sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-19 00:40:46
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A354401
|
a(n) is the denominator of Sum_{k=1..n} 1 / (k*k!).
|
[
"1",
"4",
"36",
"288",
"7200",
"10800",
"66150",
"33868800",
"914457600",
"4572288000",
"553246848000",
"737662464000",
"41554985472000",
"54540918432000",
"19634730635520000",
"5026491042693120000",
"1452655911338311680000",
"39221709606134415360000",
"14159037167814523944960000",
"141590371678145239449600000"
] |
[
"nonn",
"frac"
] | 13 | 1 | 2 |
[
"A001563",
"A053556",
"A061355",
"A229837",
"A353545",
"A354401",
"A354404"
] | null |
Ilya Gutkovskiy, May 25 2022
| 2022-05-28T02:11:52 |
oeisdata/seq/A354/A354401.seq
|
92636cec37fadfd9139965a74fa99d41
|
A354402
|
a(n) is the numerator of Sum_{k=1..n} (-1)^(k+1) / (k*k!).
|
[
"1",
"3",
"29",
"229",
"5737",
"8603",
"210781",
"26979863",
"728456581",
"3642282779",
"440716217519",
"1762864869691",
"297924162982399",
"260683642609331",
"15641018556560861",
"4004100750479565401",
"1157185116888594641129",
"31243998155992054970143",
"11279083334313131850347743",
"112790833343131318500567523"
] |
[
"nonn",
"frac"
] | 15 | 1 | 2 |
[
"A001563",
"A053557",
"A061354",
"A103816",
"A120265",
"A239069",
"A353545",
"A354402",
"A354404"
] | null |
Ilya Gutkovskiy, May 25 2022
| 2022-05-27T21:14:23 |
oeisdata/seq/A354/A354402.seq
|
6aaf72b380c3d6af551dd8b2c4790cbd
|
A354403
|
Number of one-sided pseudo-polytans with n cells.
|
[
"1",
"15",
"171",
"2799",
"46933",
"831358",
"15085844",
"279317154",
"5247744254"
] |
[
"nonn",
"hard",
"more"
] | 9 | 1 | 2 |
[
"A006074",
"A151519",
"A354380",
"A354403"
] | null |
Aaron N. Siegel, May 25 2022
| 2022-07-18T19:14:40 |
oeisdata/seq/A354/A354403.seq
|
ce0bfce69ddecca6a29d43ace77ba94c
|
A354404
|
a(n) is the denominator of Sum_{k=1..n} (-1)^(k+1) / (k*k!).
|
[
"1",
"4",
"36",
"288",
"7200",
"10800",
"264600",
"33868800",
"914457600",
"4572288000",
"553246848000",
"2212987392000",
"373994869248000",
"327245510592000",
"19634730635520000",
"5026491042693120000",
"1452655911338311680000",
"39221709606134415360000",
"14159037167814523944960000",
"141590371678145239449600000"
] |
[
"nonn",
"frac"
] | 14 | 1 | 2 |
[
"A001563",
"A053556",
"A061355",
"A239069",
"A354401",
"A354402",
"A354404"
] | null |
Ilya Gutkovskiy, May 25 2022
| 2022-05-27T21:14:31 |
oeisdata/seq/A354/A354404.seq
|
93bae8edc6b729d033d5f17f05fa1bb6
|
A354405
|
Number of fixed pseudo-polytans with n cells.
|
[
"4",
"47",
"684",
"11010",
"187732",
"3322341",
"60343376",
"1117211474",
"20990977016"
] |
[
"nonn",
"hard",
"more"
] | 7 | 1 | 1 |
[
"A006074",
"A353978",
"A354380",
"A354405"
] | null |
Aaron N. Siegel, May 25 2022
| 2022-07-18T19:15:10 |
oeisdata/seq/A354/A354405.seq
|
ac8702822b351db88b369c9156a3c095
|
A354406
|
Number of one-sided pseudo-polyarcs with n cells.
|
[
"2",
"53",
"1354",
"43573",
"1472916",
"51907977",
"1877071666"
] |
[
"nonn",
"hard",
"more"
] | 7 | 1 | 1 |
[
"A057787",
"A353979",
"A354382",
"A354406"
] | null |
Aaron N. Siegel, May 25 2022
| 2022-07-18T19:15:28 |
oeisdata/seq/A354/A354406.seq
|
7756d427df02a000e2576a376d20f79d
|
A354407
|
Number of fixed pseudo-polyarcs with n cells.
|
[
"8",
"187",
"5416",
"173548",
"5891664",
"207606612",
"7508286664"
] |
[
"nonn",
"hard",
"more"
] | 7 | 1 | 1 |
[
"A057787",
"A349101",
"A354382",
"A354407"
] | null |
Aaron N. Siegel, May 25 2022
| 2022-07-18T19:15:41 |
oeisdata/seq/A354/A354407.seq
|
378c76f1a71d44c68ce125813e23439e
|
A354408
|
Triangle read by rows of generalized ménage numbers: T(n,k) is the number of permutations pi in S_n such that pi(i) != i and pi(i) != i+k (mod n) for all i; n, 1 <= k < n.
|
[
"0",
"1",
"1",
"2",
"4",
"2",
"13",
"13",
"13",
"13",
"80",
"82",
"80",
"82",
"80",
"579",
"579",
"579",
"579",
"579",
"579",
"4738",
"4740",
"4738",
"4752",
"4738",
"4740",
"4738",
"43387",
"43387",
"43390",
"43387",
"43387",
"43390",
"43387",
"43387",
"439792",
"439794",
"439792",
"439794",
"440192",
"439794",
"439792",
"439794",
"439792"
] |
[
"nonn",
"tabl"
] | 46 | 2 | 4 |
[
"A000179",
"A277256",
"A341439",
"A354152",
"A354408",
"A354409"
] | null |
Peter Kagey, May 25 2022
| 2022-08-12T20:18:17 |
oeisdata/seq/A354/A354408.seq
|
92c9e5f165a8bb13372053bac64d1068
|
A354409
|
Maximum value in the n-th row of A354408.
|
[
"0",
"1",
"4",
"13",
"82",
"579",
"4752",
"43390",
"440192",
"4890741",
"59245120",
"775596313",
"10930514688",
"164806652728",
"2649865335040",
"45226435601207",
"817154768973824",
"15574618910994665",
"312426715251262464",
"6577619798222863696",
"145060238642780180480",
"3343382818203784146955"
] |
[
"nonn"
] | 20 | 2 | 3 |
[
"A000179",
"A032742",
"A277256",
"A354408",
"A354409"
] | null |
Peter Kagey, May 25 2022
| 2022-06-03T07:45:03 |
oeisdata/seq/A354/A354409.seq
|
777838345bfdb8599c98759a97582082
|
A354410
|
Numbers with as many zeros as the sum of their digits.
|
[
"10",
"200",
"1001",
"1010",
"1100",
"3000",
"10002",
"10020",
"10200",
"12000",
"20001",
"20010",
"20100",
"21000",
"40000",
"100003",
"100011",
"100030",
"100101",
"100110",
"100300",
"101001",
"101010",
"101100",
"103000",
"110001",
"110010",
"110100",
"111000",
"130000",
"200002",
"200020",
"200200",
"202000",
"220000"
] |
[
"nonn",
"base"
] | 33 | 1 | 1 |
[
"A007953",
"A011540",
"A031443",
"A055641",
"A061384",
"A354410"
] | null |
Tamas Sandor Nagy, May 25 2022
| 2023-01-12T18:31:55 |
oeisdata/seq/A354/A354410.seq
|
ed916bdd73fd6b9ade71e8afa375761e
|
A354411
|
a(n) is the least oblong number that is divisible by the first n primes.
|
[
"2",
"6",
"30",
"210",
"43890",
"510510",
"510510",
"3967173210",
"134748093480",
"530514844860",
"4201942828713630",
"1706257740074998110",
"125050509312845636520",
"511284700554162118403820",
"2695009287439086535873235280",
"206794067314254446263154097180",
"86753583273488685998907289046220"
] |
[
"nonn"
] | 48 | 1 | 1 |
[
"A000040",
"A002110",
"A002378",
"A118478",
"A344005",
"A354411"
] | null |
Ali Sada, May 25 2022
| 2022-05-31T12:54:17 |
oeisdata/seq/A354/A354411.seq
|
3ee3ec1eef99bea56c4324d258c80794
|
A354412
|
Expansion of e.g.f. 1/(2 - exp(x))^(x/2).
|
[
"1",
"0",
"1",
"3",
"15",
"95",
"735",
"6727",
"71169",
"854919",
"11497845",
"171179261",
"2795081751",
"49668211177",
"954226247247",
"19709181213555",
"435524370171393",
"10252531220906051",
"256148413939459917",
"6769302493147288885",
"188664988853982963735",
"5530544750788380455433"
] |
[
"nonn"
] | 14 | 0 | 4 |
[
"A000670",
"A052862",
"A354239",
"A354412",
"A354413"
] | null |
Seiichi Manyama, May 25 2022
| 2024-02-12T18:49:25 |
oeisdata/seq/A354/A354412.seq
|
0813de07082a5677be6b592877b5bc23
|
A354413
|
Expansion of e.g.f. 1/(2 - exp(x))^x.
|
[
"1",
"0",
"2",
"6",
"36",
"250",
"2100",
"20594",
"231168",
"2923722",
"41149140",
"637972522",
"10804678632",
"198480649250",
"3930963078588",
"83500876635570",
"1893745346613216",
"45672635292831322",
"1167233799092342148",
"31510575263852229242",
"896028017040096045720"
] |
[
"nonn"
] | 16 | 0 | 3 |
[
"A000629",
"A000670",
"A052862",
"A351739",
"A354412",
"A354413"
] | null |
Seiichi Manyama, May 25 2022
| 2025-04-03T10:50:20 |
oeisdata/seq/A354/A354413.seq
|
99b22d2290f05d31e8d6d504269dd744
|
A354414
|
a(n) is the smallest positive integer which does not occur in any Lucas sequence in which the first term is at most n and the second term is at most the first term.
|
[
"1",
"4",
"9",
"17",
"25",
"38",
"51",
"64",
"85",
"106",
"127",
"148",
"169",
"203",
"237",
"271",
"305",
"339",
"373",
"407",
"441",
"496",
"551",
"606",
"661",
"716",
"771",
"826",
"881",
"936",
"991",
"1046",
"1101",
"1156",
"1245",
"1334",
"1423",
"1512",
"1601",
"1690",
"1779",
"1868",
"1957",
"2046",
"2135",
"2224",
"2313",
"2402",
"2491",
"2580",
"2669",
"2758",
"2847",
"2936"
] |
[
"nonn"
] | 10 | 0 | 2 |
[
"A000032",
"A000045",
"A354414",
"A354415"
] | null |
Michel Marcus, May 26 2022
| 2022-05-26T13:15:45 |
oeisdata/seq/A354/A354414.seq
|
946d4fb8248c596feb8c65a4be63561a
|
A354415
|
First differences of A354414.
