sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-19 00:40:46
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A355201
|
Normalized Schur self-convolution expansion coefficients K_{n+1}^n / n giving the coefficients of the Laurent series (compositionally) inverse to f(z) = c_0 z + c_1 + c_2 / z + c_3 / z^2 + ... . Irregular triangle for partition polynomials, with row lengths A000041(n) - 1 except for the first two, which are both of length 1.
|
[
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"3",
"3",
"3",
"3",
"1",
"1",
"6",
"4",
"2",
"12",
"6",
"2",
"4",
"4",
"1",
"1",
"10",
"5",
"10",
"30",
"10",
"10",
"10",
"20",
"10",
"5",
"5",
"5",
"1",
"1",
"15",
"6",
"30",
"60",
"15",
"5",
"60",
"30",
"60",
"20",
"15",
"15",
"30",
"30",
"15",
"3",
"6",
"6",
"6",
"1",
"1",
"21",
"7",
"70",
"105",
"21",
"35",
"210",
"70",
"140",
"35",
"35",
"105",
"105",
"105",
"105",
"35",
"7",
"42",
"21",
"21",
"42",
"42",
"21",
"7",
"7",
"7",
"7",
"1"
] |
[
"nonn",
"tabf"
] | 30 | 0 | 8 |
[
"A000108",
"A001263",
"A091187",
"A091869",
"A111785",
"A133437",
"A134264",
"A263633",
"A263916",
"A355201"
] | null |
Tom Copeland, Jun 23 2022
| 2023-02-07T11:21:25 |
oeisdata/seq/A355/A355201.seq
|
53df37203692e89e8efdb2f2c12519e3
|
A355202
|
Square array read by upwards antidiagonals: T(n,k) = k-th binary digit after the radix point of 1/n, for n >= 1 and k >= 1.
|
[
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0"
] |
[
"base",
"easy",
"nonn",
"tabl"
] | 15 | 1 | null |
[
"A007733",
"A355068",
"A355202"
] | null |
Chittaranjan Pardeshi, Jun 23 2022
| 2022-06-24T19:53:17 |
oeisdata/seq/A355/A355202.seq
|
7c53ccff7c62d49f3804fa1a8f3a3481
|
A355203
|
E.g.f. A(x) satisfies A'(x) = 1 + A(1 - exp(-x)).
|
[
"1",
"1",
"0",
"-2",
"4",
"10",
"-150",
"838",
"222",
"-82616",
"1408364",
"-13862308",
"-18747672",
"5307622274",
"-170657860276",
"3561218897884",
"-33756455501714",
"-1481233045213718",
"116803294574962288",
"-5108843717328225572",
"157037998518149186728",
"-1976107915155933805542"
] |
[
"sign"
] | 19 | 1 | 4 |
[
"A003659",
"A143805",
"A307874",
"A355203",
"A355207",
"A355211",
"A355217"
] | null |
Seiichi Manyama, Jun 24 2022
| 2022-06-25T07:36:13 |
oeisdata/seq/A355/A355203.seq
|
f312b0751da52a7dc664f2fffe796465
|
A355204
|
E.g.f. A(x) satisfies A'(x) = 1 + 2 * A(log(1+x)).
|
[
"1",
"2",
"2",
"-4",
"0",
"68",
"-588",
"2728",
"17688",
"-766960",
"14239512",
"-164672640",
"-494840680",
"109461302008",
"-4446935274696",
"122761839873664",
"-1889647100968176",
"-50347073461051088",
"6582857386505201520",
"-397095020380174033424",
"17279075935957171412288"
] |
[
"sign"
] | 15 | 1 | 2 |
[
"A307874",
"A355096",
"A355204"
] | null |
Seiichi Manyama, Jun 24 2022
| 2022-06-25T07:11:40 |
oeisdata/seq/A355/A355204.seq
|
b6ca5df30ba1fbf04625511e25fe0430
|
A355205
|
E.g.f. A(x) satisfies A'(x) = 1 + 2 * A(-log(1-x)).
|
[
"1",
"2",
"6",
"28",
"184",
"1596",
"17508",
"235592",
"3799736",
"72125344",
"1587567768",
"40027332256",
"1144113365576",
"36747710168568",
"1316192996129064",
"52219780699310176",
"2281487895137577232",
"109193200290592216368",
"5698144666408068511472"
] |
[
"nonn"
] | 16 | 1 | 2 |
[
"A143805",
"A355098",
"A355205"
] | null |
Seiichi Manyama, Jun 24 2022
| 2022-06-25T07:11:03 |
oeisdata/seq/A355/A355205.seq
|
9cdc5265116bf949cc8b9009b5e6b034
|
A355206
|
E.g.f. A(x) satisfies A'(x) = 1 + 2 * A(exp(x) - 1).
|
[
"1",
"2",
"6",
"26",
"154",
"1190",
"11586",
"138338",
"1982526",
"33510602",
"658520330",
"14863556590",
"381389448738",
"11026919584330",
"356473786663910",
"12798132569470442",
"507233393189820394",
"22074530128695694286",
"1049825961204593354866",
"54326220485710633589858"
] |
[
"nonn"
] | 13 | 1 | 2 |
[
"A003659",
"A355083",
"A355206"
] | null |
Seiichi Manyama, Jun 24 2022
| 2022-06-25T07:36:54 |
oeisdata/seq/A355/A355206.seq
|
82e530428fcab9a836ada1770e7a5028
|
A355207
|
E.g.f. A(x) satisfies A'(x) = 1 + 2 * A(1 - exp(-x)).
|
[
"1",
"2",
"2",
"-6",
"-10",
"142",
"-434",
"-4478",
"88122",
"-688518",
"-4032346",
"268040678",
"-5689167298",
"53999999466",
"1413830543394",
"-98561802143670",
"3282601333608550",
"-59117973090349066",
"-1121454296035526786",
"171971593399059103618",
"-10034063428244586340158"
] |
[
"sign"
] | 13 | 1 | 2 |
[
"A355093",
"A355203",
"A355207"
] | null |
Seiichi Manyama, Jun 24 2022
| 2022-06-25T07:36:40 |
oeisdata/seq/A355/A355207.seq
|
47aba392d2e426d885932b822088d075
|
A355208
|
E.g.f. A(x) satisfies A'(x) = 1 + A(2 * log(1+x)).
|
[
"1",
"2",
"6",
"28",
"236",
"4400",
"197552",
"20430656",
"4600591488",
"2179887358272",
"2130534442932416",
"4243581375963409024",
"17097951082212352465536",
"138722374358947243721661440",
"2260145794657531151029628653568",
"73822509077371344216463442074629120"
] |
[
"nonn"
] | 13 | 1 | 2 |
[
"A307874",
"A355133",
"A355204",
"A355208"
] | null |
Seiichi Manyama, Jun 24 2022
| 2022-06-25T07:12:11 |
oeisdata/seq/A355/A355208.seq
|
082ad5a450cfc8b6d6dd60dcc3ed60c2
|
A355209
|
E.g.f. A(x) satisfies A'(x) = 1 + A(-2 * log(1-x)).
|
[
"1",
"2",
"10",
"108",
"2308",
"94384",
"7315728",
"1077605632",
"304189296192",
"166216599473344",
"177463576125821632",
"373017466526422396288",
"1552199775052648327045760",
"12835792253795957289436533760",
"211464475635678910995043533156352"
] |
[
"nonn"
] | 14 | 1 | 2 |
[
"A143805",
"A355134",
"A355205",
"A355209"
] | null |
Seiichi Manyama, Jun 24 2022
| 2022-06-25T07:12:36 |
oeisdata/seq/A355/A355209.seq
|
d38a21e377aefb2a545d0bcca6980836
|
A355210
|
E.g.f. A(x) satisfies A'(x) = 1 + A(2 * (exp(x) - 1)).
|
[
"1",
"2",
"10",
"106",
"2234",
"90570",
"6986490",
"1026623306",
"289475035770",
"158101579596106",
"168768027732007674",
"354715566244066506058",
"1476006372586517922472826",
"12205618234758923312503183690",
"201082085503026084194089831880698"
] |
[
"nonn"
] | 14 | 1 | 2 |
[
"A003659",
"A355131",
"A355206",
"A355210"
] | null |
Seiichi Manyama, Jun 24 2022
| 2022-06-25T07:37:34 |
oeisdata/seq/A355/A355210.seq
|
3095e31aaba1909728597795a9a41392
|
A355211
|
E.g.f. A(x) satisfies A'(x) = 1 + A(2 * (1 - exp(-x))).
|
[
"1",
"2",
"6",
"26",
"182",
"2746",
"111350",
"11245882",
"2521162358",
"1193350247226",
"1165982253097718",
"2322179762944209722",
"9356100009656750248822",
"75909020176742648718140218",
"1236750544861403327611377577974",
"40395601774769639548336167153191738"
] |
[
"nonn"
] | 14 | 1 | 2 |
[
"A355132",
"A355203",
"A355207",
"A355211"
] | null |
Seiichi Manyama, Jun 24 2022
| 2022-06-25T07:37:21 |
oeisdata/seq/A355/A355211.seq
|
3b303353ed3c1a9ff5a98063c37c4761
|
A355212
|
A variant of the EKG sequence (A064413) where the least value not yet in the sequence appears as soon as possible.
|
[
"1",
"2",
"6",
"3",
"12",
"4",
"10",
"5",
"35",
"7",
"14",
"8",
"18",
"9",
"33",
"11",
"143",
"13",
"39",
"15",
"20",
"16",
"34",
"17",
"323",
"19",
"57",
"21",
"24",
"22",
"46",
"23",
"115",
"25",
"30",
"26",
"36",
"27",
"42",
"28",
"58",
"29",
"899",
"31",
"62",
"32",
"74",
"37",
"148",
"38",
"40",
"82",
"41",
"1763",
"43",
"86",
"44",
"48",
"45",
"141",
"47",
"329",
"49",
"56",
"50"
] |
[
"nonn"
] | 14 | 1 | 2 |
[
"A064413",
"A352713",
"A355212",
"A355213"
] | null |
Rémy Sigrist, Jun 24 2022
| 2024-09-03T15:03:45 |
oeisdata/seq/A355/A355212.seq
|
a97c1dbc9661af0ca60cea23ac57239b
|
A355213
|
Inverse permutation to A355212.
|
[
"1",
"2",
"4",
"6",
"8",
"3",
"10",
"12",
"14",
"7",
"16",
"5",
"18",
"11",
"20",
"22",
"24",
"13",
"26",
"21",
"28",
"30",
"32",
"29",
"34",
"36",
"38",
"40",
"42",
"35",
"44",
"46",
"15",
"23",
"9",
"37",
"48",
"50",
"19",
"51",
"53",
"39",
"55",
"57",
"59",
"31",
"61",
"58",
"63",
"65",
"67",
"69",
"71",
"66",
"73",
"64",
"27",
"41",
"75",
"68",
"77",
"45",
"79",
"81",
"83",
"80",
"85"
] |
[
"nonn"
] | 8 | 1 | 2 |
[
"A355212",
"A355213"
] | null |
Rémy Sigrist, Jun 24 2022
| 2022-06-26T09:15:22 |
oeisdata/seq/A355/A355213.seq
|
a63177f0dc31dbc6bd0113d823f7527b
|
A355214
|
E.g.f. A(x) satisfies A'(x) = 1 + A(2 * log(1+x))/2.
|
[
"1",
"1",
"1",
"0",
"-8",
"-64",
"-600",
"-14104",
"-1170120",
"-248815984",
"-115219852880",
"-111345726833056",
"-220485042541083808",
"-885633596688107274496",
"-7173767949430448755993856",
"-116777715174661360994951467008",
"-3812515511649504447203183936705536"
] |
[
"sign"
] | 13 | 1 | 5 |
[
"A355120",
"A355208",
"A355214"
] | null |
Seiichi Manyama, Jun 24 2022
| 2022-06-25T07:12:56 |
oeisdata/seq/A355/A355214.seq
|
15ac90364b2dcc4acd80ce53a1319a62
|
A355215
|
E.g.f. A(x) satisfies A'(x) = 1 + A(-2 * log(1-x))/2.
