sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A355401
Triangle read by rows: T(n, k) = Sum_{i=1..n-k} inverse-q-binomial(n-k-1, i-1) * q-binomial(n-2+i, n-2) for 0 < k < n with initial values T(n, 0) = 0 for n > 0 and T(n, n) = 1 for n >= 0, here q = 2.
[ "1", "0", "1", "0", "1", "1", "0", "4", "3", "1", "0", "64", "28", "7", "1", "0", "4096", "960", "140", "15", "1", "0", "1048576", "126976", "9920", "620", "31", "1", "0", "1073741824", "66060288", "2666496", "89280", "2604", "63", "1", "0", "4398046511104", "136365211648", "2796552192", "48377856", "755904", "10668", "127", "1" ]
[ "nonn", "easy", "tabl" ]
16
0
8
[ "A022166", "A053763", "A135950", "A355401" ]
null
Werner Schulte, Jun 30 2022
2022-07-07T02:01:54
oeisdata/seq/A355/A355401.seq
2dd8fbd9a83a98c40adbb6446b895e36
A355402
Maximal GCD of seven positive integers with sum n.
[ "1", "1", "1", "1", "1", "1", "1", "2", "1", "2", "1", "2", "1", "2", "3", "2", "1", "3", "1", "2", "3", "4", "1", "3", "1", "4", "3", "2", "5", "4", "1", "2", "3", "5", "1", "6", "1", "4", "5", "2", "1", "6", "7", "5", "3", "4", "1", "6", "5", "8", "3", "2", "1", "6", "1", "2", "9", "8", "5", "6", "1", "4", "3", "10", "1", "9", "1", "2", "5", "4", "11", "6", "1", "10", "9", "2", "1", "12", "5", "2", "3", "11", "1", "10", "13", "4", "3", "2", "5", "12" ]
[ "nonn", "easy" ]
19
7
8
[ "A009641", "A032742", "A354598", "A354599", "A354601", "A355249", "A355319", "A355366", "A355368", "A355402", "A355403" ]
null
Wesley Ivan Hurt, Jun 30 2022
2022-07-24T13:05:26
oeisdata/seq/A355/A355402.seq
346bdaa0ab3943d506760e5815c477e9
A355403
Maximal LCM of seven positive integers with sum n.
[ "1", "2", "3", "6", "6", "12", "15", "30", "30", "60", "60", "84", "105", "210", "210", "420", "420", "420", "420", "840", "840", "1260", "1260", "2310", "2310", "4620", "4620", "5460", "5460", "9240", "9240", "13860", "13860", "16380", "16380", "30030", "30030", "60060", "60060", "60060", "60060", "120120", "120120", "180180", "180180", "180180", "180180" ]
[ "nonn" ]
10
7
2
[ "A009641", "A129647", "A129648", "A129649", "A129650", "A355367", "A355368", "A355402", "A355403" ]
null
Wesley Ivan Hurt, Jun 30 2022
2023-03-17T01:27:16
oeisdata/seq/A355/A355403.seq
664d91970fd67fe2f657d23e969fc9a4
A355404
Lexicographically earliest sequence of distinct terms such that the concatenation of three successive terms form a palindrome using the alphabet {1, 2}.
[ "1", "2", "21", "22", "12", "122", "121", "221", "22121", "22122", "12122", "12122122", "12122121", "22122121", "2212212122121", "2212212122122", "1212212122122", "121221212212212122122", "121221212212212122121", "221221212212212122121", "2212212122122121221212212212122121" ]
[ "nonn", "base" ]
21
1
2
[ "A002113", "A091789", "A355404" ]
null
Michael S. Branicky, Jul 01 2022
2022-08-10T07:40:32
oeisdata/seq/A355/A355404.seq
1b90d42e4d5ce528ea924984cfe76072
A355405
Inverse permutation to A269838.
[ "1", "2", "3", "4", "5", "6", "9", "8", "7", "10", "17", "11", "33", "18", "13", "12", "65", "14", "129", "20", "19", "34", "257", "16", "21", "66", "15", "25", "513", "22", "1025", "24", "35", "130", "37", "23", "2049", "258", "67", "26", "4097", "38", "8193", "36", "29", "514", "16385", "27", "41", "42", "131", "68", "32769", "30", "49", "40", "259", "1026" ]
[ "nonn" ]
10
1
2
[ "A269838", "A355405" ]
null
Rémy Sigrist, Jul 01 2022
2022-07-04T13:57:11
oeisdata/seq/A355/A355405.seq
84d295892c1bea08d86a3bf679aa87e3
A355406
Positive integers that are not powers of 2 and whose Collatz trajectory has maximum power of 2 different from 2^4.
[ "21", "42", "75", "84", "85", "113", "150", "151", "168", "170", "201", "226", "227", "267", "300", "301", "302", "336", "340", "341", "401", "402", "403", "423", "452", "453", "454", "475", "534", "535", "537", "600", "602", "604", "605", "633", "635", "672", "680", "682", "713", "715", "802", "803", "804", "805", "806", "846", "847", "891", "904", "906", "908", "909", "950", "951", "953", "955" ]
[ "nonn" ]
35
1
1
[ "A008908", "A232503", "A308149", "A350160", "A355187", "A355406" ]
null
Frank M Jackson, Jul 01 2022
2023-02-04T01:59:52
oeisdata/seq/A355/A355406.seq
e74e08ced06dd2674cdc34fa210a8297
A355407
Expansion of the e.g.f. log((1 - x) / (1 - 2*x)) / (1 - x)^4.
[ "0", "1", "11", "110", "1154", "13144", "164136", "2251920", "33923760", "560180160", "10117886400", "199399132800", "4275988617600", "99473802624000", "2502049379558400", "67804022648678400", "1972357507107993600", "61358018782620672000", "2033893411878730752000", "71587670846333773824000", "2666700362750370895872000" ]
[ "nonn" ]
8
0
3
[ "A000292", "A000332", "A062137", "A355171", "A355372", "A355407" ]
null
Mélika Tebni, Jul 01 2022
2023-03-09T11:33:36
oeisdata/seq/A355/A355407.seq
5d452344058a48272f2897f89505947e
A355408
Expansion of e.g.f. 1/(1 + exp(x) - exp(3*x)).
[ "1", "2", "16", "170", "2416", "42962", "916696", "22819610", "649207456", "20778364322", "738918769576", "28905116527850", "1233506128752496", "57025618592932082", "2839117599033828856", "151446758367400488890", "8617182795217834505536", "520954229292164353554242" ]
[ "nonn" ]
16
0
2
[ "A000556", "A355378", "A355408", "A355409" ]
null
Seiichi Manyama, Jul 01 2022
2022-07-01T11:24:55
oeisdata/seq/A355/A355408.seq
86e67fdc5abe1498fceb927b769c3ccf
A355409
Expansion of e.g.f. 1/(1 + exp(2*x) - exp(3*x)).
[ "1", "1", "7", "55", "571", "7471", "117307", "2148175", "44958571", "1058555791", "27693129307", "796934764495", "25018548004171", "850870651904911", "31163746960955707", "1222922731101304015", "51189052318085027371", "2276586205163067346831", "107204914362429152404507" ]
[ "nonn" ]
19
0
3
[ "A000010", "A354242", "A355381", "A355408", "A355409", "A370092", "A371460" ]
null
Seiichi Manyama, Jul 01 2022
2024-04-19T04:35:29
oeisdata/seq/A355/A355409.seq
57108e1aa5ad3da73f6f8a911002ea3a
A355410
Expansion of e.g.f. 1/(3 - exp(x) - exp(3*x)).
[ "1", "4", "42", "652", "13482", "348484", "10809282", "391162972", "16177467642", "752689508404", "38911563009522", "2212759299753292", "137270821971529002", "9225382887659221924", "667690580181890112162", "51776098497454677943612", "4282645413209764715753562" ]
[ "nonn" ]
12
0
2
[ "A004700", "A355408", "A355410" ]
null
Seiichi Manyama, Jul 01 2022
2023-12-04T06:36:06
oeisdata/seq/A355/A355410.seq
998bb9c0b6cc504db82ebeba8dbdd870
A355411
Expansion of e.g.f. 1/(3 - exp(2*x) - exp(3*x)).
[ "1", "5", "63", "1175", "29211", "907775", "33852603", "1472830175", "73232729451", "4096474833695", "254608472798043", "17407167078420575", "1298290575826434891", "104900562662494154015", "9127848307446874753083", "850985644429074730049375", "84626187772620135685119531" ]
[ "nonn" ]
11
0
2
[ "A355380", "A355409", "A355411" ]
null
Seiichi Manyama, Jul 01 2022
2022-07-01T12:11:08
oeisdata/seq/A355/A355411.seq
78bc6580bc95ab282de330c50b490fc2
A355412
Count of numbers <= 10^n with no prime factor greater than n.
[ "0", "6", "39", "66", "312", "506", "2154", "3426", "5193", "7574", "30523", "44695", "173076", "254064", "364384", "511984", "1945204", "2749999", "10159602", "14427308", "20186025", "27861174", "101837745", "141340074", "193902061", "263152094", "353549941", "470539446", "1730528206", "2319027316" ]
[ "nonn" ]
38
1
2
null
null
Zhining Yang, Jul 01 2022
2023-05-27T06:45:29
oeisdata/seq/A355/A355412.seq
270ea897244def65857d6b6a3791dff3
A355413
Lexicographically earliest infinite sequence of positive numbers such that, for n>1, a(n) AND a(n-1) is distinct from all previous AND operations between adjacent terms, where AND is the binary AND operator.
