sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A356301
The nearest common ancestor of A000265(sigma(n)) and A000265(n) in the tree depicted in A253563.
[ "1", "1", "1", "1", "3", "3", "1", "1", "3", "3", "3", "3", "7", "3", "3", "1", "3", "9", "5", "3", "1", "3", "3", "3", "5", "3", "3", "7", "3", "9", "1", "1", "3", "3", "3", "3", "19", "3", "3", "3", "3", "3", "11", "3", "9", "3", "3", "3", "3", "3", "9", "7", "3", "9", "3", "3", "3", "3", "3", "15", "31", "3", "3", "1", "3", "9", "17", "3", "3", "3", "3", "9", "37", "3", "3", "5", "3", "21", "5", "3", "3", "3", "3", "3", "3", "3", "15", "3", "3", "45", "7", "3", "1", "3", "3", "3", "7", "3", "9", "5", "3", "9", "13", "3", "3" ]
[ "nonn" ]
12
1
5
[ "A000079", "A000203", "A000265", "A046528", "A161942", "A347879", "A356300", "A356301", "A356306", "A356307", "A356308" ]
null
Antti Karttunen, Aug 03 2022
2022-09-08T14:05:46
oeisdata/seq/A356/A356301.seq
fedd61606bf49e9e5b42ceb7118319c5
A356302
The least k >= 0 such that n and A276086(n+k) are relatively prime, where A276086 is the primorial base exp-function.
[ "0", "0", "0", "3", "0", "0", "0", "0", "0", "3", "20", "0", "0", "0", "0", "15", "0", "0", "0", "0", "10", "3", "0", "0", "0", "5", "0", "3", "0", "0", "0", "0", "0", "3", "0", "175", "0", "0", "0", "3", "20", "0", "168", "0", "0", "15", "0", "0", "0", "161", "10", "3", "0", "0", "0", "5", "154", "3", "0", "0", "0", "0", "0", "147", "0", "0", "0", "0", "0", "3", "140", "0", "0", "0", "0", "15", "0", "2233", "0", "0", "10", "3", "0", "0", "126", "5", "0", "3", "0", "0", "0", "119", "0", "3", "0", "0", "0", "0", "112" ]
[ "nonn", "look" ]
27
0
4
[ "A276086", "A324198", "A324583", "A324584", "A329041", "A356302", "A356303", "A356304", "A356309", "A356318", "A356319", "A358213", "A358214" ]
null
Antti Karttunen, Nov 03 2022
2022-11-06T19:42:39
oeisdata/seq/A356/A356302.seq
501888fec7a0b31e90529a578af79e48
A356303
The least k >= 0 such that n and A276086(n-k) are relatively prime, where A276086 is the primorial base exp-function.
[ "0", "0", "0", "2", "0", "0", "0", "0", "0", "2", "6", "0", "0", "0", "0", "14", "0", "0", "0", "0", "16", "2", "0", "0", "0", "20", "0", "2", "0", "0", "0", "0", "0", "2", "0", "30", "0", "0", "0", "2", "6", "0", "18", "0", "0", "14", "0", "0", "0", "20", "16", "2", "0", "0", "0", "20", "28", "2", "0", "0", "0", "0", "0", "38", "0", "0", "0", "0", "0", "2", "66", "0", "0", "0", "0", "14", "0", "48", "0", "0", "16", "2", "0", "0", "60", "20", "0", "2", "0", "0", "0", "62", "0", "2", "0", "0", "0", "0", "70", "2", "6" ]
[ "nonn", "look" ]
16
0
4
[ "A276086", "A324198", "A324583", "A356302", "A356303", "A356305" ]
null
Antti Karttunen, Nov 03 2022
2022-11-04T11:26:14
oeisdata/seq/A356/A356303.seq
20470acb13ff4aec75eda70bf15178a1
A356304
The least k >= 0 such that A003415(n) and A276086(n+k) are relatively prime, where A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function.
[ "0", "0", "0", "0", "24", "0", "4", "3", "0", "0", "0", "0", "4", "1", "0", "0", "0", "0", "4", "9", "0", "0", "0", "5", "4", "3", "0", "0", "0", "0", "0", "177", "0", "1", "24", "0", "172", "1", "0", "0", "0", "0", "4", "3", "14", "0", "162", "161", "10", "9", "158", "0", "0", "1", "0", "1", "0", "0", "0", "0", "4", "3", "2", "1", "0", "0", "4", "1", "0", "0", "0", "0", "4", "15", "14", "1", "0", "0", "0", "3", "0", "0", "0", "1", "4", "1", "122", "0", "0", "1", "4", "1", "116", "1", "0", "0", "2212", "21" ]
[ "nonn" ]
11
2
5
[ "A003415", "A276086", "A356302", "A356304", "A356305", "A356311" ]
null
Antti Karttunen, Nov 03 2022
2022-11-04T11:26:19
oeisdata/seq/A356/A356304.seq
a262b93821da1015d871c3b1827e3ec9
A356305
The least k >= 0 such that A003415(n) and A276086(n-k) are relatively prime, where A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function.
[ "0", "1", "0", "0", "0", "0", "1", "0", "2", "3", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "2", "17", "0", "0", "0", "21", "25", "2", "0", "0", "0", "0", "0", "5", "0", "5", "6", "0", "13", "1", "0", "0", "0", "0", "2", "2", "11", "0", "20", "21", "19", "17", "24", "0", "0", "1", "0", "1", "0", "0", "0", "0", "1", "2", "4", "5", "0", "0", "2", "1", "0", "0", "0", "0", "1", "10", "12", "5", "0", "0", "0", "3", "0", "0", "0", "1", "25", "1", "84", "0", "0", "1", "2", "1", "65", "5", "0", "0", "69", "8", "96" ]
[ "nonn", "look" ]
9
0
9
[ "A003415", "A276086", "A356303", "A356304", "A356305", "A356311" ]
null
Antti Karttunen, Nov 03 2022
2022-11-04T11:26:23
oeisdata/seq/A356/A356305.seq
a12befcb24c2fcf03e55d1aa830961e6
A356306
The nearest common ancestor of A000265(n) and gcd(A000265(n), sigma(n)) in the A253563-tree.
[ "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "3", "1", "1", "1", "1", "1", "3", "1", "1", "1", "7", "1", "3", "1", "1", "3", "1", "1", "1", "1", "1", "1", "5", "1", "3", "1", "1", "3", "1", "1", "1", "1", "1", "3", "1", "1", "3", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "3", "1", "1", "3", "1", "1", "3", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "3", "1", "1", "3", "1", "1", "9", "7", "1", "1", "1", "5", "3", "1", "1", "3", "1", "1", "3", "1", "1", "3" ]
[ "nonn" ]
8
1
6
[ "A000203", "A000265", "A161942", "A355931", "A356156", "A356300", "A356301", "A356306", "A356307", "A356308" ]
null
Antti Karttunen, Aug 03 2022
2022-09-08T14:05:52
oeisdata/seq/A356/A356306.seq
dddef675174734489fa96838ddc48c29
A356307
The nearest common ancestor of A161942(n) and gcd(A000265(n), sigma(n)) in the A253563-tree.
[ "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "3", "1", "1", "1", "1", "1", "3", "1", "1", "1", "7", "1", "3", "1", "1", "3", "1", "1", "1", "1", "1", "1", "3", "1", "3", "1", "1", "3", "1", "1", "1", "1", "1", "3", "1", "1", "3", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "3", "1", "1", "3", "1", "1", "3", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "7", "1", "1", "3", "1", "1", "9", "7", "1", "1", "1", "3", "3", "1", "1", "3", "1", "1", "3", "1", "1", "3" ]
[ "nonn" ]
10
1
6
[ "A000203", "A000265", "A161942", "A253553", "A355931", "A356157", "A356300", "A356306", "A356307" ]
null
Antti Karttunen, Aug 04 2022
2022-09-08T14:05:58
oeisdata/seq/A356/A356307.seq
af1eed933499d9d00d2a0224efa30fd2
A356308
a(n) = gcd(n, A356301(n)), where A356301(n) is the nearest common ancestor of A000265(sigma(n)) and A000265(n) in the A253563-tree.
[ "1", "1", "1", "1", "1", "3", "1", "1", "3", "1", "1", "3", "1", "1", "3", "1", "1", "9", "1", "1", "1", "1", "1", "3", "5", "1", "3", "7", "1", "3", "1", "1", "3", "1", "1", "3", "1", "1", "3", "1", "1", "3", "1", "1", "9", "1", "1", "3", "1", "1", "3", "1", "1", "9", "1", "1", "3", "1", "1", "15", "1", "1", "3", "1", "1", "3", "1", "1", "3", "1", "1", "9", "1", "1", "3", "1", "1", "3", "1", "1", "3", "1", "1", "3", "1", "1", "3", "1", "1", "45", "7", "1", "1", "1", "1", "3", "1", "1", "9", "5", "1", "3", "1", "1", "3" ]
[ "nonn" ]
8
1
6
[ "A000203", "A000265", "A161942", "A253553", "A356158", "A356300", "A356301", "A356306", "A356307", "A356308" ]
null
Antti Karttunen, Aug 04 2022
2022-09-08T14:06:03
oeisdata/seq/A356/A356308.seq
b7f03fd272a0f780634964422318c798
A356309
The least j >= n such that n and A276086(j) are relatively prime, where A276086 is the primorial base exp-function.
