257371183240", "9612027759287831040", "462798880374787387200", "23675607840207619145664", "1282413928716141429168000" ]
[ "nonn" ]
13
0
3
[ "A066166", "A351735", "A354309", "A354310", "A354316", "A354320" ]
null
Seiichi Manyama, May 23 2022
2022-05-24T08:11:35
oeisdata/seq/A354/A354310.seq
ffeaab4984cfa8710afb84b2cdc2a00e
A354311
Expansion of e.g.f. exp( x/2 * (exp(2 * x) - 1) ).
[ "1", "0", "2", "6", "28", "160", "1056", "7784", "63568", "569664", "5542240", "58038112", "650045760", "7746901760", "97790608384", "1302349549440", "18235836899584", "267663541270528", "4107395264113152", "65739857693144576", "1095095457262013440", "18949711553467957248", "340036076121127395328" ]
[ "sign" ]
14
0
3
[ "A052506", "A351733", "A351736", "A354309", "A354311", "A354312", "A354313" ]
null
Seiichi Manyama, May 23 2022
2022-05-24T08:11:39
oeisdata/seq/A354/A354311.seq
dfc1448e3c3a20e8bd923b4db18e024c
A354312
Expansion of e.g.f. exp( x/3 * (exp(3 * x) - 1) ).
[ "1", "0", "2", "9", "48", "315", "2496", "22491", "223728", "2437371", "28931040", "371291283", "5111412120", "75014135235", "1168157451384", "19228202401635", "333378840718944", "6069073767712587", "115683487658404272", "2303091818149762899", "47784447190060311240", "1031179733234906055507" ]
[ "sign" ]
17
0
3
[ "A052506", "A351734", "A351737", "A354310", "A354311", "A354312", "A354314" ]
null
Seiichi Manyama, May 23 2022
2022-05-24T12:55:33
oeisdata/seq/A354/A354312.seq
4c937c5b30323da1af2401328120fdb1
A354313
Expansion of e.g.f. 1/(1 - x/2 * (exp(2 * x) - 1)).
[ "1", "0", "2", "6", "40", "280", "2496", "25424", "297984", "3920256", "57349120", "922611712", "16193375232", "307896882176", "6304666798080", "138318662000640", "3236895083167744", "80483201605795840", "2118875812456366080", "58882581280649117696", "1722441885524719042560" ]
[ "nonn" ]
12
0
3
[ "A052848", "A216794", "A353998", "A354311", "A354313", "A354314" ]
null
Seiichi Manyama, May 23 2022
2022-05-24T08:11:44
oeisdata/seq/A354/A354313.seq
d78d0e539cf7a5ce80897014384c8ced
A354314
Expansion of e.g.f. 1/(1 - x/3 * (exp(3 * x) - 1)).
[ "1", "0", "2", "9", "60", "495", "4986", "58401", "780984", "11749779", "196446870", "3612882933", "72484364052", "1575418827879", "36875093680530", "924769734574185", "24737895033896304", "703105981990977915", "21159355356941587470", "672148402091190649629", "22475238194908656800460" ]
[ "nonn" ]
12
0
3
[ "A052848", "A288834", "A328182", "A353999", "A354312", "A354313", "A354314" ]
null
Seiichi Manyama, May 23 2022
2022-05-24T08:13:53
oeisdata/seq/A354/A354314.seq
16ffd32d11a42e15a841d852b6df8d51
A354315
Expansion of e.g.f. 1/(1 + x/2 * log(1 - 2 * x)).
[ "1", "0", "2", "6", "56", "480", "5664", "75600", "1182208", "20829312", "410768640", "8943010560", "213187497984", "5520777799680", "154333888579584", "4631752470159360", "148523272512307200", "5067610703150284800", "183308248516478828544", "7006773595450681589760", "282194468488468121518080" ]
[ "nonn" ]
11
0
3
[ "A052830", "A354309", "A354315", "A354316", "A354327" ]
null
Seiichi Manyama, May 23 2022
2022-05-24T08:11:07
oeisdata/seq/A354/A354315.seq
e53831fab9b0d57e38a6dd465c258e14
A354316
Expansion of e.g.f. 1/(1 + x/3 * log(1 - 3 * x)).
[ "1", "0", "2", "9", "96", "1170", "18324", "340200", "7360128", "181476288", "5024611440", "154319988240", "5206240427904", "191372822989920", "7612497915813504", "325791049256094240", "14925809593280332800", "728828735500650355200", "37786217117138333005824" ]
[ "nonn" ]
12
0
3
[ "A052830", "A354310", "A354315", "A354316" ]
null
Seiichi Manyama, May 23 2022
2023-03-06T13:16:16
oeisdata/seq/A354/A354316.seq
64f9063319a2f1669fcf020750304af3
A354317
Expansion of e.g.f. exp(-log(1 + x)^2 / 2).
[ "1", "0", "-1", "3", "-8", "20", "-34", "-126", "2514", "-28008", "285774", "-2922810", "30858048", "-339954264", "3920819748", "-47319853140", "596005041852", "-7799132781792", "105344546511684", "-1454910026870412", "20242465245436128", "-276289562032117200", "3490199850169557480" ]
[ "sign" ]
16
0
4
[ "A347001", "A354317", "A354318" ]
null
Seiichi Manyama, May 24 2022
2022-05-24T08:11:11
oeisdata/seq/A354/A354317.seq
cbbfe6079e6abd4b1f3e65ee25f03743
A354318
Expansion of e.g.f. exp(-log(1 + x)^4 / 24).
[ "1", "0", "0", "0", "-1", "10", "-85", "735", "-6734", "66024", "-693230", "7774250", "-92754046", "1172033148", "-15609023066", "217966080150", "-3173198858894", "47842246890224", "-740798341880328", "11644416638285544", "-182433719522266066", "2752864573552860900", "-36826753489645422050" ]
[ "sign" ]
14
0
6
[ "A346946", "A347003", "A354317", "A354318" ]
null
Seiichi Manyama, May 24 2022
2022-12-27T12:25:10
oeisdata/seq/A354/A354318.seq
5ed148dcd0d0e6d9e45e2727bae6ab79
A354319
Expansion of e.g.f. 1/(1 - 2*x)^(x/4).
[ "1", "0", "1", "3", "19", "150", "1497", "17955", "251681", "4036284", "72874125", "1462571055", "32297755803", "778188449610", "20313917363733", "571081958323695", "17201321168216385", "552635193533958360", "18863471310967732473", "681711909339186154395", "26003437607893415476995" ]
[ "nonn" ]
15
0
4
[ "A354309", "A354319", "A354323", "A354327" ]
null
Seiichi Manyama, May 24 2022
2024-03-14T09:03:58
oeisdata/seq/A354/A354319.seq
bbad2b32ffa84ff3eab01d1b70334e0a
A354320
Expansion of e.g.f. 1/(1 - 4*x)^(x/8).
[ "1", "0", "1", "6", "67", "1020", "19767", "464310", "12802121", "405017928", "14454250785", "574259123790", "25131727031163", "1201109694719220", "62238037299307863", "3475264183358721390", "208017790077615619665", "13286691367919839674000", "901996048369381319539713" ]
[ "nonn" ]
14
0
4
[ "A354320", "A354328" ]
null
Seiichi Manyama, May 24 2022
2022-05-24T08:11:54
oeisdata/seq/A354/A354320.seq
330725da62903cd3e78821499d117d42
A354321
Digit above the least significant 01 digit pair in the Zeckendorf representation of n.
[ "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "0", "0", "1", "1", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "1", "0", "0", "1", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "1", "1", "1", "0", "0", "0", "1", "1", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "0", "0", "1", "1", "0", "1", "1", "0", "0", "0", "1", "0", "0", "1", "1", "0", "0", "1" ]
[ "nonn", "easy" ]
17
1
null
[ "A000032", "A000045", "A001622", "A003714", "A005206", "A014417", "A038189", "A066628", "A086483", "A132338", "A189920", "A348853", "A354321" ]
null
Kevin Ryde, May 29 2022
2024-02-17T04:04:30
oeisdata/seq/A354/A354321.seq
88aabe9fc3df4f41b1bc4366b6bb8908
A354322
Irregular triangle read by rows where row n lists the distinct Matula-Goebel numbers of terminal subtrees occurring in the tree with Matula-Goebel number n.
[ "1", "1", "2", "1", "2", "3", "1", "4", "1", "2", "3", "5", "1", "2", "6", "1", "4", "7", "1", "8", "1", "2", "9", "1", "2", "3", "10", "1", "2", "3", "5", "11", "1", "2", "12", "1", "2", "6", "13", "1", "4", "14", "1", "2", "3", "15", "1", "16", "1", "4", "7", "17", "1", "2", "18", "1", "8", "19", "1", "2", "3", "20", "1", "2", "4", "21", "1", "2", "3", "5", "22", "1", "2", "9", "23", "1", "2", "24", "1", "2", "3", "25" ]
[ "nonn", "tabf" ]
10
1
3
[ "A007097", "A061395", "A317713", "A354322" ]
null
Kevin Ryde, Jun 08 2022
2024-08-27T18:30:48
oeisdata/seq/A354/A354322.seq
a0d21436dd38ec86bb70c145ac9bdf22
A354323
Expansion of e.g.f. exp( x/4 * (exp(2 * x) - 1) ).