[ "0", "1", "3", "3", "6", "5", "7", "7", "14", "9", "11", "11", "14", "13", "15", "15", "30", "17", "19", "19", "22", "21", "23", "23", "30", "25", "27", "27", "30", "29", "31", "31", "62", "33", "35", "35", "38", "37", "39", "39", "46", "41", "43", "43", "46", "45", "47", "47", "62", "49", "51", "51", "54", "53", "55", "55", "62", "57", "59", "59", "62", "61", "63", "63", "126", "65", "67", "67", "70", "69", "71", "71", "78", "73", "75", "75" ]
[ "nonn", "base" ]
13
0
3
[ "A007088", "A129760", "A338824", "A355413" ]
null
Scott R. Shannon, Jul 01 2022
2022-07-01T09:38:25
oeisdata/seq/A355/A355413.seq
556b57a8cb513dbd10bf805216e23168
A355414
Expansion of the e.g.f. log((1 - x) / (1 - 2*x)) / (1 - x)^5.
[ "0", "1", "13", "149", "1750", "21894", "295500", "4320420", "68487120", "1176564240", "21883528800", "440117949600", "9557404012800", "223720054790400", "5634130146624000", "152315974848038400", "4409413104676608000", "136318041562123008000", "4487618159996944896000", "156852415886275726848000", "5803748680475885432832000" ]
[ "nonn" ]
9
0
3
[ "A000332", "A062140", "A355171", "A355372", "A355407", "A355414" ]
null
Mélika Tebni, Jul 01 2022
2022-07-27T09:00:13
oeisdata/seq/A355/A355414.seq
b596790a322ba49028bfe443bbdb9efc
A355415
Decimal expansion of the average distance between the center of a unit cube to a point on its surface uniformly chosen by a random direction from the center.
[ "6", "1", "0", "6", "8", "7", "4", "0", "1", "9", "5", "1", "5", "8", "3", "8", "5", "6", "5", "3", "4", "6", "6", "7", "2", "2", "9", "6", "7", "3", "7", "1", "6", "6", "2", "8", "4", "6", "9", "1", "1", "5", "5", "2", "5", "8", "1", "9", "0", "7", "4", "6", "2", "7", "5", "8", "9", "9", "2", "9", "9", "4", "1", "0", "2", "5", "9", "6", "8", "1", "5", "7", "3", "6", "2", "8", "8", "6", "6", "4", "1", "3", "7", "2", "1", "4", "5", "0", "5", "5", "9", "6", "5", "7", "6", "6", "0", "8", "0", "8", "3", "3", "5", "7", "2" ]
[ "nonn", "cons" ]
9
0
1
[ "A006752", "A073012", "A093066", "A097047", "A130590", "A135691", "A348680", "A348681", "A348682", "A348683", "A355186", "A355415" ]
null
Amiram Eldar, Jul 01 2022
2022-07-01T10:11:03
oeisdata/seq/A355/A355415.seq
2181b4b85596d0f65b97415525684f2e
A355416
a(n) is the least k such that k divides Sum_{i=k..k+n-1} A001414(i).
[ "1", "1", "2", "6", "12", "3", "6", "1", "2", "22", "7", "11", "3", "25", "13", "15", "9", "1", "25", "5", "5", "10", "26", "22", "69", "1", "1", "34", "42", "73", "41", "28", "54", "130", "99", "11", "14", "8", "34", "64", "84", "27", "62", "21", "28", "15", "102", "4", "36", "104", "48", "24", "1", "31", "17", "38", "44", "5", "183", "2", "6", "37", "222", "13", "27", "16", "156", "44", "35", "16", "26", "101", "36", "45", "70", "37", "21", "70" ]
[ "nonn" ]
8
1
3
[ "A001414", "A355416" ]
null
J. M. Bergot and Robert Israel, Jul 01 2022
2022-07-05T06:17:13
oeisdata/seq/A355/A355416.seq
20d04e156d4dddf4955cd08618d94d27
A355417
Decimal expansion of Pi + gamma, where gamma is Euler's constant (or the Euler-Mascheroni constant).
[ "3", "7", "1", "8", "8", "0", "8", "3", "1", "8", "4", "9", "1", "3", "2", "6", "0", "9", "9", "0", "6", "9", "1", "5", "5", "4", "7", "3", "3", "6", "1", "9", "0", "5", "3", "1", "5", "2", "3", "9", "3", "2", "8", "7", "3", "5", "3", "1", "5", "0", "2", "9", "4", "1", "9", "7", "8", "0", "7", "1", "1", "8", "2", "7", "1", "9", "2", "6", "8", "4", "1", "3", "3", "0", "6", "3", "8", "7", "3", "6", "6", "9", "5", "6", "4", "9", "8" ]
[ "nonn", "cons", "easy" ]
7
1
1
[ "A000796", "A001620", "A355417" ]
null
Marco Ripà, Jul 01 2022
2022-07-02T09:32:29
oeisdata/seq/A355/A355417.seq
1382167354a4f739d83adb6b3f26a348
A355418
Numbers k that have the same set of digits in base 10 as primepi(k).
[ "0", "51", "494", "712", "1017", "1080", "1081", "1196", "1828", "2131", "2132", "2133", "2994", "3885", "4622", "4624", "4626", "5700", "5733", "5735", "5755", "5757", "5775", "5777", "6681", "6886", "6888", "7179", "7696", "7697", "7798", "8010", "8100", "8201", "9193", "9691", "9711", "9717", "11263", "11371", "11373", "11377", "11483", "11593", "12418", "12499" ]
[ "nonn", "base" ]
63
1
2
[ "A000720", "A074350", "A355317", "A355418" ]
null
Michel Marcus, Jul 06 2022
2022-07-07T11:46:16
oeisdata/seq/A355/A355418.seq
233f70188af4bb1e409d667247ce58c4
A355419
a(n) is the number of solutions to x^y == y^x (mod p) where 0 < x,y <= p and p is the n-th prime.
[ "2", "3", "7", "17", "21", "29", "39", "59", "79", "77", "101", "101", "107", "117", "161", "183", "177", "183", "205", "239", "293", "253", "241", "359", "339", "343", "337", "319", "347", "421", "411", "403", "471", "435", "467", "483", "581", "527", "535", "589", "549", "651", "715", "703", "661", "673", "763", "765", "707", "833", "819", "793", "1009", "829" ]
[ "nonn" ]
30
1
1
[ "A000040", "A355069", "A355419", "A355486" ]
null
Darío Clavijo, Jul 01 2022
2022-09-01T04:59:27
oeisdata/seq/A355/A355419.seq
c4f40db860577211b40f94983173eb6b
A355420
Integers whose third power is a digital permutation of a term in A007908.
[ "1", "2326", "308344", "416308", "22330489", "23584549", "25262887", "100369113", "103697628", "112085871", "117764571", "123236271", "128235558", "480765411", "487901778", "492021537", "498423726", "507761406", "520620501", "552317646", "622410993", "2231515936", "2245722316", "2259865441", "2277355234" ]
[ "nonn", "base" ]
26
1
2
[ "A007908", "A033307", "A353025", "A355420" ]
null
Marco Ripà and Aldo Roberto Pessolano, Jul 01 2022
2023-03-18T08:49:14
oeisdata/seq/A355/A355420.seq
66a6e46fb6c80060c068dc9b906a516e
A355421
Expansion of e.g.f. exp(Sum_{k=1..3} (exp(k*x) - 1)).
[ "1", "6", "50", "504", "5870", "76872", "1111646", "17522664", "298133054", "5433157512", "105396184478", "2165189912040", "46901678992958", "1067332196912136", "25435754924426270", "633014456504059368", "16411191933603611198", "442258823578968351624" ]
[ "nonn" ]
17
0
2
[ "A004701", "A306027", "A355379", "A355380", "A355421", "A355423" ]
null
Seiichi Manyama, Jul 01 2022
2022-07-02T10:07:35
oeisdata/seq/A355/A355421.seq
669b469fb54c574d4dd36f398f101d35
A355422
Expansion of e.g.f. exp(Sum_{k=1..4} (exp(k*x) - 1)).
[ "1", "10", "130", "2000", "35054", "684000", "14628190", "338990000", "8438270014", "224070580800", "6311530677150", "187702155610000", "5870416574854974", "192423935736656800", "6591135679171866910", "235315671951948070000", "8736534653549465359934" ]
[ "nonn" ]
16
0
2
[ "A004702", "A306028", "A355422", "A355423" ]
null
Seiichi Manyama, Jul 01 2022
2022-07-02T10:07:30
oeisdata/seq/A355/A355422.seq
ea97ead15342eb6d82fe2cff52410de4
A355423
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(Sum_{j=1..k} (exp(j*x) - 1)).
[ "1", "1", "0", "1", "1", "0", "1", "3", "2", "0", "1", "6", "14", "5", "0", "1", "10", "50", "81", "15", "0", "1", "15", "130", "504", "551", "52", "0", "1", "21", "280", "2000", "5870", "4266", "203", "0", "1", "28", "532", "6075", "35054", "76872", "36803", "877", "0", "1", "36", "924", "15435", "148429", "684000", "1111646", "348543", "4140", "0" ]
[ "nonn", "tabl" ]
15
0
8
[ "A000007", "A000110", "A306024", "A320253", "A320288", "A355291", "A355421", "A355422", "A355423" ]
null
Seiichi Manyama, Jul 01 2022
2022-07-02T09:28:11
oeisdata/seq/A355/A355423.seq
709f40a923e64a65d5b4a11a2d64e83f
A355424
Positive integers m such that the real quadratic fields of the form Q(sqrt(m^2+4)) have class number 1.
