sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A355201
Normalized Schur self-convolution expansion coefficients K_{n+1}^n / n giving the coefficients of the Laurent series (compositionally) inverse to f(z) = c_0 z + c_1 + c_2 / z + c_3 / z^2 + ... . Irregular triangle for partition polynomials, with row lengths A000041(n) - 1 except for the first two, which are both of length 1.
[ "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "3", "3", "3", "3", "1", "1", "6", "4", "2", "12", "6", "2", "4", "4", "1", "1", "10", "5", "10", "30", "10", "10", "10", "20", "10", "5", "5", "5", "1", "1", "15", "6", "30", "60", "15", "5", "60", "30", "60", "20", "15", "15", "30", "30", "15", "3", "6", "6", "6", "1", "1", "21", "7", "70", "105", "21", "35", "210", "70", "140", "35", "35", "105", "105", "105", "105", "35", "7", "42", "21", "21", "42", "42", "21", "7", "7", "7", "7", "1" ]
[ "nonn", "tabf" ]
30
0
8
[ "A000108", "A001263", "A091187", "A091869", "A111785", "A133437", "A134264", "A263633", "A263916", "A355201" ]
null
Tom Copeland, Jun 23 2022
2023-02-07T11:21:25
oeisdata/seq/A355/A355201.seq
53df37203692e89e8efdb2f2c12519e3
A355202
Square array read by upwards antidiagonals: T(n,k) = k-th binary digit after the radix point of 1/n, for n >= 1 and k >= 1.
[ "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "1", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "1", "1", "0", "1", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0" ]
[ "base", "easy", "nonn", "tabl" ]
15
1
null
[ "A007733", "A355068", "A355202" ]
null
Chittaranjan Pardeshi, Jun 23 2022
2022-06-24T19:53:17
oeisdata/seq/A355/A355202.seq
7c53ccff7c62d49f3804fa1a8f3a3481
A355203
E.g.f. A(x) satisfies A'(x) = 1 + A(1 - exp(-x)).
[ "1", "1", "0", "-2", "4", "10", "-150", "838", "222", "-82616", "1408364", "-13862308", "-18747672", "5307622274", "-170657860276", "3561218897884", "-33756455501714", "-1481233045213718", "116803294574962288", "-5108843717328225572", "157037998518149186728", "-1976107915155933805542" ]
[ "sign" ]
19
1
4
[ "A003659", "A143805", "A307874", "A355203", "A355207", "A355211", "A355217" ]
null
Seiichi Manyama, Jun 24 2022
2022-06-25T07:36:13
oeisdata/seq/A355/A355203.seq
f312b0751da52a7dc664f2fffe796465
A355204
E.g.f. A(x) satisfies A'(x) = 1 + 2 * A(log(1+x)).
[ "1", "2", "2", "-4", "0", "68", "-588", "2728", "17688", "-766960", "14239512", "-164672640", "-494840680", "109461302008", "-4446935274696", "122761839873664", "-1889647100968176", "-50347073461051088", "6582857386505201520", "-397095020380174033424", "17279075935957171412288" ]
[ "sign" ]
15
1
2
[ "A307874", "A355096", "A355204" ]
null
Seiichi Manyama, Jun 24 2022
2022-06-25T07:11:40
oeisdata/seq/A355/A355204.seq
b6ca5df30ba1fbf04625511e25fe0430
A355205
E.g.f. A(x) satisfies A'(x) = 1 + 2 * A(-log(1-x)).
[ "1", "2", "6", "28", "184", "1596", "17508", "235592", "3799736", "72125344", "1587567768", "40027332256", "1144113365576", "36747710168568", "1316192996129064", "52219780699310176", "2281487895137577232", "109193200290592216368", "5698144666408068511472" ]
[ "nonn" ]
16
1
2
[ "A143805", "A355098", "A355205" ]
null
Seiichi Manyama, Jun 24 2022
2022-06-25T07:11:03
oeisdata/seq/A355/A355205.seq
9cdc5265116bf949cc8b9009b5e6b034
A355206
E.g.f. A(x) satisfies A'(x) = 1 + 2 * A(exp(x) - 1).
[ "1", "2", "6", "26", "154", "1190", "11586", "138338", "1982526", "33510602", "658520330", "14863556590", "381389448738", "11026919584330", "356473786663910", "12798132569470442", "507233393189820394", "22074530128695694286", "1049825961204593354866", "54326220485710633589858" ]
[ "nonn" ]
13
1
2
[ "A003659", "A355083", "A355206" ]
null
Seiichi Manyama, Jun 24 2022
2022-06-25T07:36:54
oeisdata/seq/A355/A355206.seq
82e530428fcab9a836ada1770e7a5028
A355207
E.g.f. A(x) satisfies A'(x) = 1 + 2 * A(1 - exp(-x)).
[ "1", "2", "2", "-6", "-10", "142", "-434", "-4478", "88122", "-688518", "-4032346", "268040678", "-5689167298", "53999999466", "1413830543394", "-98561802143670", "3282601333608550", "-59117973090349066", "-1121454296035526786", "171971593399059103618", "-10034063428244586340158" ]
[ "sign" ]
13
1
2
[ "A355093", "A355203", "A355207" ]
null
Seiichi Manyama, Jun 24 2022
2022-06-25T07:36:40
oeisdata/seq/A355/A355207.seq
47aba392d2e426d885932b822088d075
A355208
E.g.f. A(x) satisfies A'(x) = 1 + A(2 * log(1+x)).
[ "1", "2", "6", "28", "236", "4400", "197552", "20430656", "4600591488", "2179887358272", "2130534442932416", "4243581375963409024", "17097951082212352465536", "138722374358947243721661440", "2260145794657531151029628653568", "73822509077371344216463442074629120" ]
[ "nonn" ]
13
1
2
[ "A307874", "A355133", "A355204", "A355208" ]
null
Seiichi Manyama, Jun 24 2022
2022-06-25T07:12:11
oeisdata/seq/A355/A355208.seq
082ad5a450cfc8b6d6dd60dcc3ed60c2
A355209
E.g.f. A(x) satisfies A'(x) = 1 + A(-2 * log(1-x)).
[ "1", "2", "10", "108", "2308", "94384", "7315728", "1077605632", "304189296192", "166216599473344", "177463576125821632", "373017466526422396288", "1552199775052648327045760", "12835792253795957289436533760", "211464475635678910995043533156352" ]
[ "nonn" ]
14
1
2
[ "A143805", "A355134", "A355205", "A355209" ]
null
Seiichi Manyama, Jun 24 2022
2022-06-25T07:12:36
oeisdata/seq/A355/A355209.seq
d38a21e377aefb2a545d0bcca6980836
A355210
E.g.f. A(x) satisfies A'(x) = 1 + A(2 * (exp(x) - 1)).
[ "1", "2", "10", "106", "2234", "90570", "6986490", "1026623306", "289475035770", "158101579596106", "168768027732007674", "354715566244066506058", "1476006372586517922472826", "12205618234758923312503183690", "201082085503026084194089831880698" ]
[ "nonn" ]
14
1
2
[ "A003659", "A355131", "A355206", "A355210" ]
null
Seiichi Manyama, Jun 24 2022
2022-06-25T07:37:34
oeisdata/seq/A355/A355210.seq
3095e31aaba1909728597795a9a41392
A355211
E.g.f. A(x) satisfies A'(x) = 1 + A(2 * (1 - exp(-x))).
[ "1", "2", "6", "26", "182", "2746", "111350", "11245882", "2521162358", "1193350247226", "1165982253097718", "2322179762944209722", "9356100009656750248822", "75909020176742648718140218", "1236750544861403327611377577974", "40395601774769639548336167153191738" ]
[ "nonn" ]
14
1
2
[ "A355132", "A355203", "A355207", "A355211" ]
null
Seiichi Manyama, Jun 24 2022
2022-06-25T07:37:21
oeisdata/seq/A355/A355211.seq
3b303353ed3c1a9ff5a98063c37c4761
A355212
A variant of the EKG sequence (A064413) where the least value not yet in the sequence appears as soon as possible.
[ "1", "2", "6", "3", "12", "4", "10", "5", "35", "7", "14", "8", "18", "9", "33", "11", "143", "13", "39", "15", "20", "16", "34", "17", "323", "19", "57", "21", "24", "22", "46", "23", "115", "25", "30", "26", "36", "27", "42", "28", "58", "29", "899", "31", "62", "32", "74", "37", "148", "38", "40", "82", "41", "1763", "43", "86", "44", "48", "45", "141", "47", "329", "49", "56", "50" ]
[ "nonn" ]
14
1
2
[ "A064413", "A352713", "A355212", "A355213" ]
null
Rémy Sigrist, Jun 24 2022
2024-09-03T15:03:45
oeisdata/seq/A355/A355212.seq
a97c1dbc9661af0ca60cea23ac57239b
A355213
Inverse permutation to A355212.
[ "1", "2", "4", "6", "8", "3", "10", "12", "14", "7", "16", "5", "18", "11", "20", "22", "24", "13", "26", "21", "28", "30", "32", "29", "34", "36", "38", "40", "42", "35", "44", "46", "15", "23", "9", "37", "48", "50", "19", "51", "53", "39", "55", "57", "59", "31", "61", "58", "63", "65", "67", "69", "71", "66", "73", "64", "27", "41", "75", "68", "77", "45", "79", "81", "83", "80", "85" ]
[ "nonn" ]
8
1
2
[ "A355212", "A355213" ]
null
Rémy Sigrist, Jun 24 2022
2022-06-26T09:15:22
oeisdata/seq/A355/A355213.seq
a63177f0dc31dbc6bd0113d823f7527b
A355214
E.g.f. A(x) satisfies A'(x) = 1 + A(2 * log(1+x))/2.
[ "1", "1", "1", "0", "-8", "-64", "-600", "-14104", "-1170120", "-248815984", "-115219852880", "-111345726833056", "-220485042541083808", "-885633596688107274496", "-7173767949430448755993856", "-116777715174661360994951467008", "-3812515511649504447203183936705536" ]
[ "sign" ]
13
1
5
[ "A355120", "A355208", "A355214" ]
null
Seiichi Manyama, Jun 24 2022
2022-06-25T07:12:56
oeisdata/seq/A355/A355214.seq
15ac90364b2dcc4acd80ce53a1319a62
A355215
E.g.f. A(x) satisfies A'(x) = 1 + A(-2 * log(1-x))/2.
