sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-19 00:40:46
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A355501 | Expansion of e.g.f. exp(3 * x * exp(x)). | [
"1",
"3",
"15",
"90",
"633",
"5028",
"44217",
"424434",
"4399953",
"48858984",
"577372809",
"7221983838",
"95192539641",
"1317190650636",
"19071213218745",
"288112248054882",
"4530217559806497",
"73976635012027344",
"1252091246140278153",
"21926952634345281030",
"396671314081806278601"
]
| [
"nonn"
]
| 19 | 0 | 2 | [
"A000248",
"A187105",
"A275707",
"A295623",
"A351763",
"A355501"
]
| null | Seiichi Manyama, Jul 04 2022 | 2022-07-06T05:39:45 | oeisdata/seq/A355/A355501.seq | 989342d8a75a200d3a48967023614e25 |
A355502 | Inequivalent simultaneous colorings of the faces, vertices and edges of the cube under rotational symmetry using exactly n colors. | [
"1",
"2802750",
"105904482864",
"187226450755016",
"61150982606571900",
"6737855626357107000",
"342689297671355738880",
"9659365383584921484480",
"169366933728740293383600",
"1995772772375467764487200"
]
| [
"nonn",
"fini"
]
| 35 | 1 | 2 | [
"A355502",
"A356685"
]
| null | Marko Riedel, Aug 22 2022 | 2023-03-10T07:25:20 | oeisdata/seq/A355/A355502.seq | a2590e9b0f6178cdac05ea9222f0faea |
A355503 | Total number of m-tuples (p_1, p_2, ..., p_m) of Dyck paths of semilength n-m, such that each p_i is never below p_{i-1} for m=0..n. | [
"1",
"2",
"3",
"5",
"11",
"35",
"164",
"1120",
"10969",
"152849",
"3029650",
"85227078",
"3400752392",
"192644205130",
"15470939367651",
"1761760468965521",
"284641456742538865",
"65175288287611738435",
"21159611204475209730138",
"9743708333490185603430830",
"6357930817596444858142966826"
]
| [
"nonn"
]
| 27 | 0 | 2 | [
"A000108",
"A074962",
"A078920",
"A123352",
"A355400",
"A355503",
"A368025"
]
| null | Alois P. Heinz, Jul 04 2022 | 2024-11-16T17:27:32 | oeisdata/seq/A355/A355503.seq | b256b9d4fa472d377e9bce5f5fc535bc |
A355504 | Lexicographically earliest sequence of distinct nonnegative integers such that for any n >= 0, among the decimal digits of n and a(n) (counted with multiplicity) there are as many even digits as odd digits. | [
"1",
"0",
"3",
"2",
"5",
"4",
"7",
"6",
"9",
"8",
"10",
"20",
"12",
"22",
"14",
"24",
"16",
"26",
"18",
"28",
"11",
"21",
"13",
"23",
"15",
"25",
"17",
"27",
"19",
"29",
"30",
"40",
"32",
"42",
"34",
"44",
"36",
"46",
"38",
"48",
"31",
"41",
"33",
"43",
"35",
"45",
"37",
"47",
"39",
"49",
"50",
"60",
"52",
"62",
"54",
"64",
"56",
"66",
"58",
"68",
"51",
"61",
"53",
"63",
"55",
"65",
"57",
"67"
]
| [
"nonn",
"base"
]
| 23 | 0 | 3 | [
"A227870",
"A352546",
"A352547",
"A352760",
"A355504"
]
| null | Rémy Sigrist, Jul 05 2022 | 2022-07-09T12:14:31 | oeisdata/seq/A355/A355504.seq | 31bc8a0a6e5b073cf5cadae715d325d5 |
A355505 | a(n) is the number of distinct cycles when iterating the function f_n(x), where f_n(x) is the sum of the digits in base n of x^2. | [
"2",
"5",
"3",
"4",
"4",
"7",
"4",
"3",
"4",
"6",
"4",
"7",
"4",
"8",
"6",
"3",
"3",
"7",
"5",
"7",
"9",
"7",
"4",
"6",
"4",
"7",
"5",
"9",
"5",
"12",
"7",
"3",
"9",
"5",
"8",
"9",
"5",
"10",
"9",
"6",
"4",
"16",
"8",
"9",
"8",
"7",
"5",
"7",
"9",
"7",
"7",
"8",
"4",
"9",
"8",
"8",
"11",
"9",
"4",
"14",
"7",
"13",
"11",
"3",
"8",
"16",
"7",
"6",
"9",
"16",
"8",
"8",
"5",
"9",
"9",
"11",
"13",
"17",
"7",
"6",
"6",
"7",
"5",
"17",
"6",
"15",
"11",
"9",
"4"
]
| [
"base",
"nonn"
]
| 57 | 2 | 1 | [
"A004159",
"A061903",
"A159918",
"A355505"
]
| null | Wouter Zandsteeg, Jul 04 2022 | 2022-07-12T08:28:36 | oeisdata/seq/A355/A355505.seq | 57122b3b5ce0ff6dac9cf96ea1b9af96 |
A355506 | a(n) is the least positive integer not occurring earlier in the sequence such that, if a(m) = a(n)+1, then |m - n| >= a(n). | [
"1",
"2",
"4",
"6",
"8",
"3",
"10",
"12",
"5",
"14",
"16",
"7",
"18",
"20",
"22",
"9",
"24",
"26",
"11",
"28",
"30",
"32",
"13",
"34",
"36",
"15",
"38",
"40",
"42",
"17",
"44",
"46",
"19",
"48",
"50",
"21",
"52",
"54",
"56",
"23",
"58",
"60",
"25",
"62",
"64",
"66",
"27",
"68",
"70",
"29",
"72",
"74",
"31",
"76",
"78",
"80",
"33",
"82",
"84",
"35",
"86",
"88",
"90",
"37",
"92",
"94",
"39",
"96",
"98",
"41",
"100",
"102",
"104",
"43",
"106"
]
| [
"nonn"
]
| 28 | 1 | 2 | [
"A136119",
"A184119",
"A353592",
"A355506"
]
| null | Ali Sada, Jul 04 2022 | 2025-05-09T02:58:57 | oeisdata/seq/A355/A355506.seq | 7d5cc27cbf03c9eb0e10b3082ed47852 |
A355507 | Expansion of e.g.f. (1 - x)^(-x^4/24). | [
"1",
"0",
"0",
"0",
"0",
"5",
"15",
"70",
"420",
"3024",
"28350",
"272250",
"2875950",
"33333300",
"420840420",
"5763671550",
"84799915200",
"1334007397800",
"22343877115560",
"396971840865600",
"7456250728017000",
"147612122975772000",
"3071792315894841000",
"67030983483724953000",
"1530448652869851191400"
]
| [
"nonn"
]
| 28 | 0 | 6 | [
"A351493",
"A355507",
"A355610"
]
| null | Seiichi Manyama, Jul 09 2022 | 2022-07-21T02:09:39 | oeisdata/seq/A355/A355507.seq | 67f339799625ca7e37757d64d7c51e63 |
A355508 | E.g.f. satisfies log(A(x)) = x^2 * (exp(x * A(x)) - 1) * A(x). | [
"1",
"0",
"0",
"6",
"12",
"20",
"1830",
"15162",
"82376",
"3326472",
"59467050",
"678585710",
"20553790092",
"563969783676",
"10776243950654",
"318310813941330",
"10988438698692240",
"303144002003606672",
"9910024990673571666",
"392381835437286982998",
"14072003919511407720020"
]
| [
"nonn"
]
| 40 | 0 | 4 | [
"A349557",
"A355508",
"A356785",
"A356892",
"A356962"
]
| null | Seiichi Manyama, Sep 07 2022 | 2022-09-12T03:05:03 | oeisdata/seq/A355/A355508.seq | 76a118822511f1a83eb50c175b1cdd25 |
A355509 | Peaceable coexisting armies of knights: a(n) is the maximum number m such that m white knights and m black knights can coexist on an n X n chessboard without attacking each other. | [
"0",
"2",
"3",
"6",
"10",
"14",
"18",
"24",
"32",
"40",
"50",
"60",
"72",
"84",
"98",
"112",
"128",
"144",
"162",
"180",
"200",
"220",
"242",
"264",
"288",
"312",
"338",
"364",
"392",
"420",
"450",
"480",
"512",
"544",
"578",
"612",
"648",
"684",
"722",
"760",
"800",
"840",
"882",
"924",
"968",
"1012",
"1058",
"1104",
"1152",
"1200",
"1250",
"1300",
"1352",
"1404"
]
| [
"nonn",
"easy"
]
| 35 | 1 | 2 | [
"A002620",
"A007590",
"A052928",
"A176222",
"A250000",
"A355509"
]
| null | Aaron Khan, Jul 04 2022 | 2022-07-16T07:12:45 | oeisdata/seq/A355/A355509.seq | 32451b8012fb56485e0e0bcad0d94485 |
A355510 | a(n) is the number of monic polynomials of degree n over GF(7) without linear factors. | [
"0",
"0",
"21",
"112",
"819",
"5712",
"39991",
"279936",
"1959552",
"13716864",
"96018048",
"672126336",
"4704884352",
"32934190464",
"230539333248",
"1613775332736",
"11296427329152",
"79074991304064",
"553524939128448",
"3874674573899136",
"27122722017293952"
]
| [
"nonn",
"easy"
]
| 36 | 0 | 3 | null | null | Greyson C. Wesley, Jul 04 2022 | 2022-10-29T11:12:42 | oeisdata/seq/A355/A355510.seq | c981246e6bb05b5feb23843194a0bc24 |
A355511 | a(n) is the number of monic polynomials of degree n over GF(11) without linear factors. | [
"0",
"0",
"55",
"440",
"5170",
"56408",
"620950",
"6830120",
"75131485",
"826446280",
"9090909091",
"100000000000",
"1100000000000",
"12100000000000",
"133100000000000",
"1464100000000000",
"16105100000000000",
"177156100000000000",
"1948717100000000000",
"21435888100000000000",
"235794769100000000000"
]
| [
"nonn"
]
| 14 | 0 | 3 | [
"A355510",
"A355511"
]
| null | Greyson C. Wesley, Jul 04 2022 | 2022-09-07T11:12:16 | oeisdata/seq/A355/A355511.seq | 34eeb047cd3618927e109890fdc04680 |
A355512 | Sum of numerator and denominator in the convergents of the approximation of log(2)/log(3) by a continued fraction. | [
"2",
"3",
"5",
"13",
"31",
"106",
"137",
"791",
"1719",
"40328",
"82375",
"205078",
"287453",
"492531",
"27376658",
"27869189",
"138853414",
"444429431",
"583282845",
"1027712276",
"15998966985",
"17026679261",
"169239080334",
"355504839929",
"1946763279979",
"13982847799782",
"15929611079761",
"29912458879543",
"135579446597933"
]
| [
"nonn"
]
| 16 | 1 | 1 | [
"A005663",
"A005664",
"A102525",
"A355512",
"A355513",
"A355514",
"A355515"
]
| null | Hugo Pfoertner, Jul 05 2022 | 2024-08-02T11:50:49 | oeisdata/seq/A355/A355512.seq | 5b6ac672dbb6510298385d9f10120936 |
A355513 | Sum of numerator and denominator in a rational approximation j/k of q = log(2)/log(3), such that abs(j/k - q) is a new minimum. | [
"2",
"3",
"5",
"8",
"13",
"18",
"31",
"75",
"106",
"137",
"517",
"654",
"791",
"928",
"1719",
"21419",
"23138",
"24857",
"26576",
"28295",
"30014",
"31733",
"33452",
"35171",
"36890",
"38609",
"40328",
"82375",
"205078",
"287453",
"492531",
"14078321",
"14570852",
"15063383",
"15555914",
"16048445",
"16540976",
"17033507",
"17526038",
"18018569"
]
| [
"nonn"
]
| 7 | 1 | 1 | [
"A102525",
"A355512",
"A355513",
"A355514",
"A355515"
]
