sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A355301
Normal undulating numbers where "undulating" means that the alternate digits go up and down (or down and up) and "normal" means that the absolute differences between two adjacent digits may differ.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "45", "46", "47", "48", "49", "50", "51", "52", "53", "54", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "67", "68", "69", "70", "71", "72", "73", "74", "75", "76", "78", "79", "80", "81", "82", "83", "84", "85", "86", "87", "89", "90", "91", "92", "93", "94", "95", "96", "97", "98", "101", "102", "103", "104", "105", "106", "107", "108", "109", "120", "121", "130", "131", "132", "140", "141", "142", "143", "150" ]
[ "nonn", "base" ]
44
1
3
[ "A010784", "A033619", "A043096", "A046075", "A059168", "A241157", "A241158", "A355301", "A355302", "A355303", "A355304" ]
null
Bernard Schott, Jun 27 2022
2024-03-09T09:35:54
oeisdata/seq/A355/A355301.seq
b7304c6c25abb52f584ed22d00f3d64e
A355302
a(n) is the number of normal undulating integers that divide n.
[ "1", "2", "2", "3", "2", "4", "2", "4", "3", "4", "1", "6", "2", "4", "4", "5", "2", "6", "2", "6", "4", "2", "2", "8", "3", "4", "4", "6", "2", "8", "2", "6", "2", "4", "4", "9", "2", "4", "4", "8", "2", "8", "2", "3", "6", "4", "2", "10", "3", "6", "4", "6", "2", "8", "2", "8", "4", "4", "2", "12", "2", "4", "6", "7", "4", "4", "2", "6", "4", "8", "2", "12", "2", "4", "6", "6", "2", "8", "2", "10", "5", "4", "2", "12", "4", "4", "4", "4", "2", "12", "4", "6", "4", "4", "4", "12", "2", "6", "3", "8" ]
[ "nonn", "base" ]
11
1
2
[ "A355301", "A355302", "A355303", "A355304" ]
null
Bernard Schott, Jun 29 2022
2022-07-07T16:20:28
oeisdata/seq/A355/A355302.seq
00f38a3be105f2426abc077db5ddbbe4
A355303
a(n) is the smallest integer that has n normal undulating divisors.
[ "1", "2", "4", "6", "16", "12", "64", "24", "36", "48", "126", "60", "320", "144", "168", "120", "252", "180", "560", "240", "630", "420", "780", "360", "1890", "960", "1920", "720", "1560", "1080", "1260", "1440", "1680", "4368", "2160", "3240", "3120", "3360", "4320", "2520", "6300", "6120", "8640", "6240", "13104", "5040", "12480", "9360", "12240", "7560" ]
[ "nonn", "base" ]
27
1
2
[ "A005179", "A355301", "A355302", "A355303", "A355304" ]
null
Bernard Schott, Jun 29 2022
2022-07-11T16:10:04
oeisdata/seq/A355/A355303.seq
9b42a157d7facc5eb8bb409858d0b34f
A355304
Integers whose number of normal undulating divisors sets a new record.
[ "1", "2", "4", "6", "12", "24", "36", "48", "60", "120", "180", "240", "360", "720", "1080", "1260", "1440", "1680", "2160", "2520", "5040", "7560", "10080", "15120", "21840", "28080", "32760", "56160", "65520", "98280", "131040", "196560", "393120", "589680", "786240", "1113840", "1670760", "2227680", "3341520", "6683040", "13366080", "20049120" ]
[ "nonn", "base" ]
24
1
2
[ "A002182", "A046952", "A053624", "A093036", "A181808", "A340548", "A340549", "A350756", "A355301", "A355302", "A355303", "A355304" ]
null
Bernard Schott, Jun 30 2022
2022-07-07T16:20:17
oeisdata/seq/A355/A355304.seq
996741f696a525679dc18ca3459705db
A355305
Carmichael numbers ending in 5.
[ "1105", "2465", "10585", "62745", "278545", "449065", "825265", "1050985", "2531845", "3224065", "3664585", "5632705", "6054985", "9582145", "11119105", "12945745", "13187665", "13992265", "15403285", "21584305", "22665505", "28787185", "31692805", "36121345", "37354465", "39353665", "40280065", "41298985", "47006785", "60112885", "67371265", "74165065", "84417985" ]
[ "nonn", "base" ]
22
1
1
[ "A002997", "A017329", "A352970", "A354609", "A355305", "A355307", "A355309" ]
null
Omar E. Pol, Jul 03 2022
2022-07-26T10:10:13
oeisdata/seq/A355/A355305.seq
82d352cb536a9d29bc0236be4a400bd1
A355306
Number of partitions of n in which the number of prime parts is not equal to the number of nonprime parts.
[ "0", "1", "2", "2", "4", "7", "8", "13", "19", "25", "38", "48", "65", "91", "120", "153", "209", "264", "343", "443", "563", "713", "912", "1133", "1428", "1789", "2217", "2746", "3406", "4178", "5139", "6296", "7670", "9344", "11360", "13732", "16612", "20038", "24078", "28915", "34660", "41402", "49439", "58887", "69983", "83088", "98476", "116436", "137589", "162244", "191018" ]
[ "nonn" ]
27
0
3
[ "A000040", "A000041", "A000607", "A002095", "A002096", "A018252", "A155515", "A355158", "A355225", "A355306" ]
null
Omar E. Pol, Jun 28 2022
2022-07-16T17:16:42
oeisdata/seq/A355/A355306.seq
6769bb5fe6396a325b9106cf0a5262ad
A355307
Carmichael numbers ending in 7.
[ "46657", "126217", "748657", "1569457", "4909177", "9613297", "11972017", "40160737", "55462177", "65037817", "106041937", "161035057", "178451857", "193910977", "196358977", "311388337", "328573477", "338740417", "358940737", "403043257", "461502097", "499310197", "556450777", "569332177", "633639097", "784966297", "902645857", "981789337", "1125038377" ]
[ "nonn", "base" ]
24
1
1
[ "A002997", "A017353", "A352970", "A354609", "A355305", "A355307", "A355309" ]
null
Omar E. Pol, Jul 24 2022
2022-07-25T15:41:37
oeisdata/seq/A355/A355307.seq
78fd4d63d8c5f291c43214d234e647eb
A355308
Expansion of e.g.f. -LambertW(x^3/6 * (1 - exp(x))).
[ "0", "0", "0", "0", "4", "10", "20", "35", "1176", "10164", "58920", "277365", "4472380", "69189406", "772011604", "6861855455", "95279504880", "1819310613800", "30768119885136", "430200439251369", "6770486332450740", "139958614722287410", "3033142442978720380", "58782387380290683571", "1138026666874389737544" ]
[ "nonn" ]
16
0
5
[ "A048802", "A353999", "A355180", "A355181", "A355308", "A357267" ]
null
Seiichi Manyama, Sep 24 2022
2025-02-16T08:34:03
oeisdata/seq/A355/A355308.seq
d1ddc752b3cb3ee37b6eaa301f7ea7c3
A355309
Carmichael numbers ending in 3.
[ "52633", "63973", "334153", "670033", "997633", "2508013", "2628073", "5968873", "6733693", "13696033", "15829633", "15888313", "18900973", "26280073", "27336673", "46483633", "53711113", "65241793", "67653433", "75765313", "124630273", "133344793", "158864833", "182356993", "227752993", "242641153", "292244833", "426821473", "577240273", "580565233", "600892993" ]
[ "nonn", "base" ]
18
1
1
[ "A002997", "A017305", "A352970", "A354609", "A355305", "A355307", "A355309" ]
null
Omar E. Pol, Jul 25 2022
2022-07-26T13:38:53
oeisdata/seq/A355/A355309.seq
c3ad670fbdb0851a4b7b7a5aa1313ebb
A355310
Total number of V-toothpicks after n-th stage in a cellular automaton with V-toothpicks of 60 degrees (see Comments lines for precise definition).
[ "0", "1", "3", "7", "13", "21", "27", "37", "51", "69", "79", "89", "103", "123", "141", "165", "201", "245", "267" ]
[ "nonn", "more" ]
80
0
3
[ "A139250", "A153006", "A160120", "A161206", "A161412", "A161420", "A299476", "A299478", "A327330", "A327332", "A355310", "A355311" ]
null
Jean Hoffmann and Omar E. Pol, Jul 20 2022
2022-08-31T09:12:31
oeisdata/seq/A355/A355310.seq
fa25036c1d1ce15f4594ce71ec3b6142
A355311
Number of V-toothpicks added at n-th stage to the V-toothpick structure of A355310.
[ "1", "2", "4", "6", "8", "6", "10", "14", "18", "10", "10", "14", "20", "18", "24", "36", "44", "22" ]
[ "nonn", "tabf", "more" ]
27
1
2
[ "A011782", "A139251", "A160121", "A161207", "A161413", "A161421", "A296612", "A299477", "A299479", "A355310", "A355311" ]
null
Jean Hoffmann and Omar E. Pol, Jul 20 2022
2022-08-31T09:08:06
oeisdata/seq/A355/A355311.seq
72c869e95a0819332ed9cf5a2f927e95
A355312
Irregular triangle read by rows, in which the rows list groups of consecutive integers taking the same number of halving and tripling steps to reach 1 in '3X+1' problem. Groups are in order of the number of steps required, and in numerical order among those with the same number of steps.
[ "20", "21", "12", "13", "84", "85", "52", "53", "340", "341", "34", "35", "212", "213", "226", "227", "1364", "1365", "68", "69", "70", "452", "453", "454", "22", "23", "140", "141", "150", "151", "852", "853", "908", "909", "5460", "5461", "44", "45", "46", "276", "277", "300", "301", "302", "1812", "1813", "14", "15", "92", "93", "564", "565", "604", "605", "3412", "3413" ]
[ "nonn", "tabf" ]
42
1
1
[ "A006577", "A078417", "A127824", "A355312" ]
null
Paul Duckett, Jun 27 2022
2022-07-12T08:39:52
oeisdata/seq/A355/A355312.seq
0fa1b06310ed505dfb64e5c57b402067
A355313
Numbers that can be written as reversals in two different bases, where the bases are also reversals. (Trailing zeros are allowed.)
[ "65", "67", "75", "85", "96", "130", "134", "150", "170", "192", "195", "225", "255", "288", "300", "327", "340", "375", "381", "425", "433", "443", "450", "456", "487", "510", "525", "595", "600", "654", "665", "667", "675", "680", "750", "762", "765", "795", "825", "886", "895", "900", "912", "927", "974", "975", "981", "996", "1050", "1125", "1139", "1200", "1275", "1277", "1308", "1330", "1334", "1340", "1350", "1368", "1535", "1543", "1590" ]
[ "nonn", "base" ]
26
1
1
[ "A354474", "A355313" ]
null
Jordan Canevari, Jun 27 2022
2022-08-23T10:37:07
oeisdata/seq/A355/A355313.seq
469f7e577fc77bc1cb650900da7efa94
A355314
Lexicographically earliest sequence of positive integers on a square spiral such that the difference between all orthogonally adjacent pairs of numbers is distinct.