[ "1", "3", "5", "7", "13", "17" ]
[ "nonn", "fini", "full" ]
18
1
2
[ "A050950", "A053329", "A308420", "A355424" ]
null
Marco Ripà, Jul 01 2022
2022-07-03T09:10:14
oeisdata/seq/A355/A355424.seq
95d6c2b3584ff9d818a110f451c22299
A355425
Expansion of e.g.f. 1/(1 - Sum_{k=1..2} (exp(k*x) - 1)/k).
[ "1", "2", "11", "89", "959", "12917", "208781", "3937019", "84846899", "2057107337", "55416031601", "1642126375199", "53084324076839", "1859037341680157", "70112365228588421", "2833115932639555379", "122113252334984094779", "5592296493425013663377", "271169701559687033317241" ]
[ "nonn" ]
10
0
2
[ "A004700", "A355425", "A355427" ]
null
Seiichi Manyama, Jul 01 2022
2022-07-02T09:28:05
oeisdata/seq/A355/A355425.seq
1a68e212b87f10621c30a8ee3a59a7ce
A355426
Expansion of e.g.f. 1/(1 - Sum_{k=1..3} (exp(k*x) - 1)/k).
[ "1", "3", "24", "284", "4476", "88178", "2084564", "57493334", "1812223276", "64262620538", "2531993864004", "109738634393534", "5188538157065276", "265761817180172498", "14659691726110341844", "866403731832477234134", "54619096812884242006476", "3658454458052874579886058" ]
[ "nonn" ]
11
0
2
[ "A004701", "A355426", "A355427" ]
null
Seiichi Manyama, Jul 01 2022
2022-07-02T09:27:56
oeisdata/seq/A355/A355426.seq
978b7fa5b4d801c1b75ee94aef359d65
A355427
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 - Sum_{j=1..k} (exp(j*x) - 1)/j).
[ "1", "1", "0", "1", "1", "0", "1", "2", "3", "0", "1", "3", "11", "13", "0", "1", "4", "24", "89", "75", "0", "1", "5", "42", "284", "959", "541", "0", "1", "6", "65", "654", "4476", "12917", "4683", "0", "1", "7", "93", "1255", "13564", "88178", "208781", "47293", "0", "1", "8", "126", "2143", "32275", "351634", "2084564", "3937019", "545835", "0" ]
[ "nonn", "tabl" ]
14
0
8
[ "A000007", "A000670", "A306024", "A320253", "A355425", "A355426", "A355427", "A355428" ]
null
Seiichi Manyama, Jul 01 2022
2022-07-02T09:06:33
oeisdata/seq/A355/A355427.seq
7c41d85d4ef53399953878482b0ebde7
A355428
a(n) = n! * [x^n] 1/(1 - Sum_{k=1..n} (exp(k*x) - 1)/k).
[ "1", "1", "11", "284", "13564", "1037479", "116171621", "17916010524", "3640962169776", "942959405612913", "303168464105203113", "118474395231479349050", "55306932183983923942940", "30397993745996492901617435", "19429788681469866219869997285" ]
[ "nonn" ]
16
0
3
[ "A319508", "A355427", "A355428" ]
null
Seiichi Manyama, Jul 01 2022
2022-07-03T01:54:21
oeisdata/seq/A355/A355428.seq
1bff98af4ac79b503a8d854a295f6910
A355429
Square array T(n, k), n >= 0, k > 0, read by antidiagonals, where T(0, k) = A001906(k) for k > 0 and where T(n, k) = n - A130312(n) + A000045(2k + A072649(n)) for n > 0, k > 0.
[ "1", "2", "3", "4", "5", "8", "6", "9", "13", "21", "7", "14", "22", "34", "55", "10", "15", "35", "56", "89", "144", "11", "23", "36", "90", "145", "233", "377", "12", "24", "57", "91", "234", "378", "610", "987", "16", "25", "58", "146", "235", "611", "988", "1597", "2584", "17", "37", "59", "147", "379", "612", "1598", "2585", "4181", "6765", "18", "38", "92", "148", "380", "989" ]
[ "nonn", "tabl" ]
44
1
2
[ "A000045", "A001906", "A072649", "A130312", "A355429" ]
null
Mikhail Kurkov, Jul 20 2022 [verification needed]
2024-04-21T22:11:44
oeisdata/seq/A355/A355429.seq
d0949007af6e504cb0672b8d511a364b
A355430
Primes starting with an even decimal digit.
[ "2", "23", "29", "41", "43", "47", "61", "67", "83", "89", "211", "223", "227", "229", "233", "239", "241", "251", "257", "263", "269", "271", "277", "281", "283", "293", "401", "409", "419", "421", "431", "433", "439", "443", "449", "457", "461", "463", "467", "479", "487", "491", "499", "601", "607", "613", "617", "619", "631", "641", "643", "647", "653", "659", "661", "673", "677", "683", "691", "809", "811", "821" ]
[ "nonn", "base" ]
38
1
1
[ "A000040", "A045708", "A045710", "A045711", "A045712", "A045714", "A087762", "A087764", "A087765", "A087766", "A087767", "A273892", "A355430" ]
null
Bernard Schott, Jul 20 2022
2025-05-18T14:33:29
oeisdata/seq/A355/A355430.seq
7f43a11b3b691dce43f518c3fcf24bf7
A355431
Numbers k whose binary expansion, when interpreted in base -1+i, gives a Gaussian prime.
[ "2", "5", "6", "9", "11", "13", "14", "15", "17", "19", "21", "23", "25", "27", "31", "33", "37", "39", "41", "43", "49", "51", "53", "57", "58", "59", "63", "69", "71", "73", "77", "81", "83", "89", "97", "99", "101", "111", "113", "117", "119", "123", "127", "129", "131", "133", "137", "139", "141", "147", "159", "163", "169", "177", "183", "191", "193", "197", "201", "207" ]
[ "nonn", "base" ]
47
1
1
[ "A066321", "A355431" ]
null
John-Vincent Saddic, Jul 17 2022
2024-03-31T12:05:08
oeisdata/seq/A355/A355431.seq
f2560d3fc5ce2dfa6674742513a33c9d
A355432
a(n) = number of k < n such that rad(k) = rad(n) and k does not divide n, where rad(k) = A007947(k).
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "2", "0", "2", "0", "0", "0", "4", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "2", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "4", "0", "2", "0", "2", "0", "0", "0", "0", "0", "0", "0", "4", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1" ]
[ "nonn" ]
49
1
48
[ "A005361", "A007947", "A008479", "A010846", "A013929", "A020639", "A024619", "A027750", "A126706", "A162306", "A243822", "A272618", "A355432", "A360589", "A360768" ]
null
Michael De Vlieger, Feb 22 2023
2024-10-25T09:31:17
oeisdata/seq/A355/A355432.seq
e538419e2d356ff24bad996b0dc95b46
A355433
Numbers k such that k is sqrt(k)-smooth and k+1 is sqrt(k+1)-smooth.
[ "8", "24", "48", "49", "63", "80", "120", "125", "168", "175", "195", "224", "242", "288", "324", "350", "351", "360", "363", "374", "384", "399", "440", "441", "455", "475", "494", "512", "528", "539", "560", "575", "594", "624", "675", "714", "728", "735", "759", "832", "840", "874", "896", "935", "960", "968", "1000", "1014", "1023", "1044", "1053", "1088", "1104" ]
[ "nonn" ]
10
1
1
[ "A048098", "A060355", "A084920", "A348119", "A355433", "A355434" ]
null
Amiram Eldar, Jul 02 2022
2022-07-04T04:38:40
oeisdata/seq/A355/A355433.seq
f3d1c07b9aaa5427ff57328e26304327
A355434
a(n) is the least start of exactly n consecutive numbers k that are sqrt(k)-smooth (A048098), or -1 if no such run exists.
[ "1", "8", "48", "1518", "5828", "28032", "304260", "290783", "1255500", "4325170", "11135837", "18567909", "321903029", "1394350275", "287946949", "1659945758", "38882519234" ]
[ "nonn", "more" ]
8
1
2
[ "A048098", "A355433", "A355434" ]
null
Amiram Eldar, Jul 02 2022
2022-07-02T14:37:49
oeisdata/seq/A355/A355434.seq
7ee2868ff29e1688a76e5c5af3693bfe
A355435
Lexicographically earliest sequence of distinct positive integers such that for any n > 1, a(n) is a multiple of a(A080079(n-1)).
[ "1", "2", "4", "3", "6", "8", "10", "5", "15", "20", "16", "12", "9", "24", "14", "7", "21", "28", "48", "18", "36", "32", "40", "30", "25", "50", "56", "42", "27", "44", "22", "11", "33", "66", "88", "54", "84", "112", "100", "75", "60", "80", "64", "72", "90", "96", "140", "63", "35", "70", "120", "45", "108", "128", "160", "105", "55", "110", "104", "78", "39", "52", "26", "13" ]
[ "nonn", "tabf" ]
13
1
2
[ "A011782", "A080079", "A269838", "A355435", "A355436" ]
null
Rémy Sigrist, Jul 02 2022
2022-07-04T13:57:02
oeisdata/seq/A355/A355435.seq
9d273f84230dd6d18c5700c3fc18b6ff
A355436
Inverse permutation to A355435.