| null | Hugo Pfoertner, Jul 05 2022 | 2022-07-05T10:35:12 | oeisdata/seq/A355/A355513.seq | 1388557411ff42559d13d860dda90af2 |
A355514 | Sum of numerator and denominator in a rational approximation j/k of q = log(2)/log(3), such that q - j/k is a new minimum, i.e., q is approximated from below. | [
"1",
"3",
"8",
"13",
"44",
"75",
"106",
"243",
"380",
"517",
"654",
"791",
"2510",
"4229",
"5948",
"7667",
"9386",
"11105",
"12824",
"14543",
"16262",
"17981",
"19700",
"21419",
"23138",
"24857",
"26576",
"28295",
"30014",
"31733",
"33452",
"35171",
"36890",
"38609",
"40328",
"122703",
"205078",
"492531",
"27869189",
"166722603",
"305576017"
]
| [
"nonn"
]
| 7 | 1 | 2 | [
"A102525",
"A355240",
"A355512",
"A355513",
"A355514",
"A355515"
]
| null | Hugo Pfoertner, Jul 05 2022 | 2022-07-05T10:34:55 | oeisdata/seq/A355/A355514.seq | 032a269482132f18768d68f462b3ca72 |
A355515 | Sum of numerator and denominator in a rational approximation j/k of q = log(2)/log(3), such that j/k - q is a new minimum, i.e., q is approximated from above. | [
"2",
"5",
"18",
"31",
"137",
"928",
"1719",
"42047",
"82375",
"287453",
"779984",
"1272515",
"1765046",
"2257577",
"2750108",
"3242639",
"3735170",
"4227701",
"4720232",
"5212763",
"5705294",
"6197825",
"6690356",
"7182887",
"7675418",
"8167949",
"8660480",
"9153011",
"9645542",
"10138073",
"10630604",
"11123135",
"11615666",
"12108197"
]
| [
"nonn"
]
| 7 | 1 | 1 | [
"A102525",
"A355512",
"A355513",
"A355514",
"A355515"
]
| null | Hugo Pfoertner, Jul 05 2022 | 2022-07-05T10:34:41 | oeisdata/seq/A355/A355515.seq | 8e66502f46497cd44b8a7decc0e5d332 |
A355516 | a(n) is the number of distinct integer values of Product_{k=1..n} (2 + 1/t_k) with integers t_k > 1. | [
"1",
"2",
"5",
"11",
"29",
"70",
"164",
"392",
"933"
]
| [
"nonn",
"hard",
"more"
]
| 7 | 2 | 2 | [
"A355243",
"A355516",
"A355626",
"A355628"
]
| null | Hugo Pfoertner and Markus Sigg, Jul 16 2022 | 2024-12-22T10:52:43 | oeisdata/seq/A355/A355516.seq | d72601739a8e9bc1e2ddf71938767df8 |
A355517 | Number of nonisomorphic systems enumerated by A334254; that is, the number of inequivalent closure operators on a set of n elements where all singletons are closed. | [
"1",
"2",
"1",
"4",
"50",
"7443",
"95239971"
]
| [
"nonn",
"hard",
"more"
]
| 8 | 0 | 2 | [
"A102896",
"A193674",
"A326960",
"A326961",
"A326979",
"A334254",
"A334255",
"A355517"
]
| null | Dmitry I. Ignatov, Jul 05 2022 | 2025-02-16T08:34:03 | oeisdata/seq/A355/A355517.seq | 0c824aacd15bf2aaab0e0dcacbd7a0c5 |
A355518 | Primes that cannot be represented as 2*p - q where p, q and 2*p^2 - q^2 are prime. | [
"2",
"3",
"5",
"13",
"17",
"37",
"61",
"137"
]
| [
"nonn"
]
| 8 | 1 | 1 | [
"A355518",
"A355521"
]
| null | J. M. Bergot and Robert Israel, Jul 05 2022 | 2022-07-18T19:37:47 | oeisdata/seq/A355/A355518.seq | bacfb177437f757edeb5a6ca8b99d3a1 |
A355519 | Number of valid brackets in an n-round tournament. | [
"1",
"2",
"5",
"19",
"123",
"1457",
"32924",
"1452015",
"126487061",
"21898598245",
"7558601003617",
"5209629536999054",
"7175576970776253311",
"19758953061561609438197",
"108796404018098314291373545",
"1197986411771818785507163602609",
"26381385902615283298043180284145933"
]
| [
"nonn"
]
| 48 | 0 | 2 | [
"A000108",
"A107354",
"A355519"
]
| null | John P. D'Angelo, Jul 05 2022 | 2025-07-01T08:48:46 | oeisdata/seq/A355/A355519.seq | 9aac155c92964a98f1eb25bf729df68c |
A355520 | Number of length-n binary strings having a string attractor of size at most 2. | [
"2",
"4",
"8",
"16",
"32",
"62",
"116",
"206",
"350",
"566",
"886",
"1334",
"1974",
"2846",
"3978",
"5472",
"7398",
"9854",
"12964",
"16804",
"21524"
]
| [
"nonn",
"more"
]
| 27 | 1 | 1 | [
"A339391",
"A339668",
"A355520"
]
| null | Jeffrey Shallit, Jul 05 2022 | 2023-01-14T10:50:03 | oeisdata/seq/A355/A355520.seq | dd60885740c24b226056d21a47fe33bb |
A355521 | Primes that cannot be represented as 2*p+q where p, q and (2*p^2+q^2)/3 are prime. | [
"2",
"3",
"5",
"7",
"13",
"31",
"37",
"97",
"211",
"271"
]
| [
"nonn"
]
| 4 | 1 | 1 | [
"A355518",
"A355521"
]
| null | J. M. Bergot and Robert Israel, Jul 05 2022 | 2022-07-13T07:20:10 | oeisdata/seq/A355/A355521.seq | ee9e89384f1b5b34207318b582a3de41 |
A355522 | Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with maximal difference k, if singletons have maximal difference 0. | [
"2",
"2",
"1",
"3",
"1",
"1",
"2",
"3",
"1",
"1",
"4",
"3",
"2",
"1",
"1",
"2",
"6",
"3",
"2",
"1",
"1",
"4",
"6",
"6",
"2",
"2",
"1",
"1",
"3",
"10",
"6",
"5",
"2",
"2",
"1",
"1",
"4",
"11",
"11",
"6",
"4",
"2",
"2",
"1",
"1",
"2",
"16",
"13",
"10",
"5",
"4",
"2",
"2",
"1",
"1",
"6",
"17",
"19",
"12",
"9",
"4",
"4",
"2",
"2",
"1",
"1",
"2",
"24",
"24",
"18",
"11",
"8",
"4",
"4",
"2",
"2",
"1",
"1"
]
| [
"nonn",
"tabl"
]
| 10 | 2 | 1 | [
"A000005",
"A000041",
"A001522",
"A056239",
"A064428",
"A091602",
"A115720",
"A115994",
"A179254",
"A238352",
"A238353",
"A238354",
"A238710",
"A239455",
"A279945",
"A286469",
"A286470",
"A325404",
"A352827",
"A355522",
"A355524",
"A355526",
"A355532"
]
| null | Gus Wiseman, Jul 08 2022 | 2022-07-14T09:34:50 | oeisdata/seq/A355/A355522.seq | a288923562a8eabee6811e97546b3f08 |
A355523 | Number of distinct differences between adjacent prime indices of n. | [
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"2",
"0",
"1",
"1",
"1",
"0",
"2",
"0",
"2",
"1",
"1",
"0",
"2",
"1",
"1",
"1",
"2",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"2",
"0",
"1",
"1",
"2",
"0",
"2",
"0",
"2",
"2",
"1",
"0",
"2",
"1",
"2",
"1",
"2",
"0",
"2",
"1",
"2",
"1",
"1",
"0",
"2",
"0",
"1",
"2",
"1",
"1",
"2",
"0",
"2",
"1",
"2",
"0",
"2",
"0",
"1",
"2",
"2",
"1",
"2",
"0",
"2",
"1",
"1",
"0",
"3",
"1",
"1",
"1",
"2",
"0",
"2",
"1",
"2",
"1",
"1",
"1",
"2",
"0",
"2",
"2",
"2",
"0",
"2",
"0",
"2",
"1"
]
| [
"nonn"
]
| 18 | 1 | 12 | [
"A001222",
"A008578",
"A056239",
"A066312",
"A238353",
"A238710",
"A252736",
"A279945",
"A286469",
"A286470",
"A287352",
"A320348",
"A325388",
"A325406",
"A351294",
"A352827",
"A355523",
"A355524",
"A355525",
"A355533",
"A355534",
"A355536"
]
| null | Gus Wiseman, Jul 10 2022 | 2025-01-20T10:21:28 | oeisdata/seq/A355/A355523.seq | 9d8425d63d679556cf387cc1ba34db87 |
A355524 | Minimal difference between adjacent prime indices of n > 1, or 0 if n is prime. | [
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"3",
"1",
"0",
"0",
"0",
"0",
"0",
"2",
"4",
"0",
"0",
"0",
"5",
"0",
"0",
"0",
"1",
"0",
"0",
"3",
"6",
"1",
"0",
"0",
"7",
"4",
"0",
"0",
"1",
"0",
"0",
"0",
"8",
"0",
"0",
"0",
"0",
"5",
"0",
"0",
"0",
"2",
"0",
"6",
"9",
"0",
"0",
"0",
"10",
"0",
"0",
"3",
"1",
"0",
"0",
"7",
"1",
"0",
"0",
"0",
"11",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"12",
"0",
"0",
"4",
"13",
"8"
]
| [
"nonn"
]
| 6 | 2 | 9 | [
"A000005",
"A056239",
"A066312",
"A077017",
"A115720",
"A115994",
"A120944",
"A130091",
"A238353",
"A238354",
"A238710",
"A286469",
"A286470",
"A287352",
"A325161",
"A351294",
"A352822",
"A355524",
"A355525",
"A355526",
"A355527",
"A355528",
"A355530",
"A355531",
"A355532",
"A355533",
"A355534",
"A355536"
]
| null | Gus Wiseman, Jul 10 2022 | 2022-07-11T08:33:35 | oeisdata/seq/A355/A355524.seq | b7c16a1debd97b63a8abd917d545bb2f |
A355525 | Minimal difference between adjacent prime indices of n, or k if n is the k-th prime. | [
"1",
"2",
"0",
"3",
"1",
"4",
"0",
"0",
"2",
"5",
"0",
"6",
"3",
"1",
"0",
"7",
"0",
"8",
"0",
"2",
"4",
"9",
"0",
"0",
"5",
"0",
"0",
"10",
"1",
"11",
"0",
"3",
"6",
"1",
"0",
"12",
"7",
"4",
"0",
"13",
"1",
"14",
"0",
"0",
"8",
"15",
"0",
"0",
"0",
"5",
"0",
"16",
"0",
"2",
"0",
"6",
"9",
"17",
"0",
"18",
"10",
"0",
"0",
"3",
"1",
"19",
"0",
"7",
"1",
"20",
"0",
"21",
"11",
"0",
"0",
"1",
"1",
"22",
"0",
"0",
"12"
]
| [
"nonn"
]
| 8 | 2 | 2 | [
"A000040",
"A001522",
"A013929",
"A056239",
"A066312",
"A120944",
"A130091",
"A238352",
"A238353",
"A238709",
"A279945",
"A286469",
"A286470",
"A287352",
"A325160",
"A325161",
"A325351",
"A325352",
"A351294",
"A352822",
"A352827",
"A355524",
"A355525",
"A355526",
"A355527",
"A355528",
"A355530",
"A355531",
"A355532",
"A355533",
"A355534",
"A355536"
]
| null | Gus Wiseman, Jul 10 2022 | 2022-07-11T08:33:43 | oeisdata/seq/A355/A355525.seq | 8975cb479ff3f94364da1e7726622f10 |
A355526 | Maximal difference between adjacent prime indices of n, or k if n is the k-th prime. | [
"1",
"2",
"0",
"3",
"1",
"4",
"0",
"0",
"2",
"5",
"1",
"6",
"3",
"1",
"0",
"7",
"1",
"8",
"2",
"2",
"4",
"9",
"1",
"0",
"5",
"0",
"3",
"10",
"1",
"11",
"0",
"3",
"6",
"1",
"1",
"12",
"7",
"4",
"2",
"13",
"2",
"14",
"4",
"1",
"8",
"15",
"1",
"0",
"2",
"5",
"5",
"16",
"1",
"2",
"3",
"6",
"9",
"17",
"1",
"18",
"10",
"2",
"0",
"3",
"3",
"19",
"6",
"7",
"2",
"20",
"1",
"21",
"11",
"1",
"7",
"1",
"4",
"22",
"2",
"0",
"12"
]
| [
"nonn"
]
| 7 | 2 | 2 | [
"A000005",
"A000040",
"A001522",
"A013929",
"A025475",
