sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-19 00:40:46
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A355401
|
Triangle read by rows: T(n, k) = Sum_{i=1..n-k} inverse-q-binomial(n-k-1, i-1) * q-binomial(n-2+i, n-2) for 0 < k < n with initial values T(n, 0) = 0 for n > 0 and T(n, n) = 1 for n >= 0, here q = 2.
|
[
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"4",
"3",
"1",
"0",
"64",
"28",
"7",
"1",
"0",
"4096",
"960",
"140",
"15",
"1",
"0",
"1048576",
"126976",
"9920",
"620",
"31",
"1",
"0",
"1073741824",
"66060288",
"2666496",
"89280",
"2604",
"63",
"1",
"0",
"4398046511104",
"136365211648",
"2796552192",
"48377856",
"755904",
"10668",
"127",
"1"
] |
[
"nonn",
"easy",
"tabl"
] | 16 | 0 | 8 |
[
"A022166",
"A053763",
"A135950",
"A355401"
] | null |
Werner Schulte, Jun 30 2022
| 2022-07-07T02:01:54 |
oeisdata/seq/A355/A355401.seq
|
2dd8fbd9a83a98c40adbb6446b895e36
|
A355402
|
Maximal GCD of seven positive integers with sum n.
|
[
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"3",
"2",
"1",
"3",
"1",
"2",
"3",
"4",
"1",
"3",
"1",
"4",
"3",
"2",
"5",
"4",
"1",
"2",
"3",
"5",
"1",
"6",
"1",
"4",
"5",
"2",
"1",
"6",
"7",
"5",
"3",
"4",
"1",
"6",
"5",
"8",
"3",
"2",
"1",
"6",
"1",
"2",
"9",
"8",
"5",
"6",
"1",
"4",
"3",
"10",
"1",
"9",
"1",
"2",
"5",
"4",
"11",
"6",
"1",
"10",
"9",
"2",
"1",
"12",
"5",
"2",
"3",
"11",
"1",
"10",
"13",
"4",
"3",
"2",
"5",
"12"
] |
[
"nonn",
"easy"
] | 19 | 7 | 8 |
[
"A009641",
"A032742",
"A354598",
"A354599",
"A354601",
"A355249",
"A355319",
"A355366",
"A355368",
"A355402",
"A355403"
] | null |
Wesley Ivan Hurt, Jun 30 2022
| 2022-07-24T13:05:26 |
oeisdata/seq/A355/A355402.seq
|
346bdaa0ab3943d506760e5815c477e9
|
A355403
|
Maximal LCM of seven positive integers with sum n.
|
[
"1",
"2",
"3",
"6",
"6",
"12",
"15",
"30",
"30",
"60",
"60",
"84",
"105",
"210",
"210",
"420",
"420",
"420",
"420",
"840",
"840",
"1260",
"1260",
"2310",
"2310",
"4620",
"4620",
"5460",
"5460",
"9240",
"9240",
"13860",
"13860",
"16380",
"16380",
"30030",
"30030",
"60060",
"60060",
"60060",
"60060",
"120120",
"120120",
"180180",
"180180",
"180180",
"180180"
] |
[
"nonn"
] | 10 | 7 | 2 |
[
"A009641",
"A129647",
"A129648",
"A129649",
"A129650",
"A355367",
"A355368",
"A355402",
"A355403"
] | null |
Wesley Ivan Hurt, Jun 30 2022
| 2023-03-17T01:27:16 |
oeisdata/seq/A355/A355403.seq
|
664d91970fd67fe2f657d23e969fc9a4
|
A355404
|
Lexicographically earliest sequence of distinct terms such that the concatenation of three successive terms form a palindrome using the alphabet {1, 2}.
|
[
"1",
"2",
"21",
"22",
"12",
"122",
"121",
"221",
"22121",
"22122",
"12122",
"12122122",
"12122121",
"22122121",
"2212212122121",
"2212212122122",
"1212212122122",
"121221212212212122122",
"121221212212212122121",
"221221212212212122121",
"2212212122122121221212212212122121"
] |
[
"nonn",
"base"
] | 21 | 1 | 2 |
[
"A002113",
"A091789",
"A355404"
] | null |
Michael S. Branicky, Jul 01 2022
| 2022-08-10T07:40:32 |
oeisdata/seq/A355/A355404.seq
|
1b90d42e4d5ce528ea924984cfe76072
|
A355405
|
Inverse permutation to A269838.
|
[
"1",
"2",
"3",
"4",
"5",
"6",
"9",
"8",
"7",
"10",
"17",
"11",
"33",
"18",
"13",
"12",
"65",
"14",
"129",
"20",
"19",
"34",
"257",
"16",
"21",
"66",
"15",
"25",
"513",
"22",
"1025",
"24",
"35",
"130",
"37",
"23",
"2049",
"258",
"67",
"26",
"4097",
"38",
"8193",
"36",
"29",
"514",
"16385",
"27",
"41",
"42",
"131",
"68",
"32769",
"30",
"49",
"40",
"259",
"1026"
] |
[
"nonn"
] | 10 | 1 | 2 |
[
"A269838",
"A355405"
] | null |
Rémy Sigrist, Jul 01 2022
| 2022-07-04T13:57:11 |
oeisdata/seq/A355/A355405.seq
|
84d295892c1bea08d86a3bf679aa87e3
|
A355406
|
Positive integers that are not powers of 2 and whose Collatz trajectory has maximum power of 2 different from 2^4.
|
[
"21",
"42",
"75",
"84",
"85",
"113",
"150",
"151",
"168",
"170",
"201",
"226",
"227",
"267",
"300",
"301",
"302",
"336",
"340",
"341",
"401",
"402",
"403",
"423",
"452",
"453",
"454",
"475",
"534",
"535",
"537",
"600",
"602",
"604",
"605",
"633",
"635",
"672",
"680",
"682",
"713",
"715",
"802",
"803",
"804",
"805",
"806",
"846",
"847",
"891",
"904",
"906",
"908",
"909",
"950",
"951",
"953",
"955"
] |
[
"nonn"
] | 35 | 1 | 1 |
[
"A008908",
"A232503",
"A308149",
"A350160",
"A355187",
"A355406"
] | null |
Frank M Jackson, Jul 01 2022
| 2023-02-04T01:59:52 |
oeisdata/seq/A355/A355406.seq
|
e74e08ced06dd2674cdc34fa210a8297
|
A355407
|
Expansion of the e.g.f. log((1 - x) / (1 - 2*x)) / (1 - x)^4.
|
[
"0",
"1",
"11",
"110",
"1154",
"13144",
"164136",
"2251920",
"33923760",
"560180160",
"10117886400",
"199399132800",
"4275988617600",
"99473802624000",
"2502049379558400",
"67804022648678400",
"1972357507107993600",
"61358018782620672000",
"2033893411878730752000",
"71587670846333773824000",
"2666700362750370895872000"
] |
[
"nonn"
] | 8 | 0 | 3 |
[
"A000292",
"A000332",
"A062137",
"A355171",
"A355372",
"A355407"
] | null |
Mélika Tebni, Jul 01 2022
| 2023-03-09T11:33:36 |
oeisdata/seq/A355/A355407.seq
|
5d452344058a48272f2897f89505947e
|
A355408
|
Expansion of e.g.f. 1/(1 + exp(x) - exp(3*x)).
|
[
"1",
"2",
"16",
"170",
"2416",
"42962",
"916696",
"22819610",
"649207456",
"20778364322",
"738918769576",
"28905116527850",
"1233506128752496",
"57025618592932082",
"2839117599033828856",
"151446758367400488890",
"8617182795217834505536",
"520954229292164353554242"
] |
[
"nonn"
] | 16 | 0 | 2 |
[
"A000556",
"A355378",
"A355408",
"A355409"
] | null |
Seiichi Manyama, Jul 01 2022
| 2022-07-01T11:24:55 |
oeisdata/seq/A355/A355408.seq
|
86e67fdc5abe1498fceb927b769c3ccf
|
A355409
|
Expansion of e.g.f. 1/(1 + exp(2*x) - exp(3*x)).
|
[
"1",
"1",
"7",
"55",
"571",
"7471",
"117307",
"2148175",
"44958571",
"1058555791",
"27693129307",
"796934764495",
"25018548004171",
"850870651904911",
"31163746960955707",
"1222922731101304015",
"51189052318085027371",
"2276586205163067346831",
"107204914362429152404507"
] |
[
"nonn"
] | 19 | 0 | 3 |
[
"A000010",
"A354242",
"A355381",
"A355408",
"A355409",
"A370092",
"A371460"
] | null |
Seiichi Manyama, Jul 01 2022
| 2024-04-19T04:35:29 |
oeisdata/seq/A355/A355409.seq
|
57108e1aa5ad3da73f6f8a911002ea3a
|
A355410
|
Expansion of e.g.f. 1/(3 - exp(x) - exp(3*x)).
|
[
"1",
"4",
"42",
"652",
"13482",
"348484",
"10809282",
"391162972",
"16177467642",
"752689508404",
"38911563009522",
"2212759299753292",
"137270821971529002",
"9225382887659221924",
"667690580181890112162",
"51776098497454677943612",
"4282645413209764715753562"
] |
[
"nonn"
] | 12 | 0 | 2 |
[
"A004700",
"A355408",
"A355410"
] | null |
Seiichi Manyama, Jul 01 2022
| 2023-12-04T06:36:06 |
oeisdata/seq/A355/A355410.seq
|
998bb9c0b6cc504db82ebeba8dbdd870
|
A355411
|
Expansion of e.g.f. 1/(3 - exp(2*x) - exp(3*x)).
|
[
"1",
"5",
"63",
"1175",
"29211",
"907775",
"33852603",
"1472830175",
"73232729451",
"4096474833695",
"254608472798043",
"17407167078420575",
"1298290575826434891",
"104900562662494154015",
"9127848307446874753083",
"850985644429074730049375",
"84626187772620135685119531"
] |
[
"nonn"
] | 11 | 0 | 2 |
[
"A355380",
"A355409",
"A355411"
] | null |
Seiichi Manyama, Jul 01 2022
| 2022-07-01T12:11:08 |
oeisdata/seq/A355/A355411.seq
|
78bc6580bc95ab282de330c50b490fc2
|
A355412
|
Count of numbers <= 10^n with no prime factor greater than n.
|
[
"0",
"6",
"39",
"66",
"312",
"506",
"2154",
"3426",
"5193",
"7574",
"30523",
"44695",
"173076",
"254064",
"364384",
"511984",
"1945204",
"2749999",
"10159602",
"14427308",
"20186025",
"27861174",
"101837745",
"141340074",
"193902061",
"263152094",
"353549941",
"470539446",
"1730528206",
"2319027316"
] |
[
"nonn"
] | 38 | 1 | 2 | null | null |
Zhining Yang, Jul 01 2022
| 2023-05-27T06:45:29 |
oeisdata/seq/A355/A355412.seq
|
270ea897244def65857d6b6a3791dff3
|
A355413
|
Lexicographically earliest infinite sequence of positive numbers such that, for n>1, a(n) AND a(n-1) is distinct from all previous AND operations between adjacent terms, where AND is the binary AND operator.