[ "1", "0", "1", "3", "11", "50", "273", "1687", "11505", "86004", "700445", "6163751", "58148547", "584622766", "6235669629", "70286727435", "834288853217", "10395375065096", "135592878107673", "1846897191981835", "26212412703559515", "386874121137659274", "5927186655133112105", "94108950154465139807" ]
[ "nonn" ]
11
0
4
[ "A354323", "A354325" ]
null
Seiichi Manyama, May 24 2022
2022-05-24T08:11:58
oeisdata/seq/A354/A354323.seq
a290111567001036e79743371856a3f6
A354324
Expansion of e.g.f. exp( x/8 * (exp(4 * x) - 1) ).
[ "1", "0", "1", "6", "35", "220", "1623", "14294", "144393", "1605384", "19295585", "249938062", "3485830299", "52134346004", "830954821431", "14031857352270", "249956799370193", "4682845238636560", "92038069890608769", "1893193762636115990", "40659808272769543635", "909744112577077608012" ]
[ "nonn" ]
12
0
4
[ "A354324", "A354326" ]
null
Seiichi Manyama, May 24 2022
2024-05-25T22:59:49
oeisdata/seq/A354/A354324.seq
728a4d02fd03e6f80f020e7ff7d3b767
A354325
Expansion of e.g.f. 1/(1 - x/4 * (exp(2 * x) - 1)).
[ "1", "0", "1", "3", "14", "80", "558", "4522", "41864", "436032", "5046680", "64251176", "892361520", "13426491520", "217555171568", "3776935252560", "69942048682112", "1376150998836224", "28669321699355520", "630448829825395840", "14593473117397510400", "354696400190943197184", "9031466708133617225984" ]
[ "nonn" ]
13
0
4
[ "A354313", "A354323", "A354325", "A354326" ]
null
Seiichi Manyama, May 24 2022
2022-12-02T15:00:10
oeisdata/seq/A354/A354325.seq
084e1da647601171f5f051bcc9e2d9f7
A354326
Expansion of e.g.f. 1/(1 - x/8 * (exp(4 * x) - 1)).
[ "1", "0", "1", "6", "38", "280", "2538", "27524", "341912", "4754880", "73322360", "1244282512", "23048700912", "462565343552", "9996300546512", "231444311970720", "5715911385442688", "149988948332148736", "4167328800543910272", "122218355207805620480", "3773036019063284645120" ]
[ "nonn" ]
14
0
4
[ "A354324", "A354325", "A354326", "A354328" ]
null
Seiichi Manyama, May 24 2022
2023-10-03T15:26:31
oeisdata/seq/A354/A354326.seq
ad0adb12d7c66dc712b2aa67d1449f25
A354327
Expansion of e.g.f. 1/(1 + x/4 * log(1 - 2 * x)).
[ "1", "0", "1", "3", "22", "180", "1902", "23730", "344872", "5706288", "105960600", "2181449160", "49311653616", "1214109056160", "32339248301808", "926527371653520", "28410493609687680", "928335829570087680", "32201658919855225728", "1181755749910942408320", "45744743939940787150080" ]
[ "nonn" ]
11
0
4
[ "A052830", "A187735", "A354325", "A354327", "A354328" ]
null
Seiichi Manyama, May 24 2022
2022-05-24T08:11:30
oeisdata/seq/A354/A354327.seq
281e5ac84141ce16768589d160421e08
A354328
Expansion of e.g.f. 1/(1 + x/8 * log(1 - 4 * x)).
[ "1", "0", "1", "6", "70", "1080", "21162", "501060", "13904152", "442241856", "15855648120", "632501646480", "27781645311216", "1332152096109120", "69237728070951888", "3876953348374273440", "232666700169003442560", "14897335773169370787840", "1013656610215024983681408" ]
[ "nonn" ]
10
0
4
[ "A354326", "A354327", "A354328" ]
null
Seiichi Manyama, May 24 2022
2022-05-24T08:12:09
oeisdata/seq/A354/A354328.seq
9f186c2faffe9ca37f72986e438771a0
A354329
Triangular number nearest to the sum of the first n positive triangular numbers.
[ "0", "1", "3", "10", "21", "36", "55", "78", "120", "171", "210", "276", "351", "465", "561", "666", "820", "990", "1128", "1326", "1540", "1770", "2016", "2278", "2628", "2926", "3240", "3655", "4095", "4465", "4950", "5460", "5995", "6555", "7140", "7750", "8385", "9180", "9870", "10731", "11476", "12403", "13203", "14196", "15225", "16290", "17205" ]
[ "nonn", "easy" ]
44
0
3
[ "A000217", "A000292", "A053616", "A229118", "A354329", "A354330" ]
null
Paolo Xausa, Jun 04 2022
2022-07-15T13:49:54
oeisdata/seq/A354/A354329.seq
59fa25bb0e56e36bf753cb6c5a32a35a
A354330
Distance from the sum of the first n positive triangular numbers to the nearest triangular number.
[ "0", "0", "1", "0", "1", "1", "1", "6", "0", "6", "10", "10", "13", "10", "1", "14", "4", "21", "12", "4", "0", "1", "8", "22", "28", "1", "36", "1", "35", "30", "10", "4", "11", "10", "0", "20", "51", "41", "10", "71", "4", "62", "41", "6", "45", "75", "91", "88", "97", "85", "55", "10", "51", "100", "10", "99", "20", "124", "29", "56", "130", "90", "48", "20", "7", "10", "30", "68", "125", "136" ]
[ "nonn", "easy" ]
39
0
8
[ "A000217", "A000292", "A053616", "A224421", "A238455", "A351830", "A354329", "A354330" ]
null
Paolo Xausa, Jun 04 2022
2022-07-15T13:50:10
oeisdata/seq/A354/A354330.seq
37343bcd7570e943e2990f9c6ec9498c
A354331
a(n) is the denominator of Sum_{k=0..n} 1 / (2*k+1)!.
[ "1", "6", "40", "5040", "362880", "13305600", "6227020800", "1307674368000", "513257472000", "121645100408832000", "51090942171709440000", "8617338912961658880000", "15511210043330985984000000", "10888869450418352160768000000", "2947253997913233984847872000000", "1174691236311131831103651840000000" ]
[ "nonn", "frac" ]
12
0
2
[ "A009445", "A053556", "A061355", "A073742", "A143383", "A289488", "A354211", "A354331", "A354333", "A354335" ]
null
Ilya Gutkovskiy, May 24 2022
2022-05-24T12:54:56
oeisdata/seq/A354/A354331.seq
e6a557daa8da572b1bd1865728c5e9d3
A354332
a(n) is the numerator of Sum_{k=0..n} (-1)^k / (2*k+1)!.
[ "1", "5", "101", "4241", "305353", "33588829", "209594293", "1100370038249", "23023126954133", "102360822438075317", "42991545423991633141", "4350744396907953273869", "13052233190723859821607001", "9162667699888149594768114701", "7440086172309177470951709137213", "364172638960396581472899447242531" ]
[ "nonn", "frac" ]
13
0
2
[ "A009445", "A049469", "A053557", "A061354", "A103816", "A120265", "A143382", "A354211", "A354298", "A354332", "A354333", "A354334" ]
null
Ilya Gutkovskiy, May 24 2022
2022-05-24T12:55:01
oeisdata/seq/A354/A354332.seq
b23a0728fbd861de6c00bf19833c89a0
A354333
a(n) is the denominator of Sum_{k=0..n} (-1)^k / (2*k+1)!.
[ "1", "6", "120", "5040", "362880", "39916800", "249080832", "1307674368000", "27360571392000", "121645100408832000", "51090942171709440000", "5170403347776995328000", "15511210043330985984000000", "10888869450418352160768000000", "8841761993739701954543616000000", "432780981798838043038187520000000" ]
[ "nonn", "frac" ]
12
0
2
[ "A009445", "A049469", "A053556", "A061355", "A143383", "A354299", "A354331", "A354332", "A354333", "A354335" ]
null
Ilya Gutkovskiy, May 24 2022
2022-05-24T12:55:04
oeisdata/seq/A354/A354333.seq
d5c48142efe74f46b9d6fb6107001447
A354334
a(n) is the numerator of Sum_{k=0..n} 1 / (2*k)!.
[ "1", "3", "37", "1111", "6913", "799933", "739138093", "44841044309", "32285551902481", "9879378882159187", "1251387991740163687", "1734423756551866870183", "136771701945232930334431", "23048564587067030852654113", "42769754577382930342215977687", "409306551305554643375006906464591" ]
[ "nonn", "frac" ]
15
0
2
[ "A010050", "A053557", "A061354", "A073743", "A103816", "A120265", "A143382", "A354211", "A354332", "A354334", "A354335" ]
null
Ilya Gutkovskiy, May 24 2022
2024-09-05T11:44:55
oeisdata/seq/A354/A354334.seq
5a6d12deeab43494f93c08d5be2ff60d
A354335
a(n) is the denominator of Sum_{k=0..n} 1 / (2*k)!.
[ "1", "2", "24", "720", "4480", "518400", "479001600", "29059430400", "20922789888000", "6402373705728000", "810967336058880000", "1124000727777607680000", "88635485961891348480000", "14936720782466875392000000", "27717122237428532772864000000", "265252859812191058636308480000000" ]
[ "nonn", "frac" ]
12
0
2
[ "A010050", "A053556", "A061355", "A073743", "A143383", "A354331", "A354333", "A354334", "A354335" ]
null
Ilya Gutkovskiy, May 24 2022
2022-05-24T12:55:14
oeisdata/seq/A354/A354335.seq
ac10032e37687e41836ab180b7c4c333
A354336
a(n) is the integer w such that (L(2*n)^2, -L(2*n-1)^2, -w) is a primitive solution to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 125, where L(n) is the n-th Lucas number (A000032).