[ "0", "0", "1", "3", "7", "12", "1", "7", "15", "1", "10", "23", "0", "17", "35", "54", "0", "27", "48", "72", "0", "26", "55", "83", "31", "0", "34", "69", "106", "39", "1", "41", "83", "126", "1", "45", "91", "140", "77", "128", "2", "57", "1", "61", "119", "183", "1", "93", "158", "1", "74", "143", "218", "0", "115", "192", "0", "79", "160", "244", "2", "87", "174", "1", "89", "185", "1", "166", "6", "101", "198", "296", "0", "101", "203", "1" ]
[ "nonn" ]
11
0
4
[ "A274640", "A275609", "A307834", "A355270", "A355314" ]
null
Scott R. Shannon, Jun 28 2022
2022-08-09T06:47:27
oeisdata/seq/A355/A355314.seq
320755e046dbb2a65c176a30714e0ae5
A355315
Triangular array read by rows: T(n,k) is the number of independent collections of subsets of [n] having exactly k members, n>=0, 0<=k<=A347025(n).
[ "1", "1", "1", "1", "3", "3", "1", "7", "21", "26", "6", "1", "15", "105", "400", "803", "782", "340", "34" ]
[ "nonn", "tabf", "more" ]
19
0
5
[ "A000012", "A000225", "A102896", "A134057", "A355315" ]
null
Geoffrey Critzer, Jun 28 2022
2023-01-16T14:56:02
oeisdata/seq/A355/A355315.seq
d02e4648b3a49fd6bc46525db21c4eb0
A355316
Stuttering Look and Say sequence with seed 0.
[ "0", "10", "1110", "333110", "333322110", "4444322222110", "444441355555222110", "5555541113555555333222110", "5555551433311366666653333333222110", "6666665111433332211366666661577777773333222110", "66666661533311444443222221137777777611157777777744443333222110" ]
[ "base", "nonn" ]
27
1
2
[ "A001155", "A014715", "A355316" ]
null
Jonathan Comes, Jun 28 2022
2022-08-30T16:08:05
oeisdata/seq/A355/A355316.seq
416bff355cc6113c6a35761c2ab10093
A355317
Prime numbers that have the same base-10 digits as their prime index (with multiplicity), disregarding zero digits.
[ "5701", "27091", "50417", "55049", "57089", "60601", "61051", "63607", "66301", "72019", "132607", "270913", "284057", "574031", "654301", "936007", "936907", "950647", "1250609", "1461001", "1504417", "1580921", "1682069", "1703287", "1750631", "1810553", "1810573", "1837601", "2050241", "2145089", "2485001", "2641109", "2709169", "2800333", "2805703" ]
[ "base", "easy", "nonn" ]
48
1
1
[ "A355317", "A355318", "A355418", "A355539" ]
null
Xiaofeng Wang, Jun 28 2022
2022-07-07T08:03:42
oeisdata/seq/A355/A355317.seq
667bfdabb5dfbfa07fc251fd27945b17
A355318
Indices of the primes that have the same base-10 digits as the corresponding prime number (with multiplicity), disregarding zero digits.
[ "751", "2971", "5174", "5594", "5789", "6106", "6151", "6376", "6613", "7129", "12376", "23719", "24758", "47135", "53146", "73906", "73969", "74956", "96512", "111406", "114475", "119825", "126896", "128377", "131657", "135815", "135817", "137681", "152402", "158924", "182045", "192641", "197269", "203383", "203758", "215809", "218332", "230261", "230431", "232946", "233485", "235918" ]
[ "base", "easy", "nonn" ]
29
1
1
[ "A355317", "A355318", "A355539" ]
null
Xiaofeng Wang, Jun 28 2022
2022-07-07T08:03:33
oeisdata/seq/A355/A355318.seq
36152433c6a3e7ebb4a8ef9d1566f452
A355319
Maximal GCD of four positive integers with sum n.
[ "1", "1", "1", "1", "2", "1", "2", "1", "3", "1", "2", "3", "4", "1", "3", "1", "5", "3", "2", "1", "6", "5", "2", "3", "7", "1", "6", "1", "8", "3", "2", "7", "9", "1", "2", "3", "10", "1", "7", "1", "11", "9", "2", "1", "12", "7", "10", "3", "13", "1", "9", "11", "14", "3", "2", "1", "15", "1", "2", "9", "16", "13", "11", "1", "17", "3", "14", "1", "18", "1", "2", "15", "19", "11", "13", "1", "20", "9", "2", "1", "21", "17", "2", "3", "22", "1", "18", "13", "23", "3", "2", "19", "24", "1", "14", "11", "25" ]
[ "nonn" ]
24
4
5
[ "A008233", "A032742", "A129649", "A354598", "A354599", "A354601", "A355249", "A355319", "A355366", "A355368", "A355402" ]
null
Wesley Ivan Hurt, Jun 29 2022
2022-09-21T11:27:45
oeisdata/seq/A355/A355319.seq
258519ab58854b3bcdb9ea278a8817e4
A355320
Irregular triangle T(n, k), n >= 0, -2*n <= k <= 2*n, read by rows; T(0, 0) = 1; for n > 0, T(n, k) is the sum of all terms in previous rows at one knight's move away.
[ "1", "1", "0", "0", "0", "1", "1", "0", "0", "1", "2", "1", "0", "0", "1", "1", "0", "0", "2", "3", "2", "0", "2", "3", "2", "0", "0", "1", "1", "0", "0", "3", "4", "3", "1", "6", "8", "6", "1", "3", "4", "3", "0", "0", "1", "1", "0", "0", "4", "5", "4", "3", "12", "16", "12", "6", "12", "16", "12", "3", "4", "5", "4", "0", "0", "1", "1", "0", "0", "5", "6", "5", "6", "20", "27", "21", "18", "33", "44", "33", "18", "21", "27", "20", "6", "5", "6", "5", "0", "0", "1" ]
[ "nonn", "tabf", "nice", "look" ]
22
0
11
[ "A002605", "A096608", "A096609", "A096610", "A096611", "A096612", "A355320", "A355339" ]
null
Rémy Sigrist, Jun 28 2022
2023-05-13T08:27:01
oeisdata/seq/A355/A355320.seq
d27971331a7850ae8cdc9470d5733303
A355321
Numbers k such that the k-th composition in standard order has the same number of even parts as odd.
[ "0", "5", "6", "17", "18", "20", "24", "43", "45", "46", "53", "54", "58", "65", "66", "68", "72", "80", "96", "139", "141", "142", "149", "150", "154", "163", "165", "166", "169", "172", "177", "178", "180", "184", "197", "198", "202", "209", "210", "212", "216", "226", "232", "257", "258", "260", "264", "272", "288", "320", "343", "347", "349", "350", "363", "365" ]
[ "nonn" ]
7
1
2
[ "A000069", "A000712", "A001405", "A001969", "A026424", "A028260", "A045931", "A047993", "A098123", "A106529", "A108949", "A108950", "A130780", "A171966", "A239241", "A240009", "A241638", "A242498", "A242821", "A277579", "A325698", "A325700", "A349157", "A352129", "A355321" ]
null
Gus Wiseman, Jun 28 2022
2022-06-30T08:40:55
oeisdata/seq/A355/A355321.seq
23f5e873ac7c6cfcc1ec93d96253a0b7
A355322
LCM of Lucas numbers {L(1), L(2), ..., L(n)}.
[ "1", "3", "12", "84", "924", "2772", "80388", "3778236", "71786484", "2943245844", "585705922956", "13471236227988", "7018514074781748", "1972202455013671188", "61138276105423806828", "134932175364670341669396", "481842798227237790101413116", "154671538230943330622553610236" ]
[ "nonn", "easy" ]
26
1
2
[ "A000032", "A035105", "A062954", "A355322" ]
null
Clark Kimberling, Jul 16 2022
2024-09-26T17:36:54
oeisdata/seq/A355/A355322.seq
3893bdb8e3d857f64c4bff2c4a74658b
A355323
Numbers k such that A007063(k) = A356026(k).
[ "1", "2", "3", "371", "5131", "9250", "26664" ]
[ "nonn", "more", "hard" ]
6
1
2
[ "A007063", "A355323", "A356026" ]
null
Clark Kimberling, Jul 25 2022
2023-01-26T02:15:28
oeisdata/seq/A355/A355323.seq
ccaacff62dcde418babcc4df7ac00026
A355324
Lower midsequence of the Fibonacci numbers (1,2,3,5,8,...) and Lucas numbers (1,3,4,7,11,...); see Comments.
[ "1", "2", "3", "6", "9", "15", "25", "40", "65", "106", "171", "277", "449", "726", "1175", "1902", "3077", "4979", "8057", "13036", "21093", "34130", "55223", "89353", "144577", "233930", "378507", "612438", "990945", "1603383", "2594329", "4197712", "6792041", "10989754", "17781795", "28771549", "46553345", "75324894", "121878239" ]
[ "nonn", "easy" ]
24
0
2
[ "A000032", "A000045", "A116470", "A355324", "A355325" ]
null
Clark Kimberling, Jul 16 2022
2022-08-08T16:08:57
oeisdata/seq/A355/A355324.seq
179f05a63bb0a860c3c6b0cde310c199
A355325
Upper midsequence of the Fibonacci numbers (1,2,3,5,8,...) and Lucas numbers (1,3,4,7,11,...); see Comments.
[ "1", "3", "4", "6", "10", "16", "25", "41", "66", "106", "172", "278", "449", "727", "1176", "1902", "3078", "4980", "8057", "13037", "21094", "34130", "55224", "89354", "144577", "233931", "378508", "612438", "990946", "1603384", "2594329", "4197713", "6792042", "10989754", "17781796", "28771550", "46553345", "75324895", "121878240" ]
[ "nonn", "easy" ]
16
0
2
[ "A000032", "A000045", "A116470", "A355324", "A355325" ]
null
Clark Kimberling, Jul 16 2022
2022-07-22T20:52:17
oeisdata/seq/A355/A355325.seq
9bb2e8c1b2ef02e879ea7c222cc63165
A355326
Determinant of the n X n matrix [(i-j)^3+d(i,j)]_{1<=i,j<=n}, where d(i,j) is 1 or 0 according as i = j or not.