|
[
"0",
"1",
"3",
"3",
"6",
"5",
"7",
"7",
"14",
"9",
"11",
"11",
"14",
"13",
"15",
"15",
"30",
"17",
"19",
"19",
"22",
"21",
"23",
"23",
"30",
"25",
"27",
"27",
"30",
"29",
"31",
"31",
"62",
"33",
"35",
"35",
"38",
"37",
"39",
"39",
"46",
"41",
"43",
"43",
"46",
"45",
"47",
"47",
"62",
"49",
"51",
"51",
"54",
"53",
"55",
"55",
"62",
"57",
"59",
"59",
"62",
"61",
"63",
"63",
"126",
"65",
"67",
"67",
"70",
"69",
"71",
"71",
"78",
"73",
"75",
"75"
] |
[
"nonn",
"base"
] | 13 | 0 | 3 |
[
"A007088",
"A129760",
"A338824",
"A355413"
] | null |
Scott R. Shannon, Jul 01 2022
| 2022-07-01T09:38:25 |
oeisdata/seq/A355/A355413.seq
|
556b57a8cb513dbd10bf805216e23168
|
A355414
|
Expansion of the e.g.f. log((1 - x) / (1 - 2*x)) / (1 - x)^5.
|
[
"0",
"1",
"13",
"149",
"1750",
"21894",
"295500",
"4320420",
"68487120",
"1176564240",
"21883528800",
"440117949600",
"9557404012800",
"223720054790400",
"5634130146624000",
"152315974848038400",
"4409413104676608000",
"136318041562123008000",
"4487618159996944896000",
"156852415886275726848000",
"5803748680475885432832000"
] |
[
"nonn"
] | 9 | 0 | 3 |
[
"A000332",
"A062140",
"A355171",
"A355372",
"A355407",
"A355414"
] | null |
Mélika Tebni, Jul 01 2022
| 2022-07-27T09:00:13 |
oeisdata/seq/A355/A355414.seq
|
b596790a322ba49028bfe443bbdb9efc
|
A355415
|
Decimal expansion of the average distance between the center of a unit cube to a point on its surface uniformly chosen by a random direction from the center.
|
[
"6",
"1",
"0",
"6",
"8",
"7",
"4",
"0",
"1",
"9",
"5",
"1",
"5",
"8",
"3",
"8",
"5",
"6",
"5",
"3",
"4",
"6",
"6",
"7",
"2",
"2",
"9",
"6",
"7",
"3",
"7",
"1",
"6",
"6",
"2",
"8",
"4",
"6",
"9",
"1",
"1",
"5",
"5",
"2",
"5",
"8",
"1",
"9",
"0",
"7",
"4",
"6",
"2",
"7",
"5",
"8",
"9",
"9",
"2",
"9",
"9",
"4",
"1",
"0",
"2",
"5",
"9",
"6",
"8",
"1",
"5",
"7",
"3",
"6",
"2",
"8",
"8",
"6",
"6",
"4",
"1",
"3",
"7",
"2",
"1",
"4",
"5",
"0",
"5",
"5",
"9",
"6",
"5",
"7",
"6",
"6",
"0",
"8",
"0",
"8",
"3",
"3",
"5",
"7",
"2"
] |
[
"nonn",
"cons"
] | 9 | 0 | 1 |
[
"A006752",
"A073012",
"A093066",
"A097047",
"A130590",
"A135691",
"A348680",
"A348681",
"A348682",
"A348683",
"A355186",
"A355415"
] | null |
Amiram Eldar, Jul 01 2022
| 2022-07-01T10:11:03 |
oeisdata/seq/A355/A355415.seq
|
2181b4b85596d0f65b97415525684f2e
|
A355416
|
a(n) is the least k such that k divides Sum_{i=k..k+n-1} A001414(i).
|
[
"1",
"1",
"2",
"6",
"12",
"3",
"6",
"1",
"2",
"22",
"7",
"11",
"3",
"25",
"13",
"15",
"9",
"1",
"25",
"5",
"5",
"10",
"26",
"22",
"69",
"1",
"1",
"34",
"42",
"73",
"41",
"28",
"54",
"130",
"99",
"11",
"14",
"8",
"34",
"64",
"84",
"27",
"62",
"21",
"28",
"15",
"102",
"4",
"36",
"104",
"48",
"24",
"1",
"31",
"17",
"38",
"44",
"5",
"183",
"2",
"6",
"37",
"222",
"13",
"27",
"16",
"156",
"44",
"35",
"16",
"26",
"101",
"36",
"45",
"70",
"37",
"21",
"70"
] |
[
"nonn"
] | 8 | 1 | 3 |
[
"A001414",
"A355416"
] | null |
J. M. Bergot and Robert Israel, Jul 01 2022
| 2022-07-05T06:17:13 |
oeisdata/seq/A355/A355416.seq
|
20d04e156d4dddf4955cd08618d94d27
|
A355417
|
Decimal expansion of Pi + gamma, where gamma is Euler's constant (or the Euler-Mascheroni constant).
|
[
"3",
"7",
"1",
"8",
"8",
"0",
"8",
"3",
"1",
"8",
"4",
"9",
"1",
"3",
"2",
"6",
"0",
"9",
"9",
"0",
"6",
"9",
"1",
"5",
"5",
"4",
"7",
"3",
"3",
"6",
"1",
"9",
"0",
"5",
"3",
"1",
"5",
"2",
"3",
"9",
"3",
"2",
"8",
"7",
"3",
"5",
"3",
"1",
"5",
"0",
"2",
"9",
"4",
"1",
"9",
"7",
"8",
"0",
"7",
"1",
"1",
"8",
"2",
"7",
"1",
"9",
"2",
"6",
"8",
"4",
"1",
"3",
"3",
"0",
"6",
"3",
"8",
"7",
"3",
"6",
"6",
"9",
"5",
"6",
"4",
"9",
"8"
] |
[
"nonn",
"cons",
"easy"
] | 7 | 1 | 1 |
[
"A000796",
"A001620",
"A355417"
] | null |
Marco Ripà, Jul 01 2022
| 2022-07-02T09:32:29 |
oeisdata/seq/A355/A355417.seq
|
1382167354a4f739d83adb6b3f26a348
|
A355418
|
Numbers k that have the same set of digits in base 10 as primepi(k).
|
[
"0",
"51",
"494",
"712",
"1017",
"1080",
"1081",
"1196",
"1828",
"2131",
"2132",
"2133",
"2994",
"3885",
"4622",
"4624",
"4626",
"5700",
"5733",
"5735",
"5755",
"5757",
"5775",
"5777",
"6681",
"6886",
"6888",
"7179",
"7696",
"7697",
"7798",
"8010",
"8100",
"8201",
"9193",
"9691",
"9711",
"9717",
"11263",
"11371",
"11373",
"11377",
"11483",
"11593",
"12418",
"12499"
] |
[
"nonn",
"base"
] | 63 | 1 | 2 |
[
"A000720",
"A074350",
"A355317",
"A355418"
] | null |
Michel Marcus, Jul 06 2022
| 2022-07-07T11:46:16 |
oeisdata/seq/A355/A355418.seq
|
233f70188af4bb1e409d667247ce58c4
|
A355419
|
a(n) is the number of solutions to x^y == y^x (mod p) where 0 < x,y <= p and p is the n-th prime.
|
[
"2",
"3",
"7",
"17",
"21",
"29",
"39",
"59",
"79",
"77",
"101",
"101",
"107",
"117",
"161",
"183",
"177",
"183",
"205",
"239",
"293",
"253",
"241",
"359",
"339",
"343",
"337",
"319",
"347",
"421",
"411",
"403",
"471",
"435",
"467",
"483",
"581",
"527",
"535",
"589",
"549",
"651",
"715",
"703",
"661",
"673",
"763",
"765",
"707",
"833",
"819",
"793",
"1009",
"829"
] |
[
"nonn"
] | 30 | 1 | 1 |
[
"A000040",
"A355069",
"A355419",
"A355486"
] | null |
Darío Clavijo, Jul 01 2022
| 2022-09-01T04:59:27 |
oeisdata/seq/A355/A355419.seq
|
c4f40db860577211b40f94983173eb6b
|
A355420
|
Integers whose third power is a digital permutation of a term in A007908.
|
[
"1",
"2326",
"308344",
"416308",
"22330489",
"23584549",
"25262887",
"100369113",
"103697628",
"112085871",
"117764571",
"123236271",
"128235558",
"480765411",
"487901778",
"492021537",
"498423726",
"507761406",
"520620501",
"552317646",
"622410993",
"2231515936",
"2245722316",
"2259865441",
"2277355234"
] |
[
"nonn",
"base"
] | 26 | 1 | 2 |
[
"A007908",
"A033307",
"A353025",
"A355420"
] | null |
Marco Ripà and Aldo Roberto Pessolano, Jul 01 2022
| 2023-03-18T08:49:14 |
oeisdata/seq/A355/A355420.seq
|
66a6e46fb6c80060c068dc9b906a516e
|
A355421
|
Expansion of e.g.f. exp(Sum_{k=1..3} (exp(k*x) - 1)).
|
[
"1",
"6",
"50",
"504",
"5870",
"76872",
"1111646",
"17522664",
"298133054",
"5433157512",
"105396184478",
"2165189912040",
"46901678992958",
"1067332196912136",
"25435754924426270",
"633014456504059368",
"16411191933603611198",
"442258823578968351624"
] |
[
"nonn"
] | 17 | 0 | 2 |
[
"A004701",
"A306027",
"A355379",
"A355380",
"A355421",
"A355423"
] | null |
Seiichi Manyama, Jul 01 2022
| 2022-07-02T10:07:35 |
oeisdata/seq/A355/A355421.seq
|
669b469fb54c574d4dd36f398f101d35
|
A355422
|
Expansion of e.g.f. exp(Sum_{k=1..4} (exp(k*x) - 1)).
|
[
"1",
"10",
"130",
"2000",
"35054",
"684000",
"14628190",
"338990000",
"8438270014",
"224070580800",
"6311530677150",
"187702155610000",
"5870416574854974",
"192423935736656800",
"6591135679171866910",
"235315671951948070000",
"8736534653549465359934"
] |
[
"nonn"
] | 16 | 0 | 2 |
[
"A004702",
"A306028",
"A355422",
"A355423"
] | null |
Seiichi Manyama, Jul 01 2022
| 2022-07-02T10:07:30 |
oeisdata/seq/A355/A355422.seq
|
ea97ead15342eb6d82fe2cff52410de4
|
A355423
|
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(Sum_{j=1..k} (exp(j*x) - 1)).
|
[
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"3",
"2",
"0",
"1",
"6",
"14",
"5",
"0",
"1",
"10",
"50",
"81",
"15",
"0",
"1",
"15",
"130",
"504",
"551",
"52",
"0",
"1",
"21",
"280",
"2000",
"5870",
"4266",
"203",
"0",
"1",
"28",
"532",
"6075",
"35054",
"76872",
"36803",
"877",
"0",
"1",
"36",
"924",
"15435",
"148429",
"684000",
"1111646",
"348543",
"4140",
"0"
] |
[
"nonn",
"tabl"
] | 15 | 0 | 8 |
[
"A000007",
"A000110",
"A306024",
"A320253",
"A320288",
"A355291",
"A355421",
"A355422",
"A355423"
] | null |
Seiichi Manyama, Jul 01 2022
| 2022-07-02T09:28:11 |
oeisdata/seq/A355/A355423.seq
|
709f40a923e64a65d5b4a11a2d64e83f
|
A355424
|
Positive integers m such that the real quadratic fields of the form Q(sqrt(m^2+4)) have class number 1.
