sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-19 00:40:46
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A356201 | a(n) is the first component x of the distance vector (x,y), x >= y >= 0, between two nodes of an infinite square lattice of one-ohm resistors, such that the resistance R between the two nodes is as close as possible to n ohms, i.e., abs(R - n) is minimized. y is A356202(n). | [
"0",
"4",
"106",
"2384",
"51196",
"958170",
"24341911",
"636875169",
"14536767750",
"285039411789",
"6322647312660",
"202105291334913"
]
| [
"nonn",
"hard",
"more"
]
| 18 | 0 | 2 | [
"A355565",
"A355566",
"A355567",
"A355953",
"A355955",
"A356201",
"A356203",
"A356204"
]
| null | Hugo Pfoertner, Aug 01 2022 | 2022-09-09T14:50:44 | oeisdata/seq/A356/A356201.seq | c25c57a3d866962893e1085d558809c6 |
A356202 | a(n) is the second component y of the distance vector (x,y), x >= y >= 0, between two nodes of an infinite square lattice of one-ohm resistors, such that the resistance R between the two nodes is as close as possible to n ohms, i.e., abs(R - n) is minimized. x is A356201(n). | [
"0",
"2",
"8",
"606",
"24881",
"903855",
"18345919",
"303176603",
"7423167971",
"247828120179",
"6034957650107",
"7948827377158"
]
| [
"nonn",
"hard",
"more"
]
| 11 | 0 | 2 | [
"A355565",
"A355566",
"A355567",
"A355953",
"A355955",
"A356202"
]
| null | Hugo Pfoertner, Aug 01 2022 | 2022-09-09T14:50:38 | oeisdata/seq/A356/A356202.seq | d13a622d0d5971cf398dbf28feef719a |
A356203 | a(n) is the first component x of the distance vector (x,y) in an oblique 120-degree coordinate system, 0 <= y <= x, between two nodes of an infinite triangular lattice of one-ohm resistors, such that the resistance R between the two nodes is as close as possible to n ohms, i.e., abs(R - n) is minimized. y is A356204(n). | [
"0",
"43",
"9615",
"2299822",
"507491696",
"118805048562",
"25315296119626",
"5959615271620724"
]
| [
"nonn",
"hard",
"more"
]
| 9 | 0 | 2 | [
"A355585",
"A355586",
"A355587",
"A355588",
"A355589",
"A355954",
"A356201",
"A356202",
"A356203"
]
| null | Hugo Pfoertner, Aug 13 2022 | 2022-08-27T13:47:41 | oeisdata/seq/A356/A356203.seq | d716306a275af45a47630fa29a463314 |
A356204 | a(n) is the second component y of the distance vector (x,y) in an oblique 120-degree coordinate system, 0 <= y <= x, between two nodes of an infinite triangular lattice of one-ohm resistors, such that the resistance R between the two nodes is as close as possible to n ohms, i.e., abs(R - n) is minimized. x is A356203(n). | [
"0",
"18",
"2536",
"1136101",
"119227930",
"33636581266",
"1774960492720",
"685318499093455"
]
| [
"nonn",
"hard",
"more"
]
| 8 | 0 | 2 | [
"A355585",
"A355586",
"A355587",
"A355588",
"A355589",
"A355954",
"A356201",
"A356202",
"A356204"
]
| null | Hugo Pfoertner, Aug 13 2022 | 2022-08-27T13:47:48 | oeisdata/seq/A356/A356204.seq | edbddbdab6fcca1a94d6eb33b59f79a7 |
A356205 | T(n,k) are the numerators of the coefficients of the Legendre polynomials of degree n, with increasing exponents, where T(n,k) is a triangle read by rows. | [
"1",
"0",
"1",
"-1",
"0",
"3",
"0",
"-3",
"0",
"5",
"3",
"0",
"-15",
"0",
"35",
"0",
"15",
"0",
"-35",
"0",
"63",
"-5",
"0",
"105",
"0",
"-315",
"0",
"231",
"0",
"-35",
"0",
"315",
"0",
"-693",
"0",
"429",
"35",
"0",
"-315",
"0",
"3465",
"0",
"-3003",
"0",
"6435",
"0",
"315",
"0",
"-1155",
"0",
"9009",
"0",
"-6435",
"0",
"12155",
"-63",
"0",
"3465",
"0",
"-15015",
"0",
"45045",
"0",
"-109395",
"0",
"46189"
]
| [
"sign",
"tabl",
"frac"
]
| 5 | 0 | 6 | [
"A005187",
"A100258",
"A356205",
"A356206"
]
| null | Hugo Pfoertner, Jul 29 2022 | 2022-07-29T14:14:36 | oeisdata/seq/A356/A356205.seq | cd491e9dce7de22bc656ee2d324c7568 |
A356206 | T(n,k) are the denominators of the coefficients of the Legendre polynomials of degree n, with increasing exponents, where T(n,k) is a triangle read by rows. | [
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"8",
"1",
"4",
"1",
"8",
"1",
"8",
"1",
"4",
"1",
"8",
"16",
"1",
"16",
"1",
"16",
"1",
"16",
"1",
"16",
"1",
"16",
"1",
"16",
"1",
"16",
"128",
"1",
"32",
"1",
"64",
"1",
"32",
"1",
"128",
"1",
"128",
"1",
"32",
"1",
"64",
"1",
"32",
"1",
"128",
"256",
"1",
"256",
"1",
"128",
"1",
"128",
"1",
"256",
"1",
"256",
"1",
"256",
"1",
"256",
"1",
"128",
"1",
"128",
"1",
"256",
"1",
"256"
]
| [
"nonn",
"frac",
"tabl"
]
| 4 | 0 | 4 | [
"A356205",
"A356206"
]
| null | Hugo Pfoertner, Jul 29 2022 | 2022-07-29T14:14:21 | oeisdata/seq/A356/A356206.seq | c18c8d357250ccab9d185ec1600fb754 |
A356207 | a(n) is the difference between n! and the next smaller odd squarefree semiprime (A046388). | [
"3",
"1",
"3",
"7",
"1",
"7",
"1",
"5",
"3",
"1",
"19",
"11",
"1",
"19",
"19",
"11",
"1",
"19",
"23",
"1",
"1",
"47",
"1",
"1",
"29",
"3",
"29",
"31",
"59",
"73",
"1",
"43",
"1",
"13",
"17",
"41",
"1",
"5",
"5",
"3",
"53",
"79",
"7",
"1",
"53",
"23",
"1",
"13",
"13",
"61",
"7",
"59",
"61",
"7",
"31",
"1",
"89",
"107",
"103",
"67",
"47",
"103",
"19",
"43",
"1",
"71",
"11",
"7",
"83",
"79",
"67",
"71",
"29"
]
| [
"nonn"
]
| 14 | 4 | 1 | [
"A000142",
"A046388",
"A131057",
"A356207"
]
| null | Hugo Pfoertner, Aug 28 2022 | 2022-08-29T10:22:48 | oeisdata/seq/A356/A356207.seq | cd3d27d5322bc4d5f0709a3886271a65 |
A356208 | a(n) is the number of occurrences of n in A133388. | [
"2",
"3",
"4",
"4",
"5",
"7",
"6",
"8",
"8",
"9",
"9",
"10",
"10",
"12",
"13",
"12",
"12",
"15",
"14",
"17",
"16",
"16",
"17",
"18",
"19",
"18",
"19",
"20",
"18",
"24",
"20",
"22",
"25",
"22",
"27",
"26",
"23",
"25",
"25",
"29",
"26",
"30",
"27",
"31",
"32",
"32",
"24",
"33",
"33",
"34",
"32",
"32",
"35",
"37",
"36",
"37",
"38",
"32",
"35",
"44",
"36",
"41",
"41",
"40",
"42",
"45",
"39",
"43",
"42"
]
| [
"nonn"
]
| 11 | 1 | 1 | [
"A000161",
"A001481",
"A133388",
"A356208",
"A356209"
]
| null | Hugo Pfoertner, Sep 07 2022 | 2023-11-22T21:34:06 | oeisdata/seq/A356/A356208.seq | d5eff6629695a1b96cd6be3fe72b6328 |
A356209 | a(n) is the position of the latest occurrence of n in A133388. | [
"2",
"8",
"18",
"32",
"41",
"72",
"98",
"128",
"162",
"181",
"242",
"288",
"313",
"392",
"421",
"512",
"514",
"648",
"722",
"761",
"882",
"968",
"1058",
"1152",
"1201",
"1301",
"1458",
"1568",
"1466",
"1741",
"1922",
"2048",
"2178",
"2056",
"2381",
"2592",
"2594",
"2888",
"2817",
"3121",
"3202",
"3528",
"3698",
"3872",
"3789",
"4232",
"4418",
"4608",
"4802",
"4804",
"5101"
]
| [
"nonn"
]
| 10 | 1 | 1 | [
"A000161",
"A001481",
"A009003",
"A356208",
"A356209"
]
| null | Hugo Pfoertner, Sep 07 2022 | 2022-09-09T02:31:06 | oeisdata/seq/A356/A356209.seq | 9f49c3287a4a3876768de8c5c8ba74f0 |
A356210 | a(n) is the number of tuples (t_1, ..., t_n) with integers 2 <= t_1 <= ... <= t_n such that 2^n + 1 = Product_{i = 1..n} (2 + 1/t_i). | [
"0",
"1",
"11",
"430",
"364693"
]
| [
"nonn",
"hard",
"more"
]
| 12 | 1 | 3 | [
"A355243",
"A355516",
"A355626",
"A355629",
"A356210",
"A356211"
]
| null | Hugo Pfoertner and Markus Sigg, Aug 27 2022 | 2024-08-02T12:04:29 | oeisdata/seq/A356/A356210.seq | 46fa832031e5fc50dc2caca8094e7833 |
A356211 | Odd numbers that cannot be written as a product of an arbitrary number of rational factors of the form 2 + 1/t_k with integers t_k > 1. | [
"3",
"7",
"13",
"15",
"27",
"29",
"31",
"53",
"57",
"59",
"61",
"63",
"107",
"123",
"127"
]
| [
"nonn",
"more"
]
| 12 | 1 | 1 | [
"A355243",
"A355516",
"A355626",
"A356211"
]
| null | Hugo Pfoertner and Markus Sigg, Aug 16 2022 | 2022-08-24T09:23:16 | oeisdata/seq/A356/A356211.seq | 7bf62b92ad5fce1f14f7dd98ac5624ed |
A356212 | Number of edge covers in the n-cycle complement graph bar C_n. | [
"0",
"1",
"11",
"263",
"10965",
"828185",
"117206551",
"31833062131",
"16861895760945",
"17600261657295445",
"36430086149957824355",
"150088723046184226003199",
"1233420904097181936354336237",
"20242863089169097481278428598961",
"663925026643212111959892436105140751",
"43532228537929216561827941013608880940843"
]
| [
"nonn"
]
| 8 | 3 | 3 | [
"A351587",
"A356212",
"A377652",
"A378862"
]
| null | Eric W. Weisstein, Jul 29 2022 | 2024-12-13T09:31:50 | oeisdata/seq/A356/A356212.seq | 297edee981652c2cb5c014d3cc041125 |
A356213 | Number of edge covers in the n-trapezohedral graph. | [
"4",
"104",
"1699",
"23904",
"317044",
"4101107",
"52473796",
"668177568",
"8490113467",
"107776172264",
"1367566963756",
"17349734444643",
"220090218116188",
"2791852592070632",
"35414167120396459",
"449219270600324928",
"5698208011194600148",
"72279907017666274643",
"916846410588661477204"
]
| [
"nonn"
]
| 34 | 1 | 1 | [
"A297047",
"A356213"
]
| null | Eric W. Weisstein, Jul 29 2022 | 2024-08-11T22:08:16 | oeisdata/seq/A356/A356213.seq | 17c517967520eeb2e97ff4d5d8c5e820 |
A356214 | Number of edge covers in the n-Sierpinski gasket graph. | [
"4",
"198",
"31257772",
"119663504378704719130518",
"6713329439711345431716916679280868301022936622514475069583264989008212"
]
| [
"nonn"
]
| 11 | 1 | 1 | null | null | Eric W. Weisstein, Jul 29 2022 | 2024-12-09T11:03:21 | oeisdata/seq/A356/A356214.seq | 4c78b171353863ed793d0e9ad51b3a62 |