[ "0", "1", "2", "6", "4", "5", "6", "7", "8", "12", "30", "11", "12", "13", "14", "30", "16", "17", "18", "19", "30", "24", "22", "23", "24", "30", "26", "30", "28", "29", "30", "31", "32", "36", "34", "210", "36", "37", "38", "42", "60", "41", "210", "43", "44", "60", "46", "47", "48", "210", "60", "54", "52", "53", "54", "60", "210", "60", "58", "59", "60", "61", "62", "210", "64", "65", "66", "67", "68", "72", "210", "71", "72", "73", "74", "90", "76", "2310", "78" ]
[ "nonn" ]
16
0
3
[ "A276086", "A324583", "A356302", "A356309", "A356313", "A356314", "A356316", "A356318", "A356319" ]
null
Antti Karttunen, Nov 04 2022
2022-11-07T02:12:23
oeisdata/seq/A356/A356309.seq
0d5f55c3a7bf70cc3a2937a23a42d29d
A356310
a(n) = 1 if A003415(n) and A276086(n) are relatively prime, otherwise 0. Here A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function.
[ "1", "0", "1", "1", "1", "1", "0", "1", "0", "0", "1", "1", "1", "1", "0", "0", "1", "1", "1", "1", "0", "0", "1", "1", "1", "0", "0", "0", "1", "1", "1", "1", "1", "0", "1", "0", "0", "1", "0", "0", "1", "1", "1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "1", "0", "1", "0", "1", "1", "1", "1", "0", "0", "0", "0", "1", "1", "0", "0", "1", "1", "1", "1", "0", "0", "0", "0", "1", "1", "1", "0", "1", "1", "1", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "1", "1", "1", "0", "1", "1", "1", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "1" ]
[ "nonn" ]
8
0
null
[ "A003415", "A276086", "A327858", "A356162", "A356310", "A356311", "A356312" ]
null
Antti Karttunen, Nov 03 2022
2022-11-04T11:26:32
oeisdata/seq/A356/A356310.seq
ec90b2d330874df23762338bee806697
A356311
Numbers k for which A003415(k) and A276086(k) are relatively prime, where A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function.
[ "0", "2", "3", "4", "5", "7", "10", "11", "12", "13", "16", "17", "18", "19", "22", "23", "24", "28", "29", "30", "31", "32", "34", "37", "40", "41", "42", "43", "47", "53", "54", "56", "58", "59", "60", "61", "66", "67", "70", "71", "72", "73", "78", "79", "80", "82", "83", "84", "89", "90", "96", "97", "101", "103", "104", "105", "107", "108", "109", "113", "114", "118", "120", "124", "127", "130", "131", "132", "136", "137", "138", "139", "140", "142", "144" ]
[ "nonn" ]
7
1
2
[ "A003415", "A276086", "A324583", "A327858", "A356304", "A356305", "A356310", "A356311", "A356312" ]
null
Antti Karttunen, Nov 03 2022
2022-11-03T10:08:39
oeisdata/seq/A356/A356311.seq
b1131fb7790c8a126417aa00f768ab32
A356312
Numbers k such that A003415(k) and A276086(k) are not relatively prime, where A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function.
[ "1", "6", "8", "9", "14", "15", "20", "21", "25", "26", "27", "33", "35", "36", "38", "39", "44", "45", "46", "48", "49", "50", "51", "52", "55", "57", "62", "63", "64", "65", "68", "69", "74", "75", "76", "77", "81", "85", "86", "87", "88", "91", "92", "93", "94", "95", "98", "99", "100", "102", "106", "110", "111", "112", "115", "116", "117", "119", "121", "122", "123", "125", "126", "128", "129", "133", "134", "135", "141", "143", "145", "146", "147", "153" ]
[ "nonn" ]
5
1
2
[ "A003415", "A046337", "A276086", "A324584", "A327858", "A356310", "A356311", "A356312" ]
null
Antti Karttunen, Nov 03 2022
2022-11-03T10:08:44
oeisdata/seq/A356/A356312.seq
ee8d1a5fa34cd2f2a27b54202779fb08
A356313
a(n) = 1 if {the least k >= n such that n and A276086(k) are coprime} is one of the primorial numbers (A002110), otherwise 0.
[ "0", "1", "1", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "1", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1" ]
[ "nonn" ]
8
0
null
[ "A002110", "A276086", "A356302", "A356309", "A356313", "A356314" ]
null
Antti Karttunen, Nov 04 2022
2022-11-04T19:25:29
oeisdata/seq/A356/A356313.seq
277fc227b65e716676621a2c78547a11
A356314
Positions of primorial numbers (A002110) in A356309.
[ "1", "2", "3", "6", "10", "15", "20", "25", "27", "30", "35", "42", "49", "56", "63", "70", "77", "84", "91", "98", "105", "112", "119", "126", "133", "140", "147", "154", "161", "168", "175", "182", "189", "190", "195", "196", "200", "203", "205", "207", "210", "220", "231", "242", "253", "264", "275", "286", "297", "308", "319", "330", "341", "352", "363", "374", "385", "396", "407", "418", "429", "440", "451", "462", "473", "484", "495", "506" ]
[ "nonn" ]
4
1
2
[ "A002110", "A356302", "A356309", "A356313", "A356314" ]
null
Antti Karttunen, Nov 04 2022
2022-11-04T11:26:41
oeisdata/seq/A356/A356314.seq
d06c222cc920c6f3ba405be8ecead4cf
A356315
a(n) = 1 if n divides the least j >= n such that n and A276086(j) are coprime, otherwise 0. Here A276086 is the primorial base exp-function.
[ "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "1", "1", "1", "0", "1", "0", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "0", "0", "1", "1", "1", "1", "0", "1", "1", "1", "0", "0", "0", "1", "1", "1", "0", "0", "0", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "0", "0", "1", "1", "0", "0", "1", "0", "1", "1", "1", "0", "1", "0", "1", "1", "1", "1", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "1", "1", "0", "1", "0", "1", "0", "1" ]
[ "nonn" ]
9
1
null
[ "A002110", "A276086", "A356162", "A356302", "A356309", "A356313", "A356315", "A356316", "A356317" ]
null
Antti Karttunen, Nov 04 2022
2022-11-04T19:25:36
oeisdata/seq/A356/A356315.seq
ba031c7ebcbe875e01484aef00569347
A356316
Numbers k such that k divides the least j >= k for which k and A276086(j) are coprime, where A276086 is the primorial base exp-function.
[ "1", "2", "3", "4", "5", "6", "7", "8", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "22", "23", "24", "26", "28", "29", "30", "31", "32", "34", "35", "36", "37", "38", "41", "42", "43", "44", "46", "47", "48", "52", "53", "54", "58", "59", "60", "61", "62", "64", "65", "66", "67", "68", "70", "71", "72", "73", "74", "76", "77", "78", "79", "82", "83", "86", "88", "89", "90", "92", "94", "95", "96", "97", "101", "102", "103", "104", "105", "106", "107" ]
[ "nonn" ]
5
1
2
[ "A276086", "A324583", "A356309", "A356315", "A356316", "A356317", "A356318" ]
null
Antti Karttunen, Nov 04 2022
2022-11-04T11:26:49
oeisdata/seq/A356/A356316.seq
9bcee54825e66ba11643c78fca09d367
A356317
Numbers k such that k does not divide the least j >= k for which k and A276086(j) are coprime, where A276086 is the primorial base exp-function.
[ "9", "20", "21", "25", "27", "33", "39", "40", "45", "49", "50", "51", "55", "56", "57", "63", "69", "75", "80", "81", "84", "85", "87", "91", "93", "98", "99", "100", "110", "111", "112", "115", "117", "119", "123", "126", "129", "130", "133", "135", "140", "141", "145", "147", "153", "159", "160", "161", "165", "168", "170", "171", "175", "177", "182", "183", "189", "190", "195", "196", "200", "201", "203", "205", "207", "213", "219", "220", "225" ]
[ "nonn" ]
6
1
1
[ "A276086", "A324584", "A356309", "A356315", "A356316", "A356317", "A356319" ]
null
Antti Karttunen, Nov 04 2022
2022-11-04T11:26:56
oeisdata/seq/A356/A356317.seq
1039eaddc4b465570e860708f5799791
A356318
Numbers k such that the least j >= k for which k and A276086(j) are coprime is a nontrivial multiple of k, where A276086 is the primorial base exp-function.
[ "3", "10", "15", "35", "42", "70", "77", "105", "154", "231", "286", "330", "385", "429", "462", "715", "770", "858", "1001", "1155", "1430", "2002", "2145", "2431", "2730", "3003", "3094", "3315", "4199", "4290", "4641", "4862", "5005", "6006", "6630", "7293", "7735", "8398", "9282", "10010", "12155", "12597", "14586", "15015", "15470", "17017", "20995", "23205", "24310", "25194", "29393", "33915", "34034", "35530", "36465" ]
[ "nonn" ]
13
1
1
[ "A276086", "A324583", "A324584", "A356162", "A356302", "A356309", "A356315", "A356316", "A356318", "A356319" ]
null
Antti Karttunen, Nov 04 2022
2022-11-04T11:27:03
oeisdata/seq/A356/A356318.seq
93a9410a94df2f724df3b5a32398af41
A356319
Numbers k such that {the least j >= k for which k and A276086(k+j) are coprime} is larger than 0, but less than k, where A276086 is the primorial base exp-function.
[ "9", "20", "21", "25", "27", "33", "39", "40", "45", "50", "51", "55", "57", "69", "75", "80", "81", "85", "87", "93", "99", "100", "110", "111", "112", "115", "117", "119", "123", "126", "129", "130", "133", "135", "140", "141", "145", "147", "153", "159", "160", "161", "165", "168", "170", "171", "175", "177", "182", "183", "189", "190", "195", "196", "200", "201", "203", "205", "207", "213", "219", "225", "230", "235", "237", "243", "245", "249" ]
[ "nonn" ]
7
1
1
[ "A276086", "A324584", "A356302", "A356309", "A356317", "A356319" ]
null
Antti Karttunen, Nov 04 2022
2022-11-04T11:27:07
oeisdata/seq/A356/A356319.seq
1c7d7eacbd6535f22679070c6107ad17
A356320
Length of the common prefix in binary expansions of n and A332221(n) = A156552(sigma(A005940(1+n))).