|
[
"3",
"5",
"8",
"8",
"13",
"13",
"13",
"21",
"21",
"21",
"21",
"21",
"34",
"34",
"34",
"34",
"34",
"34",
"34",
"34",
"55",
"55",
"55",
"55",
"55",
"55",
"55",
"55",
"55",
"55",
"55",
"55",
"55",
"89",
"89",
"89",
"89",
"89",
"89",
"89",
"89",
"89",
"89",
"89",
"89",
"89",
"89",
"89",
"89",
"89",
"89",
"89",
"89",
"89",
"144",
"144",
"144",
"144",
"144",
"144",
"144",
"144",
"144",
"144",
"144",
"144",
"144",
"144"
] |
[
"nonn"
] | 5 | 1 | 1 |
[
"A000032",
"A000045",
"A354414",
"A354415"
] | null |
Michel Marcus, May 26 2022
| 2022-05-26T07:05:32 |
oeisdata/seq/A354/A354415.seq
|
c8b31664a6c517262f791b36bf093375
|
A354416
|
Expansion of e.g.f. (1 - log(1-x))^x.
|
[
"1",
"0",
"2",
"0",
"16",
"5",
"288",
"392",
"9840",
"33462",
"582910",
"3652044",
"55557192",
"524095728",
"7910319116",
"98390834310",
"1573086910848",
"23774700449584",
"414180226506456",
"7249907657342184",
"138771378745878680",
"2735366111451910944",
"57469663931297252976",
"1253755421949789141624"
] |
[
"nonn"
] | 14 | 0 | 3 |
[
"A089064",
"A351739",
"A354083",
"A354416"
] | null |
Seiichi Manyama, May 26 2022
| 2022-06-08T09:18:07 |
oeisdata/seq/A354/A354416.seq
|
a9340bbe410bd432622ddc1b20bcfc8b
|
A354417
|
a(n) is the numerator of the sum of the reciprocals of the first n squarefree numbers.
|
[
"1",
"3",
"11",
"61",
"11",
"82",
"171",
"1951",
"26133",
"13424",
"41273",
"716656",
"13871719",
"4700888",
"9548741",
"222854273",
"112857219",
"3310041496",
"20075905417",
"628822761157",
"19239404599",
"9709078632",
"1959180271",
"73097429088",
"147378388979",
"445594718515",
"18404305970657",
"3089336006908",
"133763418792581"
] |
[
"nonn",
"frac"
] | 17 | 1 | 2 |
[
"A001008",
"A001620",
"A005117",
"A024451",
"A059956",
"A072980",
"A096795",
"A106830",
"A306016",
"A354417",
"A354418"
] | null |
Ilya Gutkovskiy, May 26 2022
| 2023-03-06T01:54:47 |
oeisdata/seq/A354/A354417.seq
|
6e4823c0210b6ebceb20ca8f6a30e58b
|
A354418
|
a(n) is the denominator of the sum of the reciprocals of the first n squarefree numbers.
|
[
"1",
"2",
"6",
"30",
"5",
"35",
"70",
"770",
"10010",
"5005",
"15015",
"255255",
"4849845",
"1616615",
"3233230",
"74364290",
"37182145",
"1078282205",
"6469693230",
"200560490130",
"6077590610",
"3038795305",
"607759061",
"22487085257",
"44974170514",
"134922511542",
"5531822973222",
"921970495537",
"39644731308091"
] |
[
"nonn",
"frac"
] | 7 | 1 | 2 |
[
"A002110",
"A002805",
"A005117",
"A034386",
"A051451",
"A072983",
"A354417",
"A354418"
] | null |
Ilya Gutkovskiy, May 26 2022
| 2022-05-26T09:52:51 |
oeisdata/seq/A354/A354418.seq
|
459bff93a160f3e12f82b5137cd44443
|
A354419
|
Expansion of e.g.f. log(1+4*x) * exp(x)/4.
|
[
"0",
"1",
"-2",
"23",
"-276",
"4509",
"-91190",
"2205587",
"-62104168",
"1995807993",
"-72089029802",
"2891304481999",
"-127498010037244",
"6131189086886421",
"-319320539953144158",
"17905976286288568267",
"-1075611833288214177232",
"68909527979479961534705"
] |
[
"sign"
] | 18 | 0 | 3 |
[
"A002104",
"A353546",
"A353547",
"A353548",
"A353549",
"A354419"
] | null |
Seiichi Manyama, May 27 2022
| 2022-06-08T09:58:53 |
oeisdata/seq/A354/A354419.seq
|
edf5c4b6169f31112ba1327e2d0ec08e
|
A354420
|
Lexicographically earliest infinite sequence of distinct positive numbers such that, for n>3, a(n) has a common factor with a(n-2), shares a 1-bit in its binary expansion with a(n-2), has no common factor with a(n-1), and does not share a 1-bit in its binary expansion with a(n-1).
|
[
"1",
"2",
"5",
"18",
"65",
"6",
"25",
"4",
"35",
"12",
"49",
"8",
"7",
"24",
"133",
"10",
"21",
"34",
"9",
"22",
"105",
"16",
"3",
"20",
"33",
"14",
"81",
"38",
"129",
"26",
"69",
"40",
"23",
"32",
"207",
"304",
"15",
"112",
"135",
"56",
"195",
"28",
"99",
"136",
"39",
"88",
"261",
"50",
"141",
"80",
"47",
"64",
"423",
"584",
"51",
"76",
"17",
"36",
"323",
"44",
"19",
"68",
"57",
"70",
"153",
"98",
"285",
"194",
"45",
"82",
"165"
] |
[
"nonn"
] | 6 | 1 | 2 |
[
"A064413",
"A098550",
"A336957",
"A351691",
"A352763",
"A353989",
"A353990",
"A354087",
"A354420"
] | null |
Scott R. Shannon, May 26 2022
| 2022-06-26T00:12:25 |
oeisdata/seq/A354/A354420.seq
|
d9b3431086eacf299d41b81a4f44df75
|
A354421
|
Expansion of e.g.f. (2 - exp(x))^x.
|
[
"1",
"0",
"-2",
"-6",
"-12",
"-10",
"60",
"406",
"672",
"-18666",
"-400740",
"-6617842",
"-108686952",
"-1883464466",
"-34930602252",
"-693981413610",
"-14732243810016",
"-333084114060442",
"-7994768036250132",
"-203102355108133154",
"-5445884954606704920",
"-153726156157794541986"
] |
[
"sign"
] | 10 | 0 | 3 |
[
"A052862",
"A354239",
"A354413",
"A354421"
] | null |
Seiichi Manyama, May 26 2022
| 2022-06-08T10:14:47 |
oeisdata/seq/A354/A354421.seq
|
103e118b337d5c69f7200223a78693ed
|
A354422
|
a(n) is the number of prime dates based on the proleptic Gregorian calendar in YY..YMMDD format in the year AD n, where n = YY..Y.
|
[
"32",
"39",
"32",
"33",
"31",
"38",
"33",
"38",
"32",
"37",
"37",
"32",
"33",
"35",
"35",
"29",
"27",
"26",
"31",
"28",
"39",
"27",
"28",
"26",
"24",
"28",
"31",
"32",
"33",
"24",
"28",
"29",
"32",
"30",
"25",
"26",
"23",
"31",
"32",
"30",
"33",
"25",
"25",
"32",
"33",
"27",
"31",
"32",
"23",
"38",
"34",
"29",
"28",
"28",
"32",
"26",
"32",
"24",
"25",
"29",
"28",
"34",
"26",
"23",
"27"
] |
[
"nonn",
"base"
] | 43 | 1 | 1 |
[
"A352947",
"A354422"
] | null |
Ya-Ping Lu, Jun 04 2022
| 2022-06-05T11:48:17 |
oeisdata/seq/A354/A354422.seq
|
d22cbd81563c91b4ef898f9bb0861e49
|
A354423
|
a(0)=1; a(n) is the smallest positive integer that cannot be obtained from the integers {1, ..., n} using each number at most once, and the operators addition and multiplication.
|
[
"1",
"2",
"4",
"10",
"22",
"58",
"233",
"827",
"3359",
"16631",
"114371",
"708278",
"3975838",
"35724478"
] |
[
"nonn",
"more"
] | 37 | 0 | 2 |
[
"A060315",
"A354423"
] | null |
Dean D. Ballard, May 26 2022
| 2022-06-05T06:09:42 |
oeisdata/seq/A354/A354423.seq
|
f57f48361642828179c59bec68d410e7
|
A354424
|
Numbers k for which the ratio A008475(k)/k reaches a record low.
|
[
"2",
"6",
"10",
"12",
"15",
"20",
"28",
"30",
"40",
"42",
"56",
"60",
"84",
"105",
"120",
"140",
"168",
"180",
"210",
"252",
"280",
"315",
"330",
"360",
"385",
"390",
"420",
"616",
"630",
"660",
"770",
"780",
"840",
"924",
"1092",
"1155",
"1260",
"1540",
"1820",
"1848",
"1980",
"2184",
"2310",
"2520",
"2730",
"3080",
"3465",
"3640",
"3960",
"4095",
"4290",
"4620",
"5460",
"6552",
"6930"
] |
[
"nonn"
] | 51 | 1 | 1 |
[
"A008475",
"A354424"
] | null |
Chris Grossack, Jul 11 2022
| 2022-08-21T09:03:42 |
oeisdata/seq/A354/A354424.seq
|
77fe6a8c05cb8808415b0609eff09bd3
|
A354425
|
List of k such that sign(A009277(k)) = sign(A009277(k+1)).
|
[
"0",
"2",
"6",
"10",
"16",
"22",
"29",
"37",
"45",
"54",
"63",
"73",
"83",
"93",
"104",
"116",
"128",
"140",
"153",
"166",
"179",
"193",
"207",
"221",
"236",
"251",
"266",
"282",
"298",
"314",
"331",
"347",
"364",
"382",
"399",
"417",
"435",
"454",
"473",
"491",
"511",
"530",
"550",
"570",
"590",
"610",
"631",
"652",
"673",
"694",
"715",
"737",
"759",
"781",
"804",
"826",
"849",
"872",
"895",
"919",
"942",
"966",
"990"
] |
[
"nonn"
] | 13 | 1 | 2 |
[
"A009277",
"A354246",
"A354399",
"A354425"
] | null |
Vaclav Kotesovec, May 27 2022, following a suggestion from Paul D. Hanna
| 2023-04-08T15:10:15 |
oeisdata/seq/A354/A354425.seq
|
dcd0855cf75d12301617a16f6f21e794
|
A354426
|
Primes p such that q divides p^2 + p + 1, r divides q^2 + q + 1 and p divides r + 1 for some primes q and r.