A356215 | The binary expansion of a(n) is obtained by applying the elementary cellular automaton with rule (2*n) mod 16 to the binary expansion of n. | [
"0",
"1",
"1",
"2",
"0",
"5",
"3",
"7",
"0",
"9",
"5",
"14",
"4",
"13",
"7",
"15",
"0",
"17",
"9",
"26",
"0",
"21",
"11",
"31",
"0",
"17",
"5",
"22",
"12",
"29",
"15",
"31",
"0",
"33",
"17",
"50",
"0",
"37",
"19",
"55",
"0",
"41",
"21",
"62",
"4",
"45",
"23",
"63",
"0",
"33",
"9",
"42",
"16",
"53",
"27",
"63",
"0",
"33",
"5",
"38",
"28",
"61",
"31",
"63",
"0",
"65",
"33",
"98",
"0",
"69",
"35",
"103"
]
| [
"nonn",
"base"
]
| 10 | 0 | 4 | [
"A352528",
"A356195",
"A356215"
]
| null | Rémy Sigrist, Jul 29 2022 | 2022-07-31T19:54:45 | oeisdata/seq/A356/A356215.seq | 8bb43d7816611a43805b44185c6536a2 |
A356216 | Decimal expansion of the real part of the first nontrivial zero of zeta'. | [
"2",
"4",
"6",
"3",
"1",
"6",
"1",
"8",
"6",
"9",
"4",
"5",
"4",
"3",
"2",
"1",
"2",
"8",
"5",
"8",
"7",
"4",
"3",
"9",
"5",
"0",
"5",
"3",
"3",
"0",
"6",
"3",
"2",
"9",
"1",
"4",
"4",
"9",
"2",
"0",
"7",
"9",
"3",
"1",
"3",
"4",
"5",
"6",
"7",
"3",
"2",
"3",
"4",
"7",
"5",
"0",
"2",
"2",
"2",
"1",
"7",
"3",
"7",
"0",
"7",
"2",
"7",
"1",
"1",
"7",
"5",
"0",
"8",
"6",
"7",
"1",
"0",
"2",
"6",
"3",
"7",
"1",
"1",
"9",
"4",
"8",
"2",
"4",
"6",
"8",
"6",
"1",
"3",
"2",
"8",
"3",
"5",
"5",
"4",
"2",
"6",
"7",
"0",
"5",
"4",
"1",
"5",
"5",
"1",
"0",
"4",
"1",
"7",
"8",
"8",
"8",
"6",
"1",
"9",
"2",
"3",
"5",
"0",
"7",
"4",
"0",
"4"
]
| [
"nonn",
"cons"
]
| 89 | 1 | 1 | [
"A356092",
"A356216"
]
| null | Benoit Cloitre, Aug 13 2022 | 2022-09-23T17:19:18 | oeisdata/seq/A356/A356216.seq | 350f91ef35a0014fc68c2a7f820a2943 |
A356217 | a(n) = A022839(A000201(n)). | [
"2",
"6",
"8",
"13",
"17",
"20",
"24",
"26",
"31",
"35",
"38",
"42",
"46",
"49",
"53",
"55",
"60",
"64",
"67",
"71",
"73",
"78",
"82",
"84",
"89",
"93",
"96",
"100",
"102",
"107",
"111",
"114",
"118",
"122",
"125",
"129",
"131",
"136",
"140",
"143",
"147",
"149",
"154",
"158",
"160",
"165",
"169",
"172",
"176",
"178",
"183",
"187",
"190",
"194",
"196",
"201",
"205",
"207"
]
| [
"nonn",
"easy"
]
| 22 | 1 | 1 | [
"A000201",
"A001950",
"A022839",
"A108598",
"A190509",
"A351415",
"A356104",
"A356217",
"A356218",
"A356220"
]
| null | Clark Kimberling, Oct 02 2022 | 2025-03-23T18:24:08 | oeisdata/seq/A356/A356217.seq | 4cc1c30c6cf235dc840d51659ba072b5 |
A356218 | a(n) = A108598(A000201(n)). | [
"1",
"5",
"7",
"10",
"14",
"16",
"19",
"21",
"25",
"28",
"30",
"34",
"37",
"39",
"43",
"45",
"48",
"52",
"54",
"57",
"59",
"63",
"66",
"68",
"72",
"75",
"77",
"81",
"83",
"86",
"90",
"92",
"95",
"99",
"101",
"104",
"106",
"110",
"113",
"115",
"119",
"121",
"124",
"128",
"130",
"133",
"137",
"139",
"142",
"144",
"148",
"151",
"153",
"157",
"159",
"162",
"166",
"168",
"171"
]
| [
"nonn",
"easy"
]
| 17 | 1 | 2 | [
"A000201",
"A001950",
"A022839",
"A108598",
"A190509",
"A351415",
"A356104",
"A356217",
"A356218",
"A356220"
]
| null | Clark Kimberling, Oct 02 2022 | 2025-03-23T18:39:53 | oeisdata/seq/A356/A356218.seq | f308b2d18efa1a987dbd8674735e8bc1 |
A356219 | Intersection of A001952 and A003151. | [
"284",
"287",
"289",
"292",
"294",
"296",
"299",
"301",
"304",
"306",
"309",
"311",
"313",
"316",
"318",
"321",
"323",
"325",
"328",
"330",
"333",
"335",
"337",
"340",
"342",
"345",
"347",
"350",
"352",
"354",
"357",
"359",
"362",
"364",
"366",
"369",
"371",
"374",
"376",
"379",
"381",
"383",
"386",
"388",
"391",
"393",
"395",
"398",
"400"
]
| [
"nonn",
"easy"
]
| 10 | 1 | 1 | [
"A001951",
"A001952",
"A001954",
"A003151",
"A003152",
"A184922",
"A341239",
"A356219"
]
| null | Clark Kimberling, Nov 13 2022 | 2025-04-13T01:45:55 | oeisdata/seq/A356/A356219.seq | a30c740d5772b1aa8c2ef6de07026774 |
A356220 | a(n) = A108598(A001950(n)). | [
"3",
"9",
"12",
"18",
"23",
"27",
"32",
"36",
"41",
"47",
"50",
"56",
"61",
"65",
"70",
"74",
"79",
"85",
"88",
"94",
"97",
"103",
"108",
"112",
"117",
"123",
"126",
"132",
"135",
"141",
"146",
"150",
"155",
"161",
"164",
"170",
"173",
"179",
"184",
"188",
"193",
"197",
"202",
"208",
"211",
"217",
"222",
"226",
"231",
"235",
"240",
"246",
"249",
"255",
"258",
"264"
]
| [
"nonn",
"easy"
]
| 17 | 1 | 1 | [
"A000201",
"A001950",
"A022839",
"A108598",
"A351415",
"A356104",
"A356217",
"A356218",
"A356219",
"A356220"
]
| null | Clark Kimberling, Nov 13 2022 | 2025-03-23T18:39:43 | oeisdata/seq/A356/A356220.seq | 0366d7af438220ef9fff79bf41583532 |
A356221 | Position of second appearance of 2n in the sequence of prime gaps A001223; if 2n does not appear at least twice, a(n) = -1. | [
"3",
"6",
"11",
"72",
"42",
"47",
"62",
"295",
"180",
"259",
"297",
"327",
"446",
"462",
"650",
"1315",
"1059",
"1532",
"4052",
"2344",
"3732",
"3861",
"8805",
"7234",
"4754",
"2810",
"4231",
"14124",
"5949",
"9834",
"17200",
"10229",
"19724",
"25248",
"15927",
"30765",
"42673",
"28593",
"24554",
"50523",
"44227",
"44390",
"29040",
"89715",
"47350"
]
| [
"nonn"
]
| 8 | 1 | 1 | [
"A001223",
"A028334",
"A029709",
"A038664",
"A066205",
"A073491",
"A137921",
"A193829",
"A274121",
"A287170",
"A328335",
"A328457",
"A356221",
"A356222",
"A356223",
"A356224",
"A356225",
"A356226"
]
| null | Gus Wiseman, Aug 02 2022 | 2022-08-08T15:54:44 | oeisdata/seq/A356/A356221.seq | bda36e125e424907d0c4b76f465d189e |
A356222 | Array read by antidiagonals upwards where A(n,k) is the position of the k-th appearance of 2n in the sequence of prime gaps A001223. If A001223 does not contain 2n at least k times, set A(n,k) = -1. | [
"2",
"4",
"3",
"9",
"6",
"5",
"24",
"11",
"8",
"7",
"34",
"72",
"15",
"12",
"10",
"46",
"42",
"77",
"16",
"14",
"13",
"30",
"47",
"53",
"79",
"18",
"19",
"17",
"282",
"62",
"91",
"61",
"87",
"21",
"22",
"20",
"99",
"295",
"66",
"97",
"68",
"92",
"23",
"25",
"26",
"154",
"180",
"319",
"137",
"114",
"80",
"94",
"32",
"27",
"28",
"189",
"259",
"205",
"331",
"146",
"121",
"82",
"124",
"36",
"29",
"33"
]
| [
"nonn",
"tabl"
]
| 9 | 1 | 1 | [
"A001223",
"A028334",
"A029707",
"A029709",
"A038664",
"A066205",
"A073491",
"A119313",
"A193829",
"A274121",
"A287170",
"A328457",
"A356221",
"A356222",
"A356223",
"A356224",
"A356225",
"A356226",
"A356232"
]
| null | Gus Wiseman, Aug 04 2022 | 2022-08-08T15:54:58 | oeisdata/seq/A356/A356222.seq | 55c631d21add532b17cc78fffe5e16ab |
A356223 | Position of n-th appearance of 2n in the sequence of prime gaps (A001223). If 2n does not appear at least n times, set a(n) = -1. | [
"2",
"6",
"15",
"79",
"68",
"121",
"162",
"445",
"416",
"971",
"836",
"987",
"2888",
"1891",
"1650",
"5637",
"5518",
"4834",
"9237",
"8152",
"10045",
"21550",
"20248",
"20179",
"29914",
"36070",
"24237",
"53355",
"52873",
"34206",
"103134",
"90190",
"63755",
"147861",
"98103",
"117467",
"209102",
"206423",
"124954",
"237847",
"369223"
]
| [
"nonn"
]
| 6 | 1 | 1 | [
"A000005",
"A001223",
"A028334",
"A029709",
"A038664",
"A060681",
"A073491",
"A119313",
"A137921",
"A193829",
"A274121",
"A287170",
"A356221",
"A356222",
"A356223",
"A356224",
"A356225",
"A356226"
]
| null | Gus Wiseman, Aug 04 2022 | 2022-08-08T15:55:04 | oeisdata/seq/A356/A356223.seq | 6f5d9fac388e8eef7e781548fb33790f |
A356224 | Number of divisors of n whose prime indices cover an initial interval of positive integers. | [
"1",
"2",
"1",
"3",
"1",
"3",
"1",
"4",
"1",
"2",
"1",
"5",
"1",
"2",
"1",
"5",
"1",
"4",
"1",
"3",
"1",
"2",
"1",
"7",
"1",
"2",
"1",
"3",
"1",
"4",
"1",
"6",
"1",
"2",
"1",
"7",
"1",
"2",
"1",
"4",
"1",
"3",
"1",
"3",
"1",
"2",
"1",
"9",
"1",
"2",
"1",
"3",
"1",
"5",
"1",
"4",
"1",
"2",
"1",
"7",
"1",
"2",
"1",
"7",
"1",
"3",
"1",
"3",
"1",
"2",
"1",
"10",
"1",
"2",
"1",
"3",
"1",
"3",
"1",
"5",
"1",
"2",
"1",
"5",
"1",
"2",
"1"
]
| [
"nonn"
]
| 8 | 1 | 2 | [
"A000005",
"A001222",
"A001223",
"A028334",
"A029709",
"A055874",
"A055932",
"A056239",
"A070824",
"A073491",
"A073492",
"A112798",
"A119313",
"A137921",
"A287170",
"A289509",
"A328338",
"A356223",
"A356224",
"A356225",
"A356226"
]
| null | Gus Wiseman, Aug 04 2022 | 2022-08-08T16:02:47 | oeisdata/seq/A356/A356224.seq | 7656875b8be2cc269ffbbcaa675557e9 |
A356225 | Number of divisors of n whose prime indices do not cover an initial interval of positive integers. | [
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"2",
"2",
"1",
"1",
"1",
"2",
"3",
"0",
"1",
"2",
"1",
"3",
"3",
"2",
"1",
"1",
"2",
"2",
"3",
"3",
"1",
"4",
"1",
"0",
"3",
"2",
"3",
"2",
"1",
"2",
"3",
"4",
"1",
"5",
"1",
"3",
"5",
"2",
"1",
"1",
"2",
"4",
"3",
"3",
"1",
"3",
"3",
"4",
"3",
"2",
"1",
"5",
"1",
"2",
"5",
"0",
"3",
"5",
"1",
"3",
"3",
"6",
"1",
"2",
"1",
"2",
"5",
"3",
"3",
"5",
"1",
"5",
"4",
"2",
"1",
"7",
"3",
"2",
"3"
]
| [
"nonn"
]
| 12 | 1 | 9 | [
"A000005",
"A001222",
"A001223",
"A028334",
"A055874",
"A055932",
"A056239",
"A070824",
"A073491",
"A073492",
"A080259",
"A112798",
"A119313",
"A137921",
"A287170",
"A328338",
"A356224",
"A356225",
"A356226",
"A356233",
"A356237"
]
| null | Gus Wiseman, Aug 13 2022 | 2024-01-23T16:18:08 | oeisdata/seq/A356/A356225.seq | 381fe0e67695b5ec6124c00bf8243391 |