[ "1", "1", "3", "20", "260", "6304", "281096", "23095768", "3534364152", "1022066008944", "566769639800624", "610404514456781600", "1289451019913455115232", "5380706591109919979010304", "44564091018102742571511384320", "734792950974385564221797653105152" ]
[ "nonn" ]
15
1
3
[ "A355121", "A355209", "A355215" ]
null
Seiichi Manyama, Jun 24 2022
2022-06-25T07:13:26
oeisdata/seq/A355/A355215.seq
ca921aad53215381849f7910d0f6d70b
A355216
E.g.f. A(x) satisfies A'(x) = 1 + A(2 * (exp(x) - 1))/2.
[ "1", "1", "3", "19", "239", "5675", "249983", "20404811", "3112376543", "898693573515", "498042936169343", "536255530818837835", "1132713758105613132319", "4726517343060928547800331", "39145565125819857567685815231", "645447728030234045716450604490955" ]
[ "nonn" ]
14
1
3
[ "A355122", "A355210", "A355216" ]
null
Seiichi Manyama, Jun 24 2022
2022-06-25T07:37:45
oeisdata/seq/A355/A355216.seq
0e6ddb15640138e5ed9ee65c1ccdb091
A355217
E.g.f. A(x) satisfies A'(x) = 1 + A(2 * (1 - exp(-x)))/2.
[ "1", "1", "1", "-1", "-19", "-153", "-1155", "-9785", "-183075", "-25013497", "-11301739395", "-10911778097209", "-21604455470794723", "-86776403662147521913", "-702894028759616525605187", "-11441974451382622345470900921", "-373552937787342469475481963377571" ]
[ "sign" ]
15
1
5
[ "A355123", "A355211", "A355217" ]
null
Seiichi Manyama, Jun 24 2022
2022-06-25T07:37:08
oeisdata/seq/A355/A355217.seq
bb97ff18c9905939385e8445c5984860
A355218
a(n) = Sum_{k>=1} (3*k - 1)^n / 2^k.
[ "1", "5", "43", "557", "9643", "208685", "5419243", "164184557", "5684837803", "221440158125", "9584118542443", "456289689634157", "23698327407870763", "1333388917719691565", "80794290325166308843", "5245268489291712773357", "363231496206350038884523", "26725646191850556128889005", "2082075690178933613292014443" ]
[ "nonn" ]
7
0
2
[ "A000629", "A000670", "A007047", "A080253", "A151919", "A328182", "A355218", "A355219", "A355220" ]
null
Ilya Gutkovskiy, Jun 24 2022
2022-06-26T04:20:58
oeisdata/seq/A355/A355218.seq
48590de7b289ea344e66111e96a60361
A355219
a(n) = Sum_{k>=1} (4*k - 2)^n / 2^k.
[ "1", "6", "68", "1176", "27152", "783456", "27126848", "1095801216", "50589024512", "2627443262976", "151623974601728", "9624874873952256", "666516443992297472", "50002158357801885696", "4039720490206565777408", "349685083067909962039296", "32287291853754803207340032", "3167488677197974581176303616" ]
[ "nonn" ]
7
0
2
[ "A000629", "A000670", "A007047", "A080253", "A285067", "A328183", "A355218", "A355219", "A355220" ]
null
Ilya Gutkovskiy, Jun 24 2022
2022-06-26T04:21:17
oeisdata/seq/A355/A355219.seq
125e782bf87d74b6bef3379e2139c03c
A355220
a(n) = Sum_{k>=1} (4*k - 1)^n / 2^k.
[ "1", "7", "81", "1399", "32289", "931687", "32259441", "1303134679", "60160827969", "3124574220487", "180312309395601", "11445969681199159", "792626097462398049", "59462922484586318887", "4804064349575887075761", "415847988794676360818839", "38396277196654611908582529", "3766800071614388562865514887" ]
[ "nonn" ]
7
0
2
[ "A000629", "A000670", "A080253", "A259533", "A285067", "A328183", "A355218", "A355219", "A355220" ]
null
Ilya Gutkovskiy, Jun 24 2022
2022-06-26T04:21:13
oeisdata/seq/A355/A355220.seq
2f91b2ad0171dccb07b8dad8d8d97661
A355221
The k-th leftmost digit of a(n) is the least of the k leftmost digits of n.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "11", "11", "11", "11", "11", "11", "11", "11", "20", "21", "22", "22", "22", "22", "22", "22", "22", "22", "30", "31", "32", "33", "33", "33", "33", "33", "33", "33", "40", "41", "42", "43", "44", "44", "44", "44", "44", "44", "50", "51", "52", "53", "54", "55", "55", "55", "55", "55", "60", "61", "62", "63", "64", "65", "66", "66" ]
[ "nonn", "base", "easy" ]
18
0
3
[ "A009996", "A342126", "A355221", "A355222", "A355223", "A355224" ]
null
Rémy Sigrist, Jun 24 2022
2023-06-30T15:49:57
oeisdata/seq/A355/A355221.seq
7a74417ffdfb47933033ef320fd40eb5
A355222
The k-th leftmost digit of a(n) is the greatest of the k leftmost digits of n.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "11", "11", "12", "13", "14", "15", "16", "17", "18", "19", "22", "22", "22", "23", "24", "25", "26", "27", "28", "29", "33", "33", "33", "33", "34", "35", "36", "37", "38", "39", "44", "44", "44", "44", "44", "45", "46", "47", "48", "49", "55", "55", "55", "55", "55", "55", "56", "57", "58", "59", "66", "66", "66", "66", "66", "66", "66", "67" ]
[ "nonn", "base", "easy" ]
12
0
3
[ "A003817", "A009994", "A355221", "A355222", "A355223", "A355224" ]
null
Rémy Sigrist, Jun 24 2022
2022-06-26T09:15:31
oeisdata/seq/A355/A355222.seq
86f349d2f9c509781ffa0c2b83ceaf7a
A355223
The k-th rightmost digit of a(n) is the least of the k rightmost digits of n.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "0", "11", "12", "13", "14", "15", "16", "17", "18", "19", "0", "11", "22", "23", "24", "25", "26", "27", "28", "29", "0", "11", "22", "33", "34", "35", "36", "37", "38", "39", "0", "11", "22", "33", "44", "45", "46", "47", "48", "49", "0", "11", "22", "33", "44", "55", "56", "57", "58", "59", "0", "11", "22", "33", "44", "55", "66", "67", "68" ]
[ "nonn", "base", "easy" ]
11
0
3
[ "A008592", "A009994", "A135481", "A355221", "A355222", "A355223", "A355224" ]
null
Rémy Sigrist, Jun 24 2022
2022-06-26T09:15:35
oeisdata/seq/A355/A355223.seq
2289d01a9264de8cdf431a02caaa23fe
A355224
The k-th rightmost digit of a(n) is the greatest of the k rightmost digits of n.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "22", "33", "44", "55", "66", "77", "88", "99", "20", "21", "22", "33", "44", "55", "66", "77", "88", "99", "30", "31", "32", "33", "44", "55", "66", "77", "88", "99", "40", "41", "42", "43", "44", "55", "66", "77", "88", "99", "50", "51", "52", "53", "54", "55", "66", "77", "88", "99", "60", "61", "62", "63", "64", "65", "66", "77" ]
[ "nonn", "base", "easy" ]
16
0
3
[ "A009996", "A340632", "A355221", "A355222", "A355223", "A355224" ]
null
Rémy Sigrist, Jun 24 2022
2024-11-17T16:09:30
oeisdata/seq/A355/A355224.seq
fc725788ce22f069c8eb987c9a677162
A355225
Number of partitions of n that contain more prime parts than nonprime parts.
[ "0", "0", "1", "1", "1", "3", "3", "5", "7", "9", "14", "19", "23", "34", "46", "56", "77", "99", "126", "164", "208", "260", "336", "416", "520", "654", "809", "995", "1237", "1514", "1856", "2274", "2761", "3354", "4078", "4918", "5931", "7153", "8572", "10272", "12298", "14663", "17469", "20787", "24643", "29210", "34568", "40797", "48113", "56664", "66573" ]
[ "nonn" ]
32
0
6
[ "A000040", "A000041", "A000607", "A002095", "A002096", "A018252", "A155515", "A235945", "A355158", "A355225", "A355306" ]
null
Omar E. Pol, Jun 24 2022
2022-06-30T10:38:00
oeisdata/seq/A355/A355225.seq
d718171e4bb76556fe9428c3d515da3c
A355226
Irregular triangle read by rows where T(n,k) is the number of independent sets of size k in the n-halved cube graph.
[ "1", "1", "1", "2", "1", "4", "1", "8", "4", "1", "16", "40", "1", "32", "256", "480", "120", "1", "64", "1344", "11200", "36400", "40320", "13440", "1920", "240", "1", "128", "6336", "156800", "2104480", "15644160", "63672000", "136970880", "147748560", "76396800", "21087360", "4273920", "840000", "161280", "28800", "3840", "240" ]
[ "nonn", "tabf" ]
17
1
4
[ "A005864", "A288943", "A355226", "A355558" ]
null
Christopher Flippen, Jun 24 2022
2024-02-26T15:39:22
oeisdata/seq/A355/A355226.seq
c8c772d49aef5a8243f0996bb3cadec7
A355227
Irregular triangle read by rows where T(n,k) is the number of independent sets of size k in the n-folded cube graph.
[ "1", "2", "1", "4", "1", "8", "12", "8", "2", "1", "16", "80", "160", "120", "16", "1", "32", "400", "2560", "9280", "20256", "28960", "31520", "29880", "24320", "16336", "8768", "3640", "1120", "240", "32", "2", "1", "64", "1792", "29120", "307440", "2239552", "11682944", "44769920", "128380880", "279211520", "464621248", "593908224", "582529360", "435648640", "245610720", "102886976", "31658620", "7189056", "1239840", "165760", "17584", "1408", "64" ]
[ "nonn", "tabf" ]
25
2
2
[ "A058622", "A290888", "A355227", "A355559" ]
null
Christopher Flippen, Jun 24 2022
2024-02-26T15:37:43
oeisdata/seq/A355/A355227.seq
970292bcc42473758f2f7dfaa369ca6b
A355228
a(n) is the smallest integer m such that there exist n of its distinct divisors (d_1, d_2, ..., d_n) with the property that m = d_1 + d_2 + ... + d_n = lcm(d_1, d_2, ..., d_n), or 0 if no such number m exists.