|
[
"2",
"7",
"79",
"5569",
"9829"
] |
[
"nonn",
"more",
"hard"
] | 11 | 1 | 1 |
[
"A101368",
"A347988",
"A354426"
] | null |
Tomohiro Yamada, May 27 2022
| 2024-08-11T23:45:34 |
oeisdata/seq/A354/A354426.seq
|
26f08f09cbdda7dde5f0c67cce735930
|
A354427
|
Primes p such that q divides p + 1, r divides q^2 + q + 1 and p divides r^2 + r + 1 for some primes q and r.
|
[
"3",
"13",
"19",
"631"
] |
[
"nonn",
"more",
"hard"
] | 14 | 1 | 1 |
[
"A101368",
"A347988",
"A354426",
"A354427",
"A354428"
] | null |
Tomohiro Yamada, May 27 2022
| 2022-06-05T11:48:36 |
oeisdata/seq/A354/A354427.seq
|
98dae4c8e9486861adf97fdc4a262884
|
A354428
|
Primes p such that q divides p^2 + p + 1, r divides q + 1 and p divides r^2 + r + 1 for some primes q and r.
|
[
"3",
"7",
"43",
"73363",
"1477111"
] |
[
"nonn",
"more",
"hard"
] | 7 | 1 | 1 |
[
"A101368",
"A347988",
"A354426",
"A354427",
"A354428"
] | null |
Tomohiro Yamada, May 27 2022
| 2022-06-02T10:12:43 |
oeisdata/seq/A354/A354428.seq
|
ee425c04aff48d3ae374c0ca7cf64a75
|
A354429
|
Expansion of e.g.f. tanh(x)^3 (odd powers only).
|
[
"0",
"6",
"-120",
"3696",
"-168960",
"10830336",
"-929510400",
"103028914176",
"-14334577213440",
"2446660141449216",
"-502760445200302080",
"122445316208597139456",
"-34878879321781771960320",
"11489340492300854960848896",
"-4333862194374775050243932160",
"1855989889103139616252584001536"
] |
[
"sign"
] | 17 | 0 | 2 |
[
"A000182",
"A059420",
"A354429"
] | null |
Vaclav Kotesovec, May 27 2022
| 2024-11-18T17:14:41 |
oeisdata/seq/A354/A354429.seq
|
a162b24691bd78a4f3015e73024e61cd
|
A354430
|
First diagonal of an array, generated from the sequence of the nonprimes.
|
[
"1",
"7",
"22",
"58",
"142",
"334",
"766",
"1726",
"3837",
"8435",
"18364",
"39646",
"84986",
"181117",
"384160",
"811676",
"1709425",
"3590213",
"7522354",
"15728427",
"32827027",
"68405533",
"142344708",
"295824870",
"614046159",
"1273068141",
"2636250146",
"5452584131",
"11264148401",
"23242423457",
"47903544728"
] |
[
"nonn",
"easy"
] | 27 | 1 | 2 |
[
"A001787",
"A018252",
"A048448",
"A048457",
"A099862",
"A354430"
] | null |
Tamas Sandor Nagy, May 27 2022
| 2022-07-23T19:23:50 |
oeisdata/seq/A354/A354430.seq
|
6d7436abe8ae157e0cc1cc92d6d4f177
|
A354431
|
Numbers k such that there are no bipartite graphs with k edge coverings.
|
[
"19",
"37",
"41",
"59",
"67",
"82",
"97",
"149",
"197"
] |
[
"nonn",
"more"
] | 9 | 1 | 1 | null | null |
Zakhar Ovsyannikov, May 27 2022
| 2022-07-10T16:13:20 |
oeisdata/seq/A354/A354431.seq
|
d10652294ff9d2dbbccc2bfa3f6f3038
|
A354432
|
a(n) is the numerator of the sum of the reciprocals of the nonprime divisors of n.
|
[
"1",
"1",
"1",
"5",
"1",
"7",
"1",
"11",
"10",
"11",
"1",
"3",
"1",
"15",
"16",
"23",
"1",
"4",
"1",
"7",
"22",
"23",
"1",
"5",
"26",
"27",
"31",
"19",
"1",
"41",
"1",
"47",
"34",
"35",
"36",
"61",
"1",
"39",
"40",
"31",
"1",
"55",
"1",
"29",
"6",
"47",
"1",
"7",
"50",
"29",
"52",
"17",
"1",
"25",
"56",
"3",
"58",
"59",
"1",
"53",
"1",
"63",
"74",
"95",
"66",
"83",
"1",
"22",
"70",
"17",
"1",
"15",
"1",
"75",
"28"
] |
[
"nonn",
"frac"
] | 27 | 1 | 4 |
[
"A017665",
"A018252",
"A023890",
"A028235",
"A354432",
"A354433"
] | null |
Ilya Gutkovskiy, May 28 2022
| 2024-12-07T07:24:38 |
oeisdata/seq/A354/A354432.seq
|
a3354514847c363e9eee2f41c2801dfb
|
A354433
|
a(n) is the denominator of the sum of the reciprocals of the nonprime divisors of n.
|
[
"1",
"1",
"1",
"4",
"1",
"6",
"1",
"8",
"9",
"10",
"1",
"2",
"1",
"14",
"15",
"16",
"1",
"3",
"1",
"5",
"21",
"22",
"1",
"3",
"25",
"26",
"27",
"14",
"1",
"30",
"1",
"32",
"33",
"34",
"35",
"36",
"1",
"38",
"39",
"20",
"1",
"42",
"1",
"22",
"5",
"46",
"1",
"4",
"49",
"25",
"51",
"13",
"1",
"18",
"55",
"2",
"57",
"58",
"1",
"30",
"1",
"62",
"63",
"64",
"65",
"66",
"1",
"17",
"69",
"14",
"1",
"8",
"1",
"74",
"25"
] |
[
"nonn",
"frac"
] | 20 | 1 | 4 |
[
"A007947",
"A017666",
"A018252",
"A023890",
"A354432",
"A354433"
] | null |
Ilya Gutkovskiy, May 28 2022
| 2024-12-06T20:44:11 |
oeisdata/seq/A354/A354433.seq
|
c1a53bdd3233e765fb7eb53e03f92c32
|
A354434
|
a(1) = 1; for n > 1, a(n) is the smallest unused square spiral number such that a(n) shares a factor with all existing numbers in its Moore neighborhood.
|
[
"1",
"2",
"4",
"6",
"3",
"9",
"12",
"18",
"8",
"10",
"14",
"16",
"20",
"22",
"24",
"15",
"21",
"27",
"30",
"33",
"36",
"39",
"26",
"28",
"32",
"34",
"38",
"40",
"42",
"44",
"46",
"48",
"50",
"54",
"45",
"35",
"7",
"63",
"51",
"57",
"60",
"66",
"52",
"72",
"78",
"84",
"56",
"58",
"62",
"64",
"68",
"70",
"74",
"76",
"80",
"82",
"86",
"88",
"90",
"75",
"96",
"100",
"105",
"49",
"77",
"91",
"119",
"102",
"69",
"81",
"108",
"92",
"94",
"98",
"104"
] |
[
"nonn",
"look"
] | 9 | 1 | 2 |
[
"A064413",
"A253279",
"A257112",
"A257339",
"A336946",
"A354434"
] | null |
Scott R. Shannon, May 28 2022
| 2022-05-28T16:37:20 |
oeisdata/seq/A354/A354434.seq
|
20734a6ed0f0b7d1c8a1fa9b0fc94d72
|
A354435
|
Lexicographically earliest sequence of distinct positive integers on a square spiral such that any 3 X 3 square of numbers sums to a prime, and these primes are distinct.
|
[
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"11",
"9",
"10",
"13",
"12",
"14",
"20",
"16",
"15",
"17",
"19",
"22",
"18",
"21",
"25",
"26",
"39",
"23",
"24",
"29",
"36",
"30",
"27",
"28",
"34",
"35",
"48",
"31",
"32",
"33",
"42",
"40",
"41",
"37",
"38",
"43",
"44",
"45",
"54",
"46",
"49",
"47",
"50",
"60",
"63",
"67",
"53",
"51",
"52",
"55",
"59",
"72",
"75",
"65",
"68",
"81",
"56",
"57",
"58",
"74",
"85",
"61",
"86",
"73",
"62",
"64",
"66",
"90",
"87"
] |
[
"nonn",
"look"
] | 13 | 1 | 2 |
[
"A000040",
"A337116",
"A354435",
"A354441",
"A354442",
"A354453",
"A354461"
] | null |
Scott R. Shannon, May 28 2022
| 2022-06-01T09:59:05 |
oeisdata/seq/A354/A354435.seq
|
192d51d9cfc66e0d04e472944f26a608
|
A354436
|
a(n) = n! * Sum_{k=0..n} k^(n-k)/k!.
|
[
"1",
"1",
"3",
"13",
"85",
"801",
"10231",
"168253",
"3437673",
"85162465",
"2511412651",
"86805640461",
"3469622549053",
"158523442439233",
"8198514736542495",
"476003264246418301",
"30804251925861439441",
"2207978115389469465153",
"174304316334466458575443"
] |
[
"nonn"
] | 23 | 0 | 3 |
[
"A006153",
"A010844",
"A026898",
"A277452",
"A277506",
"A354436",
"A354437"
] | null |
Seiichi Manyama, May 28 2022
| 2025-06-17T03:13:54 |
oeisdata/seq/A354/A354436.seq
|
4b85aa71f6a3bd178a31b2f3ad06061a
|
A354437
|
a(n) = n! * Sum_{k=0..n} (-k)^(n-k)/k!.
|
[
"1",
"1",
"-1",
"1",
"13",
"-199",
"2251",
"-19991",
"7001",
"7530193",
"-330734249",
"11005284401",
"-300961551131",
"4886902605001",
"184195977487523",
"-28517140157423399",
"2322376314679777201",
"-153646291657993064671",
"8388000381774954552751",
"-287686436757241322569247"
] |
[
"sign"
] | 17 | 0 | 5 |
[
"A038125",
"A277509",
"A354436",
"A354437"
] | null |
Seiichi Manyama, May 28 2022
| 2022-05-29T01:57:45 |
oeisdata/seq/A354/A354437.seq
|
d341b3a1d6b74eb1a84bf63a0ebd43bb
|
A354438
|
Square array A(n, k), n, k >= 0, read by antidiagonals; the factorial base expansion of A(n, k) is obtained by adding componentwise and reducing modulo their radix the digits of the factorial base expansions of n and k.