"A047966",
"A056239",
"A066312",
"A091602",
"A238353",
"A238709",
"A238710",
"A279945",
"A286469",
"A286470",
"A287352",
"A325160",
"A325161",
"A351294",
"A352822",
"A352827",
"A355524",
"A355525",
"A355526",
"A355527",
"A355528",
"A355530",
"A355532",
"A355533",
"A355534",
"A355536"
]
| null | Gus Wiseman, Jul 10 2022 | 2022-07-11T08:33:48 | oeisdata/seq/A355/A355526.seq | c9e76357f59dc13eee1484491cd2a566 |
A355527 | Squarefree numbers having at least one pair of consecutive prime factors. Numbers n such that the minimal difference between adjacent prime indices of n is 1. | [
"6",
"15",
"30",
"35",
"42",
"66",
"70",
"77",
"78",
"102",
"105",
"114",
"138",
"143",
"154",
"165",
"174",
"186",
"195",
"210",
"221",
"222",
"231",
"246",
"255",
"258",
"282",
"285",
"286",
"318",
"323",
"330",
"345",
"354",
"366",
"385",
"390",
"402",
"426",
"429",
"435",
"437",
"438",
"442",
"455",
"462",
"465",
"474",
"498",
"510",
"534",
"546",
"555",
"570"
]
| [
"nonn"
]
| 9 | 1 | 1 | [
"A000005",
"A000040",
"A001522",
"A005117",
"A013929",
"A055932",
"A056239",
"A066312",
"A120944",
"A130091",
"A238353",
"A238354",
"A286470",
"A287352",
"A325160",
"A325161",
"A352822",
"A352827",
"A355524",
"A355525",
"A355526",
"A355527",
"A355530",
"A355531",
"A355533",
"A355534",
"A355536"
]
| null | Gus Wiseman, Jul 10 2022 | 2022-07-13T20:37:00 | oeisdata/seq/A355/A355527.seq | 144adf3c8c612db2c90b89e1d1877742 |
A355528 | Minimal difference between adjacent 0-prepended prime indices of n > 1. | [
"1",
"2",
"0",
"3",
"1",
"4",
"0",
"0",
"1",
"5",
"0",
"6",
"1",
"1",
"0",
"7",
"0",
"8",
"0",
"2",
"1",
"9",
"0",
"0",
"1",
"0",
"0",
"10",
"1",
"11",
"0",
"2",
"1",
"1",
"0",
"12",
"1",
"2",
"0",
"13",
"1",
"14",
"0",
"0",
"1",
"15",
"0",
"0",
"0",
"2",
"0",
"16",
"0",
"2",
"0",
"2",
"1",
"17",
"0",
"18",
"1",
"0",
"0",
"3",
"1",
"19",
"0",
"2",
"1",
"20",
"0",
"21",
"1",
"0",
"0",
"1",
"1",
"22",
"0",
"0",
"1",
"23"
]
| [
"nonn"
]
| 9 | 2 | 2 | [
"A000040",
"A001522",
"A005117",
"A013929",
"A056239",
"A064428",
"A066312",
"A091602",
"A112798",
"A120944",
"A238353",
"A238354",
"A286469",
"A286470",
"A287352",
"A325161",
"A352822",
"A352827",
"A355524",
"A355525",
"A355526",
"A355527",
"A355528",
"A355530",
"A355531",
"A355532",
"A355533",
"A355534",
"A355536"
]
| null | Gus Wiseman, Jul 10 2022 | 2022-07-13T20:37:09 | oeisdata/seq/A355/A355528.seq | 296969367fe30f3572325bc2ba0e6b35 |
A355529 | Numbers of which it is not possible to choose a different prime factor of each prime index (with multiplicity). | [
"2",
"4",
"6",
"8",
"9",
"10",
"12",
"14",
"16",
"18",
"20",
"21",
"22",
"24",
"25",
"26",
"27",
"28",
"30",
"32",
"34",
"36",
"38",
"40",
"42",
"44",
"45",
"46",
"48",
"49",
"50",
"52",
"54",
"56",
"57",
"58",
"60",
"62",
"63",
"64",
"66",
"68",
"70",
"72",
"74",
"75",
"76",
"78",
"80",
"81",
"82",
"84",
"86",
"88",
"90",
"92",
"94",
"96",
"98",
"99",
"100",
"102",
"104",
"105",
"106"
]
| [
"nonn"
]
| 8 | 1 | 1 | [
"A000720",
"A001221",
"A001222",
"A001414",
"A003963",
"A056239",
"A076610",
"A112798",
"A120383",
"A318979",
"A324850",
"A335433",
"A335448",
"A355529",
"A355535",
"A355731",
"A355732",
"A355733",
"A355739",
"A355740",
"A355741",
"A355744",
"A355745"
]
| null | Gus Wiseman, Jul 24 2022 | 2022-07-24T14:13:39 | oeisdata/seq/A355/A355529.seq | 4a1f02bb91e18afa000b0a64fa02e66f |
A355530 | Squarefree numbers that are either even or have at least one pair of consecutive prime factors. Numbers n such that the minimal difference between adjacent 0-prepended prime indices of n is 1. | [
"2",
"6",
"10",
"14",
"15",
"22",
"26",
"30",
"34",
"35",
"38",
"42",
"46",
"58",
"62",
"66",
"70",
"74",
"77",
"78",
"82",
"86",
"94",
"102",
"105",
"106",
"110",
"114",
"118",
"122",
"130",
"134",
"138",
"142",
"143",
"146",
"154",
"158",
"165",
"166",
"170",
"174",
"178",
"182",
"186",
"190",
"194",
"195",
"202",
"206",
"210",
"214",
"218",
"221",
"222",
"226",
"230"
]
| [
"nonn"
]
| 9 | 1 | 1 | [
"A000005",
"A000040",
"A001522",
"A005117",
"A013929",
"A055932",
"A056239",
"A066312",
"A120944",
"A238352",
"A238354",
"A279945",
"A286469",
"A286470",
"A287352",
"A325160",
"A325161",
"A352822",
"A352827",
"A355524",
"A355525",
"A355526",
"A355527",
"A355530",
"A355531",
"A355533",
"A355534",
"A355536"
]
| null | Gus Wiseman, Jul 10 2022 | 2022-07-13T20:37:13 | oeisdata/seq/A355/A355530.seq | 7ee82329f3e64ae3929341d7bf25fdc4 |
A355531 | Minimal augmented difference between adjacent reversed prime indices of n; a(1) = 0. | [
"0",
"1",
"2",
"1",
"3",
"1",
"4",
"1",
"1",
"1",
"5",
"1",
"6",
"1",
"2",
"1",
"7",
"1",
"8",
"1",
"2",
"1",
"9",
"1",
"1",
"1",
"1",
"1",
"10",
"1",
"11",
"1",
"2",
"1",
"2",
"1",
"12",
"1",
"2",
"1",
"13",
"1",
"14",
"1",
"1",
"1",
"15",
"1",
"1",
"1",
"2",
"1",
"16",
"1",
"3",
"1",
"2",
"1",
"17",
"1",
"18",
"1",
"1",
"1",
"3",
"1",
"19",
"1",
"2",
"1",
"20",
"1",
"21",
"1",
"1",
"1",
"2",
"1",
"22",
"1",
"1",
"1"
]
| [
"nonn"
]
| 10 | 1 | 3 | [
"A001222",
"A008578",
"A013929",
"A056239",
"A112798",
"A124010",
"A129654",
"A243055",
"A243056",
"A286470",
"A307824",
"A325351",
"A325366",
"A325394",
"A355524",
"A355525",
"A355526",
"A355528",
"A355531",
"A355533",
"A355534",
"A355535",
"A355536"
]
| null | Gus Wiseman, Jul 14 2022 | 2022-07-14T17:23:18 | oeisdata/seq/A355/A355531.seq | b23ee4c8ef5de13c43c8969bdf64bae7 |
A355532 | Maximal augmented difference between adjacent reversed prime indices of n; a(1) = 0. | [
"0",
"1",
"2",
"1",
"3",
"2",
"4",
"1",
"2",
"3",
"5",
"2",
"6",
"4",
"2",
"1",
"7",
"2",
"8",
"3",
"3",
"5",
"9",
"2",
"3",
"6",
"2",
"4",
"10",
"2",
"11",
"1",
"4",
"7",
"3",
"2",
"12",
"8",
"5",
"3",
"13",
"3",
"14",
"5",
"2",
"9",
"15",
"2",
"4",
"3",
"6",
"6",
"16",
"2",
"3",
"4",
"7",
"10",
"17",
"2",
"18",
"11",
"3",
"1",
"4",
"4",
"19",
"7",
"8",
"3",
"20",
"2",
"21",
"12",
"2",
"8",
"4",
"5",
"22",
"3",
"2"
]
| [
"nonn"
]
| 8 | 1 | 3 | [
"A000079",
"A001221",
"A001222",
"A008578",
"A056239",
"A065119",
"A066312",
"A112798",
"A124010",
"A129654",
"A243055",
"A243056",
"A286470",
"A307824",
"A325351",
"A325366",
"A325394",
"A355524",
"A355525",
"A355526",
"A355531",
"A355532",
"A355533",
"A355534",
"A355536"
]
| null | Gus Wiseman, Jul 14 2022 | 2022-07-14T17:23:23 | oeisdata/seq/A355/A355532.seq | dfe08b48043780ad5365fdb312a9ee13 |
A355533 | Irregular triangle read by rows where row n lists the differences between adjacent prime indices of n; if n is prime(k), then row n is just (k). | [
"1",
"2",
"0",
"3",
"1",
"4",
"0",
"0",
"0",
"2",
"5",
"0",
"1",
"6",
"3",
"1",
"0",
"0",
"0",
"7",
"1",
"0",
"8",
"0",
"2",
"2",
"4",
"9",
"0",
"0",
"1",
"0",
"5",
"0",
"0",
"0",
"3",
"10",
"1",
"1",
"11",
"0",
"0",
"0",
"0",
"3",
"6",
"1",
"0",
"1",
"0",
"12",
"7",
"4",
"0",
"0",
"2",
"13",
"1",
"2",
"14",
"0",
"4",
"0",
"1",
"8",
"15",
"0",
"0",
"0",
"1",
"0",
"2",
"0"
]
| [
"nonn",
"tabf"
]
| 13 | 2 | 2 | [
"A001222",
"A056239",
"A066312",
"A112798",
"A124010",
"A243056",
"A286469",
"A286470",
"A287352",
"A325160",
"A325328",
"A325351",
"A325352",
"A325368",
"A325390",
"A355523",
"A355524",
"A355525",
"A355526",
"A355531",
"A355533",
"A355534",
"A355535",
"A355536"
]
| null | Gus Wiseman, Jul 12 2022 | 2022-07-14T17:23:27 | oeisdata/seq/A355/A355533.seq | 5d49bcc9f19170074013fd9843a2a0b2 |
A355534 | Irregular triangle read by rows where row n lists the augmented differences of the reversed prime indices of n. | [
"1",
"2",
"1",
"1",
"3",
"2",
"1",
"4",
"1",
"1",
"1",
"1",
"2",
"3",
"1",
"5",
"2",
"1",
"1",
"6",
"4",
"1",
"2",
"2",
"1",
"1",
"1",
"1",
"7",
"1",
"2",
"1",
"8",
"3",
"1",
"1",
"3",
"2",
"5",
"1",
"9",
"2",
"1",
"1",
"1",
"1",
"3",
"6",
"1",
"1",
"1",
"2",
"4",
"1",
"1",
"10",
"2",
"2",
"1",
"11",
"1",
"1",
"1",
"1",
"1",
"4",
"2",
"7",
"1",
"2",
"3",
"1",
"2",
"1",
"1",
"12",
"8",
"1",
"5",
"2",
"3",
"1",
"1",
"1"
]
| [
"nonn",
"tabf"
]
| 9 | 2 | 2 | [
"A001222",
"A056239",
"A066312",
"A091602",
"A112798",
"A124010",
"A129654",
"A243055",
"A243056",
"A252464",
"A286470",
"A287352",
"A307824",
"A325351",
"A325352",
"A325366",
"A325394",
"A355523",
"A355524",
"A355525",
"A355526",
"A355528",
"A355531",
"A355533",
"A355534",
"A355535",
"A355536"
]
| null | Gus Wiseman, Jul 12 2022 | 2022-07-14T17:23:31 | oeisdata/seq/A355/A355534.seq | 742eb7c52ff621c2982d3b735b702895 |
A355535 | Odd numbers of which it is not possible to choose a different prime factor of each prime index. | [
"9",
"21",
"25",
"27",
"45",
"49",
"57",
"63",
"75",
"81",
"99",
"105",
"115",
"117",
"121",
"125",
"133",
"135",
"147",
"153",
"159",
"171",
"175",
"189",
"195",
"207",
"225",
"231",
"243",
"245",
"261",
"273",
"275",
"279",
"285",
"289",
"297",
"315",
"325",
"333",
"343",
"345",
"351",
"357",
"361",
"363",
"369",
"371",
"375",
"387",
"393",
"399",
"405",
"423"
]
| [
"nonn"
]
| 8 | 1 | 1 | [