[ "1", "0", "6", "18", "28", "24", "48", "60", "84", "120", "120", "120", "180", "180", "240", "360", "360", "360", "360", "672", "720", "720", "720", "840", "840", "1080", "1260", "1260", "1260", "1680", "1680", "1680", "2160", "2520", "2520", "2520", "2520", "2520", "2520", "3360", "4320", "5040", "5040", "5040", "5040", "5040", "5040", "5040", "5040" ]
[ "nonn" ]
37
1
3
[ "A000396", "A081512", "A355228" ]
null
Bernard Schott, Jun 25 2022
2022-06-27T10:03:21
oeisdata/seq/A355/A355228.seq
a6b5107ef3b55d17900e43c4bab87125
A355229
E.g.f. A(x) satisfies A'(x) = 1 - log(1-x) * A(x).
[ "0", "1", "0", "2", "3", "16", "65", "365", "2261", "16240", "131097", "1182013", "11779537", "128737088", "1532051287", "19731964705", "273556185109", "4062828620256", "64368863326717", "1083795820014261", "19327395713028985", "363940825109825200", "7216468161637890899", "150304143164083288441" ]
[ "nonn" ]
21
0
4
[ "A055596", "A087650", "A355229", "A355230", "A355231" ]
null
Seiichi Manyama, Jun 25 2022
2022-06-25T10:00:34
oeisdata/seq/A355/A355229.seq
9a94f43db3120bb7c454dec44923275d
A355230
E.g.f. A(x) satisfies A'(x) = 1 - log(1-x) * A(2*x).
[ "0", "1", "0", "4", "6", "144", "860", "30656", "497168", "33543808", "1300171872", "178516634624", "15640422963968", "4483114311886336", "862178272953520640", "520264199498699214848", "215806526739662643193856", "274505260166616222726586368" ]
[ "nonn" ]
17
0
4
[ "A355086", "A355229", "A355230", "A355231" ]
null
Seiichi Manyama, Jun 25 2022
2022-06-25T10:00:38
oeisdata/seq/A355/A355230.seq
9f3dbbd466b81f37e282e2e753fa5a70
A355231
E.g.f. A(x) satisfies A'(x) = 1 - 2 * log(1-x) * A(x).
[ "0", "1", "0", "4", "6", "48", "200", "1364", "9016", "71088", "607920", "5772528", "59790720", "673839456", "8210152704", "107668087104", "1513106471040", "22700196933120", "362277092798208", "6130771723664640", "109694104262443008", "2069581743476587008", "41071931895114372096", "855436794313229319168" ]
[ "nonn" ]
19
0
4
[ "A088500", "A355205", "A355229", "A355230", "A355231" ]
null
Seiichi Manyama, Jun 25 2022
2022-06-25T10:00:29
oeisdata/seq/A355/A355231.seq
ce97204ddc832025caee8aec840fa64e
A355232
E.g.f. A(x) satisfies A'(x) = 1 + (exp(x) - 1) * A(2*x).
[ "0", "1", "0", "4", "6", "136", "810", "28204", "458766", "30584656", "1191878610", "162323643604", "14307180186486", "4073323890279736", "788119370902131450", "472616432593062958204", "197219048399199774543966", "249355424516977575240738976" ]
[ "nonn" ]
15
0
4
[ "A087650", "A352860", "A355232", "A355233" ]
null
Seiichi Manyama, Jun 25 2022
2022-06-25T10:00:42
oeisdata/seq/A355/A355232.seq
026da2860cb875df3a52805c470b49b8
A355233
E.g.f. A(x) satisfies A'(x) = 1 + 2 * (exp(x) - 1) * A(x).
[ "0", "1", "0", "4", "6", "40", "150", "832", "4494", "27496", "178278", "1240720", "9159678", "71523448", "588049878", "5073746464", "45800173038", "431400176008", "4230061102662", "43087882883248", "455079854567646", "4975136823055768", "56212975652894646", "655496634896272960", "7878552380411524302" ]
[ "nonn" ]
25
0
4
[ "A004123", "A087650", "A194689", "A355206", "A355232", "A355233" ]
null
Seiichi Manyama, Jun 25 2022
2022-06-26T02:58:11
oeisdata/seq/A355/A355233.seq
12ac5d92c666d68f38bb1de2274a1ad5
A355234
Decimal expansion of Li_2(-1/2), the dilogarithm of (-1/2) (negated).
[ "4", "4", "8", "4", "1", "4", "2", "0", "6", "9", "2", "3", "6", "4", "6", "2", "0", "2", "4", "4", "3", "0", "6", "4", "4", "0", "5", "9", "1", "5", "7", "7", "4", "3", "2", "0", "8", "3", "4", "2", "6", "9", "9", "4", "1", "3", "4", "9", "1", "9", "9", "1", "2", "8", "5", "0", "1", "7", "4", "6", "3", "7", "1", "3", "1", "6", "8", "2", "4", "3", "7", "2", "2", "5", "5", "7", "2", "0", "3", "1", "2", "3", "8", "9", "8", "6", "5", "1", "6", "5", "1", "8", "6", "6", "5", "3", "3", "1", "0", "6", "6", "9", "0", "2", "8" ]
[ "nonn", "cons" ]
21
0
1
[ "A001008", "A002805", "A007758", "A072691", "A076788", "A152115", "A242599", "A242600", "A355234" ]
null
Amiram Eldar, Jun 25 2022
2024-08-06T05:42:15
oeisdata/seq/A355/A355234.seq
ea81f2f740122a421dc1449d7ce54d4a
A355235
E.g.f. A(x) satisfies A'(x) = 1 - log(1-x) * A(2*x)/2.
[ "0", "1", "0", "2", "3", "40", "230", "4664", "69160", "2692320", "92337072", "7377183360", "561596031744", "94107667481472", "15571512343805184", "5506994273113257984", "1955013641428681233408", "1459378050438033715961856", "1101502067162420292961916928" ]
[ "nonn" ]
14
0
4
[ "A355230", "A355235" ]
null
Seiichi Manyama, Jun 25 2022
2022-06-25T10:00:46
oeisdata/seq/A355/A355235.seq
5bac437016991cb88c3f6a84cc329bdb
A355236
E.g.f. A(x) satisfies A'(x) = 1 + (exp(x) - 1) * A(2*x)/2.
[ "0", "1", "0", "2", "3", "36", "205", "3982", "59143", "2256856", "77934585", "6150325562", "472040621283", "78339827803476", "13070683708717765", "4582625922523426342", "1640266593049835803423", "1214338374811373816693296", "924005045104558757129996145" ]
[ "nonn" ]
15
0
4
[ "A087650", "A355232", "A355236" ]
null
Seiichi Manyama, Jun 25 2022
2022-06-25T10:00:50
oeisdata/seq/A355/A355236.seq
7b4f3fc4c6ae6a7ed23c2b075de4d716
A355237
First occurrence of difference n between two consecutive terms of A000404. a(n) gives the lower term. The upper term is A355238.
[ "17", "8", "2", "13", "20", "74", "90", "137", "377", "3050", "986", "1669", "4181", "6530", "1493", "8434", "9704", "22160", "10709", "5165", "16109", "154708", "58418", "31657", "52393", "401480", "176810", "101349", "105572", "678356", "241882", "501716", "393817", "284002", "685541", "1437353", "1751296", "3225578", "3439258", "2479594" ]
[ "nonn" ]
15
1
1
[ "A000404", "A104271", "A355237", "A355238" ]
null
Hugo Pfoertner, Jun 30 2022
2022-09-09T08:04:58
oeisdata/seq/A355/A355237.seq
b8b46d00d4aaa2992871b967bbc926cf
A355238
First occurrence of difference n between two consecutive terms of A000404. a(n) gives the upper term. The lower term is A355237.
[ "18", "10", "5", "17", "25", "80", "97", "145", "386", "3060", "997", "1681", "4194", "6544", "1508", "8450", "9721", "22178", "10728", "5185", "16130", "154730", "58441", "31681", "52418", "401506", "176837", "101377", "105601", "678386", "241913", "501748", "393850", "284036", "685576", "1437389", "1751333", "3225616", "3439297", "2479634" ]
[ "nonn" ]
9
1
1
[ "A000404", "A355237", "A355238" ]
null
Hugo Pfoertner, Jun 30 2022
2022-07-01T12:19:29
oeisdata/seq/A355/A355238.seq
36ba1d0d44b513af7c8b4c2cce3a2763
A355239
Starting values k > 4 of a Collatz iteration reaching either k-1 or k+1.
[ "5", "6", "7", "9", "11", "14", "15", "17", "18", "19", "25", "33", "39", "41", "47", "51", "54", "57", "59", "62", "71", "81", "89", "91", "107", "108", "121", "159", "161", "166", "183", "243", "250", "252", "284", "333", "376", "378", "411", "432", "487", "501", "639", "649", "651", "667", "865", "889", "959", "975", "977", "1153", "1185", "1299", "1335", "1368", "1439", "1731", "1779", "1823", "2159", "2307", "2430", "2735", "3239", "3643", "4103", "4617", "4857", "4859", "6155", "7287", "7289", "9233" ]
[ "nonn" ]
24
1
1
[ "A070991", "A070993", "A355239", "A355240", "A355568", "A355569" ]
null
Hugo Pfoertner, Jul 04 2022
2022-10-17T11:51:43
oeisdata/seq/A355/A355239.seq
0795d2aad1001b3790fd0a2d61a8a575
A355240
Numbers of steps until the Collatz iteration started at k > 4 returns to either k-1 or k+1.
[ "3", "8", "13", "44", "75", "88", "101", "119" ]
[ "nonn", "more" ]
19
1
1
[ "A005186", "A006577", "A355239", "A355240", "A355514", "A355568", "A355569" ]
null
Hugo Pfoertner, Jul 04 2022
2022-09-02T07:45:01
oeisdata/seq/A355/A355240.seq
6934bea6146ade9c401ee043b7882bb4
A355241
T(w,h)/2 is the minimum slope >= 1/2 that can be chosen as orientation of a w X h rectangle such that the upper bound for the minimum number of covered grid points A354702(w,d) can be achieved by a suitable translation of the rectangle, where T(w,h) and A354702 are triangles read by rows. T(w,h) = -1 if no slope satisfying this condition exists.