[ "1", "11", "61", "401", "2731", "18701", "128161", "878411", "6020701", "41266481", "282844651", "1938646061", "13287677761", "91075098251", "624238009981", "4278590971601", "29325898791211", "201002700566861", "1377693005176801", "9442848335670731", "64722245344518301", "443612869075957361" ]
[ "nonn", "easy" ]
27
0
2
[ "A000032", "A002878", "A005248", "A017281", "A056914", "A081015", "A092521", "A337928", "A354336", "A354337" ]
null
XU Pingya, Jun 20 2022
2025-03-22T19:03:56
oeisdata/seq/A354/A354336.seq
1d5e5b45a2f7d9cfbd6ec0d057c39a38
A354337
a(n) is the integer w such that (L(2*n)^2, -L(2*n + 1)^2, w) is a primitive solution to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 125, where L(n) is the n-th Lucas number (A000032).
[ "19", "149", "1039", "7139", "48949", "335519", "2299699", "15762389", "108037039", "740496899", "5075441269", "34787591999", "238437702739", "1634276327189", "11201496587599", "76776199786019", "526231901914549", "3606847113615839", "24721697893396339", "169445038140158549", "1161393569087713519" ]
[ "nonn", "easy" ]
17
1
1
[ "A000032", "A002878", "A005248", "A017377", "A081017", "A089508", "A092521", "A288913", "A337929", "A354336", "A354337" ]
null
XU Pingya, Jun 20 2022
2022-08-23T09:35:58
oeisdata/seq/A354/A354337.seq
4d987406189572b5fc314aa3a921ed31
A354338
a(n) = n! * Sum_{k=1..n} ( Sum_{d|k} 1/(d * (k/d)!) )/(n-k)!.
[ "1", "4", "12", "41", "145", "742", "3962", "27659", "215131", "1996356", "17300360", "218809109", "2421142269", "31105286682", "427776526574", "6964677268087", "97708052695959", "1856379196278120", "30362097934331500", "606395795174882161", "12016899266310773097", "261771941015999635310" ]
[ "nonn" ]
15
1
2
[ "A087906", "A354338", "A354341", "A356009" ]
null
Seiichi Manyama, Aug 15 2022
2022-08-15T08:32:22
oeisdata/seq/A354/A354338.seq
7f52445b5bff5a8fe170fb4628e85a22
A354339
a(n) = n! * Sum_{k=1..n} ( Sum_{d|k} 1/(d * (k/d)^d) )/(n-k)!.
[ "1", "4", "13", "47", "188", "939", "5332", "36196", "279085", "2464592", "23591753", "259110191", "3030440580", "38874240339", "535736880460", "8027897509136", "126034992483809", "2144006461602308", "38072688073456557", "723023026186433271", "14342481336066795732", "301141522554921194275" ]
[ "nonn" ]
13
1
2
[ "A308345", "A354339", "A356406" ]
null
Seiichi Manyama, Aug 15 2022
2022-08-15T08:37:28
oeisdata/seq/A354/A354339.seq
3f0bedae6744d2881dd80215bc450b00
A354340
a(n) = n! * Sum_{k=1..n} ( Sum_{d|k} d^(k/d + 1) )/(k * (n-k)!).
[ "1", "7", "38", "264", "1629", "16075", "122366", "1414952", "16076913", "213998983", "2112313774", "53581378400", "664573162941", "9967808211387", "239545427723062", "5933102008956848", "79857813309308609", "2677379355344673255", "44453311791217697686", "1743982053518367438616" ]
[ "nonn" ]
13
1
2
[ "A078308", "A353992", "A354340", "A354848", "A356598" ]
null
Seiichi Manyama, Aug 15 2022
2022-08-15T08:41:15
oeisdata/seq/A354/A354340.seq
f712996ca35d04760d11a1a37b28f8d2
A354341
a(n) = n! * Sum_{k=1..n} ( Sum_{d|k} 1/(d * ((k/d)!)^d) )/(n-k)!.
[ "1", "4", "12", "38", "130", "557", "2877", "18314", "136458", "1180457", "11389081", "122833207", "1446973931", "18594740348", "257507754524", "3835059283282", "60937544854850", "1030871972064485", "18469079943443229", "349656695460113159", "6969526853682012755", "145958486484692023936" ]
[ "nonn" ]
12
1
2
[ "A182926", "A354339", "A354341", "A356407" ]
null
Seiichi Manyama, Aug 15 2022
2022-08-15T08:37:23
oeisdata/seq/A354/A354341.seq
1e83b867a061ce1c83a1e171662a64a0
A354342
Numbers divisible by a square greater than 1 that are the sum of two consecutive numbers divisible by a square greater than 1.
[ "49", "99", "343", "351", "775", "847", "1025", "1449", "1665", "1681", "1849", "1863", "2057", "2151", "2367", "2575", "2825", "2889", "3175", "3185", "3249", "3609", "3625", "3699", "3725", "3751", "3871", "3951", "4113", "4375", "4599", "4625", "4913", "5047", "5049", "5193", "5239", "5391", "5751", "5887", "6137", "6175", "6425", "6713", "6849" ]
[ "nonn" ]
41
1
1
[ "A000290", "A008683", "A013929", "A068781", "A354342" ]
null
Daniel Barker, Sep 12 2022
2022-10-23T22:53:27
oeisdata/seq/A354/A354342.seq
110c6aa72af3a50c2ae8f13030b8df15
A354343
Number of distinct sums of n complex 6th power roots of unity.
[ "1", "6", "19", "37", "61", "91", "127", "169", "217", "271", "331", "397", "469", "547", "631", "721", "817", "919", "1027", "1141", "1261", "1387", "1519", "1657", "1801", "1951", "2107", "2269", "2437", "2611", "2791", "2977", "3169", "3367", "3571", "3781", "3997", "4219", "4447", "4681", "4921", "5167", "5419", "5677", "5941", "6211", "6487", "6769", "7057", "7351", "7651", "7957" ]
[ "nonn", "easy" ]
16
0
2
[ "A000012", "A000027", "A000217", "A000290", "A000332", "A000579", "A003215", "A014820", "A103314", "A107753", "A107754", "A107848", "A107861", "A108380", "A108381", "A143008", "A299754", "A299807", "A354343" ]
null
Max Alekseyev, Aug 15 2022
2024-11-03T17:46:01
oeisdata/seq/A354/A354343.seq
8de841de9900446d100b0accab922d9e
A354344
a(n) = 1 if n is x * A005383(i), where x is either 2, 3, 8, 9 or 15 and i > 2 [i.e., A005383(i) > 5], otherwise 0.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0" ]
[ "nonn" ]
8
1
null
[ "A005383", "A354344", "A354345" ]
null
Antti Karttunen, May 25 2022
2022-05-25T22:51:33
oeisdata/seq/A354/A354344.seq
be1de07a95371c7f582ae5db2a06b683
A354345
Numbers k such that k = x * A005383(i), where x is either 2, 3, 8, 9 or 15 and i > 2 [i.e., A005383(i) > 5].
[ "26", "39", "74", "104", "111", "117", "122", "146", "183", "195", "219", "296", "314", "333", "386", "471", "488", "549", "554", "555", "579", "584", "626", "657", "794", "831", "842", "914", "915", "939", "1082", "1095", "1191", "1226", "1256", "1263", "1322", "1346", "1371", "1413", "1466", "1514", "1544", "1623", "1737", "1754", "1839", "1983", "1994", "2019", "2186", "2199", "2216", "2271", "2306", "2355", "2402", "2426" ]
[ "nonn" ]
6
1
1
[ "A005383", "A006872", "A260021", "A353636", "A354344", "A354345" ]
null
Antti Karttunen, May 25 2022
2022-05-25T09:14:25
oeisdata/seq/A354/A354345.seq
162a4a6b17275c7ebe7160e56cd39db7
A354346
a(n) = 2*n - A064989(sigma(sigma(A003961(n)))), where A003961 shifts the prime factorization one step towards larger primes, and A064989 shifts it back towards smaller primes.
[ "1", "-1", "4", "3", "4", "6", "9", "4", "17", "0", "20", "14", "4", "-1", "1", "-53", "24", "31", "32", "10", "-24", "38", "42", "-10", "47", "-14", "29", "31", "38", "-53", "56", "39", "61", "10", "50", "67", "72", "56", "63", "-146", "72", "-136", "57", "78", "84", "80", "88", "-74", "95", "85", "90", "-6", "96", "-37", "81", "72", "-205", "38", "116", "-25", "102", "106", "121", "-413", "-189", "103", "68", "86", "28", "62", "108", "132", "88", "142", "84" ]
[ "sign" ]
12
1
3
[ "A000203", "A003961", "A033879", "A064989", "A354195", "A354346" ]
null
Antti Karttunen, May 25 2022
2022-05-26T20:43:41
oeisdata/seq/A354/A354346.seq
ee97e19c22f2cde2ef0df208754904f1
A354347
Dirichlet inverse of A345000, where A345000(n) = gcd(A003415(n), A003415(A276086(n))), with A003415 the arithmetic derivative, and A276086 the primorial base exp-function.