[ "0", "1", "1", "1", "2", "3", "1", "1", "1", "1", "3", "2", "1", "1", "1", "1", "2", "2", "1", "4", "3", "1", "2", "3", "1", "1", "1", "1", "1", "1", "2", "1", "4", "1", "2", "6", "1", "2", "3", "2", "3", "1", "3", "2", "2", "2", "3", "2", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "3", "4", "3", "3", "1", "4", "2", "3", "1", "1", "3", "3", "3", "6", "3", "2", "1", "3", "2", "1", "1", "2", "3", "2", "2", "2", "2", "2", "4", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1" ]
[ "nonn" ]
9
0
5
[ "A000203", "A005940", "A070939", "A156552", "A324054", "A332222", "A347380", "A356320", "A356321" ]
null
Antti Karttunen, Aug 06 2022
2022-09-08T16:49:48
oeisdata/seq/A356/A356320.seq
9d81de5684171104e8fa1c107076fa59
A356321
a(n) = A347381(A005940(1+n)).
[ "0", "0", "1", "1", "1", "0", "2", "2", "3", "3", "1", "2", "3", "3", "3", "3", "3", "3", "4", "1", "2", "4", "3", "2", "4", "4", "4", "4", "4", "4", "3", "4", "2", "5", "4", "0", "5", "4", "3", "4", "3", "5", "3", "4", "4", "4", "3", "4", "5", "5", "5", "5", "5", "5", "5", "5", "4", "5", "5", "5", "5", "4", "5", "5", "6", "4", "3", "4", "4", "6", "3", "5", "4", "6", "6", "4", "4", "4", "1", "4", "5", "6", "4", "5", "6", "6", "5", "4", "5", "5", "5", "5", "5", "3", "6", "5", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6" ]
[ "nonn" ]
21
0
7
[ "A000203", "A005940", "A070939", "A156552", "A324054", "A347381", "A356320", "A356321" ]
null
Antti Karttunen, Aug 03 2022
2023-07-03T14:50:41
oeisdata/seq/A356/A356321.seq
6582ac962ec5a4503d01baf9a4276b9e
A356322
a(n) is the smallest number that starts a run of exactly n consecutive numbers in A126706, or -1 if no such number exists.
[ "12", "44", "98", "3174", "844", "22020", "217070", "1092747", "8870024", "262315467", "221167422", "47255689915", "82462576220", "1043460553364", "79180770078548" ]
[ "nonn", "more" ]
30
1
1
[ "A001221", "A001222", "A001223", "A005250", "A013929", "A024619", "A126706", "A356322" ]
null
Michael De Vlieger, Oct 28 2022
2024-08-27T18:18:33
oeisdata/seq/A356/A356322.seq
6f28f8ba7a0346df43a70adc5232c996
A356323
a(n) = n! * Sum_{k=1..n} sigma_3(k)/k.
[ "1", "11", "89", "794", "6994", "72204", "753108", "8973264", "111281616", "1524322080", "21601104480", "340803192960", "5483287025280", "96044874750720", "1748238132614400", "34093033838438400", "682396164763084800", "14706429413353574400", "323342442475011993600", "7585740483060676608000" ]
[ "nonn" ]
15
1
2
[ "A001158", "A064603", "A356010", "A356297", "A356298", "A356323" ]
null
Seiichi Manyama, Aug 03 2022
2022-08-07T04:44:41
oeisdata/seq/A356/A356323.seq
139caf79584f11cd734975b8bd0534e9
A356324
a(n) is the first split point of the permutation p if p is the n-th permutation (in lexicographic order (A030298 prepended by the empty permutation)), or zero if it has no split point.
[ "0", "0", "1", "0", "1", "1", "2", "0", "0", "0", "1", "1", "1", "1", "1", "1", "2", "2", "3", "0", "0", "0", "3", "0", "3", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "2", "2", "2", "2", "3", "3", "4", "0", "0", "0", "4", "0", "4", "0", "0", "0", "0", "0", "0", "0", "0", "0", "3", "3", "4", "0", "0" ]
[ "nonn", "tabf" ]
16
0
7
[ "A003319", "A030298", "A059438", "A356291", "A356324" ]
null
Peter Luschny, Aug 03 2022
2022-09-10T07:36:13
oeisdata/seq/A356/A356324.seq
6689eae860a660bb2f201997a6e65eda
A356325
Array A(n, k), n, k >= 0, read by antidiagonals; the terms in the negaFibonacci representation of A(n, k) are the terms in common in the negaFibonacci representations of n and k.
[ "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "2", "1", "0", "0", "0", "2", "2", "0", "0", "0", "0", "0", "3", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "4", "0", "0", "0", "0", "0", "1", "2", "1", "5", "5", "1", "2", "1", "0", "0", "0", "2", "2", "5", "5", "5", "2", "2", "0", "0", "0", "0", "0", "3", "5", "5", "5", "5", "3", "0", "0", "0", "0", "1", "0", "0", "5", "5", "6", "5", "5", "0", "0", "1", "0" ]
[ "nonn", "base", "tabl" ]
10
0
13
[ "A004198", "A039834", "A215024", "A309076", "A334348", "A356325", "A356326", "A356327" ]
null
Rémy Sigrist, Aug 03 2022
2022-08-05T10:50:55
oeisdata/seq/A356/A356325.seq
e86d08c30cbc28f7d4613db764bc4007
A356326
The terms in the negaFibonacci representation of a(n) are the terms in common in the negaFibonacci representations of n and -n.
[ "0", "0", "0", "0", "-1", "0", "0", "0", "0", "-1", "-3", "-3", "-1", "0", "0", "0", "0", "4", "0", "0", "0", "0", "-1", "-3", "-3", "-1", "-8", "-8", "-8", "-8", "-1", "-3", "-3", "-1", "0", "0", "0", "0", "4", "0", "0", "0", "0", "12", "10", "10", "12", "0", "0", "0", "0", "4", "0", "0", "0", "0", "-1", "-3", "-3", "-1", "-8", "-8", "-8", "-8", "-1", "-3", "-3", "-1", "-21", "-21", "-21", "-21", "-17" ]
[ "sign", "base" ]
15
0
11
[ "A000045", "A039834", "A062877", "A215024", "A215025", "A356325", "A356326", "A356327" ]
null
Rémy Sigrist, Aug 03 2022
2022-08-05T15:32:36
oeisdata/seq/A356/A356326.seq
8ee76394e30101bbc451ea2a9bab6293
A356327
Replace 2^k in binary expansion of n with A039834(1+k).
[ "0", "1", "-1", "0", "2", "3", "1", "2", "-3", "-2", "-4", "-3", "-1", "0", "-2", "-1", "5", "6", "4", "5", "7", "8", "6", "7", "2", "3", "1", "2", "4", "5", "3", "4", "-8", "-7", "-9", "-8", "-6", "-5", "-7", "-6", "-11", "-10", "-12", "-11", "-9", "-8", "-10", "-9", "-3", "-2", "-4", "-3", "-1", "0", "-2", "-1", "-6", "-5", "-7", "-6", "-4", "-3", "-5", "-4", "13", "14", "12", "13", "15", "16" ]
[ "sign", "base" ]
23
0
5
[ "A000201", "A001950", "A003714", "A004957", "A020989", "A022290", "A026351", "A039834", "A060144", "A072197", "A189663", "A215024", "A215025", "A309076", "A356325", "A356326", "A356327" ]
null
Rémy Sigrist, Aug 03 2022
2022-09-01T02:15:40
oeisdata/seq/A356/A356327.seq
9d92dbdffae66aa723afd16bd2cb6f07
A356328
a(n) = n! * Sum_{k=0..floor(n/3)} (n - 3*k)^k/(6^k * (n - 3*k)!).
[ "1", "1", "1", "1", "5", "21", "61", "281", "2521", "15625", "84841", "971521", "10646461", "83366141", "962405445", "15445935961", "181502928881", "2182235585041", "42297481449361", "714940186390465", "10007476059187381", "204722588272279141", "4600003555996715021", "80767827313930590681" ]
[ "nonn" ]
23
0
5
[ "A354436", "A354551", "A356029", "A356328", "A356608", "A356629", "A356633" ]
null
Seiichi Manyama, Aug 18 2022
2022-08-19T09:19:21
oeisdata/seq/A356/A356328.seq
62234b065389db6a907495d2e1c4921f
A356329
Binary Look and Say sequence (method B - initial term is 1).
[ "1", "11", "110", "11001", "11001011", "1100101101110", "11001011011100111101", "11001011011100111101011000111", "1100101101110011110101100011101110011111", "1100101101110011110101100011101110011111011110101101" ]
[ "nonn", "base" ]
49
1
2
[ "A001387", "A007651", "A356329" ]
null
Szumi Xie, Sep 18 2022
2022-10-09T05:22:16
oeisdata/seq/A356/A356329.seq
20ef4976df39c91faea0c6240bb8bd51
A356330
a(n) is the least prime p such that p^n-2 is prime.
[ "5", "2", "19", "3", "3", "3", "7", "7", "3", "53", "1171", "7", "19", "5", "7", "73", "31", "61", "19", "19", "31", "3", "19", "17", "349", "5", "499", "7", "1021", "17", "7", "491", "823", "463", "1171", "59", "3", "19", "199", "179", "3", "29", "1609", "463", "373", "379", "2539", "439", "349", "5", "1051", "241", "439", "467", "61", "89", "433", "563", "139", "499", "139", "607", "409", "1607", "433", "1423", "2719", "7933", "31" ]
[ "nonn" ]
14
1
1
[ "A014224", "A356330" ]
null
Robert Israel, Aug 03 2022
2022-08-23T18:16:26
oeisdata/seq/A356/A356330.seq
f1f1e0594eabddc5d8009eb68c15c58c
A356331
Bit-reverse the odd part of the negaFibonacci representation of n: a(n) = A356327(A057889(A215024(n))).