|
[
"1",
"1",
"3",
"20",
"260",
"6304",
"281096",
"23095768",
"3534364152",
"1022066008944",
"566769639800624",
"610404514456781600",
"1289451019913455115232",
"5380706591109919979010304",
"44564091018102742571511384320",
"734792950974385564221797653105152"
] |
[
"nonn"
] | 15 | 1 | 3 |
[
"A355121",
"A355209",
"A355215"
] | null |
Seiichi Manyama, Jun 24 2022
| 2022-06-25T07:13:26 |
oeisdata/seq/A355/A355215.seq
|
ca921aad53215381849f7910d0f6d70b
|
A355216
|
E.g.f. A(x) satisfies A'(x) = 1 + A(2 * (exp(x) - 1))/2.
|
[
"1",
"1",
"3",
"19",
"239",
"5675",
"249983",
"20404811",
"3112376543",
"898693573515",
"498042936169343",
"536255530818837835",
"1132713758105613132319",
"4726517343060928547800331",
"39145565125819857567685815231",
"645447728030234045716450604490955"
] |
[
"nonn"
] | 14 | 1 | 3 |
[
"A355122",
"A355210",
"A355216"
] | null |
Seiichi Manyama, Jun 24 2022
| 2022-06-25T07:37:45 |
oeisdata/seq/A355/A355216.seq
|
0e6ddb15640138e5ed9ee65c1ccdb091
|
A355217
|
E.g.f. A(x) satisfies A'(x) = 1 + A(2 * (1 - exp(-x)))/2.
|
[
"1",
"1",
"1",
"-1",
"-19",
"-153",
"-1155",
"-9785",
"-183075",
"-25013497",
"-11301739395",
"-10911778097209",
"-21604455470794723",
"-86776403662147521913",
"-702894028759616525605187",
"-11441974451382622345470900921",
"-373552937787342469475481963377571"
] |
[
"sign"
] | 15 | 1 | 5 |
[
"A355123",
"A355211",
"A355217"
] | null |
Seiichi Manyama, Jun 24 2022
| 2022-06-25T07:37:08 |
oeisdata/seq/A355/A355217.seq
|
bb97ff18c9905939385e8445c5984860
|
A355218
|
a(n) = Sum_{k>=1} (3*k - 1)^n / 2^k.
|
[
"1",
"5",
"43",
"557",
"9643",
"208685",
"5419243",
"164184557",
"5684837803",
"221440158125",
"9584118542443",
"456289689634157",
"23698327407870763",
"1333388917719691565",
"80794290325166308843",
"5245268489291712773357",
"363231496206350038884523",
"26725646191850556128889005",
"2082075690178933613292014443"
] |
[
"nonn"
] | 7 | 0 | 2 |
[
"A000629",
"A000670",
"A007047",
"A080253",
"A151919",
"A328182",
"A355218",
"A355219",
"A355220"
] | null |
Ilya Gutkovskiy, Jun 24 2022
| 2022-06-26T04:20:58 |
oeisdata/seq/A355/A355218.seq
|
48590de7b289ea344e66111e96a60361
|
A355219
|
a(n) = Sum_{k>=1} (4*k - 2)^n / 2^k.
|
[
"1",
"6",
"68",
"1176",
"27152",
"783456",
"27126848",
"1095801216",
"50589024512",
"2627443262976",
"151623974601728",
"9624874873952256",
"666516443992297472",
"50002158357801885696",
"4039720490206565777408",
"349685083067909962039296",
"32287291853754803207340032",
"3167488677197974581176303616"
] |
[
"nonn"
] | 7 | 0 | 2 |
[
"A000629",
"A000670",
"A007047",
"A080253",
"A285067",
"A328183",
"A355218",
"A355219",
"A355220"
] | null |
Ilya Gutkovskiy, Jun 24 2022
| 2022-06-26T04:21:17 |
oeisdata/seq/A355/A355219.seq
|
125e782bf87d74b6bef3379e2139c03c
|
A355220
|
a(n) = Sum_{k>=1} (4*k - 1)^n / 2^k.
|
[
"1",
"7",
"81",
"1399",
"32289",
"931687",
"32259441",
"1303134679",
"60160827969",
"3124574220487",
"180312309395601",
"11445969681199159",
"792626097462398049",
"59462922484586318887",
"4804064349575887075761",
"415847988794676360818839",
"38396277196654611908582529",
"3766800071614388562865514887"
] |
[
"nonn"
] | 7 | 0 | 2 |
[
"A000629",
"A000670",
"A080253",
"A259533",
"A285067",
"A328183",
"A355218",
"A355219",
"A355220"
] | null |
Ilya Gutkovskiy, Jun 24 2022
| 2022-06-26T04:21:13 |
oeisdata/seq/A355/A355220.seq
|
2f91b2ad0171dccb07b8dad8d8d97661
|
A355221
|
The k-th leftmost digit of a(n) is the least of the k leftmost digits of n.
|
[
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"20",
"21",
"22",
"22",
"22",
"22",
"22",
"22",
"22",
"22",
"30",
"31",
"32",
"33",
"33",
"33",
"33",
"33",
"33",
"33",
"40",
"41",
"42",
"43",
"44",
"44",
"44",
"44",
"44",
"44",
"50",
"51",
"52",
"53",
"54",
"55",
"55",
"55",
"55",
"55",
"60",
"61",
"62",
"63",
"64",
"65",
"66",
"66"
] |
[
"nonn",
"base",
"easy"
] | 18 | 0 | 3 |
[
"A009996",
"A342126",
"A355221",
"A355222",
"A355223",
"A355224"
] | null |
Rémy Sigrist, Jun 24 2022
| 2023-06-30T15:49:57 |
oeisdata/seq/A355/A355221.seq
|
7a74417ffdfb47933033ef320fd40eb5
|
A355222
|
The k-th leftmost digit of a(n) is the greatest of the k leftmost digits of n.
|
[
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"11",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"22",
"22",
"22",
"23",
"24",
"25",
"26",
"27",
"28",
"29",
"33",
"33",
"33",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"44",
"44",
"44",
"44",
"44",
"45",
"46",
"47",
"48",
"49",
"55",
"55",
"55",
"55",
"55",
"55",
"56",
"57",
"58",
"59",
"66",
"66",
"66",
"66",
"66",
"66",
"66",
"67"
] |
[
"nonn",
"base",
"easy"
] | 12 | 0 | 3 |
[
"A003817",
"A009994",
"A355221",
"A355222",
"A355223",
"A355224"
] | null |
Rémy Sigrist, Jun 24 2022
| 2022-06-26T09:15:31 |
oeisdata/seq/A355/A355222.seq
|
86f349d2f9c509781ffa0c2b83ceaf7a
|
A355223
|
The k-th rightmost digit of a(n) is the least of the k rightmost digits of n.
|
[
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"0",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"0",
"11",
"22",
"23",
"24",
"25",
"26",
"27",
"28",
"29",
"0",
"11",
"22",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"0",
"11",
"22",
"33",
"44",
"45",
"46",
"47",
"48",
"49",
"0",
"11",
"22",
"33",
"44",
"55",
"56",
"57",
"58",
"59",
"0",
"11",
"22",
"33",
"44",
"55",
"66",
"67",
"68"
] |
[
"nonn",
"base",
"easy"
] | 11 | 0 | 3 |
[
"A008592",
"A009994",
"A135481",
"A355221",
"A355222",
"A355223",
"A355224"
] | null |
Rémy Sigrist, Jun 24 2022
| 2022-06-26T09:15:35 |
oeisdata/seq/A355/A355223.seq
|
2289d01a9264de8cdf431a02caaa23fe
|
A355224
|
The k-th rightmost digit of a(n) is the greatest of the k rightmost digits of n.
|
[
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"22",
"33",
"44",
"55",
"66",
"77",
"88",
"99",
"20",
"21",
"22",
"33",
"44",
"55",
"66",
"77",
"88",
"99",
"30",
"31",
"32",
"33",
"44",
"55",
"66",
"77",
"88",
"99",
"40",
"41",
"42",
"43",
"44",
"55",
"66",
"77",
"88",
"99",
"50",
"51",
"52",
"53",
"54",
"55",
"66",
"77",
"88",
"99",
"60",
"61",
"62",
"63",
"64",
"65",
"66",
"77"
] |
[
"nonn",
"base",
"easy"
] | 16 | 0 | 3 |
[
"A009996",
"A340632",
"A355221",
"A355222",
"A355223",
"A355224"
] | null |
Rémy Sigrist, Jun 24 2022
| 2024-11-17T16:09:30 |
oeisdata/seq/A355/A355224.seq
|
fc725788ce22f069c8eb987c9a677162
|
A355225
|
Number of partitions of n that contain more prime parts than nonprime parts.
|
[
"0",
"0",
"1",
"1",
"1",
"3",
"3",
"5",
"7",
"9",
"14",
"19",
"23",
"34",
"46",
"56",
"77",
"99",
"126",
"164",
"208",
"260",
"336",
"416",
"520",
"654",
"809",
"995",
"1237",
"1514",
"1856",
"2274",
"2761",
"3354",
"4078",
"4918",
"5931",
"7153",
"8572",
"10272",
"12298",
"14663",
"17469",
"20787",
"24643",
"29210",
"34568",
"40797",
"48113",
"56664",
"66573"
] |
[
"nonn"
] | 32 | 0 | 6 |
[
"A000040",
"A000041",
"A000607",
"A002095",
"A002096",
"A018252",
"A155515",
"A235945",
"A355158",
"A355225",
"A355306"
] | null |
Omar E. Pol, Jun 24 2022
| 2022-06-30T10:38:00 |
oeisdata/seq/A355/A355225.seq
|
d718171e4bb76556fe9428c3d515da3c
|
A355226
|
Irregular triangle read by rows where T(n,k) is the number of independent sets of size k in the n-halved cube graph.
|
[
"1",
"1",
"1",
"2",
"1",
"4",
"1",
"8",
"4",
"1",
"16",
"40",
"1",
"32",
"256",
"480",
"120",
"1",
"64",
"1344",
"11200",
"36400",
"40320",
"13440",
"1920",
"240",
"1",
"128",
"6336",
"156800",
"2104480",
"15644160",
"63672000",
"136970880",
"147748560",
"76396800",
"21087360",
"4273920",
"840000",
"161280",
"28800",
"3840",
"240"
] |
[
"nonn",
"tabf"
] | 17 | 1 | 4 |
[
"A005864",
"A288943",
"A355226",
"A355558"
] | null |
Christopher Flippen, Jun 24 2022
| 2024-02-26T15:39:22 |
oeisdata/seq/A355/A355226.seq
|
c8c772d49aef5a8243f0996bb3cadec7
|
A355227
|
Irregular triangle read by rows where T(n,k) is the number of independent sets of size k in the n-folded cube graph.
|
[
"1",
"2",
"1",
"4",
"1",
"8",
"12",
"8",
"2",
"1",
"16",
"80",
"160",
"120",
"16",
"1",
"32",
"400",
"2560",
"9280",
"20256",
"28960",
"31520",
"29880",
"24320",
"16336",
"8768",
"3640",
"1120",
"240",
"32",
"2",
"1",
"64",
"1792",
"29120",
"307440",
"2239552",
"11682944",
"44769920",
"128380880",
"279211520",
"464621248",
"593908224",
"582529360",
"435648640",
"245610720",
"102886976",
"31658620",
"7189056",
"1239840",
"165760",
"17584",
"1408",
"64"
] |
[
"nonn",
"tabf"
] | 25 | 2 | 2 |
[
"A058622",
"A290888",
"A355227",
"A355559"
] | null |
Christopher Flippen, Jun 24 2022
| 2024-02-26T15:37:43 |
oeisdata/seq/A355/A355227.seq
|
970292bcc42473758f2f7dfaa369ca6b
|
A355228
|
a(n) is the smallest integer m such that there exist n of its distinct divisors (d_1, d_2, ..., d_n) with the property that m = d_1 + d_2 + ... + d_n = lcm(d_1, d_2, ..., d_n), or 0 if no such number m exists.