"A000720",
"A001221",
"A001222",
"A001414",
"A003963",
"A056239",
"A076610",
"A112798",
"A120383",
"A289509",
"A302796",
"A327486",
"A355529",
"A355535",
"A355731",
"A355733",
"A355739",
"A355740",
"A355741",
"A355742",
"A355744"
]
| null | Gus Wiseman, Jul 22 2022 | 2022-07-24T14:13:43 | oeisdata/seq/A355/A355535.seq | ec4259542941da23805192c5ea18f93c |
A355536 | Irregular triangle read by rows where row n lists the differences between adjacent prime indices of n; if n is prime, row n is empty. | [
"0",
"1",
"0",
"0",
"0",
"2",
"0",
"1",
"3",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"2",
"2",
"4",
"0",
"0",
"1",
"0",
"5",
"0",
"0",
"0",
"3",
"1",
"1",
"0",
"0",
"0",
"0",
"3",
"6",
"1",
"0",
"1",
"0",
"7",
"4",
"0",
"0",
"2",
"1",
"2",
"0",
"4",
"0",
"1",
"8",
"0",
"0",
"0",
"1",
"0",
"2",
"0",
"5",
"0",
"5",
"1",
"0",
"0",
"2",
"0",
"0",
"3",
"6",
"9",
"0",
"1",
"1",
"10",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"3",
"1",
"3",
"0",
"6"
]
| [
"nonn",
"tabf"
]
| 15 | 2 | 6 | [
"A001222",
"A056239",
"A066312",
"A112798",
"A124010",
"A129654",
"A243055",
"A243056",
"A286470",
"A287352",
"A325328",
"A325352",
"A325368",
"A325394",
"A355523",
"A355524",
"A355526",
"A355528",
"A355531",
"A355534",
"A355536",
"A358169"
]
| null | Gus Wiseman, Jul 12 2022 | 2022-11-04T19:24:27 | oeisdata/seq/A355/A355536.seq | 6f00b3085ec4997b9fcb1a27ecb2df05 |
A355537 | Number of ways to choose a sequence of prime factors, one of each integer from 2 to n. | [
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"2",
"2",
"4",
"4",
"8",
"8",
"16",
"32",
"32",
"32",
"64",
"64",
"128",
"256",
"512",
"512",
"1024",
"1024",
"2048",
"2048",
"4096",
"4096",
"12288",
"12288",
"12288",
"24576",
"49152",
"98304",
"196608",
"196608",
"393216",
"786432",
"1572864",
"1572864",
"4718592",
"4718592",
"9437184",
"18874368",
"37748736"
]
| [
"nonn"
]
| 5 | 1 | 6 | [
"A000005",
"A000040",
"A000096",
"A000142",
"A000720",
"A001221",
"A001222",
"A001414",
"A002110",
"A003963",
"A013939",
"A056239",
"A066843",
"A070826",
"A076610",
"A112798",
"A131818",
"A327486",
"A355537",
"A355538",
"A355731",
"A355733",
"A355741",
"A355744",
"A355745",
"A355746",
"A355747"
]
| null | Gus Wiseman, Jul 20 2022 | 2022-07-21T07:40:35 | oeisdata/seq/A355/A355537.seq | ee1514d52d0d63d3390009aec057b73d |
A355538 | Partial sum of A001221 (number of distinct prime factors) minus 1, ranging from 2 to n. | [
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"2",
"2",
"3",
"3",
"4",
"5",
"5",
"5",
"6",
"6",
"7",
"8",
"9",
"9",
"10",
"10",
"11",
"11",
"12",
"12",
"14",
"14",
"14",
"15",
"16",
"17",
"18",
"18",
"19",
"20",
"21",
"21",
"23",
"23",
"24",
"25",
"26",
"26",
"27",
"27",
"28",
"29",
"30",
"30",
"31",
"32",
"33",
"34",
"35",
"35",
"37",
"37",
"38",
"39",
"39",
"40",
"42",
"42",
"43",
"44",
"46",
"46"
]
| [
"nonn"
]
| 9 | 1 | 10 | [
"A000005",
"A000096",
"A000142",
"A000720",
"A001221",
"A001222",
"A001414",
"A002110",
"A002541",
"A003963",
"A006218",
"A013939",
"A022559",
"A056239",
"A066843",
"A070826",
"A076610",
"A077597",
"A112798",
"A131818",
"A297155",
"A305054",
"A327486",
"A355537",
"A355538",
"A355731",
"A355733",
"A355741",
"A355744",
"A355745",
"A355746",
"A355747"
]
| null | Gus Wiseman, Jul 23 2022 | 2024-07-07T19:12:53 | oeisdata/seq/A355/A355538.seq | 8cd669f4e5631b8ba23ba1538dddcb67 |
A355539 | a(1) = 1; for n >= 2, a(n) is the earliest occurrence k of the next distinct pair {x(k), y(k)}, where x(k) and y(k) denote the count of zero digits in A355318(k) and A355317(k), respectively. | [
"1",
"6",
"19",
"97",
"103",
"110",
"2065",
"2515",
"3261",
"25562"
]
| [
"nonn",
"base",
"more"
]
| 12 | 1 | 2 | [
"A355317",
"A355318",
"A355539"
]
| null | Xiaofeng Wang, Jul 06 2022 | 2022-08-24T10:00:31 | oeisdata/seq/A355/A355539.seq | 1092a03b27dec8217843db7c3ac39715 |
A355540 | Triangle read by rows. Row n gives the coefficients of Product_{k=0..n} (x - k!) expanded in decreasing powers of x, with row 0 = {1}. | [
"1",
"1",
"-1",
"1",
"-2",
"1",
"1",
"-4",
"5",
"-2",
"1",
"-10",
"29",
"-32",
"12",
"1",
"-34",
"269",
"-728",
"780",
"-288",
"1",
"-154",
"4349",
"-33008",
"88140",
"-93888",
"34560",
"1",
"-874",
"115229",
"-3164288",
"23853900",
"-63554688",
"67633920",
"-24883200",
"1",
"-5914",
"4520189",
"-583918448",
"15971865420",
"-120287210688",
"320383261440",
"-340899840000",
"125411328000"
]
| [
"sign",
"tabl"
]
| 49 | 0 | 5 | [
"A000110",
"A000178",
"A000522",
"A003422",
"A008276",
"A039758",
"A136457",
"A203227",
"A217757",
"A349226",
"A355540"
]
| null | Thomas Scheuerle, Jul 06 2022 | 2022-07-10T16:12:56 | oeisdata/seq/A355/A355540.seq | d834ad1fba9f0ee8844453d49105e764 |
A355541 | Numbers k such that A061201(k) is divisible by k. | [
"1",
"2",
"7",
"31",
"1393",
"5012",
"7649",
"50235",
"147296",
"426606",
"611769",
"3491681",
"9324642",
"11815109",
"53962364",
"82680301",
"96789197",
"230882246",
"378444764",
"1489280093",
"1489280606",
"3651325650",
"5891877914",
"5891877947",
"5891877966",
"58604540872"
]
| [
"nonn",
"more"
]
| 4 | 1 | 2 | [
"A007425",
"A045345",
"A048290",
"A050226",
"A056550",
"A061201",
"A064605",
"A064606",
"A064607",
"A064610",
"A064611",
"A064612",
"A355541"
]
| null | Amiram Eldar, Jul 06 2022 | 2022-07-07T02:07:08 | oeisdata/seq/A355/A355541.seq | a7dadca3adbc458b0c28c982a24a92c8 |
A355542 | Numbers k such that A272718(k) is divisible by k. | [
"1",
"2",
"3",
"11",
"13",
"50",
"81",
"96",
"395",
"640",
"59136",
"65719",
"632621",
"1342813",
"2137073",
"2755370",
"3446370",
"10860093",
"321939569",
"1872591111",
"8858043355"
]
| [
"nonn",
"more"
]
| 4 | 1 | 2 | [
"A018804",
"A045345",
"A048290",
"A050226",
"A056550",
"A064605",
"A064606",
"A064607",
"A064610",
"A064611",
"A064612",
"A272718",
"A355542"
]
| null | Amiram Eldar, Jul 06 2022 | 2022-07-07T02:07:19 | oeisdata/seq/A355/A355542.seq | e49d1c904d691a164dfd1937a9805dac |
A355543 | Numbers k such that the sum of the squares of the odd divisors of k (A050999) is divisible by k. | [
"1",
"65",
"130",
"175",
"260",
"350",
"525",
"1050",
"1105",
"2100",
"2210",
"4420",
"5425",
"8840",
"10850",
"16275",
"20737",
"21700",
"30225",
"32045",
"32550",
"41474",
"60450",
"64090",
"65100",
"70525",
"82948",
"86025",
"103685",
"120900",
"128180",
"130200",
"141050",
"171275",
"172050",
"200725",
"207370",
"207553",
"211575"
]
| [
"nonn"
]
| 8 | 1 | 2 | [
"A007691",
"A046762",
"A050999",
"A355543"
]
| null | Amiram Eldar, Jul 06 2022 | 2022-07-07T08:12:55 | oeisdata/seq/A355/A355543.seq | b8ac50a8bb71da4804ef6cfc21b40da7 |
A355544 | Numbers k such that the arithmetic mean of the first k squarefree numbers is an integer. | [
"1",
"3",
"6",
"37",
"75",
"668",
"1075",
"37732",
"742767",
"1811865",
"3140083",
"8937770",
"108268896",
"282951249",
"633932500",
"1275584757",
"60455590365"
]
| [
"nonn",
"more"
]
| 10 | 1 | 2 | [
"A005117",
"A045345",
"A048290",
"A050226",
"A056550",
"A064605",
"A064606",
"A064607",
"A064610",
"A064611",
"A064612",
"A173143",
"A355544"
]
| null | Amiram Eldar, Jul 06 2022 | 2022-07-07T02:07:43 | oeisdata/seq/A355/A355544.seq | 24532fc4b078410c68b5ab1691937234 |
A355545 | Primes p that satisfy q^(p-1) == 1 (mod p^2), i.e., are base-q Wieferich primes, for a prime q dividing p-1. | [
"1093",
"3511",
"20771",
"1006003",
"1747591",
"5395561",
"53471161"
]
| [
"nonn",
"hard",
"more"
]
| 7 | 1 | 1 | [
"A355545",
"A355546"
]
| null | Felix Fröhlich, Jul 06 2022 | 2022-07-07T02:09:45 | oeisdata/seq/A355/A355545.seq | cc55f3ff53c3cd0988dcd92581e51369 |
A355546 | Primes p that satisfy q^(p-1) == 1 (mod p^2), i.e., are base-q Wieferich primes, for a prime q dividing p+1. | [
"11",
"1093",
"3511",
"7195291",
"11642831",
"13703077",
"112955593",
"5857727461"
]
| [
"nonn",
"hard",
"more"
]
| 10 | 1 | 1 | [
"A355545",
"A355546"
]
| null | Felix Fröhlich, Jul 06 2022 | 2022-07-10T16:07:27 | oeisdata/seq/A355/A355546.seq | fc322de1ebac413e28cf216754e84494 |
A355547 | Numbers k such that x^2 - s*x + p has noninteger roots with s sum of digits of k and p product of digits of k. | [
"1",
"2",
"3",
"5",
"6",
"7",
"8",
"9",
"111",
"112",
"113",
"114",
"115",
"116",
"117",
"118",
"119",
"121",
"123",
"124",
"125",
"126",
"127",
"128",
"129",
"131",
"132",
"133",
"135",
"136",
"137",
"138",
"139",
"141",
"142",
"144",
"145",
"147",
"148",
"149",
"151",
"152",
"153",
"154",
"155",
"156",
"157",
"159",
"161",
"162",
"163",
"165",
"167",
"168",
"169",
"171"
]
| [
"nonn",
"base"
]
| 17 | 1 | 2 | [
"A007953",
"A007954",
"A052382",
"A355497",
"A355547"
]
| null | Stefano Spezia and Jean-Marc Rebert, Jul 06 2022 | 2022-07-12T08:40:03 | oeisdata/seq/A355/A355547.seq | edebf7b5c515bec01ea0ec6b37e5af8d |
A355548 | a(n) is the smallest number k such that k occurs in the Reverse-and-Add trajectories of exactly n positive integers less than k. | [