|
[
"0",
"1",
"1",
"2",
"0",
"2",
"3",
"3",
"3",
"3",
"4",
"2",
"4",
"2",
"4",
"5",
"5",
"5",
"5",
"5",
"5",
"6",
"4",
"0",
"4",
"0",
"4",
"6",
"7",
"7",
"1",
"1",
"1",
"1",
"7",
"7",
"8",
"6",
"8",
"0",
"2",
"0",
"8",
"6",
"8",
"9",
"9",
"9",
"9",
"3",
"3",
"9",
"9",
"9",
"9",
"10",
"8",
"10",
"8",
"10",
"2",
"10",
"8",
"10",
"8",
"10",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11"
] |
[
"nonn",
"tabl",
"base"
] | 15 | 0 | 4 |
[
"A003987",
"A004442",
"A108731",
"A225901",
"A354438",
"A354470"
] | null |
Rémy Sigrist, May 28 2022
| 2024-01-05T12:29:34 |
oeisdata/seq/A354/A354438.seq
|
be8c6484d07817f8769d838393746b60
|
A354439
|
Number of binary relations on [n] such that every component has at least one cycle.
|
[
"1",
"1",
"11",
"445",
"62915",
"33191761",
"68513225711",
"562467034238845",
"18442237738757867675",
"2417685596975700938954281",
"1267626420876674359067163133991",
"2658442047280176152683906485150512245",
"22300713296975051923525143874710129389413715"
] |
[
"nonn"
] | 11 | 0 | 3 |
[
"A002416",
"A003024",
"A354439"
] | null |
Geoffrey Critzer, May 28 2022
| 2022-06-13T08:52:53 |
oeisdata/seq/A354/A354439.seq
|
bce9909f0ea8df41f70846d8242dc0e1
|
A354440
|
Digitally delicate primes where the number of digits appended on the left needed to get a prime increases.
|
[
"294001",
"604171",
"971767",
"2690201",
"10564877",
"104097043",
"354975121",
"1378229029",
"1444623667",
"1594371379",
"3979115747",
"15737262803",
"22090236251",
"28198307351",
"35373071549",
"49430022721",
"67580736437",
"142243533671",
"659956292591",
"1385321944133"
] |
[
"nonn",
"base",
"more"
] | 62 | 1 | 1 |
[
"A050249",
"A354440"
] | null |
Jason Rodgers, May 29 2022
| 2022-12-21T21:25:33 |
oeisdata/seq/A354/A354440.seq
|
4bbafde46e94529193fc165a5a47e6cf
|
A354441
|
Lexicographically earliest sequence of distinct positive integers on a square spiral such that any 3X3 square of numbers sums to a prime.
|
[
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"11",
"9",
"10",
"13",
"12",
"14",
"20",
"16",
"15",
"17",
"19",
"22",
"18",
"21",
"25",
"26",
"35",
"23",
"24",
"27",
"28",
"30",
"29",
"31",
"33",
"37",
"41",
"36",
"32",
"34",
"43",
"38",
"40",
"52",
"39",
"42",
"66",
"48",
"45",
"44",
"46",
"47",
"49",
"54",
"50",
"56",
"51",
"57",
"53",
"55",
"61",
"72",
"67",
"59",
"58",
"62",
"60",
"63",
"71",
"68",
"74",
"76",
"70",
"80",
"64",
"65",
"69",
"77",
"73"
] |
[
"nonn"
] | 13 | 1 | 2 |
[
"A000040",
"A257339",
"A337116",
"A354434",
"A354441",
"A354442"
] | null |
Scott R. Shannon, May 29 2022
| 2022-05-30T08:23:32 |
oeisdata/seq/A354/A354441.seq
|
a28e22c7ab63f5cff1f200d8b1551d11
|
A354442
|
The primes sums formed for each completed 3 X 3 square of numbers in A354441.
|
[
"47",
"61",
"79",
"71",
"103",
"89",
"127",
"107",
"127",
"167",
"127",
"139",
"193",
"167",
"173",
"191",
"239",
"193",
"197",
"223",
"307",
"257",
"257",
"251",
"263",
"331",
"281",
"271",
"277",
"307",
"379",
"337",
"347",
"359",
"349",
"353",
"431",
"379",
"379",
"397",
"409",
"439",
"499",
"449",
"439",
"463",
"457",
"461",
"479",
"569",
"499",
"491",
"509",
"521",
"523",
"557",
"643",
"557",
"563",
"599",
"613"
] |
[
"nonn"
] | 13 | 1 | 1 |
[
"A000040",
"A257339",
"A337116",
"A354434",
"A354441",
"A354442"
] | null |
Scott R. Shannon, May 29 2022
| 2022-06-11T05:22:39 |
oeisdata/seq/A354/A354442.seq
|
75a35eebffdcd136413ce50a5b2531e9
|
A354443
|
a(n) = Fibonacci(n^n) mod n.
|
[
"0",
"1",
"2",
"3",
"0",
"0",
"6",
"3",
"7",
"5",
"1",
"0",
"12",
"7",
"10",
"11",
"16",
"0",
"1",
"15",
"5",
"3",
"22",
"0",
"0",
"3",
"20",
"7",
"1",
"0",
"1",
"27",
"13",
"1",
"5",
"0",
"36",
"3",
"25",
"35",
"1",
"0",
"42",
"19",
"20",
"21",
"46",
"0",
"36",
"25",
"17",
"3",
"52",
"0",
"5",
"35",
"34",
"1",
"1",
"0",
"1",
"3",
"43",
"59",
"15",
"30",
"66",
"35",
"44",
"35",
"1",
"0",
"72",
"3",
"50",
"3",
"2",
"60",
"1",
"75",
"7"
] |
[
"nonn",
"look"
] | 32 | 1 | 3 |
[
"A000045",
"A001175",
"A002708",
"A354443"
] | null |
Chittaranjan Pardeshi, May 29 2022
| 2022-06-03T09:25:16 |
oeisdata/seq/A354/A354443.seq
|
ff4cbf7c1dbe7cfccad0687c3beb392f
|
A354444
|
Least initial term of a set of n consecutive primes {p_1 .. p_n} such that Sum_{k=p_1..p_2} d(k) = ... = Sum_{k=p_(n-1)..p_n} d(k), where d(k) is the number of divisors function A000005.
|
[
"1867",
"105373",
"238820129",
"106695130613"
] |
[
"nonn",
"hard",
"more"
] | 8 | 3 | 1 |
[
"A000005",
"A000040",
"A133760",
"A353552",
"A353553",
"A353554",
"A354444"
] | null |
Karl-Heinz Hofmann, May 27 2022
| 2022-06-22T21:41:18 |
oeisdata/seq/A354/A354444.seq
|
dc5730a0ede2d2f9530fda34cd93ed88
|
A354445
|
Number of polynomials per row where the minimum number of rows and polynomials per row necessary to transform A335105 into a triangular array are present.
|
[
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"2",
"3",
"4",
"5",
"4",
"5",
"4",
"5",
"6",
"7",
"8",
"9",
"8",
"9",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"16",
"17",
"18",
"19",
"20",
"21",
"20",
"21",
"20",
"21",
"22",
"23",
"24",
"25",
"26",
"29",
"28",
"29",
"28",
"29",
"30",
"31",
"32",
"33",
"32",
"33",
"32",
"31",
"34",
"35",
"36",
"37",
"38",
"37",
"40",
"41",
"42",
"43",
"44",
"45",
"44",
"45",
"46",
"47"
] |
[
"nonn"
] | 24 | 1 | 8 |
[
"A335105",
"A350597",
"A354445"
] | null |
David Williams, May 29 2022
| 2023-12-31T14:09:55 |
oeisdata/seq/A354/A354445.seq
|
f16a4e17aeb293d2fae4cbeb3c0b7eeb
|
A354446
|
11-gonal numbers which are products of three distinct primes.
|
[
"30",
"506",
"606",
"715",
"1558",
"1730",
"3945",
"5083",
"6365",
"8558",
"9361",
"11986",
"12455",
"14935",
"15458",
"17081",
"19371",
"19966",
"21183",
"25726",
"29971",
"32215",
"32981",
"37766",
"45551",
"46461",
"51146",
"54065",
"57065",
"58083",
"62245",
"68758",
"74433",
"75595",
"76766",
"80333",
"86458",
"88971",
"90241"
] |
[
"nonn"
] | 46 | 1 | 1 |
[
"A007304",
"A051682",
"A354446"
] | null |
Massimo Kofler, Jun 01 2022
| 2025-03-10T14:49:46 |
oeisdata/seq/A354/A354446.seq
|
006deaf8aa2242edd2bf478182841f60
|
A354447
|
Taxicab numbers (sums of 2 cubes in more than 1 way) which are products of four distinct primes.
|
[
"684019",
"704977",
"2691451",
"3242197",
"3375001",
"4931101",
"5318677",
"5772403",
"8872487",
"10702783",
"16983854",
"20616463",
"24897817",
"41258737",
"46343059",
"60698521",
"66469429",
"69625969",
"79692193",
"89576767",
"95731489",
"96753187",
"97867441",
"116773741",
"119793457",
"126516061",
"147187369"
] |
[
"nonn"
] | 18 | 1 | 1 |
[
"A001235",
"A046386",
"A354447"
] | null |
Massimo Kofler, May 30 2022
| 2025-02-16T08:34:03 |
oeisdata/seq/A354/A354447.seq
|
b2b2119627b6b76923f2d48e4830771c
|
A354448
|
11-gonal numbers which are products of two distinct primes.
|
[
"58",
"95",
"141",
"415",
"1241",
"2101",
"2951",
"3683",
"6031",
"7421",
"16531",
"24383",
"35333",
"39433",
"42001",
"50191",
"53083",
"66551",
"83981",
"95411",
"123421",
"146791",
"173951",
"182911",
"190241",
"229051",
"296321",
"307981",
"336883",
"409361",
"442583",
"451091",
"477101",
"500833",
"546883",
"588431",
"669131"
] |
[
"nonn"
] | 25 | 1 | 1 |
[
"A006881",
"A051682",
"A354448"
] | null |
Massimo Kofler, May 30 2022
| 2025-03-10T14:51:08 |
oeisdata/seq/A354/A354448.seq
|
f686824b7814d0293af880d6ce461acb
|
A354449
|
a(n) is the number of pairs of primes (p,q) with p<q such that p+q = 2*n and that 2*n+p, 2*n+q, p*q-2*n and p*q+2*n are primes.
|
[
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0"
] |
[
"nonn"
] | 29 | 1 | 15 |
[
"A045917",
"A354449",
"A354462"
] | null |
J. M. Bergot and Robert Israel, May 31 2022
| 2022-06-07T13:00:58 |
oeisdata/seq/A354/A354449.seq
|
c5024a4a9b1248e359fa5394403cf5e4
|
A354450
|
Decimal expansion of Sum_{k>=1} (1 - log(k)/k)^(2*k).
