sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A354401
a(n) is the denominator of Sum_{k=1..n} 1 / (k*k!).
[ "1", "4", "36", "288", "7200", "10800", "66150", "33868800", "914457600", "4572288000", "553246848000", "737662464000", "41554985472000", "54540918432000", "19634730635520000", "5026491042693120000", "1452655911338311680000", "39221709606134415360000", "14159037167814523944960000", "141590371678145239449600000" ]
[ "nonn", "frac" ]
13
1
2
[ "A001563", "A053556", "A061355", "A229837", "A353545", "A354401", "A354404" ]
null
Ilya Gutkovskiy, May 25 2022
2022-05-28T02:11:52
oeisdata/seq/A354/A354401.seq
92636cec37fadfd9139965a74fa99d41
A354402
a(n) is the numerator of Sum_{k=1..n} (-1)^(k+1) / (k*k!).
[ "1", "3", "29", "229", "5737", "8603", "210781", "26979863", "728456581", "3642282779", "440716217519", "1762864869691", "297924162982399", "260683642609331", "15641018556560861", "4004100750479565401", "1157185116888594641129", "31243998155992054970143", "11279083334313131850347743", "112790833343131318500567523" ]
[ "nonn", "frac" ]
15
1
2
[ "A001563", "A053557", "A061354", "A103816", "A120265", "A239069", "A353545", "A354402", "A354404" ]
null
Ilya Gutkovskiy, May 25 2022
2022-05-27T21:14:23
oeisdata/seq/A354/A354402.seq
6aaf72b380c3d6af551dd8b2c4790cbd
A354403
Number of one-sided pseudo-polytans with n cells.
[ "1", "15", "171", "2799", "46933", "831358", "15085844", "279317154", "5247744254" ]
[ "nonn", "hard", "more" ]
9
1
2
[ "A006074", "A151519", "A354380", "A354403" ]
null
Aaron N. Siegel, May 25 2022
2022-07-18T19:14:40
oeisdata/seq/A354/A354403.seq
ce0bfce69ddecca6a29d43ace77ba94c
A354404
a(n) is the denominator of Sum_{k=1..n} (-1)^(k+1) / (k*k!).
[ "1", "4", "36", "288", "7200", "10800", "264600", "33868800", "914457600", "4572288000", "553246848000", "2212987392000", "373994869248000", "327245510592000", "19634730635520000", "5026491042693120000", "1452655911338311680000", "39221709606134415360000", "14159037167814523944960000", "141590371678145239449600000" ]
[ "nonn", "frac" ]
14
1
2
[ "A001563", "A053556", "A061355", "A239069", "A354401", "A354402", "A354404" ]
null
Ilya Gutkovskiy, May 25 2022
2022-05-27T21:14:31
oeisdata/seq/A354/A354404.seq
93bae8edc6b729d033d5f17f05fa1bb6
A354405
Number of fixed pseudo-polytans with n cells.
[ "4", "47", "684", "11010", "187732", "3322341", "60343376", "1117211474", "20990977016" ]
[ "nonn", "hard", "more" ]
7
1
1
[ "A006074", "A353978", "A354380", "A354405" ]
null
Aaron N. Siegel, May 25 2022
2022-07-18T19:15:10
oeisdata/seq/A354/A354405.seq
ac8702822b351db88b369c9156a3c095
A354406
Number of one-sided pseudo-polyarcs with n cells.
[ "2", "53", "1354", "43573", "1472916", "51907977", "1877071666" ]
[ "nonn", "hard", "more" ]
7
1
1
[ "A057787", "A353979", "A354382", "A354406" ]
null
Aaron N. Siegel, May 25 2022
2022-07-18T19:15:28
oeisdata/seq/A354/A354406.seq
7756d427df02a000e2576a376d20f79d
A354407
Number of fixed pseudo-polyarcs with n cells.
[ "8", "187", "5416", "173548", "5891664", "207606612", "7508286664" ]
[ "nonn", "hard", "more" ]
7
1
1
[ "A057787", "A349101", "A354382", "A354407" ]
null
Aaron N. Siegel, May 25 2022
2022-07-18T19:15:41
oeisdata/seq/A354/A354407.seq
378c76f1a71d44c68ce125813e23439e
A354408
Triangle read by rows of generalized ménage numbers: T(n,k) is the number of permutations pi in S_n such that pi(i) != i and pi(i) != i+k (mod n) for all i; n, 1 <= k < n.
[ "0", "1", "1", "2", "4", "2", "13", "13", "13", "13", "80", "82", "80", "82", "80", "579", "579", "579", "579", "579", "579", "4738", "4740", "4738", "4752", "4738", "4740", "4738", "43387", "43387", "43390", "43387", "43387", "43390", "43387", "43387", "439792", "439794", "439792", "439794", "440192", "439794", "439792", "439794", "439792" ]
[ "nonn", "tabl" ]
46
2
4
[ "A000179", "A277256", "A341439", "A354152", "A354408", "A354409" ]
null
Peter Kagey, May 25 2022
2022-08-12T20:18:17
oeisdata/seq/A354/A354408.seq
92c9e5f165a8bb13372053bac64d1068
A354409
Maximum value in the n-th row of A354408.
[ "0", "1", "4", "13", "82", "579", "4752", "43390", "440192", "4890741", "59245120", "775596313", "10930514688", "164806652728", "2649865335040", "45226435601207", "817154768973824", "15574618910994665", "312426715251262464", "6577619798222863696", "145060238642780180480", "3343382818203784146955" ]
[ "nonn" ]
20
2
3
[ "A000179", "A032742", "A277256", "A354408", "A354409" ]
null
Peter Kagey, May 25 2022
2022-06-03T07:45:03
oeisdata/seq/A354/A354409.seq
777838345bfdb8599c98759a97582082
A354410
Numbers with as many zeros as the sum of their digits.
[ "10", "200", "1001", "1010", "1100", "3000", "10002", "10020", "10200", "12000", "20001", "20010", "20100", "21000", "40000", "100003", "100011", "100030", "100101", "100110", "100300", "101001", "101010", "101100", "103000", "110001", "110010", "110100", "111000", "130000", "200002", "200020", "200200", "202000", "220000" ]
[ "nonn", "base" ]
33
1
1
[ "A007953", "A011540", "A031443", "A055641", "A061384", "A354410" ]
null
Tamas Sandor Nagy, May 25 2022
2023-01-12T18:31:55
oeisdata/seq/A354/A354410.seq
ed916bdd73fd6b9ade71e8afa375761e
A354411
a(n) is the least oblong number that is divisible by the first n primes.
[ "2", "6", "30", "210", "43890", "510510", "510510", "3967173210", "134748093480", "530514844860", "4201942828713630", "1706257740074998110", "125050509312845636520", "511284700554162118403820", "2695009287439086535873235280", "206794067314254446263154097180", "86753583273488685998907289046220" ]
[ "nonn" ]
48
1
1
[ "A000040", "A002110", "A002378", "A118478", "A344005", "A354411" ]
null
Ali Sada, May 25 2022
2022-05-31T12:54:17
oeisdata/seq/A354/A354411.seq
3ee3ec1eef99bea56c4324d258c80794
A354412
Expansion of e.g.f. 1/(2 - exp(x))^(x/2).
[ "1", "0", "1", "3", "15", "95", "735", "6727", "71169", "854919", "11497845", "171179261", "2795081751", "49668211177", "954226247247", "19709181213555", "435524370171393", "10252531220906051", "256148413939459917", "6769302493147288885", "188664988853982963735", "5530544750788380455433" ]
[ "nonn" ]
14
0
4
[ "A000670", "A052862", "A354239", "A354412", "A354413" ]
null
Seiichi Manyama, May 25 2022
2024-02-12T18:49:25
oeisdata/seq/A354/A354412.seq
0813de07082a5677be6b592877b5bc23
A354413
Expansion of e.g.f. 1/(2 - exp(x))^x.
[ "1", "0", "2", "6", "36", "250", "2100", "20594", "231168", "2923722", "41149140", "637972522", "10804678632", "198480649250", "3930963078588", "83500876635570", "1893745346613216", "45672635292831322", "1167233799092342148", "31510575263852229242", "896028017040096045720" ]
[ "nonn" ]
16
0
3
[ "A000629", "A000670", "A052862", "A351739", "A354412", "A354413" ]
null
Seiichi Manyama, May 25 2022
2025-04-03T10:50:20
oeisdata/seq/A354/A354413.seq
99b22d2290f05d31e8d6d504269dd744
A354414
a(n) is the smallest positive integer which does not occur in any Lucas sequence in which the first term is at most n and the second term is at most the first term.
[ "1", "4", "9", "17", "25", "38", "51", "64", "85", "106", "127", "148", "169", "203", "237", "271", "305", "339", "373", "407", "441", "496", "551", "606", "661", "716", "771", "826", "881", "936", "991", "1046", "1101", "1156", "1245", "1334", "1423", "1512", "1601", "1690", "1779", "1868", "1957", "2046", "2135", "2224", "2313", "2402", "2491", "2580", "2669", "2758", "2847", "2936" ]
[ "nonn" ]
10
0
2
[ "A000032", "A000045", "A354414", "A354415" ]
null
Michel Marcus, May 26 2022
2022-05-26T13:15:45
oeisdata/seq/A354/A354414.seq
946d4fb8248c596feb8c65a4be63561a
A354415
First differences of A354414.