"0",
"2",
"4",
"8",
"16",
"33",
"55",
"404",
"44",
"646",
"99",
"66",
"848",
"909",
"888",
"110",
"88",
"1090",
"132",
"176",
"1089",
"363",
"3443",
"10010",
"121",
"1881",
"242",
"1991",
"4323",
"3982",
"1595",
"726",
"3553",
"2992",
"3663",
"7447",
"484",
"1353",
"46064",
"6446",
"5665",
"10769",
"3993",
"2662",
"4103",
"2882",
"968",
"1111",
"1837",
"7667"
]
| [
"nonn",
"base"
]
| 9 | 0 | 2 | [
"A298972",
"A355548",
"A355550"
]
| null | Felix Fröhlich, Jul 06 2022 | 2022-07-07T05:03:16 | oeisdata/seq/A355/A355548.seq | 569c778a19fbd3e1c2e45208d8d5f9b7 |
A355549 | Number of positive integers k with 1 < k < n such that n occurs in the Reverse-and-Multiply trajectory of k. | [
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0"
]
| [
"nonn",
"base"
]
| 6 | 0 | 17 | [
"A355549",
"A355550"
]
| null | Felix Fröhlich, Jul 06 2022 | 2022-07-07T02:10:18 | oeisdata/seq/A355/A355549.seq | 37d51dae81d877b38bde9eb1ad2799d9 |
A355550 | a(n) is the smallest number k such that k occurs in the Reverse-and-Multiply trajectories of exactly n positive integers less than k. | [
"0",
"4",
"16",
"1300",
"976",
"40300",
"662704",
"12251200"
]
| [
"nonn",
"base",
"hard",
"more"
]
| 9 | 0 | 2 | [
"A355548",
"A355549",
"A355550"
]
| null | Felix Fröhlich, Jul 06 2022 | 2022-07-07T05:03:22 | oeisdata/seq/A355/A355550.seq | 7998bf2f86443a096b320950e696996f |
A355551 | Number of ways to select 3 or more collinear points from a 3 X n grid. | [
"1",
"2",
"8",
"23",
"61",
"144",
"322",
"689",
"1439",
"2954",
"6004",
"12123",
"24385",
"48932",
"98054",
"196325",
"392899",
"786078",
"1572472",
"3145295",
"6290981",
"12582392",
"25165258",
"50331033",
"100662631",
"201325874",
"402652412",
"805305539",
"1610611849",
"3221224524",
"6442449934"
]
| [
"nonn",
"easy"
]
| 44 | 1 | 2 | [
"A002662",
"A355551",
"A355552",
"A355553"
]
| null | Thomas Garrison, Jul 06 2022 | 2024-10-19T18:07:02 | oeisdata/seq/A355/A355551.seq | bc1cee7f1d16d9861aa29156d0d5afab |
A355552 | Number of ways to select 3 or more collinear points from a 4 X n grid. | [
"5",
"10",
"23",
"54",
"117",
"240",
"497",
"1006",
"2027",
"4074",
"8169",
"16356",
"32741",
"65506",
"131039",
"262110",
"524253",
"1048536",
"2097113",
"4194262",
"8388563",
"16777170",
"33554385",
"67108812",
"134217677",
"268435402",
"536870855",
"1073741766",
"2147483589",
"4294967232",
"8589934529",
"17179869118",
"34359738299"
]
| [
"nonn",
"easy"
]
| 32 | 1 | 1 | [
"A000982",
"A355552",
"A355553"
]
| null | Thomas Garrison, Jul 14 2022 | 2023-01-17T04:35:14 | oeisdata/seq/A355/A355552.seq | c0c8db578263a1eb0c78abc01e6db6ee |
A355553 | Number of ways to select 3 or more collinear points from an n X n grid. | [
"0",
"0",
"8",
"54",
"228",
"708",
"1980",
"4890",
"11528",
"26004",
"57384",
"123786",
"265596",
"563664",
"1192220",
"2511474",
"5279208",
"11064216",
"23156448",
"48361110",
"100859180",
"209996772",
"436635396",
"906562842",
"1879950384",
"3893566872",
"8054935784",
"16645591974",
"34363631412",
"70872295524",
"146036933100"
]
| [
"nonn"
]
| 25 | 1 | 3 | [
"A000982",
"A355551",
"A355552",
"A355553"
]
| null | Thomas Garrison, Jul 14 2022 | 2025-03-22T23:34:36 | oeisdata/seq/A355/A355553.seq | 451d47f8eb18b43f28ebf9d1e8042cde |
A355554 | Sexagesimal expansion of 180/Pi. | [
"57",
"17",
"44",
"48",
"22",
"29",
"22",
"22",
"7",
"32",
"46",
"14",
"58",
"15",
"20",
"17",
"32",
"7",
"4",
"43",
"35",
"36",
"12",
"35",
"9",
"17",
"4",
"12",
"9",
"40",
"27",
"27",
"26",
"48",
"25",
"12",
"52",
"48",
"52",
"18",
"21",
"42",
"13",
"53",
"32",
"25",
"44",
"46",
"54",
"25",
"56",
"34",
"21",
"51",
"6",
"35",
"33",
"34",
"49",
"6",
"43",
"10",
"36",
"31",
"50",
"20",
"31"
]
| [
"nonn",
"cons",
"base"
]
| 26 | 1 | 1 | [
"A000796",
"A060707",
"A072097",
"A355554"
]
| null | Carmine Suriano, Jan 17 2023 | 2023-02-03T20:51:52 | oeisdata/seq/A355/A355554.seq | f477e36cc1dbd12ad831b2d1f47e3d75 |
A355555 | a(n) is the first prime prime(j) such that prime(j) + prime(k) + prime(k+1) is prime for k = j+1..j+n but not k = j+n+1. | [
"2",
"17",
"5",
"7",
"53",
"197",
"848699",
"2802313",
"24281267",
"54927644129",
"29566753319"
]
| [
"nonn",
"more",
"hard"
]
| 19 | 0 | 1 | [
"A000040",
"A355555"
]
| null | J. M. Bergot and Robert Israel, Jul 06 2022 | 2022-07-13T07:20:27 | oeisdata/seq/A355/A355555.seq | f30d54b03ecdb9cfe1d6b9dc49c4cb92 |
A355556 | a(n) is the smallest position in the subtract-a-factorial game for which the value of the Sprague-Grundy function (or nim-value) is n. | [
"0",
"1",
"2",
"6",
"5050",
"5056",
"5064",
"40520",
"40696",
"630373",
"40348521",
"483383076",
"6302798387"
]
| [
"nonn",
"more"
]
| 9 | 0 | 3 | [
"A014587",
"A019307",
"A297963",
"A355556",
"A355557"
]
| null | Pontus von Brömssen, Jul 09 2022 | 2022-07-09T15:30:52 | oeisdata/seq/A355/A355556.seq | 73c111bc396a2186b5d89867eb736ce8 |
A355557 | a(n) is the smallest position in the subtract-a-prime game for which the value of the Sprague-Grundy function (or nim-value) is n. | [
"0",
"2",
"4",
"6",
"8",
"19",
"21",
"23",
"43",
"48",
"67",
"156"
]
| [
"nonn",
"more"
]
| 8 | 0 | 2 | [
"A014589",
"A019307",
"A297963",
"A355556",
"A355557"
]
| null | Pontus von Brömssen, Jul 09 2022 | 2024-04-09T15:07:36 | oeisdata/seq/A355/A355557.seq | 71d3429e003ce48988a5aafd3bf15487 |
A355558 | The independence polynomial of the n-halved cube graph evaluated at -1. | [
"0",
"-1",
"-3",
"-3",
"25",
"-135",
"-2079",
"1879969"
]
| [
"sign",
"more"
]
| 15 | 1 | 3 | [
"A005864",
"A288943",
"A355226",
"A355558"
]
| null | Christopher Flippen, Jul 06 2022 | 2022-07-17T23:28:18 | oeisdata/seq/A355/A355558.seq | d1f5b051d90432e74e0511c50d1dded9 |
A355559 | The independence polynomial of the n-folded cube graph evaluated at -1. | [
"-1",
"-3",
"-1",
"9",
"131",
"253",
"25607"
]
| [
"sign",
"more"
]
| 20 | 2 | 2 | [
"A058622",
"A290888",
"A355227",
"A355559"
]
| null | Christopher Flippen, Jul 06 2022 | 2022-10-13T13:08:02 | oeisdata/seq/A355/A355559.seq | 2b7a552d3e78c44ec12c0a2d6c032d27 |
A355560 | Number of configurations of the 8 X 2 variant of the sliding block 15-puzzle that require a minimum of n moves to be reached, starting with the empty square in one of the corners. | [
"1",
"2",
"3",
"6",
"11",
"20",
"37",
"68",
"125",
"227",
"394",
"672",
"1151",
"1983",
"3373",
"5703",
"9508",
"15640",
"25293",
"40732",
"65032",
"103390",
"162830",
"255543",
"397013",
"613104",
"938477",
"1431068",
"2162964",
"3255845",
"4860428",
"7223861",
"10649867",
"15628073",
"22747718",
"32963838",
"47397514",
"67825949",
"96317070"
]
| [
"nonn",
"fini",
"full"
]
| 16 | 0 | 2 | [
"A090033",
"A090034",
"A090035",
"A090036",
"A090167",
"A346736",
"A355560"
]
| null | Ben Whitmore, Jul 06 2022 | 2022-09-04T12:24:48 | oeisdata/seq/A355/A355560.seq | 80c1bb63ee4c7eb6aa8f77ff159ec3a1 |
A355561 | Number of n-tuples (p_1, p_2, ..., p_n) of positive integers such that p_{i-1} <= p_i <= n^(i-1). | [
"1",
"1",
"2",
"24",
"3236",
"7173370",
"330736663032",
"382149784071841422",
"12983632019302863224103688",
"14912674110246473369128526689667934",
"654972005961623890774153743504185499487372010",
"1228018869478731662593970252736815943512232438560622483276"
]
| [
"nonn"
]
| 20 | 0 | 3 | [
"A076113",
"A090588",
"A107354",
"A355519",
"A355561",
"A355576"
]
| null | Alois P. Heinz, Jul 06 2022 | 2022-07-08T19:06:05 | oeisdata/seq/A355/A355561.seq | 013475bed7f017b6df7d819dd20b576e |
A355562 | Number of blunt polypons with n cells. | [
"0",
"1",
"1",
"2",
"1",
"5",
"3",
"10",
"13",
"31",
"44",
"103",
"169",
"360",
"643",
"1317",
"2479",
"5036",
"9716",
"19592",
"38511",
"77465",
"153686",
"309093",
"617426",
"1243392",
"2496186",
"5035612"
]
| [
"nonn",
"nice",
"hard",
"more"
]
| 8 | 1 | 4 | [
"A057784",
"A057785",
"A355562"
]
| null | Sean A. Irvine, Jul 06 2022 | 2022-07-07T02:04:47 | oeisdata/seq/A355/A355562.seq | 949fecaad75f3d034257df131f496126 |
A355563 | a(n) is the number of numbers that divide the sum of the digits of their n-th powers. | [
"1",
"9",
"4",
"9",
"9",
"7",
"10",
"14",
"10",
"12",
"13",
"10",
"12",
"19",
"11",
"15",
"14",
"15",
"14",
"16",
"14",
"13",
"14",
"12",
"11",
"23",
"13",
"11",
"17",
"15",
"10",
"16",
"18",
"18",
"10",
"13",
"10",
"17",
"15",
"16",
"19",
"12",
"20",
"19",
"20",
"17",
"19",
"21",
"14",
"27",
"15",
"18",
"16",
"16",
"20",
"10",
"14",
"20",
"15",
"11",
"17",
"23",
"14",
"15",
"14",
"19",
"15"
]
| [
"nonn",
"base"
]
| 6 | 0 | 2 | [
"A046019",
"A355370",
"A355563"
]
| null | Mohammed Yaseen, Jul 07 2022 | 2022-07-14T17:25:33 | oeisdata/seq/A355/A355563.seq | 0cc3586d48fdd961209a9f03d000a562 |
A355564 | Triangle read by rows: T(n,k) = n*(1+2*k) - k*(1+k), n >= 1, 0 <= k <= n-1. | [
"1",
"2",
"4",
"3",
"7",
"9",
"4",
"10",
"14",
"16",
"5",
"13",
"19",
"23",
"25",
"6",
"16",