|
[
"1",
"0",
"6",
"18",
"28",
"24",
"48",
"60",
"84",
"120",
"120",
"120",
"180",
"180",
"240",
"360",
"360",
"360",
"360",
"672",
"720",
"720",
"720",
"840",
"840",
"1080",
"1260",
"1260",
"1260",
"1680",
"1680",
"1680",
"2160",
"2520",
"2520",
"2520",
"2520",
"2520",
"2520",
"3360",
"4320",
"5040",
"5040",
"5040",
"5040",
"5040",
"5040",
"5040",
"5040"
] |
[
"nonn"
] | 37 | 1 | 3 |
[
"A000396",
"A081512",
"A355228"
] | null |
Bernard Schott, Jun 25 2022
| 2022-06-27T10:03:21 |
oeisdata/seq/A355/A355228.seq
|
a6b5107ef3b55d17900e43c4bab87125
|
A355229
|
E.g.f. A(x) satisfies A'(x) = 1 - log(1-x) * A(x).
|
[
"0",
"1",
"0",
"2",
"3",
"16",
"65",
"365",
"2261",
"16240",
"131097",
"1182013",
"11779537",
"128737088",
"1532051287",
"19731964705",
"273556185109",
"4062828620256",
"64368863326717",
"1083795820014261",
"19327395713028985",
"363940825109825200",
"7216468161637890899",
"150304143164083288441"
] |
[
"nonn"
] | 21 | 0 | 4 |
[
"A055596",
"A087650",
"A355229",
"A355230",
"A355231"
] | null |
Seiichi Manyama, Jun 25 2022
| 2022-06-25T10:00:34 |
oeisdata/seq/A355/A355229.seq
|
9a94f43db3120bb7c454dec44923275d
|
A355230
|
E.g.f. A(x) satisfies A'(x) = 1 - log(1-x) * A(2*x).
|
[
"0",
"1",
"0",
"4",
"6",
"144",
"860",
"30656",
"497168",
"33543808",
"1300171872",
"178516634624",
"15640422963968",
"4483114311886336",
"862178272953520640",
"520264199498699214848",
"215806526739662643193856",
"274505260166616222726586368"
] |
[
"nonn"
] | 17 | 0 | 4 |
[
"A355086",
"A355229",
"A355230",
"A355231"
] | null |
Seiichi Manyama, Jun 25 2022
| 2022-06-25T10:00:38 |
oeisdata/seq/A355/A355230.seq
|
9f3dbbd466b81f37e282e2e753fa5a70
|
A355231
|
E.g.f. A(x) satisfies A'(x) = 1 - 2 * log(1-x) * A(x).
|
[
"0",
"1",
"0",
"4",
"6",
"48",
"200",
"1364",
"9016",
"71088",
"607920",
"5772528",
"59790720",
"673839456",
"8210152704",
"107668087104",
"1513106471040",
"22700196933120",
"362277092798208",
"6130771723664640",
"109694104262443008",
"2069581743476587008",
"41071931895114372096",
"855436794313229319168"
] |
[
"nonn"
] | 19 | 0 | 4 |
[
"A088500",
"A355205",
"A355229",
"A355230",
"A355231"
] | null |
Seiichi Manyama, Jun 25 2022
| 2022-06-25T10:00:29 |
oeisdata/seq/A355/A355231.seq
|
ce97204ddc832025caee8aec840fa64e
|
A355232
|
E.g.f. A(x) satisfies A'(x) = 1 + (exp(x) - 1) * A(2*x).
|
[
"0",
"1",
"0",
"4",
"6",
"136",
"810",
"28204",
"458766",
"30584656",
"1191878610",
"162323643604",
"14307180186486",
"4073323890279736",
"788119370902131450",
"472616432593062958204",
"197219048399199774543966",
"249355424516977575240738976"
] |
[
"nonn"
] | 15 | 0 | 4 |
[
"A087650",
"A352860",
"A355232",
"A355233"
] | null |
Seiichi Manyama, Jun 25 2022
| 2022-06-25T10:00:42 |
oeisdata/seq/A355/A355232.seq
|
026da2860cb875df3a52805c470b49b8
|
A355233
|
E.g.f. A(x) satisfies A'(x) = 1 + 2 * (exp(x) - 1) * A(x).
|
[
"0",
"1",
"0",
"4",
"6",
"40",
"150",
"832",
"4494",
"27496",
"178278",
"1240720",
"9159678",
"71523448",
"588049878",
"5073746464",
"45800173038",
"431400176008",
"4230061102662",
"43087882883248",
"455079854567646",
"4975136823055768",
"56212975652894646",
"655496634896272960",
"7878552380411524302"
] |
[
"nonn"
] | 25 | 0 | 4 |
[
"A004123",
"A087650",
"A194689",
"A355206",
"A355232",
"A355233"
] | null |
Seiichi Manyama, Jun 25 2022
| 2022-06-26T02:58:11 |
oeisdata/seq/A355/A355233.seq
|
12ac5d92c666d68f38bb1de2274a1ad5
|
A355234
|
Decimal expansion of Li_2(-1/2), the dilogarithm of (-1/2) (negated).
|
[
"4",
"4",
"8",
"4",
"1",
"4",
"2",
"0",
"6",
"9",
"2",
"3",
"6",
"4",
"6",
"2",
"0",
"2",
"4",
"4",
"3",
"0",
"6",
"4",
"4",
"0",
"5",
"9",
"1",
"5",
"7",
"7",
"4",
"3",
"2",
"0",
"8",
"3",
"4",
"2",
"6",
"9",
"9",
"4",
"1",
"3",
"4",
"9",
"1",
"9",
"9",
"1",
"2",
"8",
"5",
"0",
"1",
"7",
"4",
"6",
"3",
"7",
"1",
"3",
"1",
"6",
"8",
"2",
"4",
"3",
"7",
"2",
"2",
"5",
"5",
"7",
"2",
"0",
"3",
"1",
"2",
"3",
"8",
"9",
"8",
"6",
"5",
"1",
"6",
"5",
"1",
"8",
"6",
"6",
"5",
"3",
"3",
"1",
"0",
"6",
"6",
"9",
"0",
"2",
"8"
] |
[
"nonn",
"cons"
] | 21 | 0 | 1 |
[
"A001008",
"A002805",
"A007758",
"A072691",
"A076788",
"A152115",
"A242599",
"A242600",
"A355234"
] | null |
Amiram Eldar, Jun 25 2022
| 2024-08-06T05:42:15 |
oeisdata/seq/A355/A355234.seq
|
ea81f2f740122a421dc1449d7ce54d4a
|
A355235
|
E.g.f. A(x) satisfies A'(x) = 1 - log(1-x) * A(2*x)/2.
|
[
"0",
"1",
"0",
"2",
"3",
"40",
"230",
"4664",
"69160",
"2692320",
"92337072",
"7377183360",
"561596031744",
"94107667481472",
"15571512343805184",
"5506994273113257984",
"1955013641428681233408",
"1459378050438033715961856",
"1101502067162420292961916928"
] |
[
"nonn"
] | 14 | 0 | 4 |
[
"A355230",
"A355235"
] | null |
Seiichi Manyama, Jun 25 2022
| 2022-06-25T10:00:46 |
oeisdata/seq/A355/A355235.seq
|
5bac437016991cb88c3f6a84cc329bdb
|
A355236
|
E.g.f. A(x) satisfies A'(x) = 1 + (exp(x) - 1) * A(2*x)/2.
|
[
"0",
"1",
"0",
"2",
"3",
"36",
"205",
"3982",
"59143",
"2256856",
"77934585",
"6150325562",
"472040621283",
"78339827803476",
"13070683708717765",
"4582625922523426342",
"1640266593049835803423",
"1214338374811373816693296",
"924005045104558757129996145"
] |
[
"nonn"
] | 15 | 0 | 4 |
[
"A087650",
"A355232",
"A355236"
] | null |
Seiichi Manyama, Jun 25 2022
| 2022-06-25T10:00:50 |
oeisdata/seq/A355/A355236.seq
|
7b4f3fc4c6ae6a7ed23c2b075de4d716
|
A355237
|
First occurrence of difference n between two consecutive terms of A000404. a(n) gives the lower term. The upper term is A355238.
|
[
"17",
"8",
"2",
"13",
"20",
"74",
"90",
"137",
"377",
"3050",
"986",
"1669",
"4181",
"6530",
"1493",
"8434",
"9704",
"22160",
"10709",
"5165",
"16109",
"154708",
"58418",
"31657",
"52393",
"401480",
"176810",
"101349",
"105572",
"678356",
"241882",
"501716",
"393817",
"284002",
"685541",
"1437353",
"1751296",
"3225578",
"3439258",
"2479594"
] |
[
"nonn"
] | 15 | 1 | 1 |
[
"A000404",
"A104271",
"A355237",
"A355238"
] | null |
Hugo Pfoertner, Jun 30 2022
| 2022-09-09T08:04:58 |
oeisdata/seq/A355/A355237.seq
|
b8b46d00d4aaa2992871b967bbc926cf
|
A355238
|
First occurrence of difference n between two consecutive terms of A000404. a(n) gives the upper term. The lower term is A355237.
|
[
"18",
"10",
"5",
"17",
"25",
"80",
"97",
"145",
"386",
"3060",
"997",
"1681",
"4194",
"6544",
"1508",
"8450",
"9721",
"22178",
"10728",
"5185",
"16130",
"154730",
"58441",
"31681",
"52418",
"401506",
"176837",
"101377",
"105601",
"678386",
"241913",
"501748",
"393850",
"284036",
"685576",
"1437389",
"1751333",
"3225616",
"3439297",
"2479634"
] |
[
"nonn"
] | 9 | 1 | 1 |
[
"A000404",
"A355237",
"A355238"
] | null |
Hugo Pfoertner, Jun 30 2022
| 2022-07-01T12:19:29 |
oeisdata/seq/A355/A355238.seq
|
36ba1d0d44b513af7c8b4c2cce3a2763
|
A355239
|
Starting values k > 4 of a Collatz iteration reaching either k-1 or k+1.
|
[
"5",
"6",
"7",
"9",
"11",
"14",
"15",
"17",
"18",
"19",
"25",
"33",
"39",
"41",
"47",
"51",
"54",
"57",
"59",
"62",
"71",
"81",
"89",
"91",
"107",
"108",
"121",
"159",
"161",
"166",
"183",
"243",
"250",
"252",
"284",
"333",
"376",
"378",
"411",
"432",
"487",
"501",
"639",
"649",
"651",
"667",
"865",
"889",
"959",
"975",
"977",
"1153",
"1185",
"1299",
"1335",
"1368",
"1439",
"1731",
"1779",
"1823",
"2159",
"2307",
"2430",
"2735",
"3239",
"3643",
"4103",
"4617",
"4857",
"4859",
"6155",
"7287",
"7289",
"9233"
] |
[
"nonn"
] | 24 | 1 | 1 |
[
"A070991",
"A070993",
"A355239",
"A355240",
"A355568",
"A355569"
] | null |
Hugo Pfoertner, Jul 04 2022
| 2022-10-17T11:51:43 |
oeisdata/seq/A355/A355239.seq
|
0795d2aad1001b3790fd0a2d61a8a575
|
A355240
|
Numbers of steps until the Collatz iteration started at k > 4 returns to either k-1 or k+1.
|
[
"3",
"8",
"13",
"44",
"75",
"88",
"101",
"119"
] |
[
"nonn",
"more"
] | 19 | 1 | 1 |
[
"A005186",
"A006577",
"A355239",
"A355240",
"A355514",
"A355568",
"A355569"
] | null |
Hugo Pfoertner, Jul 04 2022
| 2022-09-02T07:45:01 |
oeisdata/seq/A355/A355240.seq
|
6934bea6146ade9c401ee043b7882bb4
|
A355241
|
T(w,h)/2 is the minimum slope >= 1/2 that can be chosen as orientation of a w X h rectangle such that the upper bound for the minimum number of covered grid points A354702(w,d) can be achieved by a suitable translation of the rectangle, where T(w,h) and A354702 are triangles read by rows. T(w,h) = -1 if no slope satisfying this condition exists.
|
[
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"2",
"1",
"1",
"6",
"2",
"2",
"1",
"1",
"6",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"1",
"6",
"1",
"2",
"1",
"2",
"2",
"1",
"2",
"6",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"1",
"6",
"6",
"2",
"1",
"2",
"1",
"2",
"2",
"1",
"2",
"6",
"2",
"2",
"1",
"2",
"1",
"2",
"2",
"2",
"1",
"2",
"6",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"6",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"2"
] |
[
"nonn",
"tabl"
] | 18 | 1 | 3 |
[
"A354702",
"A355241",
"A355242",
"A355244"
] | null |
Hugo Pfoertner, Jun 27 2022
| 2024-12-19T11:57:12 |
oeisdata/seq/A355/A355241.seq
|
c3b11761351e25c72b7bfdb4dc067d06
|
A355242
|
T(w,h) is the minimum integer slope >= 1 that can be chosen as orientation of a w X h rectangle such that the upper bound for the minimum number of covered grid points A354702(w,d) can be achieved by a suitable translation of the rectangle, where T(w,h) and A354702 are triangles read by rows. T(w,h) = -1 if no integer slope satisfying this condition exists.