[ "3", "5", "8", "8", "13", "13", "13", "21", "21", "21", "21", "21", "34", "34", "34", "34", "34", "34", "34", "34", "55", "55", "55", "55", "55", "55", "55", "55", "55", "55", "55", "55", "55", "89", "89", "89", "89", "89", "89", "89", "89", "89", "89", "89", "89", "89", "89", "89", "89", "89", "89", "89", "89", "89", "144", "144", "144", "144", "144", "144", "144", "144", "144", "144", "144", "144", "144", "144" ]
[ "nonn" ]
5
1
1
[ "A000032", "A000045", "A354414", "A354415" ]
null
Michel Marcus, May 26 2022
2022-05-26T07:05:32
oeisdata/seq/A354/A354415.seq
c8b31664a6c517262f791b36bf093375
A354416
Expansion of e.g.f. (1 - log(1-x))^x.
[ "1", "0", "2", "0", "16", "5", "288", "392", "9840", "33462", "582910", "3652044", "55557192", "524095728", "7910319116", "98390834310", "1573086910848", "23774700449584", "414180226506456", "7249907657342184", "138771378745878680", "2735366111451910944", "57469663931297252976", "1253755421949789141624" ]
[ "nonn" ]
14
0
3
[ "A089064", "A351739", "A354083", "A354416" ]
null
Seiichi Manyama, May 26 2022
2022-06-08T09:18:07
oeisdata/seq/A354/A354416.seq
a9340bbe410bd432622ddc1b20bcfc8b
A354417
a(n) is the numerator of the sum of the reciprocals of the first n squarefree numbers.
[ "1", "3", "11", "61", "11", "82", "171", "1951", "26133", "13424", "41273", "716656", "13871719", "4700888", "9548741", "222854273", "112857219", "3310041496", "20075905417", "628822761157", "19239404599", "9709078632", "1959180271", "73097429088", "147378388979", "445594718515", "18404305970657", "3089336006908", "133763418792581" ]
[ "nonn", "frac" ]
17
1
2
[ "A001008", "A001620", "A005117", "A024451", "A059956", "A072980", "A096795", "A106830", "A306016", "A354417", "A354418" ]
null
Ilya Gutkovskiy, May 26 2022
2023-03-06T01:54:47
oeisdata/seq/A354/A354417.seq
6e4823c0210b6ebceb20ca8f6a30e58b
A354418
a(n) is the denominator of the sum of the reciprocals of the first n squarefree numbers.
[ "1", "2", "6", "30", "5", "35", "70", "770", "10010", "5005", "15015", "255255", "4849845", "1616615", "3233230", "74364290", "37182145", "1078282205", "6469693230", "200560490130", "6077590610", "3038795305", "607759061", "22487085257", "44974170514", "134922511542", "5531822973222", "921970495537", "39644731308091" ]
[ "nonn", "frac" ]
7
1
2
[ "A002110", "A002805", "A005117", "A034386", "A051451", "A072983", "A354417", "A354418" ]
null
Ilya Gutkovskiy, May 26 2022
2022-05-26T09:52:51
oeisdata/seq/A354/A354418.seq
459bff93a160f3e12f82b5137cd44443
A354419
Expansion of e.g.f. log(1+4*x) * exp(x)/4.
[ "0", "1", "-2", "23", "-276", "4509", "-91190", "2205587", "-62104168", "1995807993", "-72089029802", "2891304481999", "-127498010037244", "6131189086886421", "-319320539953144158", "17905976286288568267", "-1075611833288214177232", "68909527979479961534705" ]
[ "sign" ]
18
0
3
[ "A002104", "A353546", "A353547", "A353548", "A353549", "A354419" ]
null
Seiichi Manyama, May 27 2022
2022-06-08T09:58:53
oeisdata/seq/A354/A354419.seq
edf5c4b6169f31112ba1327e2d0ec08e
A354420
Lexicographically earliest infinite sequence of distinct positive numbers such that, for n>3, a(n) has a common factor with a(n-2), shares a 1-bit in its binary expansion with a(n-2), has no common factor with a(n-1), and does not share a 1-bit in its binary expansion with a(n-1).
[ "1", "2", "5", "18", "65", "6", "25", "4", "35", "12", "49", "8", "7", "24", "133", "10", "21", "34", "9", "22", "105", "16", "3", "20", "33", "14", "81", "38", "129", "26", "69", "40", "23", "32", "207", "304", "15", "112", "135", "56", "195", "28", "99", "136", "39", "88", "261", "50", "141", "80", "47", "64", "423", "584", "51", "76", "17", "36", "323", "44", "19", "68", "57", "70", "153", "98", "285", "194", "45", "82", "165" ]
[ "nonn" ]
6
1
2
[ "A064413", "A098550", "A336957", "A351691", "A352763", "A353989", "A353990", "A354087", "A354420" ]
null
Scott R. Shannon, May 26 2022
2022-06-26T00:12:25
oeisdata/seq/A354/A354420.seq
d9b3431086eacf299d41b81a4f44df75
A354421
Expansion of e.g.f. (2 - exp(x))^x.
[ "1", "0", "-2", "-6", "-12", "-10", "60", "406", "672", "-18666", "-400740", "-6617842", "-108686952", "-1883464466", "-34930602252", "-693981413610", "-14732243810016", "-333084114060442", "-7994768036250132", "-203102355108133154", "-5445884954606704920", "-153726156157794541986" ]
[ "sign" ]
10
0
3
[ "A052862", "A354239", "A354413", "A354421" ]
null
Seiichi Manyama, May 26 2022
2022-06-08T10:14:47
oeisdata/seq/A354/A354421.seq
103e118b337d5c69f7200223a78693ed
A354422
a(n) is the number of prime dates based on the proleptic Gregorian calendar in YY..YMMDD format in the year AD n, where n = YY..Y.
[ "32", "39", "32", "33", "31", "38", "33", "38", "32", "37", "37", "32", "33", "35", "35", "29", "27", "26", "31", "28", "39", "27", "28", "26", "24", "28", "31", "32", "33", "24", "28", "29", "32", "30", "25", "26", "23", "31", "32", "30", "33", "25", "25", "32", "33", "27", "31", "32", "23", "38", "34", "29", "28", "28", "32", "26", "32", "24", "25", "29", "28", "34", "26", "23", "27" ]
[ "nonn", "base" ]
43
1
1
[ "A352947", "A354422" ]
null
Ya-Ping Lu, Jun 04 2022
2022-06-05T11:48:17
oeisdata/seq/A354/A354422.seq
d22cbd81563c91b4ef898f9bb0861e49
A354423
a(0)=1; a(n) is the smallest positive integer that cannot be obtained from the integers {1, ..., n} using each number at most once, and the operators addition and multiplication.
[ "1", "2", "4", "10", "22", "58", "233", "827", "3359", "16631", "114371", "708278", "3975838", "35724478" ]
[ "nonn", "more" ]
37
0
2
[ "A060315", "A354423" ]
null
Dean D. Ballard, May 26 2022
2022-06-05T06:09:42
oeisdata/seq/A354/A354423.seq
f57f48361642828179c59bec68d410e7
A354424
Numbers k for which the ratio A008475(k)/k reaches a record low.
[ "2", "6", "10", "12", "15", "20", "28", "30", "40", "42", "56", "60", "84", "105", "120", "140", "168", "180", "210", "252", "280", "315", "330", "360", "385", "390", "420", "616", "630", "660", "770", "780", "840", "924", "1092", "1155", "1260", "1540", "1820", "1848", "1980", "2184", "2310", "2520", "2730", "3080", "3465", "3640", "3960", "4095", "4290", "4620", "5460", "6552", "6930" ]
[ "nonn" ]
51
1
1
[ "A008475", "A354424" ]
null
Chris Grossack, Jul 11 2022
2022-08-21T09:03:42
oeisdata/seq/A354/A354424.seq
77fe6a8c05cb8808415b0609eff09bd3
A354425
List of k such that sign(A009277(k)) = sign(A009277(k+1)).
[ "0", "2", "6", "10", "16", "22", "29", "37", "45", "54", "63", "73", "83", "93", "104", "116", "128", "140", "153", "166", "179", "193", "207", "221", "236", "251", "266", "282", "298", "314", "331", "347", "364", "382", "399", "417", "435", "454", "473", "491", "511", "530", "550", "570", "590", "610", "631", "652", "673", "694", "715", "737", "759", "781", "804", "826", "849", "872", "895", "919", "942", "966", "990" ]
[ "nonn" ]
13
1
2
[ "A009277", "A354246", "A354399", "A354425" ]
null
Vaclav Kotesovec, May 27 2022, following a suggestion from Paul D. Hanna
2023-04-08T15:10:15
oeisdata/seq/A354/A354425.seq
dcd0855cf75d12301617a16f6f21e794
A354426
Primes p such that q divides p^2 + p + 1, r divides q^2 + q + 1 and p divides r + 1 for some primes q and r.