|
[
"1",
"3",
"5",
"7",
"13",
"17"
] |
[
"nonn",
"fini",
"full"
] | 18 | 1 | 2 |
[
"A050950",
"A053329",
"A308420",
"A355424"
] | null |
Marco Ripà, Jul 01 2022
| 2022-07-03T09:10:14 |
oeisdata/seq/A355/A355424.seq
|
95d6c2b3584ff9d818a110f451c22299
|
A355425
|
Expansion of e.g.f. 1/(1 - Sum_{k=1..2} (exp(k*x) - 1)/k).
|
[
"1",
"2",
"11",
"89",
"959",
"12917",
"208781",
"3937019",
"84846899",
"2057107337",
"55416031601",
"1642126375199",
"53084324076839",
"1859037341680157",
"70112365228588421",
"2833115932639555379",
"122113252334984094779",
"5592296493425013663377",
"271169701559687033317241"
] |
[
"nonn"
] | 10 | 0 | 2 |
[
"A004700",
"A355425",
"A355427"
] | null |
Seiichi Manyama, Jul 01 2022
| 2022-07-02T09:28:05 |
oeisdata/seq/A355/A355425.seq
|
1a68e212b87f10621c30a8ee3a59a7ce
|
A355426
|
Expansion of e.g.f. 1/(1 - Sum_{k=1..3} (exp(k*x) - 1)/k).
|
[
"1",
"3",
"24",
"284",
"4476",
"88178",
"2084564",
"57493334",
"1812223276",
"64262620538",
"2531993864004",
"109738634393534",
"5188538157065276",
"265761817180172498",
"14659691726110341844",
"866403731832477234134",
"54619096812884242006476",
"3658454458052874579886058"
] |
[
"nonn"
] | 11 | 0 | 2 |
[
"A004701",
"A355426",
"A355427"
] | null |
Seiichi Manyama, Jul 01 2022
| 2022-07-02T09:27:56 |
oeisdata/seq/A355/A355426.seq
|
978b7fa5b4d801c1b75ee94aef359d65
|
A355427
|
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 - Sum_{j=1..k} (exp(j*x) - 1)/j).
|
[
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"2",
"3",
"0",
"1",
"3",
"11",
"13",
"0",
"1",
"4",
"24",
"89",
"75",
"0",
"1",
"5",
"42",
"284",
"959",
"541",
"0",
"1",
"6",
"65",
"654",
"4476",
"12917",
"4683",
"0",
"1",
"7",
"93",
"1255",
"13564",
"88178",
"208781",
"47293",
"0",
"1",
"8",
"126",
"2143",
"32275",
"351634",
"2084564",
"3937019",
"545835",
"0"
] |
[
"nonn",
"tabl"
] | 14 | 0 | 8 |
[
"A000007",
"A000670",
"A306024",
"A320253",
"A355425",
"A355426",
"A355427",
"A355428"
] | null |
Seiichi Manyama, Jul 01 2022
| 2022-07-02T09:06:33 |
oeisdata/seq/A355/A355427.seq
|
7c41d85d4ef53399953878482b0ebde7
|
A355428
|
a(n) = n! * [x^n] 1/(1 - Sum_{k=1..n} (exp(k*x) - 1)/k).
|
[
"1",
"1",
"11",
"284",
"13564",
"1037479",
"116171621",
"17916010524",
"3640962169776",
"942959405612913",
"303168464105203113",
"118474395231479349050",
"55306932183983923942940",
"30397993745996492901617435",
"19429788681469866219869997285"
] |
[
"nonn"
] | 16 | 0 | 3 |
[
"A319508",
"A355427",
"A355428"
] | null |
Seiichi Manyama, Jul 01 2022
| 2022-07-03T01:54:21 |
oeisdata/seq/A355/A355428.seq
|
1bff98af4ac79b503a8d854a295f6910
|
A355429
|
Square array T(n, k), n >= 0, k > 0, read by antidiagonals, where T(0, k) = A001906(k) for k > 0 and where T(n, k) = n - A130312(n) + A000045(2k + A072649(n)) for n > 0, k > 0.
|
[
"1",
"2",
"3",
"4",
"5",
"8",
"6",
"9",
"13",
"21",
"7",
"14",
"22",
"34",
"55",
"10",
"15",
"35",
"56",
"89",
"144",
"11",
"23",
"36",
"90",
"145",
"233",
"377",
"12",
"24",
"57",
"91",
"234",
"378",
"610",
"987",
"16",
"25",
"58",
"146",
"235",
"611",
"988",
"1597",
"2584",
"17",
"37",
"59",
"147",
"379",
"612",
"1598",
"2585",
"4181",
"6765",
"18",
"38",
"92",
"148",
"380",
"989"
] |
[
"nonn",
"tabl"
] | 44 | 1 | 2 |
[
"A000045",
"A001906",
"A072649",
"A130312",
"A355429"
] | null |
Mikhail Kurkov, Jul 20 2022 [verification needed]
| 2024-04-21T22:11:44 |
oeisdata/seq/A355/A355429.seq
|
d0949007af6e504cb0672b8d511a364b
|
A355430
|
Primes starting with an even decimal digit.
|
[
"2",
"23",
"29",
"41",
"43",
"47",
"61",
"67",
"83",
"89",
"211",
"223",
"227",
"229",
"233",
"239",
"241",
"251",
"257",
"263",
"269",
"271",
"277",
"281",
"283",
"293",
"401",
"409",
"419",
"421",
"431",
"433",
"439",
"443",
"449",
"457",
"461",
"463",
"467",
"479",
"487",
"491",
"499",
"601",
"607",
"613",
"617",
"619",
"631",
"641",
"643",
"647",
"653",
"659",
"661",
"673",
"677",
"683",
"691",
"809",
"811",
"821"
] |
[
"nonn",
"base"
] | 38 | 1 | 1 |
[
"A000040",
"A045708",
"A045710",
"A045711",
"A045712",
"A045714",
"A087762",
"A087764",
"A087765",
"A087766",
"A087767",
"A273892",
"A355430"
] | null |
Bernard Schott, Jul 20 2022
| 2025-05-18T14:33:29 |
oeisdata/seq/A355/A355430.seq
|
7f43a11b3b691dce43f518c3fcf24bf7
|
A355431
|
Numbers k whose binary expansion, when interpreted in base -1+i, gives a Gaussian prime.
|
[
"2",
"5",
"6",
"9",
"11",
"13",
"14",
"15",
"17",
"19",
"21",
"23",
"25",
"27",
"31",
"33",
"37",
"39",
"41",
"43",
"49",
"51",
"53",
"57",
"58",
"59",
"63",
"69",
"71",
"73",
"77",
"81",
"83",
"89",
"97",
"99",
"101",
"111",
"113",
"117",
"119",
"123",
"127",
"129",
"131",
"133",
"137",
"139",
"141",
"147",
"159",
"163",
"169",
"177",
"183",
"191",
"193",
"197",
"201",
"207"
] |
[
"nonn",
"base"
] | 47 | 1 | 1 |
[
"A066321",
"A355431"
] | null |
John-Vincent Saddic, Jul 17 2022
| 2024-03-31T12:05:08 |
oeisdata/seq/A355/A355431.seq
|
f2560d3fc5ce2dfa6674742513a33c9d
|
A355432
|
a(n) = number of k < n such that rad(k) = rad(n) and k does not divide n, where rad(k) = A007947(k).
|
[
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"2",
"0",
"0",
"0",
"4",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"4",
"0",
"2",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"4",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1"
] |
[
"nonn"
] | 49 | 1 | 48 |
[
"A005361",
"A007947",
"A008479",
"A010846",
"A013929",
"A020639",
"A024619",
"A027750",
"A126706",
"A162306",
"A243822",
"A272618",
"A355432",
"A360589",
"A360768"
] | null |
Michael De Vlieger, Feb 22 2023
| 2024-10-25T09:31:17 |
oeisdata/seq/A355/A355432.seq
|
e538419e2d356ff24bad996b0dc95b46
|
A355433
|
Numbers k such that k is sqrt(k)-smooth and k+1 is sqrt(k+1)-smooth.
|
[
"8",
"24",
"48",
"49",
"63",
"80",
"120",
"125",
"168",
"175",
"195",
"224",
"242",
"288",
"324",
"350",
"351",
"360",
"363",
"374",
"384",
"399",
"440",
"441",
"455",
"475",
"494",
"512",
"528",
"539",
"560",
"575",
"594",
"624",
"675",
"714",
"728",
"735",
"759",
"832",
"840",
"874",
"896",
"935",
"960",
"968",
"1000",
"1014",
"1023",
"1044",
"1053",
"1088",
"1104"
] |
[
"nonn"
] | 10 | 1 | 1 |
[
"A048098",
"A060355",
"A084920",
"A348119",
"A355433",
"A355434"
] | null |
Amiram Eldar, Jul 02 2022
| 2022-07-04T04:38:40 |
oeisdata/seq/A355/A355433.seq
|
f3d1c07b9aaa5427ff57328e26304327
|
A355434
|
a(n) is the least start of exactly n consecutive numbers k that are sqrt(k)-smooth (A048098), or -1 if no such run exists.
|
[
"1",
"8",
"48",
"1518",
"5828",
"28032",
"304260",
"290783",
"1255500",
"4325170",
"11135837",
"18567909",
"321903029",
"1394350275",
"287946949",
"1659945758",
"38882519234"
] |
[
"nonn",
"more"
] | 8 | 1 | 2 |
[
"A048098",
"A355433",
"A355434"
] | null |
Amiram Eldar, Jul 02 2022
| 2022-07-02T14:37:49 |
oeisdata/seq/A355/A355434.seq
|
7ee2868ff29e1688a76e5c5af3693bfe
|
A355435
|
Lexicographically earliest sequence of distinct positive integers such that for any n > 1, a(n) is a multiple of a(A080079(n-1)).
|
[
"1",
"2",
"4",
"3",
"6",
"8",
"10",
"5",
"15",
"20",
"16",
"12",
"9",
"24",
"14",
"7",
"21",
"28",
"48",
"18",
"36",
"32",
"40",
"30",
"25",
"50",
"56",
"42",
"27",
"44",
"22",
"11",
"33",
"66",
"88",
"54",
"84",
"112",
"100",
"75",
"60",
"80",
"64",
"72",
"90",
"96",
"140",
"63",
"35",
"70",
"120",
"45",
"108",
"128",
"160",
"105",
"55",
"110",
"104",
"78",
"39",
"52",
"26",
"13"
] |
[
"nonn",
"tabf"
] | 13 | 1 | 2 |
[
"A011782",
"A080079",
"A269838",
"A355435",
"A355436"
] | null |
Rémy Sigrist, Jul 02 2022
| 2022-07-04T13:57:02 |
oeisdata/seq/A355/A355435.seq
|
9d273f84230dd6d18c5700c3fc18b6ff
|
A355436
|
Inverse permutation to A355435.