|
[
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"3",
"1",
"1",
"2",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"3",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"3",
"3",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"3",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"3",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1"
] |
[
"tabl",
"sign"
] | 11 | 1 | 6 |
[
"A354702",
"A355241",
"A355242"
] | null |
Hugo Pfoertner, Jun 25 2022
| 2022-07-05T17:53:40 |
oeisdata/seq/A355/A355242.seq
|
d22bef73db962e83730e968c01861be1
|
A355243
|
a(n) is the largest integer value of Product_{k=1..n} (2 + 1/t_k) with integers t_k > 1.
|
[
"5",
"11",
"25",
"55",
"125",
"277",
"637",
"1421",
"3237",
"7553",
"16807",
"38661",
"90209",
"208397"
] |
[
"nonn",
"hard",
"more"
] | 7 | 2 | 1 |
[
"A355243",
"A355626",
"A355630"
] | null |
Hugo Pfoertner and Markus Sigg, Jul 16 2022
| 2024-12-22T10:52:26 |
oeisdata/seq/A355/A355243.seq
|
da09ca9cdb5ca0a6a908053f16bf50e0
|
A355244
|
T(w,h)/2 is the minimum slope >= 1/2 that can be chosen as orientation of a w X h rectangle such that the lower bound for the maximum number of covered grid points A354704(w,d) can be achieved by a suitable translation of the rectangle, where T(w,h) and A354704 are triangles read by rows. T(w,h) = -1 if no slope satisfying this condition exists.
|
[
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"3",
"2",
"2",
"1",
"1",
"2",
"2",
"2",
"1",
"1",
"2",
"2",
"2",
"2",
"1",
"6",
"2",
"2",
"2",
"1",
"6",
"2",
"6",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"1",
"2",
"2",
"2",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"6",
"2",
"1",
"2",
"2",
"1",
"3",
"2",
"-1",
"2",
"2",
"3",
"2",
"1",
"2",
"-1",
"3",
"2",
"1",
"2",
"2",
"2",
"2",
"6",
"2",
"1",
"2",
"2",
"1",
"2"
] |
[
"tabl",
"sign"
] | 18 | 1 | 5 |
[
"A354704",
"A354706",
"A355241",
"A355244"
] | null |
Hugo Pfoertner, Jun 29 2022
| 2024-12-19T11:56:22 |
oeisdata/seq/A355/A355244.seq
|
d6f7a2f2459cc746f0211f150123af8e
|
A355245
|
Square array A(n, k), n, k >= 0, read by antidiagonals; for any m > 0, the position of the m-th rightmost 0 in the binary expansion of A(n, k) is the least of the positions of the m-th rightmost 0 in the binary expansions of n and k (the least significant bit having position 0).
|
[
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"2",
"2",
"0",
"0",
"1",
"2",
"1",
"0",
"0",
"4",
"2",
"2",
"4",
"0",
"0",
"1",
"4",
"3",
"4",
"1",
"0",
"0",
"2",
"2",
"4",
"4",
"2",
"2",
"0",
"0",
"1",
"2",
"5",
"4",
"5",
"2",
"1",
"0",
"0",
"8",
"2",
"6",
"4",
"4",
"6",
"2",
"8",
"0",
"0",
"1",
"8",
"3",
"4",
"5",
"4",
"3",
"8",
"1",
"0",
"0",
"2",
"2",
"8",
"4",
"6",
"6",
"4",
"8",
"2",
"2",
"0",
"0",
"1",
"2",
"9",
"8",
"5",
"6",
"5",
"8",
"9",
"2",
"1",
"0"
] |
[
"nonn",
"base",
"tabl"
] | 13 | 0 | 8 |
[
"A006519",
"A355245",
"A355246"
] | null |
Rémy Sigrist, Jun 25 2022
| 2022-06-28T11:00:27 |
oeisdata/seq/A355/A355245.seq
|
5aa328abeb5f2b9f76b8a0a30ce7578f
|
A355246
|
Square array A(n, k), n, k >= 0, read by antidiagonals; for any m > 0, the position of the m-th rightmost 0 in the binary expansion of A(n, k) is the greatest of the positions of the m-th rightmost 0 in the binary expansions of n and k (the least significant bit having position 0).
|
[
"0",
"1",
"1",
"2",
"1",
"2",
"3",
"1",
"1",
"3",
"4",
"3",
"2",
"3",
"4",
"5",
"1",
"3",
"3",
"1",
"5",
"6",
"5",
"2",
"3",
"2",
"5",
"6",
"7",
"5",
"5",
"3",
"3",
"5",
"5",
"7",
"8",
"7",
"6",
"3",
"4",
"3",
"6",
"7",
"8",
"9",
"1",
"7",
"3",
"5",
"5",
"3",
"7",
"1",
"9",
"10",
"9",
"2",
"7",
"6",
"5",
"6",
"7",
"2",
"9",
"10",
"11",
"9",
"9",
"3",
"7",
"5",
"5",
"7",
"3",
"9",
"9",
"11",
"12",
"11",
"10",
"3",
"4",
"7",
"6",
"7",
"4",
"3",
"10",
"11",
"12"
] |
[
"nonn",
"base",
"tabl"
] | 9 | 0 | 4 |
[
"A355245",
"A355246"
] | null |
Rémy Sigrist, Jun 25 2022
| 2022-06-28T11:00:22 |
oeisdata/seq/A355/A355246.seq
|
a6952a4be7cd68330218ffba93bf86e3
|
A355247
|
Expansion of e.g.f. exp(2*(exp(x) - 1 + x)).
|
[
"1",
"4",
"18",
"90",
"494",
"2946",
"18926",
"130066",
"950654",
"7353794",
"59954638",
"513333618",
"4601380766",
"43062556322",
"419742815726",
"4252083713874",
"44680229906622",
"486145710591874",
"5468499473222670",
"63503107472489266",
"760281866742088670",
"9373065303624742498",
"118858898763010225198"
] |
[
"nonn"
] | 11 | 0 | 2 |
[
"A000110",
"A001861",
"A035009",
"A194689",
"A217924",
"A293024",
"A339014",
"A355247"
] | null |
Vaclav Kotesovec, Jun 25 2022
| 2022-06-26T08:58:01 |
oeisdata/seq/A355/A355247.seq
|
43631ee38a9585d7280b4667682f4d91
|
A355248
|
Number of ways to write n as the sum of (exactly) 3 positive integers with the same number of divisors.
|
[
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"1",
"2",
"1",
"2",
"3",
"2",
"1",
"3",
"2",
"5",
"3",
"3",
"3",
"5",
"5",
"5",
"5",
"5",
"6",
"9",
"5",
"8",
"5",
"8",
"4",
"12",
"5",
"11",
"8",
"12",
"10",
"13",
"5",
"14",
"10",
"16",
"9",
"17",
"8",
"19",
"10",
"19",
"15",
"24",
"12",
"22",
"14",
"24",
"16",
"27",
"16",
"25",
"13",
"23",
"22",
"33",
"15",
"29",
"17",
"35",
"22",
"37",
"17",
"37",
"15",
"32",
"28",
"44",
"27",
"41",
"26",
"40"
] |
[
"nonn"
] | 11 | 0 | 10 |
[
"A000005",
"A355248"
] | null |
Wesley Ivan Hurt, Jun 25 2022
| 2022-06-26T09:16:48 |
oeisdata/seq/A355/A355248.seq
|
338c212f80c863b32b7a04f60723121c
|
A355249
|
Maximal GCD of three positive integers with sum n.
|
[
"1",
"1",
"1",
"2",
"1",
"2",
"3",
"2",
"1",
"4",
"1",
"2",
"5",
"4",
"1",
"6",
"1",
"5",
"7",
"2",
"1",
"8",
"5",
"2",
"9",
"7",
"1",
"10",
"1",
"8",
"11",
"2",
"7",
"12",
"1",
"2",
"13",
"10",
"1",
"14",
"1",
"11",
"15",
"2",
"1",
"16",
"7",
"10",
"17",
"13",
"1",
"18",
"11",
"14",
"19",
"2",
"1",
"20",
"1",
"2",
"21",
"16",
"13",
"22",
"1",
"17",
"23",
"14",
"1",
"24",
"1",
"2",
"25",
"19",
"11",
"26",
"1",
"20",
"27",
"2",
"1",
"28"
] |
[
"nonn"
] | 21 | 3 | 4 |
[
"A032742",
"A085891",
"A129648",
"A354598",
"A354599",
"A354601",
"A355249",
"A355319",
"A355366",
"A355368",
"A355402"
] | null |
Wesley Ivan Hurt, Jun 25 2022
| 2022-09-21T11:28:28 |
oeisdata/seq/A355/A355249.seq
|
9373ed9dc9af446475d3947169ef5f86
|
A355250
|
Largest prime appearing among the "middle parts" of the partitions of n into (exactly) 3 prime parts.
|
[
"2",
"2",
"3",
"3",
"3",
"3",
"5",
"5",
"5",
"5",
"7",
"7",
"5",
"7",
"7",
"7",
"7",
"7",
"11",
"11",
"11",
"11",
"13",
"13",
"11",
"13",
"13",
"13",
"13",
"13",
"17",
"17",
"17",
"17",
"19",
"19",
"17",
"19",
"19",
"19",
"13",
"19",
"23",
"23",
"19",
"23",
"19",
"23",
"23",
"23",
"23",
"23",
"19",
"23",
"29",
"29",
"29",
"29",
"31",
"31",
"23",
"31",
"29",
"31",
"31",
"31",
"29",
"31",
"31",
"31",
"37",
"37",
"29",
"37"
] |
[
"nonn"
] | 11 | 6 | 1 |
[
"A164024",
"A355250"
] | null |
Wesley Ivan Hurt, Jun 25 2022
| 2025-01-31T14:04:41 |
oeisdata/seq/A355/A355250.seq
|
9a41f3dde0dc49de31419a39171809bc
|
A355251
|
Decimal expansion of the geometric integral of the Riemann zeta function from 1 to infinity.
|
[
"6",
"0",
"3",
"4",
"9",
"6",
"4",
"4",
"1",
"8",
"2",
"2",
"3",
"1",
"3",
"4",
"8",
"3",
"4",
"7",
"0",
"1",
"1",
"0",
"0",
"6",
"8",
"0",
"5",
"1",
"7",
"0",
"2",
"7",
"1",
"8",
"9",
"6",
"0",
"2",
"3",
"0",
"9",
"6",
"3",
"6",
"4",
"9",
"4",
"7",
"8",
"4",
"3",
"6",
"0",
"9",
"6",
"4",
"4",
"0",
"4",
"2",
"0",
"2",
"1",
"5",
"4",
"4",
"8",
"7",
"4",
"0",
"2",
"9",
"0",
"7",
"4",
"7",
"0",
"1",
"0",
"1",
"3",
"3",
"7",
"0",
"2"
] |
[
"nonn",
"cons"
] | 12 | 1 | 1 |
[
"A001113",
"A188157",
"A355251"
] | null |
Iain Fox, Jun 26 2022
| 2022-07-03T18:06:05 |
oeisdata/seq/A355/A355251.seq
|
357dea95723da2e1eda5caa423be1ed2
|
A355252
|
Expansion of e.g.f. exp(2*(exp(x) - 1) + 3*x).
|
[
"1",
"5",
"27",
"157",
"979",
"6517",
"46107",
"345261",
"2726243",
"22623525",
"196712171",
"1787356765",
"16929897395",
"166808851541",
"1706299041211",
"18088031239437",
"198392625389315",
"2248104026019461",
"26283054263021963",
"316637825898555069",
"3926250785070282579",
"50056384077880370101"
] |
[
"nonn"
] | 13 | 0 | 2 |
[
"A001861",
"A035009",
"A355247",
"A355252",
"A355253"
] | null |
Vaclav Kotesovec, Jun 26 2022
| 2023-12-04T12:32:50 |
oeisdata/seq/A355/A355252.seq
|
efd4649ad99dfdb66fe4d4fc9eb1fee2
|
A355253
|
Expansion of e.g.f. exp(2*(exp(x) - 1) - 3*x).