[ "1", "2", "67", "2157", "96471", "2312410", "32099453", "302049265", "2134677349", "12111035146", "57724828943", "238763085133", "877863236043", "2922096754578", "8932649551321", "25364746314689", "67523106652585", "169800639240178", "405912148130875", "927335183703821", "2033820866612767", "4298718682928682", "8785487346560277", "17412229912018801", "33551232473687501" ]
[ "nonn" ]
17
1
2
[ "A000578", "A079034", "A355175", "A355326" ]
null
Zhi-Wei Sun, Jun 28 2022
2022-06-29T13:41:07
oeisdata/seq/A355/A355326.seq
d76e276df4ee0702e0bfd34be65387cd
A355327
Number of ways to tile a 2 X n board with squares and dominoes where vertical dominoes are only allowed in even-numbered locations.
[ "1", "1", "5", "10", "39", "83", "317", "678", "2585", "5531", "21085", "45116", "171987", "368005", "1402873", "3001764", "11443033", "24484957", "93339173", "199720270", "761354199", "1629089495", "6210256613", "13288248522", "50656169297", "108390330503" ]
[ "nonn", "easy" ]
14
0
3
[ "A030186", "A355327" ]
null
Greg Dresden and Zijie He, Jun 28 2022
2022-07-01T12:20:29
oeisdata/seq/A355/A355327.seq
46496d06f6b0d5982f5409603d5b67c6
A355328
Decimal expansion of the number whose binary expansion differs from its decimal expansion only in the first digit.
[ "1", "0", "0", "1", "1", "0", "0", "1", "1", "0", "1", "0", "0", "0", "0", "0", "1", "1", "0", "0", "1", "1", "1", "1", "0", "1", "0", "0", "0", "1", "1", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "0", "0", "1", "1", "1", "0", "1", "0", "0", "0", "1", "0", "0", "1", "1", "0", "1", "0", "0", "1", "0", "1", "1", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "1", "1", "0", "1", "1", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "0", "0", "1", "1", "0", "1", "1", "1", "0", "0", "0", "1", "0", "1" ]
[ "nonn", "cons" ]
26
0
1
[ "A352677", "A355328" ]
null
Leonid Broukhis, Jun 29 2022
2022-07-07T02:01:00
oeisdata/seq/A355/A355328.seq
34f4b32288640eba65dae304da1bd00c
A355329
Least increasing sequence of primes such that a(n) - 1 is a multiple of 6*n.
[ "7", "13", "19", "73", "151", "181", "211", "241", "271", "421", "463", "577", "859", "1009", "1171", "1249", "1327", "1621", "2053", "2161", "2269", "2377", "3037", "3169", "3301", "3433", "3727", "4201", "5569", "5581", "5953", "6337", "6733", "7549", "7561", "7993", "9103", "9349", "9829", "10321", "10333", "10837", "11353", "11617", "12421", "12697", "12973", "13249", "14407", "15601" ]
[ "nonn" ]
13
1
1
[ "A070850", "A355329" ]
null
J. M. Bergot and Robert Israel, Jun 29 2022
2022-07-05T06:17:03
oeisdata/seq/A355/A355329.seq
2e168f7eb78f4e591afb4887792514c9
A355330
Numbers k such that A020696(2^k-1) < A020696(2^k+1).
[ "1", "2", "3", "5", "7", "9", "11", "13", "15", "17", "19", "21", "23", "25", "26", "27", "29", "31", "33", "34", "35", "37", "38", "41", "45", "46", "47", "49", "51", "53", "57", "59", "61", "62", "65", "67", "69", "71", "73", "77", "78", "81", "83", "85", "89", "91", "93", "95", "97", "98", "99", "101", "103", "105", "107", "109", "111", "113", "115", "118", "121", "122", "123", "125" ]
[ "nonn" ]
9
1
2
[ "A000043", "A000668", "A020696", "A355330" ]
null
Amiram Eldar, Jun 29 2022
2022-06-30T08:36:36
oeisdata/seq/A355/A355330.seq
3328d525e7757a731d0392bb0c0808a5
A355331
Numbers k that divide A020696(k).
[ "1", "2", "6", "12", "20", "24", "42", "60", "72", "84", "90", "120", "126", "140", "144", "156", "168", "180", "210", "216", "220", "240", "252", "280", "312", "336", "342", "360", "420", "432", "440", "462", "468", "480", "504", "540", "560", "600", "624", "630", "660", "672", "684", "700", "720", "770", "780", "816", "840", "864", "880", "900", "924", "936", "945", "960", "990" ]
[ "nonn" ]
19
1
2
[ "A020696", "A355331", "A355332" ]
null
Amiram Eldar, Jun 29 2022
2022-07-01T05:20:24
oeisdata/seq/A355/A355331.seq
84bcbc4ee8f1ec846f35befa083d95dc
A355332
Numbers k such that k | A020696(k) and (k+1) | A020696(k+1).
[ "1", "201824", "227799", "313599", "395199", "544824", "638000", "654975", "799799", "862784", "1056159", "1204280", "1269729", "1447550", "1890944", "2276351", "2460975", "2481115", "2781999", "2821272", "3348224", "3382379", "3403700", "3832191", "3864575", "3956120", "5142500", "5961950", "6116175", "6401024", "7050120" ]
[ "nonn" ]
17
1
2
[ "A020696", "A355331", "A355332" ]
null
Amiram Eldar, Jun 29 2022
2023-10-12T07:45:49
oeisdata/seq/A355/A355332.seq
1f5a2981095bdcaa7e7b00fb50bfe666
A355333
Triangle read by rows: T(n,k) is the number of n X n Boolean matrices with Schein rank k, 0 <= k <= n.
[ "1", "1", "1", "1", "9", "6", "1", "49", "306", "156", "1", "225", "8550", "40656", "16104", "1", "961", "194850", "5771100", "21165720", "6421800" ]
[ "nonn", "tabl", "more" ]
9
0
5
[ "A002416", "A064230", "A286331", "A354741", "A355333", "A355334" ]
null
Pontus von Brömssen, Jun 29 2022
2022-08-22T03:59:40
oeisdata/seq/A355/A355333.seq
8dccb23ad96c82d8ab1fe83218b687be
A355334
Triangle read by rows: T(n,k) is the number of unlabeled graphs with n nodes and bipartite dimension (or biclique covering number) k, 0 <= k < n.
[ "1", "1", "1", "1", "2", "1", "1", "4", "6", "0", "1", "6", "20", "7", "0", "1", "9", "61", "80", "5", "0", "1", "12", "159", "650", "221", "1", "0", "1", "16", "381", "4710", "6866", "372", "0", "0", "1", "20", "832", "29921", "183618", "59950", "326", "0", "0" ]
[ "nonn", "tabl", "more" ]
5
1
5
[ "A000012", "A000088", "A002620", "A355333", "A355334", "A355335", "A355336" ]
null
Pontus von Brömssen, Jun 29 2022
2022-07-02T14:36:48
oeisdata/seq/A355/A355334.seq
b9ba7e60e2e66dcfbad8fb0ef9a7a656
A355335
Triangle read by rows: T(n,k) is the number of unlabeled connected graphs with n nodes and bipartite dimension (or biclique covering number) k, 0 <= k < n.
[ "1", "0", "1", "0", "1", "1", "0", "2", "4", "0", "0", "2", "13", "6", "0", "0", "3", "38", "67", "4", "0", "0", "3", "94", "550", "205", "1", "0", "0", "4", "214", "3996", "6543", "360", "0", "0", "0", "4", "441", "25037", "176012", "59266", "320", "0", "0" ]
[ "nonn", "tabl", "more" ]
5
1
8
[ "A001349", "A004526", "A355334", "A355335", "A355336" ]
null
Pontus von Brömssen, Jun 29 2022
2022-07-02T14:37:04
oeisdata/seq/A355/A355335.seq
2ea5cf63b431531f5edba56d4bb5c344
A355336
Number of unlabeled n-node graphs with the largest possible bipartite dimension (or biclique covering number).
[ "1", "1", "1", "6", "7", "5", "1", "372", "326" ]
[ "nonn", "more" ]
11
1
4
[ "A057359", "A355334", "A355335", "A355336" ]
null
Pontus von Brömssen, Jun 29 2022
2022-07-02T14:37:34
oeisdata/seq/A355/A355336.seq
bf4b841a01c2b222334c2c82a967a3e2
A355337
Expansion of e.g.f.: exp(exp(x) + x^2 - 1).
[ "1", "1", "4", "11", "51", "212", "1133", "6001", "36508", "228435", "1559575", "11079180", "83753497", "659858617", "5459331036", "46980355355", "421272977267", "3917446787884", "37766791690501", "376447420971545", "3875957531387172", "41149332371734371", "449984429580538407", "5061923434006018612", "58517321729774406129" ]
[ "nonn" ]
32
0
3
[ "A000110", "A277381", "A316778", "A355337", "A355338" ]
null
Vaclav Kotesovec, Jun 29 2022
2024-06-17T15:51:33
oeisdata/seq/A355/A355337.seq
63567003edda29f047b1419021ebf584
A355338
Expansion of e.g.f.: exp(exp(x) - x^2 - 1).
[ "1", "1", "0", "-1", "3", "12", "-7", "-47", "332", "1347", "-2105", "-4200", "135457", "474697", "-900832", "4682135", "126196787", "439488524", "233313817", "19129265609", "239146712732", "1104038984091", "5891696027079", "89831511761320", "911995655018817", "6253185308181553", "54873149768926624", "653039078246798383" ]
[ "sign" ]
17
0
5
[ "A000296", "A277381", "A316778", "A355337", "A355338" ]
null
Vaclav Kotesovec, Jun 29 2022
2022-06-29T10:15:06
oeisdata/seq/A355/A355338.seq
675b4ab15ae1017cb030dee9fecf63f5
A355339
a(n) is the number of central even terms in the n-th row of triangle A355320; a(0) = 0.
[ "0", "3", "1", "3", "3", "7", "1", "3", "5", "3", "5", "11", "3", "11", "1", "3", "5", "7", "7", "3", "5", "7", "9", "19", "7", "3", "5", "19", "3", "11", "1", "3", "5", "7", "9", "11", "13", "11", "7", "3", "5", "7", "9", "11", "13", "15", "17", "35", "15", "11", "7", "3", "5", "7", "9", "35", "7", "3", "5", "19", "3", "11", "1", "3", "5", "7", "9", "11", "13", "15", "17", "19", "21", "23", "23", "19", "15" ]
[ "nonn" ]
10
0
2
[ "A000918", "A355320", "A355339" ]
null
Rémy Sigrist, Jun 29 2022
2022-06-29T10:31:57
oeisdata/seq/A355/A355339.seq
a0ecfd3202e3c04559308e9163ec60af
A355340
a(0) = 0; for n >= 1, a(n) = a(n-1) XOR A001511(n), where XOR denotes bitwise exclusive-or (A003987) and A001511 is the binary ruler function.