|
[
"1",
"2",
"4",
"3",
"8",
"5",
"16",
"6",
"13",
"7",
"32",
"12",
"64",
"15",
"9",
"11",
"128",
"20",
"256",
"10",
"17",
"31",
"512",
"14",
"25",
"63",
"29",
"18",
"1024",
"24",
"2048",
"22",
"33",
"127",
"49",
"21",
"4096",
"255",
"61",
"23",
"8192",
"28",
"16384",
"30",
"52",
"511",
"32768",
"19",
"113",
"26",
"125",
"62",
"65536",
"36",
"57",
"27",
"253",
"1023",
"131072"
] |
[
"nonn"
] | 8 | 1 | 2 |
[
"A355435",
"A355436"
] | null |
Rémy Sigrist, Jul 02 2022
| 2022-07-04T13:57:06 |
oeisdata/seq/A355/A355436.seq
|
f470655fa023d29bbae51d84b4e1f205
|
A355437
|
a(n) is the sign of Maslanka's constant A(n).
|
[
"1",
"-1",
"1",
"1",
"1",
"1",
"1",
"1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1"
] |
[
"sign"
] | 37 | 0 | null |
[
"A114523",
"A114524",
"A354835",
"A355437"
] | null |
Artur Jasinski, Jul 02 2022
| 2022-08-20T13:27:34 |
oeisdata/seq/A355/A355437.seq
|
0c824cf6eac88c7307d87982899e0c15
|
A355438
|
Lucas(a(n)) is least Lucas number beginning with n.
|
[
"1",
"0",
"2",
"3",
"13",
"23",
"4",
"14",
"19",
"24",
"5",
"10",
"15",
"39",
"20",
"25",
"49",
"6",
"11",
"35",
"59",
"16",
"64",
"21",
"45",
"69",
"26",
"50",
"7",
"31",
"55",
"12",
"36",
"60",
"17",
"151",
"41",
"65",
"22",
"156",
"46",
"70",
"27",
"94",
"51",
"252",
"8",
"32",
"166",
"56",
"190",
"13",
"281",
"37",
"305",
"61",
"18",
"85",
"42",
"109",
"310",
"66",
"267",
"23",
"224",
"47",
"181",
"71",
"138",
"339"
] |
[
"nonn",
"base",
"look"
] | 18 | 1 | 3 |
[
"A000032",
"A020344",
"A020345",
"A355438",
"A355439"
] | null |
Michel Marcus, Jul 02 2022
| 2022-07-08T11:24:14 |
oeisdata/seq/A355/A355438.seq
|
0f9098aa4b021ef4fd09ef331b6f3c8b
|
A355439
|
Smallest Lucas number beginning with n.
|
[
"1",
"2",
"3",
"4",
"521",
"64079",
"7",
"843",
"9349",
"103682",
"11",
"123",
"1364",
"141422324",
"15127",
"167761",
"17393796001",
"18",
"199",
"20633239",
"2139295485799",
"2207",
"23725150497407",
"24476",
"2537720636",
"263115950957276",
"271443",
"28143753123",
"29",
"3010349",
"312119004989",
"322",
"33385282",
"3461452808002",
"3571"
] |
[
"nonn",
"base"
] | 11 | 1 | 2 |
[
"A000032",
"A020344",
"A020345",
"A355438",
"A355439"
] | null |
Michel Marcus, Jul 02 2022
| 2022-07-08T13:21:59 |
oeisdata/seq/A355/A355439.seq
|
c53e38b85e0fb2e410c0f15fbf45cd82
|
A355440
|
Expansion of e.g.f. Sum_{k>=0} exp(4^k * x) * x^k/k!.
|
[
"1",
"2",
"10",
"98",
"2050",
"84482",
"7221250",
"1218502658",
"421846581250",
"288641130823682",
"403002184457781250",
"1112950376623239069698",
"6251793960501383945781250",
"69503063309910921346390425602",
"1568447691296998939150390025781250"
] |
[
"nonn"
] | 19 | 0 | 2 |
[
"A193199",
"A355395",
"A355440"
] | null |
Seiichi Manyama, Jul 02 2022
| 2023-08-24T07:49:02 |
oeisdata/seq/A355/A355440.seq
|
4a33cb635c45cc372648f60d8928e5ed
|
A355441
|
Numbers k such that the sum of the least prime factors of i=2..k is prime.
|
[
"2",
"3",
"4",
"8",
"12",
"15",
"16",
"20",
"24",
"40",
"43",
"52",
"55",
"60",
"63",
"68",
"72",
"79",
"87",
"95",
"96",
"108",
"111",
"120",
"123",
"136",
"140",
"148",
"151",
"160",
"184",
"211",
"215",
"216",
"227",
"232",
"235",
"239",
"252",
"255",
"256",
"260",
"264",
"280",
"283",
"288",
"299",
"307",
"323",
"324",
"327",
"332",
"360",
"363",
"371",
"372",
"375",
"379"
] |
[
"nonn"
] | 45 | 1 | 1 |
[
"A088821",
"A355441"
] | null |
Jean-Marc Rebert, Jul 02 2022
| 2022-07-09T06:53:32 |
oeisdata/seq/A355/A355441.seq
|
13de493df8afabf1791b51653c36110a
|
A355442
|
a(n) = gcd(A003961(n), A276086(n)), where A003961 is fully multiplicative with a(p) = nextprime(p), and A276086 is primorial base exp-function.
|
[
"1",
"3",
"1",
"9",
"1",
"5",
"1",
"3",
"5",
"3",
"1",
"5",
"1",
"3",
"5",
"9",
"1",
"25",
"1",
"3",
"5",
"3",
"1",
"5",
"1",
"3",
"125",
"9",
"1",
"7",
"1",
"3",
"1",
"3",
"7",
"5",
"1",
"3",
"5",
"63",
"1",
"5",
"1",
"3",
"175",
"3",
"1",
"5",
"1",
"21",
"5",
"9",
"1",
"125",
"7",
"3",
"5",
"3",
"1",
"7",
"1",
"3",
"1",
"9",
"7",
"5",
"1",
"3",
"5",
"21",
"1",
"25",
"1",
"3",
"245",
"9",
"1",
"5",
"1",
"21",
"125",
"3",
"1",
"5",
"7",
"3",
"5",
"9",
"1",
"7",
"1",
"3",
"1",
"3",
"7",
"5",
"1",
"3",
"5",
"441"
] |
[
"nonn"
] | 15 | 1 | 2 |
[
"A003961",
"A020639",
"A276086",
"A322361",
"A324198",
"A351459",
"A355001",
"A355442",
"A355456",
"A355692",
"A355820",
"A355821"
] | null |
Antti Karttunen, Jul 13 2022
| 2022-07-18T16:38:52 |
oeisdata/seq/A355/A355442.seq
|
269f174d8b8997848b3d05793e6bd384
|
A355443
|
a(n) = 1 if n is of the form p^2 * q where p and q are primes with p^2 < q, otherwise 0.
|
[
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0"
] |
[
"nonn"
] | 15 | 1 | null |
[
"A353472",
"A353474",
"A355443",
"A355444",
"A355445",
"A355453"
] | null |
Antti Karttunen, Jul 02 2022
| 2022-07-07T19:52:16 |
oeisdata/seq/A355/A355443.seq
|
ac0c8c0906a348a50b738359f335564b
|
A355444
|
a(n) = 1 if n is of the form p^2 * q where p and q are primes with p < q < p^2, otherwise 0.
|
[
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1"
] |
[
"nonn"
] | 12 | 1 | null |
[
"A353472",
"A353474",
"A355443",
"A355444",
"A355446",
"A355454"
] | null |
Antti Karttunen, Jul 02 2022
| 2022-07-07T19:52:21 |
oeisdata/seq/A355/A355444.seq
|
8f74fb398cb43833da9fa498743eb28d
|
A355445
|
Numbers of the form p^2 * q where p and q are primes with p^2 < q.
|
[
"20",
"28",
"44",
"52",
"68",
"76",
"92",
"99",
"116",
"117",
"124",
"148",
"153",
"164",
"171",
"172",
"188",
"207",
"212",
"236",
"244",
"261",
"268",
"279",
"284",
"292",
"316",
"332",
"333",
"356",
"369",
"387",
"388",
"404",
"412",
"423",
"428",
"436",
"452",
"477",
"508",
"524",
"531",
"548",
"549",
"556",
"596",
"603",
"604",
"628",
"639",
"652",
"657",
"668",
"692",
"711",
"716",
"724",
"725",
"747",
"764",
"772",
"775",
"788",
"796"
] |
[
"nonn"
] | 20 | 1 | 1 |
[
"A000005",
"A001222",
"A001248",
"A096156",
"A119315",
"A290110",
"A300250",
"A355443",
"A355445",
"A355446"
] | null |
Antti Karttunen, Jul 02 2022
| 2022-07-08T17:08:12 |
oeisdata/seq/A355/A355445.seq
|
8b257db563b15862d7f3198bc5a89982
|
A355446
|
Numbers of the form p^2 * q where p and q are primes with p < q < p^2.
|
[
"12",
"45",
"63",
"175",
"275",
"325",
"425",
"475",
"539",
"575",
"637",
"833",
"931",
"1127",
"1421",
"1519",
"1573",
"1813",
"2009",
"2057",
"2107",
"2299",
"2303",
"2783",
"2873",
"3211",
"3509",
"3751",
"3887",
"4477",
"4901",
"4961",
"5203",
"5239",
"5491",
"5687",
"6253",
"6413",
"6647",
"6929",
"7139",
"7267",
"7381",
"7943",
"8107",
"8303",
"8381",
"8591",
"8833",
"8957",
"8959",
"9559",
"9971",
"10043",
"10309",
"10469"
] |
[
"nonn"
] | 21 | 1 | 1 |
[
"A000005",
"A001222",
"A001248",
"A066680",
"A096156",
"A251720",
"A290110",
"A300250",
"A355444",
"A355445",
"A355446",
"A355455"
] | null |
Antti Karttunen, Jul 02 2022
| 2025-05-28T09:16:36 |
oeisdata/seq/A355/A355446.seq
|
1bde99e1f1abe058d9c56ef5e42f32a8
|
A355447
|
a(n) = 1 if n is neither squarefree nor prime power, otherwise 0.
|
[
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1"
] |
[
"nonn",
"changed"
] | 26 | 1 | null |
[
"A001221",
"A008966",
"A010055",
"A126706",
"A354819",
"A355447"
] | null |
Antti Karttunen, Jul 13 2022
| 2025-07-14T15:14:19 |
oeisdata/seq/A355/A355447.seq
|
c367b5a1fa0f663fb4ef88e150a58a64
|
A355448
|
a(n) = 1 if the number of divisors of n^2 is coprime to 6, otherwise 0.
|
[
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1"
] |
[
"nonn",
"easy",
"mult"
] | 33 | 1 | null |
[
"A000005",
"A010057",
"A013661",
"A048691",
"A078434",
"A227291",
"A307421",
"A307424",
"A350014",
"A353470",
"A354354",
"A355448",
"A355684"
] | null |
Antti Karttunen, Jul 13 2022
| 2023-10-05T04:01:42 |
oeisdata/seq/A355/A355448.seq
|
01382d8463eb879e497893ac6decf769
|
A355449
|
a(n) = 1 if n^2 + 2 is prime, 0 otherwise.
|
[
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0"
] |
[
"nonn"
] | 14 | 0 | null |
[
"A010051",
"A059100",
"A067201",
"A295405",
"A355449"
] | null |
Antti Karttunen, Jul 12 2022
| 2022-07-13T09:34:00 |
oeisdata/seq/A355/A355449.seq
|
751143d903d7d218434127a75b34594e
|
A355450
|
a(n) = 1 if n is odd and phi(x) = n^2 + 1 has no solutions, otherwise 0.