[ "2", "7", "79", "5569", "9829" ]
[ "nonn", "more", "hard" ]
11
1
1
[ "A101368", "A347988", "A354426" ]
null
Tomohiro Yamada, May 27 2022
2024-08-11T23:45:34
oeisdata/seq/A354/A354426.seq
26f08f09cbdda7dde5f0c67cce735930
A354427
Primes p such that q divides p + 1, r divides q^2 + q + 1 and p divides r^2 + r + 1 for some primes q and r.
[ "3", "13", "19", "631" ]
[ "nonn", "more", "hard" ]
14
1
1
[ "A101368", "A347988", "A354426", "A354427", "A354428" ]
null
Tomohiro Yamada, May 27 2022
2022-06-05T11:48:36
oeisdata/seq/A354/A354427.seq
98dae4c8e9486861adf97fdc4a262884
A354428
Primes p such that q divides p^2 + p + 1, r divides q + 1 and p divides r^2 + r + 1 for some primes q and r.
[ "3", "7", "43", "73363", "1477111" ]
[ "nonn", "more", "hard" ]
7
1
1
[ "A101368", "A347988", "A354426", "A354427", "A354428" ]
null
Tomohiro Yamada, May 27 2022
2022-06-02T10:12:43
oeisdata/seq/A354/A354428.seq
ee425c04aff48d3ae374c0ca7cf64a75
A354429
Expansion of e.g.f. tanh(x)^3 (odd powers only).
[ "0", "6", "-120", "3696", "-168960", "10830336", "-929510400", "103028914176", "-14334577213440", "2446660141449216", "-502760445200302080", "122445316208597139456", "-34878879321781771960320", "11489340492300854960848896", "-4333862194374775050243932160", "1855989889103139616252584001536" ]
[ "sign" ]
17
0
2
[ "A000182", "A059420", "A354429" ]
null
Vaclav Kotesovec, May 27 2022
2024-11-18T17:14:41
oeisdata/seq/A354/A354429.seq
a162b24691bd78a4f3015e73024e61cd
A354430
First diagonal of an array, generated from the sequence of the nonprimes.
[ "1", "7", "22", "58", "142", "334", "766", "1726", "3837", "8435", "18364", "39646", "84986", "181117", "384160", "811676", "1709425", "3590213", "7522354", "15728427", "32827027", "68405533", "142344708", "295824870", "614046159", "1273068141", "2636250146", "5452584131", "11264148401", "23242423457", "47903544728" ]
[ "nonn", "easy" ]
27
1
2
[ "A001787", "A018252", "A048448", "A048457", "A099862", "A354430" ]
null
Tamas Sandor Nagy, May 27 2022
2022-07-23T19:23:50
oeisdata/seq/A354/A354430.seq
6d7436abe8ae157e0cc1cc92d6d4f177
A354431
Numbers k such that there are no bipartite graphs with k edge coverings.
[ "19", "37", "41", "59", "67", "82", "97", "149", "197" ]
[ "nonn", "more" ]
9
1
1
null
null
Zakhar Ovsyannikov, May 27 2022
2022-07-10T16:13:20
oeisdata/seq/A354/A354431.seq
d10652294ff9d2dbbccc2bfa3f6f3038
A354432
a(n) is the numerator of the sum of the reciprocals of the nonprime divisors of n.
[ "1", "1", "1", "5", "1", "7", "1", "11", "10", "11", "1", "3", "1", "15", "16", "23", "1", "4", "1", "7", "22", "23", "1", "5", "26", "27", "31", "19", "1", "41", "1", "47", "34", "35", "36", "61", "1", "39", "40", "31", "1", "55", "1", "29", "6", "47", "1", "7", "50", "29", "52", "17", "1", "25", "56", "3", "58", "59", "1", "53", "1", "63", "74", "95", "66", "83", "1", "22", "70", "17", "1", "15", "1", "75", "28" ]
[ "nonn", "frac" ]
27
1
4
[ "A017665", "A018252", "A023890", "A028235", "A354432", "A354433" ]
null
Ilya Gutkovskiy, May 28 2022
2024-12-07T07:24:38
oeisdata/seq/A354/A354432.seq
a3354514847c363e9eee2f41c2801dfb
A354433
a(n) is the denominator of the sum of the reciprocals of the nonprime divisors of n.
[ "1", "1", "1", "4", "1", "6", "1", "8", "9", "10", "1", "2", "1", "14", "15", "16", "1", "3", "1", "5", "21", "22", "1", "3", "25", "26", "27", "14", "1", "30", "1", "32", "33", "34", "35", "36", "1", "38", "39", "20", "1", "42", "1", "22", "5", "46", "1", "4", "49", "25", "51", "13", "1", "18", "55", "2", "57", "58", "1", "30", "1", "62", "63", "64", "65", "66", "1", "17", "69", "14", "1", "8", "1", "74", "25" ]
[ "nonn", "frac" ]
20
1
4
[ "A007947", "A017666", "A018252", "A023890", "A354432", "A354433" ]
null
Ilya Gutkovskiy, May 28 2022
2024-12-06T20:44:11
oeisdata/seq/A354/A354433.seq
c1a53bdd3233e765fb7eb53e03f92c32
A354434
a(1) = 1; for n > 1, a(n) is the smallest unused square spiral number such that a(n) shares a factor with all existing numbers in its Moore neighborhood.
[ "1", "2", "4", "6", "3", "9", "12", "18", "8", "10", "14", "16", "20", "22", "24", "15", "21", "27", "30", "33", "36", "39", "26", "28", "32", "34", "38", "40", "42", "44", "46", "48", "50", "54", "45", "35", "7", "63", "51", "57", "60", "66", "52", "72", "78", "84", "56", "58", "62", "64", "68", "70", "74", "76", "80", "82", "86", "88", "90", "75", "96", "100", "105", "49", "77", "91", "119", "102", "69", "81", "108", "92", "94", "98", "104" ]
[ "nonn", "look" ]
9
1
2
[ "A064413", "A253279", "A257112", "A257339", "A336946", "A354434" ]
null
Scott R. Shannon, May 28 2022
2022-05-28T16:37:20
oeisdata/seq/A354/A354434.seq
20734a6ed0f0b7d1c8a1fa9b0fc94d72
A354435
Lexicographically earliest sequence of distinct positive integers on a square spiral such that any 3 X 3 square of numbers sums to a prime, and these primes are distinct.
[ "1", "2", "3", "4", "5", "6", "7", "8", "11", "9", "10", "13", "12", "14", "20", "16", "15", "17", "19", "22", "18", "21", "25", "26", "39", "23", "24", "29", "36", "30", "27", "28", "34", "35", "48", "31", "32", "33", "42", "40", "41", "37", "38", "43", "44", "45", "54", "46", "49", "47", "50", "60", "63", "67", "53", "51", "52", "55", "59", "72", "75", "65", "68", "81", "56", "57", "58", "74", "85", "61", "86", "73", "62", "64", "66", "90", "87" ]
[ "nonn", "look" ]
13
1
2
[ "A000040", "A337116", "A354435", "A354441", "A354442", "A354453", "A354461" ]
null
Scott R. Shannon, May 28 2022
2022-06-01T09:59:05
oeisdata/seq/A354/A354435.seq
192d51d9cfc66e0d04e472944f26a608
A354436
a(n) = n! * Sum_{k=0..n} k^(n-k)/k!.
[ "1", "1", "3", "13", "85", "801", "10231", "168253", "3437673", "85162465", "2511412651", "86805640461", "3469622549053", "158523442439233", "8198514736542495", "476003264246418301", "30804251925861439441", "2207978115389469465153", "174304316334466458575443" ]
[ "nonn" ]
23
0
3
[ "A006153", "A010844", "A026898", "A277452", "A277506", "A354436", "A354437" ]
null
Seiichi Manyama, May 28 2022
2025-06-17T03:13:54
oeisdata/seq/A354/A354436.seq
4b85aa71f6a3bd178a31b2f3ad06061a
A354437
a(n) = n! * Sum_{k=0..n} (-k)^(n-k)/k!.
[ "1", "1", "-1", "1", "13", "-199", "2251", "-19991", "7001", "7530193", "-330734249", "11005284401", "-300961551131", "4886902605001", "184195977487523", "-28517140157423399", "2322376314679777201", "-153646291657993064671", "8388000381774954552751", "-287686436757241322569247" ]
[ "sign" ]
17
0
5
[ "A038125", "A277509", "A354436", "A354437" ]
null
Seiichi Manyama, May 28 2022
2022-05-29T01:57:45
oeisdata/seq/A354/A354437.seq
d341b3a1d6b74eb1a84bf63a0ebd43bb
A354438
Square array A(n, k), n, k >= 0, read by antidiagonals; the factorial base expansion of A(n, k) is obtained by adding componentwise and reducing modulo their radix the digits of the factorial base expansions of n and k.