|
[
"1",
"4",
"0",
"7",
"1",
"0",
"4",
"4",
"2",
"7",
"4",
"3",
"5",
"1",
"7",
"6",
"5",
"8",
"7",
"3",
"5",
"3",
"6",
"8",
"7",
"6",
"9",
"6",
"5",
"0",
"7",
"8",
"2",
"8",
"5",
"5",
"0",
"5",
"2",
"1",
"2",
"7",
"4",
"0",
"7",
"1",
"4",
"4",
"7",
"7",
"7",
"5",
"5",
"1",
"4",
"7",
"9",
"4",
"0",
"5",
"0",
"9",
"2",
"8",
"2",
"5",
"4",
"5",
"5",
"0",
"1",
"3",
"6",
"4",
"2",
"9",
"0",
"6",
"0",
"8",
"1",
"5",
"2",
"6",
"2",
"8",
"8",
"6",
"5",
"6",
"5",
"1",
"6",
"2",
"8",
"6",
"0",
"0",
"2",
"8",
"8",
"9",
"7",
"9",
"4"
] |
[
"nonn",
"cons"
] | 26 | 1 | 2 |
[
"A091812",
"A354450",
"A354592",
"A354593"
] | null |
Vaclav Kotesovec, May 30 2022
| 2022-08-12T09:24:23 |
oeisdata/seq/A354/A354450.seq
|
1cee7794b47f69ecaf127cd9bc94d65b
|
A354451
|
Number of middle divisors of 2*n-1.
|
[
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"2",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"1",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"2"
] |
[
"nonn"
] | 18 | 1 | 8 |
[
"A005408",
"A067742",
"A099774",
"A237048",
"A237270",
"A237271",
"A237593",
"A245092",
"A249351",
"A279387",
"A319529",
"A354451",
"A354452"
] | null |
Omar E. Pol, May 30 2022
| 2022-07-26T14:04:42 |
oeisdata/seq/A354/A354451.seq
|
5fc474e4e2b8672752dfb36eebb6816e
|
A354452
|
Number of middle divisors of 2*n.
|
[
"1",
"1",
"2",
"1",
"0",
"2",
"0",
"1",
"1",
"2",
"0",
"2",
"0",
"2",
"2",
"1",
"0",
"1",
"0",
"2",
"2",
"0",
"0",
"2",
"1",
"0",
"2",
"2",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"3",
"0",
"0",
"0",
"2",
"0",
"2",
"0",
"2",
"2",
"0",
"0",
"2",
"1",
"1",
"0",
"2",
"0",
"2",
"2",
"2",
"0",
"0",
"0",
"4",
"0",
"0",
"2",
"1",
"2",
"2",
"0",
"0",
"0",
"2",
"0",
"3",
"0",
"0",
"2",
"0",
"2",
"2",
"0",
"2",
"1",
"0",
"0",
"2",
"2",
"0",
"0",
"2",
"0",
"4",
"2",
"0",
"0",
"0",
"2",
"2",
"0",
"1",
"2",
"1",
"0",
"2",
"0",
"2",
"2"
] |
[
"nonn"
] | 22 | 1 | 3 |
[
"A005843",
"A067742",
"A099777",
"A237048",
"A237270",
"A237271",
"A237593",
"A245092",
"A249351",
"A279387",
"A319796",
"A354451",
"A354452"
] | null |
Omar E. Pol, May 30 2022
| 2025-01-17T09:43:01 |
oeisdata/seq/A354/A354452.seq
|
c4b2dd39e5bd2bae09cbc75ae4c27dad
|
A354453
|
Lexicographically earliest sequence of distinct positive integers on a square spiral such that any 2 X 2 square of numbers sums to a prime, and that prime is unique for all such squares. Start with a(1) = 0.
|
[
"0",
"1",
"2",
"4",
"3",
"6",
"5",
"8",
"14",
"7",
"9",
"17",
"10",
"12",
"19",
"21",
"11",
"18",
"16",
"32",
"13",
"23",
"25",
"20",
"30",
"15",
"27",
"40",
"31",
"43",
"22",
"28",
"39",
"37",
"36",
"41",
"24",
"51",
"57",
"48",
"35",
"69",
"26",
"49",
"66",
"53",
"65",
"58",
"76",
"29",
"61",
"88",
"38",
"90",
"33",
"113",
"34",
"54",
"123",
"67",
"86",
"74",
"100",
"98",
"42",
"75",
"91",
"70",
"96",
"102",
"71",
"117",
"44",
"106",
"126"
] |
[
"nonn",
"look"
] | 13 | 1 | 3 |
[
"A000040",
"A257339",
"A337116",
"A354434",
"A354441",
"A354453",
"A354460"
] | null |
Scott R. Shannon, May 30 2022
| 2022-05-31T11:38:39 |
oeisdata/seq/A354/A354453.seq
|
2b0eab9b02515d8821a0872e0428c93e
|
A354454
|
Nearest integer to sqrt(8*Pi*n).
|
[
"0",
"5",
"7",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"17",
"18",
"19",
"19",
"20",
"21",
"21",
"22",
"22",
"23",
"24",
"24",
"25",
"25",
"26",
"26",
"27",
"27",
"27",
"28",
"28",
"29",
"29",
"30",
"30",
"30",
"31",
"31",
"32",
"32",
"32",
"33",
"33",
"34",
"34",
"34",
"35",
"35",
"35",
"36",
"36",
"36",
"37",
"37",
"38",
"38",
"38",
"39",
"39",
"39",
"39",
"40",
"40",
"40"
] |
[
"nonn"
] | 18 | 0 | 2 |
[
"A000194",
"A354454"
] | null |
Mats Granvik, May 30 2022
| 2022-06-05T11:49:09 |
oeisdata/seq/A354/A354454.seq
|
91a9c6524fd65bbe57dda7f94a1f9e86
|
A354455
|
a(n) is the first composite number in the n-th row of A328739.
|
[
"4",
"8",
"8",
"16",
"16",
"24",
"24",
"32",
"32",
"32",
"45",
"48",
"48",
"54",
"64",
"64",
"64",
"72",
"80",
"81",
"90",
"96",
"105",
"108",
"108",
"108",
"120",
"128",
"128",
"128",
"144",
"144",
"160",
"160",
"162",
"175",
"180",
"180",
"192",
"192",
"192",
"200",
"200",
"216",
"216",
"240",
"240",
"240",
"240",
"243",
"243",
"256",
"256",
"270",
"280",
"288",
"288",
"288",
"288"
] |
[
"nonn"
] | 24 | 1 | 1 |
[
"A000040",
"A002808",
"A328739",
"A354455"
] | null |
Ali Sada, May 30 2022
| 2022-07-26T12:39:45 |
oeisdata/seq/A354/A354455.seq
|
962e4f4039e33cc3022e82885532c20f
|
A354456
|
a(n) is the least number k such that k - 5^i is prime for i = 1..n.
|
[
"7",
"28",
"132",
"666",
"3234",
"17514",
"100674",
"501228",
"2062662",
"211097334",
"2597411082",
"34473310284",
"214852200444",
"394471192794"
] |
[
"nonn",
"more"
] | 23 | 1 | 1 |
[
"A000351",
"A175222",
"A354456"
] | null |
J. M. Bergot and Robert Israel, May 30 2022
| 2022-05-31T06:48:53 |
oeisdata/seq/A354/A354456.seq
|
56078cacfa65420e7a2ddf64040d7b1c
|
A354457
|
a(n) is the least integer for which there exist two disjoint sets of n positive integers each, all distinct, for which the product of the integers in either set is a(n).
|
[
"6",
"36",
"240",
"2520",
"30240",
"443520",
"6652800",
"133056000",
"2075673600",
"58118860800",
"1270312243200",
"29640619008000",
"844757641728000",
"25342729251840000",
"810967336058880000",
"27978373094031360000",
"1077167364120207360000",
"43086694564808294400000",
"1499416970855328645120000"
] |
[
"nonn"
] | 64 | 2 | 1 |
[
"A001055",
"A025487",
"A354457",
"A354697"
] | null |
Andy Niedermaier, May 30 2022
| 2024-06-04T15:36:26 |
oeisdata/seq/A354/A354457.seq
|
d0b1c669d817c5c887b74ce539ff6a25
|
A354458
|
Number of commuting pairs of equivalence relations on [n].
|
[
"1",
"1",
"4",
"19",
"117",
"864",
"7459",
"73749",
"818960",
"10078023"
] |
[
"nonn",
"more"
] | 12 | 0 | 3 |
[
"A000110",
"A001247",
"A354458"
] | null |
Geoffrey Critzer, May 30 2022
| 2022-06-17T15:56:31 |
oeisdata/seq/A354/A354458.seq
|
ece327ce70a7374b8fb21c4197be6106
|
A354459
|
Lazy cutter's sequence (see Comments).
|
[
"2",
"3",
"4",
"4",
"5",
"6",
"6",
"6",
"7",
"7",
"8",
"8",
"8",
"9",
"9",
"10",
"10",
"10",
"10",
"10",
"11",
"11",
"12",
"12",
"12",
"12",
"12",
"12",
"13",
"13",
"13",
"14",
"14",
"14",
"14",
"15",
"15",
"15",
"15",
"16",
"16",
"16",
"16",
"16",
"16",
"16",
"16",
"17",
"17",
"17",
"18",
"18",
"18",
"18",
"18",
"18",
"18",
"18",
"18",
"19",
"19",
"19",
"19",
"20",
"20",
"20",
"20",
"20",
"20",
"21",
"21",
"21",
"21",
"21",
"22",
"22",
"22",
"22",
"22",
"22",
"22",
"22",
"22",
"22",
"22",
"23"
] |
[
"nonn"
] | 10 | 1 | 1 |
[
"A023022",
"A092542",
"A092543",
"A182972",
"A182973",
"A354459"
] | null |
Ivan N. Ianakiev, May 31 2022
| 2022-06-22T20:24:05 |
oeisdata/seq/A354/A354459.seq
|
23ea799a8fd615ad3adc8cc5f07043ae
|
A354460
|
The primes sums formed for each completed 2 X 2 square of numbers in A354453.
|
[
"7",
"13",
"19",
"23",
"31",
"29",
"41",
"37",
"47",
"53",
"43",
"59",
"73",
"61",
"67",
"71",
"79",
"83",
"97",
"101",
"103",
"89",
"107",
"113",
"109",
"127",
"137",
"139",
"131",
"149",
"157",
"151",
"167",
"163",
"173",
"179",
"181",
"191",
"193",
"199",
"197",
"211",
"223",
"227",
"257",
"229",
"233",
"251",
"263",
"239",
"241",
"269",
"271",
"281",
"277",
"283",
"293",
"307",
"313",
"311",
"317",
"331",
"347",
"337"
] |
[
"nonn"
] | 9 | 1 | 1 |
[
"A000040",
"A257339",
"A337116",
"A354434",
"A354441",
"A354453",
"A354460"
] | null |
Scott R. Shannon, May 31 2022
| 2022-05-31T11:38:47 |
oeisdata/seq/A354/A354460.seq
|
bcf4901b5d55c0fb5b56d6c3725f0690
|
A354461
|
The primes sums formed for each completed 3 X 3 square of numbers in A354435.