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "17", "10", "11", "12", "13", "14", "15", "19", "9", "18", "16", "20", "21", "51", "44", "24", "38", "26", "32", "28", "45", "46", "31", "27", "33", "34", "35", "36", "48", "25", "39", "40", "49", "53", "43", "23", "29", "30", "47", "37", "41", "50", "22", "52", "42", "54", "55", "140", "133", "58", "106", "115", "79", "62", "113", "127", "99" ]
[ "nonn", "base" ]
10
0
3
[ "A000045", "A057889", "A215025", "A343150", "A344682", "A345201", "A356327", "A356331", "A356332" ]
null
Rémy Sigrist, Aug 04 2022
2022-08-05T15:36:04
oeisdata/seq/A356/A356331.seq
20117fadb4de4af7cfc8dbe64b09ec04
A356332
Bit-reverse the odd part of the negaFibonacci representation of -n (and negate): a(n) = -A356327(A057889(A215025(n))).
[ "0", "1", "2", "3", "4", "10", "6", "7", "8", "9", "5", "11", "12", "31", "27", "23", "16", "17", "28", "19", "20", "21", "22", "15", "24", "30", "26", "14", "18", "29", "25", "13", "32", "33", "86", "82", "65", "71", "38", "78", "61", "57", "42", "51", "44", "45", "72", "83", "74", "62", "50", "43", "75", "53", "54", "55", "56", "41", "58", "77", "70", "40", "49", "63", "64", "36", "79", "85" ]
[ "nonn", "base" ]
9
0
3
[ "A000045", "A057889", "A215025", "A343150", "A344682", "A345201", "A356327", "A356331", "A356332" ]
null
Rémy Sigrist, Aug 04 2022
2022-08-05T15:35:36
oeisdata/seq/A356/A356332.seq
3c6f6c16d7265c9ec24817f7b27df8da
A356333
Lengths of Paterson's worms.
[ "9", "12", "15", "18", "21", "23", "27", "28", "29", "30", "33", "34", "35", "37", "39", "42", "43", "44", "45", "46", "48", "50", "52", "53", "54", "55", "57", "58", "61", "62", "63", "66", "67", "68", "69", "71", "73", "77", "78", "79", "81", "83", "85", "86", "90", "92", "93", "94", "96", "97", "99", "101", "102", "105", "107", "110", "112", "113", "114", "118", "119", "122", "126", "130" ]
[ "nonn", "fini" ]
11
1
1
null
null
Michel Marcus, Aug 04 2022
2022-08-05T07:43:37
oeisdata/seq/A356/A356333.seq
1346e36862c1bdd5cb75bf6800f007bb
A356334
a(n) is the number of nonnegative integer solutions (x; y) with x <= y of x^(n+1) + y^(n+1) = (x+y)^n.
[ "1", "3", "4", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3" ]
[ "nonn", "more" ]
33
0
2
null
null
Reiner Moewald, Aug 04 2022
2022-09-21T21:24:44
oeisdata/seq/A356/A356334.seq
1490c07a65a108b924e52ae9d7cd33df
A356335
Expansion of e.g.f. ( Product_{k>0} 1/(1-x^k) )^(1/(1-x)).
[ "1", "1", "6", "39", "332", "3290", "38994", "517986", "7762880", "128029464", "2311675560", "45188359920", "952047539112", "21452758881528", "515073388373712", "13114579450948920", "352881761400606720", "10000259978380933440", "297654582665846499264", "9280441162956638320704" ]
[ "nonn" ]
12
0
3
[ "A000041", "A000203", "A356010", "A356335", "A356336", "A356337" ]
null
Seiichi Manyama, Aug 04 2022
2022-08-04T10:19:46
oeisdata/seq/A356/A356335.seq
8e735433002d1d0d0869f82bf96ce835
A356336
Expansion of e.g.f. ( Product_{k>0} 1/(1-x^k)^(1/k) )^(1/(1-x)).
[ "1", "1", "5", "29", "219", "1949", "20587", "245237", "3289577", "48670973", "788572541", "13849348105", "262283664739", "5317530185889", "114939490137235", "2636612228192969", "63955437488072593", "1634890446576454297", "43920715897460109205", "1236660724225711901749", "36412086992371220561771" ]
[ "nonn" ]
10
0
3
[ "A000005", "A028342", "A356297", "A356335", "A356336", "A356337" ]
null
Seiichi Manyama, Aug 04 2022
2022-08-04T10:19:38
oeisdata/seq/A356/A356336.seq
c1c55d28fa6bbb33042f44106753f54f
A356337
Expansion of e.g.f. ( Product_{k>0} 1/(1-x^k)^k )^(1/(1-x)).
[ "1", "1", "8", "63", "644", "7610", "107994", "1713726", "30671024", "603160344", "12974475240", "301879678320", "7561610279112", "202437968475288", "5769455216675136", "174234738889383480", "5556311629901103360", "186482786151757707840", "6568881383985687359424", "242221409390815100812224" ]
[ "nonn" ]
18
0
3
[ "A000219", "A001157", "A356298", "A356335", "A356336", "A356337" ]
null
Seiichi Manyama, Aug 04 2022
2023-02-06T13:25:41
oeisdata/seq/A356/A356337.seq
26d65ae63e54e3b6ac07e5ae0efdefaa
A356338
a(n) = Sum_{k=1..n} binomial(2*n, n-k) * sigma(k).
[ "1", "7", "37", "179", "826", "3703", "16283", "70619", "303121", "1290682", "5460511", "22981019", "96296552", "402024497", "1673116072", "6944105579", "28752345362", "118801061059", "489959398840", "2017339105514", "8293732341134", "34051489445365", "139634028015269", "571955737066307", "2340402722605976", "9567794393004816" ]
[ "nonn" ]
8
1
2
[ "A000203", "A024916", "A185003", "A351146", "A356338" ]
null
Vaclav Kotesovec, Aug 04 2022
2022-08-05T06:07:55
oeisdata/seq/A356/A356338.seq
a04da36e93444cda74a968ea66345ef7
A356339
a(n) = Sum_{k=1..n} binomial(2*n, n-k) * sigma_2(k).
[ "1", "9", "55", "297", "1496", "7215", "33783", "154825", "698077", "3107424", "13690161", "59802471", "259377080", "1118176887", "4795381640", "20472223529", "87051685546", "368857919085", "1558036408998", "6562564601592", "27571934249754", "115574440020477", "483444570596465", "2018365519396135", "8411811012694246" ]
[ "nonn" ]
7
1
2
[ "A001157", "A064602", "A351146", "A356038", "A356339" ]
null
Vaclav Kotesovec, Aug 04 2022
2022-08-05T06:09:08
oeisdata/seq/A356/A356339.seq
d3eb0724e85c78d198a410991ad637ed
A356340
a(n) = Sum_{k=1..n} binomial(2*n, n-k) * phi(k), where phi is the Euler totient function.
[ "1", "5", "23", "102", "444", "1909", "8133", "34404", "144714", "605920", "2527348", "10507978", "43569096", "180219699", "743907057", "3065019864", "12607648238", "51783970314", "212412697368", "870249992168", "3561502879100", "14560944187796", "59476980459794", "242741090637012", "989921853052930", "4034101567907172" ]
[ "nonn" ]
8
1
2
[ "A000010", "A002088", "A306988", "A351146", "A356340" ]
null
Vaclav Kotesovec, Aug 04 2022
2022-08-05T06:10:12
oeisdata/seq/A356/A356340.seq
5955235d448aaf30fcfa223c7b7c06eb
A356341
a(n) = Sum_{k=1..n} binomial(2*n, k) * sigma(k).
[ "2", "22", "131", "806", "3607", "20395", "84254", "422230", "1842359", "8616007", "33843614", "173724659", "676938316", "2983855666", "12806013721", "57981927158", "223432922515", "1040923729567", "4004885305320", "18277809794671", "75668287229078", "317458937099194", "1215454524390767", "5785782106653667" ]
[ "nonn" ]
7
1
1
[ "A000203", "A024916", "A185003", "A351146", "A356341" ]
null
Vaclav Kotesovec, Aug 04 2022
2022-08-05T06:11:05
oeisdata/seq/A356/A356341.seq
40fbb10b5803b00c4cd4cbbdc53bfbdf
A356342
a(n) = Sum_{k=1..n} binomial(2*n, k) * sigma_2(k).
[ "2", "34", "281", "2178", "12397", "79729", "398932", "2224354", "10959221", "56341309", "255685080", "1334248401", "5892916876", "28082515768", "127714609741", "604178948098", "2590365128017", "12284868071365", "52160408294826", "241445420212893", "1049251819301974", "4674022621994716", "19563451165603647" ]
[ "nonn" ]
7
1
1
[ "A001157", "A064602", "A351146", "A356038", "A356342" ]
null
Vaclav Kotesovec, Aug 04 2022
2022-08-05T06:12:05
oeisdata/seq/A356/A356342.seq
518604b5134da1efa00f2f2194a42ac3
A356343
a(n) = Sum_{k=1..n} binomial(2*n, k) * phi(k), where phi is the Euler totient function.
[ "2", "10", "61", "288", "1723", "6524", "37441", "158504", "737019", "2867500", "15200293", "56951428", "291648771", "1141099348", "4686310739", "19016248192", "95307214595", "358297247772", "1748879020425", "6725041736572", "27649247188159", "108460437728204", "522912325647543", "1966622896068784", "8831400010510925" ]
[ "nonn" ]
7
1
1
[ "A000010", "A002088", "A306988", "A356343" ]
null
Vaclav Kotesovec, Aug 04 2022
2022-08-05T06:13:09
oeisdata/seq/A356/A356343.seq
61faabc15ee8845c4bc972aaecd1df58
A356344
a(n) = Sum_{k=1..n} binomial(2*k, k) * sigma(k).