[ "0", "1", "1", "2", "0", "2", "3", "3", "3", "3", "4", "2", "4", "2", "4", "5", "5", "5", "5", "5", "5", "6", "4", "0", "4", "0", "4", "6", "7", "7", "1", "1", "1", "1", "7", "7", "8", "6", "8", "0", "2", "0", "8", "6", "8", "9", "9", "9", "9", "3", "3", "9", "9", "9", "9", "10", "8", "10", "8", "10", "2", "10", "8", "10", "8", "10", "11", "11", "11", "11", "11", "11", "11", "11", "11", "11", "11", "11" ]
[ "nonn", "tabl", "base" ]
15
0
4
[ "A003987", "A004442", "A108731", "A225901", "A354438", "A354470" ]
null
Rémy Sigrist, May 28 2022
2024-01-05T12:29:34
oeisdata/seq/A354/A354438.seq
be8c6484d07817f8769d838393746b60
A354439
Number of binary relations on [n] such that every component has at least one cycle.
[ "1", "1", "11", "445", "62915", "33191761", "68513225711", "562467034238845", "18442237738757867675", "2417685596975700938954281", "1267626420876674359067163133991", "2658442047280176152683906485150512245", "22300713296975051923525143874710129389413715" ]
[ "nonn" ]
11
0
3
[ "A002416", "A003024", "A354439" ]
null
Geoffrey Critzer, May 28 2022
2022-06-13T08:52:53
oeisdata/seq/A354/A354439.seq
bce9909f0ea8df41f70846d8242dc0e1
A354440
Digitally delicate primes where the number of digits appended on the left needed to get a prime increases.
[ "294001", "604171", "971767", "2690201", "10564877", "104097043", "354975121", "1378229029", "1444623667", "1594371379", "3979115747", "15737262803", "22090236251", "28198307351", "35373071549", "49430022721", "67580736437", "142243533671", "659956292591", "1385321944133" ]
[ "nonn", "base", "more" ]
62
1
1
[ "A050249", "A354440" ]
null
Jason Rodgers, May 29 2022
2022-12-21T21:25:33
oeisdata/seq/A354/A354440.seq
4bbafde46e94529193fc165a5a47e6cf
A354441
Lexicographically earliest sequence of distinct positive integers on a square spiral such that any 3X3 square of numbers sums to a prime.
[ "1", "2", "3", "4", "5", "6", "7", "8", "11", "9", "10", "13", "12", "14", "20", "16", "15", "17", "19", "22", "18", "21", "25", "26", "35", "23", "24", "27", "28", "30", "29", "31", "33", "37", "41", "36", "32", "34", "43", "38", "40", "52", "39", "42", "66", "48", "45", "44", "46", "47", "49", "54", "50", "56", "51", "57", "53", "55", "61", "72", "67", "59", "58", "62", "60", "63", "71", "68", "74", "76", "70", "80", "64", "65", "69", "77", "73" ]
[ "nonn" ]
13
1
2
[ "A000040", "A257339", "A337116", "A354434", "A354441", "A354442" ]
null
Scott R. Shannon, May 29 2022
2022-05-30T08:23:32
oeisdata/seq/A354/A354441.seq
a28e22c7ab63f5cff1f200d8b1551d11
A354442
The primes sums formed for each completed 3 X 3 square of numbers in A354441.
[ "47", "61", "79", "71", "103", "89", "127", "107", "127", "167", "127", "139", "193", "167", "173", "191", "239", "193", "197", "223", "307", "257", "257", "251", "263", "331", "281", "271", "277", "307", "379", "337", "347", "359", "349", "353", "431", "379", "379", "397", "409", "439", "499", "449", "439", "463", "457", "461", "479", "569", "499", "491", "509", "521", "523", "557", "643", "557", "563", "599", "613" ]
[ "nonn" ]
13
1
1
[ "A000040", "A257339", "A337116", "A354434", "A354441", "A354442" ]
null
Scott R. Shannon, May 29 2022
2022-06-11T05:22:39
oeisdata/seq/A354/A354442.seq
75a35eebffdcd136413ce50a5b2531e9
A354443
a(n) = Fibonacci(n^n) mod n.
[ "0", "1", "2", "3", "0", "0", "6", "3", "7", "5", "1", "0", "12", "7", "10", "11", "16", "0", "1", "15", "5", "3", "22", "0", "0", "3", "20", "7", "1", "0", "1", "27", "13", "1", "5", "0", "36", "3", "25", "35", "1", "0", "42", "19", "20", "21", "46", "0", "36", "25", "17", "3", "52", "0", "5", "35", "34", "1", "1", "0", "1", "3", "43", "59", "15", "30", "66", "35", "44", "35", "1", "0", "72", "3", "50", "3", "2", "60", "1", "75", "7" ]
[ "nonn", "look" ]
32
1
3
[ "A000045", "A001175", "A002708", "A354443" ]
null
Chittaranjan Pardeshi, May 29 2022
2022-06-03T09:25:16
oeisdata/seq/A354/A354443.seq
ff4cbf7c1dbe7cfccad0687c3beb392f
A354444
Least initial term of a set of n consecutive primes {p_1 .. p_n} such that Sum_{k=p_1..p_2} d(k) = ... = Sum_{k=p_(n-1)..p_n} d(k), where d(k) is the number of divisors function A000005.
[ "1867", "105373", "238820129", "106695130613" ]
[ "nonn", "hard", "more" ]
8
3
1
[ "A000005", "A000040", "A133760", "A353552", "A353553", "A353554", "A354444" ]
null
Karl-Heinz Hofmann, May 27 2022
2022-06-22T21:41:18
oeisdata/seq/A354/A354444.seq
dc5730a0ede2d2f9530fda34cd93ed88
A354445
Number of polynomials per row where the minimum number of rows and polynomials per row necessary to transform A335105 into a triangular array are present.
[ "1", "0", "1", "0", "1", "0", "1", "2", "3", "4", "5", "4", "5", "4", "5", "6", "7", "8", "9", "8", "9", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "16", "17", "18", "19", "20", "21", "20", "21", "20", "21", "22", "23", "24", "25", "26", "29", "28", "29", "28", "29", "30", "31", "32", "33", "32", "33", "32", "31", "34", "35", "36", "37", "38", "37", "40", "41", "42", "43", "44", "45", "44", "45", "46", "47" ]
[ "nonn" ]
24
1
8
[ "A335105", "A350597", "A354445" ]
null
David Williams, May 29 2022
2023-12-31T14:09:55
oeisdata/seq/A354/A354445.seq
f16a4e17aeb293d2fae4cbeb3c0b7eeb
A354446
11-gonal numbers which are products of three distinct primes.
[ "30", "506", "606", "715", "1558", "1730", "3945", "5083", "6365", "8558", "9361", "11986", "12455", "14935", "15458", "17081", "19371", "19966", "21183", "25726", "29971", "32215", "32981", "37766", "45551", "46461", "51146", "54065", "57065", "58083", "62245", "68758", "74433", "75595", "76766", "80333", "86458", "88971", "90241" ]
[ "nonn" ]
46
1
1
[ "A007304", "A051682", "A354446" ]
null
Massimo Kofler, Jun 01 2022
2025-03-10T14:49:46
oeisdata/seq/A354/A354446.seq
006deaf8aa2242edd2bf478182841f60
A354447
Taxicab numbers (sums of 2 cubes in more than 1 way) which are products of four distinct primes.
[ "684019", "704977", "2691451", "3242197", "3375001", "4931101", "5318677", "5772403", "8872487", "10702783", "16983854", "20616463", "24897817", "41258737", "46343059", "60698521", "66469429", "69625969", "79692193", "89576767", "95731489", "96753187", "97867441", "116773741", "119793457", "126516061", "147187369" ]
[ "nonn" ]
18
1
1
[ "A001235", "A046386", "A354447" ]
null
Massimo Kofler, May 30 2022
2025-02-16T08:34:03
oeisdata/seq/A354/A354447.seq
b2b2119627b6b76923f2d48e4830771c
A354448
11-gonal numbers which are products of two distinct primes.
[ "58", "95", "141", "415", "1241", "2101", "2951", "3683", "6031", "7421", "16531", "24383", "35333", "39433", "42001", "50191", "53083", "66551", "83981", "95411", "123421", "146791", "173951", "182911", "190241", "229051", "296321", "307981", "336883", "409361", "442583", "451091", "477101", "500833", "546883", "588431", "669131" ]
[ "nonn" ]
25
1
1
[ "A006881", "A051682", "A354448" ]
null
Massimo Kofler, May 30 2022
2025-03-10T14:51:08
oeisdata/seq/A354/A354448.seq
f686824b7814d0293af880d6ce461acb
A354449
a(n) is the number of pairs of primes (p,q) with p<q such that p+q = 2*n and that 2*n+p, 2*n+q, p*q-2*n and p*q+2*n are primes.
[ "0", "0", "0", "1", "1", "1", "0", "0", "1", "1", "0", "0", "0", "0", "2", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "2", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "1", "0", "0", "2", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0" ]
[ "nonn" ]
29
1
15
[ "A045917", "A354449", "A354462" ]
null
J. M. Bergot and Robert Israel, May 31 2022
2022-06-07T13:00:58
oeisdata/seq/A354/A354449.seq
c5024a4a9b1248e359fa5394403cf5e4
A354450
Decimal expansion of Sum_{k>=1} (1 - log(k)/k)^(2*k).