[ "0", "1", "3", "2", "1", "0", "2", "3", "7", "6", "4", "5", "6", "7", "5", "4", "1", "0", "2", "3", "0", "1", "3", "2", "6", "7", "5", "4", "7", "6", "4", "5", "3", "2", "0", "1", "2", "3", "1", "0", "4", "5", "7", "6", "5", "4", "6", "7", "2", "3", "1", "0", "3", "2", "0", "1", "5", "4", "6", "7", "4", "5", "7", "6", "1", "0", "2", "3", "0", "1", "3", "2", "6", "7", "5", "4", "7", "6", "4", "5", "0", "1", "3", "2", "1", "0", "2", "3", "7", "6", "4", "5", "6", "7", "5", "4", "2", "3", "1", "0", "3", "2", "0", "1", "5" ]
[ "nonn", "base", "easy" ]
28
0
3
[ "A000069", "A001511", "A001969", "A003188", "A003987", "A006519", "A010060", "A253317", "A261283", "A269723", "A355340" ]
null
Peter Munn, Jun 29 2022
2024-05-29T07:04:26
oeisdata/seq/A355/A355340.seq
c9a845b0366e4eb374ce3ad5d3bb6447
A355341
G.f.: A(x) = Sum_{n=-oo..+oo} x^(n*(n+1)/2) * C(x)^n, where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
[ "2", "1", "-2", "1", "-3", "0", "1", "-4", "2", "0", "1", "-5", "5", "0", "0", "1", "-6", "9", "-2", "0", "0", "1", "-7", "14", "-7", "0", "0", "0", "1", "-8", "20", "-16", "2", "0", "0", "0", "1", "-9", "27", "-30", "9", "0", "0", "0", "0", "1", "-10", "35", "-50", "25", "-2", "0", "0", "0", "0", "1", "-11", "44", "-77", "55", "-11", "0", "0", "0", "0", "0", "1", "-12", "54", "-112", "105", "-36", "2", "0", "0", "0", "0", "0", "1", "-13", "65", "-156", "182", "-91", "13", "0", "0", "0", "0", "0", "0", "1", "-14", "77", "-210", "294", "-196", "49", "-2", "0", "0", "0", "0", "0", "0", "1", "-15", "90", "-275", "450", "-378", "140", "-15", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
9
0
1
[ "A244422", "A355341", "A355342", "A355343" ]
null
Paul D. Hanna, Jul 21 2022
2022-07-24T03:57:27
oeisdata/seq/A355/A355341.seq
1e1884092d900a71d98c07aeb2963cab
A355342
G.f.: A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * C(x)^n, where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
[ "0", "1", "-2", "-1", "3", "0", "1", "-4", "2", "0", "-1", "5", "-5", "0", "0", "1", "-6", "9", "-2", "0", "0", "-1", "7", "-14", "7", "0", "0", "0", "1", "-8", "20", "-16", "2", "0", "0", "0", "-1", "9", "-27", "30", "-9", "0", "0", "0", "0", "1", "-10", "35", "-50", "25", "-2", "0", "0", "0", "0", "-1", "11", "-44", "77", "-55", "11", "0", "0", "0", "0", "0", "1", "-12", "54", "-112", "105", "-36", "2", "0", "0", "0", "0", "0", "-1", "13", "-65", "156", "-182", "91", "-13", "0", "0", "0", "0", "0", "0", "1", "-14", "77", "-210", "294", "-196", "49", "-2", "0", "0", "0", "0", "0", "0", "-1", "15", "-90", "275", "-450", "378", "-140", "15", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
8
0
3
[ "A034807", "A244422", "A355341", "A355342", "A355343" ]
null
Paul D. Hanna, Jul 22 2022
2022-07-24T03:57:32
oeisdata/seq/A355/A355342.seq
fec46d801b67b2448200baefb8f9bd78
A355343
G.f.: A(x,y) = Sum_{n=-oo..+oo} (x*y)^(n*(n+1)/2) * C(x)^n, where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108), as a triangle of coefficients T(n,k) of x^n*y^k in A(x,y), read by rows n >= 0.
[ "2", "-1", "2", "-1", "-1", "0", "-2", "1", "0", "2", "-5", "3", "0", "-1", "0", "-14", "9", "0", "5", "0", "0", "-42", "28", "0", "13", "0", "0", "2", "-132", "90", "0", "39", "0", "0", "-1", "0", "-429", "297", "0", "123", "0", "0", "11", "0", "0", "-1430", "1001", "0", "401", "0", "0", "28", "0", "0", "0", "-4862", "3432", "0", "1340", "0", "0", "89", "0", "0", "0", "2", "-16796", "11934", "0", "4565", "0", "0", "293", "0", "0", "0", "-1", "0", "-58786", "41990", "0", "15795", "0", "0", "987", "0", "0", "0", "19", "0", "0", "-208012" ]
[ "sign", "tabl" ]
10
0
1
[ "A000108", "A355341", "A355343", "A355344" ]
null
Paul D. Hanna, Jul 22 2022
2024-08-02T12:04:33
oeisdata/seq/A355/A355343.seq
312ccbda11113290976b9e7f590fb185
A355344
G.f.: A(x,y) = Sum_{n=-oo..+oo} (-1)^n * (x*y)^(n*(n+1)/2) * C(x)^n, where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108), as a triangle of coefficients T(n,k) of x^n*y^k in A(x,y), read by rows n >= 0.
[ "0", "1", "0", "1", "-3", "0", "2", "-3", "0", "0", "5", "-7", "0", "5", "0", "14", "-19", "0", "5", "0", "0", "42", "-56", "0", "15", "0", "0", "0", "132", "-174", "0", "45", "0", "0", "-7", "0", "429", "-561", "0", "141", "0", "0", "-7", "0", "0", "1430", "-1859", "0", "457", "0", "0", "-28", "0", "0", "0", "4862", "-6292", "0", "1520", "0", "0", "-91", "0", "0", "0", "0", "16796", "-21658", "0", "5159", "0", "0", "-301", "0", "0", "0", "9", "0", "58786", "-75582", "0", "17797", "0", "0", "-1015", "0", "0", "0", "9", "0", "0", "208012" ]
[ "sign", "tabl" ]
10
0
5
[ "A000108", "A355342", "A355343", "A355344" ]
null
Paul D. Hanna, Jul 22 2022
2024-08-02T12:04:25
oeisdata/seq/A355/A355344.seq
d43fcccddfa39da8e0f30e0cb542122f
A355345
G.f.: Sum_{n=-oo..+oo} x^(n*(n+1)/2) * C(x)^(2*n-1), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
[ "2", "-2", "-5", "6", "-7", "14", "-6", "-9", "27", "-30", "10", "-11", "44", "-77", "55", "-10", "-13", "65", "-156", "182", "-91", "14", "-15", "90", "-275", "450", "-378", "140", "-14", "-17", "119", "-442", "935", "-1122", "714", "-204", "18", "-19", "152", "-665", "1729", "-2717", "2508", "-1254", "285", "-18", "-21", "189", "-952", "2940", "-5733", "7007", "-5148", "2079", "-385", "22", "-23", "230", "-1311", "4692", "-10948", "16744", "-16445", "9867", "-3289", "506" ]
[ "sign" ]
8
0
1
[ "A000108", "A034807", "A132460", "A355341", "A355342", "A355345", "A355346", "A355347" ]
null
Paul D. Hanna, Jul 25 2022
2022-07-27T10:30:52
oeisdata/seq/A355/A355345.seq
9eb1136f41326d92febba2812bbc366c
A355346
G.f.: A(x,y) = Sum_{n=-oo..+oo} (x*y)^(n*(n+1)/2) * C(x)^(2*n-1), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
[ "2", "-4", "2", "-1", "-4", "0", "-3", "7", "0", "2", "-8", "5", "0", "-4", "0", "-23", "14", "0", "23", "0", "0", "-70", "41", "0", "21", "0", "0", "2", "-222", "127", "0", "90", "0", "0", "-4", "0", "-726", "409", "0", "297", "0", "0", "47", "0", "0", "-2431", "1355", "0", "1001", "0", "0", "45", "0", "0", "0", "-8294", "4587", "0", "3431", "0", "0", "284", "0", "0", "0", "2", "-28730", "15795", "0", "11927", "0", "0", "1001", "0", "0", "0", "-4", "0", "-100776", "55146", "0", "41955", "0", "0", "3640", "0", "0", "0", "79", "0", "0", "-357238", "194752", "0", "149072", "0", "0", "13260", "0", "0", "0", "77", "0", "0", "0" ]
[ "sign", "tabl" ]
7
0
1
[ "A000108", "A355345", "A355346" ]
null
Paul D. Hanna, Jul 25 2022
2022-07-27T10:32:16
oeisdata/seq/A355/A355346.seq
e6ac935790db26db8b9097a7d828c18c
A355347
a(n) = binomial(3*n+3,n) + binomial(3*n+2,n-1) for n >= 0.
[ "1", "7", "44", "275", "1729", "10948", "69768", "447051", "2877875", "18599295", "120609840", "784384692", "5114119724", "33417386200", "218786861392", "1434903854139", "9425348845815", "61997934676405", "408323057257500", "2692322893972635", "17770644483690945", "117406930477134480", "776363580147660960" ]
[ "nonn" ]
7
0
2
[ "A001764", "A355345", "A355347" ]
null
Paul D. Hanna, Jul 25 2022
2022-07-27T10:30:58
oeisdata/seq/A355/A355347.seq
69e87d1f61f08f5cd9120501be911015
A355348
G.f.: Sum_{n=-oo..+oo} x^(n*(n+1)/2) * C(x)^(3*n-3), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
[ "2", "-7", "0", "26", "-42", "63", "-111", "90", "54", "-273", "451", "-396", "275", "-561", "1287", "-1781", "1365", "-351", "-871", "2938", "-5733", "7008", "-5172", "2331", "-1905", "5835", "-14688", "24752", "-27455", "19278", "-7684", "-561", "10251", "-32317", "69768", "-104652", "107407", "-72960", "31293", "-10621", "18069", "-63783" ]
[ "sign" ]
13
0
1
[ "A000108", "A355341", "A355345", "A355348" ]
null
Paul D. Hanna, Jul 28 2022
2022-08-03T06:17:54
oeisdata/seq/A355/A355348.seq
96714aac95ff8dcf72cd32363fc52b94
A355349
G.f. A(x) satisfies: 2 = Sum_{n=-oo..+oo} (-x)^(n*(n-1)/2) * A(x)^(n^2).