[ "1", "1", "2", "1", "1", "1", "2", "2", "1", "1", "2", "2", "1", "1", "6", "2", "2", "1", "1", "6", "2", "2", "2", "1", "2", "2", "2", "2", "2", "2", "1", "1", "6", "1", "2", "1", "2", "2", "1", "2", "6", "2", "2", "2", "2", "2", "2", "1", "1", "6", "6", "2", "1", "2", "1", "2", "2", "1", "2", "6", "2", "2", "1", "2", "1", "2", "2", "2", "1", "2", "6", "2", "2", "1", "2", "2", "2", "2", "2", "2", "1", "2", "6", "2", "2", "1", "2", "2", "2", "2", "2" ]
[ "nonn", "tabl" ]
18
1
3
[ "A354702", "A355241", "A355242", "A355244" ]
null
Hugo Pfoertner, Jun 27 2022
2024-12-19T11:57:12
oeisdata/seq/A355/A355241.seq
c3b11761351e25c72b7bfdb4dc067d06
A355242
T(w,h) is the minimum integer slope >= 1 that can be chosen as orientation of a w X h rectangle such that the upper bound for the minimum number of covered grid points A354702(w,d) can be achieved by a suitable translation of the rectangle, where T(w,h) and A354702 are triangles read by rows. T(w,h) = -1 if no integer slope satisfying this condition exists.
[ "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "2", "1", "3", "1", "1", "2", "1", "3", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "3", "1", "1", "2", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "2", "1", "3", "3", "1", "2", "1", "2", "1", "1", "2", "1", "3", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "3", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "3", "1", "1", "2", "1", "1", "1", "1", "1" ]
[ "tabl", "sign" ]
11
1
6
[ "A354702", "A355241", "A355242" ]
null
Hugo Pfoertner, Jun 25 2022
2022-07-05T17:53:40
oeisdata/seq/A355/A355242.seq
d22bef73db962e83730e968c01861be1
A355243
a(n) is the largest integer value of Product_{k=1..n} (2 + 1/t_k) with integers t_k > 1.
[ "5", "11", "25", "55", "125", "277", "637", "1421", "3237", "7553", "16807", "38661", "90209", "208397" ]
[ "nonn", "hard", "more" ]
7
2
1
[ "A355243", "A355626", "A355630" ]
null
Hugo Pfoertner and Markus Sigg, Jul 16 2022
2024-12-22T10:52:26
oeisdata/seq/A355/A355243.seq
da09ca9cdb5ca0a6a908053f16bf50e0
A355244
T(w,h)/2 is the minimum slope >= 1/2 that can be chosen as orientation of a w X h rectangle such that the lower bound for the maximum number of covered grid points A354704(w,d) can be achieved by a suitable translation of the rectangle, where T(w,h) and A354704 are triangles read by rows. T(w,h) = -1 if no slope satisfying this condition exists.
[ "1", "1", "1", "1", "2", "2", "1", "3", "2", "2", "1", "1", "2", "2", "2", "1", "1", "2", "2", "2", "2", "1", "6", "2", "2", "2", "1", "6", "2", "6", "2", "2", "2", "2", "2", "2", "1", "1", "2", "2", "2", "1", "1", "2", "1", "2", "1", "2", "2", "2", "2", "2", "2", "2", "2", "2", "1", "2", "2", "2", "2", "6", "2", "1", "2", "2", "1", "3", "2", "-1", "2", "2", "3", "2", "1", "2", "-1", "3", "2", "1", "2", "2", "2", "2", "6", "2", "1", "2", "2", "1", "2" ]
[ "tabl", "sign" ]
18
1
5
[ "A354704", "A354706", "A355241", "A355244" ]
null
Hugo Pfoertner, Jun 29 2022
2024-12-19T11:56:22
oeisdata/seq/A355/A355244.seq
d6f7a2f2459cc746f0211f150123af8e
A355245
Square array A(n, k), n, k >= 0, read by antidiagonals; for any m > 0, the position of the m-th rightmost 0 in the binary expansion of A(n, k) is the least of the positions of the m-th rightmost 0 in the binary expansions of n and k (the least significant bit having position 0).
[ "0", "0", "0", "0", "1", "0", "0", "2", "2", "0", "0", "1", "2", "1", "0", "0", "4", "2", "2", "4", "0", "0", "1", "4", "3", "4", "1", "0", "0", "2", "2", "4", "4", "2", "2", "0", "0", "1", "2", "5", "4", "5", "2", "1", "0", "0", "8", "2", "6", "4", "4", "6", "2", "8", "0", "0", "1", "8", "3", "4", "5", "4", "3", "8", "1", "0", "0", "2", "2", "8", "4", "6", "6", "4", "8", "2", "2", "0", "0", "1", "2", "9", "8", "5", "6", "5", "8", "9", "2", "1", "0" ]
[ "nonn", "base", "tabl" ]
13
0
8
[ "A006519", "A355245", "A355246" ]
null
Rémy Sigrist, Jun 25 2022
2022-06-28T11:00:27
oeisdata/seq/A355/A355245.seq
5aa328abeb5f2b9f76b8a0a30ce7578f
A355246
Square array A(n, k), n, k >= 0, read by antidiagonals; for any m > 0, the position of the m-th rightmost 0 in the binary expansion of A(n, k) is the greatest of the positions of the m-th rightmost 0 in the binary expansions of n and k (the least significant bit having position 0).
[ "0", "1", "1", "2", "1", "2", "3", "1", "1", "3", "4", "3", "2", "3", "4", "5", "1", "3", "3", "1", "5", "6", "5", "2", "3", "2", "5", "6", "7", "5", "5", "3", "3", "5", "5", "7", "8", "7", "6", "3", "4", "3", "6", "7", "8", "9", "1", "7", "3", "5", "5", "3", "7", "1", "9", "10", "9", "2", "7", "6", "5", "6", "7", "2", "9", "10", "11", "9", "9", "3", "7", "5", "5", "7", "3", "9", "9", "11", "12", "11", "10", "3", "4", "7", "6", "7", "4", "3", "10", "11", "12" ]
[ "nonn", "base", "tabl" ]
9
0
4
[ "A355245", "A355246" ]
null
Rémy Sigrist, Jun 25 2022
2022-06-28T11:00:22
oeisdata/seq/A355/A355246.seq
a6952a4be7cd68330218ffba93bf86e3
A355247
Expansion of e.g.f. exp(2*(exp(x) - 1 + x)).
[ "1", "4", "18", "90", "494", "2946", "18926", "130066", "950654", "7353794", "59954638", "513333618", "4601380766", "43062556322", "419742815726", "4252083713874", "44680229906622", "486145710591874", "5468499473222670", "63503107472489266", "760281866742088670", "9373065303624742498", "118858898763010225198" ]
[ "nonn" ]
11
0
2
[ "A000110", "A001861", "A035009", "A194689", "A217924", "A293024", "A339014", "A355247" ]
null
Vaclav Kotesovec, Jun 25 2022
2022-06-26T08:58:01
oeisdata/seq/A355/A355247.seq
43631ee38a9585d7280b4667682f4d91
A355248
Number of ways to write n as the sum of (exactly) 3 positive integers with the same number of divisors.
[ "0", "0", "0", "1", "0", "0", "1", "1", "1", "2", "1", "2", "3", "2", "1", "3", "2", "5", "3", "3", "3", "5", "5", "5", "5", "5", "6", "9", "5", "8", "5", "8", "4", "12", "5", "11", "8", "12", "10", "13", "5", "14", "10", "16", "9", "17", "8", "19", "10", "19", "15", "24", "12", "22", "14", "24", "16", "27", "16", "25", "13", "23", "22", "33", "15", "29", "17", "35", "22", "37", "17", "37", "15", "32", "28", "44", "27", "41", "26", "40" ]
[ "nonn" ]
11
0
10
[ "A000005", "A355248" ]
null
Wesley Ivan Hurt, Jun 25 2022
2022-06-26T09:16:48
oeisdata/seq/A355/A355248.seq
338c212f80c863b32b7a04f60723121c
A355249
Maximal GCD of three positive integers with sum n.
[ "1", "1", "1", "2", "1", "2", "3", "2", "1", "4", "1", "2", "5", "4", "1", "6", "1", "5", "7", "2", "1", "8", "5", "2", "9", "7", "1", "10", "1", "8", "11", "2", "7", "12", "1", "2", "13", "10", "1", "14", "1", "11", "15", "2", "1", "16", "7", "10", "17", "13", "1", "18", "11", "14", "19", "2", "1", "20", "1", "2", "21", "16", "13", "22", "1", "17", "23", "14", "1", "24", "1", "2", "25", "19", "11", "26", "1", "20", "27", "2", "1", "28" ]
[ "nonn" ]
21
3
4
[ "A032742", "A085891", "A129648", "A354598", "A354599", "A354601", "A355249", "A355319", "A355366", "A355368", "A355402" ]
null
Wesley Ivan Hurt, Jun 25 2022
2022-09-21T11:28:28
oeisdata/seq/A355/A355249.seq
9373ed9dc9af446475d3947169ef5f86
A355250
Largest prime appearing among the "middle parts" of the partitions of n into (exactly) 3 prime parts.
[ "2", "2", "3", "3", "3", "3", "5", "5", "5", "5", "7", "7", "5", "7", "7", "7", "7", "7", "11", "11", "11", "11", "13", "13", "11", "13", "13", "13", "13", "13", "17", "17", "17", "17", "19", "19", "17", "19", "19", "19", "13", "19", "23", "23", "19", "23", "19", "23", "23", "23", "23", "23", "19", "23", "29", "29", "29", "29", "31", "31", "23", "31", "29", "31", "31", "31", "29", "31", "31", "31", "37", "37", "29", "37" ]
[ "nonn" ]
11
6
1
[ "A164024", "A355250" ]
null
Wesley Ivan Hurt, Jun 25 2022
2025-01-31T14:04:41
oeisdata/seq/A355/A355250.seq
9a41f3dde0dc49de31419a39171809bc
A355251
Decimal expansion of the geometric integral of the Riemann zeta function from 1 to infinity.
[ "6", "0", "3", "4", "9", "6", "4", "4", "1", "8", "2", "2", "3", "1", "3", "4", "8", "3", "4", "7", "0", "1", "1", "0", "0", "6", "8", "0", "5", "1", "7", "0", "2", "7", "1", "8", "9", "6", "0", "2", "3", "0", "9", "6", "3", "6", "4", "9", "4", "7", "8", "4", "3", "6", "0", "9", "6", "4", "4", "0", "4", "2", "0", "2", "1", "5", "4", "4", "8", "7", "4", "0", "2", "9", "0", "7", "4", "7", "0", "1", "0", "1", "3", "3", "7", "0", "2" ]
[ "nonn", "cons" ]
12
1
1
[ "A001113", "A188157", "A355251" ]
null
Iain Fox, Jun 26 2022
2022-07-03T18:06:05
oeisdata/seq/A355/A355251.seq
357dea95723da2e1eda5caa423be1ed2
A355252
Expansion of e.g.f. exp(2*(exp(x) - 1) + 3*x).