[ "2", "20", "100", "590", "2102", "13190", "40646", "233696", "865756", "4191364", "12656548", "88372916", "233981316", "1196779716", "4919600196", "23553092286", "65558004246", "419488280946", "1126393556946", "6915947767386", "24140199749466", "99887762443386", "297490099905786", "2232346320891786", "6151075120462098" ]
[ "nonn" ]
7
1
1
[ "A000203", "A024916", "A185003", "A351146", "A356344" ]
null
Vaclav Kotesovec, Aug 04 2022
2022-08-05T06:14:13
oeisdata/seq/A356/A356344.seq
7a35d71f50b5148793bd1788a615259e
A356345
a(n) = Sum_{k=1..n} binomial(2*k, k) * sigma_2(k).
[ "2", "32", "232", "1702", "8254", "54454", "226054", "1320004", "5744424", "29762704", "115825408", "683698168", "2451800168", "12480950168", "52811505368", "257779918358", "934525722158", "5063712283658", "17858697779258", "93122902514978", "362251839734978", "1645752207604178", "6009470493232178", "33419933623867178" ]
[ "nonn" ]
7
1
1
[ "A001157", "A064602", "A351146", "A356038", "A356345" ]
null
Vaclav Kotesovec, Aug 04 2022
2022-08-05T06:15:34
oeisdata/seq/A356/A356345.seq
4fe17721a7e248ef7b632220c09769c6
A356346
a(n) = Sum_{k=1..n} binomial(2*k, k) * phi(k), where phi is the Euler totient function.
[ "2", "8", "48", "188", "1196", "3044", "23636", "75116", "366836", "1105860", "8160180", "18976804", "143784004", "384483604", "1625423764", "6434066884", "43771766404", "98222578204", "734437326604", "1837209557164", "8296304050444", "29337293687644", "210472769694844", "468453599159644", "2996665727914684" ]
[ "nonn" ]
7
1
1
[ "A000010", "A002088", "A306988", "A356346" ]
null
Vaclav Kotesovec, Aug 04 2022
2022-08-05T06:16:55
oeisdata/seq/A356/A356346.seq
383051df0d52f2cc62db3a863fb4670e
A356347
Indices of the primes in A181424.
[ "4", "17", "38", "41", "48", "56", "57", "75", "104", "109", "112", "120", "131", "162", "166", "186", "189", "196", "201", "220", "241", "273", "274", "293", "341", "360", "389", "421", "428", "466", "467", "510", "522", "555", "601", "607", "623", "631", "635", "669", "684", "685", "704", "711", "712", "735", "763", "793", "815", "823", "824", "831", "832" ]
[ "nonn", "easy" ]
7
1
1
[ "A064113", "A181424", "A356347", "A358528", "A358529", "A358530", "A358531" ]
null
Clark Kimberling, Nov 21 2022
2022-11-22T22:20:13
oeisdata/seq/A356/A356347.seq
a48a5015b62a468932a40455a069321d
A356348
a(0) = 0; for n > 0, a(n) is the number of preceding terms having the same digit sum as a(n-1).
[ "0", "1", "1", "2", "1", "3", "1", "4", "1", "5", "1", "6", "1", "7", "1", "8", "1", "9", "1", "10", "11", "2", "3", "2", "4", "2", "5", "2", "6", "2", "7", "2", "8", "2", "9", "2", "10", "12", "3", "4", "3", "5", "3", "6", "3", "7", "3", "8", "3", "9", "3", "10", "13", "4", "5", "4", "6", "4", "7", "4", "8", "4", "9", "4", "10", "14", "5", "6", "5", "7", "5", "8", "5", "9", "5", "10", "15", "6", "7", "6", "8", "6", "9", "6", "10", "16", "7", "8", "7", "9", "7", "10", "17", "8", "9" ]
[ "nonn", "base" ]
15
0
4
[ "A007953", "A137671", "A342585", "A356348" ]
null
Scott R. Shannon, Oct 15 2022
2022-10-21T17:20:44
oeisdata/seq/A356/A356348.seq
b661a878378a646179be5e48edbae12e
A356349
Primitive Niven numbers: terms of A005349 that are not ten times another term of A005349.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "12", "18", "21", "24", "27", "36", "42", "45", "48", "54", "63", "72", "81", "84", "102", "108", "110", "111", "112", "114", "117", "126", "132", "133", "135", "140", "144", "150", "152", "153", "156", "162", "171", "190", "192", "195", "198", "201", "204", "207", "209", "216", "220", "222", "224", "225", "228", "230", "234" ]
[ "nonn", "base", "easy" ]
12
1
2
[ "A002275", "A005349", "A113315", "A133384", "A199682", "A356349" ]
null
Bernard Schott and Rémy Sigrist, Oct 15 2022
2022-10-17T07:12:33
oeisdata/seq/A356/A356349.seq
78ce0ad4fa3b40946e6fbed23a7a2edb
A356350
Primitive terms of A357769: terms of A357769 that are not ten times another term of A357769.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "12", "18", "24", "36", "48", "102", "108", "110", "112", "114", "126", "132", "140", "150", "156", "190", "204", "210", "216", "220", "224", "228", "230", "252", "264", "270", "280", "306", "312", "330", "336", "396", "408", "420", "440", "448", "460", "510", "540", "550", "624", "630", "660", "690", "756", "770", "840", "880" ]
[ "nonn", "base" ]
7
1
2
[ "A133384", "A356349", "A356350", "A357769" ]
null
Bernard Schott and Rémy Sigrist, Oct 15 2022
2022-10-17T07:12:23
oeisdata/seq/A356/A356350.seq
55e2ee086a968d8bee17659ac8e7f702
A356351
Partial sums of the ziggurat sequence A347186.
[ "1", "5", "11", "27", "39", "76", "96", "160", "196", "286", "328", "489", "545", "701", "808", "1064", "1154", "1488", "1598", "2006", "2208", "2550", "2706", "3403", "3610", "4072", "4384", "5169", "5409", "6385", "6657", "7681", "8127", "8883", "9324", "10910", "11290", "12220", "12824", "14560", "15022", "16863", "17369", "19175", "20276", "21608", "22208", "25129", "25849", "27669" ]
[ "nonn" ]
39
1
2
[ "A000203", "A024916", "A196020", "A235791", "A236104", "A237270", "A237591", "A237593", "A239660", "A239931", "A239932", "A239933", "A239934", "A296508", "A299778", "A347186", "A347263", "A347367", "A347529", "A351819", "A356351" ]
null
Omar E. Pol, Oct 15 2022
2024-07-16T21:46:52
oeisdata/seq/A356/A356351.seq
68d885b4f161f9d99c8a86d3f0d822c7
A356352
a(n) = GCD of run lengths in binary expansion of n.
[ "0", "1", "1", "2", "1", "1", "1", "3", "1", "1", "1", "1", "2", "1", "1", "4", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "5", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "3", "1", "1", "1", "2", "1", "1", "6", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "base" ]
14
0
4
[ "A001196", "A005811", "A101211", "A284559", "A356352" ]
null
Rémy Sigrist, Oct 15 2022
2022-10-17T08:37:45
oeisdata/seq/A356/A356352.seq
739c524c517e4240280f6a0c8bfd0e6d
A356353
Numbers k such that A356352(k) <> 1.
[ "0", "3", "7", "12", "15", "31", "48", "51", "56", "60", "63", "127", "192", "195", "204", "207", "240", "243", "252", "255", "448", "455", "504", "511", "768", "771", "780", "783", "816", "819", "828", "831", "960", "963", "972", "975", "992", "1008", "1011", "1020", "1023", "2047", "3072", "3075", "3084", "3087", "3120", "3123", "3132", "3135", "3264", "3267" ]
[ "nonn", "base" ]
13
1
2
[ "A001196", "A097254", "A178472", "A356352", "A356353" ]
null
Rémy Sigrist, Oct 15 2022
2022-10-17T07:07:43
oeisdata/seq/A356/A356353.seq
08018fac7fa55db31e552fa54bb1d12d
A356354
a(n) is the least k such that the sets of positions of 1's in the binary expansions of n and k are similar.
[ "0", "1", "1", "3", "1", "3", "3", "7", "1", "3", "3", "11", "3", "11", "7", "15", "1", "3", "3", "19", "3", "7", "11", "23", "3", "19", "11", "27", "7", "23", "15", "31", "1", "3", "3", "35", "3", "37", "19", "39", "3", "37", "7", "43", "11", "45", "23", "47", "3", "35", "19", "51", "11", "43", "27", "55", "7", "39", "23", "55", "15", "47", "31", "63", "1", "3", "3", "67", "3", "11", "35", "71", "3", "7" ]
[ "nonn", "base" ]
15
0
4
[ "A000120", "A000265", "A018900", "A030101", "A064895", "A133457", "A356354" ]
null
Rémy Sigrist, Oct 15 2022
2022-10-17T08:37:30
oeisdata/seq/A356/A356354.seq
cef8cd96f5b07ab68cf7e388c113fbed
A356355
9-gonal numbers which are products of five distinct primes.
[ "24486", "71214", "90321", "116754", "123234", "156774", "181374", "265926", "287574", "445179", "450186", "483414", "488631", "595959", "688866", "698214", "781869", "791826", "845994", "912646", "937839", "970734", "1030614", "1042041", "1100121", "1266909", "1463514", "1659801", "2014386", "2041026", "2171334", "2187906" ]
[ "nonn" ]
16
1
1
[ "A001106", "A046387", "A356355" ]
null
Massimo Kofler, Oct 15 2022
2022-11-26T12:41:21
oeisdata/seq/A356/A356355.seq
56761c6e2fb5863667e144cd0a414763
A356356
Triangle of number of rectangles in the interior of the rectangle with vertices (k,0), (0,k), (n,n+k) and (n+k,n), read by rows.