"24",
"30",
"34",
"36",
"7",
"19",
"29",
"37",
"43",
"47",
"49",
"8",
"22",
"34",
"44",
"52",
"58",
"62",
"64",
"9",
"25",
"39",
"51",
"61",
"69",
"75",
"79",
"81",
"10",
"28",
"44",
"58",
"70",
"80",
"88",
"94",
"98",
"100",
"11",
"31",
"49",
"65",
"79",
"91",
"101",
"109",
"115",
"119",
"121"
]
| [
"nonn",
"easy",
"tabl"
]
| 12 | 1 | 2 | [
"A095832",
"A212012",
"A355564"
]
| null | Lucas B. Vieira, Jul 07 2022 | 2022-08-30T14:27:39 | oeisdata/seq/A355/A355564.seq | c0190f84c17a1ab8eea091769c3a9801 |
A355565 | T(j,k) are the numerators s in the representation R = s/t + (2/Pi)*u/v of the resistance between two nodes separated by the distance vector (j,k) in an infinite square lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= j, is a triangle read by rows. | [
"0",
"1",
"0",
"2",
"-1",
"0",
"17",
"-4",
"1",
"0",
"40",
"-49",
"6",
"-1",
"0",
"401",
"-140",
"97",
"-8",
"1",
"0",
"1042",
"-1569",
"336",
"-161",
"10",
"-1",
"0",
"11073",
"-4376",
"4321",
"-660",
"241",
"-12",
"1",
"0",
"29856",
"-48833",
"13342",
"-9681",
"1144",
"-337",
"14",
"-1",
"0",
"325441",
"-136488",
"160929",
"-33188",
"18929",
"-1820",
"449",
"-16",
"1",
"0"
]
| [
"tabl",
"frac",
"sign"
]
| 54 | 0 | 4 | [
"A025547",
"A025550",
"A089165",
"A131406",
"A211074",
"A280079",
"A280317",
"A355565",
"A355566",
"A355567",
"A355585",
"A355586",
"A355587",
"A355588",
"A355953",
"A355955",
"A356201",
"A356202"
]
| null | Hugo Pfoertner, Jul 07 2022 | 2022-09-09T14:50:53 | oeisdata/seq/A355/A355565.seq | 29c88c78ee7f8c8956df5f1ee5c12d60 |
A355566 | T(j,k) are the numerators u in the representation R = s/t + (2/Pi)*u/v of the resistance between two nodes separated by the distance vector (j,k) in an infinite square lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= j, is a triangle read by rows. | [
"0",
"0",
"1",
"-2",
"2",
"4",
"-12",
"23",
"2",
"23",
"-184",
"40",
"-118",
"12",
"176",
"-940",
"3323",
"-1118",
"499",
"20",
"563",
"-24526",
"1234",
"-18412",
"13462",
"-626",
"118",
"6508",
"-130424",
"721937",
"-71230",
"327143",
"-1312",
"14369",
"262",
"88069",
"-4924064",
"191776",
"-6601046",
"2395676",
"-888568",
"131972",
"-300766",
"1624",
"91072"
]
| [
"tabl",
"frac",
"sign"
]
| 21 | 0 | 4 | [
"A131406",
"A350669",
"A355565",
"A355566",
"A355567"
]
| null | Hugo Pfoertner, Jul 07 2022 | 2022-08-01T23:16:11 | oeisdata/seq/A355/A355566.seq | e1ce509ad6da8a91c77120975ebe0aca |
A355567 | T(j,k) are the denominators v in the representation R = s/t + (2/Pi)*u/v of the resistance between two nodes separated by the distance vector (j,k) in an infinite square lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= j, is a triangle read by rows. | [
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"3",
"3",
"15",
"3",
"1",
"15",
"5",
"105",
"3",
"15",
"15",
"35",
"21",
"315",
"15",
"1",
"35",
"105",
"45",
"45",
"3465",
"15",
"105",
"21",
"315",
"7",
"693",
"231",
"45045",
"105",
"5",
"315",
"315",
"495",
"495",
"15015",
"585",
"45045",
"7",
"315",
"45",
"3465",
"3465",
"45045",
"45045",
"15015",
"385",
"765765",
"315",
"35",
"3465",
"495",
"45045",
"6435",
"15015",
"45045",
"765765",
"9945",
"14549535"
]
| [
"nonn",
"tabl",
"frac"
]
| 8 | 0 | 6 | [
"A131406",
"A350670",
"A355565",
"A355566",
"A355567"
]
| null | Hugo Pfoertner, Jul 07 2022 | 2022-08-01T23:16:29 | oeisdata/seq/A355/A355567.seq | d9b2e8de6d2826d204c9c237381cbf24 |
A355568 | Numbers k > 4 in a Collatz trajectory reaching k after starting at k-1. | [
"8",
"10",
"16",
"20",
"26",
"34",
"40",
"52",
"92",
"122",
"160",
"167",
"184",
"244",
"251",
"334",
"377",
"412",
"433",
"488",
"502",
"650",
"668",
"866",
"890",
"976",
"1154",
"1186",
"1300",
"1336",
"1732",
"1780",
"2308",
"3644",
"4858",
"7288"
]
| [
"nonn",
"more"
]
| 18 | 1 | 1 | [
"A006370",
"A006577",
"A070991",
"A070993",
"A355239",
"A355240",
"A355568",
"A355569"
]
| null | Hugo Pfoertner, Jul 10 2022 | 2022-10-14T08:54:59 | oeisdata/seq/A355/A355568.seq | 08c4179852ce8465dc34614f19a2674a |
A355569 | Numbers k > 4 in a Collatz trajectory reaching k after starting at k+1. | [
"5",
"8",
"10",
"13",
"16",
"17",
"38",
"40",
"46",
"53",
"56",
"58",
"61",
"70",
"80",
"88",
"106",
"107",
"160",
"251",
"283",
"377",
"638",
"650",
"958",
"976",
"1367",
"1438",
"1822",
"2158",
"2429",
"2734",
"3238",
"4102",
"4616",
"4858",
"6154",
"7288",
"9232"
]
| [
"nonn",
"more"
]
| 14 | 1 | 1 | [
"A006370",
"A006577",
"A070991",
"A070993",
"A355239",
"A355240",
"A355568",
"A355569"
]
| null | Hugo Pfoertner, Jul 10 2022 | 2022-10-14T08:54:53 | oeisdata/seq/A355/A355569.seq | c5d2606c5c6996d65c0f1638cd4bd37e |
A355570 | Regular triangle of certain polynomial expansion coefficients for the n-th power series. | [
"1",
"0",
"1",
"1",
"-2",
"2",
"0",
"5",
"-10",
"6",
"1",
"-10",
"40",
"-54",
"24",
"0",
"21",
"-140",
"336",
"-336",
"120",
"1",
"-42",
"462",
"-1764",
"3024",
"-2400",
"720",
"0",
"85",
"-1470",
"8442",
"-22176",
"29520",
"-19440",
"5040",
"1",
"-170",
"4580",
"-38178",
"144648",
"-288000",
"313200",
"-176400",
"40320",
"0",
"341",
"-14080",
"166452",
"-875952",
"2451240",
"-3920400",
"3603600",
"-1774080",
"362880"
]
| [
"sign",
"tabl"
]
| 15 | 2 | 5 | [
"A000142",
"A202365",
"A355570"
]
| null | Michel Marcus, Jul 07 2022 | 2022-08-24T08:51:14 | oeisdata/seq/A355/A355570.seq | d0662d2083a09c00baadbe2db61fcf70 |
A355571 | Complement of A007956: numbers not of the form P(k)/k where P(n) is the product of the divisors of n. | [
"4",
"9",
"12",
"16",
"18",
"20",
"24",
"25",
"28",
"30",
"32",
"36",
"40",
"42",
"44",
"45",
"48",
"49",
"50",
"52",
"54",
"56",
"60",
"63",
"66",
"68",
"70",
"72",
"75",
"76",
"78",
"80",
"81",
"84",
"88",
"90",
"92",
"96",
"98",
"99",
"100",
"102",
"104",
"105",
"108",
"110",
"112",
"114",
"116",
"117",
"120",
"121",
"124",
"126",
"128",
"130",
"132",
"135",
"136",
"138",
"140",
"147",
"148",
"150",
"152"
]
| [
"nonn"
]
| 17 | 1 | 1 | [
"A001248",
"A007304",
"A007956",
"A030514",
"A050997",
"A052485",
"A054753",
"A065036",
"A085986",
"A106543",
"A355571"
]
| null | Luca Onnis, Jul 07 2022 | 2022-07-15T20:40:18 | oeisdata/seq/A355/A355571.seq | e29bcc16614109f622aaf16f9fdd59c1 |
A355572 | Largest LCM of partitions of n into odd parts. | [
"1",
"1",
"3",
"3",
"5",
"5",
"7",
"15",
"15",
"21",
"21",
"35",
"35",
"45",
"105",
"105",
"105",
"105",
"165",
"165",
"315",
"315",
"385",
"385",
"495",
"1155",
"1155",
"1365",
"1365",
"1365",
"1365",
"3465",
"3465",
"4095",
"4095",
"5005",
"5005",
"6435",
"15015",
"15015",
"15015",
"15015",
"19635",
"19635",
"45045",
"45045",
"45045",
"45045",
"58905",
"58905",
"69615",
"69615"
]
| [
"nonn"
]
| 16 | 1 | 3 | [
"A000793",
"A051593",
"A159685",
"A355572",
"A355573"
]
| null | Torsten Muetze, Jul 07 2022 | 2022-07-13T07:23:42 | oeisdata/seq/A355/A355572.seq | b6a5113f0097eae2b3dd1a7b1fca5a73 |
A355573 | Largest LCM of partitions of n with a nonzero even number of even parts. | [
"2",
"2",
"4",
"6",
"6",
"12",
"12",
"20",
"30",
"30",
"60",
"60",
"84",
"84",
"140",
"210",
"210",
"420",
"420",
"420",
"420",
"840",
"840",
"1260",
"1260",
"1540",
"2310",
"2520",
"4620",
"4620",
"5460",
"5460",
"9240",
"9240",
"13860",
"13860",
"16380",
"16380",
"27720",
"30030",
"32760",
"60060",
"60060",
"60060",
"60060",
"120120",
"120120",
"180180",
"180180",
"180180",
"180180"
]
| [
"nonn"
]
| 14 | 4 | 1 | [
"A000793",
"A051593",
"A159685",
"A355572",
"A355573"
]
| null | Torsten Muetze, Jul 07 2022 | 2022-07-13T07:23:26 | oeisdata/seq/A355/A355573.seq | 1c6751e06622d1a4bbd3bd6f150df766 |
A355574 | Number of nonnegative integers k with n digits such that x^2 - s*x + p has only integer roots, where s and p denote the sum and product of the digits of k respectively. | [
"2",
"90",
"223",
"2686",
"31601",
"370894",
"4220160",
"46962379",
"512600193"
]
| [
"nonn",
"base",
"hard",
"more"
]
| 20 | 1 | 1 | [
"A007953",
"A007954",
"A063945",
"A355497",
"A355547",
"A355574"
]
| null | Stefano Spezia, Jul 07 2022 | 2025-02-26T08:54:33 | oeisdata/seq/A355/A355574.seq | 0c24e516da10a62758284438a71c7b28 |
A355575 | a(n) = n! * Sum_{k=0..floor(n/3)} k^(n - 3*k)/k!. | [
"1",
"0",
"0",
"6",
"24",
"120",
"1080",
"10080",
"120960",
"1874880",
"34473600",
"738460800",
"17982518400",
"489858969600",
"14834839219200",
"498452777222400",
"18583796335104000",
"768773914900992000",
"35220800475250790400",
"1779227869201400217600",
"98469904378626772992000"
]
| [
"nonn"
]
| 123 | 0 | 4 | [
"A292889",
"A345747",
"A352945",
"A354436",
"A355575"
]
| null | Seiichi Manyama, Sep 17 2022 | 2024-11-24T23:08:33 | oeisdata/seq/A355/A355575.seq | c8f07a2be55fa81b8ad8c5edc65e4d24 |
A355576 | Number A(n,k) of n-tuples (p_1, p_2, ..., p_n) of positive integers such that p_{i-1} <= p_i <= k^(i-1); square array A(n,k), n>=0, k>=0, read by antidiagonals. | [