|
[
"1",
"-1",
"3",
"-5",
"19",
"-29",
"171",
"-69",
"2339",
"5139",
"57563",
"303403",
"2397011",
"17237507",
"139011211",
"1151110299",
"10076637827",
"91903924979",
"874688607035",
"8656097294091",
"88932728790195",
"946748093175523",
"10426787247224043",
"118620906668843131",
"1392128306377939427",
"16833088095308098003"
] |
[
"sign"
] | 12 | 0 | 3 |
[
"A001861",
"A194689",
"A217923",
"A355252",
"A355253"
] | null |
Vaclav Kotesovec, Jun 26 2022
| 2023-12-04T12:32:22 |
oeisdata/seq/A355/A355253.seq
|
cbd8d1eb8ba36290c7ff81b2750a1d12
|
A355254
|
Expansion of e.g.f. exp(3*(exp(x) - 1) - x).
|
[
"1",
"2",
"7",
"29",
"142",
"785",
"4813",
"32240",
"233449",
"1812161",
"14980768",
"131174939",
"1211111629",
"11745451658",
"119255234371",
"1264050651953",
"13952113296766",
"160006824960725",
"1902825936046105",
"23423342243273696",
"297982102750214605",
"3911917977005948453",
"52926119656555824520"
] |
[
"nonn"
] | 14 | 0 | 2 |
[
"A000296",
"A027710",
"A078940",
"A217924",
"A355254"
] | null |
Vaclav Kotesovec, Jun 26 2022
| 2023-12-04T12:32:17 |
oeisdata/seq/A355/A355254.seq
|
a0017df086f88273162ea6958e731f15
|
A355255
|
Irregular table read by rows: a(n,k) gives the number of distinct necklaces that appear in the following procedure: starting with the n-bead, (0,1)-necklace given by k written in binary, repeatedly take the first differences (mod 2) of the beads. 0 <= k < 2^n.
|
[
"1",
"1",
"2",
"1",
"3",
"3",
"2",
"1",
"2",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"5",
"5",
"4",
"5",
"3",
"4",
"5",
"5",
"4",
"3",
"5",
"4",
"5",
"5",
"2",
"1",
"4",
"4",
"3",
"4",
"3",
"3",
"4",
"4",
"3",
"3",
"4",
"3",
"4",
"4",
"3",
"4",
"3",
"3",
"4",
"3",
"4",
"4",
"3",
"3",
"4",
"4",
"3",
"4",
"3",
"3",
"2",
"1",
"4",
"4",
"3",
"4",
"2",
"3",
"3",
"4",
"2",
"2",
"4",
"3",
"4",
"3",
"2",
"4",
"2",
"2",
"4",
"2",
"3",
"4",
"3",
"3",
"4",
"4",
"1",
"3",
"3",
"2",
"4",
"4",
"3",
"2",
"3",
"2",
"4",
"4",
"2",
"2",
"4",
"3",
"3",
"4",
"1",
"3",
"4",
"3",
"3",
"4",
"2",
"4",
"3",
"1",
"4",
"3",
"2",
"3",
"4",
"2",
"4",
"4",
"2"
] |
[
"nonn",
"tabf",
"base",
"look"
] | 18 | 0 | 3 |
[
"A038556",
"A334594",
"A355255"
] | null |
Peter Kagey, Jun 26 2022
| 2022-07-05T23:19:27 |
oeisdata/seq/A355/A355255.seq
|
c27fe8ddbdfc92ea9ebfb2c3fa91ad73
|
A355256
|
a(n) is the number of n-th order n X n magic arrays composed of the numbers from 1 to n^2 in which each 2 X 2 subsquare has the same sum, counted up to rotations and reflections.
|
[
"1",
"3",
"47",
"2544",
"6480"
] |
[
"nonn",
"more"
] | 23 | 1 | 2 | null | null |
Donghwi Park, Jun 26 2022
| 2022-08-13T15:34:25 |
oeisdata/seq/A355/A355256.seq
|
8641b132baf06bf0bb7ab3300f34f260
|
A355257
|
Array read by ascending antidiagonals. A(n, k) = k! * [x^k] log((1 - x) / (1 - 2*x)) / (1 - x)^n, for 0 <= k <= n.
|
[
"0",
"0",
"1",
"0",
"1",
"3",
"0",
"1",
"5",
"14",
"0",
"1",
"7",
"29",
"90",
"0",
"1",
"9",
"50",
"206",
"744",
"0",
"1",
"11",
"77",
"406",
"1774",
"7560",
"0",
"1",
"13",
"110",
"714",
"3804",
"18204",
"91440",
"0",
"1",
"15",
"149",
"1154",
"7374",
"41028",
"218868",
"1285200",
"0",
"1",
"17",
"194",
"1750",
"13144",
"85272",
"506064",
"3036144",
"20603520"
] |
[
"nonn",
"tabl"
] | 37 | 0 | 6 |
[
"A029767",
"A103213",
"A355171",
"A355257",
"A355259",
"A355372",
"A355407",
"A355414"
] | null |
Peter Luschny and Mélika Tebni, Jul 01 2022
| 2025-04-13T01:46:03 |
oeisdata/seq/A355/A355257.seq
|
bb58493685cc7e9f95b4424c8a736e2f
|
A355258
|
a(n) = n! * [x^n] (1 - x)*log((1 - x)/(1 - 2*x)).
|
[
"0",
"1",
"1",
"5",
"34",
"294",
"3096",
"38520",
"553680",
"9036720",
"165191040",
"3344664960",
"74321452800",
"1798531257600",
"47088252288000",
"1326311841254400",
"39993302622873600",
"1285497518393088000",
"43878291581988864000",
"1585102883250991104000",
"60420385100090695680000",
"2423528644964637450240000"
] |
[
"nonn"
] | 10 | 0 | 4 |
[
"A355257",
"A355258"
] | null |
Peter Luschny, Jul 01 2022
| 2024-04-12T14:01:48 |
oeisdata/seq/A355/A355258.seq
|
7af094ba24c07ec28c119153637f6590
|
A355259
|
Triangle read by rows. Row k are the coefficients of the polynomials (sorted by ascending powers) which interpolate the points (n, A355257(n, k+1)) for n = 0..k.
|
[
"1",
"3",
"2",
"14",
"12",
"3",
"90",
"82",
"30",
"4",
"744",
"680",
"285",
"60",
"5",
"7560",
"6788",
"2985",
"760",
"105",
"6",
"91440",
"80136",
"35532",
"9870",
"1715",
"168",
"7",
"1285200",
"1098984",
"482300",
"138796",
"27160",
"3444",
"252",
"8",
"20603520",
"17227584",
"7425492",
"2152584",
"447405",
"65520",
"6342",
"360",
"9"
] |
[
"nonn",
"tabl"
] | 5 | 0 | 2 |
[
"A355257",
"A355259"
] | null |
Peter Luschny, Jul 03 2022
| 2022-07-04T06:51:09 |
oeisdata/seq/A355/A355259.seq
|
d3d78d9785051f0fe3b44a757ef945bf
|
A355260
|
Triangle read by rows, T(n, k) = Bell(k) * |Stirling1(n, k)|.
|
[
"1",
"0",
"1",
"0",
"1",
"2",
"0",
"2",
"6",
"5",
"0",
"6",
"22",
"30",
"15",
"0",
"24",
"100",
"175",
"150",
"52",
"0",
"120",
"548",
"1125",
"1275",
"780",
"203",
"0",
"720",
"3528",
"8120",
"11025",
"9100",
"4263",
"877",
"0",
"5040",
"26136",
"65660",
"101535",
"101920",
"65366",
"24556",
"4140",
"0",
"40320",
"219168",
"590620",
"1009260",
"1167348",
"920808",
"478842",
"149040",
"21147"
] |
[
"nonn",
"tabl"
] | 13 | 0 | 6 |
[
"A000110",
"A000142",
"A000262",
"A033999",
"A132393",
"A355260",
"A355267"
] | null |
Peter Luschny, Jul 06 2022
| 2022-07-06T11:13:58 |
oeisdata/seq/A355/A355260.seq
|
94b27e5e290f9a757b708addf588a626
|
A355261
|
a(n) = largest-nth-power(n, 2) * radical(n) = A000188(n) * A007947(n), where largest-nth-power(n, e) is the largest positive integer b such that b^e divides n.
|
[
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"4",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"8",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"12",
"25",
"26",
"9",
"28",
"29",
"30",
"31",
"8",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"20",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"24",
"49",
"50",
"51",
"52",
"53",
"18",
"55",
"28",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"16",
"65",
"66",
"67",
"68"
] |
[
"nonn",
"mult"
] | 25 | 1 | 2 |
[
"A000188",
"A002117",
"A007947",
"A064549",
"A355261",
"A355263"
] | null |
Peter Luschny, Jul 12 2022
| 2022-11-13T08:40:04 |
oeisdata/seq/A355/A355261.seq
|
e7e26b33f54f24de4034fa0970a85b0e
|
A355262
|
Array of Fuss-Catalan numbers read by ascending antidiagonals, A(n, k) = binomial(k*n + 1, k)/(k*n + 1).
|
[
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"2",
"1",
"0",
"1",
"1",
"3",
"5",
"1",
"0",
"1",
"1",
"4",
"12",
"14",
"1",
"0",
"1",
"1",
"5",
"22",
"55",
"42",
"1",
"0",
"1",
"1",
"6",
"35",
"140",
"273",
"132",
"1",
"0",
"1",
"1",
"7",
"51",
"285",
"969",
"1428",
"429",
"1",
"0",
"1",
"1",
"8",
"70",
"506",
"2530",
"7084",
"7752",
"1430",
"1",
"0"
] |
[
"nonn",
"tabl"
] | 26 | 0 | 13 |
[
"A000012",
"A000108",
"A001764",
"A002293",
"A002294",
"A002295",
"A002296",
"A007556",
"A019590",
"A062993",
"A062994",
"A070914",
"A091144",
"A123110",
"A355172",
"A355173",
"A355174",
"A355262"
] | null |
Peter Luschny, Jun 26 2022
| 2024-09-29T09:19:47 |
oeisdata/seq/A355/A355262.seq
|
1d0b375bc9491e473fae2f9a9498aeb0
|
A355263
|
a(n) = largest-nth-power(n, 3) * radical(n) = A053150(n) * A007947(n), where the largest-nth-power(n, e) is the largest positive integer b such that b^e divides n.
|
[
"1",
"2",
"3",
"2",
"5",
"6",
"7",
"4",
"3",
"10",
"11",
"6",
"13",
"14",
"15",
"4",
"17",
"6",
"19",
"10",
"21",
"22",
"23",
"12",
"5",
"26",
"9",
"14",
"29",
"30",
"31",
"4",
"33",
"34",
"35",
"6",
"37",
"38",
"39",
"20",
"41",
"42",
"43",
"22",
"15",
"46",
"47",
"12",
"7",
"10",
"51",
"26",
"53",
"18",
"55",
"28",
"57",
"58",
"59",
"30",
"61",
"62",
"21",
"8",
"65",
"66",
"67",
"34",
"69"
] |
[
"nonn",
"mult"
] | 22 | 1 | 2 |
[
"A000188",
"A013663",
"A053150",
"A064549",
"A355261",
"A355263"
] | null |
Peter Luschny, Jul 12 2022
| 2022-11-13T08:40:46 |
oeisdata/seq/A355/A355263.seq
|
bf144d82acf286e625a96d62be901e0d
|
A355264
|
a(n) = n * largest-nth-power(n, 2) = n * A000188(n), where largest-nth-power(n, e) is the largest positive integer b such that b^e divides n.