[ "1", "-1", "-1", "-1", "-1", "1", "-1", "-1", "0", "1", "-1", "1", "-1", "1", "1", "-9", "-1", "-2", "-1", "1", "-3", "1", "-1", "1", "-4", "-3", "0", "1", "-1", "-1", "-1", "21", "1", "1", "-1", "-6", "-1", "1", "1", "3", "-1", "7", "-1", "-1", "0", "-3", "-1", "23", "0", "4", "-3", "7", "-1", "2", "1", "3", "1", "1", "-1", "-1", "-1", "1", "8", "15", "-1", "-1", "-1", "1", "1", "3", "-1", "14", "-1", "1", "-46", "-7", "-1", "7", "-1", "5", "0", "1", "-1", "3", "1", "-3", "1", "-131" ]
[ "sign" ]
17
1
16
[ "A003415", "A038838", "A122132", "A276086", "A345000", "A346242", "A353627", "A354347", "A354348", "A354815", "A354816", "A354823", "A354824" ]
null
Antti Karttunen, Jun 07 2022
2022-06-09T08:44:52
oeisdata/seq/A354/A354347.seq
6a28a54a203afec3b19d2d95e0afe3ba
A354348
Dirichlet inverse of function f(1) = 1, f(n) = gcd(A003415(n), A276086(n)) for n > 1.
[ "1", "-1", "-1", "0", "-1", "-3", "-1", "-2", "-5", "1", "-1", "8", "-1", "-1", "0", "4", "-1", "18", "-1", "-2", "-8", "1", "-1", "0", "-9", "-13", "8", "4", "-1", "9", "-1", "-2", "-12", "1", "-4", "-9", "-1", "-19", "0", "8", "-1", "29", "-1", "-2", "10", "-23", "-1", "2", "-13", "4", "-8", "22", "-1", "20", "0", "2", "0", "1", "-1", "-13", "-1", "-1", "26", "2", "-16", "33", "-1", "-2", "0", "13", "-1", "-14", "-1", "-1", "16", "36", "-16", "37", "-1", "-10", "19", "1" ]
[ "sign" ]
13
1
6
[ "A003415", "A276086", "A327858", "A346242", "A354347", "A354348" ]
null
Antti Karttunen, Jun 08 2022
2022-06-08T15:48:47
oeisdata/seq/A354/A354348.seq
b7fa35485d02f62d05a2408174204abd
A354349
Dirichlet inverse of A181819, prime shadow of n.
[ "1", "-2", "-2", "1", "-2", "4", "-2", "-1", "1", "4", "-2", "-2", "-2", "4", "4", "2", "-2", "-2", "-2", "-2", "4", "4", "-2", "2", "1", "4", "-1", "-2", "-2", "-8", "-2", "-3", "4", "4", "4", "1", "-2", "4", "4", "2", "-2", "-8", "-2", "-2", "-2", "4", "-2", "-4", "1", "-2", "4", "-2", "-2", "2", "4", "2", "4", "4", "-2", "4", "-2", "4", "-2", "7", "4", "-8", "-2", "-2", "4", "-8", "-2", "-1", "-2", "4", "-2", "-2", "4", "-8", "-2", "-4", "2", "4", "-2", "4", "4", "4", "4", "2", "-2", "4", "4" ]
[ "sign", "mult" ]
11
1
2
[ "A181819", "A354186", "A354349", "A354351", "A354359" ]
null
Antti Karttunen, Jun 05 2022
2022-06-05T23:20:05
oeisdata/seq/A354/A354349.seq
ebf86c838c35723f096a3962acb75ce6
A354350
a(n) = n + A354365(n).
[ "2", "0", "0", "4", "0", "9", "0", "8", "9", "20", "0", "12", "0", "28", "20", "16", "0", "18", "0", "20", "42", "44", "0", "24", "25", "52", "27", "28", "0", "25", "0", "32", "66", "68", "42", "36", "0", "76", "78", "40", "0", "21", "0", "44", "45", "92", "0", "48", "49", "50", "102", "52", "0", "54", "110", "56", "114", "116", "0", "60", "0", "124", "63", "64", "130", "33", "0", "68", "138", "56", "0", "72", "0", "148", "75", "76", "88", "39", "0", "80", "81", "164", "0", "84", "170" ]
[ "nonn" ]
9
1
1
[ "A008683", "A055615", "A064989", "A354350", "A354365" ]
null
Antti Karttunen, Jun 07 2022
2022-06-08T14:24:03
oeisdata/seq/A354/A354350.seq
ced65a1b995a7dea92ff70ef463a780d
A354351
Dirichlet inverse of A108951, primorial inflation of n.
[ "1", "-2", "-6", "0", "-30", "12", "-210", "0", "0", "60", "-2310", "0", "-30030", "420", "180", "0", "-510510", "0", "-9699690", "0", "1260", "4620", "-223092870", "0", "0", "60060", "0", "0", "-6469693230", "-360", "-200560490130", "0", "13860", "1021020", "6300", "0", "-7420738134810", "19399380", "180180", "0", "-304250263527210", "-2520", "-13082761331670030", "0", "0", "446185740", "-614889782588491410" ]
[ "sign", "mult" ]
14
1
2
[ "A002110", "A008683", "A013929", "A034386", "A108951", "A347379", "A354186", "A354349", "A354351", "A354352", "A354359", "A354365", "A354366" ]
null
Antti Karttunen, Jun 05 2022
2022-06-08T10:18:18
oeisdata/seq/A354/A354351.seq
02b23433e7c0813a616a69de85cb0ca6
A354352
Sum of primorial inflation (A108951) and its Dirichlet inverse.
[ "2", "0", "0", "4", "0", "24", "0", "8", "36", "120", "0", "24", "0", "840", "360", "16", "0", "72", "0", "120", "2520", "9240", "0", "48", "900", "120120", "216", "840", "0", "0", "0", "32", "27720", "2042040", "12600", "144", "0", "38798760", "360360", "240", "0", "0", "0", "9240", "1080", "892371480", "0", "96", "44100", "1800", "6126120", "120120", "0", "432", "138600", "1680", "116396280", "25878772920", "0", "720", "0", "802241960520" ]
[ "nonn" ]
9
1
1
[ "A001248", "A002110", "A061742", "A108951", "A354351", "A354352" ]
null
Antti Karttunen, Jun 05 2022
2022-06-05T23:20:17
oeisdata/seq/A354/A354352.seq
4b5b4f0c27f14e7acc2e6d8708c721c1
A354353
a(n) = 1 if n is either a squarefree composite or a power of squarefree composite, otherwise 0.
[ "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "1", "1", "1", "1", "0", "1", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "1", "0", "0", "0", "1", "0", "0", "1", "1", "0", "0", "1", "1", "0", "0", "0", "1", "0", "0", "1", "1", "0", "0", "0", "1", "0", "0", "1", "1", "1", "0", "0", "0", "1", "0", "1", "1", "1", "0", "0", "0", "0", "1", "0", "1", "0", "0", "1" ]
[ "nonn" ]
17
1
null
[ "A001221", "A008966", "A046523", "A182853", "A227291", "A354353", "A354819" ]
null
Antti Karttunen, Jun 10 2022
2022-09-19T13:42:08
oeisdata/seq/A354/A354353.seq
d1babe49b6094c610131796c0b12766d
A354354
a(n) = 1 if n is neither a multiple of 2 nor 3, and otherwise 0.
[ "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0" ]
[ "nonn", "easy", "mult" ]
29
0
null
[ "A007310", "A065333", "A089128", "A109017", "A110161", "A120325", "A134667", "A232991", "A322796", "A354354" ]
null
Antti Karttunen, May 25 2022
2022-12-27T02:29:30
oeisdata/seq/A354/A354354.seq
e7f1412a2ef0d5d71a579178dd2dc397
A354355
Characteristic function of numbers with their sum of divisors (sigma) 3-smooth.
[ "1", "1", "1", "0", "1", "1", "1", "0", "0", "1", "1", "0", "0", "1", "1", "0", "1", "0", "0", "0", "1", "1", "1", "0", "0", "0", "0", "0", "0", "1", "1", "0", "1", "1", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "1", "1", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "1", "1", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1" ]
[ "nonn", "mult" ]
12
1
null
[ "A000203", "A065333", "A122255", "A354355", "A354356" ]
null
Antti Karttunen, May 24 2022
2022-05-25T22:51:38
oeisdata/seq/A354/A354355.seq
fa0c20644447e5cb5e6a386e487488b0
A354356
Numbers k such that sigma(k) is 3-smooth (has no larger prime factors than 3).
[ "1", "2", "3", "5", "6", "7", "10", "11", "14", "15", "17", "21", "22", "23", "30", "31", "33", "34", "35", "42", "46", "47", "51", "53", "55", "62", "66", "69", "70", "71", "77", "85", "93", "94", "102", "105", "106", "107", "110", "115", "119", "127", "138", "141", "142", "154", "155", "159", "161", "165", "170", "186", "187", "191", "210", "213", "214", "217", "230", "231", "235", "238", "253", "254", "255", "265", "282", "310", "318", "321", "322", "329" ]
[ "nonn" ]
15
1
2
[ "A000203", "A005105", "A046528", "A065333", "A122254", "A354355", "A354356", "A354357" ]
null
Antti Karttunen, May 24 2022
2022-05-25T05:45:02
oeisdata/seq/A354/A354356.seq
44daa536b5afcab008be9416e90216df
A354357
Numbers k, not divisible by 2 or 3, such that sigma(k) is 3-smooth (has no larger prime factors than 3).
