sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-19 00:40:46
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A354501
|
The inverse Rijndael S-box used in the Advanced Encryption Standard (AES); inverse permutation of A354500.
|
[
"82",
"9",
"106",
"213",
"48",
"54",
"165",
"56",
"191",
"64",
"163",
"158",
"129",
"243",
"215",
"251",
"124",
"227",
"57",
"130",
"155",
"47",
"255",
"135",
"52",
"142",
"67",
"68",
"196",
"222",
"233",
"203",
"84",
"123",
"148",
"50",
"166",
"194",
"35",
"61",
"238",
"76",
"149",
"11",
"66",
"250",
"195",
"78",
"8",
"46",
"161",
"102",
"40",
"217",
"36",
"178",
"118",
"91",
"162",
"73",
"109"
] |
[
"nonn",
"easy",
"fini",
"full"
] | 14 | 0 | 1 |
[
"A354500",
"A354501",
"A355891"
] | null |
Jianing Song, Aug 15 2022
| 2022-08-15T23:32:47 |
oeisdata/seq/A354/A354501.seq
|
609422e8f4b8cdd2c74f97b9be08cfa6
|
A354502
|
Squarefree semiprimes p*q such that (p*q+1+p-q)/2 and (p*q+1+q-p)/2 are prime.
|
[
"35",
"65",
"77",
"133",
"143",
"161",
"209",
"215",
"221",
"235",
"265",
"335",
"377",
"391",
"403",
"413",
"451",
"517",
"527",
"551",
"553",
"565",
"583",
"623",
"635",
"667",
"685",
"707",
"721",
"731",
"763",
"779",
"793",
"817",
"835",
"851",
"871",
"893",
"917",
"923",
"965",
"1007",
"1057",
"1067",
"1133",
"1147",
"1157",
"1207",
"1243",
"1247",
"1271",
"1273",
"1313",
"1333",
"1337",
"1363",
"1385"
] |
[
"nonn",
"less"
] | 20 | 1 | 1 |
[
"A006881",
"A354502"
] | null |
J. M. Bergot and Robert Israel, Aug 15 2022
| 2024-03-01T17:12:30 |
oeisdata/seq/A354/A354502.seq
|
5134f4d1eb4c938d90f913e5cbb6ccfd
|
A354503
|
Expansion of e.g.f. ( Product_{k>0} (1 + x^k)^(1/k) )^exp(x).
|
[
"1",
"1",
"3",
"14",
"67",
"424",
"3093",
"26060",
"233917",
"2427224",
"27565317",
"339002146",
"4450167269",
"63343680802",
"964189902141",
"15769859929260",
"270255218753593",
"4913097747513800",
"94513145955643993",
"1904990351069631390",
"40153307898034641361",
"893402292594225679438"
] |
[
"nonn"
] | 16 | 0 | 3 |
[
"A347915",
"A354503",
"A354504",
"A354506",
"A356392"
] | null |
Seiichi Manyama, Aug 15 2022
| 2022-08-16T10:21:24 |
oeisdata/seq/A354/A354503.seq
|
377df913e964f15dc56be9649a32adbe
|
A354504
|
Expansion of e.g.f. ( Product_{k>0} (1 + x^k)^k )^exp(x).
|
[
"1",
"1",
"6",
"48",
"402",
"4375",
"54595",
"777189",
"12284188",
"215999025",
"4132338673",
"85640640877",
"1910121348674",
"45571124446445",
"1157169377895739",
"31150000798832647",
"885481496002286200",
"26498034473000080321",
"832407848080194500301",
"27378188500890922864153"
] |
[
"nonn"
] | 15 | 0 | 3 |
[
"A347915",
"A354503",
"A354504",
"A354508",
"A356394"
] | null |
Seiichi Manyama, Aug 15 2022
| 2022-08-16T10:19:49 |
oeisdata/seq/A354/A354504.seq
|
93092db2ff263e662d65e8bb52faba22
|
A354505
|
Expansion of e.g.f. ( Product_{k>0} (1 + x^k)^(1/k!) )^exp(x).
|
[
"1",
"1",
"3",
"13",
"54",
"291",
"1778",
"12167",
"82869",
"655100",
"5658257",
"51691806",
"454932679",
"4527660281",
"48270581011",
"553646849053",
"5561424579562",
"72988254250439",
"1010390962699396",
"12295679951427509",
"67360732923382327",
"1515500302797716376",
"45199587363022824107",
"1001538050395504921200",
"-699211952404047871075"
] |
[
"sign"
] | 14 | 0 | 3 |
[
"A354505",
"A354509",
"A356402"
] | null |
Seiichi Manyama, Aug 15 2022
| 2022-08-16T10:20:03 |
oeisdata/seq/A354/A354505.seq
|
52ea6a978e0aec0e037e84cfaf360ba7
|
A354506
|
a(n) = n! * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+1) )/(k * (n-k)!).
|
[
"1",
"2",
"7",
"14",
"63",
"284",
"2385",
"3940",
"87717",
"940126",
"12743267",
"30055618",
"562302323",
"9005878920",
"423435780989",
"2080544097000",
"24457758561001",
"444510436079706",
"17533073308723423",
"46973556239255702",
"7501223613055891783",
"178483805340054632084",
"4396051786608296882889",
"-31788150263554644516724"
] |
[
"sign"
] | 13 | 1 | 2 |
[
"A048272",
"A354506",
"A354507",
"A354508",
"A356389"
] | null |
Seiichi Manyama, Aug 15 2022
| 2022-08-16T10:20:43 |
oeisdata/seq/A354/A354506.seq
|
e3f34836e06b23e6de4a54b2af952c89
|
A354507
|
a(n) = n! * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+1) * d )/(k * (n-k)!).
|
[
"1",
"3",
"14",
"48",
"269",
"1615",
"12662",
"73528",
"836817",
"8476243",
"99348534",
"948849176",
"13193115597",
"177346261391",
"3684976294222",
"45021819481808",
"734808219625345",
"13524660020400771",
"290452222949307070",
"4639956700466396256",
"128621330002689008237",
"2735863084773695212719"
] |
[
"nonn"
] | 14 | 1 | 2 |
[
"A000593",
"A354506",
"A354507",
"A354508",
"A356390"
] | null |
Seiichi Manyama, Aug 15 2022
| 2022-08-16T10:20:54 |
oeisdata/seq/A354/A354507.seq
|
ce0da620af6cf44c541e784c0a491545
|
A354508
|
a(n) = n! * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+1) * d^2 )/(k * (n-k)!).
|
[
"1",
"5",
"32",
"168",
"1189",
"8785",
"77384",
"646296",
"7306737",
"79997893",
"1005481784",
"12518370128",
"184109233125",
"2671256865121",
"47934480000112",
"754158322407248",
"13813898274148737",
"262680987222463269",
"5518034466415262320",
"107988236156057411096",
"2605128008760639636677"
] |
[
"nonn"
] | 14 | 1 | 2 |
[
"A078306",
"A354506",
"A354507",
"A354508",
"A356391"
] | null |
Seiichi Manyama, Aug 15 2022
| 2022-08-16T10:21:03 |
oeisdata/seq/A354/A354508.seq
|
76e544fb33c942d5a44c2df31a4475f4
|
A354509
|
a(n) = n! * Sum_{k=1..n} ( Sum_{d|k} (-1)^(d+1)/(d * (k/d)!) )/(n-k)!.
|
[
"1",
"2",
"6",
"5",
"5",
"-8",
"560",
"-5997",
"-14765",
"176826",
"5206410",
"-42491623",
"-427057527",
"-412183484",
"147180377804",
"-569782989113",
"-8367671807033",
"-119681999820906",
"4440973420854454",
"-121033449284728099",
"49772248126885197",
"36615485147317407728",
"1696495197400394891912"
] |
[
"sign"
] | 15 | 1 | 2 |
[
"A352013",
"A354505",
"A354509",
"A356401"
] | null |
Seiichi Manyama, Aug 15 2022
| 2022-08-16T10:21:13 |
oeisdata/seq/A354/A354509.seq
|
825bf33bde308a46a49be6eea6bb9722
|
A354510
|
Primes of the form p+q^2+r where p,q,r are three consecutive members of A007528.
|
[
"13007",
"28211",
"36857",
"39227",
"86441",
"272507",
"345731",
"459671",
"467867",
"553529",
"599087",
"746507",
"777911",
"788561",
"910127",
"1354901",
"1425653",
"1512923",
"1587587",
"1710869",
"2039171",
"2509061",
"2624411",
"3196913",
"3617597",
"3896657",
"4161611",
"4260077",
"4359749",
"4460549",
"4536893",
"4639757",
"5171093",
"5280791",
"5673911",
"5963351"
] |
[
"nonn"
] | 15 | 1 | 1 |
[
"A007528",
"A354510"
] | null |
J. M. Bergot and Robert Israel, Aug 16 2022
| 2022-08-18T11:45:01 |
oeisdata/seq/A354/A354510.seq
|
c60fa84a122027b9d247f00b71ef6520
|
A354511
|
Number of SAWs crossing a square domain of the hexagonal lattice.
|
[
"2",
"14",
"264",
"21512",
"5663596",
"6478476233",
"23432328776346",
"365121393771314359",
"18039965927005597824652",
"3847346539490622663060402802",
"2604549807872636495439504536518768",
"7613280873970130888072912524910312775000",
"70659728324509466176595292882340210105184200002"
] |
[
"nonn"
] | 10 | 1 | 1 |
[
"A001006",
"A002026",
"A007764",
"A116485",
"A354511"
] | null |
Vaclav Kotesovec, Aug 16 2022
| 2022-08-16T05:14:37 |
oeisdata/seq/A354/A354511.seq
|
c2143247e33d030351f1895be88d2c76
|
A354512
|
Number of solutions m >= 2 to m - gpf(m) = n, gpf = A006530.
|
[
"0",
"1",
"1",
"0",
"1",
"2",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"2",
"2",
"0",
"1",
"0",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"0",
"2",
"1",
"2",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"0",
"1",
"0",
"2",
"1",
"1",
"0",
"2",
"1",
"1",
"1",
"1",
"0",
"1",
"2",
"1",
"0",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"0",
"0",
"1",
"1",
"0",
"2",
"1",
"1",
"1",
"1",
"0",
"2"
] |
[
"nonn",
"easy"
] | 25 | 1 | 6 |
[
"A001221",
"A006530",
"A076563",
"A354512",
"A354514",
"A354515",
"A354516",
"A354525",
"A354526",
"A354527"
] | null |
Jianing Song, Aug 16 2022
| 2022-08-17T05:07:13 |
oeisdata/seq/A354/A354512.seq
|
32ef3a7a71838361309dc20e0779ef11
|
A354513
|
The numbers whose square's position in the Wythoff array is immediately followed by another square in the next column.
|
[
"11",
"386",
"2441",
"25748423",
"637519684",
"2799936925",
"3934324789543",
"127501370029150",
"21274660147684109",
"644571595359295797",
"15845190736671957299",
"995980378496501932493",
"47375682236837399943653",
"213688560255016550712685",
"28372206851301867342910959",
"3120729065082950391169492805"
] |
[
"nonn"
] | 64 | 1 | 1 |
[
"A001622",
"A026274",
"A035513",
"A225204",
"A225205",
"A352538",
"A354513",
"A354549"
] | null |
Chittaranjan Pardeshi, Aug 16 2022
| 2024-10-06T12:25:33 |
oeisdata/seq/A354/A354513.seq
|
e4186bd2065f742e036f318e0ad36c15
|
A354514
|
Numbers k such that m - gpf(m) = k has solutions m >= 2, gpf = A006530.
|
[
"0",
"2",
"3",
"5",
"6",
"7",
"9",
"10",
"11",
"13",
"14",
"15",
"17",
"19",
"20",
"21",
"22",
"23",
"24",
"25",
"26",
"28",
"29",
"30",
"31",
"33",
"34",
"35",
"37",
"38",
"39",
"40",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"49",
"51",
"52",
"53",
"55",
"56",
"57",
"58",
"59",
"61",
"62",
"63",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"73",
"74",
"75",
"76",
"77",
"78",
"79",
"82",
"83",
"85",
"86",
"87",
"88"
] |
[
"nonn",
"easy"
] | 17 | 1 | 2 |
[
"A006530",
"A076563",
"A151800",
"A354512",
"A354514",
"A354515"
] | null |
Jianing Song, Aug 16 2022
| 2022-08-17T05:07:33 |
oeisdata/seq/A354/A354514.seq
|
a127d47386aaad181398988051b6ea16
|
A354515
|
Numbers k such that m - gpf(m) = k has no solution m >= 2, gpf = A006530.