[ "1", "2", "10", "76", "678", "6608", "68170", "731638", "8084692", "91361298", "1050937008", "12264790410", "144856757032", "1728197200206", "20796217437806", "252117655811806", "3076371017010508", "37753163861001044", "465657991700212170", "5769586313420410060", "71777257553636752194" ]
[ "nonn" ]
10
0
2
[ "A354248", "A354662", "A355349", "A355871" ]
null
Paul D. Hanna, Aug 02 2022
2024-01-31T06:28:51
oeisdata/seq/A355/A355349.seq
1929564e62896ce2a43655595a25bab5
A355350
G.f. A(x,y) satisfies: x*y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n, with coefficients T(n,k) of x^n*y^k in A(x,y) given as a triangle read by rows.
[ "1", "0", "1", "0", "3", "1", "0", "9", "6", "1", "0", "22", "27", "10", "1", "0", "51", "98", "66", "15", "1", "0", "108", "315", "340", "135", "21", "1", "0", "221", "918", "1495", "910", "246", "28", "1", "0", "429", "2492", "5838", "5070", "2086", "413", "36", "1", "0", "810", "6372", "20805", "24543", "14280", "4284", "652", "45", "1", "0", "1479", "15525", "68816", "106535", "83559", "35168", "8100", "981", "55", "1", "0", "2640", "36280", "213945", "423390", "432930", "243208", "78282", "14355", "1420", "66", "1" ]
[ "nonn", "tabl" ]
7
0
5
[ "A000041", "A000716", "A023005", "A354645", "A354650", "A354658", "A355350", "A355351", "A355352", "A355353", "A355354", "A355355", "A355356", "A355357" ]
null
Paul D. Hanna, Jun 29 2022
2022-06-30T10:39:21
oeisdata/seq/A355/A355350.seq
aa1923b2efc657f795b39b3992382f36
A355351
G.f. A(x) satisfies: x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
[ "1", "1", "4", "16", "60", "231", "920", "3819", "16365", "71792", "320219", "1446517", "6602975", "30415725", "141231704", "660431602", "3107519738", "14701758926", "69891556656", "333700223891", "1599475107712", "7693580712200", "37125486197570", "179675330190428", "871910824853956", "4241603521253775" ]
[ "nonn" ]
8
0
3
[ "A355350", "A355351", "A355352", "A355353", "A355354", "A355355", "A355356", "A355357" ]
null
Paul D. Hanna, Jun 29 2022
2024-02-01T07:57:36
oeisdata/seq/A355/A355351.seq
a968819cccd5dc872f36d84c1cc78ca5
A355352
G.f. A(x) satisfies: 2*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
[ "1", "2", "10", "50", "248", "1294", "7092", "40426", "236698", "1412860", "8561906", "52546920", "326011118", "2041512624", "12886608654", "81908498582", "523780469070", "3367399778356", "21752611767804", "141118852010146", "919035717462824", "6006146649948722", "39376700396145616", "258907024677687808" ]
[ "nonn" ]
5
0
2
[ "A355350", "A355351", "A355352", "A355353", "A355354", "A355355", "A355356", "A355357" ]
null
Paul D. Hanna, Jun 29 2022
2022-06-30T10:39:45
oeisdata/seq/A355/A355352.seq
c76abe8ed64d3cceee7ba7fefd2c6ca3
A355353
G.f. A(x) satisfies: 3*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
[ "1", "3", "18", "108", "660", "4275", "29106", "205377", "1485279", "10943424", "81866493", "620316297", "4751289063", "36727782675", "286153810542", "2244799306134", "17715992048886", "140560480602810", "1120518766292436", "8970573523101477", "72091628161825608", "581375787259765554", "4703286596619094686" ]
[ "nonn" ]
5
0
2
[ "A355350", "A355351", "A355352", "A355353", "A355354", "A355355", "A355356", "A355357" ]
null
Paul D. Hanna, Jun 29 2022
2022-06-30T10:39:56
oeisdata/seq/A355/A355353.seq
dc5be58797a3b7763eebc03a11644882
A355354
G.f. A(x) satisfies: 4*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
[ "1", "4", "28", "196", "1416", "10860", "87392", "727188", "6196212", "53783336", "474011756", "4231158016", "38174676188", "347566170384", "3189295781780", "29465038957708", "273851282010308", "2558703740102840", "24019990008557160", "226444571054525156", "2142925363606256584", "20349477565111498148" ]
[ "nonn" ]
5
0
2
[ "A355350", "A355351", "A355352", "A355353", "A355354", "A355355", "A355356", "A355357" ]
null
Paul D. Hanna, Jun 29 2022
2022-06-30T10:40:07
oeisdata/seq/A355/A355354.seq
6d03cbf64278166e1cf12d3ccaa98bbc
A355355
G.f. A(x) satisfies: 5*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
[ "1", "5", "40", "320", "2660", "23455", "216540", "2064055", "20137945", "200134600", "2019406895", "20635313325", "213109960895", "2220820915065", "23323755734820", "246616999661690", "2623193780773530", "28049464032800110", "301340494687086960", "3251017466141039095", "35207152686408604400" ]
[ "nonn" ]
5
0
2
[ "A355350", "A355351", "A355352", "A355353", "A355354", "A355355", "A355356", "A355357" ]
null
Paul D. Hanna, Jun 29 2022
2022-06-30T10:40:16
oeisdata/seq/A355/A355355.seq
d840526a4574885c208d7917bc45663b
A355356
G.f. A(x) satisfies: x^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
[ "1", "0", "1", "3", "10", "28", "79", "216", "603", "1702", "4933", "14620", "44287", "136352", "424858", "1334162", "4211572", "13344072", "42412667", "135217722", "432483522", "1387929369", "4469341807", "14439523193", "46795072968", "152076428228", "495460089510", "1617787324674", "5292984017236", "17348743335252" ]
[ "nonn" ]
4
0
4
[ "A355350", "A355351", "A355352", "A355353", "A355354", "A355355", "A355356", "A355357" ]
null
Paul D. Hanna, Jun 29 2022
2022-06-30T10:40:25
oeisdata/seq/A355/A355356.seq
6b1357bf7e7935a62c9b20aadd695386
A355357
G.f. A(x) satisfies: x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.
[ "1", "1", "1", "4", "7", "20", "43", "110", "262", "674", "1684", "4397", "11320", "29938", "78641", "210044", "559724", "1507563", "4060585", "11016027", "29919220", "81673846", "223307300", "612851316", "1684816018", "4645243490", "12829177587", "35513736868", "98465916370", "273531234027", "760966444416" ]
[ "nonn" ]
11
0
4
[ "A355350", "A355351", "A355352", "A355353", "A355354", "A355355", "A355356", "A355357", "A357221", "A357222", "A357223", "A357224", "A357225", "A357226", "A359720" ]
null
Paul D. Hanna, Jun 29 2022
2024-02-01T07:09:03
oeisdata/seq/A355/A355357.seq
ed93c884c7abb34bcb6dda9eac94c10d
A355358
Coefficients in the expansion of A(x) = 1 / Product_{n>=0} (1 - x^(13*n+1))*(1 - x^(13*n+3))*(1 - x^(13*n+4))*(1 - x^(13*n+9))*(1 - x^(13*n+10))*(1 - x^(13*n+12)).
[ "1", "1", "1", "2", "3", "3", "4", "5", "6", "8", "10", "11", "15", "18", "21", "25", "31", "36", "43", "50", "59", "69", "81", "93", "109", "126", "146", "168", "194", "222", "256", "291", "333", "379", "432", "489", "557", "629", "712", "805", "909", "1021", "1152", "1293", "1452", "1627", "1824", "2037", "2281", "2544", "2838", "3162", "3525", "3916", "4356" ]
[ "nonn" ]
12
0
4
[ "A214157", "A341714", "A355358", "A355359" ]
null
Paul D. Hanna, Jul 31 2022
2022-08-02T10:38:43
oeisdata/seq/A355/A355358.seq
8628ccab8cb838dcd5939a34ff7c4359
A355359
Coefficients in the expansion of B(x) = 1 / Product_{n>=0} (1 - x^(13*n+2))*(1 - x^(13*n+5))*(1 - x^(13*n+6))*(1 - x^(13*n+7))*(1 - x^(13*n+8))*(1 - x^(13*n+11)).
[ "1", "0", "1", "0", "1", "1", "2", "2", "3", "2", "4", "4", "6", "6", "8", "9", "11", "12", "16", "17", "22", "24", "29", "32", "39", "43", "53", "57", "69", "75", "90", "99", "117", "129", "150", "166", "193", "213", "246", "273", "312", "346", "394", "436", "496", "549", "621", "687", "774", "855", "962", "1062", "1192", "1313", "1470", "1618", "1807", "1989", "2214", "2436" ]
[ "nonn" ]
12
0
7
[ "A214157", "A341714", "A355358", "A355359" ]
null
Paul D. Hanna, Aug 01 2022
2022-08-02T10:38:59
oeisdata/seq/A355/A355359.seq
badce0b172698b15848f638ce543a7f6
A355360
G.f. A(x,y) satisfies: x*y*A(x,y) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n, with coefficients T(n,k) of x^n*y^k in A(x,y) given as a triangle read by rows.
[ "1", "0", "1", "0", "3", "2", "0", "9", "12", "5", "0", "22", "54", "46", "14", "0", "51", "196", "282", "175", "42", "0", "108", "630", "1360", "1365", "666", "132", "0", "221", "1836", "5635", "8190", "6321", "2541", "429", "0", "429", "4984", "20850", "41405", "45326", "28448", "9724", "1430", "0", "810", "12744", "70737", "184527", "270060", "237209", "125532", "37323", "4862", "0", "1479", "31050", "223652", "745745", "1404102", "1625932", "1193116", "546039", "143650", "16796" ]
[ "nonn", "tabl" ]
7
0
5
[ "A000041", "A000108", "A000716", "A023005", "A355350", "A355360", "A355361", "A355362", "A355363", "A355364", "A355365" ]
null
Paul D. Hanna, Jul 19 2022
2022-07-20T08:44:17
oeisdata/seq/A355/A355360.seq
6cf9ade0928b32edab1336c6fe8d5c54
A355361
G.f. A(x) satisfies: x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
[ "1", "1", "5", "26", "136", "746", "4261", "25173", "152596", "943804", "5931561", "37768700", "243124702", "1579577423", "10344340396", "68212177180", "452531832109", "3018280278965", "20227324602249", "136135295125566", "919757424512780", "6235752585125348", "42411283395662960", "289289349007740037" ]
[ "nonn" ]
14
0
3
[ "A355360", "A355361", "A355362", "A355363", "A355364", "A355365" ]
null
Paul D. Hanna, Jul 19 2022
2024-01-19T08:56:43
oeisdata/seq/A355/A355361.seq
72f839ce2a167675a5922f32639903b7
A355362
G.f. A(x) satisfies: 2*x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
[ "1", "2", "14", "106", "852", "7286", "65216", "603714", "5731930", "55506348", "546091942", "5443033448", "54845812094", "557774491672", "5717718435034", "59017814463718", "612873311614338", "6398538141213916", "67121038262747380", "707114126290890810", "7478082640450505012", "79360375914717108922" ]
[ "nonn" ]
9
0
2
[ "A355360", "A355361", "A355362", "A355363", "A355364", "A355365" ]
null
Paul D. Hanna, Jul 19 2022
2025-07-03T12:50:37
oeisdata/seq/A355/A355362.seq
20d172364031aba6a42cbd6bcc80d6b9
A355363
G.f. A(x) satisfies: 3*x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
[ "1", "3", "27", "270", "2928", "33912", "411345", "5159337", "66364326", "870637086", "11604385575", "156697653654", "2139109221960", "29472597414681", "409312118499336", "5723853297702444", "80528723782556475", "1139033786793330429", "16187921479930951917", "231046413762053945958" ]
[ "nonn" ]
8
0
2
[ "A355360", "A355361", "A355362", "A355363", "A355364", "A355365" ]
null
Paul D. Hanna, Jul 19 2022
2025-07-03T12:53:19
oeisdata/seq/A355/A355363.seq
7081af2baf39317f43d39d75ee6dca0d
A355364
G.f. A(x) satisfies: x^2*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
[ "1", "0", "1", "3", "11", "34", "110", "350", "1147", "3800", "12836", "43929", "152285", "533205", "1883187", "6698612", "23974179", "86258459", "311811314", "1131863444", "4124127216", "15078422405", "55301519095", "203405409935", "750122683729", "2773048061073", "10274442343829", "38147288401915" ]
[ "nonn" ]
8
0
4
[ "A355360", "A355361", "A355362", "A355363", "A355364", "A355365" ]
null
Paul D. Hanna, Jul 19 2022
2025-07-03T12:55:48
oeisdata/seq/A355/A355364.seq
767a0ec269d426f255ea6359910f7098
A355365
Central terms of A355360; a(n) = A355360(2*n,n).