[ "1", "5", "7", "11", "17", "23", "31", "35", "47", "53", "55", "71", "77", "85", "107", "115", "119", "127", "155", "161", "187", "191", "217", "235", "253", "265", "329", "341", "355", "371", "383", "385", "391", "431", "497", "517", "527", "535", "583", "595", "635", "647", "713", "749", "781", "799", "805", "863", "889", "901", "935", "955", "971", "1081", "1085", "1151", "1177", "1207", "1219", "1265", "1309", "1337", "1397", "1457", "1633" ]
[ "nonn" ]
11
1
2
[ "A000203", "A007310", "A065333", "A354202", "A354356", "A354357", "A354361" ]
null
Antti Karttunen, May 24 2022
2023-12-17T14:04:53
oeisdata/seq/A354/A354357.seq
9eab0d3590b65fff3c9f250063479ecb
A354358
Möbius transform of A124859.
[ "1", "1", "1", "4", "1", "1", "1", "24", "4", "1", "1", "4", "1", "1", "1", "180", "1", "4", "1", "4", "1", "1", "1", "24", "4", "1", "24", "4", "1", "1", "1", "2100", "1", "1", "1", "16", "1", "1", "1", "24", "1", "1", "1", "4", "4", "1", "1", "180", "4", "4", "1", "4", "1", "24", "1", "24", "1", "1", "1", "4", "1", "1", "4", "27720", "1", "1", "1", "4", "1", "1", "1", "96", "1", "1", "4", "4", "1", "1", "1", "180", "180", "1", "1", "4", "1", "1", "1", "24", "1", "4", "1", "4", "1", "1", "1", "2100" ]
[ "nonn", "mult" ]
17
1
4
[ "A002110", "A008683", "A124859", "A347379", "A354358", "A354359" ]
null
Antti Karttunen, Jun 05 2022
2023-01-07T04:03:22
oeisdata/seq/A354/A354358.seq
eb9855c54b920dd492d4c1ba72dc2d82
A354359
Dirichlet inverse of A124859.
[ "1", "-2", "-2", "-2", "-2", "4", "-2", "-14", "-2", "4", "-2", "4", "-2", "4", "4", "-110", "-2", "4", "-2", "4", "4", "4", "-2", "28", "-2", "4", "-14", "4", "-2", "-8", "-2", "-1526", "4", "4", "4", "4", "-2", "4", "4", "28", "-2", "-8", "-2", "4", "4", "4", "-2", "220", "-2", "4", "4", "4", "-2", "28", "4", "28", "4", "4", "-2", "-8", "-2", "4", "4", "-20858", "4", "-8", "-2", "4", "4", "-8", "-2", "28", "-2", "4", "4", "4", "4", "-8", "-2", "220", "-110", "4", "-2", "-8" ]
[ "sign", "mult" ]
9
1
2
[ "A002110", "A124859", "A354186", "A354349", "A354351", "A354358", "A354359" ]
null
Antti Karttunen, Jun 05 2022
2022-06-05T23:20:28
oeisdata/seq/A354/A354359.seq
ee002103e17ccac8001aa48a8e919f71
A354360
Positions of 1's in A354366.
[ "1", "2", "4", "6", "8", "9", "12", "16", "18", "20", "24", "25", "27", "28", "30", "32", "36", "40", "44", "45", "48", "49", "50", "52", "54", "56", "60", "63", "64", "68", "72", "75", "76", "80", "81", "84", "88", "90", "92", "96", "98", "99", "100", "104", "108", "112", "116", "117", "120", "121", "124", "125", "126", "128", "132", "135", "136", "140", "144", "147", "148", "150", "152", "153", "156", "160", "162", "164", "168", "169", "171", "172", "175" ]
[ "nonn" ]
4
1
2
[ "A354360", "A354365", "A354366" ]
null
Antti Karttunen, Jun 07 2022
2022-06-08T10:18:26
oeisdata/seq/A354/A354360.seq
c4fa10814bc21beaff20453a49dfcf6b
A354361
Numbers k such that A354203(sigma(A354202(k))) = 1.
[ "1", "2", "3", "6", "7", "13", "14", "19", "21", "23", "26", "38", "39", "41", "42", "43", "46", "57", "67", "69", "78", "82", "86", "91", "103", "107", "114", "123", "129", "133", "134", "138", "161", "179", "182", "201", "206", "214", "246", "247", "258", "266", "273", "287", "299", "301", "309", "321", "322", "358", "379", "399", "402", "419", "437", "469", "483", "494", "533", "537", "546", "559", "574", "598", "602", "618", "642", "643", "721" ]
[ "nonn" ]
5
1
2
[ "A000203", "A354202", "A354203", "A354206", "A354357", "A354361" ]
null
Antti Karttunen, May 24 2022
2022-05-25T22:51:47
oeisdata/seq/A354/A354361.seq
5c5405b7da5ad1a8275b7c7a1305311c
A354362
Intersection of A228058 and A260021.
[ "45", "49005", "597861", "715473", "1538757", "1891593", "1893213", "2714877", "3067713", "3890997", "4126221", "4479057", "5302341", "5465313", "5793525", "5890437", "6008013", "6478461", "6596073", "6882525", "7184133", "7419357", "8595477", "9771597", "10712493", "11300553", "11771001", "11888613", "12123837", "12947121", "13535181", "14240853", "15887421", "16240257", "17181153" ]
[ "nonn" ]
5
1
1
[ "A228058", "A260021", "A353679", "A354106", "A354362" ]
null
Antti Karttunen, May 24 2022
2022-05-24T16:36:55
oeisdata/seq/A354/A354362.seq
a048da37cd1c3f9fa1d40381715e6825
A354363
a(n) = LCM_{p^e||n} (q^(e+1)-1)/(q-1), when n = Product_{p^e||n}, with each p^e the maximal power of prime p that divides n, and q = nextPrime(p).
[ "1", "4", "6", "13", "8", "12", "12", "40", "31", "8", "14", "78", "18", "12", "24", "121", "20", "124", "24", "104", "12", "28", "30", "120", "57", "36", "156", "156", "32", "24", "38", "364", "42", "20", "24", "403", "42", "24", "18", "40", "44", "12", "48", "182", "248", "60", "54", "726", "133", "228", "60", "234", "60", "156", "56", "120", "24", "32", "62", "312", "68", "76", "372", "1093", "72", "84", "72", "260", "30", "24", "74", "1240", "80", "84" ]
[ "nonn" ]
15
1
2
[ "A003961", "A003973", "A151800", "A353783", "A354363", "A354364" ]
null
Antti Karttunen, May 30 2022
2022-06-02T14:48:20
oeisdata/seq/A354/A354363.seq
467a613f39dd6240e2d1dda99de25539
A354364
a(n) = A003973(n) / A354363(n).
[ "1", "1", "1", "1", "1", "2", "1", "1", "1", "4", "1", "1", "1", "4", "2", "1", "1", "1", "1", "1", "6", "2", "1", "2", "1", "2", "1", "1", "1", "8", "1", "1", "2", "4", "4", "1", "1", "4", "6", "8", "1", "24", "1", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "4", "2", "4", "6", "4", "1", "2", "1", "2", "1", "1", "2", "4", "1", "1", "6", "16", "1", "1", "1", "2", "3", "1", "2", "12", "1", "1", "1", "4", "1", "6", "4", "4", "2", "2", "1", "4", "6", "1", "2", "2", "8", "2", "1", "1", "1", "1", "1", "8", "1", "2", "24" ]
[ "nonn" ]
10
1
6
[ "A003961", "A003973", "A353784", "A354363", "A354364" ]
null
Antti Karttunen, May 30 2022
2022-06-02T14:48:26
oeisdata/seq/A354/A354364.seq
e486ef2a32c6de3a5536e5e184e67d6b
A354365
Numerators of Dirichlet inverse of primorial deflation fraction A319626(n) / A319627(n).
[ "1", "-2", "-3", "0", "-5", "3", "-7", "0", "0", "10", "-11", "0", "-13", "14", "5", "0", "-17", "0", "-19", "0", "21", "22", "-23", "0", "0", "26", "0", "0", "-29", "-5", "-31", "0", "33", "34", "7", "0", "-37", "38", "39", "0", "-41", "-21", "-43", "0", "0", "46", "-47", "0", "0", "0", "51", "0", "-53", "0", "55", "0", "57", "58", "-59", "0", "-61", "62", "0", "0", "65", "-33", "-67", "0", "69", "-14", "-71", "0", "-73", "74", "0", "0", "11", "-39", "-79", "0", "0", "82" ]
[ "sign", "frac" ]
16
1
2
[ "A013929", "A055615", "A319626", "A319627", "A349629", "A354350", "A354351", "A354365", "A354366", "A354827" ]
null
Antti Karttunen, Jun 07 2022
2022-06-08T10:18:32
oeisdata/seq/A354/A354365.seq
a40b1b8e790cd75b535ebdb94baa42bf
A354366
Denominators of Dirichlet inverse of primorial deflation fraction A319626(n) / A319627(n).