[ "1", "2", "4", "3", "8", "5", "16", "6", "13", "7", "32", "12", "64", "15", "9", "11", "128", "20", "256", "10", "17", "31", "512", "14", "25", "63", "29", "18", "1024", "24", "2048", "22", "33", "127", "49", "21", "4096", "255", "61", "23", "8192", "28", "16384", "30", "52", "511", "32768", "19", "113", "26", "125", "62", "65536", "36", "57", "27", "253", "1023", "131072" ]
[ "nonn" ]
8
1
2
[ "A355435", "A355436" ]
null
Rémy Sigrist, Jul 02 2022
2022-07-04T13:57:06
oeisdata/seq/A355/A355436.seq
f470655fa023d29bbae51d84b4e1f205
A355437
a(n) is the sign of Maslanka's constant A(n).
[ "1", "-1", "1", "1", "1", "1", "1", "1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1" ]
[ "sign" ]
37
0
null
[ "A114523", "A114524", "A354835", "A355437" ]
null
Artur Jasinski, Jul 02 2022
2022-08-20T13:27:34
oeisdata/seq/A355/A355437.seq
0c824cf6eac88c7307d87982899e0c15
A355438
Lucas(a(n)) is least Lucas number beginning with n.
[ "1", "0", "2", "3", "13", "23", "4", "14", "19", "24", "5", "10", "15", "39", "20", "25", "49", "6", "11", "35", "59", "16", "64", "21", "45", "69", "26", "50", "7", "31", "55", "12", "36", "60", "17", "151", "41", "65", "22", "156", "46", "70", "27", "94", "51", "252", "8", "32", "166", "56", "190", "13", "281", "37", "305", "61", "18", "85", "42", "109", "310", "66", "267", "23", "224", "47", "181", "71", "138", "339" ]
[ "nonn", "base", "look" ]
18
1
3
[ "A000032", "A020344", "A020345", "A355438", "A355439" ]
null
Michel Marcus, Jul 02 2022
2022-07-08T11:24:14
oeisdata/seq/A355/A355438.seq
0f9098aa4b021ef4fd09ef331b6f3c8b
A355439
Smallest Lucas number beginning with n.
[ "1", "2", "3", "4", "521", "64079", "7", "843", "9349", "103682", "11", "123", "1364", "141422324", "15127", "167761", "17393796001", "18", "199", "20633239", "2139295485799", "2207", "23725150497407", "24476", "2537720636", "263115950957276", "271443", "28143753123", "29", "3010349", "312119004989", "322", "33385282", "3461452808002", "3571" ]
[ "nonn", "base" ]
11
1
2
[ "A000032", "A020344", "A020345", "A355438", "A355439" ]
null
Michel Marcus, Jul 02 2022
2022-07-08T13:21:59
oeisdata/seq/A355/A355439.seq
c53e38b85e0fb2e410c0f15fbf45cd82
A355440
Expansion of e.g.f. Sum_{k>=0} exp(4^k * x) * x^k/k!.
[ "1", "2", "10", "98", "2050", "84482", "7221250", "1218502658", "421846581250", "288641130823682", "403002184457781250", "1112950376623239069698", "6251793960501383945781250", "69503063309910921346390425602", "1568447691296998939150390025781250" ]
[ "nonn" ]
19
0
2
[ "A193199", "A355395", "A355440" ]
null
Seiichi Manyama, Jul 02 2022
2023-08-24T07:49:02
oeisdata/seq/A355/A355440.seq
4a33cb635c45cc372648f60d8928e5ed
A355441
Numbers k such that the sum of the least prime factors of i=2..k is prime.
[ "2", "3", "4", "8", "12", "15", "16", "20", "24", "40", "43", "52", "55", "60", "63", "68", "72", "79", "87", "95", "96", "108", "111", "120", "123", "136", "140", "148", "151", "160", "184", "211", "215", "216", "227", "232", "235", "239", "252", "255", "256", "260", "264", "280", "283", "288", "299", "307", "323", "324", "327", "332", "360", "363", "371", "372", "375", "379" ]
[ "nonn" ]
45
1
1
[ "A088821", "A355441" ]
null
Jean-Marc Rebert, Jul 02 2022
2022-07-09T06:53:32
oeisdata/seq/A355/A355441.seq
13de493df8afabf1791b51653c36110a
A355442
a(n) = gcd(A003961(n), A276086(n)), where A003961 is fully multiplicative with a(p) = nextprime(p), and A276086 is primorial base exp-function.
[ "1", "3", "1", "9", "1", "5", "1", "3", "5", "3", "1", "5", "1", "3", "5", "9", "1", "25", "1", "3", "5", "3", "1", "5", "1", "3", "125", "9", "1", "7", "1", "3", "1", "3", "7", "5", "1", "3", "5", "63", "1", "5", "1", "3", "175", "3", "1", "5", "1", "21", "5", "9", "1", "125", "7", "3", "5", "3", "1", "7", "1", "3", "1", "9", "7", "5", "1", "3", "5", "21", "1", "25", "1", "3", "245", "9", "1", "5", "1", "21", "125", "3", "1", "5", "7", "3", "5", "9", "1", "7", "1", "3", "1", "3", "7", "5", "1", "3", "5", "441" ]
[ "nonn" ]
15
1
2
[ "A003961", "A020639", "A276086", "A322361", "A324198", "A351459", "A355001", "A355442", "A355456", "A355692", "A355820", "A355821" ]
null
Antti Karttunen, Jul 13 2022
2022-07-18T16:38:52
oeisdata/seq/A355/A355442.seq
269f174d8b8997848b3d05793e6bd384
A355443
a(n) = 1 if n is of the form p^2 * q where p and q are primes with p^2 < q, otherwise 0.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "1", "0" ]
[ "nonn" ]
15
1
null
[ "A353472", "A353474", "A355443", "A355444", "A355445", "A355453" ]
null
Antti Karttunen, Jul 02 2022
2022-07-07T19:52:16
oeisdata/seq/A355/A355443.seq
ac0c8c0906a348a50b738359f335564b
A355444
a(n) = 1 if n is of the form p^2 * q where p and q are primes with p < q < p^2, otherwise 0.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1" ]
[ "nonn" ]
12
1
null
[ "A353472", "A353474", "A355443", "A355444", "A355446", "A355454" ]
null
Antti Karttunen, Jul 02 2022
2022-07-07T19:52:21
oeisdata/seq/A355/A355444.seq
8f74fb398cb43833da9fa498743eb28d
A355445
Numbers of the form p^2 * q where p and q are primes with p^2 < q.
[ "20", "28", "44", "52", "68", "76", "92", "99", "116", "117", "124", "148", "153", "164", "171", "172", "188", "207", "212", "236", "244", "261", "268", "279", "284", "292", "316", "332", "333", "356", "369", "387", "388", "404", "412", "423", "428", "436", "452", "477", "508", "524", "531", "548", "549", "556", "596", "603", "604", "628", "639", "652", "657", "668", "692", "711", "716", "724", "725", "747", "764", "772", "775", "788", "796" ]
[ "nonn" ]
20
1
1
[ "A000005", "A001222", "A001248", "A096156", "A119315", "A290110", "A300250", "A355443", "A355445", "A355446" ]
null
Antti Karttunen, Jul 02 2022
2022-07-08T17:08:12
oeisdata/seq/A355/A355445.seq
8b257db563b15862d7f3198bc5a89982
A355446
Numbers of the form p^2 * q where p and q are primes with p < q < p^2.
[ "12", "45", "63", "175", "275", "325", "425", "475", "539", "575", "637", "833", "931", "1127", "1421", "1519", "1573", "1813", "2009", "2057", "2107", "2299", "2303", "2783", "2873", "3211", "3509", "3751", "3887", "4477", "4901", "4961", "5203", "5239", "5491", "5687", "6253", "6413", "6647", "6929", "7139", "7267", "7381", "7943", "8107", "8303", "8381", "8591", "8833", "8957", "8959", "9559", "9971", "10043", "10309", "10469" ]
[ "nonn" ]
21
1
1
[ "A000005", "A001222", "A001248", "A066680", "A096156", "A251720", "A290110", "A300250", "A355444", "A355445", "A355446", "A355455" ]
null
Antti Karttunen, Jul 02 2022
2025-05-28T09:16:36
oeisdata/seq/A355/A355446.seq
1bde99e1f1abe058d9c56ef5e42f32a8
A355447
a(n) = 1 if n is neither squarefree nor prime power, otherwise 0.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "1", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1" ]
[ "nonn", "changed" ]
26
1
null
[ "A001221", "A008966", "A010055", "A126706", "A354819", "A355447" ]
null
Antti Karttunen, Jul 13 2022
2025-07-14T15:14:19
oeisdata/seq/A355/A355447.seq
c367b5a1fa0f663fb4ef88e150a58a64
A355448
a(n) = 1 if the number of divisors of n^2 is coprime to 6, otherwise 0.
[ "1", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1" ]
[ "nonn", "easy", "mult" ]
33
1
null
[ "A000005", "A010057", "A013661", "A048691", "A078434", "A227291", "A307421", "A307424", "A350014", "A353470", "A354354", "A355448", "A355684" ]
null
Antti Karttunen, Jul 13 2022
2023-10-05T04:01:42
oeisdata/seq/A355/A355448.seq
01382d8463eb879e497893ac6decf769
A355449
a(n) = 1 if n^2 + 2 is prime, 0 otherwise.
[ "1", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0" ]
[ "nonn" ]
14
0
null
[ "A010051", "A059100", "A067201", "A295405", "A355449" ]
null
Antti Karttunen, Jul 12 2022
2022-07-13T09:34:00
oeisdata/seq/A355/A355449.seq
751143d903d7d218434127a75b34594e
A355450
a(n) = 1 if n is odd and phi(x) = n^2 + 1 has no solutions, otherwise 0.