|
[
"1",
"4",
"8",
"12",
"16",
"18",
"27",
"32",
"36",
"48",
"50",
"54",
"60",
"64",
"72",
"80",
"81",
"84",
"90",
"96",
"100",
"108",
"112",
"125",
"128",
"132",
"135",
"144",
"147",
"150",
"160",
"162",
"176",
"180",
"192",
"196",
"198",
"200",
"208",
"210",
"216",
"224",
"225",
"234",
"242",
"243",
"250",
"252",
"256",
"270",
"275",
"280",
"288",
"294",
"300",
"306",
"320",
"324"
] |
[
"nonn",
"easy"
] | 18 | 1 | 2 |
[
"A006530",
"A076563",
"A354512",
"A354514",
"A354515"
] | null |
Jianing Song, Aug 16 2022
| 2022-08-17T05:07:05 |
oeisdata/seq/A354/A354515.seq
|
00334212cf5bd6d388807171b55ae352
|
A354516
|
Smallest k such that m - gpf(m) = k has exactly n solutions m >= 2, gpf = A006530; or -1 if no such k exists.
|
[
"1",
"2",
"6",
"483",
"1660577"
] |
[
"nonn",
"hard",
"more"
] | 14 | 0 | 2 |
[
"A006530",
"A076563",
"A354512",
"A354516",
"A354525"
] | null |
Jianing Song, Aug 16 2022
| 2022-08-17T00:00:19 |
oeisdata/seq/A354/A354516.seq
|
5d2d897a991253484c3fce7098d0a0cb
|
A354517
|
Expansion of e.g.f. cos(x)^exp(x).
|
[
"1",
"0",
"-1",
"-3",
"-5",
"10",
"134",
"742",
"2325",
"-2820",
"-118756",
"-1138368",
"-7132025",
"-20945990",
"196411214",
"4438271692",
"50498101545",
"400644382200",
"1571151012344",
"-16415635331328",
"-500300343321365",
"-7486919544207050",
"-81415563206142166",
"-563533196469890228"
] |
[
"sign"
] | 16 | 0 | 4 |
[
"A000248",
"A009189",
"A215515",
"A354517",
"A354518",
"A354519"
] | null |
Seiichi Manyama, Aug 16 2022
| 2022-08-17T03:51:04 |
oeisdata/seq/A354/A354517.seq
|
d8ce1f166ae8ba19a0153970d7de99c3
|
A354518
|
Expansion of e.g.f. cosh(x)^exp(x).
|
[
"1",
"0",
"1",
"3",
"7",
"30",
"166",
"798",
"4117",
"27660",
"196756",
"1328448",
"9866407",
"86205210",
"759842266",
"6460661028",
"60841732777",
"651349676280",
"6795873687496",
"67981177154688",
"770224145659627",
"9854500496860470",
"116983085896035646",
"1301594922821009028",
"17440543467561038557"
] |
[
"sign"
] | 22 | 0 | 4 |
[
"A000248",
"A003727",
"A215518",
"A354517",
"A354518",
"A354520"
] | null |
Seiichi Manyama, Aug 16 2022
| 2022-08-17T10:27:13 |
oeisdata/seq/A354/A354518.seq
|
e144691d8e53861770626b0805c4daba
|
A354519
|
Expansion of e.g.f. exp(x) * log(sec(x)).
|
[
"0",
"1",
"3",
"8",
"20",
"61",
"203",
"888",
"4080",
"24001",
"140283",
"1028048",
"7248020",
"63374221",
"522164243",
"5299033488",
"49924707840",
"576514338721",
"6110861416083",
"79100066353208",
"931434877343540",
"13355627237749501",
"172948115797623803",
"2720827878727067208",
"38424408320191299120"
] |
[
"nonn"
] | 25 | 1 | 3 |
[
"A000182",
"A354517",
"A354519",
"A354520"
] | null |
Seiichi Manyama, Aug 16 2022
| 2023-04-15T15:25:11 |
oeisdata/seq/A354/A354519.seq
|
1e13fc7cc4877cc17a1066a386099b82
|
A354520
|
Expansion of e.g.f. exp(x) * log(cosh(x)).
|
[
"0",
"1",
"3",
"4",
"0",
"1",
"63",
"64",
"-1320",
"-1319",
"49203",
"49204",
"-2653560",
"-2653559",
"196707423",
"196707424",
"-19194804720",
"-19194804719",
"2385684870723",
"2385684870724",
"-367985503366800",
"-367985503366799",
"68980888889771103",
"68980888889771104",
"-15445553274667315800"
] |
[
"sign"
] | 28 | 1 | 3 |
[
"A000182",
"A354518",
"A354519",
"A354520"
] | null |
Seiichi Manyama, Aug 16 2022
| 2023-04-15T15:53:56 |
oeisdata/seq/A354/A354520.seq
|
14ead06d0e8a2397f7cb989de5b2e8dd
|
A354521
|
a(n) is the position of the first letter in the US English name of n that can also be found in the English name of n+1.
|
[
"2",
"1",
"1",
"3",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1"
] |
[
"nonn",
"easy",
"word"
] | 47 | 0 | 1 | null | null |
Ray G. Opao, Aug 16 2022
| 2022-10-01T19:44:40 |
oeisdata/seq/A354/A354521.seq
|
a5e81a608ab27b4fec51609f07723ee8
|
A354522
|
Square array A(n, k), n, k >= 0, read by antidiagonals; A(n, k) = g(f(n) + f(k)) where f denotes A001057 and g denotes its inverse.
|
[
"0",
"1",
"1",
"2",
"3",
"2",
"3",
"0",
"0",
"3",
"4",
"5",
"4",
"5",
"4",
"5",
"2",
"1",
"1",
"2",
"5",
"6",
"7",
"6",
"7",
"6",
"7",
"6",
"7",
"4",
"3",
"0",
"0",
"3",
"4",
"7",
"8",
"9",
"8",
"9",
"8",
"9",
"8",
"9",
"8",
"9",
"6",
"5",
"2",
"1",
"1",
"2",
"5",
"6",
"9",
"10",
"11",
"10",
"11",
"10",
"11",
"10",
"11",
"10",
"11",
"10",
"11",
"8",
"7",
"4",
"3",
"0",
"0",
"3",
"4",
"7",
"8",
"11",
"12",
"13",
"12",
"13",
"12",
"13",
"12",
"13",
"12",
"13",
"12",
"13",
"12"
] |
[
"nonn",
"tabl"
] | 34 | 0 | 4 |
[
"A001057",
"A014601",
"A014681",
"A047264",
"A047521",
"A354522",
"A355278",
"A357144"
] | null |
Rémy Sigrist, Sep 14 2022
| 2022-09-18T12:37:54 |
oeisdata/seq/A354/A354522.seq
|
5d3963a277b01caf806e47cb80f544b2
|
A354523
|
Number of distinct letters in the English word for n that can also be found in the English word for n+1.
|
[
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"2",
"3",
"2",
"4",
"4",
"4",
"4",
"3",
"4",
"3",
"5",
"6",
"5",
"6",
"6",
"6",
"6",
"5",
"6",
"3",
"5",
"6",
"5",
"5",
"6",
"5",
"6",
"6",
"6",
"3",
"5",
"5",
"5",
"5",
"5",
"6",
"6",
"6",
"7",
"4",
"4",
"5",
"4",
"5",
"4",
"4",
"5",
"5",
"5",
"3",
"5",
"6",
"5",
"6",
"6",
"5",
"5",
"6",
"6",
"5",
"6",
"7",
"6",
"7",
"7",
"7",
"6",
"6",
"7",
"4",
"6",
"7",
"6",
"7",
"7",
"6",
"7",
"6",
"6",
"5",
"5",
"6",
"5",
"6",
"6",
"5",
"6",
"5",
"5",
"2",
"7"
] |
[
"nonn",
"easy",
"word"
] | 24 | 0 | 1 | null | null |
Ray G. Opao, Aug 16 2022
| 2022-10-01T19:45:30 |
oeisdata/seq/A354/A354523.seq
|
c3149df1cfeee3d9a744b0c9888e0705
|
A354524
|
Primes p such that p+1 is the concatenation of a power of 3 and a power of 2.
|
[
"11",
"13",
"17",
"31",
"37",
"97",
"131",
"163",
"271",
"277",
"331",
"811",
"1511",
"2437",
"2731",
"3511",
"7297",
"9127",
"9511",
"18191",
"21871",
"27127",
"65617",
"72931",
"196831",
"196837",
"278191",
"332767",
"729511",
"812047",
"1262143",
"1524287",
"1968331",
"2187511",
"5314411",
"5314417",
"5904931",
"6561127",
"7298191",
"15943237",
"47829697",
"53144131"
] |
[
"nonn",
"base"
] | 15 | 1 | 1 |
[
"A068715",
"A068801",
"A354524"
] | null |
J. M. Bergot and Robert Israel, Aug 16 2022
| 2022-08-18T11:45:16 |
oeisdata/seq/A354/A354524.seq
|
d83c2ecc91048e3e517407c3c04a2fe7
|
A354525
|
Numbers k such that A354512(k) = A001221(k).
|
[
"1",
"2",
"3",
"5",
"6",
"7",
"9",
"11",
"13",
"14",
"15",
"17",
"19",
"21",
"23",
"25",
"29",
"31",
"33",
"35",
"37",
"41",
"43",
"45",
"47",
"49",
"51",
"53",
"55",
"59",
"61",
"62",
"67",
"69",
"71",
"73",
"77",
"79",
"83",
"85",
"89",
"91",
"93",
"95",
"97",
"101",
"103",
"107",
"109",
"113",
"115",
"119",
"121",
"127",
"131",
"133",
"137",
"139",
"141",
"143",
"145",
"149",
"151",
"155",
"157"
] |
[
"nonn",
"easy"
] | 22 | 1 | 2 |
[
"A001221",
"A006530",
"A354512",
"A354525",
"A354526",
"A354527",
"A354531",
"A354532",
"A354533",
"A354534"
] | null |
Jianing Song, Aug 16 2022
| 2023-06-16T03:17:04 |
oeisdata/seq/A354/A354525.seq
|
f220556827dfa05c18f7e4f6e1168a8a
|
A354526
|
Numbers k such that A354512(k) < omega(k); complement of A354525.
|
[
"4",
"8",
"10",
"12",
"16",
"18",
"20",
"22",
"24",
"26",
"27",
"28",
"30",
"32",
"34",
"36",
"38",
"39",
"40",
"42",
"44",
"46",
"48",
"50",
"52",
"54",
"56",
"57",
"58",
"60",
"63",
"64",
"65",
"66",
"68",
"70",
"72",
"74",
"75",
"76",
"78",
"80",
"81",
"82",
"84",
"86",
"87",
"88",
"90",
"92",
"94",
"96",
"98",
"99",
"100",
"102",
"104",
"105",
"106",
"108",
"110",
"111",
"112",
"114",
"116",
"117"
] |
[
"nonn",
"easy"
] | 16 | 1 | 1 |
[
"A001221",
"A006530",
"A354512",
"A354526",
"A354527"
] | null |
Jianing Song, Aug 16 2022
| 2022-08-17T05:07:26 |
oeisdata/seq/A354/A354526.seq
|
8a0bd733b77d1adf9ccdd7e50e94d9d9
|
A354527
|
a(n) = A001221(n) - A354512(n).