|
[
"47",
"61",
"79",
"71",
"103",
"89",
"127",
"107",
"131",
"173",
"137",
"149",
"197",
"163",
"179",
"191",
"239",
"193",
"199",
"211",
"271",
"233",
"241",
"263",
"281",
"347",
"307",
"311",
"313",
"317",
"367",
"331",
"349",
"379",
"373",
"389",
"431",
"359",
"383",
"401",
"409",
"419",
"487",
"421",
"439",
"461",
"467",
"479",
"509",
"569",
"499",
"503",
"541",
"523",
"521",
"547",
"647",
"563",
"577",
"593",
"617"
] |
[
"nonn"
] | 9 | 1 | 1 |
[
"A000040",
"A337116",
"A354435",
"A354441",
"A354442",
"A354453",
"A354461"
] | null |
Scott R. Shannon, May 31 2022
| 2022-06-01T08:21:50 |
oeisdata/seq/A354/A354461.seq
|
e386831efcc88cc70801ff8bff60555f
|
A354462
|
a(n) is the least number k such that there are exactly n pairs (p,q) of primes with p<q such that p+q = 2*k and that 2*k+p, 2*k+q, p*q-2*k and p*q+2*k are primes.
|
[
"1",
"4",
"15",
"315",
"420",
"825",
"2310",
"3150",
"1785",
"8925",
"6090",
"6405",
"8610",
"24990",
"19305",
"12705",
"14175",
"15015",
"18165",
"19635",
"24255",
"48510",
"63525",
"33915",
"48195",
"54285",
"35490",
"50505",
"55650",
"69615",
"71610",
"80850",
"78540",
"103740",
"39270",
"157920",
"60060",
"65835",
"90090",
"147840",
"120120",
"183645"
] |
[
"nonn"
] | 26 | 0 | 2 |
[
"A045917",
"A136244",
"A354449",
"A354462"
] | null |
J. M. Bergot and Robert Israel, May 31 2022
| 2022-06-02T10:11:39 |
oeisdata/seq/A354/A354462.seq
|
a7b62a9383c0af8fcbb1177d68c78787
|
A354463
|
a(n) is the number of trailing zeros in (2^n)!.
|
[
"0",
"0",
"0",
"1",
"3",
"7",
"14",
"31",
"63",
"126",
"253",
"509",
"1021",
"2045",
"4094",
"8189",
"16380",
"32763",
"65531",
"131067",
"262140",
"524285",
"1048571",
"2097146",
"4194297",
"8388603",
"16777208",
"33554424",
"67108858",
"134217720",
"268435446",
"536870902",
"1073741816",
"2147483642",
"4294967289",
"8589934584",
"17179869176",
"34359738358",
"68719476729"
] |
[
"nonn",
"easy",
"base"
] | 32 | 0 | 5 |
[
"A000079",
"A027868",
"A354463"
] | null |
William Boyles, May 31 2022
| 2022-06-25T21:44:36 |
oeisdata/seq/A354/A354463.seq
|
8c7f79eb340adde782c56fbe60cd06f3
|
A354464
|
Number of distinct bracelets of length n (A000029) that eventually result in a cycle with length 2 or greater when used as the starting conditions for a rule 18 cellular automaton in a cyclic universe of circumference n.
|
[
"0",
"0",
"0",
"1",
"4",
"3",
"0",
"11",
"35",
"62",
"108",
"182",
"273",
"195",
"17",
"1131",
"3976",
"7464",
"13970",
"26413",
"50049",
"95638",
"182763",
"350249",
"671304"
] |
[
"nonn",
"more"
] | 77 | 1 | 5 |
[
"A000029",
"A354464"
] | null |
Angelo Rosso, Jul 27 2022
| 2023-12-09T20:47:03 |
oeisdata/seq/A354/A354464.seq
|
b65e2405cbd9392ffc73d1fb14dbbf12
|
A354465
|
Number of connected simple graphs for which D.x = 1 has no solutions when D is the distance matrix.
|
[
"1",
"0",
"0",
"0",
"0",
"0",
"2",
"14",
"398",
"23923"
] |
[
"nonn",
"more"
] | 20 | 1 | 7 | null | null |
Eric W. Weisstein, Jun 01 2022
| 2025-02-16T08:34:03 |
oeisdata/seq/A354/A354465.seq
|
659b3545c6fd2ceb9c4a1b87aa8e3a42
|
A354466
|
Numbers k such that the decimal expansion of the sum of the reciprocals of the digits of k starts with the digits of k in the same order.
|
[
"1",
"13",
"145",
"153",
"1825",
"15789",
"16666",
"21583",
"216666",
"2416666",
"28428571",
"265833333",
"3194444444",
"3333333333",
"9111111111",
"35333333333",
"3166666666666",
"3819444444444",
"26666666666666",
"34166666666666",
"527857142857142",
"3944444444444444",
"6135714285714285",
"615833333333333333"
] |
[
"nonn",
"base"
] | 46 | 1 | 2 |
[
"A009994",
"A034708",
"A337904",
"A354466"
] | null |
Metin Sariyar, Jun 01 2022
| 2024-12-19T11:48:12 |
oeisdata/seq/A354/A354466.seq
|
2966806d1b40195e1729df7dd53def26
|
A354467
|
Positive integers whose prime factors are congruent to 1 (mod 12).
|
[
"1",
"13",
"37",
"61",
"73",
"97",
"109",
"157",
"169",
"181",
"193",
"229",
"241",
"277",
"313",
"337",
"349",
"373",
"397",
"409",
"421",
"433",
"457",
"481",
"541",
"577",
"601",
"613",
"661",
"673",
"709",
"733",
"757",
"769",
"793",
"829",
"853",
"877",
"937",
"949",
"997",
"1009",
"1021",
"1033",
"1069",
"1093",
"1117",
"1129",
"1153",
"1201",
"1213"
] |
[
"nonn"
] | 19 | 1 | 2 |
[
"A068228",
"A354467"
] | null |
Steven Lu, Jun 01 2022
| 2025-04-20T02:28:13 |
oeisdata/seq/A354/A354467.seq
|
5c6a60073cd34d6db5f884233c7f7dc2
|
A354468
|
Number of possible ordered pairs (n_1, S) where (n_1, n_2, ..., n_k) is a partition of n, n_1 is the largest element of the partition, and S = Sum_{j=1..k} n_j^2.
|
[
"1",
"1",
"2",
"3",
"5",
"7",
"11",
"15",
"22",
"29",
"39",
"50",
"66",
"83",
"104",
"127",
"157",
"188",
"225",
"265",
"312",
"359",
"418",
"479",
"547",
"620",
"700",
"786",
"884",
"987",
"1094",
"1214",
"1348",
"1479",
"1627",
"1779",
"1945",
"2122",
"2313",
"2505",
"2719",
"2934",
"3161",
"3412",
"3666",
"3932",
"4218",
"4511",
"4820",
"5140",
"5477",
"5825"
] |
[
"nonn"
] | 32 | 0 | 3 |
[
"A000041",
"A000125",
"A069999",
"A354468",
"A354800"
] | null |
Noah A Rosenberg, Jun 02 2022
| 2025-04-24T17:04:28 |
oeisdata/seq/A354/A354468.seq
|
66e790cf37c6ba0c3e98cd58392b433d
|
A354469
|
Write n in primorial base, then replace each nonzero digit d of radix p with p-d.
|
[
"0",
"1",
"4",
"5",
"2",
"3",
"24",
"25",
"28",
"29",
"26",
"27",
"18",
"19",
"22",
"23",
"20",
"21",
"12",
"13",
"16",
"17",
"14",
"15",
"6",
"7",
"10",
"11",
"8",
"9",
"180",
"181",
"184",
"185",
"182",
"183",
"204",
"205",
"208",
"209",
"206",
"207",
"198",
"199",
"202",
"203",
"200",
"201",
"192",
"193",
"196",
"197",
"194",
"195",
"186",
"187",
"190",
"191",
"188",
"189"
] |
[
"nonn",
"base"
] | 6 | 0 | 3 |
[
"A225901",
"A235168",
"A354469"
] | null |
Rémy Sigrist, Jun 02 2022
| 2022-06-05T08:32:45 |
oeisdata/seq/A354/A354469.seq
|
04e38a63d23eeadd346b97f0c570d851
|
A354470
|
Square array A(n, k), n, k >= 0, read by antidiagonals; the primorial base expansion of A(n, k) is obtained by adding componentwise and reducing modulo their radix the digits of the primorial base expansions of n and k.
|
[
"0",
"1",
"1",
"2",
"0",
"2",
"3",
"3",
"3",
"3",
"4",
"2",
"4",
"2",
"4",
"5",
"5",
"5",
"5",
"5",
"5",
"6",
"4",
"0",
"4",
"0",
"4",
"6",
"7",
"7",
"1",
"1",
"1",
"1",
"7",
"7",
"8",
"6",
"8",
"0",
"2",
"0",
"8",
"6",
"8",
"9",
"9",
"9",
"9",
"3",
"3",
"9",
"9",
"9",
"9",
"10",
"8",
"10",
"8",
"10",
"2",
"10",
"8",
"10",
"8",
"10",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11"
] |
[
"nonn",
"base",
"tabl"
] | 8 | 0 | 4 |
[
"A004442",
"A235168",
"A354438",
"A354469",
"A354470"
] | null |
Rémy Sigrist, Jun 02 2022
| 2022-06-05T08:33:35 |
oeisdata/seq/A354/A354470.seq
|
dc5d795988b96fb0d975accab952cc5a
|
A354471
|
Number of fusion rings of rank 3 and multiplicity n.
|
[
"4",
"3",
"4",
"6",
"5",
"9",
"6",
"10",
"12",
"9",
"10",
"20",
"9",
"13",
"16",
"25"
] |
[
"nonn",
"hard",
"more"
] | 9 | 1 | 1 |
[
"A348305",
"A354471"
] | null |
Sébastien Palcoux, Jun 01 2022
| 2022-06-02T10:07:17 |
oeisdata/seq/A354/A354471.seq
|
de66a11480b01d749f76b8b53a5e494a
|
A354472
|
Number of fusion rings of rank 4 and multiplicity n.