[ "1", "5", "27", "157", "979", "6517", "46107", "345261", "2726243", "22623525", "196712171", "1787356765", "16929897395", "166808851541", "1706299041211", "18088031239437", "198392625389315", "2248104026019461", "26283054263021963", "316637825898555069", "3926250785070282579", "50056384077880370101" ]
[ "nonn" ]
13
0
2
[ "A001861", "A035009", "A355247", "A355252", "A355253" ]
null
Vaclav Kotesovec, Jun 26 2022
2023-12-04T12:32:50
oeisdata/seq/A355/A355252.seq
efd4649ad99dfdb66fe4d4fc9eb1fee2
A355253
Expansion of e.g.f. exp(2*(exp(x) - 1) - 3*x).
[ "1", "-1", "3", "-5", "19", "-29", "171", "-69", "2339", "5139", "57563", "303403", "2397011", "17237507", "139011211", "1151110299", "10076637827", "91903924979", "874688607035", "8656097294091", "88932728790195", "946748093175523", "10426787247224043", "118620906668843131", "1392128306377939427", "16833088095308098003" ]
[ "sign" ]
12
0
3
[ "A001861", "A194689", "A217923", "A355252", "A355253" ]
null
Vaclav Kotesovec, Jun 26 2022
2023-12-04T12:32:22
oeisdata/seq/A355/A355253.seq
cbd8d1eb8ba36290c7ff81b2750a1d12
A355254
Expansion of e.g.f. exp(3*(exp(x) - 1) - x).
[ "1", "2", "7", "29", "142", "785", "4813", "32240", "233449", "1812161", "14980768", "131174939", "1211111629", "11745451658", "119255234371", "1264050651953", "13952113296766", "160006824960725", "1902825936046105", "23423342243273696", "297982102750214605", "3911917977005948453", "52926119656555824520" ]
[ "nonn" ]
14
0
2
[ "A000296", "A027710", "A078940", "A217924", "A355254" ]
null
Vaclav Kotesovec, Jun 26 2022
2023-12-04T12:32:17
oeisdata/seq/A355/A355254.seq
a0017df086f88273162ea6958e731f15
A355255
Irregular table read by rows: a(n,k) gives the number of distinct necklaces that appear in the following procedure: starting with the n-bead, (0,1)-necklace given by k written in binary, repeatedly take the first differences (mod 2) of the beads. 0 <= k < 2^n.
[ "1", "1", "2", "1", "3", "3", "2", "1", "2", "2", "1", "2", "1", "1", "2", "1", "5", "5", "4", "5", "3", "4", "5", "5", "4", "3", "5", "4", "5", "5", "2", "1", "4", "4", "3", "4", "3", "3", "4", "4", "3", "3", "4", "3", "4", "4", "3", "4", "3", "3", "4", "3", "4", "4", "3", "3", "4", "4", "3", "4", "3", "3", "2", "1", "4", "4", "3", "4", "2", "3", "3", "4", "2", "2", "4", "3", "4", "3", "2", "4", "2", "2", "4", "2", "3", "4", "3", "3", "4", "4", "1", "3", "3", "2", "4", "4", "3", "2", "3", "2", "4", "4", "2", "2", "4", "3", "3", "4", "1", "3", "4", "3", "3", "4", "2", "4", "3", "1", "4", "3", "2", "3", "4", "2", "4", "4", "2" ]
[ "nonn", "tabf", "base", "look" ]
18
0
3
[ "A038556", "A334594", "A355255" ]
null
Peter Kagey, Jun 26 2022
2022-07-05T23:19:27
oeisdata/seq/A355/A355255.seq
c27fe8ddbdfc92ea9ebfb2c3fa91ad73
A355256
a(n) is the number of n-th order n X n magic arrays composed of the numbers from 1 to n^2 in which each 2 X 2 subsquare has the same sum, counted up to rotations and reflections.
[ "1", "3", "47", "2544", "6480" ]
[ "nonn", "more" ]
23
1
2
null
null
Donghwi Park, Jun 26 2022
2022-08-13T15:34:25
oeisdata/seq/A355/A355256.seq
8641b132baf06bf0bb7ab3300f34f260
A355257
Array read by ascending antidiagonals. A(n, k) = k! * [x^k] log((1 - x) / (1 - 2*x)) / (1 - x)^n, for 0 <= k <= n.
[ "0", "0", "1", "0", "1", "3", "0", "1", "5", "14", "0", "1", "7", "29", "90", "0", "1", "9", "50", "206", "744", "0", "1", "11", "77", "406", "1774", "7560", "0", "1", "13", "110", "714", "3804", "18204", "91440", "0", "1", "15", "149", "1154", "7374", "41028", "218868", "1285200", "0", "1", "17", "194", "1750", "13144", "85272", "506064", "3036144", "20603520" ]
[ "nonn", "tabl" ]
37
0
6
[ "A029767", "A103213", "A355171", "A355257", "A355259", "A355372", "A355407", "A355414" ]
null
Peter Luschny and Mélika Tebni, Jul 01 2022
2025-04-13T01:46:03
oeisdata/seq/A355/A355257.seq
bb58493685cc7e9f95b4424c8a736e2f
A355258
a(n) = n! * [x^n] (1 - x)*log((1 - x)/(1 - 2*x)).
[ "0", "1", "1", "5", "34", "294", "3096", "38520", "553680", "9036720", "165191040", "3344664960", "74321452800", "1798531257600", "47088252288000", "1326311841254400", "39993302622873600", "1285497518393088000", "43878291581988864000", "1585102883250991104000", "60420385100090695680000", "2423528644964637450240000" ]
[ "nonn" ]
10
0
4
[ "A355257", "A355258" ]
null
Peter Luschny, Jul 01 2022
2024-04-12T14:01:48
oeisdata/seq/A355/A355258.seq
7af094ba24c07ec28c119153637f6590
A355259
Triangle read by rows. Row k are the coefficients of the polynomials (sorted by ascending powers) which interpolate the points (n, A355257(n, k+1)) for n = 0..k.
[ "1", "3", "2", "14", "12", "3", "90", "82", "30", "4", "744", "680", "285", "60", "5", "7560", "6788", "2985", "760", "105", "6", "91440", "80136", "35532", "9870", "1715", "168", "7", "1285200", "1098984", "482300", "138796", "27160", "3444", "252", "8", "20603520", "17227584", "7425492", "2152584", "447405", "65520", "6342", "360", "9" ]
[ "nonn", "tabl" ]
5
0
2
[ "A355257", "A355259" ]
null
Peter Luschny, Jul 03 2022
2022-07-04T06:51:09
oeisdata/seq/A355/A355259.seq
d3d78d9785051f0fe3b44a757ef945bf
A355260
Triangle read by rows, T(n, k) = Bell(k) * |Stirling1(n, k)|.
[ "1", "0", "1", "0", "1", "2", "0", "2", "6", "5", "0", "6", "22", "30", "15", "0", "24", "100", "175", "150", "52", "0", "120", "548", "1125", "1275", "780", "203", "0", "720", "3528", "8120", "11025", "9100", "4263", "877", "0", "5040", "26136", "65660", "101535", "101920", "65366", "24556", "4140", "0", "40320", "219168", "590620", "1009260", "1167348", "920808", "478842", "149040", "21147" ]
[ "nonn", "tabl" ]
13
0
6
[ "A000110", "A000142", "A000262", "A033999", "A132393", "A355260", "A355267" ]
null
Peter Luschny, Jul 06 2022
2022-07-06T11:13:58
oeisdata/seq/A355/A355260.seq
94b27e5e290f9a757b708addf588a626
A355261
a(n) = largest-nth-power(n, 2) * radical(n) = A000188(n) * A007947(n), where largest-nth-power(n, e) is the largest positive integer b such that b^e divides n.
[ "1", "2", "3", "4", "5", "6", "7", "4", "9", "10", "11", "12", "13", "14", "15", "8", "17", "18", "19", "20", "21", "22", "23", "12", "25", "26", "9", "28", "29", "30", "31", "8", "33", "34", "35", "36", "37", "38", "39", "20", "41", "42", "43", "44", "45", "46", "47", "24", "49", "50", "51", "52", "53", "18", "55", "28", "57", "58", "59", "60", "61", "62", "63", "16", "65", "66", "67", "68" ]
[ "nonn", "mult" ]
25
1
2
[ "A000188", "A002117", "A007947", "A064549", "A355261", "A355263" ]
null
Peter Luschny, Jul 12 2022
2022-11-13T08:40:04
oeisdata/seq/A355/A355261.seq
e7e26b33f54f24de4034fa0970a85b0e
A355262
Array of Fuss-Catalan numbers read by ascending antidiagonals, A(n, k) = binomial(k*n + 1, k)/(k*n + 1).
[ "1", "1", "1", "1", "1", "0", "1", "1", "1", "0", "1", "1", "2", "1", "0", "1", "1", "3", "5", "1", "0", "1", "1", "4", "12", "14", "1", "0", "1", "1", "5", "22", "55", "42", "1", "0", "1", "1", "6", "35", "140", "273", "132", "1", "0", "1", "1", "7", "51", "285", "969", "1428", "429", "1", "0", "1", "1", "8", "70", "506", "2530", "7084", "7752", "1430", "1", "0" ]
[ "nonn", "tabl" ]
26
0
13
[ "A000012", "A000108", "A001764", "A002293", "A002294", "A002295", "A002296", "A007556", "A019590", "A062993", "A062994", "A070914", "A091144", "A123110", "A355172", "A355173", "A355174", "A355262" ]
null
Peter Luschny, Jun 26 2022
2024-09-29T09:19:47
oeisdata/seq/A355/A355262.seq
1d0b375bc9491e473fae2f9a9498aeb0
A355263
a(n) = largest-nth-power(n, 3) * radical(n) = A053150(n) * A007947(n), where the largest-nth-power(n, e) is the largest positive integer b such that b^e divides n.
[ "1", "2", "3", "2", "5", "6", "7", "4", "3", "10", "11", "6", "13", "14", "15", "4", "17", "6", "19", "10", "21", "22", "23", "12", "5", "26", "9", "14", "29", "30", "31", "4", "33", "34", "35", "6", "37", "38", "39", "20", "41", "42", "43", "22", "15", "46", "47", "12", "7", "10", "51", "26", "53", "18", "55", "28", "57", "58", "59", "30", "61", "62", "21", "8", "65", "66", "67", "34", "69" ]
[ "nonn", "mult" ]
22
1
2
[ "A000188", "A013663", "A053150", "A064549", "A355261", "A355263" ]
null
Peter Luschny, Jul 12 2022
2022-11-13T08:40:46
oeisdata/seq/A355/A355263.seq
bf144d82acf286e625a96d62be901e0d
A355264
a(n) = n * largest-nth-power(n, 2) = n * A000188(n), where largest-nth-power(n, e) is the largest positive integer b such that b^e divides n.