|
[
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"2",
"0",
"0",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"2",
"0",
"1",
"0",
"1",
"0",
"2",
"0",
"1",
"1",
"1",
"0",
"2",
"0",
"1",
"0",
"1",
"0",
"2",
"0",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"1",
"1",
"0",
"3",
"0",
"0",
"1",
"1",
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"2",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"2",
"1",
"1",
"0",
"3",
"0",
"1",
"1",
"1",
"0",
"3",
"0"
] |
[
"nonn",
"easy"
] | 18 | 1 | 12 |
[
"A001221",
"A006530",
"A354512",
"A354525",
"A354526",
"A354527"
] | null |
Jianing Song, Aug 16 2022
| 2022-08-17T05:07:40 |
oeisdata/seq/A354/A354527.seq
|
c6b76dbcfd9b2d2c820b2fb0730d2033
|
A354528
|
Square array T(m,n) read by antidiagonals - see Comments for definition.
|
[
"0",
"1",
"1",
"3",
"5",
"3",
"7",
"12",
"12",
"7",
"11",
"21",
"23",
"21",
"11",
"17",
"32",
"39",
"32",
"17",
"23",
"45",
"55",
"61",
"55",
"45",
"23",
"31",
"60",
"77",
"87",
"77",
"60",
"31",
"39",
"77",
"99",
"117",
"119",
"117",
"99",
"77",
"39",
"49",
"96",
"127",
"151",
"161",
"151",
"127",
"96",
"49",
"59",
"117",
"155",
"189",
"203",
"213"
] |
[
"nonn",
"tabl"
] | 26 | 1 | 4 |
[
"A028347",
"A047838",
"A179094",
"A354528",
"A354529"
] | null |
Sela Fried, Aug 16 2022
| 2022-09-23T03:46:56 |
oeisdata/seq/A354/A354528.seq
|
efcc34eaa51bfe131d4fa095b2d40906
|
A354529
|
a(1) = 3, a(2) = 12 and a(n) = (3n^2+8n-2)/2 if n is even or = (3n^2+8n-5)/2, if n is odd, for n >= 3.
|
[
"3",
"12",
"23",
"39",
"55",
"77",
"99",
"127",
"155",
"189",
"223",
"263",
"303",
"349",
"395",
"447",
"499",
"557",
"615",
"679",
"743",
"813",
"883",
"959",
"1035",
"1117",
"1199",
"1287",
"1375",
"1469",
"1563",
"1663",
"1763",
"1869",
"1975",
"2087",
"2199",
"2317",
"2435",
"2559",
"2683",
"2813",
"2943",
"3079",
"3215",
"3357",
"3499",
"3647",
"3795",
"3949",
"4103",
"4263",
"4423"
] |
[
"nonn",
"easy"
] | 33 | 1 | 1 |
[
"A028347",
"A047838",
"A179094",
"A354528",
"A354529"
] | null |
Sela Fried, Aug 16 2022
| 2022-09-11T10:30:54 |
oeisdata/seq/A354/A354529.seq
|
ae20eda7c06e911f9e725d7007353f47
|
A354530
|
Numbers k such that k^2 is a minimal number; numbers k whose square is in A007416.
|
[
"1",
"2",
"4",
"6",
"8",
"12",
"24",
"30",
"32",
"36",
"60",
"64",
"72",
"96",
"120",
"180",
"192",
"210",
"216",
"256",
"288",
"360",
"420",
"480",
"512",
"576",
"768",
"840",
"864",
"900",
"960",
"1080",
"1260",
"1440",
"1536",
"1680",
"1728",
"1800",
"2048",
"2304",
"2520",
"2880",
"3360",
"3840",
"4320",
"4608",
"4620",
"5400",
"6144",
"6300",
"6720",
"6912",
"7200",
"7560"
] |
[
"nonn",
"easy"
] | 28 | 1 | 2 |
[
"A000005",
"A007416",
"A016017",
"A025487",
"A071571",
"A166721",
"A166722",
"A354530"
] | null |
Jianing Song, Aug 16 2022
| 2022-09-04T12:35:29 |
oeisdata/seq/A354/A354530.seq
|
f8e15ceffb5e8f125856d6a1c7da8c2c
|
A354531
|
Numbers k such that 2*(2^k-1) is in A354525.
|
[
"1",
"2",
"3",
"5",
"7",
"9",
"13",
"17",
"19",
"31",
"61",
"67",
"89",
"107",
"127",
"137",
"521",
"607",
"727"
] |
[
"nonn",
"hard",
"more"
] | 25 | 1 | 2 |
[
"A000043",
"A354525",
"A354531",
"A354532",
"A354533",
"A354536"
] | null |
Jianing Song, Aug 16 2022
| 2025-01-21T09:01:49 |
oeisdata/seq/A354/A354531.seq
|
9afc0d9bed2903cdb0098b9ce4be7ee6
|
A354532
|
Numbers k that are not Mersenne exponents (A000043) such that 2*(2^k-1) is in A354525.
|
[
"1",
"9",
"67",
"137",
"727"
] |
[
"nonn",
"hard",
"more"
] | 24 | 1 | 2 |
[
"A000043",
"A354525",
"A354531",
"A354532",
"A354534",
"A354537"
] | null |
Jianing Song, Aug 16 2022
| 2025-01-21T09:01:45 |
oeisdata/seq/A354/A354532.seq
|
1fd73d52a2c92f6fd89bd3405b9b4fc3
|
A354533
|
Even terms in A354525.
|
[
"2",
"6",
"14",
"62",
"254",
"1022",
"16382",
"262142",
"1048574",
"4294967294",
"4611686018427387902",
"295147905179352825854",
"1237940039285380274899124222",
"324518553658426726783156020576254",
"340282366920938463463374607431768211454",
"348449143727040986586495598010130648530942"
] |
[
"nonn",
"hard"
] | 17 | 1 | 1 |
[
"A006530",
"A354525",
"A354531",
"A354532",
"A354533",
"A354534",
"A354536"
] | null |
Jianing Song, Aug 16 2022
| 2022-08-17T10:15:18 |
oeisdata/seq/A354/A354533.seq
|
7da75374a64592d46e2b361d117456a8
|
A354534
|
Even terms in A354525 that are not twice the Mersenne primes (A000668).
|
[
"2",
"1022",
"295147905179352825854",
"348449143727040986586495598010130648530942"
] |
[
"nonn",
"hard"
] | 21 | 1 | 1 |
[
"A006530",
"A354525",
"A354532",
"A354533",
"A354534",
"A354537"
] | null |
Jianing Song, Aug 16 2022
| 2025-01-21T09:05:00 |
oeisdata/seq/A354/A354534.seq
|
0c7ae5773d067f6c9d82cf6eb768c96a
|
A354535
|
a(n) is the number of different tile sizes after n iterations of the "Square Multiscale" substitution.
|
[
"1",
"2",
"3",
"4",
"5",
"5",
"6",
"6",
"7",
"7",
"8",
"8",
"8",
"9",
"9",
"9",
"10",
"10",
"10",
"11",
"11",
"11",
"11",
"12",
"12",
"12",
"12",
"13",
"13",
"13",
"13",
"14",
"14",
"14",
"14",
"14",
"15",
"15",
"15",
"15",
"15",
"16",
"16",
"16",
"16",
"16",
"17",
"17",
"17",
"17",
"17",
"17",
"18",
"18",
"18",
"18",
"18",
"18",
"19",
"19",
"19",
"19",
"19",
"19",
"20",
"20",
"20",
"20",
"20"
] |
[
"nonn"
] | 16 | 0 | 2 |
[
"A329919",
"A329927",
"A354535"
] | null |
Rémy Sigrist, Aug 17 2022
| 2022-08-21T06:12:34 |
oeisdata/seq/A354/A354535.seq
|
2b177213c56e3e6bb075c8a95871ff06
|
A354536
|
Numbers k such that 2*k is in A354525.
|
[
"1",
"3",
"7",
"31",
"127",
"511",
"8191",
"131071",
"524287",
"2147483647",
"2305843009213693951",
"147573952589676412927",
"618970019642690137449562111",
"162259276829213363391578010288127",
"170141183460469231731687303715884105727",
"174224571863520493293247799005065324265471"
] |
[
"nonn",
"hard"
] | 20 | 1 | 2 |
[
"A006530",
"A354525",
"A354531",
"A354532",
"A354533",
"A354536",
"A354537"
] | null |
Jianing Song, Aug 17 2022
| 2025-01-21T13:31:29 |
oeisdata/seq/A354/A354536.seq
|
8de33d4dda903878e6d78cac043af194
|
A354537
|
Numbers k that are not Mersenne primes (A000668) such that 2*k is in A354525.
|
[
"1",
"511",
"147573952589676412927",
"174224571863520493293247799005065324265471"
] |
[
"nonn",
"hard"
] | 22 | 1 | 2 |
[
"A000668",
"A354525",
"A354532",
"A354534",
"A354536",
"A354537"
] | null |
Jianing Song, Aug 17 2022
| 2025-01-21T13:32:41 |
oeisdata/seq/A354/A354537.seq
|
fb0e9539010c17fa61980a3a9f84b66e
|
A354538
|
a(n) is the least k such that A322523(k) = n.
|
[
"1",
"3",
"8",
"17",
"44",
"125",
"368",
"1097",
"3284",
"9845",
"29528",
"88577",
"265724",
"797165",
"2391488",
"7174457",
"21523364",
"64570085",
"193710248",
"581130737",
"1743392204",
"5230176605",
"15690529808",
"47071589417",
"141214768244",
"423644304725",
"1270932914168",
"3812798742497",
"11438396227484"
] |
[
"nonn",
"easy"
] | 42 | 0 | 2 |
[
"A322523",
"A354538"
] | null |
Hugh Williamson, Aug 17 2022
| 2024-06-10T13:31:38 |
oeisdata/seq/A354/A354538.seq
|
4dc178600cd547bbb60b526cf0ea5f9f
|
A354539
|
Number of decorated Dyck paths of length n without peaks at level 1 ending at arbitrary levels.
|
[
"1",
"1",
"1",
"2",
"5",
"8",
"18",
"31",
"71",
"126",
"290",
"527",
"1218",
"2253",
"5223",
"9796",
"22763",
"43170",
"100502",
"192347",
"448476",
"864887",
"2019121",
"3919162",
"9159252",
"17877619",
"41819003",
"82021628",
"192015633"
] |
[
"nonn"
] | 11 | 0 | 4 |
[
"A128723",
"A354539"
] | null |
R. J. Mathar, Aug 17 2022
| 2023-03-02T08:33:20 |
oeisdata/seq/A354/A354539.seq
|
0f55dc78cbb802006a9c39ab7025632a
|
A354540
|
Number of decorated Dyck paths of length n ending at arbitrary levels.
|
[
"1",
"1",
"2",
"3",
"7",
"11",
"26",
"43",
"102",
"175",
"416",
"733",
"1745",
"3137",
"7476",
"13651",
"32559",
"60199",
"143672",
"268369",
"640823",
"1207277",
"2884008",
"5472821",
"13078414",
"24973213",
"59696622",
"114609547",
"274037261",
"528622499",
"1264251474",
"2449053107"
] |
[
"nonn"
] | 10 | 0 | 3 | null | null |
R. J. Mathar, Aug 17 2022
| 2022-08-17T11:49:55 |
oeisdata/seq/A354/A354540.seq
|
8ac1984bbf4ba9dc884b0fa66e7a1869
|
A354541
|
Number of ways to tile a double-hexagon strip of n hexagons, using single and double hexagons.
|
[
"1",
"1",
"2",
"4",
"8",
"12",
"24",
"48",
"72",
"144",
"288",
"432",
"864",
"1728",
"2592",
"5184",
"10368",
"15552",
"31104",
"62208",
"93312",
"186624",
"373248",
"559872",
"1119744",
"2239488",
"3359232",
"6718464",
"13436928",
"20155392",
"40310784",
"80621568",
"120932352",
"241864704",
"483729408"
] |
[
"nonn",
"easy"
] | 23 | 0 | 3 | null | null |
Greg Dresden and Zeno Changze Song, Aug 17 2022
| 2024-05-28T18:29:09 |
oeisdata/seq/A354/A354541.seq
|
7a6093a65922e713b87905ed705cc2d3
|
A354542
|
Primes in A354543.