|
[
"10",
"17",
"24",
"45",
"55",
"81",
"92",
"137",
"151",
"186",
"238",
"291",
"246",
"340",
"349",
"525"
] |
[
"nonn",
"hard",
"more"
] | 8 | 1 | 1 |
[
"A348305",
"A354472"
] | null |
Sébastien Palcoux, Jun 02 2022
| 2022-06-02T10:07:28 |
oeisdata/seq/A354/A354472.seq
|
8d0aeda1f3d682aa5d4d7987a3b3c368
|
A354473
|
Number of fusion rings of rank 5 and multiplicity n.
|
[
"16",
"37",
"82",
"134",
"209",
"336",
"477",
"733",
"1463",
"1794",
"2283",
"3049"
] |
[
"nonn",
"hard",
"more"
] | 8 | 1 | 1 |
[
"A348305",
"A354473"
] | null |
Sébastien Palcoux, Jun 02 2022
| 2022-06-02T10:07:43 |
oeisdata/seq/A354/A354473.seq
|
4b1340f23644fd2cc3e84542e362476d
|
A354474
|
Numbers that can be written as reversals in two different bases, where the bases are also reversals of each other. (Trailing zeros are not allowed.)
|
[
"65",
"67",
"75",
"85",
"96",
"130",
"134",
"150",
"170",
"192",
"195",
"225",
"255",
"288",
"300",
"327",
"340",
"375",
"381",
"425",
"433",
"450",
"487",
"510",
"525",
"595",
"600",
"654",
"665",
"667",
"675",
"680",
"750",
"762",
"765",
"795",
"825",
"895",
"900",
"927",
"974",
"975",
"981",
"996",
"1050",
"1125",
"1200",
"1275",
"1277",
"1308",
"1330",
"1334",
"1340",
"1350",
"1535",
"1590"
] |
[
"nonn",
"base"
] | 103 | 1 | 1 |
[
"A354474",
"A355313"
] | null |
Jordan Canevari, Jun 25 2022
| 2023-03-18T16:30:36 |
oeisdata/seq/A354/A354474.seq
|
58a8d59f83f549f5a9054d1e53fbfa23
|
A354475
|
Number of fusion rings of multiplicity 2 and rank n
|
[
"0",
"1",
"3",
"17",
"37",
"154",
"319"
] |
[
"nonn",
"hard",
"more"
] | 6 | 1 | 3 |
[
"A348305",
"A354471",
"A354472",
"A354473",
"A354475"
] | null |
Sébastien Palcoux, Jun 02 2022
| 2022-06-02T10:08:04 |
oeisdata/seq/A354/A354475.seq
|
a42d8d56908a79dda2c43e9dc1960665
|
A354476
|
Number of fusion rings of multiplicity 3 and rank n
|
[
"0",
"1",
"4",
"24",
"82",
"384"
] |
[
"nonn",
"hard",
"more"
] | 6 | 1 | 3 |
[
"A348305",
"A354471",
"A354472",
"A354473",
"A354476"
] | null |
Sébastien Palcoux, Jun 02 2022
| 2022-06-02T10:08:14 |
oeisdata/seq/A354/A354476.seq
|
d6d1541e6446931b5d30fe57028bc466
|
A354477
|
Number of fusion rings of multiplicity 4 and rank n.
|
[
"0",
"1",
"6",
"45",
"134",
"872"
] |
[
"nonn",
"hard",
"more"
] | 8 | 1 | 3 |
[
"A348305",
"A354471",
"A354472",
"A354473",
"A354477"
] | null |
Sébastien Palcoux, Jun 02 2022
| 2022-06-03T08:52:42 |
oeisdata/seq/A354/A354477.seq
|
aa735c241101e1a3b634308760bd85c3
|
A354478
|
a(n) is the numerator of Sum_{k=1..n} 1 / Stirling1(n,k).
|
[
"1",
"0",
"7",
"25",
"3991",
"3923773",
"4901627",
"527165212865",
"9823031039961293027",
"123877274974851473572937",
"443645907754951021537851199",
"246932542361393897304051461727006396307",
"1474846779473982897350113519971401527250089",
"46578509609937575127608478711343978511593638945099881"
] |
[
"nonn",
"frac"
] | 13 | 1 | 3 |
[
"A008275",
"A046825",
"A112288",
"A112290",
"A354478",
"A354479"
] | null |
Ilya Gutkovskiy, Jun 02 2022
| 2022-06-03T07:43:20 |
oeisdata/seq/A354/A354478.seq
|
b385759b090de5035cb0b9994a57fcf7
|
A354479
|
a(n) is the denominator of Sum_{k=1..n} 1 / Stirling1(n,k).
|
[
"1",
"1",
"6",
"33",
"4200",
"4192200",
"5115600",
"545250747888",
"10086416728304192640",
"126556188275836361347200",
"451535899566923284351392000",
"250606479905655959999200124455664175360",
"1493469115548888160803495265626573200563200",
"47083781674990641531154175811928872812783834939059200"
] |
[
"nonn",
"frac"
] | 9 | 1 | 3 |
[
"A008275",
"A046826",
"A112289",
"A112291",
"A354478",
"A354479"
] | null |
Ilya Gutkovskiy, Jun 02 2022
| 2022-06-03T07:43:24 |
oeisdata/seq/A354/A354479.seq
|
c816c8299e6da0178f22aa6424289abd
|
A354480
|
a(n) is the smallest decimal palindrome with Hamming weight n (i.e., with exactly n 1's when written in binary).
|
[
"0",
"1",
"3",
"7",
"77",
"55",
"111",
"191",
"383",
"767",
"5115",
"11711",
"15351",
"30703",
"81918",
"97279",
"744447",
"978879",
"1570751",
"3665663",
"8387838",
"66911966",
"66322366",
"132111231",
"199212991",
"389545983",
"939474939",
"3204444023",
"3220660223",
"11542724511",
"34258485243",
"33788788733",
"34292629243"
] |
[
"nonn",
"base"
] | 15 | 0 | 3 |
[
"A000120",
"A000225",
"A002113",
"A061712",
"A062388",
"A089226",
"A089998",
"A089999",
"A102029",
"A114477",
"A354480"
] | null |
Ilya Gutkovskiy, Jun 02 2022
| 2022-06-18T14:21:16 |
oeisdata/seq/A354/A354480.seq
|
fa46dd3b42ff4b37105282b33641cccb
|
A354481
|
Number of graph minors in the n-prism graph.
|
[
"94",
"389",
"3316",
"25158",
"205382",
"1619829",
"12645348"
] |
[
"nonn",
"more"
] | 15 | 3 | 1 | null | null |
Eric W. Weisstein, Jun 02 2022
| 2025-02-16T08:34:03 |
oeisdata/seq/A354/A354481.seq
|
555c3cc375d60a783d313e12e14dbb93
|
A354482
|
Positions of 0's in binary expansion of Pi.
|
[
"1",
"2",
"4",
"5",
"7",
"8",
"9",
"10",
"17",
"20",
"22",
"24",
"26",
"27",
"28",
"30",
"31",
"32",
"34",
"35",
"36",
"37",
"39",
"42",
"44",
"45",
"46",
"49",
"50",
"51",
"52",
"54",
"55",
"56",
"59",
"61",
"62",
"65",
"66",
"67",
"69",
"70",
"73",
"74",
"75",
"78",
"79",
"82",
"83",
"84",
"86",
"88",
"89",
"90",
"92",
"96",
"97",
"98",
"99",
"100",
"101",
"102",
"105",
"109",
"110"
] |
[
"nonn",
"base"
] | 6 | 1 | 2 |
[
"A004601",
"A256108",
"A320300",
"A320301",
"A354482"
] | null |
Jianing Song, May 27 2022
| 2022-05-28T03:59:52 |
oeisdata/seq/A354/A354482.seq
|
bc6a68370e5822fbfdbda6fdc02cba44
|
A354483
|
Number of graph minors in the n-helm graph.
|
[
"143",
"791",
"4603",
"27682",
"166009",
"979030"
] |
[
"nonn",
"more"
] | 25 | 3 | 1 | null | null |
Eric W. Weisstein, Jun 02 2022
| 2025-02-16T08:34:03 |
oeisdata/seq/A354/A354483.seq
|
e7311111e89226e15024c959da2d740a
|
A354484
|
Common differences associated with the arithmetic progressions of primes in A354376.
|
[
"0",
"1",
"2",
"12",
"6",
"30",
"150",
"210",
"210",
"210",
"30030",
"13860",
"60060",
"420420",
"4144140",
"9699690",
"87297210",
"717777060",
"4180566390",
"18846497670",
"26004868890"
] |
[
"nonn",
"more"
] | 35 | 1 | 3 |
[
"A006560",
"A093364",
"A354376",
"A354377",
"A354484",
"A354485"
] | null |
Bernard Schott, May 28 2022
| 2022-06-05T03:40:49 |
oeisdata/seq/A354/A354484.seq
|
4517fa51ae8dfc8c17cbd6a67340098c
|
A354485
|
Triangle read by rows: row n gives the arithmetic progression of exactly n primes with minimal final term, cf. A354376.
|
[
"2",
"2",
"3",
"3",
"5",
"7",
"7",
"19",
"31",
"43",
"5",
"11",
"17",
"23",
"29",
"7",
"37",
"67",
"97",
"127",
"157",
"7",
"157",
"307",
"457",
"607",
"757",
"907",
"881",
"1091",
"1301",
"1511",
"1721",
"1931",
"2141",
"2351",
"3499",
"3709",
"3919",
"4129",
"4339",
"4549",
"4759",
"4969",
"5179",
"199",
"409",
"619",
"829",
"1039",
"1249",
"1459",
"1669",
"1879",
"2089"
] |
[
"nonn",
"tabl"
] | 33 | 1 | 1 |
[
"A006560",
"A133277",
"A354376",
"A354377",
"A354484",
"A354485"
] | null |
Bernard Schott, May 29 2022
| 2022-06-05T08:32:02 |
oeisdata/seq/A354/A354485.seq
|
8f0b9968a5dccfcf6eb27117c510c359
|
A354486
|
Triangle read by rows: T(n,k) is the numerator of the n-th term of the Somos-k sequence, 4 <= k <= n.
|
[
"2",
"3",
"2",
"7",
"3",
"3",
"23",
"5",
"5",
"3",
"59",
"11",
"9",
"5",
"4",
"314",
"37",
"23",
"9",
"7",
"4",
"1529",
"83",
"75",
"17",
"13",
"7",
"5",
"8209",
"274",
"421",
"41",
"25",
"13",
"9",
"5",
"83313",
"1217",
"1103",
"137",
"61",
"25",
"17",
"9",
"6",
"620297",
"6161",
"5047",
"769",
"187",
"49",
"33",
"17",
"11",
"6"
] |
[
"nonn",
"tabl",
"frac"
] | 13 | 4 | 1 |
[
"A006720",
"A006723",
"A354486",
"A354487"
] | null |
Pontus von Brömssen, May 28 2022
| 2025-02-16T08:34:03 |
oeisdata/seq/A354/A354486.seq
|
5b2c049ef65872fa5f3b681eadd43e89
|
A354487
|
Triangle read by rows: T(n,k) is the denominator of the n-th term of the Somos-k sequence, 4 <= k <= n.