[ "1", "2", "3", "8", "5", "6", "7", "16", "27", "10", "11", "24", "13", "14", "15", "64", "17", "54", "19", "40", "21", "22", "23", "48", "125", "26", "81", "56", "29", "30", "31", "128", "33", "34", "35", "216", "37", "38", "39", "80", "41", "42", "43", "88", "135", "46", "47", "192", "343", "250", "51", "104", "53", "162", "55", "112", "57", "58", "59", "120", "61", "62", "189", "512" ]
[ "nonn", "easy", "mult" ]
18
1
2
[ "A000027", "A000188", "A001620", "A007913", "A306016", "A355264" ]
null
Peter Luschny, Jul 12 2022
2023-09-21T01:45:51
oeisdata/seq/A355/A355264.seq
279ba9554c276a632b09bbad9933f214
A355265
Bicubeful numbers.
[ "64", "128", "192", "256", "320", "384", "448", "512", "576", "640", "704", "729", "768", "832", "896", "960", "1024", "1088", "1152", "1216", "1280", "1344", "1408", "1458", "1472", "1536", "1600", "1664", "1728", "1792", "1856", "1920", "1984", "2048", "2112", "2176", "2187", "2240", "2304", "2368", "2432", "2496", "2560", "2624", "2688", "2752" ]
[ "nonn" ]
20
1
1
[ "A000188", "A007947", "A013664", "A013929", "A046101", "A053150", "A053164", "A343359", "A355265" ]
null
Peter Luschny, Jul 12 2022
2022-07-13T09:10:27
oeisdata/seq/A355/A355265.seq
1bb3c317e0a7cbf0a4520477478a2042
A355266
Triangle read by rows, T(n, k) = (-1)^(n-k)*Bell(k)*Stirling1(n+1, k+1), for 0 <= k <= n.
[ "1", "1", "1", "2", "3", "2", "6", "11", "12", "5", "24", "50", "70", "50", "15", "120", "274", "450", "425", "225", "52", "720", "1764", "3248", "3675", "2625", "1092", "203", "5040", "13068", "26264", "33845", "29400", "16744", "5684", "877", "40320", "109584", "236248", "336420", "336735", "235872", "110838", "31572", "4140" ]
[ "nonn", "tabl" ]
10
0
4
[ "A000110", "A000142", "A000166", "A000254", "A002720", "A053556", "A053557", "A105479", "A130534", "A355266" ]
null
Peter Luschny and Mélika Tebni, Jul 05 2022
2022-07-07T13:21:20
oeisdata/seq/A355/A355266.seq
e22fab956f5e456f648f6dd70cbd687f
A355267
Triangle read by rows, T(n, k) = n! * [y^k] [x^n] exp(1/(1 - x)^(1 + y) - 1), for 0 <= k <= n.
[ "1", "1", "1", "3", "5", "2", "13", "29", "21", "5", "73", "200", "202", "90", "15", "501", "1609", "2045", "1295", "410", "52", "4051", "14809", "22418", "18085", "8220", "1998", "203", "37633", "153453", "267400", "259175", "151165", "53095", "10402", "877", "394353", "1767240", "3463612", "3889620", "2740885", "1241632", "353178", "57676", "4140" ]
[ "nonn", "tabl" ]
7
0
4
[ "A000007", "A000110", "A000262", "A136658", "A216313", "A355260", "A355267" ]
null
Peter Luschny, Jul 05 2022
2022-07-06T11:10:37
oeisdata/seq/A355/A355267.seq
69fe9b41f275a45f60f1dea069f5aeb5
A355268
a(n) = n! * [x^n] -exp(x^2)/(x - 1).
[ "1", "1", "4", "12", "60", "300", "1920", "13440", "109200", "982800", "9858240", "108440640", "1301952960", "16925388480", "236972736000", "3554591040000", "56873975558400", "966857584492800", "17403454164096000", "330665629117824000", "6613313252799052800", "138879578308780108800", "3055350750951750451200" ]
[ "nonn" ]
15
0
3
[ "A000522", "A355268" ]
null
Peter Luschny, Jul 15 2022
2024-02-28T09:08:11
oeisdata/seq/A355/A355268.seq
f37548bddb831774917196ccba288fe9
A355269
Lexicographically earliest infinite sequence of distinct positive integers such that a(n+1) is prime to the number of divisors of a(n).
[ "1", "2", "3", "5", "7", "9", "4", "8", "11", "13", "15", "17", "19", "21", "23", "25", "10", "27", "29", "31", "33", "35", "37", "39", "41", "43", "45", "47", "49", "14", "51", "53", "55", "57", "59", "61", "63", "65", "67", "69", "71", "73", "75", "77", "79", "81", "6", "83", "85", "87", "89", "91", "93", "95", "97", "99", "101", "103", "105", "107", "109", "111", "113", "115", "117", "119" ]
[ "nonn" ]
33
1
2
[ "A000005", "A000037", "A000290", "A002110", "A016742", "A016754", "A352475", "A354178", "A354903", "A355269" ]
null
David James Sycamore and Michael De Vlieger, Jun 26 2022
2025-07-01T23:33:51
oeisdata/seq/A355/A355269.seq
2a73f70cb299aa35ae7f3f968e8581a0
A355270
Lexicographically earliest sequence of positive integers on a square spiral such that the sum of adjacent pairs of numbers within each row, column and diagonal is distinct in that row, column and diagonal.
[ "1", "1", "1", "1", "2", "2", "3", "2", "4", "3", "3", "4", "4", "3", "5", "4", "2", "4", "3", "5", "4", "4", "2", "3", "6", "4", "6", "5", "7", "6", "2", "6", "3", "2", "5", "8", "4", "3", "6", "6", "7", "3", "5", "7", "6", "8", "8", "7", "1", "2", "7", "5", "1", "2", "5", "8", "6", "4", "8", "5", "6", "9", "7", "1", "4", "10", "1", "1", "6", "3", "9", "12", "5", "1", "7", "2", "1", "6", "4", "1", "13", "6", "4", "7", "9", "12", "10", "7", "11", "1", "5", "2", "10", "7", "4", "5", "8" ]
[ "nonn" ]
17
1
5
[ "A274640", "A275609", "A307834", "A355270", "A355271" ]
null
Scott R. Shannon, Jun 26 2022
2022-08-03T10:48:52
oeisdata/seq/A355/A355270.seq
2427780ab2f3e5b2bde20b9281368552
A355271
Lexicographically earliest sequence of positive integers on a square spiral such that the product of adjacent pairs of numbers within each row, column and diagonal is distinct in that row, column and diagonal.
[ "1", "1", "1", "1", "2", "2", "3", "2", "4", "3", "3", "4", "2", "3", "4", "4", "5", "3", "2", "5", "4", "3", "5", "4", "2", "2", "3", "5", "2", "2", "4", "2", "3", "5", "4", "6", "3", "1", "1", "5", "5", "4", "1", "1", "6", "6", "2", "5", "6", "4", "5", "1", "1", "6", "4", "7", "5", "4", "1", "5", "3", "6", "2", "3", "1", "1", "3", "7", "6", "2", "7", "4", "5", "7", "3", "6", "1", "1", "4", "3", "1", "5", "2", "1", "1", "6", "5", "7", "1", "5", "3", "3", "5", "1", "1", "3", "7", "4", "6" ]
[ "nonn" ]
16
1
5
[ "A274640", "A275609", "A307834", "A355270", "A355271" ]
null
Scott R. Shannon, Jun 26 2022
2023-04-25T01:02:05
oeisdata/seq/A355/A355271.seq
c79e73ea5688b83ed6f41d283d67fa7d
A355272
Primes p for which p + q is not a multiple of 4, where q is the previous prime if p == 1 (mod 3) or else the next prime.
[ "2", "89", "97", "211", "223", "359", "367", "389", "397", "401", "409", "449", "457", "467", "479", "487", "491", "499", "509", "631", "673", "683", "691", "701", "709", "719", "727", "743", "751", "761", "769", "797", "887", "907", "911", "919", "929", "937", "983", "991", "1009", "1109", "1117", "1163", "1171", "1193", "1201", "1213", "1249", "1307", "1373" ]
[ "nonn" ]
13
1
1
[ "A068228", "A151799", "A151800", "A355272" ]
null
M. F. Hasler and Yasutoshi Kohmoto, Jun 26 2022
2022-07-03T09:18:15
oeisdata/seq/A355/A355272.seq
ffbc5d96995b9db18f9a409c463513f8
A355273
Primes p for which p + q is a multiple of 4, where q is the previous prime if p == 2 (mod 3) or the next prime otherwise.
[ "3", "5", "29", "31", "53", "59", "61", "73", "89", "137", "139", "149", "151", "157", "173", "179", "181", "191", "239", "241", "251", "257", "263", "269", "271", "283", "293", "331", "337", "347", "359", "367", "373", "389", "409", "419", "421", "431", "433", "449", "509", "523", "541", "547", "557", "563", "569", "571", "577", "587", "593", "599", "601", "607", "631" ]
[ "nonn" ]
9
1
1
[ "A068228", "A151799", "A151800", "A355273" ]
null
M. F. Hasler and Yasutoshi Kohmoto, Jun 26 2022
2022-07-03T09:18:41
oeisdata/seq/A355/A355273.seq
8bbb8bd1e812cc39d8224c37a2ad4335
A355274
Numbers having more even than odd digits when written in base 3.
[ "0", "2", "6", "8", "9", "11", "15", "17", "18", "19", "20", "21", "23", "24", "25", "26", "27", "29", "33", "35", "45", "47", "51", "53", "54", "55", "56", "57", "59", "60", "61", "62", "63", "65", "69", "71", "72", "73", "74", "75", "77", "78", "79", "80", "81", "82", "83", "84", "86", "87", "88", "89", "90", "92", "96", "98", "99", "100", "101", "102", "104", "105", "106", "107", "108", "110", "114", "116" ]
[ "nonn", "base" ]
6
1
2
[ "A072603", "A352546", "A355274" ]
null
M. F. Hasler, Jul 03 2022
2022-07-04T14:07:02
oeisdata/seq/A355/A355274.seq
5a3557a81e3e1b8eeb7ff56243b1ceb9
A355275
Numbers having more odd than even digits when written in base 3.