|
[
"3533",
"688277",
"6694673",
"40577149",
"55138957",
"86928683",
"120233569",
"353700679",
"363666767",
"394746449",
"665910173",
"697048171",
"1472815853",
"1526776393",
"1817357573",
"2179037593",
"2395963249",
"2548619561",
"2627434567",
"3047031863",
"3273354481",
"4524129787",
"6073626073",
"6586863131",
"9320100589",
"10836344773"
] |
[
"nonn"
] | 19 | 1 | 1 |
[
"A002476",
"A007528",
"A354542",
"A354543"
] | null |
J. M. Bergot and Robert Israel, Aug 17 2022
| 2022-08-18T11:46:01 |
oeisdata/seq/A354/A354542.seq
|
dacf2bd943cfc0b93236aaab94d8679a
|
A354543
|
Convolution of A007528 and A002476.
|
[
"35",
"142",
"357",
"746",
"1351",
"2250",
"3533",
"5248",
"7467",
"10232",
"13675",
"17910",
"22979",
"28972",
"35931",
"44192",
"53677",
"64392",
"76727",
"90640",
"106209",
"123614",
"142849",
"164232",
"187841",
"213802",
"242181",
"273080",
"306733",
"343266",
"382745",
"425218",
"470685",
"519740",
"572275",
"628302",
"688277",
"752440",
"820557",
"892634",
"969475"
] |
[
"nonn"
] | 12 | 2 | 1 |
[
"A002476",
"A007528",
"A354542",
"A354543"
] | null |
J. M. Bergot and Robert Israel, Aug 17 2022
| 2022-08-21T09:08:47 |
oeisdata/seq/A354/A354543.seq
|
36f555c0cbc3da8888a14bfe40845332
|
A354544
|
Table read by antidiagonals: T(n,k) (n >= 3, k >= 1) is the number of vertices formed in a regular n-gon by straight line segments when connecting the n corner vertices to the points dividing the sides into k equal parts.
|
[
"3",
"7",
"5",
"21",
"25",
"10",
"25",
"81",
"61",
"19",
"63",
"157",
"285",
"205",
"42",
"67",
"301",
"476",
"541",
"358",
"57",
"129",
"381",
"1020",
"1327",
"1526",
"681",
"135",
"133",
"665",
"1311",
"2185",
"2682",
"2417",
"1234",
"171",
"219",
"821",
"2215",
"3067",
"5250",
"5073",
"4716",
"2131",
"341",
"223",
"1109",
"2666",
"4921",
"7246",
"8937",
"8623",
"6861",
"3169",
"313"
] |
[
"nonn",
"tabl"
] | 20 | 3 | 1 |
[
"A007569",
"A331782",
"A354544",
"A355949",
"A356044"
] | null |
Scott R. Shannon, Aug 18 2022
| 2022-08-18T14:22:07 |
oeisdata/seq/A354/A354544.seq
|
e2a601e9f1ef6179b7723c83919b1c00
|
A354545
|
Expansion of e.g.f. exp(x)^( cos(x) + sin(x) ).
|
[
"1",
"1",
"3",
"4",
"9",
"-24",
"-143",
"-902",
"-1631",
"5176",
"109841",
"664302",
"1479841",
"-16079764",
"-240229975",
"-1395162974",
"126628545",
"101950486736",
"1118811398113",
"4468008939542",
"-46600859353919",
"-1019505781080044",
"-7952038289388071",
"10041106628453162"
] |
[
"sign"
] | 15 | 0 | 3 |
[
"A000248",
"A009189",
"A009214",
"A354545",
"A354546"
] | null |
Seiichi Manyama, Aug 18 2022
| 2022-08-18T10:19:33 |
oeisdata/seq/A354/A354545.seq
|
7210e85e1fe8ddf6fc59dd21b139606a
|
A354546
|
Expansion of e.g.f. exp(x)^( cos(x) - sin(x) ).
|
[
"1",
"1",
"-1",
"-8",
"-7",
"96",
"385",
"-1210",
"-14943",
"-5912",
"593361",
"2409298",
"-22935647",
"-236575468",
"590041257",
"20313729886",
"40488350401",
"-1659176093392",
"-11796304552991",
"120680593857514",
"1966312603184321",
"-4949789957167124",
"-288454178376442407",
"-849587090710029098"
] |
[
"sign"
] | 16 | 0 | 4 |
[
"A000248",
"A009189",
"A009214",
"A354545",
"A354546"
] | null |
Seiichi Manyama, Aug 18 2022
| 2022-08-18T10:19:51 |
oeisdata/seq/A354/A354546.seq
|
7b931cb78d1915459de6dddf33d56b3d
|
A354547
|
Least number k <= n such that sopfr(k) = sopfr(n).
|
[
"1",
"2",
"3",
"4",
"5",
"5",
"7",
"8",
"8",
"7",
"11",
"7",
"13",
"14",
"15",
"15",
"17",
"15",
"19",
"14",
"21",
"13",
"23",
"14",
"21",
"26",
"14",
"11",
"29",
"21",
"31",
"21",
"33",
"19",
"35",
"21",
"37",
"38",
"39",
"11",
"41",
"35",
"43",
"26",
"11",
"46",
"47",
"11",
"33",
"35",
"51",
"17",
"53",
"11",
"39",
"13",
"57",
"31",
"59",
"35",
"61",
"62",
"13",
"35",
"65",
"39",
"67",
"38"
] |
[
"nonn"
] | 41 | 1 | 2 |
[
"A001414",
"A056240",
"A064364",
"A354547"
] | null |
Jean-Marc Rebert, Aug 15 2022
| 2022-08-28T21:12:51 |
oeisdata/seq/A354/A354547.seq
|
8e0d2efd1d921d74cacfe46c737101fe
|
A354548
|
Number of edges in the graph of continuous discrete sections for a trivial bundle in a total space of the fiber bundle of size n.
|
[
"1",
"8",
"56",
"296",
"1380",
"5952"
] |
[
"nonn",
"more"
] | 26 | 1 | 2 |
[
"A000079",
"A016777",
"A081113",
"A126360",
"A188861",
"A354548"
] | null |
Sinuhe Perea, Aug 18 2022
| 2023-04-16T06:35:00 |
oeisdata/seq/A354/A354548.seq
|
f4874d4d837a18289f78b93a03b02a7a
|
A354549
|
Numbers k such that floor(k^2*phi) is a square, where phi = A001622 is the golden ratio.
|
[
"0",
"1",
"4",
"125",
"84277",
"1435150",
"9061191",
"249858189",
"2799936925",
"146234239784",
"1139643680683264",
"7471434609455791",
"21274660147684109",
"2911209509190673141",
"15845190736671957299",
"995980378496501932493",
"213688560255016550712685",
"28372206851301867342910959"
] |
[
"nonn"
] | 24 | 1 | 3 |
[
"A000201",
"A001622",
"A003622",
"A035513",
"A225204",
"A225205",
"A354549"
] | null |
Jianing Song, Aug 18 2022
| 2022-08-28T08:28:44 |
oeisdata/seq/A354/A354549.seq
|
67a9e4df33b7a3cdb181cc9643e3f357
|
A354550
|
Expansion of e.g.f. exp( x * exp(x^2/2) ).
|
[
"1",
"1",
"1",
"4",
"13",
"46",
"241",
"1156",
"6889",
"44668",
"300241",
"2328976",
"18390901",
"159273544",
"1461200833",
"13995753136",
"144068872081",
"1531949061136",
"17259159775969",
"202543867724608",
"2474236899786781",
"31633380519660256",
"417760492214548561",
"5751414293905728064"
] |
[
"nonn"
] | 22 | 0 | 4 |
[
"A000248",
"A216688",
"A354550",
"A354551",
"A354552"
] | null |
Seiichi Manyama, Aug 18 2022
| 2024-03-03T16:49:40 |
oeisdata/seq/A354/A354550.seq
|
14e03efa98b2c6ae65b9c6b87d3f68cd
|
A354551
|
Expansion of e.g.f. exp( x * exp(x^3/6) ).
|
[
"1",
"1",
"1",
"1",
"5",
"21",
"61",
"211",
"1401",
"8065",
"37241",
"240021",
"1997821",
"13856701",
"94418325",
"874328911",
"8304303281",
"69158458881",
"658339599601",
"7454839614985",
"78224066633781",
"805961931388741",
"9828080719704941",
"124199805022959051",
"1466207770078872745"
] |
[
"nonn"
] | 21 | 0 | 5 |
[
"A000248",
"A354550",
"A354551",
"A354552"
] | null |
Seiichi Manyama, Aug 18 2022
| 2025-03-03T13:08:37 |
oeisdata/seq/A354/A354551.seq
|
9f87880f6358a97b90f1264ab9346ad7
|
A354552
|
Expansion of e.g.f. exp( x * exp(x^4/24) ).
|
[
"1",
"1",
"1",
"1",
"1",
"6",
"31",
"106",
"281",
"946",
"7561",
"54286",
"281161",
"1207636",
"7997991",
"81996916",
"701522641",
"4580581916",
"29742355441",
"306369616636",
"3632198902321",
"34710574441096",
"276645112305871",
"2652825718776696",
"35647605796451881",
"458142859493786776"
] |
[
"nonn"
] | 17 | 0 | 6 |
[
"A000248",
"A354550",
"A354551",
"A354552"
] | null |
Seiichi Manyama, Aug 18 2022
| 2022-08-19T02:25:17 |
oeisdata/seq/A354/A354552.seq
|
d250e17cee71b15088ced8f5ec39718a
|
A354553
|
Expansion of e.g.f. exp( x * exp(x^3) ).
|
[
"1",
"1",
"1",
"1",
"25",
"121",
"361",
"3361",
"42001",
"275185",
"1819441",
"30777121",
"371238121",
"3057311401",
"44263763545",
"801096528961",
"9710981323681",
"125367419194081",
"2643123767954401",
"45840730383002305",
"646414025466298681",
"13258301279836276441"
] |
[
"nonn"
] | 18 | 0 | 5 |
[
"A000248",
"A216688",
"A354553",
"A354554"
] | null |
Seiichi Manyama, Aug 18 2022
| 2022-08-19T02:25:25 |
oeisdata/seq/A354/A354553.seq
|
1ddc2fe9de87e76772e0acb630486421
|
A354554
|
Expansion of e.g.f. exp( x * exp(x^4) ).
|
[
"1",
"1",
"1",
"1",
"1",
"121",
"721",
"2521",
"6721",
"196561",
"3659041",
"29993041",
"159762241",
"1686639241",
"60298558321",
"987112886761",
"9315623640961",
"76611297104161",
"2454331471018561",
"69805324167893281",
"1086439146068753281",
"11530308934656915481"
] |
[
"nonn"
] | 17 | 0 | 6 |
[
"A000248",
"A216688",
"A354553",
"A354554"
] | null |
Seiichi Manyama, Aug 18 2022
| 2022-08-19T02:25:33 |
oeisdata/seq/A354/A354554.seq
|
33f465beb76d135c77a5ceda0ee7a029
|
A354555
|
Rectangular array read by antidiagonals. T(m,n) is the number of degree n monic polynomials in GF_2[x] such that each irreducible factor in the prime factorization has multiplicity no greater than m, m>=1, n>=0.
|
[
"1",
"1",
"2",
"1",
"2",
"2",
"1",
"2",
"4",
"4",
"1",
"2",
"4",
"6",
"8",
"1",
"2",
"4",
"8",
"12",
"16",
"1",
"2",
"4",
"8",
"14",
"24",
"32",
"1",
"2",
"4",
"8",
"16",
"28",
"48",
"64",
"1",
"2",
"4",
"8",
"16",
"30",
"56",
"96",
"128",
"1",
"2",
"4",
"8",
"16",
"32",
"60",
"112",
"192",
"256",
"1",
"2",
"4",
"8",
"16",
"32",
"62",
"120",
"224",
"384",
"512",
"1",
"2",
"4",
"8",
"16",
"32",
"64",
"124",
"240",
"448",
"768",
"1024"
] |
[
"nonn",
"tabl"
] | 19 | 0 | 3 |
[
"A001037",
"A354555",
"A356583"
] | null |
Geoffrey Critzer, Aug 18 2022
| 2024-08-06T05:42:54 |
oeisdata/seq/A354/A354555.seq
|
1d5045013231bad79d323e5b8217ad6a
|
A354556
|
Numerators of a sequence related to the Secretary Problem with Multiple Stoppings.