[ "1", "3", "54", "1360", "41405", "1404102", "51126740", "1957600876", "77812428681", "3183756066040", "133302637049516", "5687179333193904", "246453229359401883", "10821674290217357756", "480561612716912592360", "21549547977144582750304", "974600584933918611940825", "44409401763058366474029057" ]
[ "nonn" ]
8
0
2
[ "A355360", "A355361", "A355362", "A355363", "A355364", "A355365" ]
null
Paul D. Hanna, Jul 19 2022
2023-03-19T05:47:37
oeisdata/seq/A355/A355365.seq
af24c23ad9221a22eb63a519c815b3d7
A355366
Maximal GCD of five positive integers with sum n.
[ "1", "1", "1", "1", "1", "2", "1", "2", "1", "2", "3", "2", "1", "3", "1", "4", "3", "2", "1", "4", "5", "2", "3", "4", "1", "6", "1", "4", "3", "2", "7", "6", "1", "2", "3", "8", "1", "7", "1", "4", "9", "2", "1", "8", "7", "10", "3", "4", "1", "9", "11", "8", "3", "2", "1", "12", "1", "2", "9", "8", "13", "11", "1", "4", "3", "14", "1", "12", "1", "2", "15", "4", "11", "13", "1", "16", "9", "2", "1", "14", "17", "2", "3", "11", "1" ]
[ "nonn" ]
15
5
6
[ "A008382", "A032742", "A129650", "A354598", "A354599", "A354601", "A355249", "A355319", "A355366", "A355368", "A355402" ]
null
Wesley Ivan Hurt, Jun 29 2022
2022-09-21T11:28:02
oeisdata/seq/A355/A355366.seq
1d21918a4bc1e1a2e2329e16b38f7db4
A355367
Maximal LCM of six positive integers with sum n.
[ "1", "2", "3", "6", "6", "12", "15", "30", "30", "60", "60", "84", "105", "210", "210", "420", "420", "420", "420", "840", "840", "1260", "1260", "2310", "2310", "4620", "4620", "5460", "5460", "9240", "9240", "13860", "13860", "16380", "16380", "30030", "27720", "60060", "32760", "40040", "60060", "120120", "60060", "180180", "120120", "157080", "120120", "360360" ]
[ "nonn" ]
15
6
2
[ "A008881", "A129647", "A129648", "A129649", "A129650", "A355367", "A355403" ]
null
Wesley Ivan Hurt, Jun 29 2022
2023-06-23T13:22:25
oeisdata/seq/A355/A355367.seq
1bf729d90b713539a419d035724b8444
A355368
Maximal GCD of six positive integers with sum n.
[ "1", "1", "1", "1", "1", "1", "2", "1", "2", "1", "2", "1", "3", "1", "2", "3", "2", "1", "4", "1", "2", "3", "4", "1", "5", "1", "4", "3", "2", "5", "6", "1", "2", "3", "5", "1", "7", "1", "4", "5", "2", "1", "8", "7", "5", "3", "4", "1", "9", "5", "8", "3", "2", "1", "10", "1", "2", "9", "8", "5", "11", "1", "4", "3", "10", "1", "12", "1", "2", "5", "4", "11", "13", "1", "10", "9", "2", "1", "14", "5", "2", "3", "11", "1", "15", "13", "4", "3", "2" ]
[ "nonn" ]
12
6
7
[ "A008881", "A032742", "A354598", "A354599", "A354601", "A355249", "A355319", "A355366", "A355367", "A355368", "A355402" ]
null
Wesley Ivan Hurt, Jun 29 2022
2022-09-21T07:42:00
oeisdata/seq/A355/A355368.seq
38dedd7c06549496916fdb00cacf5589
A355369
a(n) is the least prime p such that the sum of the product of the n consecutive primes starting with p and the decimal digits of those primes is prime.
[ "11", "2", "167", "2", "19", "5", "911", "2", "61", "59", "919", "29", "337", "919", "983", "29", "541", "311", "1721", "359", "757", "419", "877", "61", "59", "151", "16943", "1637", "1439", "71", "3739", "557", "443", "1303", "353", "569", "2381", "97", "2389", "5519", "617", "1381", "89", "7", "1103", "733", "409", "521", "499", "283", "911", "709", "5113", "179", "9157", "3533", "971", "47", "3191", "3917" ]
[ "nonn", "base" ]
8
1
1
null
null
J. M. Bergot and Robert Israel, Jun 30 2022
2022-06-30T14:45:12
oeisdata/seq/A355/A355369.seq
e80b86ab881e7834c8f0124367ed3172
A355370
Irregular triangle read by rows in which row n lists the numbers that divide the sum of the digits of their n-th powers.
[ "1", "1", "2", "3", "4", "5", "6", "7", "8", "9", "1", "2", "3", "9", "1", "2", "3", "8", "9", "17", "18", "26", "27", "1", "3", "6", "7", "9", "22", "25", "28", "36", "1", "3", "9", "28", "35", "36", "46", "1", "2", "3", "7", "9", "18", "23", "45", "54", "64", "1", "3", "6", "9", "12", "15", "18", "27", "31", "34", "43", "53", "58", "68", "1", "3", "5", "6", "9", "15", "27", "46", "54", "63" ]
[ "tabf", "nonn", "base" ]
29
0
3
[ "A046000", "A152147", "A309017", "A355370", "A355563" ]
null
Mohammed Yaseen, Jun 30 2022
2022-07-15T21:48:56
oeisdata/seq/A355/A355370.seq
56850e00f3b394f9449ca6d895435f4b
A355371
Intersection of A000330 and A086849.
[ "5", "91", "506", "650", "11440" ]
[ "nonn", "more" ]
11
1
1
[ "A000330", "A086849", "A355371" ]
null
Ivan N. Ianakiev, Jun 30 2022
2022-07-09T15:36:29
oeisdata/seq/A355/A355371.seq
bb88b0ed2c5172bedff2b70d90f99de5
A355372
Expansion of the e.g.f. log((1 - x) / (1 - 2*x)) / (1 - x)^3.
[ "0", "1", "9", "77", "714", "7374", "85272", "1102968", "15908400", "254866320", "4516084800", "88102382400", "1883199024000", "43885950595200", "1109416142822400", "30273281955302400", "887493144729139200", "27827941161784780800", "929449073791558656000", "32943696020637889536000", "1234946945823695419392000" ]
[ "nonn" ]
8
0
3
[ "A000292", "A062139", "A355171", "A355372" ]
null
Mélika Tebni, Jun 30 2022
2022-07-01T00:05:54
oeisdata/seq/A355/A355372.seq
4b19ea5464294388aa8ec3f1bda43ae6
A355373
a(n) = Sum_{k=0..n} k! * (-1)^k * n^(n-k) * Stirling2(n,k).
[ "1", "-1", "0", "3", "40", "455", "2016", "-177373", "-11564160", "-497664081", "-12796467200", "536297904659", "132025634657280", "14907422733429239", "1181852660381503488", "34684559693802943875", "-11771644802057621110784", "-3553614228958108389522721", "-656899368126170250221715456" ]
[ "sign" ]
14
0
4
[ "A212846", "A213127", "A213128", "A213129", "A213130", "A213131", "A213132", "A213133", "A318183", "A352074", "A355373" ]
null
Seiichi Manyama, Jun 30 2022
2022-06-30T08:37:12
oeisdata/seq/A355/A355373.seq
91e0ab65a0427c27ed4d214613fc9a7e
A355374
a(1) = 1; for n > 1, a(n) is the smallest positive number that has not yet appeared such that the number of proper divisors of a(n) equals the number of 1-bits in the binary expansion of a(n-1).
[ "1", "2", "3", "4", "5", "9", "25", "6", "49", "8", "7", "10", "121", "12", "169", "16", "11", "14", "15", "81", "21", "22", "26", "27", "625", "18", "289", "33", "361", "20", "529", "34", "841", "28", "35", "38", "39", "2401", "32", "13", "46", "14641", "24", "961", "44", "51", "28561", "48", "1369", "64", "17", "1681", "45", "83521", "729", "15625", "30", "130321", "1024", "19", "55", "50", "57", "279841", "117649" ]
[ "nonn", "base", "look" ]
14
1
2
[ "A000120", "A005179", "A027751", "A032741", "A355374" ]
null
Scott R. Shannon, Jun 30 2022
2022-07-03T09:11:28
oeisdata/seq/A355/A355374.seq
ebd2e2c486200b305c482e6839a23f08
A355375
a(n) = Sum_{k=0..n} (-k)^(n-k) * Stirling2(n,k).