|
[
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1"
] |
[
"nonn"
] | 7 | 1 | null |
[
"A106571",
"A355450",
"A355451"
] | null |
Antti Karttunen, Jul 12 2022
| 2022-07-12T20:59:34 |
oeisdata/seq/A355/A355450.seq
|
941009d983c26a4d2a4c03feb7e3f979
|
A355451
|
a(n) = 1 if n is even and phi(x) = n has no solutions, otherwise 0.
|
[
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0"
] |
[
"nonn"
] | 10 | 1 | null |
[
"A000010",
"A005277",
"A014197",
"A059841",
"A264739",
"A355450",
"A355451",
"A355452"
] | null |
Antti Karttunen, Jul 12 2022
| 2022-07-12T20:59:38 |
oeisdata/seq/A355/A355451.seq
|
5a2c3e4787f79cc6a1857b843e355af2
|
A355452
|
a(n) = 1 if Bernoulli number B_{n} has denominator 6, otherwise 0.
|
[
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0"
] |
[
"nonn"
] | 11 | 1 | null |
[
"A027642",
"A051222",
"A067513",
"A355451",
"A355452"
] | null |
Antti Karttunen, Jul 12 2022
| 2023-04-22T14:41:37 |
oeisdata/seq/A355/A355452.seq
|
f4b2d67e18db0d9f520afea9ae61be6c
|
A355453
|
a(n) = 1 if the third smallest divisor of n is not a prime, otherwise 0.
|
[
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"1"
] |
[
"nonn"
] | 14 | 1 | null |
[
"A010051",
"A119315",
"A292269",
"A355443",
"A355453",
"A355454"
] | null |
Antti Karttunen, Jul 02 2022
| 2022-07-02T21:48:17 |
oeisdata/seq/A355/A355453.seq
|
74386b0756bd519e1b517a35acbf35ca
|
A355454
|
a(n) = 1 if the fourth smallest divisor of n is a square, otherwise 0.
|
[
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0"
] |
[
"nonn"
] | 7 | 1 | null |
[
"A355453",
"A355454",
"A355455"
] | null |
Antti Karttunen, Jul 02 2022
| 2022-07-02T21:48:29 |
oeisdata/seq/A355/A355454.seq
|
b5a57e10b7d33c226b98c04496adcab9
|
A355455
|
Numbers whose fourth smallest divisor is a square.
|
[
"12",
"24",
"36",
"45",
"48",
"60",
"63",
"72",
"84",
"96",
"108",
"120",
"132",
"135",
"144",
"156",
"168",
"175",
"180",
"189",
"192",
"204",
"216",
"225",
"228",
"240",
"252",
"264",
"275",
"276",
"288",
"300",
"312",
"324",
"325",
"336",
"348",
"360",
"372",
"384",
"396",
"405",
"408",
"420",
"425",
"432",
"441",
"444",
"456",
"468",
"475",
"480",
"492",
"495",
"504",
"516",
"528",
"539",
"540",
"552",
"564",
"567",
"575",
"576",
"585"
] |
[
"nonn"
] | 4 | 1 | 1 |
[
"A000005",
"A010054",
"A119315",
"A355454",
"A355455"
] | null |
Antti Karttunen, Jul 02 2022
| 2022-07-02T13:15:42 |
oeisdata/seq/A355/A355455.seq
|
d7eaf2b1fad5c2b857eb67caa21d25b8
|
A355456
|
Greatest common divisor of sigma(n), A003961(n), and A276086(n).
|
[
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"3",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"3",
"1",
"5",
"1",
"3",
"5",
"1",
"1",
"1",
"1",
"3",
"1",
"3",
"1",
"1",
"1",
"3",
"1",
"9",
"1",
"1",
"1",
"3",
"1",
"3",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"5",
"1",
"3",
"5",
"3",
"1",
"7",
"1",
"3",
"1",
"1",
"7",
"1",
"1",
"3",
"1",
"3",
"1",
"5",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"3",
"1",
"1",
"1",
"3",
"5",
"9",
"1",
"1",
"1",
"3",
"1",
"3",
"1",
"1",
"1",
"3",
"1",
"7",
"1",
"1",
"1",
"3",
"1"
] |
[
"nonn"
] | 10 | 1 | 2 |
[
"A000203",
"A003961",
"A276086",
"A323653",
"A324644",
"A342671",
"A351459",
"A355002",
"A355442",
"A355456"
] | null |
Antti Karttunen, Jul 13 2022
| 2022-07-18T16:39:12 |
oeisdata/seq/A355/A355456.seq
|
925c3d817e1a18dd8fe08db3f171e78b
|
A355457
|
Numbers k > 1 such that A354833(k) = k * A354833(k-1).
|
[
"2",
"3",
"4",
"7",
"15",
"26",
"31",
"43",
"98",
"117",
"140",
"215",
"540",
"1945",
"22279",
"38459",
"39461",
"66869",
"69328",
"4047994",
"4615259",
"5617480",
"5898979",
"9685120",
"9751023"
] |
[
"nonn",
"more"
] | 7 | 1 | 1 |
[
"A354833",
"A355457"
] | null |
Rémy Sigrist, Jul 02 2022
| 2022-07-03T09:14:58 |
oeisdata/seq/A355/A355457.seq
|
59894986c894b39b3f85cbdd0cd03b92
|
A355458
|
Numbers k that set a new record m where m is the largest left-truncatable prime up to the final k (stop on reaching the final k).
|
[
"1",
"7",
"111",
"3367",
"7787",
"8517",
"9071",
"54079",
"54451",
"138657",
"262157",
"759461",
"857817",
"4662317",
"21754021",
"25400729",
"41171387",
"50304331",
"368119693",
"799245603",
"938577991"
] |
[
"nonn",
"base",
"more"
] | 33 | 1 | 2 |
[
"A024785",
"A355458"
] | null |
Eder Vanzei, Jul 02 2022
| 2022-08-30T14:27:03 |
oeisdata/seq/A355/A355458.seq
|
2a4e636a3856a314a1e45916fcdabffc
|
A355459
|
Real part of the Heighway/harter dragon curve points which are on the real axis.
|
[
"0",
"1",
"-2",
"-3",
"-4",
"-5",
"6",
"7",
"8",
"7",
"10",
"11",
"12",
"13",
"18",
"17",
"16",
"15",
"18",
"19",
"20",
"21",
"-22",
"-23",
"-24",
"-23",
"-26",
"-27",
"-28",
"-29",
"-34",
"-33",
"-32",
"-33",
"-30",
"-29",
"-28",
"-27",
"-38",
"-39",
"-40",
"-39",
"-42",
"-43",
"-44",
"-45",
"-50",
"-49",
"-48",
"-47"
] |
[
"sign"
] | 13 | 0 | 3 |
[
"A246960",
"A332383",
"A332384",
"A355459",
"A355460"
] | null |
Reed Michael Upson, Jul 02 2022
| 2022-11-19T12:32:04 |
oeisdata/seq/A355/A355459.seq
|
cca19434ef16106c21f633efbe02670a
|
A355460
|
Imaginary part of the Heighway/Harter dragon curve points which are on the imaginary axis.
|
[
"0",
"1",
"2",
"-3",
"-4",
"-5",
"-6",
"-9",
"-8",
"-9",
"-10",
"11",
"12",
"13",
"14",
"17",
"16",
"15",
"14",
"19",
"20",
"21",
"22",
"25",
"24",
"25",
"26",
"37",
"36",
"35",
"34",
"31",
"32",
"31",
"30",
"35",
"36",
"37",
"38",
"41",
"40",
"41",
"42",
"-43",
"-44",
"-45",
"-46",
"-49",
"-48",
"-47"
] |
[
"sign"
] | 19 | 0 | 3 |
[
"A246960",
"A332383",
"A332384",
"A355459",
"A355460"
] | null |
Reed Michael Upson, Jul 02 2022
| 2022-11-19T12:32:46 |
oeisdata/seq/A355/A355460.seq
|
150e13e8844d3428acd32425c53e4a0d
|
A355461
|
Squarefree numbers d of the form r^2*m^2 + 4*r, where r and m are odd positive integers, such that Q(sqrt(d)) has class number 1.
|
[
"5",
"13",
"21",
"29",
"53",
"173",
"237",
"293",
"437",
"453",
"1133",
"1253"
] |
[
"nonn",
"fini",
"full"
] | 8 | 1 | 1 |
[
"A050950",
"A053329",
"A308420",
"A355461"
] | null |
Marco Ripà, Jul 02 2022
| 2022-07-03T09:10:43 |
oeisdata/seq/A355/A355461.seq
|
d67c0a39cdc1b419a93d5c7a231f25b9
|
A355462
|
Powerful numbers divisible by exactly 2 distinct primes.
|
[
"36",
"72",
"100",
"108",
"144",
"196",
"200",
"216",
"225",
"288",
"324",
"392",
"400",
"432",
"441",
"484",
"500",
"576",
"648",
"675",
"676",
"784",
"800",
"864",
"968",
"972",
"1000",
"1089",
"1125",
"1152",
"1156",
"1225",
"1296",
"1323",
"1352",
"1372",
"1444",
"1521",
"1568",
"1600",
"1728",
"1936",
"1944",
"2000",
"2025",
"2116",
"2304",
"2312",
"2500"
] |
[
"nonn"
] | 9 | 1 | 1 |
[
"A000005",
"A001221",
"A001694",
"A007774",
"A051904",
"A060355",
"A085986",
"A136141",
"A143610",
"A162142",
"A179646",
"A179666",
"A179671",
"A179689",
"A179694",
"A179699",
"A179702",
"A179705",
"A189988",
"A189990",
"A189991",
"A190464",
"A190465",
"A264828",
"A286708",
"A303661",
"A355462"
] | null |
Amiram Eldar, Jul 03 2022
| 2022-07-04T04:38:37 |
oeisdata/seq/A355/A355462.seq
|
a51d3cbb7757aa17361267bc9c2ef082
|
A355463
|
Expansion of Sum_{k>=0} (x/(1 - k^k * x))^k.
|
[
"1",
"1",
"2",
"10",
"131",
"5656",
"869097",
"490286392",
"1264458639313",
"12443651667592768",
"681538604797281047489",
"153070077563816488157872384",
"205935348854901274982393017521537",
"1352544986573612111579941739713633174912"
] |
[
"nonn"
] | 20 | 0 | 3 |
[
"A080108",
"A193198",
"A193199",
"A349893",
"A355463",
"A355464",
"A355471",
"A355472"
] | null |
Seiichi Manyama, Jul 03 2022
| 2023-02-16T11:32:03 |
oeisdata/seq/A355/A355463.seq
|
c8aaa12213fa00bf1ed2f7bc281f472a
|
A355464
|
Expansion of Sum_{k>=0} x^k/(1 - k^k * x)^(k+1).
|
[
"1",
"2",
"4",
"17",
"210",
"9217",
"1399298",
"811229225",
"2071392232962",
"20710319937493889",
"1137259214532706572162",
"255141201504146525745627265",
"348787971214016591166179037803522",
"2262996819897931095524655885144485185409"
] |
[
"nonn"
] | 15 | 0 | 2 |
[
"A000248",
"A086331",
"A135746",
"A320287",
"A349893",
"A355440",
"A355463",
"A355464",
"A355473"
] | null |
Seiichi Manyama, Jul 03 2022
| 2022-07-03T09:34:57 |
oeisdata/seq/A355/A355464.seq
|
15c09ec1e987e40d2a4e04be92b2d68d
|
A355465
|
Expansion of Sum_{k>=0} (k^k * x/(1 - k^k * x))^k.