|
[
"1",
"3",
"47",
"2761",
"4162637",
"380537052235603",
"705040594914523588948186792543",
"302500210177484374840641189918370275991590974715547528765249",
"49554292678269029432299170288905873298367846539726510384850403192729912522937262239403638817695466470734534217406992001"
] |
[
"nonn",
"frac"
] | 22 | 1 | 2 |
[
"A354556",
"A354557"
] | null |
José María Grau Ribas, May 28 2022
| 2022-08-01T08:11:18 |
oeisdata/seq/A354/A354556.seq
|
eb51fdfdf222d9738d35112172f2b54a
|
A354557
|
Denominators of a sequence related to the Secretary Problem with Multiple Stoppings.
|
[
"1",
"2",
"24",
"1152",
"1474560",
"117413668454400",
"193003573558876719588311040000",
"74500758812993473612938854416966977838930799571763200000000",
"11100726127423649454784549321327362347631758176882955145554591521918123315624957195621435513013513748480000000000000000"
] |
[
"nonn",
"frac"
] | 17 | 1 | 2 |
[
"A354556",
"A354557"
] | null |
José María Grau Ribas, May 28 2022
| 2022-08-01T08:11:11 |
oeisdata/seq/A354/A354557.seq
|
237d3d5ea87c2ff1f8a00e0a997d4f9a
|
A354558
|
Numbers k such that k and k+1 are both divisible by the square of their largest prime factor.
|
[
"8",
"49",
"242",
"288",
"675",
"1444",
"1681",
"2400",
"2645",
"6727",
"6859",
"9408",
"9800",
"10647",
"12167",
"13689",
"18490",
"23762",
"24299",
"26010",
"36517",
"47915",
"48734",
"57121",
"58080",
"59535",
"75809",
"85697",
"101250",
"103246",
"113568",
"118579",
"131043",
"142884",
"158949",
"182182",
"201019",
"212194",
"235224"
] |
[
"nonn"
] | 24 | 1 | 1 |
[
"A006530",
"A060355",
"A070003",
"A071178",
"A354558",
"A354559",
"A354560",
"A354562",
"A354563",
"A354564",
"A354565",
"A354566"
] | null |
Amiram Eldar, May 30 2022
| 2022-06-05T11:47:20 |
oeisdata/seq/A354/A354558.seq
|
f23ee6398033751a9ae2ef2949c68f68
|
A354559
|
The number of terms of A354558 that are <= 10^n.
|
[
"1",
"2",
"5",
"13",
"28",
"79",
"204",
"549",
"1509",
"4231",
"12072",
"36426",
"112589"
] |
[
"nonn",
"more"
] | 19 | 1 | 2 |
[
"A354558",
"A354559"
] | null |
Amiram Eldar, May 30 2022
| 2022-06-05T08:28:48 |
oeisdata/seq/A354/A354559.seq
|
645a6aa9625dce755ba94c8ab89ebc69
|
A354560
|
Numbers k such that k, k+1 and k+2 are all divisible by the square of their largest prime factor.
|
[
"1294298",
"9841094",
"158385500",
"1947793550",
"5833093013",
"11587121710",
"20944167840",
"22979821310",
"24604784814",
"267631935500",
"290672026412",
"956544588350",
"987988937343",
"2399283556900",
"2816075601855",
"4174608151758",
"4322550249043",
"6789218799999",
"10617595679778",
"16036630184409"
] |
[
"nonn"
] | 10 | 1 | 1 |
[
"A006530",
"A070003",
"A071178",
"A354558",
"A354560"
] | null |
Amiram Eldar, May 30 2022
| 2022-06-01T05:11:04 |
oeisdata/seq/A354/A354560.seq
|
cc7d4c36d909cc3adee1c409adbc8600
|
A354561
|
Numbers divisible by the cube of their largest prime factor.
|
[
"8",
"16",
"27",
"32",
"54",
"64",
"81",
"108",
"125",
"128",
"162",
"216",
"243",
"250",
"256",
"324",
"343",
"375",
"432",
"486",
"500",
"512",
"625",
"648",
"686",
"729",
"750",
"864",
"972",
"1000",
"1024",
"1029",
"1125",
"1250",
"1296",
"1331",
"1372",
"1458",
"1500",
"1715",
"1728",
"1875",
"1944",
"2000",
"2048",
"2058",
"2187",
"2197",
"2250",
"2401",
"2500"
] |
[
"nonn"
] | 16 | 1 | 1 |
[
"A006530",
"A036966",
"A070003",
"A071178",
"A349306",
"A354561",
"A354562"
] | null |
Amiram Eldar, May 30 2022
| 2022-06-01T05:11:54 |
oeisdata/seq/A354/A354561.seq
|
239480016264153432920983a5fb3bb9
|
A354562
|
Numbers k such that k and k+1 are both divisible by the cube of their largest prime factor.
|
[
"6859",
"11859210",
"18253460",
"38331320423",
"41807225999",
"49335445119",
"50788425848",
"67479324240",
"203534609200",
"245934780371",
"250355343420",
"581146348824",
"779369813871",
"1378677994836",
"2152196307260",
"2730426690524",
"3616995855087",
"5473549133744",
"6213312123347",
"6371699408179",
"8817143116903"
] |
[
"nonn"
] | 23 | 1 | 1 |
[
"A006530",
"A070003",
"A071178",
"A354558",
"A354561",
"A354562",
"A354563",
"A354564"
] | null |
Amiram Eldar, May 30 2022
| 2022-05-31T02:17:24 |
oeisdata/seq/A354/A354562.seq
|
2f009762430f21092d2e1fed9ed6bc5e
|
A354563
|
Numbers k such that P(k)^2 | k and P(k+1)^3 | (k+1), where P(k) = A006530(k) is the largest prime dividing k.
|
[
"242",
"2400",
"6859",
"10647",
"47915",
"57121",
"344604",
"499999",
"830465",
"1012499",
"1431125",
"2098853",
"2825760",
"2829123",
"3930399",
"5560691",
"11859210",
"12323584",
"13137830",
"18253460",
"18279039",
"21093749",
"30664296",
"32279841",
"33999932",
"37218852",
"38640401",
"38740085",
"41485688",
"45222737"
] |
[
"nonn"
] | 14 | 1 | 1 |
[
"A006530",
"A070003",
"A071178",
"A354558",
"A354562",
"A354563",
"A354564"
] | null |
Amiram Eldar, May 30 2022
| 2022-06-04T02:01:56 |
oeisdata/seq/A354/A354563.seq
|
452fe663d7321d51f3645d67ef38d944
|
A354564
|
Numbers k such that P(k)^3 | k and P(k+1)^2 | (k+1), where P(k) = A006530(k) is the largest prime dividing k.
|
[
"8",
"6859",
"12167",
"101250",
"328509",
"453962",
"482447",
"536238",
"598950",
"5619712",
"7170366",
"11449008",
"11667159",
"11859210",
"13428095",
"15054335",
"16541965",
"18085704",
"18253460",
"19450850",
"22173969",
"23049600",
"24039994",
"29911714",
"30959144",
"32580250",
"33229625",
"44126385",
"44321375"
] |
[
"nonn"
] | 13 | 1 | 1 |
[
"A006530",
"A070003",
"A071178",
"A354558",
"A354562",
"A354563",
"A354564"
] | null |
Amiram Eldar, May 30 2022
| 2022-06-04T02:01:49 |
oeisdata/seq/A354/A354564.seq
|
90ee5dd86ec8d94bde1a0273955e23bd
|
A354565
|
Numbers k such that P(k)^2 | k and P(k+1)^4 | (k+1), where P(k) = A006530(k) is the largest prime dividing k.
|
[
"242",
"2400",
"57121",
"499999",
"1012499",
"2825760",
"2829123",
"11859210",
"18279039",
"21093749",
"37218852",
"38740085",
"70799772",
"96393374",
"413428949",
"642837222",
"656356767",
"675975026",
"1065352364",
"1333564323",
"1418528255",
"2654744949",
"5547008142",
"8576868299",
"9515377949",
"10022519999"
] |
[
"nonn"
] | 12 | 1 | 1 |
[
"A006530",
"A070003",
"A071178",
"A354558",
"A354563",
"A354565",
"A354566"
] | null |
Amiram Eldar, May 30 2022
| 2022-06-04T02:47:21 |
oeisdata/seq/A354/A354565.seq
|
517e9bbf61fb44842b9e75db973cee82
|
A354566
|
Numbers k such that P(k)^4 | k and P(k+1)^2 | (k+1), where P(k) = A006530(k) is the largest prime dividing k.
|
[
"101250",
"11859210",
"23049600",
"32580250",
"131545575",
"162364824",
"969697050",
"1176565754",
"1271688417",
"1612089680",
"1862719859",
"2409451520",
"2441023914",
"3182903731",
"3697778084",
"4010283270",
"4329214629",
"6666661950",
"6932744126",
"7739389944",
"9188994752",
"11717364285",
"17306002674"
] |
[
"nonn"
] | 13 | 1 | 1 |
[
"A006530",
"A070003",
"A071178",
"A354558",
"A354564",
"A354565",
"A354566"
] | null |
Amiram Eldar, May 30 2022
| 2022-06-04T02:47:34 |
oeisdata/seq/A354/A354566.seq
|
1e4dadf4c958df77d2e40144aacb88d1
|
A354567
|
a(n) is the least number k such that P(k)^n | k and P(k+1)^n | (k+1), where P(k) = A006530(k) is the largest prime dividing k, or -1 if no such k exists.
|
[
"1",
"8",
"6859",
"11859210"
] |
[
"nonn",
"more",
"bref"
] | 8 | 1 | 2 |
[
"A006530",
"A071178",
"A354558",
"A354562",
"A354567"
] | null |
Amiram Eldar, May 30 2022
| 2022-05-30T16:31:54 |
oeisdata/seq/A354/A354567.seq
|
007c5a00be66c607a70ba9b943d57728
|
A354568
|
Irregular triangle read by rows: T(n,k) is the number of Hamiltonian cycles in the Kneser graph K(n,k), 1 <= k < n/2.
|
[
"1",
"3",
"12",
"0",
"60",
"155328"
] |
[
"nonn",
"tabf",
"more"
] | 18 | 3 | 2 |
[
"A001710",
"A301560",
"A354568"
] | null |
Pontus von Brömssen, Aug 18 2022
| 2024-08-03T12:36:12 |
oeisdata/seq/A354/A354568.seq
|
b58f8a22e4c73f886bdf98830ac2bea8
|
A354569
|
Ordered even leg lengths k (listed with multiplicity) of primitive Pythagorean triangles such that all odd prime factors of k are congruent to 1 (mod 4) and at least one prime factor is congruent to 1 (mod 4).
|
[
"20",
"20",
"40",
"40",
"52",
"52",
"68",
"68",
"80",
"80",
"100",
"100",
"104",
"104",
"116",
"116",
"136",
"136",
"148",
"148",
"160",
"160",
"164",
"164",
"200",
"200",
"208",
"208",
"212",
"212",
"232",
"232",
"244",
"244",
"260",
"260",
"260",
"260",
"272",
"272",
"292",
"292",
"296",
"296",
"320",
"320",
"328",
"328",
"340",
"340",
"340",
"340",
"356",
"356"
] |
[
"nonn"
] | 48 | 1 | 1 |
[
"A020882",
"A354569"
] | null |
Lothar Selle, Jun 05 2022
| 2022-06-22T02:29:27 |
oeisdata/seq/A354/A354569.seq
|
f996ad0416e93f05b74f13841fe24ce5
|
A354570
|
Ordered odd leg lengths k (listed with multiplicity) of primitive Pythagorean triangles such that all prime factors of k are congruent to 3 (mod 4).