[ "1", "1", "0", "-4", "10", "67", "-969", "3341", "86976", "-1988704", "14144108", "405611857", "-17544321563", "287677263837", "3595470378748", "-421298868094940", "14476946230894114", "-112253861285434961", "-18711849695261432065", "1354595712379990848137", "-44436925726445545236496" ]
[ "sign" ]
15
0
4
[ "A229233", "A232549", "A318183", "A355375", "A355376" ]
null
Seiichi Manyama, Jun 30 2022
2022-06-30T10:27:29
oeisdata/seq/A355/A355375.seq
987e1c3997f3309aaed463fd5c74fdcd
A355376
a(n) = Sum_{k=0..n} k! * (-k)^(n-k) * Stirling2(n,k).
[ "1", "1", "1", "-5", "-29", "271", "3091", "-61025", "-744029", "34875871", "211095331", "-37415273345", "300267009571", "61080483836191", "-2133136977892829", "-119576844586022465", "11752559492568148771", "94348367247493654111", "-68793303669649907424989", "2764486881197709482575615" ]
[ "sign" ]
14
0
4
[ "A229234", "A355373", "A355375", "A355376" ]
null
Seiichi Manyama, Jun 30 2022
2022-06-30T10:15:42
oeisdata/seq/A355/A355376.seq
b6460e91562e5a57521e27c57ab73f78
A355377
Numbers k such that the concatenation of digits included in the sum and product of the digits of the number k is an anagram of the number k, and digits of the number are sorted in nondecreasing order.
[ "119", "1236", "11359", "11449", "122669", "2334699", "13346899" ]
[ "nonn", "base", "fini", "full" ]
41
1
1
[ "A062237", "A355377" ]
null
Ilya Orlov, Jun 30 2022
2022-07-01T22:08:54
oeisdata/seq/A355/A355377.seq
3837be57e6c7fa2fed29a358416fd229
A355378
Expansion of e.g.f. exp(exp(3*x) - exp(x)).
[ "1", "2", "12", "82", "688", "6754", "75096", "928386", "12591392", "185384130", "2938319144", "49799613538", "897495547184", "17118975292514", "344206910941624", "7270287035936706", "160826794265399360", "3716047107259486082", "89472755268582494792", "2240097688067896960674", "58207872357772581544272" ]
[ "nonn" ]
18
0
2
[ "A143405", "A355291", "A355378", "A355379", "A355381" ]
null
Vaclav Kotesovec, Jun 30 2022
2022-07-10T07:12:52
oeisdata/seq/A355/A355378.seq
a967473db8c529a952d25c763bee2f29
A355379
Expansion of e.g.f. exp(exp(3*x) + exp(x) - 2).
[ "1", "4", "26", "212", "2046", "22588", "278942", "3792916", "56128254", "895795692", "15307847614", "278435732484", "5364073445278", "108994074306268", "2327475127169182", "52069279762495220", "1217024509006768574", "29647115491635327180", "751085909757123127294", "19750410883486281805028" ]
[ "nonn" ]
17
0
2
[ "A143405", "A355291", "A355378", "A355379" ]
null
Vaclav Kotesovec, Jun 30 2022
2022-07-10T07:13:59
oeisdata/seq/A355/A355379.seq
04d582b18b8a5b670770edc5fd90b677
A355380
Expansion of e.g.f. exp(exp(3*x) + exp(2*x) - 2).
[ "1", "5", "38", "355", "3879", "48050", "661163", "9961745", "162598044", "2851150665", "53350521523", "1059447004560", "22224898346989", "490589320542305", "11356591577861398", "274886065370874775", "6939205217774546339", "182273695066097752170", "4971724931587003394863", "140559648864263508395965" ]
[ "nonn" ]
15
0
2
[ "A143405", "A355291", "A355380", "A355381" ]
null
Vaclav Kotesovec, Jun 30 2022
2022-07-03T04:45:25
oeisdata/seq/A355/A355380.seq
a0c52afecb7db86c7a4c136842a72c1e
A355381
Expansion of e.g.f. exp(exp(3*x) - exp(2*x)).
[ "1", "1", "6", "35", "247", "2102", "20547", "224541", "2707292", "35638329", "507464939", "7757439428", "126538995293", "2191454313661", "40120212534838", "773554002955047", "15656660861190371", "331700076893737054", "7337160433117899959", "169068422994937678185", "4050093664805130165348" ]
[ "nonn" ]
22
0
3
[ "A143405", "A194006", "A355291", "A355378", "A355380", "A355381" ]
null
Vaclav Kotesovec, Jun 30 2022
2022-07-11T11:28:08
oeisdata/seq/A355/A355381.seq
72bc2052272fc913c16c2069c1bb42f6
A355382
Number of divisors d of n such that bigomega(d) = omega(n).
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "2", "1", "1", "1", "2", "2", "1", "1", "2", "1", "2", "1", "2", "1", "2", "1", "2", "1", "1", "1", "3", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "3", "1", "1", "2", "2", "1", "1", "1", "2", "1", "1", "1", "3", "1", "1", "1" ]
[ "nonn" ]
10
1
12
[ "A000005", "A000712", "A001221", "A001222", "A022811", "A056239", "A070175", "A071625", "A118914", "A133494", "A181591", "A181819", "A182850", "A303555", "A323014", "A323022", "A323023", "A339006", "A355382", "A355383", "A355384", "A355385", "A355386", "A355388" ]
null
Gus Wiseman, Jul 02 2022
2022-07-03T23:56:23
oeisdata/seq/A355/A355382.seq
0b5651c67782378135d43f7ccdab16e0
A355383
Number of pairs (y, v), where y is a partition of n and v is a sub-multiset of y whose cardinality equals the number of distinct parts in y.
[ "1", "1", "2", "3", "6", "10", "16", "26", "42", "64", "100", "150", "224", "330", "482", "697", "999", "1418", "1996", "2794", "3879", "5355", "7343", "10018", "13583", "18338", "24618", "32917", "43790", "58043", "76591", "100716", "131906", "172194", "223966", "290423", "375318", "483668", "621368", "796138", "1017146" ]
[ "nonn" ]
9
0
3
[ "A000009", "A001970", "A022811", "A032020", "A063834", "A070933", "A072706", "A181591", "A181819", "A316245", "A317715", "A318683", "A318684", "A319794", "A319910", "A323433", "A323583", "A336131", "A336136", "A339006", "A355382", "A355383", "A355384", "A355385", "A355388" ]
null
Gus Wiseman, Jul 02 2022
2022-07-03T23:56:28
oeisdata/seq/A355/A355383.seq
607ffb43ba0a99723cd2d0ff8911c68e
A355384
Number of pairs (y, v) where y is a composition of n and v is a (not necessarily contiguous) subsequence of y whose length equals the number of distinct parts in y.
[ "1", "1", "2", "4", "12", "30", "66", "164", "419", "1049", "2625", "6372", "15451", "37335", "89855", "216523", "518714", "1235897", "2930050", "6911149", "16217817", "37914515", "88304358", "204971388", "474172899", "1093547574", "2513959446", "5761735383", "13165908506", "29998936859", "68164839887", "154478212575" ]
[ "nonn" ]
14
0
3
[ "A000009", "A000244", "A001970", "A022811", "A032020", "A063834", "A070933", "A072706", "A133494", "A323583", "A336139", "A339006", "A355383", "A355384", "A355385", "A355388" ]
null
Gus Wiseman, Jul 01 2022
2025-05-09T01:45:34
oeisdata/seq/A355/A355384.seq
2cda2e65c4e00474937049244ce3ed62
A355385
Number of pairs (y, v) of integer partitions of n where the length of v equals the number of distinct parts in y.
[ "1", "1", "2", "3", "7", "12", "25", "43", "81", "141", "243", "409", "699", "1132", "1844", "2995", "4744", "7408", "11655", "17839", "27509", "41546", "62879", "93537", "139974", "205547", "302714", "440097", "640968", "921774", "1327538", "1891548", "2696635", "3809860", "5380257", "7540778", "10561566", "14687109", "20408170", "28183998", "38882009" ]
[ "nonn" ]
10
0
3
[ "A000009", "A001970", "A008284", "A022811", "A032020", "A063834", "A070933", "A072706", "A116608", "A279787", "A319910", "A323583", "A336135", "A339006", "A355383", "A355384", "A355385", "A355388" ]
null
Gus Wiseman, Jul 02 2022
2022-12-31T20:30:03
oeisdata/seq/A355/A355385.seq
f4e025472d76c59e0c0ce176a07921c8
A355386
Position of first appearance of n in A355382, where A355382(m) = number of divisors d of m such that bigomega(d) = omega(m); or a(n) = -1 if n does not appear in A355382.
[ "1", "12", "36", "120", "180", "360", "840", "1260", "5400", "27000", "2520", "5040", "6300", "7560", "15120", "12600", "25200" ]
[ "nonn", "more" ]
13
1
2
[ "A000005", "A000712", "A001221", "A001222", "A022811", "A056239", "A070175", "A071625", "A181591", "A181819", "A303555", "A319910", "A339006", "A355382", "A355383", "A355384", "A355386" ]
null
Gus Wiseman, Jul 02 2022
2022-07-07T23:30:11
oeisdata/seq/A355/A355386.seq
cd7cb117657cd18a9259b06439758ad7
A355387
Number of ways to choose a distinct subsequence of an integer composition of n.
[ "1", "2", "5", "14", "37", "98", "259", "682", "1791", "4697", "12303", "32196", "84199", "220087", "575067", "1502176", "3923117", "10244069", "26746171", "69825070", "182276806", "475804961", "1241965456", "3241732629", "8461261457", "22084402087", "57640875725", "150442742575", "392652788250", "1024810764496" ]
[ "nonn" ]
19
0
2
[ "A000302", "A000712", "A011782", "A022811", "A025192", "A032005", "A032020", "A063834", "A070933", "A075900", "A133494", "A181591", "A236002", "A304961", "A307068", "A323583", "A331330", "A336127", "A336128", "A336130", "A336139", "A339006", "A355382", "A355383", "A355384", "A355387", "A355388" ]
null
Gus Wiseman, Jul 04 2022
2025-05-06T10:04:23
oeisdata/seq/A355/A355387.seq
0f2cc6531d9872966fc75c7e8c00c3a1
A355388
Number of composable pairs (y, v) of integer compositions of n, where a composition is regarded as an arrow from the number of parts to the number of distinct parts.
[ "1", "1", "2", "6", "18", "58", "174", "536", "1656", "4947", "14800", "43157", "126572", "364070", "1039926", "2938898", "8223400", "22846370", "62930113", "172177400", "467002792", "1259736804", "3371190792", "8973530491", "23728305128", "62421018163", "163255839779", "424842462529", "1100006243934", "2834558927244", "7270915592897" ]
[ "nonn" ]
15
0
3
[ "A000009", "A001970", "A022811", "A032020", "A063834", "A070933", "A133494", "A316245", "A319910", "A323583", "A336139", "A355382", "A355383", "A355384", "A355385", "A355388" ]
null
Gus Wiseman, Jul 02 2022
2023-01-01T20:19:59
oeisdata/seq/A355/A355388.seq
cddd8ccf41a26b597be32ae671016559
A355389
Number of unordered pairs of distinct integer partitions of n.