[ "1", "1", "2", "1", "3", "1", "5", "1", "1", "3", "7", "1", "11", "5", "2", "1", "13", "1", "17", "1", "10", "7", "19", "1", "1", "11", "1", "1", "23", "1", "29", "1", "14", "13", "3", "1", "31", "17", "22", "1", "37", "5", "41", "1", "1", "19", "43", "1", "1", "1", "26", "1", "47", "1", "21", "1", "34", "23", "53", "1", "59", "29", "1", "1", "33", "7", "61", "1", "38", "3", "67", "1", "71", "31", "1", "1", "5", "11", "73", "1", "1", "37", "79", "1", "39", "41", "46", "1", "83", "1", "55", "1", "58" ]
[ "nonn", "frac" ]
11
1
3
[ "A055615", "A064989", "A319626", "A319627", "A349630", "A354360", "A354365", "A354366" ]
null
Antti Karttunen, Jun 07 2022
2022-06-08T10:18:38
oeisdata/seq/A354/A354366.seq
74f05f4defd7430c1864b62eeef707c2
A354367
Successive pairs of terms (a, b) such that (a + b) is a square and at least one of a and b is a prime number. This is the lexicographically earliest infinite sequence of distinct terms > 0 with this property.
[ "1", "3", "2", "7", "4", "5", "6", "19", "8", "17", "10", "71", "11", "14", "12", "13", "15", "181", "18", "31", "20", "29", "21", "43", "22", "59", "23", "26", "24", "97", "27", "37", "28", "53", "30", "139", "32", "89", "33", "67", "34", "47", "35", "109", "38", "83", "39", "61", "40", "41", "42", "79", "44", "317", "45", "151", "46", "179", "48", "73", "50", "239", "51", "349", "52", "173", "54", "307", "55", "269", "56", "113", "57", "199", "58" ]
[ "nonn" ]
12
1
2
[ "A354367", "A354368", "A354369", "A354370" ]
null
Eric Angelini and Carole Dubois, May 24 2022
2022-06-25T22:01:52
oeisdata/seq/A354/A354367.seq
75919e79e337d20b9540b41ea13c7b3c
A354368
Successive pairs of terms (a, b) such that (a + b) is a square and at least one of a and b is a prime number. This is the lexicographically earliest infinite sequence of distinct terms > 0 with this property.
[ "2", "7", "3", "13", "5", "11", "17", "19", "23", "41", "29", "71", "31", "113", "37", "107", "43", "101", "47", "53", "59", "137", "61", "83", "67", "257", "73", "251", "79", "821", "89", "167", "97", "227", "103", "797", "109", "467", "127", "197", "131", "193", "139", "761", "149", "751", "151", "173", "157", "419", "163", "1601", "179", "397", "181", "719", "191", "293", "199", "701", "211", "1553", "223", "353", "229", "347" ]
[ "nonn" ]
20
1
1
[ "A354367", "A354368", "A354369", "A354370" ]
null
Eric Angelini and Carole Dubois, May 24 2022
2025-07-01T08:58:07
oeisdata/seq/A354/A354368.seq
73523756fbd38de2728e0ce229caf715
A354369
Successive pairs of terms (a, b) such that (a + b) is a prime number and at least one of a and b is a prime number. This is the lexicographically earliest infinite sequence of distinct terms > 0 with this property.
[ "1", "2", "3", "4", "5", "6", "7", "10", "8", "11", "12", "17", "13", "16", "14", "23", "18", "19", "20", "41", "22", "31", "24", "29", "26", "47", "28", "43", "30", "37", "32", "71", "34", "67", "36", "53", "38", "59", "40", "61", "42", "89", "44", "83", "46", "103", "48", "79", "50", "101", "52", "97", "54", "73", "56", "107", "58", "109", "60", "113", "62", "131", "64", "127", "66", "157", "68", "173", "70", "163", "72", "139", "74", "137" ]
[ "nonn" ]
17
1
2
[ "A071904", "A354367", "A354368", "A354369", "A354370" ]
null
Eric Angelini and Carole Dubois, May 24 2022
2022-06-25T22:02:09
oeisdata/seq/A354/A354369.seq
021e29ed3c7884099911799dd621f2a5
A354370
Successive pairs of terms (i, j) such that (i + j) is a prime number and at least i is a prime number. This is the lexicographically earliest infinite sequence of distinct terms > 1 with this property.
[ "2", "3", "5", "6", "7", "4", "11", "8", "13", "10", "17", "12", "19", "18", "23", "14", "29", "24", "31", "16", "37", "22", "41", "20", "43", "28", "47", "26", "53", "30", "59", "38", "61", "36", "67", "34", "71", "32", "73", "40", "79", "48", "83", "44", "89", "42", "97", "52", "101", "50", "103", "46", "107", "56", "109", "54", "113", "60", "127", "64", "131", "62", "137", "74", "139", "58", "149", "78", "151", "72", "157", "66", "163", "70" ]
[ "nonn" ]
23
1
1
[ "A014076", "A354367", "A354368", "A354369", "A354370" ]
null
Eric Angelini and Carole Dubois, May 24 2022
2022-06-25T22:03:11
oeisdata/seq/A354/A354370.seq
036c72cc242a14579dd7ee3a11d41922
A354371
Square array read by antidiagonals such that the sum of the digits inside any 2 X 2 square is itself a square.
[ "1", "2", "3", "4", "12", "5", "6", "7", "14", "11", "16", "8", "10", "13", "17", "19", "22", "9", "15", "20", "26", "27", "69", "31", "18", "40", "34", "32", "42", "78", "49", "21", "24", "30", "41", "43", "46", "51", "33", "23", "25", "39", "37", "44", "64", "68", "59", "54", "48", "28", "29", "38", "58", "74", "70", "72", "92", "52", "63", "36", "35", "87", "101", "98", "80", "82", "84", "177", "121", "65", "60", "45", "96", "53", "103", "76" ]
[ "tabl", "nonn" ]
15
1
2
[ "A325785", "A354371" ]
null
Eric Angelini and Carole Dubois, May 24 2022
2022-06-25T22:03:44
oeisdata/seq/A354/A354371.seq
e26e72f3e9d5f36b56a62bb861b0aa0d
A354372
Square spiral on a 2D square lattice, one term per cell, starting at the origin with 0; the digits of the four integers forming any 2 X 2 square add up to a square.
[ "0", "1", "2", "6", "3", "7", "4", "5", "12", "8", "13", "9", "10", "22", "31", "21", "11", "17", "16", "25", "14", "18", "34", "19", "40", "15", "43", "24", "33", "27", "20", "49", "52", "28", "26", "30", "23", "42", "36", "39", "37", "59", "29", "51", "32", "69", "89", "41", "46", "35", "48", "38", "57", "66", "45", "50", "44", "55", "47", "99", "68", "98", "53", "54", "56", "65", "77", "61", "62", "60", "105", "104", "58", "70", "75", "67", "79" ]
[ "base", "nonn" ]
9
1
3
[ "A337115", "A337116", "A337117", "A337368", "A354372" ]
null
Eric Angelini and Carole Dubois, May 24 2022
2022-06-25T22:03:58
oeisdata/seq/A354/A354372.seq
a64153c6979a6873e69604dd7c1ac2ca
A354373
Square spiral on a 2D square lattice, one term per cell, starting at the origin with 0; the digits of the four integers forming any 2 X 2 square add up to a prime.
[ "0", "1", "2", "4", "3", "6", "5", "8", "11", "7", "9", "10", "12", "14", "15", "13", "16", "18", "23", "21", "17", "25", "27", "19", "22", "20", "24", "34", "33", "30", "26", "32", "28", "35", "29", "36", "31", "38", "37", "41", "40", "44", "39", "45", "43", "42", "48", "47", "51", "46", "49", "53", "55", "59", "60", "57", "50", "66", "75", "64", "54", "58", "62", "71", "52", "73", "79", "82", "84", "80", "56", "88", "61", "93", "68", "65", "67", "91" ]
[ "base", "nonn" ]
7
1
3
[ "A337115", "A337116", "A337117", "A337368", "A354372", "A354373" ]
null
Eric Angelini and Carole Dubois, May 24 2022
2022-06-25T22:04:07
oeisdata/seq/A354/A354373.seq
4d4d1ecf365b29c60b4ffd9159ba1406
A354374
Square spiral on a 2D square lattice, one term per cell, starting at the origin with 0; the digits of the four integers forming any 2 X 2 square add up to a prime and those sums themselves form another infinite 2D square lattice with the same property.
[ "0", "1", "2", "4", "3", "6", "5", "8", "11", "7", "9", "10", "12", "14", "17", "13", "15", "19", "39", "24", "16", "23", "29", "5999", "33", "18", "25", "42", "69", "699", "20", "26", "21", "999", "299", "599", "22", "28", "30", "31", "34", "38", "27", "37", "36", "40", "59", "4999", "43", "32", "35", "41", "49", "102", "47", "69999", "44", "45", "48", "99", "58", "52", "111", "689", "46", "51", "698", "79999", "9999999", "50", "68" ]
[ "base", "nonn" ]
7
1
3
[ "A337115", "A337116", "A337117", "A337368", "A354372", "A354373", "A354374", "A354375" ]
null
Eric Angelini and Carole Dubois, May 24 2022
2022-06-25T22:04:18
oeisdata/seq/A354/A354374.seq
c8d7260a615aa0f046476dc352c4da14
A354375
Square spiral on a 2D square lattice, one term per cell, starting at the origin with 0; the digits of the four integers forming any 2 X 2 square add up to a square and those sums themselves form another infinite 2D square lattice with the same property.