[ "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1" ]
[ "nonn" ]
7
1
null
[ "A106571", "A355450", "A355451" ]
null
Antti Karttunen, Jul 12 2022
2022-07-12T20:59:34
oeisdata/seq/A355/A355450.seq
941009d983c26a4d2a4c03feb7e3f979
A355451
a(n) = 1 if n is even and phi(x) = n has no solutions, otherwise 0.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0" ]
[ "nonn" ]
10
1
null
[ "A000010", "A005277", "A014197", "A059841", "A264739", "A355450", "A355451", "A355452" ]
null
Antti Karttunen, Jul 12 2022
2022-07-12T20:59:38
oeisdata/seq/A355/A355451.seq
5a2c3e4787f79cc6a1857b843e355af2
A355452
a(n) = 1 if Bernoulli number B_{n} has denominator 6, otherwise 0.
[ "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0" ]
[ "nonn" ]
11
1
null
[ "A027642", "A051222", "A067513", "A355451", "A355452" ]
null
Antti Karttunen, Jul 12 2022
2023-04-22T14:41:37
oeisdata/seq/A355/A355452.seq
f4b2d67e18db0d9f520afea9ae61be6c
A355453
a(n) = 1 if the third smallest divisor of n is not a prime, otherwise 0.
[ "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "0", "1", "1" ]
[ "nonn" ]
14
1
null
[ "A010051", "A119315", "A292269", "A355443", "A355453", "A355454" ]
null
Antti Karttunen, Jul 02 2022
2022-07-02T21:48:17
oeisdata/seq/A355/A355453.seq
74386b0756bd519e1b517a35acbf35ca
A355454
a(n) = 1 if the fourth smallest divisor of n is a square, otherwise 0.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0" ]
[ "nonn" ]
7
1
null
[ "A355453", "A355454", "A355455" ]
null
Antti Karttunen, Jul 02 2022
2022-07-02T21:48:29
oeisdata/seq/A355/A355454.seq
b5a57e10b7d33c226b98c04496adcab9
A355455
Numbers whose fourth smallest divisor is a square.
[ "12", "24", "36", "45", "48", "60", "63", "72", "84", "96", "108", "120", "132", "135", "144", "156", "168", "175", "180", "189", "192", "204", "216", "225", "228", "240", "252", "264", "275", "276", "288", "300", "312", "324", "325", "336", "348", "360", "372", "384", "396", "405", "408", "420", "425", "432", "441", "444", "456", "468", "475", "480", "492", "495", "504", "516", "528", "539", "540", "552", "564", "567", "575", "576", "585" ]
[ "nonn" ]
4
1
1
[ "A000005", "A010054", "A119315", "A355454", "A355455" ]
null
Antti Karttunen, Jul 02 2022
2022-07-02T13:15:42
oeisdata/seq/A355/A355455.seq
d7eaf2b1fad5c2b857eb67caa21d25b8
A355456
Greatest common divisor of sigma(n), A003961(n), and A276086(n).
[ "1", "3", "1", "1", "1", "1", "1", "3", "1", "3", "1", "1", "1", "3", "1", "1", "1", "1", "1", "3", "1", "3", "1", "5", "1", "3", "5", "1", "1", "1", "1", "3", "1", "3", "1", "1", "1", "3", "1", "9", "1", "1", "1", "3", "1", "3", "1", "1", "1", "3", "1", "1", "1", "5", "1", "3", "5", "3", "1", "7", "1", "3", "1", "1", "7", "1", "1", "3", "1", "3", "1", "5", "1", "3", "1", "1", "1", "1", "1", "3", "1", "3", "1", "1", "1", "3", "5", "9", "1", "1", "1", "3", "1", "3", "1", "1", "1", "3", "1", "7", "1", "1", "1", "3", "1" ]
[ "nonn" ]
10
1
2
[ "A000203", "A003961", "A276086", "A323653", "A324644", "A342671", "A351459", "A355002", "A355442", "A355456" ]
null
Antti Karttunen, Jul 13 2022
2022-07-18T16:39:12
oeisdata/seq/A355/A355456.seq
925c3d817e1a18dd8fe08db3f171e78b
A355457
Numbers k > 1 such that A354833(k) = k * A354833(k-1).
[ "2", "3", "4", "7", "15", "26", "31", "43", "98", "117", "140", "215", "540", "1945", "22279", "38459", "39461", "66869", "69328", "4047994", "4615259", "5617480", "5898979", "9685120", "9751023" ]
[ "nonn", "more" ]
7
1
1
[ "A354833", "A355457" ]
null
Rémy Sigrist, Jul 02 2022
2022-07-03T09:14:58
oeisdata/seq/A355/A355457.seq
59894986c894b39b3f85cbdd0cd03b92
A355458
Numbers k that set a new record m where m is the largest left-truncatable prime up to the final k (stop on reaching the final k).
[ "1", "7", "111", "3367", "7787", "8517", "9071", "54079", "54451", "138657", "262157", "759461", "857817", "4662317", "21754021", "25400729", "41171387", "50304331", "368119693", "799245603", "938577991" ]
[ "nonn", "base", "more" ]
33
1
2
[ "A024785", "A355458" ]
null
Eder Vanzei, Jul 02 2022
2022-08-30T14:27:03
oeisdata/seq/A355/A355458.seq
2a4e636a3856a314a1e45916fcdabffc
A355459
Real part of the Heighway/harter dragon curve points which are on the real axis.
[ "0", "1", "-2", "-3", "-4", "-5", "6", "7", "8", "7", "10", "11", "12", "13", "18", "17", "16", "15", "18", "19", "20", "21", "-22", "-23", "-24", "-23", "-26", "-27", "-28", "-29", "-34", "-33", "-32", "-33", "-30", "-29", "-28", "-27", "-38", "-39", "-40", "-39", "-42", "-43", "-44", "-45", "-50", "-49", "-48", "-47" ]
[ "sign" ]
13
0
3
[ "A246960", "A332383", "A332384", "A355459", "A355460" ]
null
Reed Michael Upson, Jul 02 2022
2022-11-19T12:32:04
oeisdata/seq/A355/A355459.seq
cca19434ef16106c21f633efbe02670a
A355460
Imaginary part of the Heighway/Harter dragon curve points which are on the imaginary axis.
[ "0", "1", "2", "-3", "-4", "-5", "-6", "-9", "-8", "-9", "-10", "11", "12", "13", "14", "17", "16", "15", "14", "19", "20", "21", "22", "25", "24", "25", "26", "37", "36", "35", "34", "31", "32", "31", "30", "35", "36", "37", "38", "41", "40", "41", "42", "-43", "-44", "-45", "-46", "-49", "-48", "-47" ]
[ "sign" ]
19
0
3
[ "A246960", "A332383", "A332384", "A355459", "A355460" ]
null
Reed Michael Upson, Jul 02 2022
2022-11-19T12:32:46
oeisdata/seq/A355/A355460.seq
150e13e8844d3428acd32425c53e4a0d
A355461
Squarefree numbers d of the form r^2*m^2 + 4*r, where r and m are odd positive integers, such that Q(sqrt(d)) has class number 1.
[ "5", "13", "21", "29", "53", "173", "237", "293", "437", "453", "1133", "1253" ]
[ "nonn", "fini", "full" ]
8
1
1
[ "A050950", "A053329", "A308420", "A355461" ]
null
Marco Ripà, Jul 02 2022
2022-07-03T09:10:43
oeisdata/seq/A355/A355461.seq
d67c0a39cdc1b419a93d5c7a231f25b9
A355462
Powerful numbers divisible by exactly 2 distinct primes.
[ "36", "72", "100", "108", "144", "196", "200", "216", "225", "288", "324", "392", "400", "432", "441", "484", "500", "576", "648", "675", "676", "784", "800", "864", "968", "972", "1000", "1089", "1125", "1152", "1156", "1225", "1296", "1323", "1352", "1372", "1444", "1521", "1568", "1600", "1728", "1936", "1944", "2000", "2025", "2116", "2304", "2312", "2500" ]
[ "nonn" ]
9
1
1
[ "A000005", "A001221", "A001694", "A007774", "A051904", "A060355", "A085986", "A136141", "A143610", "A162142", "A179646", "A179666", "A179671", "A179689", "A179694", "A179699", "A179702", "A179705", "A189988", "A189990", "A189991", "A190464", "A190465", "A264828", "A286708", "A303661", "A355462" ]
null
Amiram Eldar, Jul 03 2022
2022-07-04T04:38:37
oeisdata/seq/A355/A355462.seq
a51d3cbb7757aa17361267bc9c2ef082
A355463
Expansion of Sum_{k>=0} (x/(1 - k^k * x))^k.
[ "1", "1", "2", "10", "131", "5656", "869097", "490286392", "1264458639313", "12443651667592768", "681538604797281047489", "153070077563816488157872384", "205935348854901274982393017521537", "1352544986573612111579941739713633174912" ]
[ "nonn" ]
20
0
3
[ "A080108", "A193198", "A193199", "A349893", "A355463", "A355464", "A355471", "A355472" ]
null
Seiichi Manyama, Jul 03 2022
2023-02-16T11:32:03
oeisdata/seq/A355/A355463.seq
c8aaa12213fa00bf1ed2f7bc281f472a
A355464
Expansion of Sum_{k>=0} x^k/(1 - k^k * x)^(k+1).