|
[
"1",
"1",
"17",
"19812",
"4296562388",
"298027622009561768",
"10314429455106223377205859112",
"256923580408437742134605162130019436138968",
"6277101736867794060924264576844540796924098543875220742528"
] |
[
"nonn"
] | 9 | 0 | 3 |
[
"A349886",
"A355465",
"A355466"
] | null |
Seiichi Manyama, Jul 03 2022
| 2022-07-03T13:56:25 |
oeisdata/seq/A355/A355465.seq
|
ea8eee7a5ac09a25b1fea6dcf56eb7ef
|
A355466
|
Expansion of Sum_{k>=0} (k^k * x)^k/(1 - k^k * x)^(k+1).
|
[
"1",
"2",
"19",
"19879",
"4297094601",
"298028721578591321",
"10314430386430205371442173873",
"256923580889667562995278943476559835493321",
"6277101737079381674883855772624745947410338680458857322625"
] |
[
"nonn"
] | 12 | 0 | 2 |
[
"A072034",
"A242446",
"A349886",
"A355466",
"A355470"
] | null |
Seiichi Manyama, Jul 03 2022
| 2022-07-03T09:34:40 |
oeisdata/seq/A355/A355466.seq
|
7fa4ea4361ac2a3091c42d5f5124f6a9
|
A355467
|
a(n) is the smallest number which is greater than n and has more prime factors (with multiplicity) than n.
|
[
"2",
"4",
"4",
"8",
"6",
"8",
"8",
"16",
"12",
"12",
"12",
"16",
"14",
"16",
"16",
"32",
"18",
"24",
"20",
"24",
"24",
"24",
"24",
"32",
"27",
"27",
"32",
"32",
"30",
"32",
"32",
"64",
"36",
"36",
"36",
"48",
"38",
"40",
"40",
"48",
"42",
"48",
"44",
"48",
"48",
"48",
"48",
"64",
"50",
"54",
"52",
"54",
"54",
"64",
"56",
"64",
"60",
"60",
"60",
"64",
"62",
"63",
"64",
"128",
"66",
"72",
"68",
"72",
"70",
"72",
"72",
"96",
"74",
"75",
"80",
"80",
"78",
"80",
"80",
"96",
"96"
] |
[
"nonn"
] | 22 | 1 | 1 |
[
"A001222",
"A073093",
"A355467"
] | null |
Dan Dart, Jul 03 2022
| 2023-05-05T07:57:18 |
oeisdata/seq/A355/A355467.seq
|
ed058dec7a58de09d8e639b46c43cbae
|
A355468
|
Expansion of Sum_{k>=0} (k^2 * x/(1 - k^2 * x))^k.
|
[
"1",
"1",
"17",
"858",
"85988",
"14318320",
"3570592512",
"1245401343760",
"578840603221568",
"345763649636940672",
"258099498410703320960",
"235426611021544158413824",
"257654470061373320338925568",
"333210260028337620911268462592"
] |
[
"nonn"
] | 15 | 0 | 3 |
[
"A195242",
"A242446",
"A249459",
"A355468"
] | null |
Seiichi Manyama, Jul 03 2022
| 2023-02-22T08:03:34 |
oeisdata/seq/A355/A355468.seq
|
eeeb16154321110936c6532d5830139f
|
A355469
|
Expansion of Sum_{k>=0} (k^3 * x/(1 - k^3 * x))^k.
|
[
"1",
"1",
"65",
"20708",
"18383828",
"34898769936",
"121324513279512",
"697408243146701056",
"6165037130760825320768",
"79390334273383043609851520",
"1428007543233019703635181454080",
"34693490969752778534655707874499584",
"1107666867764009444258160579726602423808"
] |
[
"nonn"
] | 13 | 0 | 3 |
[
"A355468",
"A355469",
"A355470"
] | null |
Seiichi Manyama, Jul 03 2022
| 2023-02-21T23:24:56 |
oeisdata/seq/A355/A355469.seq
|
75776f1b6b6380aedaf33043ea551e51
|
A355470
|
Expansion of Sum_{k>=0} (k^3 * x)^k/(1 - k^3 * x)^(k+1).
|
[
"1",
"1",
"66",
"21222",
"18927560",
"36030104000",
"125486684755152",
"722272396672485568",
"6391048590559497227904",
"82362961035803105954736768",
"1482370265813455598541301007360",
"36031982428595760278113744699088384",
"1150873035676373345725887922070318410752"
] |
[
"nonn"
] | 12 | 0 | 3 |
[
"A072034",
"A242446",
"A355466",
"A355469",
"A355470",
"A355473"
] | null |
Seiichi Manyama, Jul 03 2022
| 2022-07-03T09:34:47 |
oeisdata/seq/A355/A355470.seq
|
d37da00c55ebb4e3340127d67152d1df
|
A355471
|
Expansion of Sum_{k>=0} (x/(1 - k^2 * x))^k.
|
[
"1",
"1",
"2",
"10",
"77",
"808",
"11257",
"196072",
"4136897",
"103755904",
"3034193921",
"101901347944",
"3885951145969",
"166605168800704",
"7961498177012993",
"420976047757358776",
"24475992585921169553",
"1556007778666449968128",
"107625967130820901112833"
] |
[
"nonn"
] | 13 | 0 | 3 |
[
"A080108",
"A135746",
"A234568",
"A355463",
"A355471",
"A355472"
] | null |
Seiichi Manyama, Jul 03 2022
| 2023-02-16T09:49:38 |
oeisdata/seq/A355/A355471.seq
|
ae6b9ff8c99b41c7b365f4c7da1fcee2
|
A355472
|
Expansion of Sum_{k>=0} (x/(1 - k^3 * x))^k.
|
[
"1",
"1",
"2",
"18",
"275",
"6680",
"258897",
"13646776",
"959706169",
"88651586048",
"10272048320897",
"1462972094910224",
"253355867842243905",
"52387780870782231424",
"12745274175326359046785",
"3615579524073585972982544",
"1184928928181459098548941633",
"444427677344332049739011858432"
] |
[
"nonn"
] | 10 | 0 | 3 |
[
"A080108",
"A355463",
"A355471",
"A355472"
] | null |
Seiichi Manyama, Jul 03 2022
| 2023-02-21T20:58:25 |
oeisdata/seq/A355/A355472.seq
|
e1cf3b9440680d94895a16b07ae32a2d
|
A355473
|
Expansion of Sum_{k>=0} x^k/(1 - k^3 * x)^(k+1).
|
[
"1",
"1",
"3",
"28",
"497",
"12736",
"517297",
"28793248",
"2095968065",
"199522773568",
"23839495688321",
"3482169003693304",
"616298415199306369",
"130134007837039167040",
"32272959284595295173377",
"9313050358489324003967176",
"3101245112865402456422252033"
] |
[
"nonn"
] | 15 | 0 | 3 |
[
"A000248",
"A135746",
"A355464",
"A355473"
] | null |
Seiichi Manyama, Jul 03 2022
| 2023-02-21T23:25:30 |
oeisdata/seq/A355/A355473.seq
|
ca81e5d1eb88ebeee08687ef8202abdb
|
A355474
|
Square array T(m,n) = Card({ (i, j) : 1 <= i <= m, 1 <= j <= min(n, i), GCD(i, j) = 1 }), read by antidiagonals upwards.
|
[
"1",
"2",
"1",
"3",
"2",
"1",
"4",
"4",
"2",
"1",
"5",
"5",
"4",
"2",
"1",
"6",
"7",
"6",
"4",
"2",
"1",
"7",
"8",
"9",
"6",
"4",
"2",
"1",
"8",
"10",
"10",
"10",
"6",
"4",
"2",
"1",
"9",
"11",
"13",
"11",
"10",
"6",
"4",
"2",
"1",
"10",
"13",
"15",
"15",
"12",
"10",
"6",
"4",
"2",
"1",
"11",
"14",
"17",
"17",
"17",
"12",
"10",
"6",
"4",
"2",
"1",
"12",
"16",
"19",
"20",
"20",
"18",
"12",
"10",
"6",
"4",
"2",
"1"
] |
[
"nonn",
"tabl"
] | 25 | 1 | 2 |
[
"A001221",
"A002088",
"A191743",
"A290110",
"A355474"
] | null |
Luc Rousseau, Jul 03 2022
| 2022-09-24T15:46:24 |
oeisdata/seq/A355/A355474.seq
|
622f8a790a2a3374c8401aa1b38b2909
|
A355475
|
Numbers that are sparsely totient (A036913) and of least prime signature (A025487).
|
[
"2",
"6",
"12",
"30",
"60",
"120",
"210",
"240",
"420",
"840",
"1260",
"1680",
"2310",
"4620",
"9240",
"13860",
"18480",
"30030",
"60060",
"120120",
"180180",
"240240",
"360360",
"510510",
"1021020",
"2042040",
"3063060",
"4084080",
"6126120",
"8168160",
"9699690",
"12252240",
"19399380",
"38798760",
"58198140",
"77597520"
] |
[
"nonn"
] | 20 | 1 | 1 |
[
"A002110",
"A025487",
"A036913",
"A355475"
] | null |
Hal M. Switkay, Jul 03 2022
| 2024-07-28T10:07:58 |
oeisdata/seq/A355/A355475.seq
|
d81e0ced426bfed553a3b35be729fcdc
|
A355476
|
a(1)=1. For a(n) a novel term, a(n+1) = A000005(a(n)). For a(n) seen already k > 1 times, a(n+1) = k*a(n).
|
[
"1",
"1",
"2",
"2",
"4",
"3",
"2",
"6",
"4",
"8",
"4",
"12",
"6",
"12",
"24",
"8",
"16",
"5",
"2",
"8",
"24",
"48",
"10",
"4",
"16",
"32",
"6",
"18",
"6",
"24",
"72",
"12",
"36",
"9",
"3",
"6",
"30",
"8",
"32",
"64",
"7",
"2",
"10",
"20",
"6",
"36",
"72",
"144",
"15",
"4",
"20",
"40",
"8",
"40",
"80",
"10",
"30",
"60",
"12",
"48",
"96",
"12",
"60",
"120",
"16",
"48",
"144",
"288",
"18",
"36",
"108",
"12",
"72",
"216",
"16"
] |
[
"nonn"
] | 48 | 1 | 3 |
[
"A000005",
"A000040",
"A009087",
"A355476"
] | null |
David James Sycamore, Jul 03 2022
| 2025-07-01T23:33:54 |
oeisdata/seq/A355/A355476.seq
|
a13507c2297c47811d547ceb9d419e65
|
A355477
|
Maximum number of skew-tetrominoes that can be packed into an n X n square.
|
[
"0",
"0",
"1",
"3",
"4",
"8",
"9",
"14",
"16",
"23",
"25",
"33",
"36",
"46",
"49",
"60",
"64",
"77",
"81",
"96",
"100"
] |
[
"nonn",
"more"
] | 55 | 1 | 4 |
[
"A256535",
"A355477"
] | null |
Alexander D. Healy, Jul 03 2022
| 2023-09-17T01:29:18 |
oeisdata/seq/A355/A355477.seq
|
278744c47d368cb5797880e1374a8bf5
|
A355478
|
The honeybee prime walk: a(n) is the number of closed honeycomb cells after the n-th step of the walk described in the comments.