A356226 | Irregular triangle giving the lengths of maximal gapless submultisets of the prime indices of n. | [
"1",
"1",
"2",
"1",
"2",
"1",
"3",
"2",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"2",
"4",
"1",
"3",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"4",
"2",
"1",
"1",
"3",
"2",
"1",
"1",
"3",
"1",
"5",
"1",
"1",
"1",
"1",
"2",
"4",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"3",
"1",
"1",
"1",
"5",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"4",
"1",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"2",
"1",
"6"
]
| [
"nonn",
"tabf"
]
| 11 | 1 | 3 | [
"A000005",
"A001221",
"A001222",
"A001223",
"A001414",
"A003963",
"A028334",
"A055874",
"A056239",
"A060680",
"A060683",
"A066205",
"A073491",
"A073492",
"A073493",
"A073495",
"A112798",
"A132747",
"A132881",
"A137921",
"A193829",
"A286470",
"A287170",
"A328166",
"A356069",
"A356224",
"A356225",
"A356226",
"A356227",
"A356228",
"A356229",
"A356230",
"A356231",
"A356232"
]
| null | Gus Wiseman, Aug 10 2022 | 2022-08-13T22:24:56 | oeisdata/seq/A356/A356226.seq | 8951110129e9f8821c329b13935ac2af |
A356227 | Smallest size of a maximal gapless submultiset of the prime indices of n. | [
"0",
"1",
"1",
"2",
"1",
"2",
"1",
"3",
"2",
"1",
"1",
"3",
"1",
"1",
"2",
"4",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"4",
"2",
"1",
"3",
"1",
"1",
"3",
"1",
"5",
"1",
"1",
"2",
"4",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"5",
"2",
"1",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"6",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"5",
"1",
"1",
"3",
"1",
"2",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"1",
"1",
"1"
]
| [
"nonn"
]
| 8 | 1 | 4 | [
"A000005",
"A000079",
"A001221",
"A001222",
"A001223",
"A001414",
"A003963",
"A028334",
"A055874",
"A056239",
"A060680",
"A060683",
"A066205",
"A073491",
"A073492",
"A073495",
"A112798",
"A132747",
"A132881",
"A137921",
"A193829",
"A286470",
"A287170",
"A356224",
"A356225",
"A356226",
"A356227",
"A356228",
"A356229",
"A356232"
]
| null | Gus Wiseman, Aug 13 2022 | 2022-08-13T22:24:52 | oeisdata/seq/A356/A356227.seq | ef45352727ed1f53ff2926221a7b304c |
A356228 | Greatest size of a gapless submultiset of the prime indices of n. | [
"0",
"1",
"1",
"2",
"1",
"2",
"1",
"3",
"2",
"1",
"1",
"3",
"1",
"1",
"2",
"4",
"1",
"3",
"1",
"2",
"1",
"1",
"1",
"4",
"2",
"1",
"3",
"2",
"1",
"3",
"1",
"5",
"1",
"1",
"2",
"4",
"1",
"1",
"1",
"3",
"1",
"2",
"1",
"2",
"3",
"1",
"1",
"5",
"2",
"2",
"1",
"2",
"1",
"4",
"1",
"3",
"1",
"1",
"1",
"4",
"1",
"1",
"2",
"6",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"5",
"1",
"1",
"3",
"2",
"2",
"2",
"1",
"4",
"4",
"1",
"1",
"3",
"1",
"1",
"1"
]
| [
"nonn"
]
| 6 | 1 | 4 | [
"A000005",
"A000079",
"A001221",
"A001222",
"A001223",
"A001414",
"A003963",
"A028334",
"A055874",
"A056239",
"A060680",
"A060683",
"A066205",
"A073491",
"A073492",
"A073495",
"A112798",
"A132747",
"A132881",
"A137921",
"A193829",
"A286470",
"A287170",
"A328162",
"A328457",
"A356069",
"A356224",
"A356225",
"A356226",
"A356227",
"A356228",
"A356229",
"A356232"
]
| null | Gus Wiseman, Aug 13 2022 | 2022-08-14T10:20:28 | oeisdata/seq/A356/A356228.seq | f80e46b044e2565a2506447c43116471 |
A356229 | Number of maximal gapless submultisets of the prime indices of 2n. | [
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"2",
"1",
"2",
"2",
"1",
"1",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"1",
"2",
"2",
"1",
"2",
"1",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"1",
"3",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"1",
"3",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"2",
"1",
"3",
"2",
"2",
"2",
"3",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"1"
]
| [
"nonn"
]
| 12 | 1 | 5 | [
"A000005",
"A001221",
"A001222",
"A001414",
"A003963",
"A056239",
"A060680",
"A060681",
"A066205",
"A073093",
"A073491",
"A073492",
"A073495",
"A112798",
"A132747",
"A132881",
"A286470",
"A287170",
"A289509",
"A356226",
"A356227",
"A356228",
"A356229",
"A356230",
"A356231",
"A356232"
]
| null | Gus Wiseman, Aug 16 2022 | 2025-01-19T09:26:33 | oeisdata/seq/A356/A356229.seq | cc44b9461b60a2da43bf64af49c19eab |
A356230 | The a(n)-th composition in standard order is the sequence of lengths of maximal gapless submultisets of the prime indices of n. | [
"0",
"1",
"1",
"2",
"1",
"2",
"1",
"4",
"2",
"3",
"1",
"4",
"1",
"3",
"2",
"8",
"1",
"4",
"1",
"5",
"3",
"3",
"1",
"8",
"2",
"3",
"4",
"5",
"1",
"4",
"1",
"16",
"3",
"3",
"2",
"8",
"1",
"3",
"3",
"9",
"1",
"5",
"1",
"5",
"4",
"3",
"1",
"16",
"2",
"6",
"3",
"5",
"1",
"8",
"3",
"9",
"3",
"3",
"1",
"8",
"1",
"3",
"5",
"32",
"3",
"5",
"1",
"5",
"3",
"6",
"1",
"16",
"1",
"3",
"4",
"5",
"2",
"5",
"1",
"17",
"8",
"3",
"1",
"9",
"3"
]
| [
"nonn"
]
| 7 | 1 | 4 | [
"A000120",
"A001221",
"A001222",
"A001414",
"A003963",
"A056239",
"A060680",
"A060683",
"A066099",
"A066205",
"A073491",
"A073495",
"A112798",
"A132747",
"A132881",
"A286470",
"A287170",
"A328166",
"A333627",
"A356069",
"A356224",
"A356225",
"A356226",
"A356227",
"A356228",
"A356229",
"A356230",
"A356231",
"A356232",
"A356603"
]
| null | Gus Wiseman, Aug 16 2022 | 2022-08-20T23:20:32 | oeisdata/seq/A356/A356230.seq | df401a8aff9aff4a647f8c86ad19b80a |
A356231 | Heinz number of the sequence (A356226) of lengths of maximal gapless submultisets of the prime indices of n. | [
"1",
"2",
"2",
"3",
"2",
"3",
"2",
"5",
"3",
"4",
"2",
"5",
"2",
"4",
"3",
"7",
"2",
"5",
"2",
"6",
"4",
"4",
"2",
"7",
"3",
"4",
"5",
"6",
"2",
"5",
"2",
"11",
"4",
"4",
"3",
"7",
"2",
"4",
"4",
"10",
"2",
"6",
"2",
"6",
"5",
"4",
"2",
"11",
"3",
"6",
"4",
"6",
"2",
"7",
"4",
"10",
"4",
"4",
"2",
"7",
"2",
"4",
"6",
"13",
"4",
"6",
"2",
"6",
"4",
"6",
"2",
"11",
"2",
"4",
"5",
"6",
"3",
"6",
"2",
"14",
"7",
"4",
"2",
"10"
]
| [
"nonn"
]
| 7 | 1 | 2 | [
"A000005",
"A001221",
"A001222",
"A001414",
"A003963",
"A055932",
"A056239",
"A060680",
"A060683",
"A066205",
"A073491",
"A073492",
"A073493",
"A073495",
"A112798",
"A132747",
"A132881",
"A193829",
"A286470",
"A287170",
"A328166",
"A356069",
"A356224",
"A356225",
"A356226",
"A356227",
"A356228",
"A356229",
"A356230",
"A356231",
"A356232",
"A356233",
"A356237",
"A356603"
]
| null | Gus Wiseman, Aug 18 2022 | 2022-08-21T14:13:31 | oeisdata/seq/A356/A356231.seq | 8e9fcf3f1ee648164c67c1645e598b28 |
A356232 | Numbers whose prime indices are all odd and cover an initial interval of odd positive integers. | [
"1",
"2",
"4",
"8",
"10",
"16",
"20",
"32",
"40",
"50",
"64",
"80",
"100",
"110",
"128",
"160",
"200",
"220",
"250",
"256",
"320",
"400",
"440",
"500",
"512",
"550",
"640",
"800",
"880",
"1000",
"1024",
"1100",
"1210",
"1250",
"1280",
"1600",
"1760",
"1870",
"2000",
"2048",
"2200",
"2420",
"2500",
"2560",
"2750",
"3200",
"3520",
"3740",
"4000",
"4096",
"4400"
]
| [
"nonn"
]
| 8 | 1 | 2 | [
"A000005",
"A001221",
"A001222",
"A001223",
"A001414",
"A003963",
"A028334",
"A053251",
"A055932",
"A056239",
"A061395",
"A066205",
"A066208",
"A073491",
"A073492",
"A073493",
"A112798",
"A132747",
"A137921",
"A193829",
"A286470",
"A287170",
"A356224",
"A356226",
"A356227",
"A356228",
"A356229",
"A356230",
"A356231",
"A356232",
"A356237",
"A356603"
]
| null | Gus Wiseman, Aug 20 2022 | 2022-08-27T21:30:27 | oeisdata/seq/A356/A356232.seq | 9f0d1755baccc9825ca65aee18e02e2b |
A356233 | Number of integer factorizations of n into gapless numbers (A066311). | [
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"3",
"2",
"1",
"1",
"4",
"1",
"1",
"2",
"5",
"1",
"4",
"1",
"2",
"1",
"1",
"1",
"7",
"2",
"1",
"3",
"2",
"1",
"4",
"1",
"7",
"1",
"1",
"2",
"9",
"1",
"1",
"1",
"3",
"1",
"2",
"1",
"2",
"4",
"1",
"1",
"12",
"2",
"2",
"1",
"2",
"1",
"7",
"1",
"3",
"1",
"1",
"1",
"8",
"1",
"1",
"2",
"11",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"16",
"1",
"1",
"4",
"2",
"2",
"2",
"1",
"5",
"5",
"1",
"1",
"4",
"1",
"1"
]
| [
"nonn"
]
| 6 | 1 | 4 | [
"A000005",
"A001055",
"A001221",
"A001222",
"A001414",
"A003963",
"A060680",
"A060683",
"A073491",
"A073495",
"A132747",
"A132881",
"A193829",
"A287170",
"A328195",
"A328335",
"A328458",
"A356069",
"A356224",
"A356225",
"A356226",
"A356227",
"A356228",
"A356229",
"A356230",
"A356231",
"A356232",
"A356233",
"A356234"
]
| null | Gus Wiseman, Aug 28 2022 | 2022-08-30T09:41:27 | oeisdata/seq/A356/A356233.seq | ed721989fce812fdd20220cc07d20681 |
A356234 | Irregular triangle read by rows where row n is the ordered factorization of n into maximal gapless divisors. | [
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"2",
"5",
"11",
"12",
"13",
"2",
"7",
"15",
"16",
"17",
"18",
"19",
"4",
"5",
"3",
"7",
"2",
"11",
"23",
"24",
"25",
"2",
"13",
"27",
"4",
"7",
"29",
"30",
"31",
"32",
"3",
"11",
"2",
"17",
"35",
"36",
"37",
"2",
"19",
"3",
"13",
"8",
"5",
"41",
"6",
"7",
"43",
"4",
"11",
"45",
"2",
"23",
"47",
"48",
"49",
"2",
"25",
"3",
"17",
"4",
"13",
"53",
"54",
"5",
"11",
"8"
]
| [
"nonn",
"tabf"
]
| 5 | 1 | 1 | [
"A000005",
"A001055",
"A001221",
"A001222",
"A001414",
"A003963",