[ "1", "2", "4", "17", "210", "9217", "1399298", "811229225", "2071392232962", "20710319937493889", "1137259214532706572162", "255141201504146525745627265", "348787971214016591166179037803522", "2262996819897931095524655885144485185409" ]
[ "nonn" ]
15
0
2
[ "A000248", "A086331", "A135746", "A320287", "A349893", "A355440", "A355463", "A355464", "A355473" ]
null
Seiichi Manyama, Jul 03 2022
2022-07-03T09:34:57
oeisdata/seq/A355/A355464.seq
15c09ec1e987e40d2a4e04be92b2d68d
A355465
Expansion of Sum_{k>=0} (k^k * x/(1 - k^k * x))^k.
[ "1", "1", "17", "19812", "4296562388", "298027622009561768", "10314429455106223377205859112", "256923580408437742134605162130019436138968", "6277101736867794060924264576844540796924098543875220742528" ]
[ "nonn" ]
9
0
3
[ "A349886", "A355465", "A355466" ]
null
Seiichi Manyama, Jul 03 2022
2022-07-03T13:56:25
oeisdata/seq/A355/A355465.seq
ea8eee7a5ac09a25b1fea6dcf56eb7ef
A355466
Expansion of Sum_{k>=0} (k^k * x)^k/(1 - k^k * x)^(k+1).
[ "1", "2", "19", "19879", "4297094601", "298028721578591321", "10314430386430205371442173873", "256923580889667562995278943476559835493321", "6277101737079381674883855772624745947410338680458857322625" ]
[ "nonn" ]
12
0
2
[ "A072034", "A242446", "A349886", "A355466", "A355470" ]
null
Seiichi Manyama, Jul 03 2022
2022-07-03T09:34:40
oeisdata/seq/A355/A355466.seq
7fa4ea4361ac2a3091c42d5f5124f6a9
A355467
a(n) is the smallest number which is greater than n and has more prime factors (with multiplicity) than n.
[ "2", "4", "4", "8", "6", "8", "8", "16", "12", "12", "12", "16", "14", "16", "16", "32", "18", "24", "20", "24", "24", "24", "24", "32", "27", "27", "32", "32", "30", "32", "32", "64", "36", "36", "36", "48", "38", "40", "40", "48", "42", "48", "44", "48", "48", "48", "48", "64", "50", "54", "52", "54", "54", "64", "56", "64", "60", "60", "60", "64", "62", "63", "64", "128", "66", "72", "68", "72", "70", "72", "72", "96", "74", "75", "80", "80", "78", "80", "80", "96", "96" ]
[ "nonn" ]
22
1
1
[ "A001222", "A073093", "A355467" ]
null
Dan Dart, Jul 03 2022
2023-05-05T07:57:18
oeisdata/seq/A355/A355467.seq
ed058dec7a58de09d8e639b46c43cbae
A355468
Expansion of Sum_{k>=0} (k^2 * x/(1 - k^2 * x))^k.
[ "1", "1", "17", "858", "85988", "14318320", "3570592512", "1245401343760", "578840603221568", "345763649636940672", "258099498410703320960", "235426611021544158413824", "257654470061373320338925568", "333210260028337620911268462592" ]
[ "nonn" ]
15
0
3
[ "A195242", "A242446", "A249459", "A355468" ]
null
Seiichi Manyama, Jul 03 2022
2023-02-22T08:03:34
oeisdata/seq/A355/A355468.seq
eeeb16154321110936c6532d5830139f
A355469
Expansion of Sum_{k>=0} (k^3 * x/(1 - k^3 * x))^k.
[ "1", "1", "65", "20708", "18383828", "34898769936", "121324513279512", "697408243146701056", "6165037130760825320768", "79390334273383043609851520", "1428007543233019703635181454080", "34693490969752778534655707874499584", "1107666867764009444258160579726602423808" ]
[ "nonn" ]
13
0
3
[ "A355468", "A355469", "A355470" ]
null
Seiichi Manyama, Jul 03 2022
2023-02-21T23:24:56
oeisdata/seq/A355/A355469.seq
75776f1b6b6380aedaf33043ea551e51
A355470
Expansion of Sum_{k>=0} (k^3 * x)^k/(1 - k^3 * x)^(k+1).
[ "1", "1", "66", "21222", "18927560", "36030104000", "125486684755152", "722272396672485568", "6391048590559497227904", "82362961035803105954736768", "1482370265813455598541301007360", "36031982428595760278113744699088384", "1150873035676373345725887922070318410752" ]
[ "nonn" ]
12
0
3
[ "A072034", "A242446", "A355466", "A355469", "A355470", "A355473" ]
null
Seiichi Manyama, Jul 03 2022
2022-07-03T09:34:47
oeisdata/seq/A355/A355470.seq
d37da00c55ebb4e3340127d67152d1df
A355471
Expansion of Sum_{k>=0} (x/(1 - k^2 * x))^k.
[ "1", "1", "2", "10", "77", "808", "11257", "196072", "4136897", "103755904", "3034193921", "101901347944", "3885951145969", "166605168800704", "7961498177012993", "420976047757358776", "24475992585921169553", "1556007778666449968128", "107625967130820901112833" ]
[ "nonn" ]
13
0
3
[ "A080108", "A135746", "A234568", "A355463", "A355471", "A355472" ]
null
Seiichi Manyama, Jul 03 2022
2023-02-16T09:49:38
oeisdata/seq/A355/A355471.seq
ae6b9ff8c99b41c7b365f4c7da1fcee2
A355472
Expansion of Sum_{k>=0} (x/(1 - k^3 * x))^k.
[ "1", "1", "2", "18", "275", "6680", "258897", "13646776", "959706169", "88651586048", "10272048320897", "1462972094910224", "253355867842243905", "52387780870782231424", "12745274175326359046785", "3615579524073585972982544", "1184928928181459098548941633", "444427677344332049739011858432" ]
[ "nonn" ]
10
0
3
[ "A080108", "A355463", "A355471", "A355472" ]
null
Seiichi Manyama, Jul 03 2022
2023-02-21T20:58:25
oeisdata/seq/A355/A355472.seq
e1cf3b9440680d94895a16b07ae32a2d
A355473
Expansion of Sum_{k>=0} x^k/(1 - k^3 * x)^(k+1).
[ "1", "1", "3", "28", "497", "12736", "517297", "28793248", "2095968065", "199522773568", "23839495688321", "3482169003693304", "616298415199306369", "130134007837039167040", "32272959284595295173377", "9313050358489324003967176", "3101245112865402456422252033" ]
[ "nonn" ]
15
0
3
[ "A000248", "A135746", "A355464", "A355473" ]
null
Seiichi Manyama, Jul 03 2022
2023-02-21T23:25:30
oeisdata/seq/A355/A355473.seq
ca81e5d1eb88ebeee08687ef8202abdb
A355474
Square array T(m,n) = Card({ (i, j) : 1 <= i <= m, 1 <= j <= min(n, i), GCD(i, j) = 1 }), read by antidiagonals upwards.
[ "1", "2", "1", "3", "2", "1", "4", "4", "2", "1", "5", "5", "4", "2", "1", "6", "7", "6", "4", "2", "1", "7", "8", "9", "6", "4", "2", "1", "8", "10", "10", "10", "6", "4", "2", "1", "9", "11", "13", "11", "10", "6", "4", "2", "1", "10", "13", "15", "15", "12", "10", "6", "4", "2", "1", "11", "14", "17", "17", "17", "12", "10", "6", "4", "2", "1", "12", "16", "19", "20", "20", "18", "12", "10", "6", "4", "2", "1" ]
[ "nonn", "tabl" ]
25
1
2
[ "A001221", "A002088", "A191743", "A290110", "A355474" ]
null
Luc Rousseau, Jul 03 2022
2022-09-24T15:46:24
oeisdata/seq/A355/A355474.seq
622f8a790a2a3374c8401aa1b38b2909
A355475
Numbers that are sparsely totient (A036913) and of least prime signature (A025487).
[ "2", "6", "12", "30", "60", "120", "210", "240", "420", "840", "1260", "1680", "2310", "4620", "9240", "13860", "18480", "30030", "60060", "120120", "180180", "240240", "360360", "510510", "1021020", "2042040", "3063060", "4084080", "6126120", "8168160", "9699690", "12252240", "19399380", "38798760", "58198140", "77597520" ]
[ "nonn" ]
20
1
1
[ "A002110", "A025487", "A036913", "A355475" ]
null
Hal M. Switkay, Jul 03 2022
2024-07-28T10:07:58
oeisdata/seq/A355/A355475.seq
d81e0ced426bfed553a3b35be729fcdc
A355476
a(1)=1. For a(n) a novel term, a(n+1) = A000005(a(n)). For a(n) seen already k > 1 times, a(n+1) = k*a(n).
[ "1", "1", "2", "2", "4", "3", "2", "6", "4", "8", "4", "12", "6", "12", "24", "8", "16", "5", "2", "8", "24", "48", "10", "4", "16", "32", "6", "18", "6", "24", "72", "12", "36", "9", "3", "6", "30", "8", "32", "64", "7", "2", "10", "20", "6", "36", "72", "144", "15", "4", "20", "40", "8", "40", "80", "10", "30", "60", "12", "48", "96", "12", "60", "120", "16", "48", "144", "288", "18", "36", "108", "12", "72", "216", "16" ]
[ "nonn" ]
48
1
3
[ "A000005", "A000040", "A009087", "A355476" ]
null
David James Sycamore, Jul 03 2022
2025-07-01T23:33:54
oeisdata/seq/A355/A355476.seq
a13507c2297c47811d547ceb9d419e65
A355477
Maximum number of skew-tetrominoes that can be packed into an n X n square.