|
[
"3",
"7",
"9",
"11",
"19",
"21",
"21",
"23",
"27",
"31",
"33",
"33",
"43",
"47",
"49",
"57",
"57",
"59",
"63",
"63",
"67",
"69",
"69",
"71",
"77",
"77",
"79",
"81",
"83",
"93",
"93",
"99",
"99",
"103",
"107",
"121",
"127",
"129",
"129",
"131",
"133",
"133",
"139",
"141",
"141",
"147",
"147",
"151",
"161",
"161",
"163",
"167",
"171",
"171",
"177",
"177",
"179",
"189",
"189",
"191"
] |
[
"nonn"
] | 54 | 1 | 1 |
[
"A004614",
"A120890",
"A354570",
"A354571"
] | null |
Lothar Selle, Jun 03 2022
| 2022-08-28T08:41:46 |
oeisdata/seq/A354/A354570.seq
|
8af49c285b95a88ded76524108ca5519
|
A354571
|
Ordered even leg lengths k (listed with multiplicity) of primitive Pythagorean triangles such that all odd prime factors of k are congruent to 3 (mod 4) and at least one prime factor is odd.
|
[
"12",
"12",
"24",
"24",
"28",
"28",
"36",
"36",
"44",
"44",
"48",
"48",
"56",
"56",
"72",
"72",
"76",
"76",
"84",
"84",
"84",
"84",
"88",
"88",
"92",
"92",
"96",
"96",
"108",
"108",
"112",
"112",
"124",
"124",
"132",
"132",
"132",
"132",
"144",
"144",
"152",
"152",
"168",
"168",
"168",
"168",
"172",
"172",
"176",
"176",
"184",
"184",
"188",
"188",
"192",
"192",
"196",
"196"
] |
[
"nonn"
] | 41 | 1 | 1 |
[
"A354570",
"A354571"
] | null |
Lothar Selle, Jun 04 2022
| 2022-08-30T13:34:22 |
oeisdata/seq/A354/A354571.seq
|
842e2db90d36319d8fdea762ed7bbea7
|
A354572
|
Prime partial sums of the primes == 1 (mod 6).
|
[
"7",
"107",
"211",
"739",
"1657",
"2953",
"4091",
"20479",
"23459",
"33713",
"35671",
"46133",
"60527",
"63127",
"77237",
"80209",
"86399",
"106277",
"127997",
"139871",
"178757",
"183361",
"197569",
"238853",
"255239",
"272171",
"353611",
"367019",
"394759",
"416089",
"460189",
"475421",
"625199",
"652499",
"808111",
"860393",
"903871",
"925979",
"959603",
"1005217"
] |
[
"nonn"
] | 17 | 1 | 1 |
[
"A038349",
"A354572",
"A354573"
] | null |
J. M. Bergot and Robert Israel, Aug 18 2022
| 2022-09-05T09:10:47 |
oeisdata/seq/A354/A354572.seq
|
53dfd5c162cb9b0d4541b0c9f9eda5db
|
A354573
|
Prime partial sums of the primes == 5 (mod 6).
|
[
"5",
"173",
"439",
"1117",
"1433",
"2633",
"3643",
"6173",
"11489",
"22727",
"25867",
"36523",
"51341",
"71707",
"80347",
"89413",
"98947",
"102203",
"119869",
"135209",
"155653",
"173087",
"182233",
"196387",
"226063",
"298031",
"353921",
"367219",
"460127",
"483179",
"498859",
"547387",
"555683",
"572581",
"826201",
"932801",
"988453",
"1057741",
"1203421",
"1253999"
] |
[
"nonn"
] | 14 | 1 | 1 |
[
"A038361",
"A354572",
"A354573"
] | null |
J. M. Bergot and Robert Israel, Aug 18 2022
| 2022-08-23T17:49:03 |
oeisdata/seq/A354/A354573.seq
|
bdf46cac8e31521f3e0e25da83d37647
|
A354574
|
E.g.f. A(x) satisfies A(x) = 1 + x * A(1 - exp(-x)).
|
[
"1",
"1",
"2",
"3",
"-8",
"-65",
"366",
"4284",
"-71392",
"-377919",
"28218760",
"-249587877",
"-14356069056",
"587285561746",
"153563287892",
"-954498079774950",
"39921820513516256",
"533333406684245239",
"-158979463609003391970",
"8008135971419079188618",
"190727236066813163686860"
] |
[
"sign"
] | 12 | 0 | 3 |
[
"A048801",
"A353177",
"A354574",
"A354729",
"A354730"
] | null |
Seiichi Manyama, Jun 04 2022
| 2022-06-05T00:44:01 |
oeisdata/seq/A354/A354574.seq
|
c34b86d82a360acaed42ffc7dcc0a898
|
A354575
|
a(1) = 1; for n > 1, a(n) is the smallest positive number that has not yet appeared that is coprime to a(n-1) and the difference a(n) - a(n-1) is distinct from all previous differences.
|
[
"1",
"2",
"5",
"3",
"7",
"4",
"9",
"8",
"15",
"11",
"6",
"17",
"10",
"19",
"13",
"21",
"23",
"12",
"25",
"16",
"31",
"14",
"33",
"20",
"37",
"18",
"41",
"26",
"47",
"22",
"49",
"27",
"43",
"29",
"35",
"53",
"24",
"55",
"28",
"57",
"34",
"59",
"38",
"71",
"30",
"67",
"32",
"73",
"36",
"79",
"39",
"61",
"45",
"77",
"46",
"81",
"91",
"40",
"87",
"44",
"83",
"50",
"99",
"52",
"97",
"42",
"95",
"51",
"65",
"89",
"63",
"101",
"48",
"103",
"54",
"113"
] |
[
"nonn",
"look"
] | 17 | 1 | 2 |
[
"A354575",
"A354679",
"A354687",
"A354688",
"A354727",
"A354739"
] | null |
Scott R. Shannon, Jun 05 2022
| 2022-10-25T13:48:32 |
oeisdata/seq/A354/A354575.seq
|
40ceee9b4e2a118888ffab65770918eb
|
A354576
|
Variant of A253028 using only odd numbers: a mirror symmetric array of odd numbers where the n-th term is equal to the number of terms in the n-th row of the array.
|
[
"1",
"3",
"1",
"5",
"7",
"9",
"3",
"1",
"5",
"11",
"13",
"7",
"3",
"1",
"5",
"9",
"15",
"17",
"11",
"7",
"3",
"1",
"5",
"9",
"13",
"19",
"21",
"15",
"23",
"25",
"27",
"17",
"11",
"19",
"29",
"31",
"21",
"13",
"7",
"3",
"1",
"5",
"9",
"15",
"23",
"33",
"35",
"25",
"17",
"11",
"7",
"3",
"1",
"5",
"9",
"13",
"19",
"27",
"37",
"39",
"29",
"21",
"15",
"23",
"31",
"41"
] |
[
"nonn",
"tabf"
] | 14 | 1 | 2 |
[
"A253028",
"A354576",
"A354577"
] | null |
Felix Fröhlich, May 30 2022
| 2023-11-11T08:50:26 |
oeisdata/seq/A354/A354576.seq
|
0c7f30add148e746b45e4d94a6d1b471
|
A354577
|
Variant of A253028 using only even numbers: a mirror symmetric array of even numbers where the n-th term is equal to the number of terms in the n-th row of the array.
|
[
"2",
"4",
"6",
"2",
"4",
"8",
"10",
"6",
"2",
"4",
"8",
"12",
"14",
"16",
"18",
"10",
"12",
"20",
"22",
"14",
"6",
"2",
"4",
"8",
"16",
"24",
"26",
"18",
"10",
"6",
"2",
"4",
"8",
"12",
"20",
"28",
"30",
"22",
"14",
"16",
"24",
"32",
"34",
"36",
"38",
"26",
"28",
"40",
"42",
"30",
"18",
"10",
"12",
"20",
"32",
"44",
"46",
"34",
"22",
"14",
"6",
"2",
"4",
"8",
"16",
"24",
"36",
"48",
"50",
"38",
"26"
] |
[
"nonn",
"tabf"
] | 8 | 1 | 1 |
[
"A253028",
"A354576",
"A354577"
] | null |
Felix Fröhlich, May 30 2022
| 2022-06-22T21:04:11 |
oeisdata/seq/A354/A354577.seq
|
79c7d38f0c130e07dd6e3317c5f25b2d
|
A354578
|
Number of ways to choose a divisor of each part of the n-th composition in standard order such that no adjacent divisors are equal.
|
[
"1",
"1",
"2",
"0",
"2",
"1",
"1",
"0",
"3",
"1",
"2",
"0",
"1",
"1",
"0",
"0",
"2",
"2",
"3",
"0",
"3",
"1",
"1",
"0",
"2",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"4",
"1",
"4",
"0",
"2",
"2",
"1",
"0",
"4",
"2",
"2",
"0",
"1",
"1",
"0",
"0",
"1",
"2",
"2",
"0",
"2",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"3",
"3",
"0",
"5",
"2",
"2",
"0",
"5",
"1",
"3",
"0",
"1",
"1",
"0",
"0",
"3",
"3",
"5",
"0",
"3",
"1",
"1"
] |
[
"nonn",
"tabf"
] | 9 | 0 | 3 |
[
"A000005",
"A003242",
"A005811",
"A011782",
"A029837",
"A066099",
"A124767",
"A175413",
"A238279",
"A275870",
"A300273",
"A333381",
"A333489",
"A333755",
"A353832",
"A353837",
"A353838",
"A353840",
"A353846",
"A353847",
"A353848",
"A353849",
"A353850",
"A353851",
"A353852",
"A353853",
"A353859",
"A353860",
"A353863",
"A354578",
"A354584",
"A354904",
"A354905"
] | null |
Gus Wiseman, Jun 11 2022
| 2022-06-12T22:52:29 |
oeisdata/seq/A354/A354578.seq
|
1d66dfef60d30f2a21c988cd20e51c1e
|
A354579
|
Number of distinct lengths of runs in the n-th composition in standard order.
|
[
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"2",
"2",
"2",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"2",
"2",
"2",
"2"
] |
[
"nonn"
] | 9 | 0 | 12 |
[
"A003242",
"A005811",
"A029837",
"A066099",
"A071625",
"A124767",
"A181819",
"A238279",
"A329738",
"A329739",
"A333381",
"A333489",
"A333627",
"A333755",
"A351014",
"A351015",
"A351596",
"A353744",
"A353835",
"A353839",
"A353847",
"A353848",
"A353849",
"A353850",
"A353851",
"A353852",
"A353860",
"A353861",
"A354579",
"A354906"
] | null |
Gus Wiseman, Jun 11 2022
| 2022-06-12T22:52:33 |
oeisdata/seq/A354/A354579.seq
|
e0bbcbcc300d24977addaf17209311c4
|
A354580
|
Number of rucksack compositions of n: every distinct partial run has a different sum.
|
[
"1",
"1",
"2",
"4",
"6",
"12",
"22",
"39",
"68",
"125",
"227",
"402",
"710",
"1280",
"2281",
"4040",
"7196",
"12780",
"22623",
"40136",
"71121",
"125863",
"222616",
"393305",
"695059",
"1227990",
"2167059",
"3823029",
"6743268",
"11889431",
"20955548",
"36920415",
"65030404",
"114519168",
"201612634",
"354849227"
] |
[
"nonn"
] | 24 | 0 | 3 |
[
"A003242",
"A011782",
"A108917",
"A143823",
"A169942",
"A238279",
"A242882",
"A275870",
"A275972",
"A299702",
"A300273",
"A325545",
"A325676",
"A325680",
"A325682",
"A325685",
"A325687",
"A329739",
"A333223",
"A333489",
"A333755",
"A351017",
"A353836",
"A353837",
"A353838",
"A353839",
"A353847",
"A353848",
"A353849",
"A353850",
"A353851",
"A353852",
"A353853",
"A353859",
"A353860",
"A353864",
"A353865",
"A353866",
"A353867",
"A354580",
"A354581",
"A354908"
] | null |
Gus Wiseman, Jun 13 2022
| 2023-09-11T15:53:18 |
oeisdata/seq/A354/A354580.seq
|
ce84b45fd40cf7d8cd3d04bc5b8a9f38
|
A354581
|
Numbers k such that the k-th composition in standard order is rucksack, meaning every distinct partial run has a different sum.