|
[
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"7",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"91",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1"
] |
[
"nonn",
"tabl",
"frac"
] | 11 | 4 | 96 |
[
"A030127",
"A354486",
"A354487"
] | null |
Pontus von Brömssen, May 28 2022
| 2025-02-16T08:34:03 |
oeisdata/seq/A354/A354487.seq
|
8e6bb984172a0d3be6db6c2b03c04582
|
A354488
|
T(w,h) with 3 <= h < w is the number of quadrilaterals as defined in A353532 with diagonals intersecting at the same angle theta as the diagonals of the grid rectangle with side lengths w > h, where T(w,h) is a triangle read by rows.
|
[
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"3",
"0",
"0",
"0",
"4",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"3",
"0",
"11",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"12",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"32",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"23",
"0",
"0",
"0",
"0",
"0",
"0",
"0"
] |
[
"nonn",
"tabl"
] | 10 | 4 | 12 |
[
"A353532",
"A353533",
"A354488",
"A354489"
] | null |
Hugo Pfoertner and Rainer Rosenthal, May 28 2022
| 2024-12-19T11:53:22 |
oeisdata/seq/A354/A354488.seq
|
6284b90bc24d2ea11f8214fbe078588b
|
A354489
|
Widths w of w X h grid rectangles with w > h such that no quadrilaterals with 2 < h < w as defined in A353532 exist, whose angle between their diagonals is equal to the angle between the diagonals of the grid rectangle.
|
[
"4",
"5",
"6",
"7",
"10",
"11",
"13",
"17",
"19",
"22",
"23",
"26",
"29",
"31",
"34",
"37",
"38",
"39",
"41",
"43",
"46",
"47",
"53",
"55",
"57",
"58",
"59",
"61",
"62",
"65",
"67",
"69",
"71",
"73",
"74",
"79",
"82",
"83",
"85",
"86",
"89",
"92",
"94",
"95",
"97"
] |
[
"nonn",
"more"
] | 5 | 1 | 1 |
[
"A325160",
"A353532",
"A354488",
"A354489"
] | null |
Hugo Pfoertner and Rainer Rosenthal, May 28 2022
| 2022-05-29T17:59:44 |
oeisdata/seq/A354/A354489.seq
|
1fcd8e5dfdad3ad66867fa94f3cd6741
|
A354490
|
T(w,h) with 2 <= h <= w is the number of quadrilaterals as defined in A353532 with diagonals intersecting at integer coordinates, where T(w,h) is a triangle read by rows.
|
[
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"3",
"1",
"0",
"0",
"3",
"3",
"4",
"4",
"3",
"6",
"6",
"6",
"12",
"0",
"2",
"6",
"7",
"9",
"15",
"13",
"6",
"6",
"10",
"12",
"12",
"30",
"18",
"27",
"8",
"4",
"11",
"11",
"12",
"24",
"25",
"33",
"41",
"18",
"10",
"17",
"21",
"17",
"36",
"24",
"35",
"32",
"38",
"0",
"8",
"17",
"19",
"21",
"51",
"43",
"65",
"84",
"87",
"57",
"62",
"15",
"24",
"31",
"25",
"49",
"31",
"48",
"45",
"53",
"33",
"76",
"0"
] |
[
"nonn",
"tabl"
] | 8 | 2 | 8 |
[
"A353532",
"A353533",
"A354488",
"A354490",
"A354491"
] | null |
Hugo Pfoertner, May 30 2022
| 2024-12-19T11:53:22 |
oeisdata/seq/A354/A354490.seq
|
abdb50dcc8e7cfc294891d07a10d15ab
|
A354491
|
Diagonal of the triangle A354490.
|
[
"0",
"0",
"0",
"0",
"4",
"0",
"6",
"8",
"18",
"0",
"62",
"0",
"48",
"88",
"77",
"0",
"203",
"0",
"265",
"209",
"140",
"0",
"628",
"118",
"199",
"301",
"614",
"0",
"1285",
"0",
"639",
"583",
"364",
"733",
"2051",
"0",
"467",
"836",
"2275",
"0",
"2923",
"0",
"1720",
"2597",
"704",
"0",
"4558",
"599",
"2427",
"1491",
"2454",
"0",
"4449",
"2021",
"5008",
"1895",
"1146",
"0",
"11618"
] |
[
"nonn"
] | 6 | 2 | 5 |
[
"A353447",
"A353532",
"A354490",
"A354491"
] | null |
Hugo Pfoertner, May 30 2022
| 2022-05-31T06:50:15 |
oeisdata/seq/A354/A354491.seq
|
621a98e24838500ad68ecd47a3832a88
|
A354492
|
Diagonal of A354703.
|
[
"1",
"2",
"2",
"4",
"4",
"4",
"9",
"7",
"9",
"4",
"9",
"16",
"7",
"16",
"8",
"14",
"9",
"12",
"23",
"13",
"21",
"8",
"17",
"32",
"20",
"28"
] |
[
"nonn",
"hard",
"more"
] | 8 | 1 | 2 |
[
"A084068",
"A293330",
"A354492",
"A354702",
"A354703",
"A354707"
] | null |
Hugo Pfoertner, Jun 22 2022
| 2023-02-05T02:46:47 |
oeisdata/seq/A354/A354492.seq
|
94c963f78474d7aa5a2a8bab63586d91
|
A354493
|
Number of quantales on n elements, up to isomorphism.
|
[
"1",
"2",
"12",
"129",
"1852",
"33391",
"729629",
"19174600",
"658343783"
] |
[
"nonn",
"more"
] | 30 | 1 | 2 |
[
"A006966",
"A027851",
"A354493"
] | null |
Arman Shamsgovara, May 28 2022
| 2025-06-01T16:19:07 |
oeisdata/seq/A354/A354493.seq
|
94ceedf4b1e94f6a5e3514577cee43e2
|
A354494
|
Number of semi-unital quantales on n elements, up to isomorphism.
|
[
"1",
"1",
"6",
"64",
"939",
"17578",
"403060",
"11327795",
"440735463"
] |
[
"nonn",
"more"
] | 15 | 1 | 3 |
[
"A354493",
"A354494",
"A354495"
] | null |
Arman Shamsgovara, May 28 2022
| 2022-06-22T23:41:13 |
oeisdata/seq/A354/A354494.seq
|
4a16e251f47113c4b257762927cf00dd
|
A354495
|
Number of unital quantales on n elements, up to isomorphism.
|
[
"1",
"1",
"3",
"20",
"149",
"1488",
"18554",
"295292",
"6105814"
] |
[
"nonn",
"more"
] | 16 | 1 | 3 |
[
"A354493",
"A354494",
"A354495"
] | null |
Arman Shamsgovara, May 28 2022
| 2022-06-23T13:24:18 |
oeisdata/seq/A354/A354495.seq
|
902b385b1bbcddf5d0aea8d8cf98dc97
|
A354496
|
Number of left-sided quantales on n elements, up to isomorphism. Also number of right-sided quantales on n elements, up to isomorphism.
|
[
"1",
"2",
"9",
"60",
"497",
"4968",
"58507",
"807338",
"13341730"
] |
[
"nonn",
"more"
] | 9 | 1 | 2 |
[
"A354493",
"A354496"
] | null |
Arman Shamsgovara, Aug 03 2022
| 2022-09-11T09:30:46 |
oeisdata/seq/A354/A354496.seq
|
4cbcc7681303d527937ea59aebf79e52
|
A354497
|
Number of strictly left-sided quantales on n elements, up to isomorphism. Also number of strictly right-sided quantales on n elements, up to isomorphism.
|
[
"1",
"1",
"4",
"23",
"164",
"1482",
"15838",
"197262",
"2830649"
] |
[
"nonn",
"more"
] | 7 | 1 | 3 |
[
"A354493",
"A354496",
"A354497"
] | null |
Arman Shamsgovara, Aug 03 2022
| 2022-09-11T09:30:58 |
oeisdata/seq/A354/A354497.seq
|
e734fd4aef4973c15d4a6b61c52ec8e9
|
A354498
|
Number of two-sided quantales on n elements, up to isomorphism.
|
[
"1",
"2",
"8",
"47",
"354",
"3277",
"36506",
"490983",
"8301353"
] |
[
"nonn",
"more"
] | 8 | 1 | 2 |
[
"A354493",
"A354496",
"A354498"
] | null |
Arman Shamsgovara, Aug 03 2022
| 2022-09-11T09:31:07 |
oeisdata/seq/A354/A354498.seq
|
177511ea6de5abf20f35a38bed15a3d4
|
A354499
|
Number of consecutive primes generated by adding 2n to the odd squares (A016754).
|
[
"2",
"4",
"1",
"0",
"2",
"1",
"0",
"1",
"1",
"0",
"5",
"0",
"0",
"3",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"2",
"0",
"0",
"14",
"1",
"0",
"0",
"1",
"0",
"2",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"4",
"0",
"0",
"0",
"1",
"0",
"2",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"2",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"8",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"3",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"2",
"1",
"0",
"1",
"1",
"0"
] |
[
"nonn"
] | 28 | 1 | 1 |
[
"A005843",
"A016754",
"A047845",
"A354499",
"A356567"
] | null |
Steven M. Altschuld, Aug 15 2022
| 2023-10-26T20:18:13 |
oeisdata/seq/A354/A354499.seq
|
9eae70ae19d99d7f000fa3435b14d69a
|
A354500
|
The Rijndael S-box used in the Advanced Encryption Standard (AES).
|
[
"99",
"124",
"119",
"123",
"242",
"107",
"111",
"197",
"48",
"1",
"103",
"43",
"254",
"215",
"171",
"118",
"202",
"130",
"201",
"125",
"250",
"89",
"71",
"240",
"173",
"212",
"162",
"175",
"156",
"164",
"114",
"192",
"183",
"253",
"147",
"38",
"54",
"63",
"247",
"204",
"52",
"165",
"229",
"241",
"113",
"216",
"49",
"21",
"4",
"199",
"35",
"195",
"24",
"150",
"5",
"154",
"7",
"18",
"128",
"226"
] |
[
"nonn",
"easy",
"fini",
"full"
] | 17 | 0 | 1 |
[
"A354500",
"A354501",
"A355891"
] | null |
Jianing Song, Aug 15 2022
| 2022-08-15T23:32:43 |
oeisdata/seq/A354/A354500.seq
|
e04dc1bee4b75d377a6a5bdaee61ffac
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.