[ "1", "4", "0", "7", "1", "0", "4", "4", "2", "7", "4", "3", "5", "1", "7", "6", "5", "8", "7", "3", "5", "3", "6", "8", "7", "6", "9", "6", "5", "0", "7", "8", "2", "8", "5", "5", "0", "5", "2", "1", "2", "7", "4", "0", "7", "1", "4", "4", "7", "7", "7", "5", "5", "1", "4", "7", "9", "4", "0", "5", "0", "9", "2", "8", "2", "5", "4", "5", "5", "0", "1", "3", "6", "4", "2", "9", "0", "6", "0", "8", "1", "5", "2", "6", "2", "8", "8", "6", "5", "6", "5", "1", "6", "2", "8", "6", "0", "0", "2", "8", "8", "9", "7", "9", "4" ]
[ "nonn", "cons" ]
26
1
2
[ "A091812", "A354450", "A354592", "A354593" ]
null
Vaclav Kotesovec, May 30 2022
2022-08-12T09:24:23
oeisdata/seq/A354/A354450.seq
1cee7794b47f69ecaf127cd9bc94d65b
A354451
Number of middle divisors of 2*n-1.
[ "1", "0", "0", "0", "1", "0", "0", "2", "0", "0", "0", "0", "1", "0", "0", "0", "0", "2", "0", "0", "0", "0", "2", "0", "1", "0", "0", "0", "0", "0", "0", "2", "0", "0", "0", "0", "0", "0", "2", "0", "1", "0", "0", "0", "0", "2", "0", "0", "0", "2", "0", "0", "0", "0", "0", "0", "0", "0", "2", "0", "1", "0", "0", "0", "0", "0", "0", "2", "0", "0", "0", "2", "0", "0", "0", "0", "2", "0", "0", "0", "0", "0", "2", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "2", "0", "0", "0", "2", "0", "0", "0", "0", "0", "0", "2" ]
[ "nonn" ]
18
1
8
[ "A005408", "A067742", "A099774", "A237048", "A237270", "A237271", "A237593", "A245092", "A249351", "A279387", "A319529", "A354451", "A354452" ]
null
Omar E. Pol, May 30 2022
2022-07-26T14:04:42
oeisdata/seq/A354/A354451.seq
5fc474e4e2b8672752dfb36eebb6816e
A354452
Number of middle divisors of 2*n.
[ "1", "1", "2", "1", "0", "2", "0", "1", "1", "2", "0", "2", "0", "2", "2", "1", "0", "1", "0", "2", "2", "0", "0", "2", "1", "0", "2", "2", "0", "2", "0", "1", "2", "0", "2", "3", "0", "0", "0", "2", "0", "2", "0", "2", "2", "0", "0", "2", "1", "1", "0", "2", "0", "2", "2", "2", "0", "0", "0", "4", "0", "0", "2", "1", "2", "2", "0", "0", "0", "2", "0", "3", "0", "0", "2", "0", "2", "2", "0", "2", "1", "0", "0", "2", "2", "0", "0", "2", "0", "4", "2", "0", "0", "0", "2", "2", "0", "1", "2", "1", "0", "2", "0", "2", "2" ]
[ "nonn" ]
22
1
3
[ "A005843", "A067742", "A099777", "A237048", "A237270", "A237271", "A237593", "A245092", "A249351", "A279387", "A319796", "A354451", "A354452" ]
null
Omar E. Pol, May 30 2022
2025-01-17T09:43:01
oeisdata/seq/A354/A354452.seq
c4b2dd39e5bd2bae09cbc75ae4c27dad
A354453
Lexicographically earliest sequence of distinct positive integers on a square spiral such that any 2 X 2 square of numbers sums to a prime, and that prime is unique for all such squares. Start with a(1) = 0.
[ "0", "1", "2", "4", "3", "6", "5", "8", "14", "7", "9", "17", "10", "12", "19", "21", "11", "18", "16", "32", "13", "23", "25", "20", "30", "15", "27", "40", "31", "43", "22", "28", "39", "37", "36", "41", "24", "51", "57", "48", "35", "69", "26", "49", "66", "53", "65", "58", "76", "29", "61", "88", "38", "90", "33", "113", "34", "54", "123", "67", "86", "74", "100", "98", "42", "75", "91", "70", "96", "102", "71", "117", "44", "106", "126" ]
[ "nonn", "look" ]
13
1
3
[ "A000040", "A257339", "A337116", "A354434", "A354441", "A354453", "A354460" ]
null
Scott R. Shannon, May 30 2022
2022-05-31T11:38:39
oeisdata/seq/A354/A354453.seq
2b0eab9b02515d8821a0872e0428c93e
A354454
Nearest integer to sqrt(8*Pi*n).
[ "0", "5", "7", "9", "10", "11", "12", "13", "14", "15", "16", "17", "17", "18", "19", "19", "20", "21", "21", "22", "22", "23", "24", "24", "25", "25", "26", "26", "27", "27", "27", "28", "28", "29", "29", "30", "30", "30", "31", "31", "32", "32", "32", "33", "33", "34", "34", "34", "35", "35", "35", "36", "36", "36", "37", "37", "38", "38", "38", "39", "39", "39", "39", "40", "40", "40" ]
[ "nonn" ]
18
0
2
[ "A000194", "A354454" ]
null
Mats Granvik, May 30 2022
2022-06-05T11:49:09
oeisdata/seq/A354/A354454.seq
91a9c6524fd65bbe57dda7f94a1f9e86
A354455
a(n) is the first composite number in the n-th row of A328739.
[ "4", "8", "8", "16", "16", "24", "24", "32", "32", "32", "45", "48", "48", "54", "64", "64", "64", "72", "80", "81", "90", "96", "105", "108", "108", "108", "120", "128", "128", "128", "144", "144", "160", "160", "162", "175", "180", "180", "192", "192", "192", "200", "200", "216", "216", "240", "240", "240", "240", "243", "243", "256", "256", "270", "280", "288", "288", "288", "288" ]
[ "nonn" ]
24
1
1
[ "A000040", "A002808", "A328739", "A354455" ]
null
Ali Sada, May 30 2022
2022-07-26T12:39:45
oeisdata/seq/A354/A354455.seq
962e4f4039e33cc3022e82885532c20f
A354456
a(n) is the least number k such that k - 5^i is prime for i = 1..n.
[ "7", "28", "132", "666", "3234", "17514", "100674", "501228", "2062662", "211097334", "2597411082", "34473310284", "214852200444", "394471192794" ]
[ "nonn", "more" ]
23
1
1
[ "A000351", "A175222", "A354456" ]
null
J. M. Bergot and Robert Israel, May 30 2022
2022-05-31T06:48:53
oeisdata/seq/A354/A354456.seq
56078cacfa65420e7a2ddf64040d7b1c
A354457
a(n) is the least integer for which there exist two disjoint sets of n positive integers each, all distinct, for which the product of the integers in either set is a(n).
[ "6", "36", "240", "2520", "30240", "443520", "6652800", "133056000", "2075673600", "58118860800", "1270312243200", "29640619008000", "844757641728000", "25342729251840000", "810967336058880000", "27978373094031360000", "1077167364120207360000", "43086694564808294400000", "1499416970855328645120000" ]
[ "nonn" ]
64
2
1
[ "A001055", "A025487", "A354457", "A354697" ]
null
Andy Niedermaier, May 30 2022
2024-06-04T15:36:26
oeisdata/seq/A354/A354457.seq
d0b1c669d817c5c887b74ce539ff6a25
A354458
Number of commuting pairs of equivalence relations on [n].
[ "1", "1", "4", "19", "117", "864", "7459", "73749", "818960", "10078023" ]
[ "nonn", "more" ]
12
0
3
[ "A000110", "A001247", "A354458" ]
null
Geoffrey Critzer, May 30 2022
2022-06-17T15:56:31
oeisdata/seq/A354/A354458.seq
ece327ce70a7374b8fb21c4197be6106
A354459
Lazy cutter's sequence (see Comments).
[ "2", "3", "4", "4", "5", "6", "6", "6", "7", "7", "8", "8", "8", "9", "9", "10", "10", "10", "10", "10", "11", "11", "12", "12", "12", "12", "12", "12", "13", "13", "13", "14", "14", "14", "14", "15", "15", "15", "15", "16", "16", "16", "16", "16", "16", "16", "16", "17", "17", "17", "18", "18", "18", "18", "18", "18", "18", "18", "18", "19", "19", "19", "19", "20", "20", "20", "20", "20", "20", "21", "21", "21", "21", "21", "22", "22", "22", "22", "22", "22", "22", "22", "22", "22", "22", "23" ]
[ "nonn" ]
10
1
1
[ "A023022", "A092542", "A092543", "A182972", "A182973", "A354459" ]
null
Ivan N. Ianakiev, May 31 2022
2022-06-22T20:24:05
oeisdata/seq/A354/A354459.seq
23ea799a8fd615ad3adc8cc5f07043ae
A354460
The primes sums formed for each completed 2 X 2 square of numbers in A354453.