"A056239",
"A060680",
"A060683",
"A066205",
"A073491",
"A073495",
"A112798",
"A132747",
"A132881",
"A193829",
"A287170",
"A330103",
"A356069",
"A356224",
"A356225",
"A356226",
"A356227",
"A356229",
"A356232",
"A356233",
"A356234",
"A356237"
]
| null | Gus Wiseman, Aug 28 2022 | 2022-08-30T09:41:31 | oeisdata/seq/A356/A356234.seq | 2e7a81919dfe7b09da3ebe0b3124e310 |
A356235 | Number of integer partitions of n with a neighborless singleton. | [
"0",
"1",
"1",
"1",
"2",
"3",
"5",
"8",
"12",
"16",
"25",
"33",
"45",
"62",
"84",
"109",
"148",
"192",
"251",
"325",
"421",
"536",
"690",
"870",
"1100",
"1385",
"1739",
"2161",
"2697",
"3334",
"4121",
"5071",
"6228",
"7609",
"9303",
"11308",
"13732",
"16629",
"20101",
"24206",
"29140",
"34957",
"41882",
"50060",
"59745",
"71124",
"84598",
"100365"
]
| [
"nonn"
]
| 7 | 0 | 5 | [
"A000009",
"A000041",
"A000837",
"A007690",
"A066205",
"A183558",
"A289509",
"A325160",
"A328171",
"A328172",
"A328187",
"A328221",
"A355393",
"A355394",
"A356233",
"A356235",
"A356236",
"A356237",
"A356606",
"A356607"
]
| null | Gus Wiseman, Aug 23 2022 | 2022-08-25T08:33:36 | oeisdata/seq/A356/A356235.seq | bd2624b2c516f16fd9441138bd4a8c27 |
A356236 | Number of integer partitions of n with a neighborless part. | [
"0",
"1",
"2",
"2",
"4",
"4",
"8",
"9",
"16",
"20",
"31",
"40",
"59",
"76",
"105",
"138",
"184",
"238",
"311",
"400",
"515",
"656",
"831",
"1052",
"1322",
"1659",
"2064",
"2572",
"3182",
"3934",
"4837",
"5942",
"7264",
"8872",
"10789",
"13109",
"15865",
"19174",
"23105",
"27796",
"33361",
"39956",
"47766",
"56985",
"67871",
"80675",
"95750",
"113416"
]
| [
"nonn"
]
| 11 | 0 | 3 | [
"A000009",
"A000041",
"A000837",
"A007690",
"A066205",
"A112798",
"A183558",
"A289509",
"A319630",
"A325160",
"A328171",
"A328172",
"A328187",
"A328221",
"A355393",
"A355394",
"A356235",
"A356236",
"A356237",
"A356606",
"A356607",
"A356736"
]
| null | Gus Wiseman, Aug 24 2022 | 2024-02-17T14:08:09 | oeisdata/seq/A356/A356236.seq | 1b64a3a17f892a9cddd4717c5f1ff9af |
A356237 | Heinz numbers of integer partitions with a neighborless singleton. | [
"2",
"3",
"5",
"7",
"10",
"11",
"13",
"14",
"17",
"19",
"20",
"21",
"22",
"23",
"26",
"28",
"29",
"31",
"33",
"34",
"37",
"38",
"39",
"40",
"41",
"42",
"43",
"44",
"46",
"47",
"50",
"51",
"52",
"53",
"55",
"56",
"57",
"58",
"59",
"61",
"62",
"63",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"73",
"74",
"76",
"78",
"79",
"80",
"82",
"83",
"84",
"85",
"86",
"87",
"88",
"89",
"91",
"92",
"93"
]
| [
"nonn"
]
| 11 | 1 | 1 | [
"A001221",
"A001222",
"A001414",
"A003963",
"A007690",
"A056239",
"A073491",
"A073492",
"A112798",
"A132747",
"A132881",
"A183558",
"A286470",
"A289508",
"A325160",
"A328166",
"A328335",
"A355393",
"A355394",
"A356069",
"A356224",
"A356225",
"A356231",
"A356233",
"A356234",
"A356235",
"A356236",
"A356237",
"A356606",
"A356607",
"A356734"
]
| null | Gus Wiseman, Aug 24 2022 | 2022-08-26T23:40:50 | oeisdata/seq/A356/A356237.seq | e9a1e115cde983c3d1cd04f0d6ffe248 |
A356238 | a(n) = Sum_{k=1..n} (k * floor(n/k))^n. | [
"1",
"8",
"62",
"849",
"8541",
"206345",
"2581403",
"76623522",
"1617299079",
"49463993875",
"952905453423",
"59000021366675",
"1198427462876421",
"54128102218676115",
"2321105129608323165",
"117387839988330848902",
"3205342976298888473968",
"268263812478494295219717"
]
| [
"nonn"
]
| 18 | 1 | 2 | [
"A007778",
"A350109",
"A350125",
"A356238",
"A356239",
"A356240"
]
| null | Seiichi Manyama, Jul 30 2022 | 2022-08-02T10:37:59 | oeisdata/seq/A356/A356238.seq | 67e044243ed7e8170f704b4644e69367 |
A356239 | a(n) = Sum_{k=1..n} k^n * sigma_0(k). | [
"1",
"9",
"71",
"963",
"9873",
"231749",
"2976863",
"86348423",
"1824883450",
"55584932826",
"1104642697680",
"64932555347084",
"1366828157222090",
"61273696016238014",
"2581786206601959958",
"129797968403021602450",
"3678372903755436314440",
"295835829367866540495396"
]
| [
"nonn"
]
| 25 | 1 | 2 | [
"A000005",
"A319194",
"A356129",
"A356239",
"A356243"
]
| null | Seiichi Manyama, Jul 30 2022 | 2024-01-21T18:10:13 | oeisdata/seq/A356/A356239.seq | 1982620fc7be89189c4908fd3742780c |
A356240 | a(n) = Sum_{k=1..n} (k-1)^n * Sum_{j=1..floor(n/k)} j^n. | [
"0",
"1",
"9",
"114",
"1332",
"25404",
"395460",
"9724901",
"207584371",
"6120938951",
"151737244257",
"5932533980409",
"168400694345669",
"7145593797561899",
"260681076993636793",
"12410128414690753548",
"473029927456547840472",
"27572016889372245275679"
]
| [
"nonn"
]
| 17 | 1 | 3 | [
"A356131",
"A356238",
"A356239",
"A356240",
"A356244"
]
| null | Seiichi Manyama, Jul 30 2022 | 2022-07-30T14:14:16 | oeisdata/seq/A356/A356240.seq | ad8aa4b9bf07150ee6196b0617954136 |
A356241 | a(n) is the number of distinct Fermat numbers dividing n. | [
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"2",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"2",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"2",
"0",
"0",
"1",
"0",
"1",
"2",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"2",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"2",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"2",
"0",
"1"
]
| [
"nonn"
]
| 12 | 1 | 15 | [
"A000215",
"A007404",
"A051158",
"A051179",
"A080307",
"A080308",
"A356241",
"A356242"
]
| null | Amiram Eldar, Jul 30 2022 | 2025-02-16T08:34:03 | oeisdata/seq/A356/A356241.seq | 6fb849aa59f7fdf72b8f64e358355541 |
A356242 | a(n) is the number of Fermat numbers dividing n, counted with multiplicity. | [
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"2",
"1",
"0",
"1",
"0",
"0",
"2",
"0",
"1",
"2",
"0",
"1",
"1",
"0",
"0",
"1",
"2",
"0",
"3",
"0",
"0",
"2",
"0",
"0",
"1",
"1",
"1",
"2",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"3",
"0",
"0",
"1",
"0",
"2",
"2",
"0",
"0",
"3",
"1",
"0",
"1",
"0",
"0",
"2",
"0",
"0",
"2",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"2",
"0",
"0",
"3",
"0",
"0",
"1",
"0",
"1",
"4",
"0",
"0",
"1",
"2",
"0",
"1"
]
| [
"nonn"
]
| 11 | 1 | 9 | [
"A000215",
"A000244",
"A007404",
"A051158",
"A051179",
"A080307",
"A080308",
"A169594",
"A356241",
"A356242"
]
| null | Amiram Eldar, Jul 30 2022 | 2025-02-16T08:34:03 | oeisdata/seq/A356/A356242.seq | e7efa025f180ef313437aeb480ab8efe |
A356243 | a(n) = Sum_{k=1..n} k^2 * sigma_{n-2}(k). | [
"1",
"9",
"49",
"447",
"4607",
"71009",
"1210855",
"24980627",
"575624572",
"14958422046",
"427890493960",
"13431874937840",
"457651929853662",
"16844143705998554",
"665499756005678382",
"28102799297908820326",
"1262909308355648335240",
"60183118566605371095996"
]
| [
"nonn"
]
| 16 | 1 | 2 | [
"A000330",
"A319194",
"A356129",
"A356239",
"A356243"
]
| null | Seiichi Manyama, Jul 30 2022 | 2023-10-21T19:38:55 | oeisdata/seq/A356/A356243.seq | 811b7750a4709fec6f9e7a67e79f281b |
A356244 | a(n) = Sum_{k=1..n} (k-1)^n * Sum_{j=1..floor(n/k)} j^2. | [
"0",
"1",
"9",
"102",
"1304",
"20784",
"377286",
"7934693",
"186969913",
"4918785791",
"142381832107",
"4506907611825",
"154723950495961",
"5729421493899419",
"227586600129484543",
"9654927881195999544",
"435660032125475809618",
"20836109197604840372979",
"1052865018045922422499409"
]
| [
"nonn"
]
| 15 | 1 | 3 | [
"A000330",
"A350125",
"A356131",
"A356243",
"A356244"
]
| null | Seiichi Manyama, Jul 30 2022 | 2022-07-30T14:14:09 | oeisdata/seq/A356/A356244.seq | 4e5be031a1eeea84aa13d73d27836c30 |
A356245 | A family of squares A(m), m >= 0, read by squares and then by rows; A(0) is [1, 1; 1, 1]; for m >= 0, square A(m+1) is obtained by replacing each subsquare [t, u; v, w] by [t, t+u, t+u, u; t+v, t+u+v, t+u+w, u+w; t+v, t+v+w, u+v+w, u+w; v, v+w, v+w, w] in A(m). | [
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"2",
"3",
"3",
"2",
"2",
"3",
"3",
"2",
"1",
"2",
"2",
"1",
"1",
"3",
"3",
"2",
"4",
"4",
"2",
"3",
"3",
"1",
"3",
"5",
"6",
"5",
"7",
"7",
"5",
"6",
"5",
"3",
"3",
"6",
"7",
"5",
"8",
"8",
"5",
"7",
"6",
"3",
"2",
"5",
"5",
"3",
"6",
"6",
"3",
"5",
"5",
"2",
"4",
"7",
"8",
"6",
"9",
"9",
"6",
"8",
"7",
"4",
"4",
"7",
"8",
"6",
"9",
"9",
"6",
"8",
"7",
"4",
"2",
"5",
"5",
"3",
"6",
"6",
"3",
"5",
"5",
"2"
]
| [
"nonn",
"tabf"
]
| 12 | 0 | 6 | [
"A355855",
"A356002",
"A356096",
"A356097",
"A356098",
"A356245"
]
| null | Rémy Sigrist, Jul 30 2022 | 2023-01-18T03:29:04 | oeisdata/seq/A356/A356245.seq | 94dc7395d28e6d0c286cec5de580efe1 |
A356246 | Primes whose reversal is a multiple of 14. | [
"41",
"89",
"211",
"223",
"281",
"293",
"463",
"487",
"499",
"691",
"827",
"839",
"2129",
"2213",
"2237",
"2333",
"2357",
"2441",
"2477",
"2503",
"2539",
"2647",
"2659",
"2693",
"2731",
"2767",
"2851",
"2887",
"2971",
"4021",
"4057",
"4091",
"4153",
"4177",
"4261",
"4273",
"4297",
"4409",
"4517",
"4637",
"4649",
"4721",
"4733",
"4877",
"4889",
"4903",
"4973"
]
| [
"nonn",
"base"
]
| 10 | 1 | 1 | [
"A045711",
"A074895",
"A087762",
"A087764",
"A087765",
"A087766",
"A087767",
"A355430",
"A355983",
"A355984",
"A355985",
"A356246"
]
| null | Bernard Schott, Jul 30 2022 | 2022-07-31T07:48:46 | oeisdata/seq/A356/A356246.seq | 2930776a1c652c623c57416b550df10a |