[ "0", "1", "2", "6", "3", "999", "4", "5", "12", "7", "799", "8", "9", "89", "29", "79", "10", "88", "8999", "69", "11", "78", "39", "97", "19", "13", "87", "7999", "59", "14", "15", "169", "39999", "68", "49999", "699", "16", "22", "96", "159", "178", "21", "17", "599", "59999", "49", "58999", "168", "25", "18", "187", "100", "4999", "20", "177", "28", "23", "186", "89999", "99999", "199999", "98999", "9999", "77", "24", "27" ]
[ "nonn", "base" ]
9
1
3
[ "A337115", "A337116", "A337117", "A337368", "A354372", "A354373", "A354374", "A354375" ]
null
Eric Angelini and Carole Dubois, May 24 2022
2022-06-25T22:04:28
oeisdata/seq/A354/A354375.seq
a9525533984c1f3f595b45715774a827
A354376
Smallest prime which is at the end of an arithmetic progression of exactly n primes.
[ "2", "3", "7", "43", "29", "157", "907", "2351", "5179", "2089", "375607", "262897", "725663", "36850999", "173471351", "198793279", "4827507229", "17010526363", "83547839407", "572945039351", "6269243827111" ]
[ "nonn", "more" ]
53
1
1
[ "A005115", "A006560", "A093364", "A354376", "A354377", "A354484", "A354485" ]
null
Bernard Schott, May 24 2022
2022-05-29T08:08:45
oeisdata/seq/A354/A354376.seq
80a81aa07e764e1d14e1da81d080a28f
A354377
Initial terms associated with the arithmetic progressions of primes of A354376.
[ "2", "2", "3", "7", "5", "7", "7", "881", "3499", "199", "75307", "110437", "4943", "31385539", "115453391", "53297929", "3430751869", "4808316343", "8297644387", "214861583621", "5749146449311" ]
[ "nonn", "more" ]
16
1
1
[ "A006560", "A113827", "A354376", "A354377" ]
null
Bernard Schott, May 26 2022
2022-05-27T08:12:59
oeisdata/seq/A354/A354377.seq
d75bd79c4adfffb246dcd0f47bada486
A354378
a(n) is the denominator of Sum_{k=0..n} (-1)^k / (2*k)!.
[ "1", "2", "24", "720", "8064", "3628800", "479001600", "87178291200", "20922789888000", "1280474741145600", "2432902008176640000", "1124000727777607680000", "620448401733239439360000", "403291461126605635584000000", "60977668922342772100300800000", "1569543549184562477137920000000" ]
[ "nonn", "frac" ]
7
0
2
[ "A010050", "A049470", "A053556", "A061355", "A143383", "A354138", "A354331", "A354333", "A354335", "A354378" ]
null
Ilya Gutkovskiy, May 24 2022
2022-05-25T09:08:14
oeisdata/seq/A354/A354378.seq
2a7bdec37b2be1232d9b13b3e39fc452
A354379
Hypotenuses of Pythagorean triangles whose legs are also hypotenuse numbers (A009003).
[ "25", "50", "65", "75", "85", "89", "100", "109", "125", "130", "145", "149", "150", "169", "170", "173", "175", "178", "185", "195", "200", "205", "218", "221", "225", "229", "233", "250", "255", "260", "265", "267", "275", "289", "290", "293", "298", "300", "305", "313", "325", "327", "338", "340", "346", "349", "350", "353", "356", "365", "370", "375", "377", "390", "400" ]
[ "nonn" ]
15
1
1
[ "A004613", "A008846", "A009003", "A020882", "A354379", "A354381" ]
null
Lamine Ngom, May 24 2022
2023-05-11T09:11:19
oeisdata/seq/A354/A354379.seq
cb2b16bb55fc1f69f2b343344d94f503
A354380
Number of free pseudo-polytans with n cells.
[ "1", "10", "91", "1432", "23547", "416177", "7544247", "139666895", "2623895224" ]
[ "nonn", "hard", "more" ]
7
1
2
[ "A000105", "A006074", "A030222", "A354380" ]
null
Aaron N. Siegel, May 24 2022
2022-05-25T11:48:07
oeisdata/seq/A354/A354380.seq
1eeb366ea13a06dca3a726125d627f29
A354381
Primitive elements in A354379, being those not divisible by any previous term.
[ "25", "65", "85", "89", "109", "145", "149", "169", "173", "185", "205", "221", "229", "233", "265", "289", "293", "305", "313", "349", "353", "365", "377", "409", "421", "433", "449", "461", "481", "485", "493", "505", "509", "533", "565", "601", "613", "629", "641", "653", "677", "685", "689", "697", "709", "757", "761", "769", "773", "785", "793", "797", "821", "829", "841", "857", "877", "881", "901", "905" ]
[ "nonn" ]
26
1
1
[ "A004613", "A008846", "A009003", "A020882", "A354379", "A354381" ]
null
Lamine Ngom, May 24 2022
2023-05-11T09:15:31
oeisdata/seq/A354/A354381.seq
5d5477cdce16fc354fb7b2684c2fc3fb
A354382
Number of free pseudo-polyarcs with n cells.
[ "2", "32", "700", "21943", "737164", "25959013", "938559884" ]
[ "nonn", "hard", "more" ]
8
1
1
[ "A000105", "A006074", "A030222", "A057787", "A354380", "A354382" ]
null
Aaron N. Siegel, May 24 2022
2022-05-25T11:49:06
oeisdata/seq/A354/A354382.seq
0e14c816f71967c530b35871e03a58b8
A354383
Fibonacci sequence beginning 11, 26.
[ "11", "26", "37", "63", "100", "163", "263", "426", "689", "1115", "1804", "2919", "4723", "7642", "12365", "20007", "32372", "52379", "84751", "137130", "221881", "359011", "580892", "939903", "1520795", "2460698", "3981493", "6442191", "10423684", "16865875", "27289559", "44155434", "71444993", "115600427", "187045420" ]
[ "nonn", "easy" ]
54
0
1
[ "A000032", "A000045", "A354383" ]
null
Aamen Muharram, Aug 04 2022
2022-08-07T16:00:45
oeisdata/seq/A354/A354383.seq
1b11d69b3fe53163e57a0d99ec8e2a80
A354384
Difference sequence of A356133.
[ "2", "3", "4", "2", "4", "3", "2", "3", "4", "3", "2", "4", "2", "3", "4", "2", "4", "3", "2", "4", "2", "3", "4", "3", "2", "3", "4", "2", "4", "3", "2", "3", "4", "3", "2", "4", "2", "3", "4", "3", "2", "3", "4", "2", "4", "3", "2", "4", "2", "3", "4", "2", "4", "3", "2", "3", "4", "3", "2", "4", "2", "3", "4", "2", "4", "3", "2", "4", "2", "3", "4", "3", "2", "3", "4", "2", "4", "3", "2", "4", "2", "3", "4", "2", "4", "3" ]
[ "nonn", "easy" ]
19
1
1
[ "A026430", "A036554", "A091855", "A354384", "A356133" ]
null
Clark Kimberling, Aug 04 2022
2022-08-06T08:08:06
oeisdata/seq/A354/A354384.seq
9bd9d4df1a28bebd513b200f23d39f6a
A354385
a(n) is the smallest odd number that has n middle divisors.
[ "1", "15", "1225", "2145", "99225", "17955", "893025", "51975", "4601025", "315315", "16769025", "855855", "12006225", "2567565", "108056025", "6531525", "385533225", "11486475", "225450225", "16787925", "1329696225", "38513475", "2701400625", "77702625", "6053618025", "80405325", "4846248225", "101846745", "2029052025", "218243025" ]
[ "nonn" ]
61
1
2
[ "A016754", "A067742", "A128605", "A235791", "A237048", "A237593", "A245092", "A249223", "A319529", "A320137", "A354385" ]
null
Hartmut F. W. Hoft, May 24 2022
2024-03-22T19:00:23
oeisdata/seq/A354/A354385.seq
2461ddc3d44eb084ded6b65345dc5d97
A354386
a(n) is the first prime that is the start of a sequence of exactly n primes under the map p -> p + A001414(p-1) + A001414(p+1).
[ "3", "2", "337", "2633", "14143", "6108437", "373777931" ]
[ "nonn", "more" ]
11
1
1
[ "A001414", "A127305", "A354386" ]
null
J. M. Bergot and Robert Israel, May 24 2022
2022-05-30T10:30:32
oeisdata/seq/A354/A354386.seq
662db136b91a5dc88fd8fabf4d56f432
A354387
a(n) is the number of arch configuration solutions with n arches derived from 2 concentric arches using the exterior arch splitting algorithm.
[ "1", "1", "3", "6", "18", "42", "130", "332", "1048", "2836", "9078", "25578", "82730", "240124", "782956", "2324800" ]
[ "nonn", "more" ]
41
2
3
[ "A000682", "A287548", "A331499", "A339179", "A354387" ]
null
Roger Ford, May 24 2022
2022-08-31T02:42:49
oeisdata/seq/A354/A354387.seq
c7af6ccfadd07830e21108e0b0967650
A354388
Table read upward by antidiagonals: the n-th row gives the sums of each weakly decreasing nonnegative integer sequence of length n, listed in lexicographic order.
[ "0", "0", "1", "0", "1", "2", "0", "1", "2", "3", "0", "1", "2", "2", "4", "0", "1", "2", "3", "3", "5", "0", "1", "2", "3", "2", "4", "6", "0", "1", "2", "3", "4", "3", "3", "7", "0", "1", "2", "3", "4", "2", "4", "4", "8", "0", "1", "2", "3", "4", "5", "3", "4", "5", "9", "0", "1", "2", "3", "4", "5", "2", "4", "5", "6", "10", "0", "1", "2", "3", "4", "5", "6", "3", "5", "6", "4", "11", "0", "1", "2", "3", "4", "5", "6", "2" ]
[ "nonn", "tabl" ]
18
1
6
[ "A001477", "A051162", "A070770", "A070771", "A070772", "A354388" ]
null
Peter Kagey, May 24 2022
2022-06-13T18:09:00
oeisdata/seq/A354/A354388.seq
57f0d4a19bc15a6f9d3088ebab6017a5
A354389
Expansion of e.g.f. 1/(1 + log(1 + x)^2 / 2).