[ "0", "1", "9", "2", "19", "51", "3", "29", "86", "166", "4", "39", "121", "250", "410", "5", "49", "156", "334", "575", "855", "6", "59", "191", "418", "740", "1141", "1589", "7", "69", "226", "502", "905", "1427", "2044", "2716", "8", "79", "261", "586", "1070", "1713", "2499", "3396", "4356", "9", "89", "296", "670", "1235", "1999", "2954", "4076", "5325", "6645" ]
[ "nonn", "easy", "tabl" ]
51
1
3
[ "A000447", "A330805", "A356356" ]
null
Evan Robinson, Oct 15 2022
2022-12-25T14:20:37
oeisdata/seq/A356/A356356.seq
5a38c36d88a106a75a7d293ce8f79bf4
A356357
Semiprimes k such that k is congruent to 7 modulo k's index in the sequence of semiprimes
[ "4", "21", "25", "205", "26707", "27679", "3066877", "3067067", "3067097", "3067117", "3067147", "3067177", "3067557", "3067567", "3067577", "3067607", "3067717", "348933193", "348933421", "348933439", "44690978633", "44690978899", "6553736049327", "6553736049407", "6553736049599", "6553736049631", "6553736049823", "6553736053327", "6553736054959" ]
[ "nonn", "hard" ]
6
1
1
[ "A001358", "A106132", "A356357" ]
null
Lucas A. Brown, Oct 15 2022
2022-10-15T16:29:23
oeisdata/seq/A356/A356357.seq
fb6de06db297ad6a03f92f27445598f2
A356358
Number of edges among all distinct circles that can be constructed from a point on the origin and n equally spaced points on each of the +x,-x,+y,-y coordinates axes using only a compass.
[ "212", "2408", "10548", "28728", "71588", "149280", "278716", "461824" ]
[ "nonn", "more" ]
36
1
1
[ "A353782", "A354605", "A356358", "A359047", "A359254", "A359571", "A359861", "A359934", "A361622", "A361623" ]
null
Scott R. Shannon, Mar 13 2023
2023-03-20T10:39:31
oeisdata/seq/A356/A356358.seq
b9508f67dfcc5c9c549c2f8a172aa11c
A356359
Square array T(m,n) read by antidiagonals: T(m,n) = number of ways a knight can reach (0, 0) from (m, n) on an infinite chessboard while always decreasing its Manhattan distance from the origin, for nonnegative m, n.
[ "1", "0", "0", "0", "0", "0", "0", "1", "1", "0", "2", "2", "0", "2", "2", "4", "2", "4", "4", "2", "4", "4", "6", "9", "6", "9", "6", "4", "12", "17", "14", "17", "17", "14", "17", "12", "34", "35", "35", "40", "36", "40", "35", "35", "34", "70", "74", "84", "86", "90", "90", "86", "84", "74", "70", "148", "170", "185", "195", "205", "206", "205", "195", "185", "170", "148" ]
[ "nonn", "tabl", "walk", "easy" ]
64
0
11
[ "A018838", "A120399", "A356359" ]
null
Johan Westin, Nov 10 2022
2025-03-23T17:42:03
oeisdata/seq/A356/A356359.seq
8bdb451ff7f886f5a85d1c8b7613acbf
A356360
Denominator of the continued fraction 1/(2-3/(3-4/(4-5/(...(n-1)-n/(n+1))))).
[ "5", "7", "3", "11", "13", "1", "17", "19", "1", "23", "1", "1", "29", "31", "1", "1", "37", "1", "41", "43", "1", "47", "1", "1", "53", "1", "1", "59", "61", "1", "1", "67", "1", "71", "73", "1", "1", "79", "1", "83", "1", "1", "89", "1", "1", "1", "97", "1", "101", "103", "1", "107", "109", "1", "113", "1", "1", "1", "1", "1", "1", "127", "1", "131", "1", "1", "137", "139", "1", "1", "1", "1", "149", "151", "1", "1", "157", "1", "1", "163", "1", "167" ]
[ "nonn" ]
31
3
1
[ "A051403", "A051417", "A097302", "A104275", "A128059", "A145737", "A356247", "A356360" ]
null
Mohammed Bouras, Oct 15 2022
2024-08-06T22:00:18
oeisdata/seq/A356/A356360.seq
df82642e8680e64ff038ec95e2b4f875
A356361
a(n) = Sum_{k=0..floor(n/3)} n^k * |Stirling1(n,3*k)|.
[ "1", "0", "0", "3", "24", "175", "1386", "12397", "125664", "1431261", "18099300", "251194911", "3788383248", "61584927495", "1072118178768", "19882255276485", "391068812992512", "8128569896422821", "177984169080865992", "4094103029211918567", "98692513234032009600", "2487731188418039207007" ]
[ "nonn" ]
16
0
4
[ "A000407", "A079978", "A356361", "A356362", "A356363", "A357683", "A357831" ]
null
Seiichi Manyama, Oct 16 2022
2025-02-16T08:34:03
oeisdata/seq/A356/A356361.seq
a4b99b8cab862950a52debdd4780054d
A356362
a(n) = Sum_{k=0..floor(n/3)} n^k * Stirling1(n,3*k).
[ "1", "0", "0", "3", "-24", "175", "-1314", "10339", "-84448", "696429", "-5444700", "32897601", "53444304", "-8071238721", "235927045536", "-5630771421765", "126525509087232", "-2799633511755963", "62154971516786616", "-1396560425289392007", "31880150704745078400", "-740188445913015688953" ]
[ "sign" ]
15
0
4
[ "A356361", "A356362", "A356363", "A357834" ]
null
Seiichi Manyama, Oct 16 2022
2025-02-16T08:34:03
oeisdata/seq/A356/A356362.seq
e2ba89f5c959e9cc667057f98c9c2064
A356363
a(n) = Sum_{k=0..floor(n/3)} n^k * Stirling2(n,3*k).
[ "1", "0", "0", "3", "24", "125", "576", "3136", "24752", "242280", "2421000", "23568743", "230156136", "2370756505", "26664718080", "326641069815", "4243004068192", "57065900282730", "787656999701016", "11193821784313606", "165023822310642520", "2535785869709189307", "40583218821499596176" ]
[ "nonn" ]
12
0
4
[ "A356361", "A356362", "A356363", "A357782" ]
null
Seiichi Manyama, Oct 16 2022
2025-02-16T08:34:03
oeisdata/seq/A356/A356363.seq
d913eedadb44325d281b99c1f6ab55de
A356364
Number of primes p of the form k^2 + 1 less than 10^n such that p+2 and 2p+1 are also primes.
[ "1", "1", "1", "1", "2", "3", "7", "10", "18", "43", "86", "185", "449", "1091", "2764", "6978", "17951", "47146", "125507", "337600", "916229", "2504458", "6898908" ]
[ "nonn", "more" ]
36
1
5
[ "A006880", "A007508", "A083844", "A092816", "A347934", "A356364" ]
null
Angad Singh, Oct 16 2022
2022-12-11T12:39:40
oeisdata/seq/A356/A356364.seq
dce77a8c0fc6f041416abf0f59a17e9a
A356365
For any nonnegative integer n with binary expansion Sum_{k = 1..w} 2^e_k, let m be the least integer such that the values e_k mod m are all distinct; a(n) = Sum_{k = 1..w} 2^(e_k mod m).
[ "0", "1", "1", "3", "1", "5", "3", "7", "1", "3", "3", "11", "3", "13", "7", "15", "1", "3", "3", "19", "6", "7", "7", "23", "3", "25", "11", "27", "7", "29", "15", "31", "1", "3", "6", "7", "3", "7", "7", "39", "5", "11", "7", "43", "14", "15", "15", "47", "3", "7", "19", "51", "7", "53", "23", "55", "7", "57", "27", "59", "15", "61", "31", "63", "1", "5", "3", "7", "5", "7", "7", "71", "3", "13", "14", "15" ]
[ "nonn", "base" ]
10
0
4
[ "A000120", "A064895", "A293390", "A356365" ]
null
Rémy Sigrist, Oct 16 2022
2022-10-17T08:37:24
oeisdata/seq/A356/A356365.seq
49a645220be82b600361364cc77c715e
A356366
Number of (directed) circuits in the complete undirected graph on n labeled vertices.
[ "1", "2", "5", "18", "523", "44884", "227838935", "1086696880188", "1566338449874827101", "694432397394116143569646" ]
[ "nonn", "more", "walk", "changed" ]
44
1
2
[ "A007082", "A135388", "A232545", "A350028", "A356366", "A357855", "A357856", "A357857", "A357885", "A357886", "A357887" ]
null
Max Alekseyev, Oct 16 2022
2025-07-17T14:51:14
oeisdata/seq/A356/A356366.seq
c5b4c77bd40dec24718538b5dbedb6c7
A356367
Number of plane partitions of n having exactly one row and one column, each of equal length.
[ "1", "1", "1", "2", "2", "5", "6", "11", "16", "26", "36", "58", "81", "122", "172", "251", "350", "502", "692", "972", "1332", "1842", "2499", "3414", "4592", "6200", "8277", "11064", "14656", "19424", "25544", "33584", "43880", "57274", "74362", "96429", "124468", "160422", "205942", "263938", "337083", "429768" ]
[ "nonn" ]
11
0
4
[ "A006330", "A195012", "A356367" ]
null
Jeremy Lovejoy, Oct 16 2022
2023-04-28T07:01:14
oeisdata/seq/A356/A356367.seq
46a9e1c38183b0c7323959961dc55ea9
A356368
Sparse ruler lengths with unique non-Wichmann solutions.