|
[
"1",
"2",
"3",
"8",
"5",
"6",
"7",
"16",
"27",
"10",
"11",
"24",
"13",
"14",
"15",
"64",
"17",
"54",
"19",
"40",
"21",
"22",
"23",
"48",
"125",
"26",
"81",
"56",
"29",
"30",
"31",
"128",
"33",
"34",
"35",
"216",
"37",
"38",
"39",
"80",
"41",
"42",
"43",
"88",
"135",
"46",
"47",
"192",
"343",
"250",
"51",
"104",
"53",
"162",
"55",
"112",
"57",
"58",
"59",
"120",
"61",
"62",
"189",
"512"
] |
[
"nonn",
"easy",
"mult"
] | 18 | 1 | 2 |
[
"A000027",
"A000188",
"A001620",
"A007913",
"A306016",
"A355264"
] | null |
Peter Luschny, Jul 12 2022
| 2023-09-21T01:45:51 |
oeisdata/seq/A355/A355264.seq
|
279ba9554c276a632b09bbad9933f214
|
A355265
|
Bicubeful numbers.
|
[
"64",
"128",
"192",
"256",
"320",
"384",
"448",
"512",
"576",
"640",
"704",
"729",
"768",
"832",
"896",
"960",
"1024",
"1088",
"1152",
"1216",
"1280",
"1344",
"1408",
"1458",
"1472",
"1536",
"1600",
"1664",
"1728",
"1792",
"1856",
"1920",
"1984",
"2048",
"2112",
"2176",
"2187",
"2240",
"2304",
"2368",
"2432",
"2496",
"2560",
"2624",
"2688",
"2752"
] |
[
"nonn"
] | 20 | 1 | 1 |
[
"A000188",
"A007947",
"A013664",
"A013929",
"A046101",
"A053150",
"A053164",
"A343359",
"A355265"
] | null |
Peter Luschny, Jul 12 2022
| 2022-07-13T09:10:27 |
oeisdata/seq/A355/A355265.seq
|
1bb3c317e0a7cbf0a4520477478a2042
|
A355266
|
Triangle read by rows, T(n, k) = (-1)^(n-k)*Bell(k)*Stirling1(n+1, k+1), for 0 <= k <= n.
|
[
"1",
"1",
"1",
"2",
"3",
"2",
"6",
"11",
"12",
"5",
"24",
"50",
"70",
"50",
"15",
"120",
"274",
"450",
"425",
"225",
"52",
"720",
"1764",
"3248",
"3675",
"2625",
"1092",
"203",
"5040",
"13068",
"26264",
"33845",
"29400",
"16744",
"5684",
"877",
"40320",
"109584",
"236248",
"336420",
"336735",
"235872",
"110838",
"31572",
"4140"
] |
[
"nonn",
"tabl"
] | 10 | 0 | 4 |
[
"A000110",
"A000142",
"A000166",
"A000254",
"A002720",
"A053556",
"A053557",
"A105479",
"A130534",
"A355266"
] | null |
Peter Luschny and Mélika Tebni, Jul 05 2022
| 2022-07-07T13:21:20 |
oeisdata/seq/A355/A355266.seq
|
e22fab956f5e456f648f6dd70cbd687f
|
A355267
|
Triangle read by rows, T(n, k) = n! * [y^k] [x^n] exp(1/(1 - x)^(1 + y) - 1), for 0 <= k <= n.
|
[
"1",
"1",
"1",
"3",
"5",
"2",
"13",
"29",
"21",
"5",
"73",
"200",
"202",
"90",
"15",
"501",
"1609",
"2045",
"1295",
"410",
"52",
"4051",
"14809",
"22418",
"18085",
"8220",
"1998",
"203",
"37633",
"153453",
"267400",
"259175",
"151165",
"53095",
"10402",
"877",
"394353",
"1767240",
"3463612",
"3889620",
"2740885",
"1241632",
"353178",
"57676",
"4140"
] |
[
"nonn",
"tabl"
] | 7 | 0 | 4 |
[
"A000007",
"A000110",
"A000262",
"A136658",
"A216313",
"A355260",
"A355267"
] | null |
Peter Luschny, Jul 05 2022
| 2022-07-06T11:10:37 |
oeisdata/seq/A355/A355267.seq
|
69fe9b41f275a45f60f1dea069f5aeb5
|
A355268
|
a(n) = n! * [x^n] -exp(x^2)/(x - 1).
|
[
"1",
"1",
"4",
"12",
"60",
"300",
"1920",
"13440",
"109200",
"982800",
"9858240",
"108440640",
"1301952960",
"16925388480",
"236972736000",
"3554591040000",
"56873975558400",
"966857584492800",
"17403454164096000",
"330665629117824000",
"6613313252799052800",
"138879578308780108800",
"3055350750951750451200"
] |
[
"nonn"
] | 15 | 0 | 3 |
[
"A000522",
"A355268"
] | null |
Peter Luschny, Jul 15 2022
| 2024-02-28T09:08:11 |
oeisdata/seq/A355/A355268.seq
|
f37548bddb831774917196ccba288fe9
|
A355269
|
Lexicographically earliest infinite sequence of distinct positive integers such that a(n+1) is prime to the number of divisors of a(n).
|
[
"1",
"2",
"3",
"5",
"7",
"9",
"4",
"8",
"11",
"13",
"15",
"17",
"19",
"21",
"23",
"25",
"10",
"27",
"29",
"31",
"33",
"35",
"37",
"39",
"41",
"43",
"45",
"47",
"49",
"14",
"51",
"53",
"55",
"57",
"59",
"61",
"63",
"65",
"67",
"69",
"71",
"73",
"75",
"77",
"79",
"81",
"6",
"83",
"85",
"87",
"89",
"91",
"93",
"95",
"97",
"99",
"101",
"103",
"105",
"107",
"109",
"111",
"113",
"115",
"117",
"119"
] |
[
"nonn"
] | 33 | 1 | 2 |
[
"A000005",
"A000037",
"A000290",
"A002110",
"A016742",
"A016754",
"A352475",
"A354178",
"A354903",
"A355269"
] | null |
David James Sycamore and Michael De Vlieger, Jun 26 2022
| 2025-07-01T23:33:51 |
oeisdata/seq/A355/A355269.seq
|
2a73f70cb299aa35ae7f3f968e8581a0
|
A355270
|
Lexicographically earliest sequence of positive integers on a square spiral such that the sum of adjacent pairs of numbers within each row, column and diagonal is distinct in that row, column and diagonal.
|
[
"1",
"1",
"1",
"1",
"2",
"2",
"3",
"2",
"4",
"3",
"3",
"4",
"4",
"3",
"5",
"4",
"2",
"4",
"3",
"5",
"4",
"4",
"2",
"3",
"6",
"4",
"6",
"5",
"7",
"6",
"2",
"6",
"3",
"2",
"5",
"8",
"4",
"3",
"6",
"6",
"7",
"3",
"5",
"7",
"6",
"8",
"8",
"7",
"1",
"2",
"7",
"5",
"1",
"2",
"5",
"8",
"6",
"4",
"8",
"5",
"6",
"9",
"7",
"1",
"4",
"10",
"1",
"1",
"6",
"3",
"9",
"12",
"5",
"1",
"7",
"2",
"1",
"6",
"4",
"1",
"13",
"6",
"4",
"7",
"9",
"12",
"10",
"7",
"11",
"1",
"5",
"2",
"10",
"7",
"4",
"5",
"8"
] |
[
"nonn"
] | 17 | 1 | 5 |
[
"A274640",
"A275609",
"A307834",
"A355270",
"A355271"
] | null |
Scott R. Shannon, Jun 26 2022
| 2022-08-03T10:48:52 |
oeisdata/seq/A355/A355270.seq
|
2427780ab2f3e5b2bde20b9281368552
|
A355271
|
Lexicographically earliest sequence of positive integers on a square spiral such that the product of adjacent pairs of numbers within each row, column and diagonal is distinct in that row, column and diagonal.
|
[
"1",
"1",
"1",
"1",
"2",
"2",
"3",
"2",
"4",
"3",
"3",
"4",
"2",
"3",
"4",
"4",
"5",
"3",
"2",
"5",
"4",
"3",
"5",
"4",
"2",
"2",
"3",
"5",
"2",
"2",
"4",
"2",
"3",
"5",
"4",
"6",
"3",
"1",
"1",
"5",
"5",
"4",
"1",
"1",
"6",
"6",
"2",
"5",
"6",
"4",
"5",
"1",
"1",
"6",
"4",
"7",
"5",
"4",
"1",
"5",
"3",
"6",
"2",
"3",
"1",
"1",
"3",
"7",
"6",
"2",
"7",
"4",
"5",
"7",
"3",
"6",
"1",
"1",
"4",
"3",
"1",
"5",
"2",
"1",
"1",
"6",
"5",
"7",
"1",
"5",
"3",
"3",
"5",
"1",
"1",
"3",
"7",
"4",
"6"
] |
[
"nonn"
] | 16 | 1 | 5 |
[
"A274640",
"A275609",
"A307834",
"A355270",
"A355271"
] | null |
Scott R. Shannon, Jun 26 2022
| 2023-04-25T01:02:05 |
oeisdata/seq/A355/A355271.seq
|
c79e73ea5688b83ed6f41d283d67fa7d
|
A355272
|
Primes p for which p + q is not a multiple of 4, where q is the previous prime if p == 1 (mod 3) or else the next prime.
|
[
"2",
"89",
"97",
"211",
"223",
"359",
"367",
"389",
"397",
"401",
"409",
"449",
"457",
"467",
"479",
"487",
"491",
"499",
"509",
"631",
"673",
"683",
"691",
"701",
"709",
"719",
"727",
"743",
"751",
"761",
"769",
"797",
"887",
"907",
"911",
"919",
"929",
"937",
"983",
"991",
"1009",
"1109",
"1117",
"1163",
"1171",
"1193",
"1201",
"1213",
"1249",
"1307",
"1373"
] |
[
"nonn"
] | 13 | 1 | 1 |
[
"A068228",
"A151799",
"A151800",
"A355272"
] | null |
M. F. Hasler and Yasutoshi Kohmoto, Jun 26 2022
| 2022-07-03T09:18:15 |
oeisdata/seq/A355/A355272.seq
|
ffbc5d96995b9db18f9a409c463513f8
|
A355273
|
Primes p for which p + q is a multiple of 4, where q is the previous prime if p == 2 (mod 3) or the next prime otherwise.
|
[
"3",
"5",
"29",
"31",
"53",
"59",
"61",
"73",
"89",
"137",
"139",
"149",
"151",
"157",
"173",
"179",
"181",
"191",
"239",
"241",
"251",
"257",
"263",
"269",
"271",
"283",
"293",
"331",
"337",
"347",
"359",
"367",
"373",
"389",
"409",
"419",
"421",
"431",
"433",
"449",
"509",
"523",
"541",
"547",
"557",
"563",
"569",
"571",
"577",
"587",
"593",
"599",
"601",
"607",
"631"
] |
[
"nonn"
] | 9 | 1 | 1 |
[
"A068228",
"A151799",
"A151800",
"A355273"
] | null |
M. F. Hasler and Yasutoshi Kohmoto, Jun 26 2022
| 2022-07-03T09:18:41 |
oeisdata/seq/A355/A355273.seq
|
8bbb8bd1e812cc39d8224c37a2ad4335
|
A355274
|
Numbers having more even than odd digits when written in base 3.
|
[
"0",
"2",
"6",
"8",
"9",
"11",
"15",
"17",
"18",
"19",
"20",
"21",
"23",
"24",
"25",
"26",
"27",
"29",
"33",
"35",
"45",
"47",
"51",
"53",
"54",
"55",
"56",
"57",
"59",
"60",
"61",
"62",
"63",
"65",
"69",
"71",
"72",
"73",
"74",
"75",
"77",
"78",
"79",
"80",
"81",
"82",
"83",
"84",
"86",
"87",
"88",
"89",
"90",
"92",
"96",
"98",
"99",
"100",
"101",
"102",
"104",
"105",
"106",
"107",
"108",
"110",
"114",
"116"
] |
[
"nonn",
"base"
] | 6 | 1 | 2 |
[
"A072603",
"A352546",
"A355274"
] | null |
M. F. Hasler, Jul 03 2022
| 2022-07-04T14:07:02 |
oeisdata/seq/A355/A355274.seq
|
5a3557a81e3e1b8eeb7ff56243b1ceb9
|
A355275
|
Numbers having more odd than even digits when written in base 3.