|
[
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"3",
"3",
"3",
"3",
"4",
"4",
"4",
"5",
"5",
"5",
"5",
"5",
"6",
"6",
"6",
"6",
"6",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"9",
"9",
"9",
"9",
"9",
"9",
"9",
"9",
"9"
] |
[
"nonn",
"walk"
] | 35 | 0 | 37 |
[
"A174313",
"A211020",
"A233399",
"A355478",
"A355479",
"A355480",
"A359529"
] | null |
Paolo Xausa, Jul 18 2022
| 2023-01-05T10:19:18 |
oeisdata/seq/A355/A355478.seq
|
9df500c48331d610eeb6989ccf0ac53c
|
A355479
|
a(n) is the number of distinct honeycomb cell walls built after the n-th step of the walk described in A355478.
|
[
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"20",
"20",
"20",
"20",
"21",
"22",
"23",
"24",
"24",
"25",
"26",
"27",
"28",
"29",
"30",
"31",
"31",
"31",
"31",
"31",
"32",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"40",
"40",
"41",
"42",
"42",
"43",
"44",
"45",
"46",
"46",
"46",
"47",
"47",
"48",
"49",
"50",
"51",
"51",
"51"
] |
[
"nonn",
"walk"
] | 18 | 0 | 3 |
[
"A174313",
"A211020",
"A233399",
"A355478",
"A355479",
"A355480",
"A357434"
] | null |
Paolo Xausa, Jul 18 2022
| 2023-01-05T15:39:28 |
oeisdata/seq/A355/A355479.seq
|
daa480b8f4fdaafa4d132ad80667eabc
|
A355480
|
a(n) is the number of distinct, hexagonal-tiled regions after the n-th step of the walk described in A355478.
|
[
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3"
] |
[
"nonn",
"walk"
] | 15 | 0 | 37 |
[
"A174313",
"A211020",
"A233399",
"A355478",
"A355479",
"A355480"
] | null |
Paolo Xausa, Jul 21 2022
| 2023-01-05T16:11:17 |
oeisdata/seq/A355/A355480.seq
|
c3773b60f17d85f5504d0587da4120d8
|
A355481
|
Number of pairs of Dyck paths of semilength n such that the midpoint of the first is above the midpoint of the second.
|
[
"0",
"0",
"1",
"4",
"49",
"441",
"4806",
"52956",
"614713",
"7341697",
"90118054",
"1130414649",
"14447230854",
"187609607862",
"2470253990556",
"32922380442828",
"443493622670313",
"6031353319151961",
"82725531355436886",
"1143385727109903585",
"15913217995801644870",
"222875331740976566070"
] |
[
"nonn"
] | 48 | 0 | 4 |
[
"A000108",
"A001246",
"A129123",
"A355481",
"A357652"
] | null |
Alois P. Heinz, Oct 07 2022
| 2022-11-16T08:53:12 |
oeisdata/seq/A355/A355481.seq
|
d63d7b9eddab2a0a2be7be6e2caba840
|
A355482
|
a(1) = 2; for n > 1, a(n) is the smallest positive number that has not yet appeared such that the number of 1-bits in the binary expansion of a(n) equals the number of proper divisors of a(n-1).
|
[
"2",
"4",
"3",
"8",
"7",
"16",
"15",
"11",
"32",
"31",
"64",
"63",
"47",
"128",
"127",
"256",
"255",
"191",
"512",
"511",
"13",
"1024",
"1023",
"223",
"2048",
"2047",
"14",
"19",
"4096",
"4095",
"8388607",
"21",
"22",
"25",
"5",
"8192",
"8191",
"16384",
"16383",
"239",
"32768",
"32767",
"247",
"26",
"28",
"55",
"35",
"37",
"65536",
"65535",
"49151",
"38",
"41",
"131072",
"131071",
"262144",
"262143"
] |
[
"nonn",
"base"
] | 12 | 1 | 1 |
[
"A000120",
"A005179",
"A027751",
"A032741",
"A355374",
"A355482",
"A355483"
] | null |
Scott R. Shannon, Jul 03 2022
| 2022-07-04T20:49:20 |
oeisdata/seq/A355/A355482.seq
|
d83722c9c1d631cf5403966b3340c57a
|
A355483
|
a(1) = 1; for n > 1, a(n) is the smallest positive number that has not yet appeared such that the number of 1-bits in the binary expansion of a(n) equals the number of divisors of a(n-1).
|
[
"1",
"2",
"3",
"5",
"6",
"15",
"23",
"9",
"7",
"10",
"27",
"29",
"12",
"63",
"95",
"30",
"255",
"383",
"17",
"18",
"111",
"39",
"43",
"20",
"119",
"45",
"123",
"46",
"51",
"53",
"24",
"447",
"54",
"479",
"33",
"57",
"58",
"60",
"4095",
"16777215",
"79228162514264337593543950335"
] |
[
"nonn",
"base"
] | 15 | 1 | 2 |
[
"A000120",
"A005179",
"A027751",
"A032741",
"A355374",
"A355482",
"A355483"
] | null |
Scott R. Shannon, Jul 03 2022
| 2024-02-03T10:14:25 |
oeisdata/seq/A355/A355483.seq
|
b3bca8659f773afc38b252d84c04e808
|
A355484
|
a(n) is the least positive number that can be represented in exactly n ways as 2*p+q where p and q are primes.
|
[
"1",
"6",
"9",
"21",
"17",
"33",
"45",
"51",
"75",
"99",
"111",
"93",
"105",
"135",
"153",
"201",
"165",
"249",
"231",
"237",
"321",
"225",
"273",
"363",
"411",
"393",
"285",
"315",
"471",
"483",
"435",
"405",
"465",
"555",
"681",
"495",
"783",
"675",
"873",
"849",
"963",
"1729",
"585",
"525",
"897",
"795",
"1041",
"915",
"735",
"855",
"1191",
"825",
"765",
"1095",
"975",
"1005",
"1035",
"1125",
"1311",
"1407"
] |
[
"nonn"
] | 10 | 0 | 2 |
[
"A046926",
"A284052",
"A355484"
] | null |
J. M. Bergot and Robert Israel, Jul 03 2022
| 2022-07-11T13:26:33 |
oeisdata/seq/A355/A355484.seq
|
b1ea69cf0130d243f45e2bce0b923678
|
A355485
|
Primes p such that neither g-1 nor g+1 is prime, where g is the gap from p to the next prime.
|
[
"1327",
"2477",
"3137",
"5531",
"8467",
"9973",
"11213",
"11743",
"12011",
"12163",
"12347",
"14897",
"16007",
"16493",
"16703",
"17257",
"19087",
"20297",
"20443",
"21433",
"24443",
"26267",
"26513",
"29033",
"29501",
"29683",
"31193",
"31907",
"32653",
"32843",
"34549",
"34781",
"35543",
"35771",
"36161",
"36497",
"36947",
"37061",
"37747",
"38993",
"39581",
"40361",
"40433"
] |
[
"nonn"
] | 11 | 1 | 1 |
[
"A001223",
"A061673",
"A355485"
] | null |
J. M. Bergot and Robert Israel, Jul 04 2022
| 2022-07-13T07:18:13 |
oeisdata/seq/A355/A355485.seq
|
b1eb74381b59b1f38ef3495df86805e5
|
A355486
|
a(n) is the number of total solutions (minus the n-th prime) to x^y == y^x (mod p) where 0 < x,y <= p and p is the n-th prime.
|
[
"0",
"0",
"2",
"10",
"10",
"16",
"22",
"40",
"56",
"48",
"70",
"64",
"66",
"74",
"114",
"130",
"118",
"122",
"138",
"168",
"220",
"174",
"158",
"270",
"242",
"242",
"234",
"212",
"238",
"308",
"284",
"272",
"334",
"296",
"318",
"332",
"424",
"364",
"368",
"416",
"370",
"470",
"524",
"510",
"464",
"474",
"552",
"542",
"480",
"604",
"586",
"554",
"768",
"578",
"752",
"618",
"628",
"880",
"752",
"634",
"702",
"606",
"846"
] |
[
"nonn"
] | 32 | 1 | 3 |
[
"A000040",
"A355419",
"A355486"
] | null |
Darío Clavijo, Jul 04 2022
| 2022-09-09T17:14:05 |
oeisdata/seq/A355/A355486.seq
|
d653564124799764f853e94ce3e3eed0
|
A355487
|
Bitwise XOR of the base-4 digits of n.
|
[
"0",
"1",
"2",
"3",
"1",
"0",
"3",
"2",
"2",
"3",
"0",
"1",
"3",
"2",
"1",
"0",
"1",
"0",
"3",
"2",
"0",
"1",
"2",
"3",
"3",
"2",
"1",
"0",
"2",
"3",
"0",
"1",
"2",
"3",
"0",
"1",
"3",
"2",
"1",
"0",
"0",
"1",
"2",
"3",
"1",
"0",
"3",
"2",
"3",
"2",
"1",
"0",
"2",
"3",
"0",
"1",
"1",
"0",
"3",
"2",
"0",
"1",
"2",
"3",
"1",
"0",
"3",
"2",
"0",
"1",
"2",
"3",
"3",
"2",
"1",
"0",
"2",
"3",
"0",
"1",
"0",
"1",
"2",
"3",
"1",
"0",
"3"
] |
[
"nonn",
"base",
"easy"
] | 17 | 0 | 3 |
[
"A003987",
"A010060",
"A030373",
"A053737",
"A269723",
"A309954",
"A341389",
"A353167",
"A355487"
] | null |
Kevin Ryde, Jul 04 2022
| 2022-07-06T22:19:06 |
oeisdata/seq/A355/A355487.seq
|
879c9b7d30b2f91f8dc24b2dadf7e72b
|
A355488
|
Expansion of g.f. f/(1+2*f) where f is the g.f. of nonempty permutations.
|
[
"0",
"1",
"0",
"2",
"8",
"48",
"328",
"2560",
"22368",
"216224",
"2291456",
"26430336",
"329805952",
"4429255168",
"63730438656",
"978479250944",
"15972310317056",
"276292865550336",
"5049672714569728",
"97245533647568896",
"1968395389124714496",
"41783552069858877440",
"928204423021249003520"
] |
[
"nonn"
] | 34 | 0 | 4 |
[
"A000108",
"A000142",
"A000957",
"A003319",
"A052186",
"A059438",
"A122827",
"A126984",
"A355488"
] | null |
F. Chapoton, Jul 04 2022
| 2023-04-25T10:44:20 |
oeisdata/seq/A355/A355488.seq
|
a6933b61019da2c64a301d3cbd2224c1
|
A355489
|
Numbers k such that A000120(k) = A007814(k) + 2.