[ "88", "98", "99", "110", "163", "177", "178" ]
[ "nonn", "hard", "more" ]
16
1
1
[ "A046693", "A289761", "A308766", "A309407", "A326499", "A356368" ]
null
Ed Pegg Jr, Oct 16 2022
2022-10-19T05:53:33
oeisdata/seq/A356/A356368.seq
0233d9c83c1f891eabef55e19fb5e3e2
A356369
Numbers such that each digit "d" occurs d times, for every digit from 1 to the largest digit.
[ "1", "122", "212", "221", "122333", "123233", "123323", "123332", "132233", "132323", "132332", "133223", "133232", "133322", "212333", "213233", "213323", "213332", "221333", "223133", "223313", "223331", "231233", "231323", "231332", "232133", "232313", "232331", "233123", "233132", "233213", "233231", "233312", "233321", "312233", "312323" ]
[ "nonn", "base", "fini" ]
45
1
2
[ "A105776", "A108571", "A247700", "A356369" ]
null
Marc Morgenegg, Oct 17 2022
2022-11-12T10:21:12
oeisdata/seq/A356/A356369.seq
802f0c7b0e4e4830dfe66fabbaba0fe5
A356370
(Least prime > p^p) - (greatest prime < p^p), where p = n-th prime.
[ "2", "6", "16", "6", "104", "28", "92", "20", "134", "306", "132", "90", "302", "352", "594", "546", "564", "396", "444", "550", "1356", "570", "426", "1206", "404", "1360", "1206", "1284", "3218", "432", "702", "896", "750", "1378", "1116", "1020", "1804", "1608", "2662", "772", "444", "860", "2540", "2850", "1878", "4582", "1054", "2364", "2840", "3534" ]
[ "nonn" ]
8
1
1
[ "A000040", "A051674", "A356370" ]
null
Clark Kimberling, Dec 06 2022
2022-12-15T14:00:10
oeisdata/seq/A356/A356370.seq
06dc560c6bf07b69c659b7832ae83d0a
A356371
a(n) is the smallest positive integer k, such that set of pairwise gcd of k, k+1, ..., k+n has a cardinality of n.
[ "1", "2", "3", "8", "15", "24", "35", "48", "63", "270", "440", "528", "780", "1078", "2925", "1440", "8160", "2142", "5472", "34560", "23919", "235598", "64239", "42480", "158400", "1255800", "1614600", "1247400", "16442971", "8233650", "41021370", "21561120", "127327167", "439824000", "439824000", "24504444", "1329112224", "1653775162" ]
[ "nonn" ]
36
1
2
[ "A214799", "A356371" ]
null
Gleb Ivanov, Oct 17 2022
2023-10-27T19:34:18
oeisdata/seq/A356/A356371.seq
47f84fdf83b6d70dbb264789e13a01c4
A356372
a(n) = Sum_{k=1..n} binomial(2*n, k) * A000005(k).
[ "2", "16", "76", "386", "1474", "7349", "26807", "121964", "487068", "2105087", "7486505", "37278746", "133488216", "550615531", "2263230587", "9856735046", "35168418266", "160420872009", "573578559659", "2582163925152", "10333237435638", "41122278086361", "146621866522577", "712999981650663", "2702556741014621" ]
[ "nonn" ]
9
1
1
[ "A000005", "A006218", "A160399", "A351146", "A356372" ]
null
Vaclav Kotesovec, Aug 04 2022
2022-08-05T06:18:08
oeisdata/seq/A356/A356372.seq
3529fe60d4955eac35a89f753d9e6e88
A356373
a(n) = Sum_{k=1..n} binomial(2*k, k) * A000005(k).
[ "2", "14", "54", "264", "768", "4464", "11328", "62808", "208668", "947692", "2358556", "18583492", "39384692", "199851092", "820321172", "3825723122", "8492935562", "62943747362", "133634274962", "960713447882", "3113744945642", "11530140800522", "27997002255722", "285977831720522", "665209651033778", "2648883782826194" ]
[ "nonn" ]
7
1
1
[ "A000005", "A006218", "A160399", "A351146", "A356373" ]
null
Vaclav Kotesovec, Aug 04 2022
2022-08-05T06:19:23
oeisdata/seq/A356/A356373.seq
0c179be7b0b8bed38f2d216dd082003d
A356374
a(n) is the first prime that starts a string of exactly n consecutive primes that are in A347702.
[ "131", "41", "11", "178909", "304290583", "8345111009" ]
[ "nonn", "base", "more" ]
20
1
1
[ "A007605", "A136251", "A209871", "A347702", "A356374" ]
null
J. M. Bergot and Robert Israel, Aug 04 2022
2022-08-17T23:07:57
oeisdata/seq/A356/A356374.seq
92be1cc97522e25ee46052f5afd0887a
A356375
Number of unlabeled centered trees with n nodes that have exactly one diametral path (up to direction of traversal).
[ "0", "1", "0", "1", "0", "1", "2", "5", "9", "21", "44", "107", "247", "607", "1465", "3649", "9087", "23059", "58831", "151832", "394074", "1030492", "2708343", "7157735", "19002282", "50676945", "135691504", "364725995", "983775878", "2662271414", "7226368722", "19670528467", "53685042694", "146879757368", "402786655780", "1106968400532" ]
[ "nonn" ]
8
0
7
[ "A000676", "A356375" ]
null
Geoffrey Critzer, Aug 04 2022
2022-08-04T15:55:22
oeisdata/seq/A356/A356375.seq
35742992fb8a87bd54194f8e1737bc99
A356376
Main diagonal of the LORO variant of the array A035486; this is one of eight such sequences discussed in A007063.
[ "1", "3", "5", "6", "4", "11", "12", "9", "13", "15", "23", "7", "27", "16", "24", "25", "34", "36", "19", "14", "50", "41", "10", "40", "60", "32", "43", "35", "26", "20", "38", "63", "79", "81", "57", "44", "74", "80", "65", "72", "107", "28", "53", "93", "76", "66", "114", "56", "129", "55", "119", "47", "103", "125", "85", "39", "45", "141", "106", "77", "98", "137", "109", "33" ]
[ "nonn" ]
6
1
2
[ "A007063", "A035486", "A356376" ]
null
Clark Kimberling, Oct 21 2022
2022-11-09T19:16:18
oeisdata/seq/A356/A356376.seq
8b2b093b030138d049adcd6403a74f9e
A356377
Main diagonal of the ROLI variant of the array A035486; this is one of eight such sequences discussed in A007063.
[ "1", "3", "5", "4", "8", "6", "10", "15", "2", "9", "13", "26", "11", "12", "33", "34", "35", "29", "22", "37", "44", "48", "56", "39", "43", "54", "36", "16", "23", "25", "76", "81", "47", "30", "42", "14", "72", "38", "74", "71", "68", "92", "77", "46", "69", "94", "78", "128", "45", "110", "89", "73", "135", "90", "62", "115", "101", "104", "85", "153", "113", "158", "171", "172" ]
[ "nonn" ]
6
1
2
[ "A007063", "A035486", "A356377" ]
null
Clark Kimberling, Oct 21 2022
2022-11-09T19:16:29
oeisdata/seq/A356/A356377.seq
f6096132050b4ad6d21d17d7dd38be95
A356378
Main diagonal of the RILO variant of the array A035486; this is one of eight such sequences discussed in A007063.
[ "1", "3", "5", "2", "10", "9", "15", "8", "20", "19", "7", "21", "31", "6", "25", "14", "42", "24", "16", "28", "53", "39", "33", "12", "23", "63", "18", "65", "76", "41", "62", "47", "64", "74", "59", "83", "99", "58", "98", "30", "60", "109", "50", "66", "122", "78", "91", "84", "100", "90", "129", "113", "49", "108", "56", "75", "71", "70", "13", "132", "169", "27", "149", "43" ]
[ "nonn" ]
7
1
2
[ "A007063", "A035486", "A356378" ]
null
Clark Kimberling, Oct 21 2022
2022-11-09T19:16:39
oeisdata/seq/A356/A356378.seq
41ccaf3ea244ea483f8bfe0727872798
A356379
Main diagonal of the LORI variant of the array A035486; this is one of eight such sequences discussed in A007063.
[ "1", "3", "5", "7", "4", "12", "11", "17", "10", "22", "21", "9", "23", "33", "8", "27", "16", "44", "26", "18", "30", "55", "41", "35", "14", "25", "65", "20", "67", "78", "43", "64", "49", "66", "76", "61", "85", "101", "60", "100", "32", "62", "111", "52", "68", "124", "80", "93", "86", "102", "92", "131", "115", "51", "110", "58", "77", "73", "72", "15", "134", "171", "29", "151" ]
[ "nonn" ]
7
1
2
[ "A007063", "A035486", "A356379" ]
null
Clark Kimberling, Oct 21 2022
2022-11-09T19:16:46
oeisdata/seq/A356/A356379.seq
7e2fb3120e29c2a973c02f6bc5a32563
A356380
Main diagonal of the LIRO variant of the array A035486; this is one of eight such sequences discussed in A007063.
[ "1", "3", "5", "6", "4", "11", "13", "2", "7", "14", "24", "9", "10", "31", "35", "33", "27", "23", "38", "42", "46", "54", "37", "44", "52", "34", "17", "21", "26", "77", "79", "45", "28", "40", "12", "70", "36", "72", "69", "66", "90", "75", "47", "67", "95", "76", "126", "43", "108", "87", "74", "133", "88", "60", "116", "99", "102", "86", "151", "111", "156", "169", "173", "171" ]
[ "nonn" ]
6
1
2
[ "A007063", "A035486", "A356380" ]
null
Clark Kimberling, Oct 24 2022
2022-11-09T19:16:54
oeisdata/seq/A356/A356380.seq
c67667cdf9b1f44350dc82414a11a14c
A356381
(Negated) Decimal expansion of value of absolute zero in degrees Celsius.