A356247 | Denominator of the continued fraction 1/(2 - 3/(3 - 4/(4 - 5/(...(n-1) - n/(-1))))). | [
"1",
"5",
"11",
"19",
"29",
"41",
"11",
"71",
"89",
"109",
"131",
"31",
"181",
"19",
"239",
"271",
"61",
"31",
"379",
"419",
"461",
"101",
"29",
"599",
"59",
"701",
"151",
"811",
"79",
"929",
"991",
"211",
"59",
"41",
"1259",
"1",
"281",
"1481",
"1559",
"149",
"1721",
"1",
"61",
"1979",
"2069",
"2161",
"1",
"2351",
"79",
"2549",
"241",
"1",
"2861",
"2969",
"3079",
"3191"
]
| [
"nonn",
"easy",
"frac"
]
| 114 | 2 | 2 | [
"A002327",
"A028387",
"A051403",
"A165900",
"A356247",
"A356684"
]
| null | Mohammed Bouras, Jul 30 2022 | 2024-05-31T14:05:42 | oeisdata/seq/A356/A356247.seq | f1320d4c2c727a05b8a93b6368d790c3 |
A356248 | Image of 1 under repeated application of the map k -> (2k-1,2k,2k-1). | [
"1",
"2",
"1",
"3",
"4",
"3",
"1",
"2",
"1",
"5",
"6",
"5",
"7",
"8",
"7",
"5",
"6",
"5",
"1",
"2",
"1",
"3",
"4",
"3",
"1",
"2",
"1",
"9",
"10",
"9",
"11",
"12",
"11",
"9",
"10",
"9",
"13",
"14",
"13",
"15",
"16",
"15",
"13",
"14",
"13",
"9",
"10",
"9",
"11",
"12",
"11",
"9",
"10",
"9",
"1",
"2",
"1",
"3",
"4",
"3",
"1",
"2",
"1",
"5",
"6",
"5",
"7",
"8",
"7",
"5",
"6",
"5",
"1",
"2",
"1",
"3",
"4",
"3",
"1",
"2",
"1"
]
| [
"nonn"
]
| 20 | 0 | 2 | [
"A289813",
"A356248"
]
| null | Arie Bos, Jul 31 2022 | 2022-08-01T16:40:31 | oeisdata/seq/A356/A356248.seq | 3504172ab79de293818391437e14bd26 |
A356249 | a(n) = Sum_{k=1..n} (k * floor(n/k))^3. | [
"1",
"16",
"62",
"219",
"405",
"1053",
"1523",
"2948",
"4407",
"7041",
"8703",
"15283",
"17949",
"24657",
"32685",
"44806",
"50536",
"70687",
"78573",
"105411",
"125879",
"149879",
"163565",
"222425",
"247476",
"286134",
"327634",
"396258",
"423084",
"532236",
"564818",
"664763",
"738095",
"821693",
"904937",
"1107618",
"1162268",
"1277588",
"1395760"
]
| [
"nonn"
]
| 28 | 1 | 2 | [
"A000537",
"A024916",
"A064603",
"A318742",
"A319086",
"A350123",
"A356125",
"A356249",
"A356250"
]
| null | Seiichi Manyama, Jul 31 2022 | 2023-10-21T18:00:33 | oeisdata/seq/A356/A356249.seq | 41056a73f550f1c6036c865dc55db5f2 |
A356250 | Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} (j * floor(n/j))^k. | [
"1",
"1",
"2",
"1",
"4",
"3",
"1",
"8",
"8",
"4",
"1",
"16",
"22",
"15",
"5",
"1",
"32",
"62",
"57",
"21",
"6",
"1",
"64",
"178",
"219",
"91",
"33",
"7",
"1",
"128",
"518",
"849",
"405",
"185",
"41",
"8",
"1",
"256",
"1522",
"3315",
"1843",
"1053",
"247",
"56",
"9",
"1",
"512",
"4502",
"13017",
"8541",
"6065",
"1523",
"402",
"69",
"10",
"1",
"1024",
"13378",
"51339",
"40171",
"35253",
"9571",
"2948",
"545",
"87",
"11"
]
| [
"nonn",
"tabl"
]
| 17 | 1 | 3 | [
"A001477",
"A024916",
"A344725",
"A350123",
"A356238",
"A356249",
"A356250"
]
| null | Seiichi Manyama, Jul 31 2022 | 2022-07-31T13:17:35 | oeisdata/seq/A356/A356250.seq | 81673f66ac7fc309e234e62c306cdf95 |
A356251 | a(n) = n*(n+1)*(n+2)*(n+3)*(2*n+1)/12. | [
"0",
"6",
"50",
"210",
"630",
"1540",
"3276",
"6300",
"11220",
"18810",
"30030",
"46046",
"68250",
"98280",
"138040",
"189720",
"255816",
"339150",
"442890",
"570570",
"726110",
"913836",
"1138500",
"1405300",
"1719900",
"2088450",
"2517606",
"3014550",
"3587010",
"4243280",
"4992240",
"5843376",
"6806800",
"7893270",
"9114210"
]
| [
"nonn",
"easy"
]
| 34 | 0 | 2 | [
"A033487",
"A356251"
]
| null | Edward Krogius, Jul 31 2022 | 2025-06-20T08:21:46 | oeisdata/seq/A356/A356251.seq | f3d574abfdc878bcce69594e941c0956 |
A356252 | The smallest number of straight lines that can be used to draw n non-overlapping pentagonal stars. | [
"5",
"8",
"9",
"11",
"12",
"13"
]
| [
"nonn",
"more"
]
| 26 | 1 | 1 | null | null | Nicolay Avilov, Jul 31 2022 | 2022-09-15T11:46:54 | oeisdata/seq/A356/A356252.seq | 00ded5695b9c4588999ae914c55b1085 |
A356253 | a(n) is the largest coefficient of P(x) := Product_{k} (x + p_k), where (p_k) are the primes dividing n listed with multiplicity. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"12",
"9",
"10",
"11",
"16",
"13",
"14",
"15",
"32",
"17",
"21",
"19",
"24",
"21",
"22",
"23",
"44",
"25",
"26",
"27",
"32",
"29",
"31",
"31",
"80",
"33",
"34",
"35",
"60",
"37",
"38",
"39",
"68",
"41",
"42",
"43",
"48",
"45",
"46",
"47",
"112",
"49",
"50",
"51",
"56",
"53",
"81",
"55",
"92",
"57",
"58",
"59",
"92",
"61",
"62",
"63",
"240",
"65",
"66",
"67",
"72"
]
| [
"nonn"
]
| 45 | 1 | 2 | [
"A002110",
"A003415",
"A024451",
"A065048",
"A070918",
"A083348",
"A109388",
"A260613",
"A356253",
"A369657"
]
| null | Thomas Scheuerle, Jul 31 2022 | 2024-02-14T14:24:00 | oeisdata/seq/A356/A356253.seq | 72baf39c1ddeb5e0ddf8d5e9dedc95b4 |
A356254 | Given n balls, all of which are initially in the first of n numbered boxes, a(n) is the number of steps required to get one ball in each box when a step consists of moving to the next box every second ball from the highest-numbered box that has more than one ball. | [
"0",
"1",
"3",
"5",
"9",
"13",
"18",
"23",
"31",
"39",
"47",
"56",
"67",
"78",
"91",
"103",
"119",
"135",
"150",
"167",
"185",
"203",
"223",
"243",
"266",
"289",
"313",
"337",
"364",
"391",
"420",
"447",
"479",
"511",
"541",
"574",
"607",
"640",
"675",
"711",
"749",
"787",
"826",
"865",
"907",
"949",
"993",
"1036",
"1083",
"1130",
"1177",
"1225",
"1275",
"1325",
"1377"
]
| [
"nonn"
]
| 40 | 1 | 3 | [
"A000217",
"A001855",
"A181132",
"A356254"
]
| null | Mikhail Kurkov, Oct 15 2022 | 2024-10-20T21:13:24 | oeisdata/seq/A356/A356254.seq | 22eb4aee9758d5fc7a94fc536db15680 |
A356255 | a(1) = 1; for n > 1, a(n) is the smallest magnitude number not occurring earlier such that n is divisible by s = Sum_{k = 1..n} a(k), where |s| > 1. | [
"1",
"-3",
"-1",
"5",
"3",
"-2",
"4",
"-5",
"7",
"-4",
"6",
"-7",
"9",
"-6",
"8",
"-11",
"13",
"-8",
"10",
"-9",
"11",
"-10",
"12",
"-15",
"-13",
"18",
"14",
"-20",
"22",
"-14",
"16",
"-23",
"-19",
"28",
"-12",
"-17",
"-25",
"35",
"15",
"-18",
"-36",
"20",
"-22",
"21",
"17",
"-41",
"93",
"-31",
"33",
"-24",
"26",
"-38",
"40",
"-26",
"-16",
"-39",
"25",
"32",
"30",
"-29",
"31",
"-30",
"-28",
"29",
"-27",
"61",
"-133",
"50",
"-52",
"34"
]
| [
"sign",
"fini",
"full"
]
| 17 | 1 | 2 | [
"A019444",
"A027749",
"A027750",
"A356255"
]
| null | Scott R. Shannon, Oct 15 2022 | 2023-01-16T09:10:46 | oeisdata/seq/A356/A356255.seq | f7ecb04b6363973d5b81fd1e37c2a725 |
A356256 | The lesser of the 2^n-th twin prime pair (A001359). | [
"3",
"5",
"17",
"71",
"227",
"821",
"2087",
"5021",
"13757",
"33149",
"81197",
"186647",
"435401",
"1002719",
"2241779",
"5060171",
"11296421",
"25121207",
"55559507",
"121831601",
"266187827",
"578653919",
"1253242691",
"2705496551",
"5820833729",
"12491149637",
"26733605159",
"57077657321",
"121575837179",
"258438193379"
]
| [
"nonn"
]
| 27 | 0 | 1 | [
"A001359",
"A356256"
]
| null | Robert G. Wilson v, Oct 03 2022 | 2022-11-19T14:00:39 | oeisdata/seq/A356/A356256.seq | 4daf069a98cb1491def5254216b5f9ae |
A356257 | Irregular triangle: row n consists of the frequencies of positive distances between permutations P and reverse(P), as P ranges through the permutations of (1, 2, ..., n); see Comments. | [
"1",
"2",
"4",
"2",
"8",
"16",
"24",
"16",
"32",
"32",
"16",
"48",
"192",
"192",
"288",
"192",
"144",
"576",
"576",
"576",
"576",
"960",
"576",
"576",
"288",
"384",
"2304",
"4608",
"7680",
"9216",
"6912",
"9216",
"1920",
"1536",
"9216",
"9216",
"16128",
"18432",
"29184",
"26112",
"36864",
"32256",
"41472",
"23040",
"39168",
"32256",
"18432",
"18432"
]
| [
"nonn",
"tabf",
"more"
]
| 17 | 1 | 2 | [
"A000142",
"A356257",
"A357329"
]
| null | Clark Kimberling, Oct 04 2022 | 2023-06-05T08:55:48 | oeisdata/seq/A356/A356257.seq | 597231e770a2cbef8e328d9e436e3207 |
A356258 | Number of 6-dimensional cubic lattice walks that start and end at origin after 2n steps, free to pass through origin at intermediate stages. | [
"1",
"12",
"396",
"19920",
"1281420",
"96807312",
"8175770064",
"748315668672",
"72729762868620",
"7402621930738320",
"781429888276676496",
"84955810313787521472",
"9463540456205136873936",
"1075903653146632508721600",
"124461755084172965028753600",
"14615050011682746903615601920"
]
| [
"nonn",
"easy",
"walk"
]
| 43 | 0 | 2 | [
"A000984",
"A002894",
"A002896",
"A039699",
"A287317",
"A287318",
"A356258"
]
| null | Dave R.M. Langers, Oct 12 2022 | 2023-03-10T08:59:53 | oeisdata/seq/A356/A356258.seq | f56abe27c72c7fbd567761428e143fbf |
A356259 | Number of labeled rooted trees on [n] that have a primary branch. | [
"0",
"2",
"6",
"60",
"500",
"7290",
"100842",
"1978368",
"38263752",
"949218750",
"23579476910",
"709026379776",
"21505924728444",
"760772509715764",
"27246730957031250",
"1109165339867873280",
"45798768824157052688",
"2109518949433090534902"
]
| [
"nonn"
]
| 8 | 1 | 2 | [
"A000169",
"A027415",
"A356074",
"A356259"
]
| null | Geoffrey Critzer, Jul 31 2022 | 2022-08-04T15:54:52 | oeisdata/seq/A356/A356259.seq | b089cc67158ee17e30d4db5a2a6400fb |
A356260 | Lower twin primes p such that (p^2 + (p+2)^2)/10 is prime. | [
"11",
"41",
"101",
"107",
"197",
"311",
"461",
"521",
"827",
"1061",
"1277",
"1451",
"1487",
"1871",
"2027",