[ "7", "13", "19", "23", "31", "29", "41", "37", "47", "53", "43", "59", "73", "61", "67", "71", "79", "83", "97", "101", "103", "89", "107", "113", "109", "127", "137", "139", "131", "149", "157", "151", "167", "163", "173", "179", "181", "191", "193", "199", "197", "211", "223", "227", "257", "229", "233", "251", "263", "239", "241", "269", "271", "281", "277", "283", "293", "307", "313", "311", "317", "331", "347", "337" ]
[ "nonn" ]
9
1
1
[ "A000040", "A257339", "A337116", "A354434", "A354441", "A354453", "A354460" ]
null
Scott R. Shannon, May 31 2022
2022-05-31T11:38:47
oeisdata/seq/A354/A354460.seq
bcf4901b5d55c0fb5b56d6c3725f0690
A354461
The primes sums formed for each completed 3 X 3 square of numbers in A354435.
[ "47", "61", "79", "71", "103", "89", "127", "107", "131", "173", "137", "149", "197", "163", "179", "191", "239", "193", "199", "211", "271", "233", "241", "263", "281", "347", "307", "311", "313", "317", "367", "331", "349", "379", "373", "389", "431", "359", "383", "401", "409", "419", "487", "421", "439", "461", "467", "479", "509", "569", "499", "503", "541", "523", "521", "547", "647", "563", "577", "593", "617" ]
[ "nonn" ]
9
1
1
[ "A000040", "A337116", "A354435", "A354441", "A354442", "A354453", "A354461" ]
null
Scott R. Shannon, May 31 2022
2022-06-01T08:21:50
oeisdata/seq/A354/A354461.seq
e386831efcc88cc70801ff8bff60555f
A354462
a(n) is the least number k such that there are exactly n pairs (p,q) of primes with p<q such that p+q = 2*k and that 2*k+p, 2*k+q, p*q-2*k and p*q+2*k are primes.
[ "1", "4", "15", "315", "420", "825", "2310", "3150", "1785", "8925", "6090", "6405", "8610", "24990", "19305", "12705", "14175", "15015", "18165", "19635", "24255", "48510", "63525", "33915", "48195", "54285", "35490", "50505", "55650", "69615", "71610", "80850", "78540", "103740", "39270", "157920", "60060", "65835", "90090", "147840", "120120", "183645" ]
[ "nonn" ]
26
0
2
[ "A045917", "A136244", "A354449", "A354462" ]
null
J. M. Bergot and Robert Israel, May 31 2022
2022-06-02T10:11:39
oeisdata/seq/A354/A354462.seq
a7b62a9383c0af8fcbb1177d68c78787
A354463
a(n) is the number of trailing zeros in (2^n)!.
[ "0", "0", "0", "1", "3", "7", "14", "31", "63", "126", "253", "509", "1021", "2045", "4094", "8189", "16380", "32763", "65531", "131067", "262140", "524285", "1048571", "2097146", "4194297", "8388603", "16777208", "33554424", "67108858", "134217720", "268435446", "536870902", "1073741816", "2147483642", "4294967289", "8589934584", "17179869176", "34359738358", "68719476729" ]
[ "nonn", "easy", "base" ]
32
0
5
[ "A000079", "A027868", "A354463" ]
null
William Boyles, May 31 2022
2022-06-25T21:44:36
oeisdata/seq/A354/A354463.seq
8c7f79eb340adde782c56fbe60cd06f3
A354464
Number of distinct bracelets of length n (A000029) that eventually result in a cycle with length 2 or greater when used as the starting conditions for a rule 18 cellular automaton in a cyclic universe of circumference n.
[ "0", "0", "0", "1", "4", "3", "0", "11", "35", "62", "108", "182", "273", "195", "17", "1131", "3976", "7464", "13970", "26413", "50049", "95638", "182763", "350249", "671304" ]
[ "nonn", "more" ]
77
1
5
[ "A000029", "A354464" ]
null
Angelo Rosso, Jul 27 2022
2023-12-09T20:47:03
oeisdata/seq/A354/A354464.seq
b65e2405cbd9392ffc73d1fb14dbbf12
A354465
Number of connected simple graphs for which D.x = 1 has no solutions when D is the distance matrix.
[ "1", "0", "0", "0", "0", "0", "2", "14", "398", "23923" ]
[ "nonn", "more" ]
20
1
7
null
null
Eric W. Weisstein, Jun 01 2022
2025-02-16T08:34:03
oeisdata/seq/A354/A354465.seq
659b3545c6fd2ceb9c4a1b87aa8e3a42
A354466
Numbers k such that the decimal expansion of the sum of the reciprocals of the digits of k starts with the digits of k in the same order.
[ "1", "13", "145", "153", "1825", "15789", "16666", "21583", "216666", "2416666", "28428571", "265833333", "3194444444", "3333333333", "9111111111", "35333333333", "3166666666666", "3819444444444", "26666666666666", "34166666666666", "527857142857142", "3944444444444444", "6135714285714285", "615833333333333333" ]
[ "nonn", "base" ]
46
1
2
[ "A009994", "A034708", "A337904", "A354466" ]
null
Metin Sariyar, Jun 01 2022
2024-12-19T11:48:12
oeisdata/seq/A354/A354466.seq
2966806d1b40195e1729df7dd53def26
A354467
Positive integers whose prime factors are congruent to 1 (mod 12).
[ "1", "13", "37", "61", "73", "97", "109", "157", "169", "181", "193", "229", "241", "277", "313", "337", "349", "373", "397", "409", "421", "433", "457", "481", "541", "577", "601", "613", "661", "673", "709", "733", "757", "769", "793", "829", "853", "877", "937", "949", "997", "1009", "1021", "1033", "1069", "1093", "1117", "1129", "1153", "1201", "1213" ]
[ "nonn" ]
19
1
2
[ "A068228", "A354467" ]
null
Steven Lu, Jun 01 2022
2025-04-20T02:28:13
oeisdata/seq/A354/A354467.seq
5c6a60073cd34d6db5f884233c7f7dc2
A354468
Number of possible ordered pairs (n_1, S) where (n_1, n_2, ..., n_k) is a partition of n, n_1 is the largest element of the partition, and S = Sum_{j=1..k} n_j^2.
[ "1", "1", "2", "3", "5", "7", "11", "15", "22", "29", "39", "50", "66", "83", "104", "127", "157", "188", "225", "265", "312", "359", "418", "479", "547", "620", "700", "786", "884", "987", "1094", "1214", "1348", "1479", "1627", "1779", "1945", "2122", "2313", "2505", "2719", "2934", "3161", "3412", "3666", "3932", "4218", "4511", "4820", "5140", "5477", "5825" ]
[ "nonn" ]
32
0
3
[ "A000041", "A000125", "A069999", "A354468", "A354800" ]
null
Noah A Rosenberg, Jun 02 2022
2025-04-24T17:04:28
oeisdata/seq/A354/A354468.seq
66e790cf37c6ba0c3e98cd58392b433d
A354469
Write n in primorial base, then replace each nonzero digit d of radix p with p-d.
[ "0", "1", "4", "5", "2", "3", "24", "25", "28", "29", "26", "27", "18", "19", "22", "23", "20", "21", "12", "13", "16", "17", "14", "15", "6", "7", "10", "11", "8", "9", "180", "181", "184", "185", "182", "183", "204", "205", "208", "209", "206", "207", "198", "199", "202", "203", "200", "201", "192", "193", "196", "197", "194", "195", "186", "187", "190", "191", "188", "189" ]
[ "nonn", "base" ]
6
0
3
[ "A225901", "A235168", "A354469" ]
null
Rémy Sigrist, Jun 02 2022
2022-06-05T08:32:45
oeisdata/seq/A354/A354469.seq
04e38a63d23eeadd346b97f0c570d851
A354470
Square array A(n, k), n, k >= 0, read by antidiagonals; the primorial base expansion of A(n, k) is obtained by adding componentwise and reducing modulo their radix the digits of the primorial base expansions of n and k.
[ "0", "1", "1", "2", "0", "2", "3", "3", "3", "3", "4", "2", "4", "2", "4", "5", "5", "5", "5", "5", "5", "6", "4", "0", "4", "0", "4", "6", "7", "7", "1", "1", "1", "1", "7", "7", "8", "6", "8", "0", "2", "0", "8", "6", "8", "9", "9", "9", "9", "3", "3", "9", "9", "9", "9", "10", "8", "10", "8", "10", "2", "10", "8", "10", "8", "10", "11", "11", "11", "11", "11", "11", "11", "11", "11", "11", "11", "11" ]
[ "nonn", "base", "tabl" ]
8
0
4
[ "A004442", "A235168", "A354438", "A354469", "A354470" ]
null
Rémy Sigrist, Jun 02 2022
2022-06-05T08:33:35
oeisdata/seq/A354/A354470.seq
dc5d795988b96fb0d975accab952cc5a
A354471
Number of fusion rings of rank 3 and multiplicity n.
[ "4", "3", "4", "6", "5", "9", "6", "10", "12", "9", "10", "20", "9", "13", "16", "25" ]
[ "nonn", "hard", "more" ]
9
1
1
[ "A348305", "A354471" ]
null
Sébastien Palcoux, Jun 01 2022
2022-06-02T10:07:17
oeisdata/seq/A354/A354471.seq
de66a11480b01d749f76b8b53a5e494a
A354472
Number of fusion rings of rank 4 and multiplicity n.