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"2",
"1",
"0",
"1",
"1",
"3",
"7",
"1",
"0",
"1",
"1",
"4",
"24",
"44",
"1",
"0",
"1",
"1",
"5",
"58",
"541",
"516",
"1",
"0",
"1",
"1",
"6",
"115",
"3236",
"35649",
"11622",
"1",
"0",
"1",
"1",
"7",
"201",
"12885",
"713727",
"6979689",
"512022",
"1",
"0",
"1",
"1",
"8",
"322",
"39656",
"7173370",
"627642640",
"4085743032",
"44588536",
"1",
"0"
]
| [
"nonn",
"tabl"
]
| 27 | 0 | 13 | [
"A000012",
"A001477",
"A081436",
"A107354",
"A109055",
"A109056",
"A109057",
"A109058",
"A109059",
"A109060",
"A109061",
"A354608",
"A355561",
"A355576"
]
| null | Alois P. Heinz, Jul 07 2022 | 2022-09-21T10:39:52 | oeisdata/seq/A355/A355576.seq | 656b0b024913bff6507b7ea5f575aa42 |
A355577 | Primes p such that 5*p+6, 5*p+12, 5*p+18 and 5*p+24 are all primes. | [
"7",
"11",
"127",
"347",
"659",
"1019",
"2689",
"4663",
"4817",
"5233",
"8387",
"13997",
"18257",
"19051",
"19181",
"23909",
"24109",
"28211",
"34483",
"38287",
"39761",
"41203",
"44647",
"45767",
"51829",
"57089",
"64019",
"70207",
"72671",
"73091",
"96821",
"100237",
"101021",
"101119",
"102607",
"102967",
"104231",
"120779",
"121171",
"126851",
"127541",
"130547",
"135727"
]
| [
"nonn"
]
| 10 | 1 | 1 | null | null | J. M. Bergot and Robert Israel, Jul 08 2022 | 2022-07-13T13:18:19 | oeisdata/seq/A355/A355577.seq | 7b9a76d250f355072ae98db441014509 |
A355578 | Numbers whose sum of 3-smooth divisors sets a new record. | [
"1",
"2",
"3",
"4",
"6",
"8",
"12",
"16",
"18",
"24",
"32",
"36",
"48",
"64",
"72",
"96",
"108",
"144",
"192",
"216",
"288",
"324",
"384",
"432",
"576",
"648",
"768",
"864",
"972",
"1152",
"1296",
"1536",
"1728",
"1944",
"2304",
"2592",
"2916",
"3072",
"3456",
"3888",
"4608",
"5184",
"5832",
"6912",
"7776",
"8748",
"9216",
"10368",
"11664",
"13824",
"15552",
"17496"
]
| [
"nonn"
]
| 18 | 1 | 2 | [
"A000203",
"A002093",
"A003586",
"A072079",
"A309015",
"A355578",
"A355579"
]
| null | Amiram Eldar, Jul 08 2022 | 2022-07-08T15:56:00 | oeisdata/seq/A355/A355578.seq | 61bc0e26507112b0c0c756b8f8af6c25 |
A355579 | Numbers k such that A072079(k)/k sets a new record. | [
"1",
"2",
"4",
"6",
"12",
"24",
"36",
"48",
"72",
"144",
"288",
"432",
"864",
"1728",
"2592",
"3456",
"5184",
"10368",
"20736",
"31104",
"41472",
"62208",
"124416",
"248832",
"373248",
"746496",
"1492992",
"2239488",
"2985984",
"4478976",
"8957952",
"17915904",
"26873856",
"53747712",
"107495424",
"161243136",
"214990848",
"322486272"
]
| [
"nonn"
]
| 10 | 1 | 2 | [
"A000203",
"A003586",
"A004394",
"A072079",
"A355578",
"A355579"
]
| null | Amiram Eldar, Jul 08 2022 | 2022-07-09T15:29:03 | oeisdata/seq/A355/A355579.seq | bec9583cbb529ba9cfc843d045e9f1e6 |
A355580 | Powerful 3-smooth numbers: numbers of the form 2^i * 3^j with i, j != 1. | [
"1",
"4",
"8",
"9",
"16",
"27",
"32",
"36",
"64",
"72",
"81",
"108",
"128",
"144",
"216",
"243",
"256",
"288",
"324",
"432",
"512",
"576",
"648",
"729",
"864",
"972",
"1024",
"1152",
"1296",
"1728",
"1944",
"2048",
"2187",
"2304",
"2592",
"2916",
"3456",
"3888",
"4096",
"4608",
"5184",
"5832",
"6561",
"6912",
"7776",
"8192",
"8748",
"9216",
"10368",
"11664"
]
| [
"nonn",
"easy"
]
| 11 | 1 | 2 | [
"A000244",
"A001694",
"A003586",
"A007283",
"A008776",
"A151821",
"A355580",
"A355581"
]
| null | Amiram Eldar, Jul 08 2022 | 2022-07-10T03:56:33 | oeisdata/seq/A355/A355580.seq | 51d4c16cdd1197f76a65b19c80aa5f60 |
A355581 | Exponentially-odd 3-smooth numbers: number of the form 2^i * 3^j where i and j are either 0 or odd. | [
"1",
"2",
"3",
"6",
"8",
"24",
"27",
"32",
"54",
"96",
"128",
"216",
"243",
"384",
"486",
"512",
"864",
"1536",
"1944",
"2048",
"2187",
"3456",
"4374",
"6144",
"7776",
"8192",
"13824",
"17496",
"19683",
"24576",
"31104",
"32768",
"39366",
"55296",
"69984",
"98304",
"124416",
"131072",
"157464",
"177147",
"221184",
"279936",
"354294",
"393216",
"497664"
]
| [
"nonn",
"easy"
]
| 10 | 1 | 2 | [
"A002023",
"A003586",
"A013711",
"A092810",
"A268335",
"A355580",
"A355581"
]
| null | Amiram Eldar, Jul 08 2022 | 2022-07-10T03:56:36 | oeisdata/seq/A355/A355581.seq | ae3b1774036911c4269f4d7c41be1e9a |
A355582 | a(n) is the largest 5-smooth divisor of n. | [
"1",
"2",
"3",
"4",
"5",
"6",
"1",
"8",
"9",
"10",
"1",
"12",
"1",
"2",
"15",
"16",
"1",
"18",
"1",
"20",
"3",
"2",
"1",
"24",
"25",
"2",
"27",
"4",
"1",
"30",
"1",
"32",
"3",
"2",
"5",
"36",
"1",
"2",
"3",
"40",
"1",
"6",
"1",
"4",
"45",
"2",
"1",
"48",
"1",
"50",
"3",
"4",
"1",
"54",
"5",
"8",
"3",
"2",
"1",
"60",
"1",
"2",
"9",
"64",
"5",
"6",
"1",
"4",
"3",
"10",
"1",
"72",
"1",
"2",
"75",
"4",
"1",
"6",
"1",
"80"
]
| [
"nonn",
"mult",
"easy"
]
| 24 | 1 | 2 | [
"A006519",
"A007814",
"A007949",
"A038500",
"A051037",
"A060904",
"A065331",
"A112765",
"A132741",
"A165725",
"A355582",
"A355583",
"A355584",
"A379005",
"A379006"
]
| null | Amiram Eldar, Jul 08 2022 | 2025-04-20T03:30:55 | oeisdata/seq/A355/A355582.seq | a6133e42e914c67842b98a6d3a928fc1 |
A355583 | a(n) is the number of the 5-smooth divisors of n. | [
"1",
"2",
"2",
"3",
"2",
"4",
"1",
"4",
"3",
"4",
"1",
"6",
"1",
"2",
"4",
"5",
"1",
"6",
"1",
"6",
"2",
"2",
"1",
"8",
"3",
"2",
"4",
"3",
"1",
"8",
"1",
"6",
"2",
"2",
"2",
"9",
"1",
"2",
"2",
"8",
"1",
"4",
"1",
"3",
"6",
"2",
"1",
"10",
"1",
"6",
"2",
"3",
"1",
"8",
"2",
"4",
"2",
"2",
"1",
"12",
"1",
"2",
"3",
"7",
"2",
"4",
"1",
"3",
"2",
"4",
"1",
"12",
"1",
"2",
"6",
"3",
"1",
"4",
"1",
"10",
"5",
"2",
"1",
"6",
"2",
"2"
]
| [
"nonn",
"mult",
"easy"
]
| 15 | 1 | 2 | [
"A000005",
"A007814",
"A007949",
"A051037",
"A072078",
"A112765",
"A355582",
"A355583",
"A355584"
]
| null | Amiram Eldar, Jul 08 2022 | 2022-12-25T02:11:21 | oeisdata/seq/A355/A355583.seq | b354d15fdf06e01e5fa5df8482238779 |
A355584 | a(n) is the sum of the 5-smooth divisors of n. | [
"1",
"3",
"4",
"7",
"6",
"12",
"1",
"15",
"13",
"18",
"1",
"28",
"1",
"3",
"24",
"31",
"1",
"39",
"1",
"42",
"4",
"3",
"1",
"60",
"31",
"3",
"40",
"7",
"1",
"72",
"1",
"63",
"4",
"3",
"6",
"91",
"1",
"3",
"4",
"90",
"1",
"12",
"1",
"7",
"78",
"3",
"1",
"124",
"1",
"93",
"4",
"7",
"1",
"120",
"6",
"15",
"4",
"3",
"1",
"168",
"1",
"3",
"13",
"127",
"6",
"12",
"1",
"7",
"4",
"18",
"1",
"195",
"1",
"3",
"124",
"7"
]
| [
"nonn",
"mult",
"easy"
]
| 17 | 1 | 2 | [
"A000203",
"A007814",
"A007949",
"A038712",
"A051037",
"A072079",
"A112765",
"A355582",
"A355583",
"A355584"
]
| null | Amiram Eldar, Jul 08 2022 | 2022-12-25T02:11:17 | oeisdata/seq/A355/A355584.seq | a252616dd004fa95be8bc26bc2ef51f4 |
A355585 | T(j,k) are the numerators s in the representation R = s/t + (2*sqrt(3)/Pi)*u/v of the resistance between two nodes separated by the distance (j,k) in an infinite triangular lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= floor(j/2) is an irregular triangle read by rows. | [
"0",
"1",
"8",
"-2",
"27",
"-5",
"928",
"-70",
"16",
"11249",
"-2671",
"123",
"46872",
"-34354",
"5992",
"-438",
"1792225",
"-445535",
"28075",
"-10303",
"23152256",
"-5824226",
"1168304",
"-178754",
"38336",
"100685835",
"-25547957",
"5343755",
"-885717",
"101355",
"3970817992",
"-338056246",
"72962904",
"-12914726",
"1825464",
"-386166"
]
| [
"tabf",
"frac",
"sign"
]
| 38 | 0 | 3 | [
"A084768",
"A307012",
"A355565",
"A355566",
"A355567",
"A355585",
"A355586",
"A355587",
"A355588"
]
| null | Hugo Pfoertner, Jul 09 2022 | 2022-09-19T13:59:56 | oeisdata/seq/A355/A355585.seq | 5f9761f9fa0e714ab2ff221871830482 |
A355586 | T(j,k) are the denominators t in the representation R = s/t + (2*sqrt(3)/Pi)*u/v of the resistance between two nodes separated by the distance (j,k) in an infinite triangular lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= floor(j/2) is an irregular triangle read by rows. | [
"1",
"3",
"3",
"3",
"1",
"1",
"3",
"1",
"1",
"3",
"3",
"1",
"1",
"3",
"3",
"1",
"3",
"3",
"1",
"3",
"3",
"3",
"3",
"3",
"3",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"3",
"3",
"1",
"1",
"1",
"1",
"1",
"3",
"3",
"1",
"1",
"1",
"1",
"3",
"3",
"1",
"3",
"1",
"1",
"1",
"3",
"3",
"3",
"3",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"3",
"1",
"1",
"3",
"1",
"1",
"1",
"3",
"1",
"3",
"1",
"1",
"3",
"3",
"1",
"1",
"3",
"3",
"3",
"3",
"1"
]
| [
"nonn",
"tabf",
"frac"
]
| 7 | 0 | 2 | [
"A355585",
"A355586",
"A355587",
"A355588"
]
| null | Hugo Pfoertner, Jul 09 2022 | 2022-07-22T16:44:25 | oeisdata/seq/A355/A355586.seq | c3b18024e380f924525c90b4ee72c7ef |
A355587 | T(j,k) are the numerators u in the representation R = s/t + (2*sqrt(3)/Pi)*u/v of the resistance between two nodes separated by the distance (j,k) in an infinite triangular lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= floor(j/2) is an irregular triangle read by rows. | [
"0",
"0",
"-2",
"1",
"-24",
"5",
"-280",
"64",
"-14",
"-3400",
"808",
"-111",
"-212538",
"51929",
"-9054",
"1989",
"-2708944",
"673429",