[ "1", "4", "10", "12", "13", "14", "16", "22", "31", "37", "39", "40", "41", "43", "49", "67", "85", "91", "93", "94", "95", "97", "103", "109", "111", "112", "113", "115", "117", "118", "119", "120", "121", "122", "123", "124", "125", "127", "129", "130", "131", "133", "139", "145", "147", "148", "149", "151", "157", "175", "193", "199", "201", "202", "203", "205", "211", "229", "256", "274", "280", "282", "283", "284", "286", "292" ]
[ "nonn", "base" ]
12
1
2
[ "A072600", "A352547", "A355275" ]
null
M. F. Hasler, Jul 03 2022
2024-03-04T01:31:18
oeisdata/seq/A355/A355275.seq
d5694063d7aa3f23ae4e05e27ce78a24
A355276
Number of n-digit terms in A347475.
[ "2", "2", "1", "4", "4", "6", "3", "8", "9", "12", "11", "18", "33", "37", "40", "43", "64", "77", "71", "118", "135", "167", "241" ]
[ "nonn", "base", "more" ]
13
1
1
[ "A000217", "A014261", "A117960", "A347475", "A349243", "A349247", "A355276", "A355277" ]
null
M. F. Hasler, Sep 08 2022
2022-09-11T00:28:08
oeisdata/seq/A355/A355276.seq
b143c845f9e3490200ccde9f0123c869
A355277
Largest n-digit number k with only odd digits such that the k-th triangular number also has only odd digits.
[ "5", "17", "177", "5573", "79137", "791377", "7913777", "79971937", "557335733", "5995957537", "59995599137", "599591791137", "7991739957973", "79971739957537", "799739357539937", "7991713197753777", "79991971791119137", "799999173991317537", "7997391313911797973" ]
[ "nonn", "base" ]
27
1
1
[ "A000217", "A014261", "A117960", "A347475", "A349243", "A349247", "A355277" ]
null
M. F. Hasler, Sep 07 2022
2022-09-15T11:47:40
oeisdata/seq/A355/A355277.seq
567c7ffce87ff751abee7875905f0f15
A355278
Lower left of the Cayley table for the primes when made into a group using the bijection (2, 3, 5, 7, ...) -> (0, +1, -1, +2, ...) into (Z, +); read by rows.
[ "2", "3", "7", "5", "2", "11", "7", "13", "3", "19", "11", "5", "17", "2", "23", "13", "19", "7", "29", "3", "37", "17", "11", "23", "5", "31", "2", "41", "19", "29", "13", "37", "7", "43", "3", "53", "23", "17", "31", "11", "41", "5", "47", "2", "59", "29", "37", "19", "43", "13", "53", "7", "61", "3", "71", "31", "23", "41", "17", "47", "11", "59", "5", "67", "2", "73", "37", "43", "29" ]
[ "nonn", "tabl" ]
24
1
1
[ "A000040", "A000720", "A001057", "A355278" ]
null
M. F. Hasler, Sep 08 2022
2022-09-11T00:34:01
oeisdata/seq/A355/A355278.seq
1aaa16573afdf73c4a673130ef42152d
A355279
Numbers k such that S(S(S(k))) = k, with S(n) = sigma(n)/4: 1/4-sociable numbers of order 1 or 3.
[ "30240", "32760", "2178540", "23569920", "45532800", "46475520", "48933360", "50995620", "60933600", "69995520", "72807696", "142990848" ]
[ "nonn", "more" ]
10
1
1
[ "A027687", "A113286", "A113546", "A355279" ]
null
M. F. Hasler, Sep 25 2022
2025-02-16T08:34:03
oeisdata/seq/A355/A355279.seq
cce0375cbe77780f0d7df5ea8a7bfe66
A355280
Binary numbers (digits in {0, 1}) with no run of digits with length < 2.
[ "11", "111", "1100", "1111", "11000", "11100", "11111", "110000", "110011", "111000", "111100", "111111", "1100000", "1100011", "1100111", "1110000", "1110011", "1111000", "1111100", "1111111", "11000000", "11000011", "11000111", "11001100", "11001111", "11100000", "11100011", "11100111", "11110000", "11110011", "11111000", "11111100", "11111111" ]
[ "nonn", "base" ]
21
1
1
[ "A000042", "A002275", "A007088", "A033015", "A061851", "A355280" ]
null
M. F. Hasler, Oct 17 2022
2025-05-12T14:36:30
oeisdata/seq/A355/A355280.seq
cc43bb7b712d88eca64cec7500ee4137
A355281
Number of pairs of nested Dyck paths from (0,0) to (n,n) such that the upper path only touches the diagonal at its endpoints.
[ "1", "1", "2", "9", "55", "400", "3266", "28999", "274537", "2734885", "28401315", "305352146", "3380956839", "38394091370", "445702108969", "5274935433915", "63507021523471", "776347636736261", "9621502184089320", "120726786082609207", "1531938384684090884", "19639252409244653785", "254143269904958943103", "3317204158078663935592" ]
[ "nonn" ]
28
0
3
[ "A000108", "A005700", "A355281", "A378112" ]
null
Joel B. Lewis, Jun 26 2022
2024-11-16T19:15:40
oeisdata/seq/A355/A355281.seq
a7b319a66ec7a1d99608e4eabe2909f7
A355282
Triangle read by rows: T(n, k) = Sum_{i=1..n-k} qStirling1(n-k, i) * qStirling2(n-1+i, n-1) for 0 < k < n with initial values T(n, 0) = 0^n and T(n, n) = 1 for n >= 0, here q = 2.
[ "1", "0", "1", "0", "1", "1", "0", "9", "4", "1", "0", "343", "79", "11", "1", "0", "50625", "6028", "454", "26", "1", "0", "28629151", "1741861", "68710", "2190", "57", "1", "0", "62523502209", "1926124954", "38986831", "656500", "9687", "120", "1", "0", "532875860165503", "8264638742599", "84816722571", "734873171", "5760757", "40929", "247", "1" ]
[ "nonn", "easy", "tabl" ]
19
0
8
[ "A022166", "A055601", "A125128", "A139382", "A342186", "A354794", "A355282" ]
null
Werner Schulte, Jun 26 2022
2022-07-03T03:12:46
oeisdata/seq/A355/A355282.seq
73343a01da465c105495f1f1e595920d
A355283
Decimal expansion of the constant B(3) = Sum_{n>=1} Sum_{m>=n+1} 1/(z(n)*z(m))^3 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.
[ "0", "0", "0", "0", "0", "0", "1", "9", "4", "0", "3", "3", "3", "7", "5", "4", "0", "6", "3", "6", "9", "8", "3", "6", "7", "2", "7", "2", "4", "8", "7", "9", "8", "1", "5", "4", "7", "5", "0", "6", "6", "4", "5", "0", "0", "6", "4", "5", "6", "7", "0", "1", "0", "0", "0", "0", "1", "0", "8", "9", "6", "8", "8", "8", "7", "7", "9", "5", "3", "1", "0", "3", "1", "0", "9", "3", "5", "3", "2", "5", "7", "7", "2", "6", "0", "6", "5", "8", "0", "3", "8", "6", "3", "6", "8", "8", "3", "1", "7", "5", "3", "5", "1", "5", "1", "8", "8", "4", "4", "6", "0", "5", "1", "7", "4" ]
[ "nonn", "cons" ]
69
0
8
[ "A013629", "A074760", "A104539", "A104540", "A104541", "A104542", "A245275", "A245276", "A306339", "A306340", "A306341", "A332645", "A333360", "A335814", "A335815", "A355283" ]
null
Artur Jasinski, Aug 20 2022
2022-08-23T14:38:37
oeisdata/seq/A355/A355283.seq
d6ed35d03e06100f1d2d51509e4a4e3a
A355284
Expansion of e.g.f. 1 / (1 + x + x^2/2 + log(1 - x)).
[ "1", "0", "0", "2", "6", "24", "200", "1560", "12936", "130368", "1458432", "17623440", "233922480", "3376625472", "52382131776", "870882440064", "15459372915840", "291596692838400", "5824039155720192", "122814724467223296", "2726547887891407104", "63562453551393223680", "1552499303360183700480" ]
[ "nonn" ]
8
0
4
[ "A007840", "A038205", "A102233", "A226226", "A355284", "A355285" ]
null
Ilya Gutkovskiy, Jun 26 2022
2022-07-01T04:09:27
oeisdata/seq/A355/A355284.seq
5bb899a0395de76111c93a90915fc65b
A355285
Expansion of e.g.f. 1 / (1 + x + x^2/2 + x^3/3 + log(1 - x)).
[ "1", "0", "0", "0", "6", "24", "120", "720", "7560", "76608", "810432", "9141120", "118015920", "1666336320", "25211774016", "404932155264", "6951992261760", "127203705538560", "2467434718218240", "50477473338494976", "1086707769452699904", "24573149993692615680", "582367494447600583680", "14430857455114783119360" ]
[ "nonn" ]
7
0
5
[ "A007840", "A047865", "A226226", "A232475", "A355284", "A355285" ]
null
Ilya Gutkovskiy, Jun 26 2022
2022-07-01T04:08:27
oeisdata/seq/A355/A355285.seq
3af5325577fd6bdac8bef00356ad404a
A355286
Highly composite numbers that are not a product of two highly composite numbers greater than 1.
[ "1", "2", "6", "60", "180", "840", "1260", "25200", "27720", "83160", "277200", "720720", "1081080", "3603600", "10810800", "32432400", "36756720", "61261200", "110270160", "183783600", "551350800", "698377680", "2095133040", "2327925600", "3491888400", "10475665200", "48886437600", "64250746560", "73329656400", "80313433200" ]
[ "nonn" ]
10
1
2
[ "A002182", "A307763", "A355286" ]
null
J. Lowell, Jun 26 2022
2022-08-24T09:57:52
oeisdata/seq/A355/A355286.seq
9b68f3cb3d19f521a707ffba8ed10497
A355287
E.g.f. satisfies A(x) = 1/(1 - x)^(x^2 * A(x)).
[ "1", "0", "0", "6", "12", "40", "1260", "8568", "62160", "1473120", "19111680", "232626240", "5403451680", "103176028800", "1822033204992", "45916616592000", "1129459815993600", "26346457488798720", "749439127417466880", "22165051763204582400", "640916967497214643200", "20787453048015928350720" ]
[ "nonn" ]
21
0
4
[ "A353228", "A355287", "A356910" ]
null
Seiichi Manyama, Sep 03 2022
2025-02-16T08:34:03
oeisdata/seq/A355/A355287.seq
0fd59abfbbb22a8ee587e8f2a457cf62
A355288
a(0)=1, a(1)=3, a(2)=7; thereafter a(n) = a(n-1) + a(n-2) + 1.