"2141",
"2801",
"3251",
"3671",
"4091",
"4547",
"5651",
"5657",
"6197",
"6791",
"6827",
"7307",
"7457",
"8837",
"9011",
"9041",
"9437",
"9857",
"10007",
"10301",
"10457",
"11777",
"12041",
"12251",
"12611",
"13691",
"13721",
"13997",
"14321",
"14387",
"15287",
"15641",
"17027",
"17747"
]
| [
"nonn"
]
| 10 | 1 | 1 | [
"A001359",
"A356260"
]
| null | J. M. Bergot and Robert Israel, Jul 31 2022 | 2022-08-03T12:40:09 | oeisdata/seq/A356/A356260.seq | dbca01c3be1a8d7ec9d3c66ec8ce97f2 |
A356261 | Partition triangle read by rows, counting irreducible permutations with weakly decreasing Lehmer code, refining triangle A119308. | [
"1",
"1",
"0",
"1",
"0",
"2",
"1",
"0",
"2",
"1",
"5",
"1",
"0",
"2",
"2",
"7",
"7",
"9",
"1",
"0",
"2",
"2",
"1",
"9",
"18",
"3",
"16",
"24",
"14",
"1",
"0",
"2",
"2",
"2",
"11",
"22",
"11",
"11",
"25",
"75",
"25",
"30",
"60",
"20",
"1",
"0",
"2",
"2",
"2",
"1",
"13",
"26",
"26",
"13",
"13",
"36",
"108",
"54",
"108",
"9",
"55",
"220",
"110",
"50",
"125",
"27",
"1"
]
| [
"nonn",
"tabf"
]
| 9 | 0 | 6 | [
"A071724",
"A119308",
"A356261",
"A356264"
]
| null | Peter Luschny, Aug 16 2022 | 2022-08-21T14:09:53 | oeisdata/seq/A356/A356261.seq | 200de2f70eaf49fe346217c629b4e837 |
A356262 | Partition triangle read by rows counting the irreducible permutations sorted by the partition type of their Lehmer code. | [
"1",
"1",
"0",
"1",
"0",
"2",
"1",
"0",
"2",
"1",
"9",
"1",
"0",
"2",
"3",
"24",
"17",
"24",
"1",
"0",
"2",
"3",
"3",
"98",
"29",
"23",
"156",
"91",
"55",
"1",
"0",
"2",
"8",
"4",
"181",
"43",
"157",
"113",
"1085",
"243",
"418",
"714",
"360",
"118",
"1",
"0",
"2",
"7",
"11",
"4",
"300",
"61",
"317",
"461",
"398",
"2985",
"536",
"1822",
"4366",
"417",
"7684",
"1522",
"3904",
"2788",
"1262",
"245",
"1"
]
| [
"nonn",
"tabf"
]
| 13 | 0 | 6 | [
"A003319",
"A355777",
"A356262",
"A356263"
]
| null | Peter Luschny, Aug 01 2022 | 2022-08-23T06:03:25 | oeisdata/seq/A356/A356262.seq | 6608354797aec995e461e4e85b54ab78 |
A356263 | Triangle read by rows. The reduced triangle of the partition triangle of irreducible permutations (A356262). T(n, k) for n >= 1 and 0 <= k < n. | [
"1",
"0",
"1",
"0",
"2",
"1",
"0",
"3",
"9",
"1",
"0",
"5",
"41",
"24",
"1",
"0",
"8",
"150",
"247",
"55",
"1",
"0",
"14",
"494",
"1746",
"1074",
"118",
"1",
"0",
"24",
"1537",
"10126",
"13110",
"4050",
"245",
"1",
"0",
"43",
"4642",
"52129",
"122521",
"79396",
"14111",
"500",
"1",
"0",
"77",
"13745",
"248494",
"967644",
"1126049",
"425471",
"46833",
"1011",
"1"
]
| [
"nonn",
"tabl"
]
| 15 | 1 | 5 | [
"A003319",
"A007059",
"A008292",
"A356114",
"A356116",
"A356262",
"A356263"
]
| null | Peter Luschny, Aug 01 2022 | 2022-08-04T14:57:47 | oeisdata/seq/A356/A356263.seq | 37b2c6d3571292d24a972bbafe1cc573 |
A356264 | Partition triangle read by rows, counting reducible permutations, refining triangle A356265. | [
"0",
"0",
"1",
"0",
"1",
"2",
"0",
"1",
"5",
"3",
"2",
"0",
"1",
"9",
"12",
"15",
"10",
"2",
"0",
"1",
"14",
"23",
"12",
"47",
"94",
"11",
"31",
"24",
"2",
"0",
"1",
"20",
"38",
"48",
"113",
"293",
"154",
"137",
"183",
"409",
"78",
"63",
"54",
"2",
"0",
"1",
"27",
"60",
"87",
"49",
"227",
"738",
"883",
"451",
"457",
"670",
"2157",
"1007",
"1580",
"79",
"605",
"1520",
"384",
"127",
"116",
"2",
"0"
]
| [
"nonn",
"tabf"
]
| 11 | 0 | 6 | [
"A356262",
"A356263",
"A356264",
"A356265",
"A356291"
]
| null | Peter Luschny, Aug 05 2022 | 2022-08-23T05:34:56 | oeisdata/seq/A356/A356264.seq | b46d30781666e565f9ee404997b119b3 |
A356265 | Triangle read by rows. The reduced triangle of the partition triangle of reducible permutations (A356264). T(n, k) for n >= 1 and 0 <= k < n. | [
"0",
"1",
"0",
"1",
"2",
"0",
"1",
"8",
"2",
"0",
"1",
"21",
"25",
"2",
"0",
"1",
"49",
"152",
"55",
"2",
"0",
"1",
"106",
"697",
"670",
"117",
"2",
"0",
"1",
"223",
"2756",
"5493",
"2509",
"243",
"2",
"0",
"1",
"459",
"9966",
"36105",
"33669",
"8838",
"497",
"2",
"0",
"1",
"936",
"34095",
"206698",
"342710",
"184305",
"29721",
"1007",
"2",
"0"
]
| [
"nonn",
"tabl"
]
| 11 | 1 | 5 | [
"A356264",
"A356265",
"A356291"
]
| null | Peter Luschny, Aug 16 2022 | 2022-09-11T01:53:16 | oeisdata/seq/A356/A356265.seq | bbae5cdd07b5eb7557aa1216e8f9d148 |
A356266 | Partition triangle read by rows, counting reducible permutations with weakly decreasing Lehmer code, refining triangle A356115. | [
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"2",
"1",
"1",
"0",
"1",
"3",
"3",
"3",
"3",
"1",
"0",
"1",
"4",
"4",
"2",
"6",
"12",
"2",
"4",
"6",
"1",
"0",
"1",
"5",
"5",
"5",
"10",
"20",
"10",
"10",
"10",
"30",
"10",
"5",
"10",
"1",
"0",
"1",
"6",
"6",
"6",
"3",
"15",
"30",
"30",
"15",
"15",
"20",
"60",
"30",
"60",
"5",
"15",
"60",
"30",
"6",
"15",
"1"
]
| [
"nonn",
"tabf"
]
| 10 | 0 | 10 | [
"A120588",
"A356115",
"A356264",
"A356266"
]
| null | Peter Luschny, Aug 16 2022 | 2022-08-21T14:10:10 | oeisdata/seq/A356/A356266.seq | 30a95d42816eca524c1e5d04d821a0c6 |
A356267 | a(n) = Sum_{k=0..n} binomial(2*n, k) * p(k), where p(k) is the partition function A000041. | [
"1",
"3",
"17",
"97",
"583",
"3275",
"18988",
"104821",
"584441",
"3180889",
"17295626",
"92225785",
"492811733",
"2590911097",
"13591889993",
"70605682273",
"365601169939",
"1876312271003",
"9605682510676",
"48809295651049",
"247315330613099",
"1245888505795725",
"6256686417801919",
"31260996876796579"
]
| [
"nonn"
]
| 7 | 0 | 2 | [
"A000041",
"A032443",
"A218481",
"A286955",
"A356267",
"A356268"
]
| null | Vaclav Kotesovec, Aug 01 2022 | 2022-08-01T14:24:43 | oeisdata/seq/A356/A356267.seq | 2de37539d0b088ca6da494d8aa8fe419 |
A356268 | a(n) = Sum_{k=0..n} binomial(2*n, k) * q(k), where q(k) is the number of partitions into distinct parts (A000009). | [
"1",
"3",
"11",
"62",
"289",
"1472",
"7581",
"38014",
"184453",
"918512",
"4548393",
"22077762",
"107423503",
"516720332",
"2483445404",
"11959145079",
"57022343425",
"270173627092",
"1282971321633",
"6047971597490",
"28446033085527",
"133714464665108",
"625893086713686",
"2919093380089383",
"13596052503945537"
]
| [
"nonn"
]
| 7 | 0 | 2 | [
"A000009",
"A032443",
"A266232",
"A307496",
"A356267",
"A356268"
]
| null | Vaclav Kotesovec, Aug 01 2022 | 2022-08-01T14:24:48 | oeisdata/seq/A356/A356268.seq | dc72c9c8002454a30d6c6fd3e94ec599 |
A356269 | a(n) = Sum_{k=0..n} binomial(2*k, k) * p(k), where p(k) is the partition function A000041. | [
"1",
"3",
"15",
"75",
"425",
"2189",
"12353",
"63833",
"346973",
"1805573",
"9565325",
"49069517",
"257289529",
"1307750129",
"6723491129",
"34024174649",
"172873744739",
"865954792079",
"4359881882579",
"21679061144579",
"108108834714719",
"534409071271199",
"2642716232918639",
"12975671796056639",
"63765647596939139"
]
| [
"nonn"
]
| 7 | 0 | 2 | [
"A000041",
"A006134",
"A032443",
"A218481",
"A286955",
"A356267",
"A356269",
"A356270"
]
| null | Vaclav Kotesovec, Aug 01 2022 | 2022-08-01T14:24:25 | oeisdata/seq/A356/A356269.seq | 684f67b8af824b5337d9dd0bd00f5a8f |
A356270 | a(n) = Sum_{k=0..n} binomial(2*k, k) * q(k), where q(k) is the number of partitions into distinct parts (A000009). | [
"1",
"3",
"9",
"49",
"189",
"945",
"4641",
"21801",
"99021",
"487981",
"2335541",
"10800725",
"51363065",
"238573865",
"1121139065",
"5309312105",
"24543884585",
"113220920945",
"530677144745",
"2439321389945",
"11261499234425",
"52169097691865",
"239433905462945",
"1095710701133345",
"5029918350471545"
]
| [
"nonn"
]
| 6 | 0 | 2 | [
"A000009",
"A006134",
"A032443",
"A266232",
"A307496",
"A356268",
"A356269",
"A356270"
]
| null | Vaclav Kotesovec, Aug 01 2022 | 2022-08-01T14:24:20 | oeisdata/seq/A356/A356270.seq | 0ff6abebf2a2e682a80c239d7e9b88d9 |
A356271 | Prime numbers in the sublists defined in A348168 that contain a single prime. | [
"2",
"3",
"5",
"7",
"23",
"53",
"89",
"157",
"173",
"211",
"293",
"353",
"359",
"409",
"449",
"683",
"691",
"839",
"919",
"977",
"983",
"1039",
"1069",
"1103",
"1109",
"1201",
"1223",
"1237",
"1283",
"1327",
"1381",
"1439",
"1459",
"1511",
"1613",
"1627",
"1637",
"1709",
"2039",
"2099",
"2179",
"2213",
"2221",
"2243",
"2251",
"2273",
"2447",
"2633",
"2917"
]
| [
"nonn"
]
| 20 | 1 | 1 | [
"A348168",
"A356271"
]
| null | Ya-Ping Lu, Aug 01 2022 | 2024-04-25T13:53:31 | oeisdata/seq/A356/A356271.seq | adf226ad3ffa14b11d853d9e055bfa47 |
A356272 | a(n) is the least k such that exactly n consecutive integers starting from k belong to A124665. | [
"20",
"134",
"1934",
"9773",
"19042",
"138902",
"104024",
"512255",
"1400180",
"1558490",
"1441174",
"9363253",
"20454244",
"98854550",
"57515874",
"201139683",
"49085531",
"213492618",
"475478220",
"1152519092"
]
| [
"nonn",
"base",
"more"
]
| 17 | 1 | 1 | [
"A124665",
"A356272"
]
| null | Michel Marcus, Aug 01 2022 | 2022-08-03T02:38:30 | oeisdata/seq/A356/A356272.seq | 3c7debe15e313042ed2bd45bbc47150b |
A356273 | a(n) is the position of the least prime in the ordered set of numbers obtained by inserting/placing any digit anywhere in the digits of n (except a zero before 1st digit), or 0 if there is no prime in that set. | [
"2",
"5",
"1",
"5",
"8",
"7",
"1",