|
[
"1",
"4",
"10",
"12",
"13",
"14",
"16",
"22",
"31",
"37",
"39",
"40",
"41",
"43",
"49",
"67",
"85",
"91",
"93",
"94",
"95",
"97",
"103",
"109",
"111",
"112",
"113",
"115",
"117",
"118",
"119",
"120",
"121",
"122",
"123",
"124",
"125",
"127",
"129",
"130",
"131",
"133",
"139",
"145",
"147",
"148",
"149",
"151",
"157",
"175",
"193",
"199",
"201",
"202",
"203",
"205",
"211",
"229",
"256",
"274",
"280",
"282",
"283",
"284",
"286",
"292"
] |
[
"nonn",
"base"
] | 12 | 1 | 2 |
[
"A072600",
"A352547",
"A355275"
] | null |
M. F. Hasler, Jul 03 2022
| 2024-03-04T01:31:18 |
oeisdata/seq/A355/A355275.seq
|
d5694063d7aa3f23ae4e05e27ce78a24
|
A355276
|
Number of n-digit terms in A347475.
|
[
"2",
"2",
"1",
"4",
"4",
"6",
"3",
"8",
"9",
"12",
"11",
"18",
"33",
"37",
"40",
"43",
"64",
"77",
"71",
"118",
"135",
"167",
"241"
] |
[
"nonn",
"base",
"more"
] | 13 | 1 | 1 |
[
"A000217",
"A014261",
"A117960",
"A347475",
"A349243",
"A349247",
"A355276",
"A355277"
] | null |
M. F. Hasler, Sep 08 2022
| 2022-09-11T00:28:08 |
oeisdata/seq/A355/A355276.seq
|
b143c845f9e3490200ccde9f0123c869
|
A355277
|
Largest n-digit number k with only odd digits such that the k-th triangular number also has only odd digits.
|
[
"5",
"17",
"177",
"5573",
"79137",
"791377",
"7913777",
"79971937",
"557335733",
"5995957537",
"59995599137",
"599591791137",
"7991739957973",
"79971739957537",
"799739357539937",
"7991713197753777",
"79991971791119137",
"799999173991317537",
"7997391313911797973"
] |
[
"nonn",
"base"
] | 27 | 1 | 1 |
[
"A000217",
"A014261",
"A117960",
"A347475",
"A349243",
"A349247",
"A355277"
] | null |
M. F. Hasler, Sep 07 2022
| 2022-09-15T11:47:40 |
oeisdata/seq/A355/A355277.seq
|
567c7ffce87ff751abee7875905f0f15
|
A355278
|
Lower left of the Cayley table for the primes when made into a group using the bijection (2, 3, 5, 7, ...) -> (0, +1, -1, +2, ...) into (Z, +); read by rows.
|
[
"2",
"3",
"7",
"5",
"2",
"11",
"7",
"13",
"3",
"19",
"11",
"5",
"17",
"2",
"23",
"13",
"19",
"7",
"29",
"3",
"37",
"17",
"11",
"23",
"5",
"31",
"2",
"41",
"19",
"29",
"13",
"37",
"7",
"43",
"3",
"53",
"23",
"17",
"31",
"11",
"41",
"5",
"47",
"2",
"59",
"29",
"37",
"19",
"43",
"13",
"53",
"7",
"61",
"3",
"71",
"31",
"23",
"41",
"17",
"47",
"11",
"59",
"5",
"67",
"2",
"73",
"37",
"43",
"29"
] |
[
"nonn",
"tabl"
] | 24 | 1 | 1 |
[
"A000040",
"A000720",
"A001057",
"A355278"
] | null |
M. F. Hasler, Sep 08 2022
| 2022-09-11T00:34:01 |
oeisdata/seq/A355/A355278.seq
|
1aaa16573afdf73c4a673130ef42152d
|
A355279
|
Numbers k such that S(S(S(k))) = k, with S(n) = sigma(n)/4: 1/4-sociable numbers of order 1 or 3.
|
[
"30240",
"32760",
"2178540",
"23569920",
"45532800",
"46475520",
"48933360",
"50995620",
"60933600",
"69995520",
"72807696",
"142990848"
] |
[
"nonn",
"more"
] | 10 | 1 | 1 |
[
"A027687",
"A113286",
"A113546",
"A355279"
] | null |
M. F. Hasler, Sep 25 2022
| 2025-02-16T08:34:03 |
oeisdata/seq/A355/A355279.seq
|
cce0375cbe77780f0d7df5ea8a7bfe66
|
A355280
|
Binary numbers (digits in {0, 1}) with no run of digits with length < 2.
|
[
"11",
"111",
"1100",
"1111",
"11000",
"11100",
"11111",
"110000",
"110011",
"111000",
"111100",
"111111",
"1100000",
"1100011",
"1100111",
"1110000",
"1110011",
"1111000",
"1111100",
"1111111",
"11000000",
"11000011",
"11000111",
"11001100",
"11001111",
"11100000",
"11100011",
"11100111",
"11110000",
"11110011",
"11111000",
"11111100",
"11111111"
] |
[
"nonn",
"base"
] | 21 | 1 | 1 |
[
"A000042",
"A002275",
"A007088",
"A033015",
"A061851",
"A355280"
] | null |
M. F. Hasler, Oct 17 2022
| 2025-05-12T14:36:30 |
oeisdata/seq/A355/A355280.seq
|
cc43bb7b712d88eca64cec7500ee4137
|
A355281
|
Number of pairs of nested Dyck paths from (0,0) to (n,n) such that the upper path only touches the diagonal at its endpoints.
|
[
"1",
"1",
"2",
"9",
"55",
"400",
"3266",
"28999",
"274537",
"2734885",
"28401315",
"305352146",
"3380956839",
"38394091370",
"445702108969",
"5274935433915",
"63507021523471",
"776347636736261",
"9621502184089320",
"120726786082609207",
"1531938384684090884",
"19639252409244653785",
"254143269904958943103",
"3317204158078663935592"
] |
[
"nonn"
] | 28 | 0 | 3 |
[
"A000108",
"A005700",
"A355281",
"A378112"
] | null |
Joel B. Lewis, Jun 26 2022
| 2024-11-16T19:15:40 |
oeisdata/seq/A355/A355281.seq
|
a7b319a66ec7a1d99608e4eabe2909f7
|
A355282
|
Triangle read by rows: T(n, k) = Sum_{i=1..n-k} qStirling1(n-k, i) * qStirling2(n-1+i, n-1) for 0 < k < n with initial values T(n, 0) = 0^n and T(n, n) = 1 for n >= 0, here q = 2.
|
[
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"9",
"4",
"1",
"0",
"343",
"79",
"11",
"1",
"0",
"50625",
"6028",
"454",
"26",
"1",
"0",
"28629151",
"1741861",
"68710",
"2190",
"57",
"1",
"0",
"62523502209",
"1926124954",
"38986831",
"656500",
"9687",
"120",
"1",
"0",
"532875860165503",
"8264638742599",
"84816722571",
"734873171",
"5760757",
"40929",
"247",
"1"
] |
[
"nonn",
"easy",
"tabl"
] | 19 | 0 | 8 |
[
"A022166",
"A055601",
"A125128",
"A139382",
"A342186",
"A354794",
"A355282"
] | null |
Werner Schulte, Jun 26 2022
| 2022-07-03T03:12:46 |
oeisdata/seq/A355/A355282.seq
|
73343a01da465c105495f1f1e595920d
|
A355283
|
Decimal expansion of the constant B(3) = Sum_{n>=1} Sum_{m>=n+1} 1/(z(n)*z(m))^3 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.
|
[
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"9",
"4",
"0",
"3",
"3",
"3",
"7",
"5",
"4",
"0",
"6",
"3",
"6",
"9",
"8",
"3",
"6",
"7",
"2",
"7",
"2",
"4",
"8",
"7",
"9",
"8",
"1",
"5",
"4",
"7",
"5",
"0",
"6",
"6",
"4",
"5",
"0",
"0",
"6",
"4",
"5",
"6",
"7",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"8",
"9",
"6",
"8",
"8",
"8",
"7",
"7",
"9",
"5",
"3",
"1",
"0",
"3",
"1",
"0",
"9",
"3",
"5",
"3",
"2",
"5",
"7",
"7",
"2",
"6",
"0",
"6",
"5",
"8",
"0",
"3",
"8",
"6",
"3",
"6",
"8",
"8",
"3",
"1",
"7",
"5",
"3",
"5",
"1",
"5",
"1",
"8",
"8",
"4",
"4",
"6",
"0",
"5",
"1",
"7",
"4"
] |
[
"nonn",
"cons"
] | 69 | 0 | 8 |
[
"A013629",
"A074760",
"A104539",
"A104540",
"A104541",
"A104542",
"A245275",
"A245276",
"A306339",
"A306340",
"A306341",
"A332645",
"A333360",
"A335814",
"A335815",
"A355283"
] | null |
Artur Jasinski, Aug 20 2022
| 2022-08-23T14:38:37 |
oeisdata/seq/A355/A355283.seq
|
d6ed35d03e06100f1d2d51509e4a4e3a
|
A355284
|
Expansion of e.g.f. 1 / (1 + x + x^2/2 + log(1 - x)).
|
[
"1",
"0",
"0",
"2",
"6",
"24",
"200",
"1560",
"12936",
"130368",
"1458432",
"17623440",
"233922480",
"3376625472",
"52382131776",
"870882440064",
"15459372915840",
"291596692838400",
"5824039155720192",
"122814724467223296",
"2726547887891407104",
"63562453551393223680",
"1552499303360183700480"
] |
[
"nonn"
] | 8 | 0 | 4 |
[
"A007840",
"A038205",
"A102233",
"A226226",
"A355284",
"A355285"
] | null |
Ilya Gutkovskiy, Jun 26 2022
| 2022-07-01T04:09:27 |
oeisdata/seq/A355/A355284.seq
|
5bb899a0395de76111c93a90915fc65b
|
A355285
|
Expansion of e.g.f. 1 / (1 + x + x^2/2 + x^3/3 + log(1 - x)).
|
[
"1",
"0",
"0",
"0",
"6",
"24",
"120",
"720",
"7560",
"76608",
"810432",
"9141120",
"118015920",
"1666336320",
"25211774016",
"404932155264",
"6951992261760",
"127203705538560",
"2467434718218240",
"50477473338494976",
"1086707769452699904",
"24573149993692615680",
"582367494447600583680",
"14430857455114783119360"
] |
[
"nonn"
] | 7 | 0 | 5 |
[
"A007840",
"A047865",
"A226226",
"A232475",
"A355284",
"A355285"
] | null |
Ilya Gutkovskiy, Jun 26 2022
| 2022-07-01T04:08:27 |
oeisdata/seq/A355/A355285.seq
|
3af5325577fd6bdac8bef00356ad404a
|
A355286
|
Highly composite numbers that are not a product of two highly composite numbers greater than 1.
|
[
"1",
"2",
"6",
"60",
"180",
"840",
"1260",
"25200",
"27720",
"83160",
"277200",
"720720",
"1081080",
"3603600",
"10810800",
"32432400",
"36756720",
"61261200",
"110270160",
"183783600",
"551350800",
"698377680",
"2095133040",
"2327925600",
"3491888400",
"10475665200",
"48886437600",
"64250746560",
"73329656400",
"80313433200"
] |
[
"nonn"
] | 10 | 1 | 2 |
[
"A002182",
"A307763",
"A355286"
] | null |
J. Lowell, Jun 26 2022
| 2022-08-24T09:57:52 |
oeisdata/seq/A355/A355286.seq
|
9b68f3cb3d19f521a707ffba8ed10497
|
A355287
|
E.g.f. satisfies A(x) = 1/(1 - x)^(x^2 * A(x)).
|
[
"1",
"0",
"0",
"6",
"12",
"40",
"1260",
"8568",
"62160",
"1473120",
"19111680",
"232626240",
"5403451680",
"103176028800",
"1822033204992",
"45916616592000",
"1129459815993600",
"26346457488798720",
"749439127417466880",
"22165051763204582400",
"640916967497214643200",
"20787453048015928350720"
] |
[
"nonn"
] | 21 | 0 | 4 |
[
"A353228",
"A355287",
"A356910"
] | null |
Seiichi Manyama, Sep 03 2022
| 2025-02-16T08:34:03 |
oeisdata/seq/A355/A355287.seq
|
0fd59abfbbb22a8ee587e8f2a457cf62
|
A355288
|
a(0)=1, a(1)=3, a(2)=7; thereafter a(n) = a(n-1) + a(n-2) + 1.