|
[
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"12",
"13",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"24",
"25",
"26",
"28",
"31",
"32",
"33",
"34",
"35",
"36",
"37",
"38",
"40",
"41",
"42",
"44",
"45",
"48",
"49",
"50",
"51",
"52",
"53",
"54",
"56",
"57",
"63",
"64",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"72",
"73",
"74",
"76",
"77",
"80",
"81",
"82",
"84",
"85",
"86",
"88"
] |
[
"nonn"
] | 8 | 0 | 3 |
[
"A000120",
"A000225",
"A005811",
"A029837",
"A063787",
"A066099",
"A124767",
"A124771",
"A175413",
"A181819",
"A238279",
"A330036",
"A333381",
"A333489",
"A333755",
"A334299",
"A351014",
"A351015",
"A353832",
"A353835",
"A353837",
"A353838",
"A353847",
"A353848",
"A353849",
"A353850",
"A353851",
"A353852",
"A353853",
"A353859",
"A353860",
"A353861",
"A353864",
"A353866",
"A353932",
"A354580",
"A354581",
"A354583",
"A354907"
] | null |
Gus Wiseman, Jun 15 2022
| 2022-06-17T08:35:06 |
oeisdata/seq/A354/A354581.seq
|
4a725715294f7c6fed432b64cf076502
|
A354582
|
Number of distinct contiguous constant subsequences (or partial runs) in the k-th composition in standard order.
|
[
"0",
"1",
"1",
"2",
"1",
"2",
"2",
"3",
"1",
"2",
"2",
"3",
"2",
"2",
"3",
"4",
"1",
"2",
"2",
"3",
"2",
"3",
"2",
"4",
"2",
"2",
"3",
"3",
"3",
"3",
"4",
"5",
"1",
"2",
"2",
"3",
"2",
"3",
"3",
"4",
"2",
"3",
"3",
"4",
"3",
"2",
"3",
"5",
"2",
"2",
"3",
"3",
"3",
"3",
"2",
"4",
"3",
"3",
"4",
"3",
"4",
"4",
"5",
"6",
"1",
"2",
"2",
"3",
"2",
"3",
"3",
"4",
"2",
"3",
"3",
"4",
"2",
"3",
"4",
"5",
"2",
"3",
"2",
"4",
"3",
"4",
"3"
] |
[
"nonn",
"tabf"
] | 6 | 0 | 4 |
[
"A000120",
"A001221",
"A001222",
"A003242",
"A005811",
"A029837",
"A063787",
"A066099",
"A124767",
"A124771",
"A126646",
"A175413",
"A238279",
"A274174",
"A330036",
"A333381",
"A333489",
"A333755",
"A334299",
"A351014",
"A351015",
"A353832",
"A353835",
"A353847",
"A353849",
"A353850",
"A353852",
"A353853",
"A353859",
"A353860",
"A353861",
"A353864",
"A353932",
"A354582",
"A354907"
] | null |
Gus Wiseman, Jun 13 2022
| 2022-06-17T08:35:11 |
oeisdata/seq/A354/A354582.seq
|
6ae14553e1be687d6a05059365ed7012
|
A354583
|
Heinz numbers of non-rucksack partitions: not every prime-power divisor has a different sum of prime indices.
|
[
"12",
"24",
"36",
"40",
"48",
"60",
"63",
"72",
"80",
"84",
"96",
"108",
"112",
"120",
"126",
"132",
"144",
"156",
"160",
"168",
"180",
"189",
"192",
"200",
"204",
"216",
"224",
"228",
"240",
"252",
"264",
"276",
"280",
"288",
"300",
"312",
"315",
"320",
"324",
"325",
"336",
"348",
"351",
"352",
"360",
"372",
"378",
"384",
"396",
"400",
"408",
"420",
"432",
"440"
] |
[
"nonn"
] | 10 | 1 | 1 |
[
"A001221",
"A001222",
"A005811",
"A056239",
"A073093",
"A108917",
"A112798",
"A118914",
"A124010",
"A175413",
"A181819",
"A182857",
"A275870",
"A296150",
"A299702",
"A299729",
"A300273",
"A304442",
"A316413",
"A325676",
"A325862",
"A333223",
"A353832",
"A353833",
"A353834",
"A353835",
"A353836",
"A353837",
"A353838",
"A353839",
"A353850",
"A353852",
"A353861",
"A353864",
"A353865",
"A353866",
"A353867",
"A353931",
"A354580",
"A354583",
"A354584"
] | null |
Gus Wiseman, Jun 15 2022
| 2022-06-17T22:12:44 |
oeisdata/seq/A354/A354583.seq
|
10f1897d765ae90e8e68a36eb23c232b
|
A354584
|
Irregular triangle read by rows where row k lists the run-sums of the multiset (weakly increasing sequence) of prime indices of n.
|
[
"1",
"2",
"2",
"3",
"1",
"2",
"4",
"3",
"4",
"1",
"3",
"5",
"2",
"2",
"6",
"1",
"4",
"2",
"3",
"4",
"7",
"1",
"4",
"8",
"2",
"3",
"2",
"4",
"1",
"5",
"9",
"3",
"2",
"6",
"1",
"6",
"6",
"2",
"4",
"10",
"1",
"2",
"3",
"11",
"5",
"2",
"5",
"1",
"7",
"3",
"4",
"2",
"4",
"12",
"1",
"8",
"2",
"6",
"3",
"3",
"13",
"1",
"2",
"4",
"14",
"2",
"5",
"4",
"3",
"1",
"9",
"15",
"4",
"2",
"8",
"1",
"6",
"2",
"7",
"2",
"6",
"16"
] |
[
"nonn",
"tabf"
] | 10 | 1 | 2 |
[
"A000040",
"A000961",
"A001221",
"A001222",
"A002110",
"A027748",
"A056239",
"A071625",
"A073093",
"A112798",
"A118914",
"A124010",
"A181819",
"A238279",
"A275870",
"A296150",
"A300273",
"A304117",
"A304442",
"A308495",
"A333755",
"A353832",
"A353833",
"A353834",
"A353835",
"A353837",
"A353838",
"A353839",
"A353840",
"A353846",
"A353847",
"A353850",
"A353852",
"A353861",
"A353862",
"A353864",
"A353866",
"A353867",
"A353931",
"A353932",
"A354584"
] | null |
Gus Wiseman, Jun 17 2022
| 2022-06-17T22:12:49 |
oeisdata/seq/A354/A354584.seq
|
d1550853846d7c90410ff2dd23b9378f
|
A354585
|
Least prime p such that 2^x - 2 + p produces primes for x=1..n and a composite for x=n+1.
|
[
"2",
"3",
"11",
"5",
"227",
"17",
"65837",
"1607",
"19427",
"2397347207",
"153535525937",
"157542769194527",
"29503289812427",
"32467505340816977",
"1109038455070356527",
"143924005810811657",
"305948728878647722727"
] |
[
"nonn",
"hard",
"more"
] | 32 | 1 | 1 |
[
"A164926",
"A354585"
] | null |
Robert C. Lyons, Aug 18 2022
| 2022-12-17T08:22:00 |
oeisdata/seq/A354/A354585.seq
|
ca5ae4cd55e239e25cc66eacb74b9db6
|
A354586
|
Table of Sprague-Grundy values for n X m 2D Toppling Dominoes L's read by antidiagonals.
|
[
"1",
"2",
"2",
"3",
"3",
"3",
"4",
"4",
"4",
"4",
"5",
"5",
"1",
"5",
"5",
"6",
"6",
"6",
"6",
"6",
"6",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"9",
"9",
"5",
"9",
"1",
"9",
"5",
"9",
"9",
"10",
"10",
"10",
"10",
"2",
"2",
"10",
"10",
"10",
"10",
"11",
"11",
"11",
"11",
"3",
"3",
"3",
"11",
"11",
"11",
"11",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12"
] |
[
"easy",
"nonn",
"tabl"
] | 22 | 1 | 2 | null | null |
Ian C Haile, Aug 18 2022
| 2022-10-01T19:39:52 |
oeisdata/seq/A354/A354586.seq
|
21b4246496f50c099e0d70c58cadad61
|
A354587
|
Diagonal of Sprague-Grundy values for n X m 2D Toppling Dominoes L's.
|
[
"1",
"3",
"1",
"7",
"1",
"3",
"1",
"15",
"1",
"3",
"1",
"7",
"1",
"3",
"1",
"31",
"1",
"3",
"1",
"7",
"1",
"3",
"1",
"15",
"1",
"3",
"1",
"49",
"1",
"3",
"1",
"63",
"1",
"3",
"1",
"7",
"1",
"3",
"1",
"15",
"1",
"3",
"1",
"7",
"1",
"3",
"1",
"31",
"1",
"3",
"1",
"8",
"1",
"9",
"1",
"11",
"1",
"5",
"1",
"5",
"1",
"111",
"1",
"127",
"1",
"3",
"1",
"7",
"1",
"3",
"1",
"15",
"1",
"3",
"1",
"21",
"1",
"3",
"1",
"31",
"1",
"3"
] |
[
"easy",
"nonn"
] | 20 | 1 | 2 |
[
"A354586",
"A354587"
] | null |
Ian C Haile, Aug 18 2022
| 2022-10-01T19:41:03 |
oeisdata/seq/A354/A354587.seq
|
3418b5787aed61b1a73dc23ff3a046eb
|
A354588
|
Number of marked chord diagrams (linear words in which each letter appears twice) with n chords, whose intersection graph is connected and distance-hereditary.
|
[
"1",
"4",
"27",
"226",
"2116",
"21218",
"222851",
"2420134",
"26954622",
"306203536",
"3534170486",
"41326973520",
"488562349730",
"5829471835390",
"70112478797987",
"849110215237094",
"10345827793291654",
"126734013316914248",
"1559884942820510474",
"19281814963272771308",
"239263099541276559360",
"2979328903819471935332"
] |
[
"nonn"
] | 21 | 0 | 2 |
[
"A277862",
"A277869",
"A354588",
"A357596"
] | null |
Christopher-Lloyd Simon, May 31 2022
| 2022-10-08T14:16:54 |
oeisdata/seq/A354/A354588.seq
|
1c1741fa6d8345b2c07031d8bb442edc
|
A354589
|
Primes p starting a sequence of 4 consecutive primes whose final digits are 1,3,7,9 (in any order).
|
[
"11",
"23",
"47",
"53",
"67",
"83",
"89",
"101",
"109",
"149",
"167",
"191",
"193",
"197",
"199",
"211",
"251",
"257",
"263",
"383",
"443",
"449",
"461",
"487",
"557",
"563",
"587",
"593",
"599",
"613",
"647",
"659",
"739",
"757",
"761",
"821",
"859",
"983",
"991",
"1061",
"1063",
"1069",
"1117",
"1217",
"1223",
"1283",
"1301",
"1303",
"1367",
"1433",
"1439",
"1447",
"1481",
"1553",
"1567",
"1571",
"1579"
] |
[
"nonn",
"base"
] | 20 | 1 | 1 |
[
"A007652",
"A007811",
"A354589",
"A354590"
] | null |
J. M. Bergot and Robert Israel, Aug 18 2022
| 2025-06-02T15:25:31 |
oeisdata/seq/A354/A354589.seq
|
39ef83ab27116bf357c6d29410820b6c
|
A354590
|
a(n) is the first prime that is the start of a sequence of exactly n consecutive primes that are in A354589.
|
[
"11",
"47",
"251",
"9431",
"191",
"19457",
"280627",
"2213",
"1006253",
"9129563",
"66945301",
"184171621",
"726512053",
"2732087209",
"10206934519",
"59883612989",
"25650350371"
] |
[
"nonn",
"more",
"base"
] | 20 | 1 | 1 |
[
"A007652",
"A354589",
"A354590"
] | null |
J. M. Bergot and Robert Israel, Aug 18 2022
| 2022-08-23T10:17:54 |
oeisdata/seq/A354/A354590.seq
|
8cefa534675159045c5dc62281dd913a
|
A354591
|
Numbers k that can be written as the sum of 4 divisors of k (not necessarily distinct).