[ "1", "3", "7", "11", "19", "31", "51", "83", "135", "219", "355", "575", "931", "1507", "2439", "3947", "6387", "10335", "16723", "27059", "43783", "70843", "114627", "185471", "300099", "485571", "785671", "1271243", "2056915", "3328159", "5385075", "8713235", "14098311", "22811547", "36909859", "59721407", "96631267", "156352675", "252983943", "409336619", "662320563" ]
[ "nonn", "easy" ]
30
0
2
[ "A354902", "A355288" ]
null
Sumukh Patel, Jun 27 2022
2025-03-22T20:42:45
oeisdata/seq/A355/A355288.seq
629d2ea7268788f965f95dd34266a1ee
A355289
Decimal expansion of Product_{m>=1} Product_{k>=1} (1 + 1/(2^m)^k).
[ "4", "2", "0", "7", "4", "1", "3", "7", "3", "0", "7", "7", "4", "2", "9", "1", "6", "6", "9", "0", "3", "7", "5", "4", "4", "2", "2", "6", "9", "4", "2", "1", "4", "6", "4", "3", "4", "9", "1", "3", "1", "7", "6", "7", "8", "6", "3", "8", "2", "7", "9", "5", "1", "1", "6", "8", "8", "3", "6", "9", "1", "0", "9", "5", "2", "9", "9", "3", "2", "5", "7", "8", "3", "1", "7", "3", "3", "6", "9", "4", "4", "2", "3", "2", "2", "0", "1", "0", "0", "3", "2", "8", "7", "7", "3", "5", "6", "5", "4", "3", "8", "7", "4", "0", "5" ]
[ "cons", "nonn" ]
26
1
1
null
null
Wolfe Padawer, Sep 05 2022
2022-09-06T14:57:05
oeisdata/seq/A355/A355289.seq
21ef9897e4585fed87e9816929bc5792
A355290
a(n) = Sum_{k=0..n} (-1)^(n-k) * Stirling2(n,k) * Catalan(k).
[ "1", "1", "1", "0", "-3", "-2", "23", "17", "-333", "86", "6941", "-17025", "-160267", "1082864", "2273807", "-56742606", "152154285", "2293098332", "-22007462809", "-15179437171", "1671107690083", "-10716783889040", "-58404948615167", "1439391012463810", "-6701658223127029", "-88340107011433060" ]
[ "sign" ]
15
0
5
[ "A000108", "A006531", "A064856", "A086662", "A086672", "A355290" ]
null
Seiichi Manyama, Jun 27 2022
2023-03-13T15:53:06
oeisdata/seq/A355/A355290.seq
493e374d33ef9eda29289c57162f746a
A355291
Expansion of e.g.f. exp(exp(x)*(exp(x) + 1) - 2).
[ "1", "3", "14", "81", "551", "4266", "36803", "348543", "3583484", "39652659", "468970211", "5894584812", "78366374813", "1097537989671", "16136598952718", "248309032411485", "3988468487017379", "66715970326561170", "1159712730763363991", "20909709414253764819", "390374806223071148084", "7534929383736826736007" ]
[ "nonn" ]
34
0
2
[ "A001861", "A055882", "A126390", "A143405", "A355291", "A355379" ]
null
Vaclav Kotesovec, Jun 27 2022
2022-07-22T02:26:53
oeisdata/seq/A355/A355291.seq
0b6809eac9f9858fb0044bfbbc1eb439
A355292
a(n) = Sum_{k=1..n} |Stirling1(n,k)| * Catalan(k-1).
[ "1", "2", "7", "34", "208", "1521", "12871", "123306", "1316316", "15471114", "198319614", "2751524557", "41058030388", "655427422651", "11142214939181", "200919300509214", "3829751956014084", "76928721540858772", "1624015067086462504", "35942784684670110710", "832134062464902004336" ]
[ "nonn" ]
14
1
2
[ "A000108", "A052851", "A086662", "A355292" ]
null
Seiichi Manyama, Jun 27 2022
2022-07-01T03:30:09
oeisdata/seq/A355/A355292.seq
b5afba73fc492007eeb3ba9da23e40e2
A355293
Expansion of e.g.f. 1 / (1 - x - x^2/2 - x^3/3).
[ "1", "1", "3", "14", "82", "610", "5450", "56700", "674520", "9027480", "134236200", "2195701200", "39180094800", "757389032400", "15767305554000", "351689317980000", "8367381470448000", "211518767796336000", "5661504152255952000", "159954273475764768000", "4757034049019572320000", "148547713504322452320000", "4859583724723970642400000" ]
[ "nonn" ]
5
0
3
[ "A007840", "A057693", "A080599", "A189886", "A355293", "A355294" ]
null
Ilya Gutkovskiy, Jun 27 2022
2022-07-01T04:13:52
oeisdata/seq/A355/A355293.seq
82309d8bcda2a681f411e12133ced940
A355294
Expansion of e.g.f. 1 / (1 - x - x^2/2 - x^3/3 - x^4/4).
[ "1", "1", "3", "14", "88", "670", "6170", "66360", "815640", "11272800", "173132400", "2925014400", "53909394000", "1076365290000", "23144112591600", "533193460800000", "13102608591072000", "342105146182800000", "9457689380931792000", "275988880808825184000", "8477631163592791200000", "273430368958004818560000", "9238944655686318693120000" ]
[ "nonn" ]
5
0
3
[ "A007840", "A070945", "A080599", "A276924", "A355293", "A355294" ]
null
Ilya Gutkovskiy, Jun 27 2022
2022-07-01T04:13:56
oeisdata/seq/A355/A355294.seq
dd057a5c7b316830bbcf89e40df8237e
A355295
Number of distinct board states reachable in n jumps in European Peg Solitaire.
[ "1", "4", "17", "92", "495", "2475", "11771", "52226", "212527", "789228", "2640323", "7870055", "20730606", "47916748", "96715832", "170154214", "260956703", "349541944", "410294786", "423631649", "385887175", "310724581", "221398196", "139580751", "77748102", "38162987", "16445627", "6178002", "2007607", "559163", "131269", "25378", "4012", "481", "36", "4" ]
[ "nonn", "fini", "full" ]
37
0
2
[ "A112737", "A130515", "A335656", "A350561", "A351286", "A355295" ]
null
Sander G. Huisman, Jun 27 2022
2022-06-28T10:58:46
oeisdata/seq/A355/A355295.seq
c3b93059948ccd923f63d8bac6c1badd
A355296
Maximum number of 1-bits in the Zeckendorf representation of the n-th power of an even-indexed Lucas number.
[ "2", "3", "6", "8", "8", "13", "18", "24", "28", "34", "48", "53", "51", "59", "66", "72", "93", "94", "107", "138", "150", "148", "154", "173", "203", "196", "218", "228", "246", "268", "284", "282", "322", "339", "344", "381", "388", "397", "447", "455", "489", "502", "514", "553", "580", "608", "611", "667", "695", "714" ]
[ "nonn" ]
10
1
1
[ "A000032", "A000045", "A355296" ]
null
Jeffrey Shallit, Jun 27 2022
2022-07-01T22:10:55
oeisdata/seq/A355/A355296.seq
2969b34c9fef25ebb4d7fc4fd7e9b27a
A355297
a(n) = A007088(n) mod n.
[ "0", "0", "2", "0", "1", "2", "6", "0", "2", "0", "10", "8", "9", "4", "1", "0", "5", "2", "17", "0", "0", "12", "14", "8", "1", "12", "22", "12", "23", "10", "13", "0", "11", "16", "16", "20", "16", "18", "37", "0", "18", "0", "4", "32", "31", "2", "14", "32", "45", "10", "4", "16", "20", "4", "1", "8", "22", "56", "32", "40", "20", "6", "42", "0", "41", "44", "36", "24", "15", "20", "5", "56", "25", "12", "61", "28", "24", "58", "23", "0" ]
[ "nonn", "base" ]
10
1
3
[ "A007088", "A032532", "A032533", "A339567", "A355297" ]
null
Ctibor O. Zizka, Jun 27 2022
2022-07-02T14:44:10
oeisdata/seq/A355/A355297.seq
fdae1dc89cdc7d474bf634d8d1f4a295
A355298
Primes p such that q divides p + 1, r divides q^2 + q + 1, s divides r^2 + r + 1, and p divides s^2 + s + 1 for some primes q, r, and s.
[ "3", "13", "61", "127", "399403" ]
[ "nonn", "more", "hard" ]
24
1
1
[ "A101368", "A347988", "A354427", "A355298" ]
null
Tomohiro Yamada, Jun 28 2022
2022-08-21T11:34:20
oeisdata/seq/A355/A355298.seq
4b886d3d2e20de1e7091db24b83804f0
A355299
Largest prime factor of n-th term in Look and Say sequence A005150, with a(1)=1.
[ "1", "11", "7", "173", "10111", "312211", "13112221", "2909", "5578070441", "489923144699", "76572179303098543109", "244020609982169", "46889682313579293049990557739475858123", "213414262009265690085197238570402233414850657035591", "323082514382425741194809828536919444925509282219" ]
[ "nonn", "base" ]
19
1
2
[ "A005150", "A006530", "A079562", "A100108", "A334132", "A355299" ]
null
Bernard Schott, Jun 27 2022
2022-06-30T08:39:13
oeisdata/seq/A355/A355299.seq
5074cb32f515ed9812678d4c00be8b3e
A355300
a(0) = 0; for n >= 1, a(n) = a(A007088(n) mod n) + 1.
[ "0", "1", "1", "2", "1", "2", "2", "3", "1", "2", "1", "2", "2", "3", "2", "2", "1", "3", "2", "4", "1", "1", "3", "3", "2", "2", "3", "4", "3", "4", "2", "4", "1", "3", "2", "2", "2", "2", "3", "3", "1", "3", "1", "2", "2", "5", "2", "3", "2", "6", "2", "2", "2", "2", "2", "2", "2", "4", "3", "2", "2", "2", "3", "2", "1", "4", "3", "3", "3", "3", "2", "3", "3", "3", "3", "3", "4", "3", "4", "4", "1", "3", "2", "4", "1", "3", "2", "4", "3", "3", "2", "2", "2" ]
[ "nonn", "base" ]
11
0
4
[ "A007088", "A032533", "A355300" ]
null
Ctibor O. Zizka, Jun 27 2022
2022-07-02T14:44:48
oeisdata/seq/A355/A355300.seq
9593660b918da200df75cafc6e45fc51