"-127303",
"15576",
"-244962336",
"61623224",
"-12361214",
"1891328",
"-405592",
"-3195918288",
"810930216",
"-169618717",
"28113999",
"-3217136",
"-42013225014",
"2146081719",
"-2315951182",
"81986531",
"-57942922",
"12257507"
]
| [
"tabf",
"frac",
"sign"
]
| 16 | 0 | 3 | [
"A355585",
"A355586",
"A355587",
"A355588"
]
| null | Hugo Pfoertner, Jul 09 2022 | 2022-09-19T14:03:15 | oeisdata/seq/A355/A355587.seq | ad461f6094e35379bb4a193ed0611adc |
A355588 | T(j,k) are the denominators v in the representation R = s/t + (2*sqrt(3)/Pi)*u/v of the resistance between two nodes separated by the distance (j,k) in an infinite triangular lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= floor(j/2) is an irregular triangle read by rows. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"35",
"35",
"35",
"35",
"35",
"35",
"35",
"35",
"35",
"35",
"35",
"7",
"35",
"7",
"35",
"35",
"7",
"35",
"35",
"35",
"35",
"35",
"55",
"385",
"385",
"385",
"55",
"55",
"385",
"11",
"55",
"385",
"385",
"385",
"385",
"55",
"5005",
"455",
"5005",
"5005",
"455",
"5005",
"5005",
"5005",
"5005",
"5005",
"5005",
"5005",
"5005",
"1001",
"143",
"1001"
]
| [
"nonn",
"tabf",
"frac"
]
| 8 | 0 | 13 | [
"A355585",
"A355586",
"A355587",
"A355588"
]
| null | Hugo Pfoertner, Jul 09 2022 | 2022-07-22T16:44:13 | oeisdata/seq/A355/A355588.seq | bf7a3fb42f168c7751e250c41165d2e1 |
A355589 | a(n) is the least distance of two nodes on the same grid line in an infinite triangular lattice of one-ohm resistors for which the resistance measured between the two nodes is greater than n ohms. | [
"1",
"38",
"8632",
"1991753",
"459625866"
]
| [
"nonn",
"hard",
"more"
]
| 14 | 0 | 2 | [
"A355585",
"A355589",
"A355955"
]
| null | Hugo Pfoertner, Jul 23 2022 | 2022-07-25T16:07:21 | oeisdata/seq/A355/A355589.seq | c34160c2f17d71d2af97c59747f54779 |
A355590 | a(n) = (product of the first n primes) - (sum of the first n primes). | [
"1",
"0",
"1",
"20",
"193",
"2282",
"29989",
"510452",
"9699613",
"223092770",
"6469693101",
"200560489970",
"7420738134613",
"304250263526972",
"13082761331669749",
"614889782588491082",
"32589158477190044349",
"1922760350154212638630",
"117288381359406970982769",
"7858321551080267055878522"
]
| [
"nonn"
]
| 20 | 0 | 4 | [
"A000040",
"A002110",
"A007504",
"A059841",
"A355590"
]
| null | Des MacHale and Bernard Schott, Jul 08 2022 | 2022-07-11T16:10:53 | oeisdata/seq/A355/A355590.seq | de7311cbbf6f02703ddbef733d9ecb71 |
A355591 | a(n) = (product of the first n odd primes) - (sum of the first n odd primes). | [
"1",
"0",
"7",
"90",
"1129",
"14976",
"255199",
"4849770",
"111546337",
"3234846488",
"100280244907",
"3710369067210",
"152125131763369",
"6541380665834736",
"307444891294245379",
"16294579238595021986",
"961380175077106319097",
"58644190679703485491136",
"3929160775540133527938979"
]
| [
"nonn"
]
| 30 | 0 | 3 | [
"A000040",
"A059841",
"A070826",
"A071148",
"A355590",
"A355591"
]
| null | Des MacHale and Bernard Schott, Jul 12 2022 | 2023-07-14T15:20:40 | oeisdata/seq/A355/A355591.seq | 1de5520811ab3fe875ba03c28f79bc2d |
A355592 | Positions of records in A357299: integers m such that the number of divisors whose first digit equals the first digit of m sets a new record. | [
"1",
"10",
"100",
"108",
"120",
"180",
"1008",
"1260",
"1680",
"10010",
"10080",
"15120",
"100320",
"100800",
"110880",
"166320",
"196560",
"1003200",
"1004640",
"1005480",
"1028160",
"1053360",
"1081080",
"1441440",
"1884960",
"10024560",
"10090080",
"10533600",
"10810800",
"12252240",
"17297280",
"100069200",
"100124640",
"100212840",
"100245600"
]
| [
"nonn",
"base"
]
| 29 | 1 | 2 | [
"A206287",
"A342833",
"A355592",
"A357299",
"A357300"
]
| null | Bernard Schott, Sep 24 2022 | 2022-09-26T17:47:48 | oeisdata/seq/A355/A355592.seq | 2ef4ca8d464f023d0a4c5a907b75a367 |
A355593 | a(n) is the number of alternating integers that divide n. | [
"1",
"2",
"2",
"3",
"2",
"4",
"2",
"4",
"3",
"4",
"1",
"6",
"1",
"4",
"3",
"5",
"1",
"6",
"1",
"5",
"4",
"2",
"2",
"7",
"3",
"2",
"4",
"5",
"2",
"7",
"1",
"6",
"2",
"3",
"3",
"9",
"1",
"3",
"2",
"6",
"2",
"7",
"2",
"3",
"5",
"3",
"2",
"8",
"3",
"6",
"2",
"4",
"1",
"8",
"2",
"7",
"2",
"4",
"1",
"9",
"2",
"2",
"6",
"6",
"3",
"4",
"2",
"4",
"4",
"7",
"1",
"11",
"1",
"3",
"4",
"5",
"2",
"5",
"1",
"7",
"5",
"3",
"2",
"9",
"3",
"3",
"4",
"4",
"2",
"11",
"2",
"5",
"2",
"4",
"2",
"10",
"1",
"6",
"3",
"7"
]
| [
"nonn",
"base"
]
| 42 | 1 | 2 | [
"A030141",
"A332268",
"A355302",
"A355593",
"A355594",
"A355595",
"A355596"
]
| null | Bernard Schott, Jul 08 2022 | 2024-01-06T09:21:33 | oeisdata/seq/A355/A355593.seq | c24e5ecc2de2b26241a582a7ee003d99 |
A355594 | a(n) is the smallest integer that has exactly n alternating divisors. | [
"1",
"2",
"4",
"6",
"16",
"12",
"24",
"48",
"36",
"96",
"72",
"144",
"210",
"180",
"420",
"360",
"504",
"864",
"630",
"1080",
"1512",
"2160",
"1260",
"3150",
"1890",
"2520",
"5040",
"6300",
"3780",
"10080",
"12600",
"9450",
"7560",
"32760",
"15120",
"18900",
"22680",
"30240",
"88830",
"37800",
"45360",
"75600",
"105840",
"90720",
"151200",
"162540",
"254520"
]
| [
"nonn",
"base"
]
| 54 | 1 | 2 | [
"A005179",
"A030141",
"A355303",
"A355593",
"A355594",
"A355595",
"A355596"
]
| null | Bernard Schott, Jul 08 2022 | 2023-01-26T10:14:31 | oeisdata/seq/A355/A355594.seq | 71cb3aa22bd06ea5377d4b8818f32a5e |
A355595 | Positions of records in A355593: Integers whose number of alternating divisors sets a new record. | [
"1",
"2",
"4",
"6",
"12",
"24",
"36",
"72",
"144",
"180",
"360",
"504",
"630",
"1080",
"1260",
"1890",
"2520",
"3780",
"7560",
"15120",
"18900",
"22680",
"30240",
"37800",
"45360",
"75600",
"90720",
"151200",
"162540",
"226800",
"317520",
"325080",
"650160",
"763560",
"1137780",
"1243620",
"1527120",
"2275560",
"3054240",
"3738420",
"4551120",
"6826680",
"7476840",
"14953680",
"17445960",
"21818160",
"26168940",
"36363600",
"43636320",
"52337880"
]
| [
"nonn",
"base"
]
| 14 | 1 | 2 | [
"A030141",
"A355304",
"A355593",
"A355594",
"A355595"
]
| null | Bernard Schott, Jul 08 2022 | 2022-07-11T16:10:57 | oeisdata/seq/A355/A355595.seq | c94180d7889e0f36b6181572b6cd0f24 |
A355596 | Numbers all of whose divisors are alternating numbers (A030141). | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"12",
"14",
"16",
"18",
"21",
"23",
"25",
"27",
"29",
"32",
"36",
"41",
"43",
"47",
"49",
"50",
"54",
"58",
"61",
"63",
"67",
"69",
"81",
"83",
"87",
"89",
"94",
"98",
"101",
"103",
"107",
"109",
"123",
"125",
"127",
"129",
"141",
"145",
"147",
"149",
"161",
"163",
"167",
"181",
"183",
"189",
"214",
"218",
"250",
"254",
"290",
"298"
]
| [
"nonn",
"base"
]
| 16 | 1 | 2 | [
"A030141",
"A062687",
"A190217",
"A329419",
"A337941",
"A355593",
"A355594",
"A355595",
"A355596"
]
| null | Bernard Schott, Jul 12 2022 | 2022-07-14T12:08:35 | oeisdata/seq/A355/A355596.seq | 6c94baa08009b7f1835f4352173c5480 |
A355597 | a(1) = 2. For n > 1, a(n) = smallest prime q such that q^(a(n-1)-1) == 1 (mod a(n-1)^2). | [
"2",
"5",
"7",
"19",
"127",
"911",
"7331",
"167149",
"387749",
"17153317",
"432383657",
"10459192927"
]
| [
"nonn",
"hard",
"more"
]
| 5 | 1 | 1 | [
"A249162",
"A355597",
"A355598",
"A355599",
"A355600",
"A355601",
"A355602"
]
| null | Felix Fröhlich, Jul 09 2022 | 2022-07-16T01:30:50 | oeisdata/seq/A355/A355597.seq | 39e458e881fd527e4841a102fff051b7 |
A355598 | a(1) = 3. For n > 1, a(n) = smallest prime q such that q^(a(n-1)-1) == 1 (mod a(n-1)^2). | [
"3",
"17",
"131",
"659",
"503",
"9833",
"49603",
"327317",
"13900147",
"144229223",
"5872276013"
]
| [
"nonn",
"hard",
"more"
]
| 6 | 1 | 1 | [
"A249162",
"A355597",
"A355598",
"A355599",
"A355600",
"A355601",
"A355602"
]
| null | Felix Fröhlich, Jul 09 2022 | 2023-07-23T18:59:39 | oeisdata/seq/A355/A355598.seq | 90bdebc298354d1c28eb29c6891ed577 |
A355599 | a(1) = 29. For n > 1, a(n) = smallest prime q such that q^(a(n-1)-1) == 1 (mod a(n-1)^2). | [
"29",
"41",
"313",
"1499",
"941",
"12011",
"6287",
"52301",
"50077",
"137743",
"1274353",
"46303409",
"89018221",
"687655393",
"7462816891"
]
| [
"nonn",
"hard",
"more"
]
| 4 | 1 | 1 | [
"A249162",
"A355597",
"A355598",
"A355599",
"A355600",
"A355601",
"A355602"
]
| null | Felix Fröhlich, Jul 09 2022 | 2022-07-16T01:31:16 | oeisdata/seq/A355/A355599.seq | c74a4b18f5e38b172d683e92b85e2b1e |
A355600 | a(1) = 37. For n > 1, a(n) = smallest prime q such that q^(a(n-1)-1) == 1 (mod a(n-1)^2). | [
"37",
"691",
"19181",
"5849",
"18503",
"37853",
"478741",
"18401827",
"571007279",
"5860639859"
]
| [
"nonn",
"hard",
"more"
]
| 4 | 1 | 1 | [
"A249162",
"A355597",
"A355598",
"A355599",
"A355600",
"A355601",
"A355602"
]
| null | Felix Fröhlich, Jul 09 2022 | 2022-07-16T01:31:35 | oeisdata/seq/A355/A355600.seq | 3ab860c6e02645c7ab547c91c0333015 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.