[ "0", "0", "1", "3", "4", "8", "9", "14", "16", "23", "25", "33", "36", "46", "49", "60", "64", "77", "81", "96", "100" ]
[ "nonn", "more" ]
55
1
4
[ "A256535", "A355477" ]
null
Alexander D. Healy, Jul 03 2022
2023-09-17T01:29:18
oeisdata/seq/A355/A355477.seq
278744c47d368cb5797880e1374a8bf5
A355478
The honeybee prime walk: a(n) is the number of closed honeycomb cells after the n-th step of the walk described in the comments.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "3", "3", "3", "3", "3", "4", "4", "4", "5", "5", "5", "5", "5", "6", "6", "6", "6", "6", "8", "8", "8", "8", "8", "8", "8", "8", "9", "9", "9", "9", "9", "9", "9", "9", "9" ]
[ "nonn", "walk" ]
35
0
37
[ "A174313", "A211020", "A233399", "A355478", "A355479", "A355480", "A359529" ]
null
Paolo Xausa, Jul 18 2022
2023-01-05T10:19:18
oeisdata/seq/A355/A355478.seq
9df500c48331d610eeb6989ccf0ac53c
A355479
a(n) is the number of distinct honeycomb cell walls built after the n-th step of the walk described in A355478.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "20", "20", "20", "20", "21", "22", "23", "24", "24", "25", "26", "27", "28", "29", "30", "31", "31", "31", "31", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "40", "41", "42", "42", "43", "44", "45", "46", "46", "46", "47", "47", "48", "49", "50", "51", "51", "51" ]
[ "nonn", "walk" ]
18
0
3
[ "A174313", "A211020", "A233399", "A355478", "A355479", "A355480", "A357434" ]
null
Paolo Xausa, Jul 18 2022
2023-01-05T15:39:28
oeisdata/seq/A355/A355479.seq
daa480b8f4fdaafa4d132ad80667eabc
A355480
a(n) is the number of distinct, hexagonal-tiled regions after the n-th step of the walk described in A355478.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "3", "3", "3", "3", "3", "3", "3", "3", "3" ]
[ "nonn", "walk" ]
15
0
37
[ "A174313", "A211020", "A233399", "A355478", "A355479", "A355480" ]
null
Paolo Xausa, Jul 21 2022
2023-01-05T16:11:17
oeisdata/seq/A355/A355480.seq
c3773b60f17d85f5504d0587da4120d8
A355481
Number of pairs of Dyck paths of semilength n such that the midpoint of the first is above the midpoint of the second.
[ "0", "0", "1", "4", "49", "441", "4806", "52956", "614713", "7341697", "90118054", "1130414649", "14447230854", "187609607862", "2470253990556", "32922380442828", "443493622670313", "6031353319151961", "82725531355436886", "1143385727109903585", "15913217995801644870", "222875331740976566070" ]
[ "nonn" ]
48
0
4
[ "A000108", "A001246", "A129123", "A355481", "A357652" ]
null
Alois P. Heinz, Oct 07 2022
2022-11-16T08:53:12
oeisdata/seq/A355/A355481.seq
d63d7b9eddab2a0a2be7be6e2caba840
A355482
a(1) = 2; for n > 1, a(n) is the smallest positive number that has not yet appeared such that the number of 1-bits in the binary expansion of a(n) equals the number of proper divisors of a(n-1).
[ "2", "4", "3", "8", "7", "16", "15", "11", "32", "31", "64", "63", "47", "128", "127", "256", "255", "191", "512", "511", "13", "1024", "1023", "223", "2048", "2047", "14", "19", "4096", "4095", "8388607", "21", "22", "25", "5", "8192", "8191", "16384", "16383", "239", "32768", "32767", "247", "26", "28", "55", "35", "37", "65536", "65535", "49151", "38", "41", "131072", "131071", "262144", "262143" ]
[ "nonn", "base" ]
12
1
1
[ "A000120", "A005179", "A027751", "A032741", "A355374", "A355482", "A355483" ]
null
Scott R. Shannon, Jul 03 2022
2022-07-04T20:49:20
oeisdata/seq/A355/A355482.seq
d83722c9c1d631cf5403966b3340c57a
A355483
a(1) = 1; for n > 1, a(n) is the smallest positive number that has not yet appeared such that the number of 1-bits in the binary expansion of a(n) equals the number of divisors of a(n-1).
[ "1", "2", "3", "5", "6", "15", "23", "9", "7", "10", "27", "29", "12", "63", "95", "30", "255", "383", "17", "18", "111", "39", "43", "20", "119", "45", "123", "46", "51", "53", "24", "447", "54", "479", "33", "57", "58", "60", "4095", "16777215", "79228162514264337593543950335" ]
[ "nonn", "base" ]
15
1
2
[ "A000120", "A005179", "A027751", "A032741", "A355374", "A355482", "A355483" ]
null
Scott R. Shannon, Jul 03 2022
2024-02-03T10:14:25
oeisdata/seq/A355/A355483.seq
b3bca8659f773afc38b252d84c04e808
A355484
a(n) is the least positive number that can be represented in exactly n ways as 2*p+q where p and q are primes.
[ "1", "6", "9", "21", "17", "33", "45", "51", "75", "99", "111", "93", "105", "135", "153", "201", "165", "249", "231", "237", "321", "225", "273", "363", "411", "393", "285", "315", "471", "483", "435", "405", "465", "555", "681", "495", "783", "675", "873", "849", "963", "1729", "585", "525", "897", "795", "1041", "915", "735", "855", "1191", "825", "765", "1095", "975", "1005", "1035", "1125", "1311", "1407" ]
[ "nonn" ]
10
0
2
[ "A046926", "A284052", "A355484" ]
null
J. M. Bergot and Robert Israel, Jul 03 2022
2022-07-11T13:26:33
oeisdata/seq/A355/A355484.seq
b1ea69cf0130d243f45e2bce0b923678
A355485
Primes p such that neither g-1 nor g+1 is prime, where g is the gap from p to the next prime.
[ "1327", "2477", "3137", "5531", "8467", "9973", "11213", "11743", "12011", "12163", "12347", "14897", "16007", "16493", "16703", "17257", "19087", "20297", "20443", "21433", "24443", "26267", "26513", "29033", "29501", "29683", "31193", "31907", "32653", "32843", "34549", "34781", "35543", "35771", "36161", "36497", "36947", "37061", "37747", "38993", "39581", "40361", "40433" ]
[ "nonn" ]
11
1
1
[ "A001223", "A061673", "A355485" ]
null
J. M. Bergot and Robert Israel, Jul 04 2022
2022-07-13T07:18:13
oeisdata/seq/A355/A355485.seq
b1eb74381b59b1f38ef3495df86805e5
A355486
a(n) is the number of total solutions (minus the n-th prime) to x^y == y^x (mod p) where 0 < x,y <= p and p is the n-th prime.
[ "0", "0", "2", "10", "10", "16", "22", "40", "56", "48", "70", "64", "66", "74", "114", "130", "118", "122", "138", "168", "220", "174", "158", "270", "242", "242", "234", "212", "238", "308", "284", "272", "334", "296", "318", "332", "424", "364", "368", "416", "370", "470", "524", "510", "464", "474", "552", "542", "480", "604", "586", "554", "768", "578", "752", "618", "628", "880", "752", "634", "702", "606", "846" ]
[ "nonn" ]
32
1
3
[ "A000040", "A355419", "A355486" ]
null
Darío Clavijo, Jul 04 2022
2022-09-09T17:14:05
oeisdata/seq/A355/A355486.seq
d653564124799764f853e94ce3e3eed0
A355487
Bitwise XOR of the base-4 digits of n.
[ "0", "1", "2", "3", "1", "0", "3", "2", "2", "3", "0", "1", "3", "2", "1", "0", "1", "0", "3", "2", "0", "1", "2", "3", "3", "2", "1", "0", "2", "3", "0", "1", "2", "3", "0", "1", "3", "2", "1", "0", "0", "1", "2", "3", "1", "0", "3", "2", "3", "2", "1", "0", "2", "3", "0", "1", "1", "0", "3", "2", "0", "1", "2", "3", "1", "0", "3", "2", "0", "1", "2", "3", "3", "2", "1", "0", "2", "3", "0", "1", "0", "1", "2", "3", "1", "0", "3" ]
[ "nonn", "base", "easy" ]
17
0
3
[ "A003987", "A010060", "A030373", "A053737", "A269723", "A309954", "A341389", "A353167", "A355487" ]
null
Kevin Ryde, Jul 04 2022
2022-07-06T22:19:06
oeisdata/seq/A355/A355487.seq
879c9b7d30b2f91f8dc24b2dadf7e72b
A355488
Expansion of g.f. f/(1+2*f) where f is the g.f. of nonempty permutations.
[ "0", "1", "0", "2", "8", "48", "328", "2560", "22368", "216224", "2291456", "26430336", "329805952", "4429255168", "63730438656", "978479250944", "15972310317056", "276292865550336", "5049672714569728", "97245533647568896", "1968395389124714496", "41783552069858877440", "928204423021249003520" ]
[ "nonn" ]
34
0
4
[ "A000108", "A000142", "A000957", "A003319", "A052186", "A059438", "A122827", "A126984", "A355488" ]
null
F. Chapoton, Jul 04 2022
2023-04-25T10:44:20
oeisdata/seq/A355/A355488.seq
a6933b61019da2c64a301d3cbd2224c1
A355489
Numbers k such that A000120(k) = A007814(k) + 2.