[ "1", "0", "-1", "3", "-5", "-10", "146", "-756", "1086", "23400", "-300066", "1855590", "341826", "-165915828", "2158958556", "-10006622640", "-172337345496", "4941605486016", "-64365944851512", "339328464492456", "5510899593823176", "-157099566384759600", "1059259019507498160", "41957473280879898720" ]
[ "sign" ]
10
0
4
[ "A346921", "A354317", "A354389", "A354390", "A354391" ]
null
Seiichi Manyama, May 25 2022
2024-12-08T10:48:32
oeisdata/seq/A354/A354389.seq
dbe4080f57cbbe1b74a98070fa81b2dc
A354390
Expansion of e.g.f. 1/(1 + log(1 + x)^4 / 24).
[ "1", "0", "0", "0", "-1", "10", "-85", "735", "-6699", "64764", "-662780", "7139000", "-80273116", "931853208", "-10990479136", "128253707400", "-1402525474414", "12224484229744", "-9767136488568", "-3662083220408136", "144120068237692294", "-4329792070579951500", "118808185600297890950" ]
[ "sign" ]
9
0
6
[ "A346923", "A354318", "A354389", "A354390", "A354393" ]
null
Seiichi Manyama, May 25 2022
2022-05-25T09:15:16
oeisdata/seq/A354/A354390.seq
fc1f411dfac83c9baaa3610c504d76c8
A354391
Expansion of e.g.f. 1/(1 + (exp(x) - 1)^2 / 2).
[ "1", "0", "-1", "-3", "-1", "45", "269", "147", "-11341", "-101055", "-73711", "8420247", "99423719", "87623445", "-13791067291", "-202300002453", "-202683482821", "42194985241545", "738185254885529", "805294804942047", "-216422419200618961", "-4390167368672158755", "-5040372451183319251" ]
[ "sign" ]
10
0
4
[ "A330047", "A354389", "A354391", "A354392", "A354393", "A354394", "A354395" ]
null
Seiichi Manyama, May 25 2022
2022-05-25T09:15:21
oeisdata/seq/A354/A354391.seq
91fe0e2b3d1c751028d42a3af0200dba
A354392
Expansion of e.g.f. 1/(1 + (exp(x) - 1)^3 / 6).
[ "1", "0", "0", "-1", "-6", "-25", "-70", "119", "4354", "48215", "371610", "1620839", "-10665886", "-388969945", "-6114636710", "-65181228841", "-325375497726", "5950049261495", "226564100074970", "4447402833379079", "57902620204276834", "258292327155958535", "-12701483290229413350" ]
[ "sign" ]
10
0
5
[ "A346894", "A346922", "A354391", "A354392", "A354393", "A354394" ]
null
Seiichi Manyama, May 25 2022
2022-05-25T09:15:25
oeisdata/seq/A354/A354392.seq
8ec79f5c3117789ed758b02e916a209d
A354393
Expansion of e.g.f. 1/(1 + (exp(x) - 1)^4 / 24).
[ "1", "0", "0", "0", "-1", "-10", "-65", "-350", "-1631", "-5250", "18395", "685850", "10485739", "127737610", "1336804105", "11432407350", "54280609109", "-712071643930", "-29671691715185", "-660215774400350", "-11770593620859521", "-176475952496559870", "-2055362595355830475", "-9749893741512339250" ]
[ "sign" ]
16
0
6
[ "A346895", "A354390", "A354391", "A354392", "A354393", "A354394", "A354397" ]
null
Seiichi Manyama, May 25 2022
2023-02-26T12:54:54
oeisdata/seq/A354/A354393.seq
723af8c62cb98c0b9818147cf3232847
A354394
Expansion of e.g.f. 1/(1 + (exp(x) - 1)^5 / 120).
[ "1", "0", "0", "0", "0", "-1", "-15", "-140", "-1050", "-6951", "-42273", "-232870", "-949740", "2401399", "149618469", "2979464124", "47639256210", "683529622229", "9045426379611", "109599657976942", "1148191101672384", "8033814119097459", "-50834295574038207", "-3977581842278623216", "-119536187842156328034" ]
[ "sign" ]
10
0
7
[ "A346896", "A346924", "A354391", "A354392", "A354393", "A354394", "A354398" ]
null
Seiichi Manyama, May 25 2022
2022-05-25T09:15:34
oeisdata/seq/A354/A354394.seq
56c47b4fc5916f9cd234f30ec8e587fa
A354395
Expansion of e.g.f. exp( -(exp(x) - 1)^2 / 2 ).
[ "1", "0", "-1", "-3", "-4", "15", "149", "672", "1091", "-12855", "-162796", "-1060653", "-2925319", "30881760", "598929239", "5688937797", "29126981516", "-112222099065", "-4930674413971", "-69798552313728", "-598032658869829", "-1296500625378255", "65193402297999524", "1515140106814565547" ]
[ "sign" ]
11
0
4
[ "A000587", "A060311", "A354391", "A354395", "A354396", "A354397", "A354398" ]
null
Seiichi Manyama, May 25 2022
2022-05-25T09:15:38
oeisdata/seq/A354/A354395.seq
81f6b64eb525652b7e37051a02f27b61
A354396
Expansion of e.g.f. exp( -(exp(x) - 1)^3 / 6 ).
[ "1", "0", "0", "-1", "-6", "-25", "-80", "-91", "1694", "23155", "206340", "1442969", "6928394", "-6507865", "-752409840", "-12953182971", "-160186016906", "-1548849362085", "-9789241693220", "28359195353489", "2378650585685794", "52832659521004495", "855581150441210600", "10878338100191146749" ]
[ "sign" ]
13
0
5
[ "A000587", "A327504", "A354392", "A354395", "A354396", "A354397", "A354398" ]
null
Seiichi Manyama, May 25 2022
2023-12-02T11:58:54
oeisdata/seq/A354/A354396.seq
26d326773eced0ae3971dfc5b7a3ed9b
A354397
Expansion of e.g.f. exp( -(exp(x) - 1)^4 / 24 ).
[ "1", "0", "0", "0", "-1", "-10", "-65", "-350", "-1666", "-6510", "-7855", "270050", "4948669", "63503440", "702095030", "6924754200", "58870214129", "356043924590", "-615569993285", "-74306502570650", "-1783956267419536", "-32695418069393310", "-520090808927130925", "-7317310078355307250", "-87056749651694635451" ]
[ "sign" ]
12
0
6
[ "A000587", "A327505", "A354393", "A354395", "A354396", "A354397", "A354398" ]
null
Seiichi Manyama, May 25 2022
2022-05-25T09:15:47
oeisdata/seq/A354/A354397.seq
61fc93787ddc08c9601b33c9e64637f7
A354398
Expansion of e.g.f. exp( -(exp(x) - 1)^5 / 120 ).
[ "1", "0", "0", "0", "0", "-1", "-15", "-140", "-1050", "-6951", "-42399", "-239800", "-1164570", "-2553551", "54771717", "1384600854", "23301803070", "340911045929", "4600861076433", "58236569430172", "687816515641206", "7315220762286129", "61629305427537309", "140107851269900954", "-11001310744922517426" ]
[ "sign" ]
13
0
7
[ "A000587", "A327506", "A346977", "A354394", "A354395", "A354396", "A354397", "A354398" ]
null
Seiichi Manyama, May 25 2022
2022-05-25T09:15:53
oeisdata/seq/A354/A354398.seq
211178a13de32a9a7d36dea4249cb9b9
A354399
List of k such that sign(A009273(k)) = sign(A009273(k+1)).
[ "0", "1", "5", "12", "21", "33", "47", "64", "83", "105", "129", "155", "184", "216", "250", "286", "325", "366", "410", "456", "505", "556", "610", "666", "725", "786", "849", "915", "984", "1055", "1128", "1204", "1282", "1363", "1446", "1532", "1620", "1711", "1804", "1900", "1998", "2098", "2201", "2307", "2415", "2525", "2638", "2753", "2871", "2991", "3114", "3239", "3367", "3497", "3630", "3765", "3903", "4043", "4185", "4330", "4477", "4627", "4780", "4935" ]
[ "nonn" ]
14
1
3
[ "A009273", "A354246", "A354399", "A354425" ]
null
Vaclav Kotesovec, May 25 2022
2025-03-22T19:04:06
oeisdata/seq/A354/A354399.seq
0043caf948139a314c18200639f61d26
A354400
Replace the nonprimes in the prime gaps with primes. See Comments section for details.
[ "2", "3", "5", "11", "11", "19", "17", "29", "41", "29", "59", "63", "41", "77", "95", "113", "59", "141", "129", "71", "173", "161", "203", "225", "203", "101", "221", "107", "231", "311", "269", "335", "137", "375", "149", "391", "417", "357", "455", "473", "179", "525", "191", "411", "197", "585", "645", "485", "227", "503", "645", "239", "741", "699", "729", "755", "269", "783" ]
[ "nonn" ]
11
1
1
[ "A000040", "A018252", "A354400" ]
null
Tamas Sandor Nagy, May 25 2022
2022-07-18T19:20:49
oeisdata/seq/A354/A354400.seq
dfa4531928efc08496c201e74301a17b