|
[
"3",
"5",
"9",
"14",
"17",
"22",
"26",
"33",
"38",
"42",
"50",
"60",
"65",
"70",
"74",
"82",
"92",
"98",
"108",
"116",
"129",
"134",
"138",
"146",
"156",
"162",
"172",
"180",
"194",
"204",
"212",
"228",
"248",
"257",
"262",
"266",
"274",
"284",
"290",
"300",
"308",
"322",
"332",
"340",
"356",
"376",
"386",
"396",
"404",
"420",
"440",
"452",
"472",
"488",
"513",
"518"
] |
[
"nonn",
"base"
] | 29 | 1 | 1 |
[
"A000045",
"A000120",
"A007814",
"A010056",
"A025480",
"A048679",
"A072649",
"A355489",
"A371176",
"A373556"
] | null |
Mikhail Kurkov, Jul 04 2022 [verification needed]
| 2024-06-17T15:47:32 |
oeisdata/seq/A355/A355489.seq
|
acbff6e44751ee00f91e708dc308fa65
|
A355490
|
Numbers of the form a+b+c = a^2 - b^2 - c^2 where a > b >= c > 0.
|
[
"8",
"15",
"20",
"24",
"27",
"32",
"35",
"39",
"44",
"48",
"49",
"51",
"54",
"55",
"56",
"63",
"64",
"65",
"68",
"75",
"80",
"84",
"87",
"90",
"92",
"95",
"98",
"99",
"104",
"111",
"114",
"116",
"119",
"120",
"123",
"125",
"128",
"132",
"135",
"140",
"143",
"144",
"147",
"152",
"153",
"155",
"159",
"160",
"164",
"168",
"170",
"171",
"174",
"175",
"176",
"183",
"184",
"185",
"188",
"189",
"195",
"200",
"203",
"204",
"207",
"208",
"209",
"212",
"215",
"216",
"219",
"220",
"224",
"230",
"231"
] |
[
"nonn"
] | 34 | 1 | 1 |
[
"A082772",
"A082867",
"A134582",
"A355490",
"A355491"
] | null |
Mohammad Arab, Jul 04 2022
| 2022-07-05T07:16:21 |
oeisdata/seq/A355/A355490.seq
|
edcc4d2fc060eea7fd5cd2744b4805e6
|
A355491
|
Numbers of the form a+b+c = a^3 - b^3 - c^3 where a > b >= c > 0.
|
[
"10",
"35",
"54",
"64",
"199",
"235",
"279",
"747",
"1224",
"1610",
"1774",
"6156",
"8254",
"11035",
"12024",
"16875",
"56439",
"66340",
"75635",
"82279",
"115712",
"134045",
"136765",
"150480",
"175616",
"212266",
"255277",
"299789",
"339759",
"386704",
"518410",
"563814",
"643824",
"1025776",
"1429190",
"1431233",
"1468846",
"1598374"
] |
[
"nonn"
] | 25 | 1 | 1 |
[
"A355490",
"A355491"
] | null |
Mohammad Arab, Jul 04 2022
| 2022-09-06T15:16:50 |
oeisdata/seq/A355/A355491.seq
|
371d349f0f54383977356179ad75fdea
|
A355492
|
a(n) = 7*3^n - 2.
|
[
"5",
"19",
"61",
"187",
"565",
"1699",
"5101",
"15307",
"45925",
"137779",
"413341",
"1240027",
"3720085",
"11160259",
"33480781",
"100442347",
"301327045",
"903981139",
"2711943421",
"8135830267",
"24407490805",
"73222472419",
"219667417261",
"659002251787",
"1977006755365",
"5931020266099",
"17793060798301",
"53379182394907"
] |
[
"nonn",
"easy"
] | 41 | 0 | 1 |
[
"A171884",
"A198643",
"A355492"
] | null |
Jianing Song, Oct 07 2022
| 2024-06-10T06:14:10 |
oeisdata/seq/A355/A355492.seq
|
f98496662b82914a242f100b847aeadc
|
A355493
|
Expansion of Sum_{k>=0} (k^3 * x)^k/(1 - x)^(k+1).
|
[
"1",
"2",
"67",
"19879",
"16856337",
"30601661681",
"101743314190033",
"559257425236996361",
"4726837695171258085569",
"58192258417571877186113281",
"1000581709943568968705788233921",
"23236157618902718144948494353385025",
"709080642850925779233576351761544968833"
] |
[
"nonn"
] | 17 | 0 | 2 |
[
"A086331",
"A323280",
"A355470",
"A355473",
"A355493",
"A355496"
] | null |
Seiichi Manyama, Jul 04 2022
| 2023-02-21T18:25:40 |
oeisdata/seq/A355/A355493.seq
|
e092180f133aab898496ff2698175bd7
|
A355494
|
Expansion of Sum_{k>=0} (k * x/(1 - x))^k.
|
[
"1",
"1",
"5",
"36",
"350",
"4328",
"65132",
"1155904",
"23640724",
"547544032",
"14166236708",
"404944248104",
"12674392793900",
"431104742439088",
"15834117059443828",
"624575921756875960",
"26332801242942780668",
"1181750740315156943936",
"56244454481507648435012"
] |
[
"nonn"
] | 16 | 0 | 3 |
[
"A086331",
"A355494",
"A355495",
"A355496"
] | null |
Seiichi Manyama, Jul 04 2022
| 2023-02-18T22:49:04 |
oeisdata/seq/A355/A355494.seq
|
bee1f852ce686b955a0e4300a042154b
|
A355495
|
Expansion of Sum_{k>=0} (k^2 * x/(1 - x))^k.
|
[
"1",
"1",
"17",
"762",
"67772",
"10032208",
"2226273192",
"691431572992",
"286268594755712",
"152365547943819264",
"101361042063083269520",
"82409537565402784477984",
"80397802305461995791664944",
"92692687015689239272783171264"
] |
[
"nonn"
] | 14 | 0 | 3 |
[
"A323280",
"A355494",
"A355495",
"A355496"
] | null |
Seiichi Manyama, Jul 04 2022
| 2023-02-24T19:04:21 |
oeisdata/seq/A355/A355495.seq
|
a57b274aa12190efed933d18cbd4fcf8
|
A355496
|
Expansion of Sum_{k>=0} (k^3 * x/(1 - x))^k.
|
[
"1",
"1",
"65",
"19812",
"16836458",
"30584805344",
"101712712528352",
"559155681922806328",
"4726278437746021089208",
"58187531579876705928027712",
"1000523517685151396828602120640",
"23235157037192774575979788565151104",
"709057406693306876515431403267191583808"
] |
[
"nonn"
] | 12 | 0 | 3 |
[
"A355472",
"A355493",
"A355494",
"A355495",
"A355496"
] | null |
Seiichi Manyama, Jul 04 2022
| 2023-02-21T18:25:33 |
oeisdata/seq/A355/A355496.seq
|
01a4e4bec70c3cda50f693f039cfc318
|
A355497
|
Numbers k such that x^2 - s*x + p has only integer roots, where s and p denote the sum and product of the digits of k respectively.
|
[
"0",
"4",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"24",
"25",
"26",
"27",
"28",
"29",
"30",
"31",
"32",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"40",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"48",
"49",
"50",
"51",
"52",
"53",
"54",
"55",
"56",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"64",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"72",
"73",
"74",
"75",
"76",
"77",
"78",
"79",
"80"
] |
[
"nonn",
"base"
] | 86 | 1 | 2 |
[
"A007953",
"A007954",
"A011540",
"A355497",
"A355547",
"A355574"
] | null |
Jean-Marc Rebert, Jul 04 2022
| 2022-07-17T16:09:13 |
oeisdata/seq/A355/A355497.seq
|
e438f497d67aeae90cc4173798161670
|
A355498
|
a(n) = A000217(A033676(n)) * A000217(A033677(n)).
|
[
"1",
"3",
"6",
"9",
"15",
"18",
"28",
"30",
"36",
"45",
"66",
"60",
"91",
"84",
"90",
"100",
"153",
"126",
"190",
"150",
"168",
"198",
"276",
"210",
"225",
"273",
"270",
"280",
"435",
"315",
"496",
"360",
"396",
"459",
"420",
"441",
"703",
"570",
"546",
"540",
"861",
"588",
"946",
"660",
"675",
"828",
"1128",
"756",
"784",
"825",
"918",
"910",
"1431",
"945",
"990",
"1008",
"1140",
"1305",
"1770"
] |
[
"nonn"
] | 20 | 1 | 2 |
[
"A000217",
"A033676",
"A033677",
"A355498"
] | null |
Steven Lu, Jul 04 2022
| 2022-09-21T00:36:45 |
oeisdata/seq/A355/A355498.seq
|
835eaf224dde6964f32839f788a7878f
|
A355499
|
Decimal expansion of Product_{k>=1} (k - 2/3)^(1/(k - 2/3)) / k^(1/k).
|
[
"0",
"4",
"1",
"3",
"0",
"6",
"2",
"4",
"1",
"2",
"5",
"5",
"9",
"3",
"3",
"6",
"3",
"9",
"5",
"2",
"8",
"3",
"8",
"2",
"5",
"2",
"1",
"0",
"0",
"0",
"6",
"7",
"2",
"8",
"1",
"0",
"8",
"3",
"1",
"7",
"7",
"4",
"1",
"2",
"9",
"6",
"7",
"4",
"4",
"8",
"6",
"8",
"8",
"5",
"5",
"7",
"7",
"9",
"5",
"4",
"4",
"4",
"0",
"5",
"4",
"6",
"3",
"3",
"1",
"9",
"0",
"9",
"5",
"4",
"6",
"4",
"5",
"4",
"5",
"6",
"0",
"0",
"2",
"3",
"1",
"7",
"2",
"6",
"3",
"7",
"3",
"9",
"6",
"5",
"6",
"1",
"7",
"0",
"1",
"9",
"9",
"7",
"0",
"0",
"7",
"2"
] |
[
"nonn",
"cons"
] | 14 | 0 | 2 |
[
"A001620",
"A115522",
"A355499",
"A355500"
] | null |
Vaclav Kotesovec, Jul 04 2022
| 2022-07-05T01:49:52 |
oeisdata/seq/A355/A355499.seq
|
061c1950efbda887681e148e1f7f88fa
|
A355500
|
Decimal expansion of Product_{k>=1} (k - 1/2)^(1/(k - 1/2)) / k^(1/k).
|
[
"2",
"7",
"7",
"8",
"5",
"8",
"3",
"4",
"7",
"8",
"3",
"2",
"7",
"2",
"3",
"8",
"7",
"8",
"4",
"9",
"0",
"7",
"0",
"8",
"5",
"2",
"3",
"3",
"3",
"0",
"3",
"0",
"9",
"7",
"3",
"2",
"9",
"9",
"7",
"3",
"3",
"7",
"2",
"6",
"4",
"4",
"7",
"0",
"3",
"2",
"6",
"5",
"0",
"8",
"0",
"6",
"4",
"6",
"3",
"1",
"1",
"8",
"0",
"5",
"8",
"6",
"7",
"7",
"6",
"3",
"7",
"9",
"6",
"4",
"5",
"4",
"6",
"9",
"3",
"2",
"3",
"1",
"9",
"8",
"6",
"5",
"9",
"4",
"8",
"9",
"4",
"4",
"6",
"8",
"6",
"1",
"6",
"4",
"1",
"7",
"6",
"5",
"3",
"3",
"1",
"1"
] |
[
"nonn",
"cons"
] | 14 | 0 | 1 |
[
"A001620",
"A115522",
"A355499",
"A355500"
] | null |
Vaclav Kotesovec, Jul 04 2022
| 2022-07-04T19:56:58 |
oeisdata/seq/A355/A355500.seq
|
b57ba951902a88640e935a435a4f5519
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.