"11",
"1",
"2",
"1",
"10",
"1",
"14",
"7",
"10",
"1",
"10",
"1",
"0",
"4",
"7",
"4",
"7",
"8",
"11",
"1",
"11",
"4",
"10",
"1",
"0",
"2",
"14",
"11",
"16",
"1",
"14",
"1",
"5",
"2",
"7",
"8",
"11",
"16",
"11",
"3",
"19",
"1",
"8",
"1",
"8",
"3",
"10",
"17",
"14",
"1",
"20",
"3",
"7",
"4",
"0",
"1",
"11",
"14",
"13",
"1",
"17",
"2",
"8",
"2",
"16",
"1",
"14",
"13",
"14",
"2",
"22",
"1",
"17"
]
| [
"nonn",
"base"
]
| 18 | 1 | 1 | [
"A068166",
"A068167",
"A068169",
"A068170",
"A068171",
"A068172",
"A068173",
"A068174",
"A124665",
"A356273"
]
| null | Michel Marcus, Aug 01 2022 | 2022-08-02T09:20:05 | oeisdata/seq/A356/A356273.seq | 4f0a26045b91479eb4661c04242cab50 |
A356274 | a(n) is the number whose base-(n+1) expansion equals the binary expansion of n. | [
"1",
"3",
"5",
"25",
"37",
"56",
"73",
"729",
"1001",
"1342",
"1741",
"2366",
"2941",
"3615",
"4369",
"83521",
"104977",
"130340",
"160021",
"194922",
"234741",
"280393",
"332377",
"406250",
"474553",
"551151",
"636637",
"732511",
"837901",
"954304",
"1082401",
"39135393",
"45435425",
"52521910",
"60466213",
"69345326",
"79236613"
]
| [
"nonn",
"base"
]
| 72 | 1 | 2 | [
"A000523",
"A007814",
"A104257",
"A104258",
"A128889",
"A136516",
"A356274"
]
| null | Thomas Scheuerle, Aug 02 2022 | 2022-08-23T09:42:38 | oeisdata/seq/A356/A356274.seq | e1617ad5071a0ca4c99d91d919a22497 |
A356275 | a(n) is the number of tuples (t_1,t_2,m) of integers 2 <= t_1 <= t_2 and 0 < m < n such that (3 + 1/t_1)^m * (3 + 1/t_2)^(n-m) is an integer. | [
"3",
"2",
"4",
"2",
"5",
"3",
"5",
"5",
"5",
"4"
]
| [
"more",
"nonn"
]
| 21 | 2 | 1 | [
"A355626",
"A356275",
"A356276",
"A356277",
"A356278",
"A356279"
]
| null | Markus Sigg, Aug 03 2022 | 2025-01-12T09:31:16 | oeisdata/seq/A356/A356275.seq | 0603d94b779cbb01101a3d351ad68fde |
A356276 | a(n) is the number of integers that can be written as (3 + 1/t_1)^m * (3 + 1/t_2)^(n-m) with integers t_1,t_2 >= 2 and 0 < m < n. | [
"2",
"2",
"3",
"2",
"4",
"3",
"4",
"5",
"4",
"4"
]
| [
"nonn",
"more"
]
| 10 | 2 | 1 | [
"A355626",
"A356275",
"A356276",
"A356277",
"A356278",
"A356279"
]
| null | Markus Sigg, Aug 03 2022 | 2022-08-04T10:20:20 | oeisdata/seq/A356/A356276.seq | 2a88d4d17209bd726a95c518d6f2afed |
A356277 | a(n) is the smallest integer that can be written as (3 + 1/t_1)^m * (3 + 1/t_2)^(n-m) with integers t_1,t_2 >= 2 and 0 < m < n. | [
"10",
"32",
"100",
"320",
"1000",
"3125",
"10000",
"31250",
"100000",
"312500"
]
| [
"nonn",
"more"
]
| 10 | 2 | 1 | [
"A355626",
"A356275",
"A356276",
"A356277",
"A356278",
"A356279"
]
| null | Markus Sigg, Aug 03 2022 | 2022-08-04T10:20:23 | oeisdata/seq/A356/A356277.seq | df6f6fb60f6079d1e28d4b62bc58f618 |
A356278 | a(n) is the largest integer that can be written as (3 + 1/t_1)^m * (3 + 1/t_2)^(n-m) with integers t_1,t_2 >= 2 and 0 < m < n. | [
"11",
"37",
"121",
"325",
"1369",
"3250",
"14641",
"50653",
"161051",
"327680"
]
| [
"nonn",
"more"
]
| 10 | 2 | 1 | [
"A355626",
"A356275",
"A356276",
"A356277",
"A356278",
"A356279"
]
| null | Markus Sigg, Aug 03 2022 | 2022-08-04T10:20:27 | oeisdata/seq/A356/A356278.seq | 719ea19fd3ead1d35cb844970df159f2 |
A356279 | Integers that can be written as (3 + 1/t_1)^m * (3 + 1/t_2)^k with integers t_1,t_2 >= 2 and m,k > 0. | [
"10",
"11",
"32",
"37",
"100",
"103",
"121",
"320",
"325",
"1000",
"1024",
"1331",
"1369",
"3125",
"3200",
"3250",
"10000",
"10240",
"10609",
"14641",
"31250",
"32000",
"32500",
"32768",
"50653",
"100000",
"102400",
"105625",
"161051",
"312500",
"320000",
"325000",
"327680"
]
| [
"nonn",
"more"
]
| 15 | 1 | 1 | [
"A355626",
"A356275",
"A356276",
"A356277",
"A356278",
"A356279"
]
| null | Markus Sigg, Aug 03 2022 | 2022-08-04T10:20:36 | oeisdata/seq/A356/A356279.seq | 93049fbe28fcb95dafd57dcd61a8bda6 |
A356280 | a(n) = Sum_{k=0..n} binomial(2*n, n-k) * p(k), where p(k) is the partition function A000041. | [
"1",
"3",
"12",
"50",
"211",
"894",
"3791",
"16068",
"68032",
"287675",
"1214761",
"5122428",
"21571028",
"90718913",
"381050570",
"1598645263",
"6699355413",
"28044720813",
"117281866330",
"489999068614",
"2045341248508",
"8530263939665",
"35547083083270",
"148015639243691",
"615870619714675",
"2560734764460360"
]
| [
"nonn"
]
| 10 | 0 | 2 | [
"A000041",
"A032443",
"A218481",
"A286955",
"A356267",
"A356280",
"A356281"
]
| null | Vaclav Kotesovec, Aug 01 2022 | 2022-08-02T07:52:21 | oeisdata/seq/A356/A356280.seq | 6202f281c435e0d1a748b2e93a3e6557 |
A356281 | a(n) = Sum_{k=0..n} binomial(2*n, n-k) * q(k), where q(k) is the number of partitions into distinct parts (A000009). | [
"1",
"3",
"11",
"43",
"172",
"695",
"2823",
"11501",
"46940",
"191791",
"784148",
"3207196",
"13119733",
"53670793",
"219545353",
"897957702",
"3672093558",
"15013596535",
"61370565546",
"250803861369",
"1024716136043",
"4185683293934",
"17093143284723",
"69786349712519",
"284847779542644",
"1162385753008079"
]
| [
"nonn"
]
| 6 | 0 | 2 | [
"A000009",
"A032443",
"A266232",
"A307496",
"A356268",
"A356280",
"A356281"
]
| null | Vaclav Kotesovec, Aug 01 2022 | 2022-08-02T04:13:06 | oeisdata/seq/A356/A356281.seq | c5a095bce657249d596de8d1d4b7a07a |
A356282 | a(n) = Sum_{k=0..n} binomial(3*n, n-k) * p(k), where p(k) is the partition function A000041. | [
"1",
"4",
"23",
"141",
"888",
"5675",
"36602",
"237563",
"1548995",
"10135554",
"66504699",
"437359454",
"2881641263",
"19016505326",
"125664684700",
"831400186740",
"5506287269802",
"36501297800013",
"242167539749593",
"1607851773270316",
"10682384379036741",
"71016046921543562",
"472376627798814453"
]
| [
"nonn"
]
| 9 | 0 | 2 | [
"A000041",
"A188675",
"A356280",
"A356282",
"A356283"
]
| null | Vaclav Kotesovec, Aug 01 2022 | 2022-08-02T05:51:06 | oeisdata/seq/A356/A356282.seq | a50708c91b1f6e2e1e34dbbcb4d82b1d |
A356283 | a(n) = Sum_{k=0..n} binomial(3*n, n-k) * q(k), where q(k) is the number of partitions into distinct parts (A000009). | [
"1",
"4",
"22",
"131",
"807",
"5066",
"32188",
"206242",
"1329733",
"8614685",
"56024538",
"365491218",
"2390613557",
"15671221522",
"102925324569",
"677110860689",
"4460956827127",
"29427611146335",
"194348311824025",
"1284856925961827",
"8502252246841668",
"56309476194587377",
"373220349572126265"
]
| [
"nonn"
]
| 5 | 0 | 2 | [
"A000009",
"A188675",
"A356281",
"A356282",
"A356283"
]
| null | Vaclav Kotesovec, Aug 01 2022 | 2022-08-02T05:51:12 | oeisdata/seq/A356/A356283.seq | 73a5a4dec28a61ec331e38471147e9eb |
A356284 | a(n) = Sum_{k=0..n} binomial(3*n, k) * p(k), where p(k) is the partition function A000041. | [
"1",
"4",
"37",
"334",
"3280",
"29437",
"282253",
"2517904",
"23209785",
"206685325",
"1858085653",
"16266231810",
"144339750406",
"1250038867329",
"10882952174845",
"93546973843450",
"804847296088574",
"6843680884286307",
"58300294406199829",
"491683063753997014",
"4148296662116385627",
"34746182976196757434"
]
| [
"nonn"
]
| 8 | 0 | 2 | [
"A000041",
"A188675",
"A356267",
"A356284",
"A356285"
]
| null | Vaclav Kotesovec, Aug 01 2022 | 2022-08-02T05:51:19 | oeisdata/seq/A356/A356284.seq | 617f0a9fd619d3ce445468373c2eaa82 |
A356285 | a(n) = Sum_{k=0..n} binomial(3*n, k) * q(k), where q(k) is the number of partitions into distinct parts (A000009). | [
"1",
"4",
"22",
"214",
"1509",
"12770",
"107884",
"874365",
"6834843",
"56722759",
"463069914",
"3666488610",
"29512199193",
"233492075573",
"1858649112464",
"14890457067926",
"117154630898329",
"917101099859767",
"7257072314543086",
"56653800922475280",
"442687465112658972",
"3467083846726752495"
]
| [
"nonn"
]
| 5 | 0 | 2 | [
"A000009",
"A188675",
"A356268",
"A356284",
"A356285"
]
| null | Vaclav Kotesovec, Aug 01 2022 | 2022-08-02T05:51:25 | oeisdata/seq/A356/A356285.seq | b7b08a1f73dd8355e71b65ba9f64929d |
A356286 | a(n) = Sum_{k=0..n} binomial(3*k, k) * p(k), where p(k) is the partition function A000041. | [
"1",
"4",
"34",
"286",
"2761",
"23782",
"227986",
"1972186",
"18152548",
"158757298",
"1420647928",
"12258704248",
"108637887148",
"929002856992",
"8065133782792",
"68761800685576",
"589631899738033",
"4976639418495358",
"42293283621258283",
"354415428588891283",
"2982701933728936648",
"24857294772400460368"
]
| [
"nonn"
]
| 8 | 0 | 2 | [
"A000041",
"A188675",
"A356269",
"A356286",
"A356287"
]
| null | Vaclav Kotesovec, Aug 01 2022 | 2022-08-02T05:51:32 | oeisdata/seq/A356/A356286.seq | 4c1cfe583a63549a57ae5182bba3b8c1 |
A356287 | a(n) = Sum_{k=0..n} binomial(3*k, k) * q(k), where q(k) is the number of partitions into distinct parts (A000009). | [
"1",
"4",
"19",
"187",
"1177",
"10186",
"84442",
"665842",
"5078668",
"42573268",
"343023418",
"2665464058",
"21440629558",
"167644287550",
"1330569327310",
"10641989818078",
"82797155054782",
"644097780350332",
"5102709814966162",
"39499844158337962",
"307777892529889642",
"2406854983109480302"
]
| [
"nonn"
]
| 5 | 0 | 2 | [
"A000009",
"A188675",
"A356270",
"A356286",
"A356287"
]
| null | Vaclav Kotesovec, Aug 01 2022 | 2022-08-02T05:51:37 | oeisdata/seq/A356/A356287.seq | 72ec768b71c6e67d6e33a8b523f935af |