[ "3", "5", "9", "14", "17", "22", "26", "33", "38", "42", "50", "60", "65", "70", "74", "82", "92", "98", "108", "116", "129", "134", "138", "146", "156", "162", "172", "180", "194", "204", "212", "228", "248", "257", "262", "266", "274", "284", "290", "300", "308", "322", "332", "340", "356", "376", "386", "396", "404", "420", "440", "452", "472", "488", "513", "518" ]
[ "nonn", "base" ]
29
1
1
[ "A000045", "A000120", "A007814", "A010056", "A025480", "A048679", "A072649", "A355489", "A371176", "A373556" ]
null
Mikhail Kurkov, Jul 04 2022 [verification needed]
2024-06-17T15:47:32
oeisdata/seq/A355/A355489.seq
acbff6e44751ee00f91e708dc308fa65
A355490
Numbers of the form a+b+c = a^2 - b^2 - c^2 where a > b >= c > 0.
[ "8", "15", "20", "24", "27", "32", "35", "39", "44", "48", "49", "51", "54", "55", "56", "63", "64", "65", "68", "75", "80", "84", "87", "90", "92", "95", "98", "99", "104", "111", "114", "116", "119", "120", "123", "125", "128", "132", "135", "140", "143", "144", "147", "152", "153", "155", "159", "160", "164", "168", "170", "171", "174", "175", "176", "183", "184", "185", "188", "189", "195", "200", "203", "204", "207", "208", "209", "212", "215", "216", "219", "220", "224", "230", "231" ]
[ "nonn" ]
34
1
1
[ "A082772", "A082867", "A134582", "A355490", "A355491" ]
null
Mohammad Arab, Jul 04 2022
2022-07-05T07:16:21
oeisdata/seq/A355/A355490.seq
edcc4d2fc060eea7fd5cd2744b4805e6
A355491
Numbers of the form a+b+c = a^3 - b^3 - c^3 where a > b >= c > 0.
[ "10", "35", "54", "64", "199", "235", "279", "747", "1224", "1610", "1774", "6156", "8254", "11035", "12024", "16875", "56439", "66340", "75635", "82279", "115712", "134045", "136765", "150480", "175616", "212266", "255277", "299789", "339759", "386704", "518410", "563814", "643824", "1025776", "1429190", "1431233", "1468846", "1598374" ]
[ "nonn" ]
25
1
1
[ "A355490", "A355491" ]
null
Mohammad Arab, Jul 04 2022
2022-09-06T15:16:50
oeisdata/seq/A355/A355491.seq
371d349f0f54383977356179ad75fdea
A355492
a(n) = 7*3^n - 2.
[ "5", "19", "61", "187", "565", "1699", "5101", "15307", "45925", "137779", "413341", "1240027", "3720085", "11160259", "33480781", "100442347", "301327045", "903981139", "2711943421", "8135830267", "24407490805", "73222472419", "219667417261", "659002251787", "1977006755365", "5931020266099", "17793060798301", "53379182394907" ]
[ "nonn", "easy" ]
41
0
1
[ "A171884", "A198643", "A355492" ]
null
Jianing Song, Oct 07 2022
2024-06-10T06:14:10
oeisdata/seq/A355/A355492.seq
f98496662b82914a242f100b847aeadc
A355493
Expansion of Sum_{k>=0} (k^3 * x)^k/(1 - x)^(k+1).
[ "1", "2", "67", "19879", "16856337", "30601661681", "101743314190033", "559257425236996361", "4726837695171258085569", "58192258417571877186113281", "1000581709943568968705788233921", "23236157618902718144948494353385025", "709080642850925779233576351761544968833" ]
[ "nonn" ]
17
0
2
[ "A086331", "A323280", "A355470", "A355473", "A355493", "A355496" ]
null
Seiichi Manyama, Jul 04 2022
2023-02-21T18:25:40
oeisdata/seq/A355/A355493.seq
e092180f133aab898496ff2698175bd7
A355494
Expansion of Sum_{k>=0} (k * x/(1 - x))^k.
[ "1", "1", "5", "36", "350", "4328", "65132", "1155904", "23640724", "547544032", "14166236708", "404944248104", "12674392793900", "431104742439088", "15834117059443828", "624575921756875960", "26332801242942780668", "1181750740315156943936", "56244454481507648435012" ]
[ "nonn" ]
16
0
3
[ "A086331", "A355494", "A355495", "A355496" ]
null
Seiichi Manyama, Jul 04 2022
2023-02-18T22:49:04
oeisdata/seq/A355/A355494.seq
bee1f852ce686b955a0e4300a042154b
A355495
Expansion of Sum_{k>=0} (k^2 * x/(1 - x))^k.
[ "1", "1", "17", "762", "67772", "10032208", "2226273192", "691431572992", "286268594755712", "152365547943819264", "101361042063083269520", "82409537565402784477984", "80397802305461995791664944", "92692687015689239272783171264" ]
[ "nonn" ]
14
0
3
[ "A323280", "A355494", "A355495", "A355496" ]
null
Seiichi Manyama, Jul 04 2022
2023-02-24T19:04:21
oeisdata/seq/A355/A355495.seq
a57b274aa12190efed933d18cbd4fcf8
A355496
Expansion of Sum_{k>=0} (k^3 * x/(1 - x))^k.
[ "1", "1", "65", "19812", "16836458", "30584805344", "101712712528352", "559155681922806328", "4726278437746021089208", "58187531579876705928027712", "1000523517685151396828602120640", "23235157037192774575979788565151104", "709057406693306876515431403267191583808" ]
[ "nonn" ]
12
0
3
[ "A355472", "A355493", "A355494", "A355495", "A355496" ]
null
Seiichi Manyama, Jul 04 2022
2023-02-21T18:25:33
oeisdata/seq/A355/A355496.seq
01a4e4bec70c3cda50f693f039cfc318
A355497
Numbers k such that x^2 - s*x + p has only integer roots, where s and p denote the sum and product of the digits of k respectively.
[ "0", "4", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "80" ]
[ "nonn", "base" ]
86
1
2
[ "A007953", "A007954", "A011540", "A355497", "A355547", "A355574" ]
null
Jean-Marc Rebert, Jul 04 2022
2022-07-17T16:09:13
oeisdata/seq/A355/A355497.seq
e438f497d67aeae90cc4173798161670
A355498
a(n) = A000217(A033676(n)) * A000217(A033677(n)).
[ "1", "3", "6", "9", "15", "18", "28", "30", "36", "45", "66", "60", "91", "84", "90", "100", "153", "126", "190", "150", "168", "198", "276", "210", "225", "273", "270", "280", "435", "315", "496", "360", "396", "459", "420", "441", "703", "570", "546", "540", "861", "588", "946", "660", "675", "828", "1128", "756", "784", "825", "918", "910", "1431", "945", "990", "1008", "1140", "1305", "1770" ]
[ "nonn" ]
20
1
2
[ "A000217", "A033676", "A033677", "A355498" ]
null
Steven Lu, Jul 04 2022
2022-09-21T00:36:45
oeisdata/seq/A355/A355498.seq
835eaf224dde6964f32839f788a7878f
A355499
Decimal expansion of Product_{k>=1} (k - 2/3)^(1/(k - 2/3)) / k^(1/k).
[ "0", "4", "1", "3", "0", "6", "2", "4", "1", "2", "5", "5", "9", "3", "3", "6", "3", "9", "5", "2", "8", "3", "8", "2", "5", "2", "1", "0", "0", "0", "6", "7", "2", "8", "1", "0", "8", "3", "1", "7", "7", "4", "1", "2", "9", "6", "7", "4", "4", "8", "6", "8", "8", "5", "5", "7", "7", "9", "5", "4", "4", "4", "0", "5", "4", "6", "3", "3", "1", "9", "0", "9", "5", "4", "6", "4", "5", "4", "5", "6", "0", "0", "2", "3", "1", "7", "2", "6", "3", "7", "3", "9", "6", "5", "6", "1", "7", "0", "1", "9", "9", "7", "0", "0", "7", "2" ]
[ "nonn", "cons" ]
14
0
2
[ "A001620", "A115522", "A355499", "A355500" ]
null
Vaclav Kotesovec, Jul 04 2022
2022-07-05T01:49:52
oeisdata/seq/A355/A355499.seq
061c1950efbda887681e148e1f7f88fa
A355500
Decimal expansion of Product_{k>=1} (k - 1/2)^(1/(k - 1/2)) / k^(1/k).
[ "2", "7", "7", "8", "5", "8", "3", "4", "7", "8", "3", "2", "7", "2", "3", "8", "7", "8", "4", "9", "0", "7", "0", "8", "5", "2", "3", "3", "3", "0", "3", "0", "9", "7", "3", "2", "9", "9", "7", "3", "3", "7", "2", "6", "4", "4", "7", "0", "3", "2", "6", "5", "0", "8", "0", "6", "4", "6", "3", "1", "1", "8", "0", "5", "8", "6", "7", "7", "6", "3", "7", "9", "6", "4", "5", "4", "6", "9", "3", "2", "3", "1", "9", "8", "6", "5", "9", "4", "8", "9", "4", "4", "6", "8", "6", "1", "6", "4", "1", "7", "6", "5", "3", "3", "1", "1" ]
[ "nonn", "cons" ]
14
0
1
[ "A001620", "A115522", "A355499", "A355500" ]
null
Vaclav Kotesovec, Jul 04 2022
2022-07-04T19:56:58
oeisdata/seq/A355/A355500.seq
b57ba951902a88640e935a435a4f5519