[ "0", "0", "1", "3", "10", "21", "55", "105", "231", "435", "861", "1540", "2926", "5050", "9045", "15400", "26565", "43956", "73920", "119805", "196251", "313236", "501501", "786885", "1239525", "1915903", "2965830", "4528545", "6909903", "10417330", "15699606", "23403061", "34848726", "51435153", "75761895", "110744403", "161577276" ]
[ "nonn" ]
13
0
4
[ "A000009", "A000041", "A001255", "A001970", "A006516", "A022811", "A063834", "A070933", "A086737", "A316245", "A317715", "A319794", "A319910", "A323433", "A339006", "A355385", "A355389", "A355390" ]
null
Gus Wiseman, Jul 04 2022
2024-02-07T21:07:47
oeisdata/seq/A355/A355389.seq
26f72b00baeded525dd93b80d884a18f
A355390
Number of ordered pairs of distinct integer partitions of n.
[ "0", "0", "2", "6", "20", "42", "110", "210", "462", "870", "1722", "3080", "5852", "10100", "18090", "30800", "53130", "87912", "147840", "239610", "392502", "626472", "1003002", "1573770", "2479050", "3831806", "5931660", "9057090", "13819806", "20834660", "31399212", "46806122", "69697452", "102870306", "151523790", "221488806" ]
[ "nonn" ]
10
0
3
[ "A000009", "A000041", "A001255", "A001970", "A006516", "A020522", "A022811", "A063834", "A070933", "A086737", "A316245", "A317715", "A319910", "A323433", "A323583", "A339006", "A355385", "A355389", "A355390" ]
null
Gus Wiseman, Jul 04 2022
2022-07-05T06:47:25
oeisdata/seq/A355/A355390.seq
d0baa9d0981dac9d55eb713e950d3f7d
A355391
Position of first appearance of n in A181591 = binomial(bigomega(n), omega(n)).
[ "1", "4", "8", "16", "32", "24", "128", "256", "512", "48", "2048", "4096", "8192", "16384", "96", "65536", "131072", "262144", "524288", "240", "192", "4194304", "8388608", "16777216", "33554432", "67108864", "134217728", "384", "536870912", "1073741824", "2147483648", "4294967296", "8589934592", "17179869184", "480", "768", "137438953472" ]
[ "nonn" ]
21
1
2
[ "A000005", "A001221", "A001222", "A006987", "A022811", "A056239", "A070175", "A071625", "A118914", "A181819", "A185024", "A303555", "A323014", "A323023", "A339006", "A355383", "A355384", "A355386", "A355391", "A355392" ]
null
Gus Wiseman, Jul 04 2022
2022-07-10T13:23:42
oeisdata/seq/A355/A355391.seq
5d484b66773566cae113b4bf3cc9f400
A355392
Sorted positions of first appearances in A181591 = binomial(bigomega(n), omega(n)).
[ "1", "4", "8", "16", "24", "32", "48", "96", "128", "192", "240", "256", "384", "480", "512", "768", "960", "1536", "1920", "2048", "3072", "3360", "3840", "4096", "6144", "6720", "7680", "8192", "12288", "13440", "15360", "16384", "24576", "26880", "30720", "49152", "53760", "61440", "65536", "73920", "107520", "122880", "131072", "147840", "196608" ]
[ "nonn" ]
13
1
2
[ "A000005", "A000712", "A001221", "A001222", "A022811", "A056239", "A070175", "A071625", "A118914", "A181819", "A303555", "A323023", "A355384", "A355386", "A355391", "A355392" ]
null
Gus Wiseman, Jul 04 2022
2022-07-10T13:22:11
oeisdata/seq/A355/A355392.seq
e120054dec8645c49e7a48d89f2a1e91
A355393
Number of integer partitions of n such that, for all parts x of multiplicity 1, either x - 1 or x + 1 is also a part.
[ "1", "0", "1", "2", "3", "4", "6", "7", "10", "14", "17", "23", "32", "39", "51", "67", "83", "105", "134", "165", "206", "256", "312", "385", "475", "573", "697", "849", "1021", "1231", "1483", "1771", "2121", "2534", "3007", "3575", "4245", "5008", "5914", "6979", "8198", "9626", "11292", "13201", "15430", "18010", "20960", "24389", "28346", "32855", "38066" ]
[ "nonn" ]
6
0
4
[ "A000009", "A000041", "A000837", "A007690", "A073491", "A183558", "A289509", "A325160", "A328171", "A328172", "A328187", "A328220", "A355393", "A355394", "A356233", "A356235", "A356236", "A356237", "A356606", "A356607" ]
null
Gus Wiseman, Aug 26 2022
2022-08-26T16:52:36
oeisdata/seq/A355/A355393.seq
e409146df98f08a847a3489ac63cf7ef
A355394
Number of integer partitions of n such that, for all parts x, x - 1 or x + 1 is also a part.
[ "1", "0", "0", "1", "1", "3", "3", "6", "6", "10", "11", "16", "18", "25", "30", "38", "47", "59", "74", "90", "112", "136", "171", "203", "253", "299", "372", "438", "536", "631", "767", "900", "1085", "1271", "1521", "1774", "2112", "2463", "2910", "3389", "3977", "4627", "5408", "6276", "7304", "8459", "9808", "11338", "13099", "15112", "17404", "20044", "23018", "26450", "30299", "34746", "39711", "45452", "51832" ]
[ "nonn" ]
24
0
6
[ "A000009", "A000041", "A000837", "A007690", "A066312", "A073491", "A077855", "A183558", "A289509", "A328171", "A328172", "A328187", "A328221", "A355393", "A355394", "A356233", "A356235", "A356236", "A356237", "A356606", "A356607", "A356734", "A356736" ]
null
Gus Wiseman, Aug 26 2022
2024-02-17T14:08:02
oeisdata/seq/A355/A355394.seq
d38a38ad25ff1846dfe1239b08641ace
A355395
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(j*(n-j)) * binomial(n,j).
[ "1", "1", "2", "1", "2", "2", "1", "2", "4", "2", "1", "2", "6", "8", "2", "1", "2", "8", "26", "16", "2", "1", "2", "10", "56", "162", "32", "2", "1", "2", "12", "98", "704", "1442", "64", "2", "1", "2", "14", "152", "2050", "15392", "18306", "128", "2", "1", "2", "16", "218", "4752", "84482", "593408", "330626", "256", "2", "1", "2", "18", "296", "9506", "318752", "7221250", "39691136", "8488962", "512", "2" ]
[ "nonn", "tabl" ]
78
0
3
[ "A000079", "A009999", "A040000", "A047863", "A135079", "A320287", "A355395", "A355440" ]
null
Seiichi Manyama, Jul 02 2022
2023-08-24T07:48:58
oeisdata/seq/A355/A355395.seq
87a6328c489f82dafbdd23fd37c5fe40
A355396
Expansion of e.g.f. exp(exp(3*x)/3 - exp(x) + 2/3).
[ "1", "0", "2", "8", "38", "240", "1782", "14728", "134598", "1352800", "14800502", "174593848", "2205456838", "29676417680", "423455081142", "6381678299368", "101217742764358", "1684357485887680", "29328589792496502", "533062885681064088", "10091434399407455558", "198592474864415055600" ]
[ "nonn" ]
13
0
3
[ "A002874", "A355378", "A355396" ]
null
Seiichi Manyama, Jun 30 2022
2022-07-10T07:48:08
oeisdata/seq/A355/A355396.seq
ba36f36ffbefbdf75a76c29992901d0f
A355397
Expansion of e.g.f. exp(exp(3*x)/3 + exp(2*x)/2 - 5/6).
[ "1", "2", "9", "51", "350", "2799", "25373", "255854", "2831177", "34023919", "440414146", "6099346455", "89873849705", "1402403637418", "23081230257449", "399284248276827", "7238080522101270", "137125745341692863", "2708536196071195365", "55660194042713099510", "1187724805063462045289" ]
[ "nonn" ]
12
0
2
[ "A355380", "A355397" ]
null
Seiichi Manyama, Jun 30 2022
2022-07-05T02:24:14
oeisdata/seq/A355/A355397.seq
5a54eec5ebca35185957a6251d73934c
A355398
Expansion of e.g.f. exp(exp(3*x)/3 - exp(2*x)/2 + 1/6).
[ "1", "0", "1", "5", "22", "115", "761", "5880", "49897", "460045", "4621366", "50385555", "590795217", "7389964400", "98105330961", "1377426850805", "20388005470582", "317112889169555", "5167636268318921", "88001180739368680", "1562559584723343417", "28871671817796197885", "554116841783123679446" ]
[ "nonn" ]
13
0
4
[ "A355381", "A355398" ]
null
Seiichi Manyama, Jun 30 2022
2022-07-05T02:24:19
oeisdata/seq/A355/A355398.seq
2c9efc51abcb778eeaa8ac7ed9ab2f84
A355399
a(n) is the failed skew zero forcing number of C^2_n.
[ "0", "1", "2", "4", "3", "4", "6", "5", "6", "8", "6", "8", "10", "8", "10", "12", "10", "12", "14", "12", "14", "16", "14", "16", "18", "16", "18", "20", "18", "20", "22", "20", "22", "24", "22", "24", "26", "24", "26", "28", "26", "28", "30", "28", "30", "32", "30", "32", "34", "32", "34", "36", "34", "36", "38", "36", "38", "40", "38", "40", "42", "40", "42", "44", "42", "44", "46", "44", "46" ]
[ "nonn", "easy" ]
35
3
3
[ "A008611", "A343648", "A355399" ]
null
Darren Narayan, Andrew E. Vick, and Aidan Johnson, Jun 30 2022
2025-03-28T11:28:34
oeisdata/seq/A355/A355399.seq
fc49a3090cbce49b00e873ac9aa016dc
A355400
Number of n-tuples (p_1, p_2, ..., p_n) of Dyck paths of semilength n, such that each p_i is never below p_{i-1}.
[ "1", "1", "3", "30", "1001", "111384", "41314284", "51067020290", "210309203300625", "2885318087540733000", "131857099297936066411200", "20070377346929658409924542720", "10174783866874800701945612292557712", "17178820188393063395267380511228827387600", "96592800670609299321035523895170598736583965100" ]
[ "nonn" ]
45
0
3
[ "A000108", "A006125", "A074962", "A076113", "A078920", "A110131", "A112332", "A123352", "A131577", "A355400", "A358597", "A368025", "A368298", "A378113" ]
null
Alois P. Heinz, Jun 30 2022
2024-11-16T19:13:57
oeisdata/seq/A355/A355400.seq
f342771f54d5b77ef428045bd6c48857