[ "10", "17", "24", "45", "55", "81", "92", "137", "151", "186", "238", "291", "246", "340", "349", "525" ]
[ "nonn", "hard", "more" ]
8
1
1
[ "A348305", "A354472" ]
null
Sébastien Palcoux, Jun 02 2022
2022-06-02T10:07:28
oeisdata/seq/A354/A354472.seq
8d0aeda1f3d682aa5d4d7987a3b3c368
A354473
Number of fusion rings of rank 5 and multiplicity n.
[ "16", "37", "82", "134", "209", "336", "477", "733", "1463", "1794", "2283", "3049" ]
[ "nonn", "hard", "more" ]
8
1
1
[ "A348305", "A354473" ]
null
Sébastien Palcoux, Jun 02 2022
2022-06-02T10:07:43
oeisdata/seq/A354/A354473.seq
4b1340f23644fd2cc3e84542e362476d
A354474
Numbers that can be written as reversals in two different bases, where the bases are also reversals of each other. (Trailing zeros are not allowed.)
[ "65", "67", "75", "85", "96", "130", "134", "150", "170", "192", "195", "225", "255", "288", "300", "327", "340", "375", "381", "425", "433", "450", "487", "510", "525", "595", "600", "654", "665", "667", "675", "680", "750", "762", "765", "795", "825", "895", "900", "927", "974", "975", "981", "996", "1050", "1125", "1200", "1275", "1277", "1308", "1330", "1334", "1340", "1350", "1535", "1590" ]
[ "nonn", "base" ]
103
1
1
[ "A354474", "A355313" ]
null
Jordan Canevari, Jun 25 2022
2023-03-18T16:30:36
oeisdata/seq/A354/A354474.seq
58a8d59f83f549f5a9054d1e53fbfa23
A354475
Number of fusion rings of multiplicity 2 and rank n
[ "0", "1", "3", "17", "37", "154", "319" ]
[ "nonn", "hard", "more" ]
6
1
3
[ "A348305", "A354471", "A354472", "A354473", "A354475" ]
null
Sébastien Palcoux, Jun 02 2022
2022-06-02T10:08:04
oeisdata/seq/A354/A354475.seq
a42d8d56908a79dda2c43e9dc1960665
A354476
Number of fusion rings of multiplicity 3 and rank n
[ "0", "1", "4", "24", "82", "384" ]
[ "nonn", "hard", "more" ]
6
1
3
[ "A348305", "A354471", "A354472", "A354473", "A354476" ]
null
Sébastien Palcoux, Jun 02 2022
2022-06-02T10:08:14
oeisdata/seq/A354/A354476.seq
d6d1541e6446931b5d30fe57028bc466
A354477
Number of fusion rings of multiplicity 4 and rank n.
[ "0", "1", "6", "45", "134", "872" ]
[ "nonn", "hard", "more" ]
8
1
3
[ "A348305", "A354471", "A354472", "A354473", "A354477" ]
null
Sébastien Palcoux, Jun 02 2022
2022-06-03T08:52:42
oeisdata/seq/A354/A354477.seq
aa735c241101e1a3b634308760bd85c3
A354478
a(n) is the numerator of Sum_{k=1..n} 1 / Stirling1(n,k).
[ "1", "0", "7", "25", "3991", "3923773", "4901627", "527165212865", "9823031039961293027", "123877274974851473572937", "443645907754951021537851199", "246932542361393897304051461727006396307", "1474846779473982897350113519971401527250089", "46578509609937575127608478711343978511593638945099881" ]
[ "nonn", "frac" ]
13
1
3
[ "A008275", "A046825", "A112288", "A112290", "A354478", "A354479" ]
null
Ilya Gutkovskiy, Jun 02 2022
2022-06-03T07:43:20
oeisdata/seq/A354/A354478.seq
b385759b090de5035cb0b9994a57fcf7
A354479
a(n) is the denominator of Sum_{k=1..n} 1 / Stirling1(n,k).
[ "1", "1", "6", "33", "4200", "4192200", "5115600", "545250747888", "10086416728304192640", "126556188275836361347200", "451535899566923284351392000", "250606479905655959999200124455664175360", "1493469115548888160803495265626573200563200", "47083781674990641531154175811928872812783834939059200" ]
[ "nonn", "frac" ]
9
1
3
[ "A008275", "A046826", "A112289", "A112291", "A354478", "A354479" ]
null
Ilya Gutkovskiy, Jun 02 2022
2022-06-03T07:43:24
oeisdata/seq/A354/A354479.seq
c816c8299e6da0178f22aa6424289abd
A354480
a(n) is the smallest decimal palindrome with Hamming weight n (i.e., with exactly n 1's when written in binary).
[ "0", "1", "3", "7", "77", "55", "111", "191", "383", "767", "5115", "11711", "15351", "30703", "81918", "97279", "744447", "978879", "1570751", "3665663", "8387838", "66911966", "66322366", "132111231", "199212991", "389545983", "939474939", "3204444023", "3220660223", "11542724511", "34258485243", "33788788733", "34292629243" ]
[ "nonn", "base" ]
15
0
3
[ "A000120", "A000225", "A002113", "A061712", "A062388", "A089226", "A089998", "A089999", "A102029", "A114477", "A354480" ]
null
Ilya Gutkovskiy, Jun 02 2022
2022-06-18T14:21:16
oeisdata/seq/A354/A354480.seq
fa46dd3b42ff4b37105282b33641cccb
A354481
Number of graph minors in the n-prism graph.
[ "94", "389", "3316", "25158", "205382", "1619829", "12645348" ]
[ "nonn", "more" ]
15
3
1
null
null
Eric W. Weisstein, Jun 02 2022
2025-02-16T08:34:03
oeisdata/seq/A354/A354481.seq
555c3cc375d60a783d313e12e14dbb93
A354482
Positions of 0's in binary expansion of Pi.
[ "1", "2", "4", "5", "7", "8", "9", "10", "17", "20", "22", "24", "26", "27", "28", "30", "31", "32", "34", "35", "36", "37", "39", "42", "44", "45", "46", "49", "50", "51", "52", "54", "55", "56", "59", "61", "62", "65", "66", "67", "69", "70", "73", "74", "75", "78", "79", "82", "83", "84", "86", "88", "89", "90", "92", "96", "97", "98", "99", "100", "101", "102", "105", "109", "110" ]
[ "nonn", "base" ]
6
1
2
[ "A004601", "A256108", "A320300", "A320301", "A354482" ]
null
Jianing Song, May 27 2022
2022-05-28T03:59:52
oeisdata/seq/A354/A354482.seq
bc6a68370e5822fbfdbda6fdc02cba44
A354483
Number of graph minors in the n-helm graph.
[ "143", "791", "4603", "27682", "166009", "979030" ]
[ "nonn", "more" ]
25
3
1
null
null
Eric W. Weisstein, Jun 02 2022
2025-02-16T08:34:03
oeisdata/seq/A354/A354483.seq
e7311111e89226e15024c959da2d740a
A354484
Common differences associated with the arithmetic progressions of primes in A354376.
[ "0", "1", "2", "12", "6", "30", "150", "210", "210", "210", "30030", "13860", "60060", "420420", "4144140", "9699690", "87297210", "717777060", "4180566390", "18846497670", "26004868890" ]
[ "nonn", "more" ]
35
1
3
[ "A006560", "A093364", "A354376", "A354377", "A354484", "A354485" ]
null
Bernard Schott, May 28 2022
2022-06-05T03:40:49
oeisdata/seq/A354/A354484.seq
4517fa51ae8dfc8c17cbd6a67340098c
A354485
Triangle read by rows: row n gives the arithmetic progression of exactly n primes with minimal final term, cf. A354376.
[ "2", "2", "3", "3", "5", "7", "7", "19", "31", "43", "5", "11", "17", "23", "29", "7", "37", "67", "97", "127", "157", "7", "157", "307", "457", "607", "757", "907", "881", "1091", "1301", "1511", "1721", "1931", "2141", "2351", "3499", "3709", "3919", "4129", "4339", "4549", "4759", "4969", "5179", "199", "409", "619", "829", "1039", "1249", "1459", "1669", "1879", "2089" ]
[ "nonn", "tabl" ]
33
1
1
[ "A006560", "A133277", "A354376", "A354377", "A354484", "A354485" ]
null
Bernard Schott, May 29 2022
2022-06-05T08:32:02
oeisdata/seq/A354/A354485.seq
8f0b9968a5dccfcf6eb27117c510c359
A354486
Triangle read by rows: T(n,k) is the numerator of the n-th term of the Somos-k sequence, 4 <= k <= n.