|
[
"4",
"6",
"8",
"10",
"12",
"16",
"18",
"20",
"24",
"28",
"30",
"32",
"36",
"40",
"42",
"44",
"48",
"50",
"52",
"54",
"56",
"60",
"64",
"66",
"68",
"70",
"72",
"76",
"78",
"80",
"84",
"88",
"90",
"92",
"96",
"100",
"102",
"104",
"108",
"110",
"112",
"114",
"116",
"120",
"124",
"126",
"128",
"130",
"132",
"136",
"138",
"140",
"144",
"148",
"150",
"152",
"156",
"160",
"162",
"164",
"168",
"170",
"172"
] |
[
"nonn",
"changed"
] | 45 | 1 | 1 |
[
"A000027",
"A080671",
"A299174",
"A354591",
"A355200",
"A355641",
"A356609",
"A356635",
"A356657",
"A356659",
"A356660"
] | null |
Wesley Ivan Hurt, Aug 18 2022
| 2025-07-17T07:36:19 |
oeisdata/seq/A354/A354591.seq
|
b6f6384328bbdc39268d4e05b34ab4fe
|
A354592
|
Decimal expansion of Sum_{k>=1} (1/k - (1 - log(k)/k)^k).
|
[
"1",
"0",
"3",
"0",
"5",
"4",
"2",
"3",
"5",
"3",
"7",
"8",
"4",
"9",
"4",
"1",
"2",
"0",
"8",
"9",
"9",
"6",
"2",
"8",
"0",
"9",
"2",
"9",
"8",
"2",
"8",
"8",
"7",
"4",
"6",
"0",
"7",
"8",
"2",
"8",
"1",
"1",
"0",
"5",
"5",
"4",
"1",
"4",
"5",
"3",
"5",
"6",
"7",
"1",
"3",
"6",
"3",
"1",
"9",
"2",
"1",
"6",
"4",
"4",
"6",
"1",
"6",
"6",
"7",
"5",
"1",
"0",
"9",
"5",
"0",
"4",
"0",
"4",
"8",
"3",
"2",
"9",
"0",
"2",
"5",
"7",
"5",
"5",
"5",
"4",
"7",
"4",
"0",
"0",
"3",
"0",
"3",
"0",
"7",
"4",
"9",
"0",
"2",
"4",
"3"
] |
[
"nonn",
"cons"
] | 10 | 1 | 3 |
[
"A354450",
"A354592",
"A354593"
] | null |
Vaclav Kotesovec, Jun 01 2022
| 2022-06-01T07:59:23 |
oeisdata/seq/A354/A354592.seq
|
286ef23fd0845853b127711e5e54688c
|
A354593
|
Decimal expansion of Sum_{k>=1} (1 - log(k)/k)^(3*k).
|
[
"1",
"1",
"0",
"9",
"8",
"1",
"2",
"3",
"5",
"1",
"6",
"7",
"2",
"7",
"4",
"0",
"9",
"0",
"2",
"5",
"9",
"7",
"7",
"2",
"3",
"0",
"0",
"5",
"6",
"8",
"6",
"1",
"6",
"4",
"7",
"7",
"9",
"3",
"8",
"0",
"1",
"6",
"3",
"2",
"5",
"6",
"1",
"0",
"3",
"3",
"4",
"2",
"3",
"8",
"6",
"7",
"9",
"2",
"0",
"8",
"1",
"3",
"4",
"8",
"4",
"1",
"9",
"8",
"3",
"1",
"0",
"9",
"3",
"6",
"0",
"1",
"2",
"2",
"5",
"5",
"7",
"4",
"1",
"4",
"4",
"0",
"2",
"2",
"5",
"4",
"5",
"2",
"0",
"9",
"9",
"8",
"8",
"3",
"9",
"4",
"0",
"4",
"5",
"3",
"8"
] |
[
"nonn",
"cons"
] | 11 | 1 | 4 |
[
"A354450",
"A354592",
"A354593"
] | null |
Vaclav Kotesovec, Jun 01 2022
| 2022-06-01T05:08:56 |
oeisdata/seq/A354/A354593.seq
|
2a02071349efc96aec16f45cfd66c911
|
A354594
|
a(n) = n^2 + 2*floor(n/2)^2.
|
[
"0",
"1",
"6",
"11",
"24",
"33",
"54",
"67",
"96",
"113",
"150",
"171",
"216",
"241",
"294",
"323",
"384",
"417",
"486",
"523",
"600",
"641",
"726",
"771",
"864",
"913",
"1014",
"1067",
"1176",
"1233",
"1350",
"1411",
"1536",
"1601",
"1734",
"1803",
"1944",
"2017",
"2166",
"2243",
"2400",
"2481",
"2646",
"2731",
"2904"
] |
[
"nonn",
"easy"
] | 19 | 0 | 3 |
[
"A000290",
"A008794",
"A033581",
"A080859",
"A213037",
"A247375",
"A322744",
"A354594",
"A354595",
"A354596"
] | null |
David Lovler, Jun 01 2022
| 2022-07-08T08:23:46 |
oeisdata/seq/A354/A354594.seq
|
0d1517283acd311f913282848804d8f1
|
A354595
|
a(n) = n^2 + 4*floor(n/2)^2.
|
[
"0",
"1",
"8",
"13",
"32",
"41",
"72",
"85",
"128",
"145",
"200",
"221",
"288",
"313",
"392",
"421",
"512",
"545",
"648",
"685",
"800",
"841",
"968",
"1013",
"1152",
"1201",
"1352",
"1405",
"1568",
"1625",
"1800",
"1861",
"2048",
"2113",
"2312",
"2381",
"2592",
"2665",
"2888",
"2965",
"3200",
"3281",
"3528",
"3613",
"3872"
] |
[
"nonn",
"easy"
] | 19 | 0 | 3 |
[
"A000290",
"A008794",
"A102083",
"A139098",
"A213037",
"A247375",
"A327259",
"A354594",
"A354595",
"A354596"
] | null |
David Lovler, Jun 01 2022
| 2022-07-08T08:23:54 |
oeisdata/seq/A354/A354595.seq
|
ac64caed4063c0bb6f9b745beaa91c53
|
A354596
|
Array T(n,k) = k^2 + (2n-4)*floor(k/2)^2, n >= 0, k >= 0, read by descending antidiagonals.
|
[
"0",
"1",
"0",
"0",
"1",
"0",
"5",
"2",
"1",
"0",
"0",
"7",
"4",
"1",
"0",
"9",
"8",
"9",
"6",
"1",
"0",
"0",
"17",
"16",
"11",
"8",
"1",
"0",
"13",
"18",
"25",
"24",
"13",
"10",
"1",
"0",
"0",
"31",
"36",
"33",
"32",
"15",
"12",
"1",
"0",
"17",
"32",
"49",
"54",
"41",
"40",
"17",
"14",
"1",
"0",
"0",
"49",
"64",
"67",
"72",
"49",
"48",
"19",
"16",
"1",
"0",
"21",
"50",
"81",
"96",
"85",
"90",
"57",
"56",
"21",
"18",
"1",
"0"
] |
[
"nonn",
"tabl",
"easy"
] | 39 | 0 | 7 |
[
"A000290",
"A008794",
"A133728",
"A213037",
"A247375",
"A266222",
"A266439",
"A319929",
"A322630",
"A322744",
"A327259",
"A327263",
"A354594",
"A354595",
"A354596"
] | null |
David Lovler, Jun 01 2022
| 2022-09-26T01:31:12 |
oeisdata/seq/A354/A354596.seq
|
c1968705feae12db556249433b6b1288
|
A354597
|
a(n) is the smallest number k>0 such that -n is not a quadratic residue modulo k.
|
[
"3",
"4",
"5",
"3",
"4",
"4",
"3",
"5",
"4",
"3",
"7",
"5",
"3",
"4",
"7",
"3",
"4",
"4",
"3",
"11",
"4",
"3",
"5",
"9",
"3",
"4",
"5",
"3",
"4",
"4",
"3",
"5",
"4",
"3",
"8",
"7",
"3",
"4",
"7",
"3",
"4",
"4",
"3",
"7",
"4",
"3",
"5",
"5",
"3",
"4",
"7",
"3",
"4",
"4",
"3",
"11",
"4",
"3",
"8",
"7",
"3",
"4",
"5",
"3",
"4",
"4",
"3",
"5",
"4",
"3",
"7",
"5",
"3",
"4",
"8",
"3",
"4",
"4",
"3",
"11",
"4",
"3",
"5",
"9",
"3",
"4",
"5",
"3",
"4",
"4",
"3",
"5",
"4",
"3",
"7",
"9",
"3",
"4",
"7",
"3"
] |
[
"nonn"
] | 13 | 1 | 1 |
[
"A139401",
"A354597"
] | null |
Bruno Langlois, Jul 08 2022
| 2022-07-09T11:09:48 |
oeisdata/seq/A354/A354597.seq
|
63880d286d74f4350baa965f75cc8d32
|
A354598
|
Maximal GCD of eight positive integers with sum n.
|
[
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"3",
"1",
"2",
"3",
"2",
"1",
"3",
"1",
"4",
"3",
"2",
"1",
"4",
"1",
"2",
"3",
"5",
"1",
"3",
"1",
"4",
"5",
"2",
"1",
"6",
"1",
"5",
"3",
"4",
"1",
"6",
"5",
"7",
"3",
"2",
"1",
"6",
"1",
"2",
"7",
"8",
"5",
"6",
"1",
"4",
"3",
"7",
"1",
"9",
"1",
"2",
"5",
"4",
"7",
"6",
"1",
"10",
"9",
"2",
"1",
"7",
"5",
"2",
"3",
"11",
"1",
"10",
"7",
"4",
"3",
"2",
"5",
"12",
"1",
"7",
"11",
"10"
] |
[
"nonn"
] | 19 | 8 | 9 |
[
"A009694",
"A032742",
"A162787",
"A354598",
"A354599",
"A354601",
"A355249",
"A355319",
"A355366",
"A355368",
"A355402"
] | null |
Wesley Ivan Hurt, Jul 08 2022
| 2022-09-21T11:28:16 |
oeisdata/seq/A354/A354598.seq
|
96e25b57d2a7e923e3b76a7b111f2ff4
|
A354599
|
Maximal GCD of nine positive integers with sum n.
|
[
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"3",
"2",
"1",
"3",
"1",
"2",
"3",
"2",
"1",
"4",
"1",
"2",
"3",
"4",
"1",
"3",
"1",
"4",
"5",
"2",
"1",
"4",
"1",
"5",
"3",
"4",
"1",
"6",
"5",
"4",
"3",
"2",
"1",
"6",
"1",
"2",
"7",
"4",
"5",
"6",
"1",
"4",
"3",
"7",
"1",
"8",
"1",
"2",
"5",
"4",
"7",
"6",
"1",
"8",
"9",
"2",
"1",
"7",
"5",
"2",
"3",
"8",
"1",
"10",
"7",
"4",
"3",
"2",
"5",
"8",
"1",
"7",
"11",
"10"
] |
[
"nonn"
] | 20 | 9 | 10 |
[
"A009714",
"A032742",
"A354598",
"A354599",
"A354601",
"A355249",
"A355319",
"A355366",
"A355368",
"A355402"
] | null |
Wesley Ivan Hurt, Jul 08 2022
| 2022-09-21T10:39:35 |
oeisdata/seq/A354/A354599.seq
|
d9f8042db9e0b354b3ab8c2c82fbd31d
|
A354600
|
a(n) = Product_{k=0..9} floor((n+k)/10).
|
[
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"2",
"4",
"8",
"16",
"32",
"64",
"128",
"256",
"512",
"1024",
"1536",
"2304",
"3456",
"5184",
"7776",
"11664",
"17496",
"26244",
"39366",
"59049",
"78732",
"104976",
"139968",
"186624",
"248832",
"331776",
"442368",
"589824",
"786432",
"1048576",
"1310720",
"1638400",
"2048000",
"2560000",
"3200000",
"4000000"
] |
[
"nonn",
"easy"
] | 27 | 0 | 12 |
[
"A002620",
"A006501",
"A008233",
"A008382",
"A008454",
"A008881",
"A009641",
"A009694",
"A009714",
"A013668",
"A354600"
] | null |
Wesley Ivan Hurt, Jul 08 2022
| 2025-03-19T08:23:48 |
oeisdata/seq/A354/A354600.seq
|
ba9cd947bf498690bfa0f38cc80948e4
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.