A356288 | Sum of numbers in n-th upward diagonal of triangle the sum of {1; 2,3; 4,5,6; 7,8,9,10; ...} and {1; 2,3; 3,4,5; 4,5,6,7; ...}. | [
"2",
"4",
"13",
"20",
"40",
"55",
"90",
"116",
"170",
"210",
"287",
"344",
"448",
"525",
"660",
"760",
"930",
"1056",
"1265",
"1420",
"1672",
"1859",
"2158",
"2380",
"2730",
"2990",
"3395",
"3696",
"4160",
"4505",
"5032",
"5424",
"6018",
"6460",
"7125",
"7620",
"8360",
"8911",
"9730",
"10340",
"11242",
"11914",
"12903",
"13640",
"14720",
"15525",
"16700"
]
| [
"nonn",
"easy"
]
| 31 | 1 | 1 | [
"A079824",
"A093005",
"A356288"
]
| null | Torlach Rush, Aug 02 2022 | 2022-10-05T04:55:02 | oeisdata/seq/A356/A356288.seq | 8f6092fce30e0a6bcf52a847e4243b33 |
A356289 | a(n) = Sum_{k=0..n} binomial(2*n, n-k) * v(k), where v(k) is the number of overpartitions of n (A015128). | [
"1",
"4",
"18",
"82",
"372",
"1676",
"7500",
"33358",
"147570",
"649722",
"2848524",
"12441434",
"54155774",
"235008672",
"1016971480",
"4389589484",
"18902538548",
"81222609020",
"348308661820",
"1490884718484",
"6370468593732",
"27176620756392",
"115760526170340",
"492386739902574",
"2091554077819948",
"8873225318953248"
]
| [
"nonn"
]
| 5 | 0 | 2 | [
"A015128",
"A266497",
"A356280",
"A356281",
"A356282",
"A356283",
"A356289",
"A356290"
]
| null | Vaclav Kotesovec, Aug 02 2022 | 2022-08-02T06:40:22 | oeisdata/seq/A356/A356289.seq | feb9973532d361b3c95e4bd923b85784 |
A356290 | a(n) = Sum_{k=0..n} binomial(3*n, n-k) * v(k), where v(k) is the number of overpartitions of n (A015128). | [
"1",
"5",
"31",
"200",
"1309",
"8627",
"57082",
"378648",
"2516111",
"16740913",
"111494801",
"743137984",
"4956359312",
"33074272702",
"220810039566",
"1474764797488",
"9853307017341",
"65853733243281",
"440255398634199",
"2944041287677060",
"19691951641479427",
"131744163990056479",
"881586559906575688"
]
| [
"nonn"
]
| 4 | 0 | 2 | [
"A015128",
"A266497",
"A356280",
"A356281",
"A356282",
"A356283",
"A356289",
"A356290"
]
| null | Vaclav Kotesovec, Aug 02 2022 | 2022-08-02T06:40:19 | oeisdata/seq/A356/A356290.seq | 24f97adebe23fd8306b09afc5a5eca58 |
A356291 | Number of reducible permutations. | [
"0",
"0",
"1",
"3",
"11",
"49",
"259",
"1593",
"11227",
"89537",
"799475",
"7917897",
"86257643",
"1025959345",
"13234866787",
"184078090137",
"2746061570587",
"43736283267137",
"740674930879379",
"13289235961616937",
"251805086618856395",
"5024288943352588369",
"105295629327037117123"
]
| [
"nonn"
]
| 15 | 0 | 4 | [
"A000142",
"A003319",
"A260503",
"A356291"
]
| null | Peter Luschny, Aug 02 2022 | 2022-08-04T02:09:00 | oeisdata/seq/A356/A356291.seq | 152a920686c410fa64e57c6bc202224e |
A356292 | Number of labeled trees on [n] that are centered. | [
"1",
"1",
"0",
"3",
"4",
"65",
"726",
"8617",
"127688",
"2374353",
"50692330",
"1198835561",
"31297606572",
"901114484569",
"28449258421598",
"976863784939785",
"36199494609008656",
"1438734246518372897",
"61037354387458904274",
"2753490065023053584713",
"131645635680595606832180"
]
| [
"nonn"
]
| 10 | 0 | 4 | [
"A000272",
"A000676",
"A034854",
"A355671",
"A356292"
]
| null | Geoffrey Critzer, Aug 02 2022 | 2022-08-04T15:55:02 | oeisdata/seq/A356/A356292.seq | 676e0d485f986171bc659969a11be946 |
A356293 | Primes p such that if q is the next prime, (p+q)/6 is a triangular number. | [
"7",
"17",
"29",
"43",
"107",
"163",
"197",
"313",
"457",
"569",
"757",
"827",
"1303",
"1487",
"1783",
"1997",
"2339",
"2707",
"2969",
"3527",
"3673",
"3967",
"4289",
"4787",
"5119",
"5857",
"7243",
"9007",
"9719",
"10457",
"10709",
"10957",
"12281",
"13679",
"16067",
"17657",
"20357",
"21773",
"23623",
"27127",
"27539",
"31319",
"33073",
"33521",
"37201",
"38153",
"45673",
"48869",
"50503"
]
| [
"nonn"
]
| 12 | 1 | 1 | [
"A000217",
"A356293"
]
| null | J. M. Bergot and Robert Israel, Aug 02 2022 | 2022-08-03T11:45:37 | oeisdata/seq/A356/A356293.seq | f2409f7ecfcf395389cbdfac6f26a5ff |
A356294 | a(n) = A054633(n) if A030190(n) = 1, else a(n) = a(n-A054633(n)+1). | [
"1",
"2",
"1",
"3",
"4",
"5",
"2",
"1",
"6",
"3",
"7",
"8",
"9",
"4",
"10",
"11",
"12",
"13",
"5",
"2",
"1",
"14",
"6",
"3",
"15",
"16",
"7",
"17",
"8",
"18",
"9",
"19",
"20",
"21",
"22",
"4",
"10",
"23",
"24",
"11",
"25",
"26",
"27",
"28",
"12",
"29",
"30",
"31",
"32",
"33",
"13",
"5",
"2",
"1",
"34",
"14",
"6",
"3",
"35",
"36",
"15",
"16",
"37",
"7",
"38",
"17",
"8",
"39",
"40",
"41",
"18",
"42",
"9"
]
| [
"nonn",
"easy",
"base",
"look"
]
| 17 | 1 | 2 | [
"A030190",
"A054633",
"A356294"
]
| null | Michael De Vlieger and David James Sycamore, Aug 03 2022 | 2025-06-29T18:28:55 | oeisdata/seq/A356/A356294.seq | b7ca03b6d56332b5053844c7b4efa1c2 |
A356295 | Numbers that are not the sum of a nonnegative cube and a prime. | [
"1",
"9",
"16",
"22",
"26",
"28",
"33",
"35",
"36",
"52",
"57",
"63",
"65",
"76",
"78",
"82",
"85",
"92",
"96",
"99",
"112",
"118",
"119",
"120",
"122",
"126",
"129",
"133",
"141",
"146",
"155",
"160",
"169",
"170",
"183",
"185",
"188",
"202",
"209",
"210",
"216",
"217",
"225",
"236",
"244",
"246",
"248",
"267",
"273",
"280",
"286",
"300",
"302",
"309",
"326",
"328",
"330",
"342"
]
| [
"nonn"
]
| 6 | 1 | 2 | [
"A014090",
"A045911",
"A257772",
"A302354",
"A356295"
]
| null | Jianing Song, Aug 03 2022 | 2022-08-03T11:04:32 | oeisdata/seq/A356/A356295.seq | 9411386b4e3ef11b13bd179a63819f79 |
A356296 | a(n) = Fibonacci(n)^2 mod n. | [
"0",
"1",
"1",
"1",
"0",
"4",
"1",
"1",
"4",
"5",
"1",
"0",
"1",
"1",
"10",
"9",
"1",
"10",
"1",
"5",
"4",
"1",
"1",
"0",
"0",
"1",
"22",
"9",
"1",
"10",
"1",
"25",
"4",
"1",
"25",
"0",
"1",
"1",
"4",
"25",
"1",
"22",
"1",
"9",
"40",
"1",
"1",
"0",
"22",
"25",
"4",
"9",
"1",
"10",
"25",
"49",
"4",
"1",
"1",
"0",
"1",
"1",
"22",
"25",
"25",
"64",
"1",
"9",
"4",
"15",
"1",
"0",
"1",
"1",
"25",
"9",
"4",
"64",
"1",
"25",
"49",
"1",
"1",
"72",
"25",
"1"
]
| [
"nonn",
"easy"
]
| 25 | 1 | 6 | [
"A000045",
"A002708",
"A023172",
"A337231",
"A337232",
"A356296"
]
| null | R. J. Mathar, Aug 03 2022 | 2024-03-19T19:16:47 | oeisdata/seq/A356/A356296.seq | 93a67e814de9c2653946675dfca30753 |
A356297 | a(n) = n! * Sum_{k=1..n} sigma_0(k)/k. | [
"1",
"4",
"16",
"82",
"458",
"3228",
"24036",
"212448",
"2032992",
"21781440",
"246853440",
"3201742080",
"42580650240",
"621037186560",
"9664270963200",
"161166707251200",
"2781679603046400",
"52204357423411200",
"1004687538456268800",
"20823621371578368000",
"447027656835852288000"
]
| [
"nonn"
]
| 18 | 1 | 2 | [
"A000005",
"A006218",
"A356010",
"A356297",
"A356298",
"A356323"
]
| null | Seiichi Manyama, Aug 03 2022 | 2022-08-07T04:50:19 | oeisdata/seq/A356/A356297.seq | 2e7c844ed2f3f1b11fc0b5ecda25a771 |
A356298 | a(n) = n! * Sum_{k=1..n} sigma_2(k)/k. | [
"1",
"7",
"41",
"290",
"2074",
"18444",
"165108",
"1749264",
"19412496",
"241299360",
"3097006560",
"45546606720",
"673536159360",
"10986261431040",
"187460277177600",
"3445281394329600",
"64637392771123200",
"1325310849663897600",
"27498565425087590400",
"616389533324974080000"
]
| [
"nonn"
]
| 17 | 1 | 2 | [
"A001157",
"A064602",
"A356010",
"A356297",
"A356298",
"A356323"
]
| null | Seiichi Manyama, Aug 03 2022 | 2022-08-07T04:45:18 | oeisdata/seq/A356/A356298.seq | 867294313868685be7723b4c03d3fc6b |
A356299 | a(n) = gcd(A276086(n), A342001(n)), where A276086 is the primorial base exp-function, and A342001 is the arithmetic derivative without its inherited divisor. | [
"2",
"1",
"1",
"1",
"1",
"5",
"1",
"3",
"2",
"1",
"1",
"1",
"1",
"3",
"2",
"1",
"1",
"1",
"1",
"3",
"10",
"1",
"1",
"1",
"2",
"15",
"3",
"1",
"1",
"1",
"1",
"1",
"14",
"1",
"6",
"5",
"1",
"21",
"2",
"1",
"1",
"1",
"1",
"3",
"1",
"25",
"1",
"7",
"2",
"3",
"10",
"7",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"3",
"1",
"3",
"18",
"1",
"1",
"3",
"2",
"1",
"1",
"1",
"1",
"3",
"1",
"5",
"18",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"15",
"2",
"35",
"1",
"1",
"2",
"3",
"2",
"49",
"6",
"1",
"1",
"1",
"5",
"7",
"1",
"7",
"1",
"1",
"1"
]
| [
"nonn"
]
| 11 | 1 | 1 | [
"A003415",
"A003557",
"A046337",
"A276086",
"A327858",
"A342001",
"A356299"
]
| null | Antti Karttunen, Nov 03 2022 | 2022-11-04T11:26:08 | oeisdata/seq/A356/A356299.seq | 22420f529f1449c685f161f89332a823 |
A356300 | Square array read by antidiagonals. A(n,k) is the nearest common ancestor of n and k in the binary tree depicted in A253563. | [
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"3",
"2",
"1",
"1",
"2",
"2",
"2",
"2",
"1",
"1",
"2",
"3",
"4",
"3",
"2",
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"1",
"2",
"3",
"4",
"5",
"4",
"3",
"2",
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"1",
"2",
"3",
"4",
"5",
"6",
"5",
"4",
"3",
"2",
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"1",
"2",
"3",
"4",
"3",
"4",
"7",
"4",
"3",
"4",
"3",
"2",
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"1"
]
| [
"nonn",
"tabl"
]
| 7 | 1 | 5 | [
"A253553",
"A253563",
"A253565",
"A348041",
"A356300",
"A356301"
]
| null | Antti Karttunen, Aug 03 2022 | 2022-08-03T15:27:49 | oeisdata/seq/A356/A356300.seq | 804b338c8da200e303f273cd2158199c |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.