[ "2", "3", "2", "7", "3", "3", "23", "5", "5", "3", "59", "11", "9", "5", "4", "314", "37", "23", "9", "7", "4", "1529", "83", "75", "17", "13", "7", "5", "8209", "274", "421", "41", "25", "13", "9", "5", "83313", "1217", "1103", "137", "61", "25", "17", "9", "6", "620297", "6161", "5047", "769", "187", "49", "33", "17", "11", "6" ]
[ "nonn", "tabl", "frac" ]
13
4
1
[ "A006720", "A006723", "A354486", "A354487" ]
null
Pontus von Brömssen, May 28 2022
2025-02-16T08:34:03
oeisdata/seq/A354/A354486.seq
5b2c049ef65872fa5f3b681eadd43e89
A354487
Triangle read by rows: T(n,k) is the denominator of the n-th term of the Somos-k sequence, 4 <= k <= n.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "7", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "91", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "tabl", "frac" ]
11
4
96
[ "A030127", "A354486", "A354487" ]
null
Pontus von Brömssen, May 28 2022
2025-02-16T08:34:03
oeisdata/seq/A354/A354487.seq
8e6bb984172a0d3be6db6c2b03c04582
A354488
T(w,h) with 3 <= h < w is the number of quadrilaterals as defined in A353532 with diagonals intersecting at the same angle theta as the diagonals of the grid rectangle with side lengths w > h, where T(w,h) is a triangle read by rows.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "3", "0", "0", "0", "4", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "3", "0", "11", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "12", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "32", "0", "0", "0", "0", "0", "0", "0", "0", "0", "23", "0", "0", "0", "0", "0", "0", "0" ]
[ "nonn", "tabl" ]
10
4
12
[ "A353532", "A353533", "A354488", "A354489" ]
null
Hugo Pfoertner and Rainer Rosenthal, May 28 2022
2024-12-19T11:53:22
oeisdata/seq/A354/A354488.seq
6284b90bc24d2ea11f8214fbe078588b
A354489
Widths w of w X h grid rectangles with w > h such that no quadrilaterals with 2 < h < w as defined in A353532 exist, whose angle between their diagonals is equal to the angle between the diagonals of the grid rectangle.
[ "4", "5", "6", "7", "10", "11", "13", "17", "19", "22", "23", "26", "29", "31", "34", "37", "38", "39", "41", "43", "46", "47", "53", "55", "57", "58", "59", "61", "62", "65", "67", "69", "71", "73", "74", "79", "82", "83", "85", "86", "89", "92", "94", "95", "97" ]
[ "nonn", "more" ]
5
1
1
[ "A325160", "A353532", "A354488", "A354489" ]
null
Hugo Pfoertner and Rainer Rosenthal, May 28 2022
2022-05-29T17:59:44
oeisdata/seq/A354/A354489.seq
1fcd8e5dfdad3ad66867fa94f3cd6741
A354490
T(w,h) with 2 <= h <= w is the number of quadrilaterals as defined in A353532 with diagonals intersecting at integer coordinates, where T(w,h) is a triangle read by rows.
[ "0", "0", "0", "0", "1", "0", "1", "3", "1", "0", "0", "3", "3", "4", "4", "3", "6", "6", "6", "12", "0", "2", "6", "7", "9", "15", "13", "6", "6", "10", "12", "12", "30", "18", "27", "8", "4", "11", "11", "12", "24", "25", "33", "41", "18", "10", "17", "21", "17", "36", "24", "35", "32", "38", "0", "8", "17", "19", "21", "51", "43", "65", "84", "87", "57", "62", "15", "24", "31", "25", "49", "31", "48", "45", "53", "33", "76", "0" ]
[ "nonn", "tabl" ]
8
2
8
[ "A353532", "A353533", "A354488", "A354490", "A354491" ]
null
Hugo Pfoertner, May 30 2022
2024-12-19T11:53:22
oeisdata/seq/A354/A354490.seq
abdb50dcc8e7cfc294891d07a10d15ab
A354491
Diagonal of the triangle A354490.
[ "0", "0", "0", "0", "4", "0", "6", "8", "18", "0", "62", "0", "48", "88", "77", "0", "203", "0", "265", "209", "140", "0", "628", "118", "199", "301", "614", "0", "1285", "0", "639", "583", "364", "733", "2051", "0", "467", "836", "2275", "0", "2923", "0", "1720", "2597", "704", "0", "4558", "599", "2427", "1491", "2454", "0", "4449", "2021", "5008", "1895", "1146", "0", "11618" ]
[ "nonn" ]
6
2
5
[ "A353447", "A353532", "A354490", "A354491" ]
null
Hugo Pfoertner, May 30 2022
2022-05-31T06:50:15
oeisdata/seq/A354/A354491.seq
621a98e24838500ad68ecd47a3832a88
A354492
Diagonal of A354703.
[ "1", "2", "2", "4", "4", "4", "9", "7", "9", "4", "9", "16", "7", "16", "8", "14", "9", "12", "23", "13", "21", "8", "17", "32", "20", "28" ]
[ "nonn", "hard", "more" ]
8
1
2
[ "A084068", "A293330", "A354492", "A354702", "A354703", "A354707" ]
null
Hugo Pfoertner, Jun 22 2022
2023-02-05T02:46:47
oeisdata/seq/A354/A354492.seq
94c963f78474d7aa5a2a8bab63586d91
A354493
Number of quantales on n elements, up to isomorphism.
[ "1", "2", "12", "129", "1852", "33391", "729629", "19174600", "658343783" ]
[ "nonn", "more" ]
30
1
2
[ "A006966", "A027851", "A354493" ]
null
Arman Shamsgovara, May 28 2022
2025-06-01T16:19:07
oeisdata/seq/A354/A354493.seq
94ceedf4b1e94f6a5e3514577cee43e2
A354494
Number of semi-unital quantales on n elements, up to isomorphism.
[ "1", "1", "6", "64", "939", "17578", "403060", "11327795", "440735463" ]
[ "nonn", "more" ]
15
1
3
[ "A354493", "A354494", "A354495" ]
null
Arman Shamsgovara, May 28 2022
2022-06-22T23:41:13
oeisdata/seq/A354/A354494.seq
4a16e251f47113c4b257762927cf00dd
A354495
Number of unital quantales on n elements, up to isomorphism.
[ "1", "1", "3", "20", "149", "1488", "18554", "295292", "6105814" ]
[ "nonn", "more" ]
16
1
3
[ "A354493", "A354494", "A354495" ]
null
Arman Shamsgovara, May 28 2022
2022-06-23T13:24:18
oeisdata/seq/A354/A354495.seq
902b385b1bbcddf5d0aea8d8cf98dc97
A354496
Number of left-sided quantales on n elements, up to isomorphism. Also number of right-sided quantales on n elements, up to isomorphism.
[ "1", "2", "9", "60", "497", "4968", "58507", "807338", "13341730" ]
[ "nonn", "more" ]
9
1
2
[ "A354493", "A354496" ]
null
Arman Shamsgovara, Aug 03 2022
2022-09-11T09:30:46
oeisdata/seq/A354/A354496.seq
4cbcc7681303d527937ea59aebf79e52
A354497
Number of strictly left-sided quantales on n elements, up to isomorphism. Also number of strictly right-sided quantales on n elements, up to isomorphism.
[ "1", "1", "4", "23", "164", "1482", "15838", "197262", "2830649" ]
[ "nonn", "more" ]
7
1
3
[ "A354493", "A354496", "A354497" ]
null
Arman Shamsgovara, Aug 03 2022
2022-09-11T09:30:58
oeisdata/seq/A354/A354497.seq
e734fd4aef4973c15d4a6b61c52ec8e9
A354498
Number of two-sided quantales on n elements, up to isomorphism.
[ "1", "2", "8", "47", "354", "3277", "36506", "490983", "8301353" ]
[ "nonn", "more" ]
8
1
2
[ "A354493", "A354496", "A354498" ]
null
Arman Shamsgovara, Aug 03 2022
2022-09-11T09:31:07
oeisdata/seq/A354/A354498.seq
177511ea6de5abf20f35a38bed15a3d4
A354499
Number of consecutive primes generated by adding 2n to the odd squares (A016754).
[ "2", "4", "1", "0", "2", "1", "0", "1", "1", "0", "5", "0", "0", "3", "1", "0", "0", "1", "0", "1", "1", "0", "1", "0", "0", "2", "0", "0", "14", "1", "0", "0", "1", "0", "2", "1", "0", "0", "1", "0", "1", "0", "0", "4", "0", "0", "0", "1", "0", "2", "1", "0", "1", "1", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "2", "0", "0", "1", "1", "0", "0", "0", "0", "8", "1", "0", "0", "1", "0", "0", "1", "0", "1", "0", "0", "3", "0", "0", "1", "1", "0", "0", "0", "0", "2", "1", "0", "1", "1", "0" ]
[ "nonn" ]
28
1
1
[ "A005843", "A016754", "A047845", "A354499", "A356567" ]
null
Steven M. Altschuld, Aug 15 2022
2023-10-26T20:18:13
oeisdata/seq/A354/A354499.seq
9eae70ae19d99d7f000fa3435b14d69a
A354500
The Rijndael S-box used in the Advanced Encryption Standard (AES).
[ "99", "124", "119", "123", "242", "107", "111", "197", "48", "1", "103", "43", "254", "215", "171", "118", "202", "130", "201", "125", "250", "89", "71", "240", "173", "212", "162", "175", "156", "164", "114", "192", "183", "253", "147", "38", "54", "63", "247", "204", "52", "165", "229", "241", "113", "216", "49", "21", "4", "199", "35", "195", "24", "150", "5", "154", "7", "18", "128", "226" ]
[ "nonn", "easy", "fini", "full" ]
17
0
1
[ "A354500", "A354501", "A355891" ]
null
Jianing Song, Aug 15 2022
2022-08-15T23:32:43
oeisdata/seq/A354/A354500.seq
e04dc1bee4b75d377a6a5bdaee61ffac