|
[
"1",
"3",
"7",
"11",
"19",
"31",
"51",
"83",
"135",
"219",
"355",
"575",
"931",
"1507",
"2439",
"3947",
"6387",
"10335",
"16723",
"27059",
"43783",
"70843",
"114627",
"185471",
"300099",
"485571",
"785671",
"1271243",
"2056915",
"3328159",
"5385075",
"8713235",
"14098311",
"22811547",
"36909859",
"59721407",
"96631267",
"156352675",
"252983943",
"409336619",
"662320563"
] |
[
"nonn",
"easy"
] | 30 | 0 | 2 |
[
"A354902",
"A355288"
] | null |
Sumukh Patel, Jun 27 2022
| 2025-03-22T20:42:45 |
oeisdata/seq/A355/A355288.seq
|
629d2ea7268788f965f95dd34266a1ee
|
A355289
|
Decimal expansion of Product_{m>=1} Product_{k>=1} (1 + 1/(2^m)^k).
|
[
"4",
"2",
"0",
"7",
"4",
"1",
"3",
"7",
"3",
"0",
"7",
"7",
"4",
"2",
"9",
"1",
"6",
"6",
"9",
"0",
"3",
"7",
"5",
"4",
"4",
"2",
"2",
"6",
"9",
"4",
"2",
"1",
"4",
"6",
"4",
"3",
"4",
"9",
"1",
"3",
"1",
"7",
"6",
"7",
"8",
"6",
"3",
"8",
"2",
"7",
"9",
"5",
"1",
"1",
"6",
"8",
"8",
"3",
"6",
"9",
"1",
"0",
"9",
"5",
"2",
"9",
"9",
"3",
"2",
"5",
"7",
"8",
"3",
"1",
"7",
"3",
"3",
"6",
"9",
"4",
"4",
"2",
"3",
"2",
"2",
"0",
"1",
"0",
"0",
"3",
"2",
"8",
"7",
"7",
"3",
"5",
"6",
"5",
"4",
"3",
"8",
"7",
"4",
"0",
"5"
] |
[
"cons",
"nonn"
] | 26 | 1 | 1 | null | null |
Wolfe Padawer, Sep 05 2022
| 2022-09-06T14:57:05 |
oeisdata/seq/A355/A355289.seq
|
21ef9897e4585fed87e9816929bc5792
|
A355290
|
a(n) = Sum_{k=0..n} (-1)^(n-k) * Stirling2(n,k) * Catalan(k).
|
[
"1",
"1",
"1",
"0",
"-3",
"-2",
"23",
"17",
"-333",
"86",
"6941",
"-17025",
"-160267",
"1082864",
"2273807",
"-56742606",
"152154285",
"2293098332",
"-22007462809",
"-15179437171",
"1671107690083",
"-10716783889040",
"-58404948615167",
"1439391012463810",
"-6701658223127029",
"-88340107011433060"
] |
[
"sign"
] | 15 | 0 | 5 |
[
"A000108",
"A006531",
"A064856",
"A086662",
"A086672",
"A355290"
] | null |
Seiichi Manyama, Jun 27 2022
| 2023-03-13T15:53:06 |
oeisdata/seq/A355/A355290.seq
|
493e374d33ef9eda29289c57162f746a
|
A355291
|
Expansion of e.g.f. exp(exp(x)*(exp(x) + 1) - 2).
|
[
"1",
"3",
"14",
"81",
"551",
"4266",
"36803",
"348543",
"3583484",
"39652659",
"468970211",
"5894584812",
"78366374813",
"1097537989671",
"16136598952718",
"248309032411485",
"3988468487017379",
"66715970326561170",
"1159712730763363991",
"20909709414253764819",
"390374806223071148084",
"7534929383736826736007"
] |
[
"nonn"
] | 34 | 0 | 2 |
[
"A001861",
"A055882",
"A126390",
"A143405",
"A355291",
"A355379"
] | null |
Vaclav Kotesovec, Jun 27 2022
| 2022-07-22T02:26:53 |
oeisdata/seq/A355/A355291.seq
|
0b6809eac9f9858fb0044bfbbc1eb439
|
A355292
|
a(n) = Sum_{k=1..n} |Stirling1(n,k)| * Catalan(k-1).
|
[
"1",
"2",
"7",
"34",
"208",
"1521",
"12871",
"123306",
"1316316",
"15471114",
"198319614",
"2751524557",
"41058030388",
"655427422651",
"11142214939181",
"200919300509214",
"3829751956014084",
"76928721540858772",
"1624015067086462504",
"35942784684670110710",
"832134062464902004336"
] |
[
"nonn"
] | 14 | 1 | 2 |
[
"A000108",
"A052851",
"A086662",
"A355292"
] | null |
Seiichi Manyama, Jun 27 2022
| 2022-07-01T03:30:09 |
oeisdata/seq/A355/A355292.seq
|
b5afba73fc492007eeb3ba9da23e40e2
|
A355293
|
Expansion of e.g.f. 1 / (1 - x - x^2/2 - x^3/3).
|
[
"1",
"1",
"3",
"14",
"82",
"610",
"5450",
"56700",
"674520",
"9027480",
"134236200",
"2195701200",
"39180094800",
"757389032400",
"15767305554000",
"351689317980000",
"8367381470448000",
"211518767796336000",
"5661504152255952000",
"159954273475764768000",
"4757034049019572320000",
"148547713504322452320000",
"4859583724723970642400000"
] |
[
"nonn"
] | 5 | 0 | 3 |
[
"A007840",
"A057693",
"A080599",
"A189886",
"A355293",
"A355294"
] | null |
Ilya Gutkovskiy, Jun 27 2022
| 2022-07-01T04:13:52 |
oeisdata/seq/A355/A355293.seq
|
82309d8bcda2a681f411e12133ced940
|
A355294
|
Expansion of e.g.f. 1 / (1 - x - x^2/2 - x^3/3 - x^4/4).
|
[
"1",
"1",
"3",
"14",
"88",
"670",
"6170",
"66360",
"815640",
"11272800",
"173132400",
"2925014400",
"53909394000",
"1076365290000",
"23144112591600",
"533193460800000",
"13102608591072000",
"342105146182800000",
"9457689380931792000",
"275988880808825184000",
"8477631163592791200000",
"273430368958004818560000",
"9238944655686318693120000"
] |
[
"nonn"
] | 5 | 0 | 3 |
[
"A007840",
"A070945",
"A080599",
"A276924",
"A355293",
"A355294"
] | null |
Ilya Gutkovskiy, Jun 27 2022
| 2022-07-01T04:13:56 |
oeisdata/seq/A355/A355294.seq
|
dd057a5c7b316830bbcf89e40df8237e
|
A355295
|
Number of distinct board states reachable in n jumps in European Peg Solitaire.
|
[
"1",
"4",
"17",
"92",
"495",
"2475",
"11771",
"52226",
"212527",
"789228",
"2640323",
"7870055",
"20730606",
"47916748",
"96715832",
"170154214",
"260956703",
"349541944",
"410294786",
"423631649",
"385887175",
"310724581",
"221398196",
"139580751",
"77748102",
"38162987",
"16445627",
"6178002",
"2007607",
"559163",
"131269",
"25378",
"4012",
"481",
"36",
"4"
] |
[
"nonn",
"fini",
"full"
] | 37 | 0 | 2 |
[
"A112737",
"A130515",
"A335656",
"A350561",
"A351286",
"A355295"
] | null |
Sander G. Huisman, Jun 27 2022
| 2022-06-28T10:58:46 |
oeisdata/seq/A355/A355295.seq
|
c3b93059948ccd923f63d8bac6c1badd
|
A355296
|
Maximum number of 1-bits in the Zeckendorf representation of the n-th power of an even-indexed Lucas number.
|
[
"2",
"3",
"6",
"8",
"8",
"13",
"18",
"24",
"28",
"34",
"48",
"53",
"51",
"59",
"66",
"72",
"93",
"94",
"107",
"138",
"150",
"148",
"154",
"173",
"203",
"196",
"218",
"228",
"246",
"268",
"284",
"282",
"322",
"339",
"344",
"381",
"388",
"397",
"447",
"455",
"489",
"502",
"514",
"553",
"580",
"608",
"611",
"667",
"695",
"714"
] |
[
"nonn"
] | 10 | 1 | 1 |
[
"A000032",
"A000045",
"A355296"
] | null |
Jeffrey Shallit, Jun 27 2022
| 2022-07-01T22:10:55 |
oeisdata/seq/A355/A355296.seq
|
2969b34c9fef25ebb4d7fc4fd7e9b27a
|
A355297
|
a(n) = A007088(n) mod n.
|
[
"0",
"0",
"2",
"0",
"1",
"2",
"6",
"0",
"2",
"0",
"10",
"8",
"9",
"4",
"1",
"0",
"5",
"2",
"17",
"0",
"0",
"12",
"14",
"8",
"1",
"12",
"22",
"12",
"23",
"10",
"13",
"0",
"11",
"16",
"16",
"20",
"16",
"18",
"37",
"0",
"18",
"0",
"4",
"32",
"31",
"2",
"14",
"32",
"45",
"10",
"4",
"16",
"20",
"4",
"1",
"8",
"22",
"56",
"32",
"40",
"20",
"6",
"42",
"0",
"41",
"44",
"36",
"24",
"15",
"20",
"5",
"56",
"25",
"12",
"61",
"28",
"24",
"58",
"23",
"0"
] |
[
"nonn",
"base"
] | 10 | 1 | 3 |
[
"A007088",
"A032532",
"A032533",
"A339567",
"A355297"
] | null |
Ctibor O. Zizka, Jun 27 2022
| 2022-07-02T14:44:10 |
oeisdata/seq/A355/A355297.seq
|
fdae1dc89cdc7d474bf634d8d1f4a295
|
A355298
|
Primes p such that q divides p + 1, r divides q^2 + q + 1, s divides r^2 + r + 1, and p divides s^2 + s + 1 for some primes q, r, and s.
|
[
"3",
"13",
"61",
"127",
"399403"
] |
[
"nonn",
"more",
"hard"
] | 24 | 1 | 1 |
[
"A101368",
"A347988",
"A354427",
"A355298"
] | null |
Tomohiro Yamada, Jun 28 2022
| 2022-08-21T11:34:20 |
oeisdata/seq/A355/A355298.seq
|
4b886d3d2e20de1e7091db24b83804f0
|
A355299
|
Largest prime factor of n-th term in Look and Say sequence A005150, with a(1)=1.
|
[
"1",
"11",
"7",
"173",
"10111",
"312211",
"13112221",
"2909",
"5578070441",
"489923144699",
"76572179303098543109",
"244020609982169",
"46889682313579293049990557739475858123",
"213414262009265690085197238570402233414850657035591",
"323082514382425741194809828536919444925509282219"
] |
[
"nonn",
"base"
] | 19 | 1 | 2 |
[
"A005150",
"A006530",
"A079562",
"A100108",
"A334132",
"A355299"
] | null |
Bernard Schott, Jun 27 2022
| 2022-06-30T08:39:13 |
oeisdata/seq/A355/A355299.seq
|
5074cb32f515ed9812678d4c00be8b3e
|
A355300
|
a(0) = 0; for n >= 1, a(n) = a(A007088(n) mod n) + 1.
|
[
"0",
"1",
"1",
"2",
"1",
"2",
"2",
"3",
"1",
"2",
"1",
"2",
"2",
"3",
"2",
"2",
"1",
"3",
"2",
"4",
"1",
"1",
"3",
"3",
"2",
"2",
"3",
"4",
"3",
"4",
"2",
"4",
"1",
"3",
"2",
"2",
"2",
"2",
"3",
"3",
"1",
"3",
"1",
"2",
"2",
"5",
"2",
"3",
"2",
"6",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"4",
"3",
"2",
"2",
"2",
"3",
"2",
"1",
"4",
"3",
"3",
"3",
"3",
"2",
"3",
"3",
"3",
"3",
"3",
"4",
"3",
"4",
"4",
"1",
"3",
"2",
"4",
"1",
"3",
"2",
"4",
"3",
"3",
"2",
"2",
"2"
] |
[
"nonn",
"base"
] | 11 | 0 | 4 |
[
"A007088",
"A032533",
"A355300"
] | null |
Ctibor O. Zizka, Jun 27 2022
| 2022-07-02T14:44:48 |
oeisdata/seq/A355/A355300.seq
|
9593660b918da200df75cafc6e45fc51
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.