[ "2", "7", "3", "1", "5" ]
[ "nonn", "cons", "fini", "full" ]
36
3
1
[ "A356381", "A356509" ]
null
Christoph B. Kassir, Aug 04 2022
2024-01-08T01:35:13
oeisdata/seq/A356/A356381.seq
2f2a7c6273465c01c56a07fcac4d6fcf
A356382
Even terms in A014567.
[ "2", "4", "8", "16", "32", "36", "50", "64", "98", "100", "128", "144", "242", "256", "324", "338", "392", "400", "484", "512", "576", "578", "676", "722", "784", "800", "900", "968", "1024", "1058", "1156", "1250", "1296", "1352", "1444", "1600", "1682", "1922", "1936", "2048", "2116", "2304", "2312", "2450", "2500", "2704", "2738", "2888", "2916", "3136", "3362", "3364" ]
[ "nonn", "easy" ]
42
1
1
[ "A000079", "A000203", "A014567", "A065766", "A088827", "A356382", "A356448", "A356449", "A356451" ]
null
Jianing Song, Aug 07 2022
2022-08-08T09:15:13
oeisdata/seq/A356/A356382.seq
050b72bd2b7ba211d1f94fe6aff1d484
A356383
Primes p such that the sum of p and the next four primes congruent mod 10 to p is 5 times a prime.
[ "11", "13", "17", "29", "31", "37", "43", "47", "61", "67", "71", "73", "79", "83", "101", "103", "107", "113", "127", "131", "139", "149", "163", "179", "191", "193", "199", "211", "227", "233", "241", "269", "277", "281", "311", "317", "331", "353", "373", "389", "409", "419", "443", "457", "523", "563", "569", "577", "599", "613", "643", "647", "659", "683", "691", "701", "719", "739", "743", "769", "773", "787" ]
[ "nonn" ]
7
1
1
null
null
J. M. Bergot and Robert Israel, Aug 05 2022
2022-08-26T11:22:31
oeisdata/seq/A356/A356383.seq
483895ed377d405c7f6ef4d3d9e89e21
A356384
For any n >= 0, let x_n(1) = n, and for any b > 1, x_n(b) = x_n(b-1) minus the sum of digits of x_n(b-1) in base b; a(n) is the least b such that x_n(b) = 0.
[ "1", "2", "3", "3", "4", "4", "4", "4", "5", "5", "5", "5", "6", "6", "6", "6", "6", "6", "6", "6", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "9", "9", "9", "9", "9", "9", "9", "9", "10", "10", "10", "10", "10", "10", "10", "10", "10", "10", "11", "11", "11", "11", "11", "11", "12", "12", "12", "12", "12", "12", "12", "12", "13", "13", "13", "13", "13" ]
[ "nonn", "base" ]
13
0
2
[ "A011371", "A066568", "A071542", "A261231", "A344853", "A356384", "A356386" ]
null
Rémy Sigrist, Aug 05 2022
2022-08-07T15:36:45
oeisdata/seq/A356/A356384.seq
9f203d55a092f9dab632ece9ab3edf11
A356385
First differences of A353654 which is numbers with the same number of trailing 0 bits as other 0 bits.
[ "2", "4", "3", "5", "7", "4", "5", "5", "10", "8", "4", "5", "13", "8", "10", "6", "10", "8", "4", "5", "9", "20", "16", "8", "10", "14", "8", "10", "6", "10", "8", "4", "5", "25", "16", "20", "12", "20", "16", "8", "10", "10", "20", "16", "8", "10", "14", "8", "10", "6", "10", "8", "4", "5", "17", "40", "32", "16", "20", "28", "16", "20", "12", "20", "16", "8", "10", "26", "16", "20", "12", "20", "16" ]
[ "nonn", "base" ]
53
1
1
[ "A000045", "A353654", "A356385" ]
null
Mikhail Kurkov, Aug 05 2022
2024-11-07T11:12:06
oeisdata/seq/A356/A356385.seq
04f5fd18b5f4d94ada076e8f5e46b7f2
A356386
a(n) is the number of occurrences of n in A356384.
[ "1", "1", "2", "4", "4", "8", "0", "20", "8", "10", "6", "8", "12", "0", "48", "0", "30", "4", "30", "26", "18", "8", "4", "46", "0", "78", "0", "42", "38", "0", "36", "28", "52", "0", "60", "36", "0", "76", "24", "26", "8", "122", "0", "84", "24", "34", "42", "0", "64", "34", "86", "0", "108", "64", "40", "64", "46", "0", "98", "68", "0", "176", "20", "40", "134", "0", "42", "66", "124", "0", "114" ]
[ "nonn", "base" ]
5
1
3
[ "A356384", "A356386" ]
null
Rémy Sigrist, Aug 05 2022
2022-08-07T07:52:20
oeisdata/seq/A356/A356386.seq
aa761988633a9940640b3af7b67abe56
A356387
a(n) is the product of all parts in negaFibonacci representation of n.
[ "1", "1", "2", "2", "-5", "5", "5", "10", "10", "39", "-39", "-39", "-13", "13", "13", "26", "26", "-65", "65", "65", "130", "130", "-816", "816", "816", "272", "-272", "-272", "-544", "-544", "102", "-102", "-102", "-34", "34", "34", "68", "68", "-170", "170", "170", "340", "340", "1326", "-1326", "-1326", "-442", "442", "442", "884", "884", "-2210", "2210", "2210" ]
[ "sign", "base" ]
9
0
3
[ "A039834", "A059867", "A215022", "A273156", "A356387", "A356388" ]
null
Rémy Sigrist, Aug 05 2022
2022-08-07T15:36:51
oeisdata/seq/A356/A356387.seq
e232068bd153a4c8e26c0ee6e5afdf9e
A356388
a(n) is the product of all parts in negaFibonacci representation of -n.
[ "1", "-1", "-3", "-3", "3", "-16", "-16", "-8", "-8", "8", "24", "24", "-24", "-210", "-210", "-105", "-105", "105", "-42", "-42", "-21", "-21", "21", "63", "63", "-63", "336", "336", "168", "168", "-168", "-504", "-504", "504", "-7150", "-7150", "-3575", "-3575", "3575", "-1430", "-1430", "-715", "-715", "715", "2145", "2145", "-2145", "-550", "-550" ]
[ "sign", "base" ]
8
0
3
[ "A039834", "A059867", "A215023", "A273156", "A356387", "A356388" ]
null
Rémy Sigrist, Aug 05 2022
2022-08-07T15:36:56
oeisdata/seq/A356/A356388.seq
c59d69aeb583e2efbabeb310a23db5ef
A356389
a(n) = n! * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d + 1) ) /k.
[ "1", "2", "10", "34", "218", "1308", "10596", "74688", "793152", "7931520", "94504320", "1054218240", "14662840320", "205279764480", "3427909632000", "50923531008000", "907545606912000", "16335820924416000", "323185344975360000", "6220416698689536000", "140360358705186816000", "3087927891514109952000" ]
[ "nonn" ]
19
1
2
[ "A048272", "A356297", "A356389", "A356390", "A356391", "A356392" ]
null
Seiichi Manyama, Aug 05 2022
2022-08-18T05:59:06
oeisdata/seq/A356/A356389.seq
3d40c9f63be13e7b700fe5e3ddfda205
A356390
a(n) = n! * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d + 1) * d ) /k.
[ "1", "3", "17", "74", "514", "3564", "30708", "250704", "2780496", "29982240", "373350240", "4639870080", "67024333440", "988156834560", "16914631507200", "271941778483200", "4999620452198400", "94617104704819200", "1925772463506124800", "39245319872575488000", "902004581585737728000" ]
[ "nonn" ]
18
1
2
[ "A000593", "A356010", "A356389", "A356390", "A356391", "A356393" ]
null
Seiichi Manyama, Aug 05 2022
2022-08-18T05:58:52
oeisdata/seq/A356/A356390.seq
7afccbd07d0028d0333a188a9f4184e9
A356391
a(n) = n! * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d + 1) * d^2 ) /k.
[ "1", "5", "35", "206", "1654", "13524", "130668", "1262064", "15027696", "178581600", "2407111200", "33276182400", "514020643200", "8130342124800", "144621487584000", "2537556118272000", "49206063078144000", "982811803276800000", "20991083543732736000", "454612169591580672000", "10763306565511514112000" ]
[ "nonn" ]
24
1
2
[ "A078306", "A356298", "A356389", "A356390", "A356391", "A356394" ]
null
Seiichi Manyama, Aug 05 2022
2022-08-18T05:58:36
oeisdata/seq/A356/A356391.seq
3b2609f0a99f5c1e9e5f204f7cfe2890
A356392
Expansion of e.g.f. ( Product_{k>0} (1+x^k)^(1/k) )^(1/(1-x)).
[ "1", "1", "3", "17", "99", "769", "6877", "70769", "807321", "10366037", "145721531", "2226927405", "36741898267", "651709348653", "12352436747141", "249152882935829", "5320544034698353", "120008265471779529", "2850195632804141203", "71058458112629765449", "1855470903727083981651" ]
[ "nonn" ]
13
0
3
[ "A168243", "A356336", "A356389", "A356392", "A356393", "A356394" ]
null
Seiichi Manyama, Aug 05 2022
2022-08-16T10:16:41
oeisdata/seq/A356/A356392.seq
07053875c764dbee957c55ccd0b2862d
A356393
Expansion of e.g.f. ( Product_{k>0} (1+x^k) )^(1/(1-x)).
[ "1", "1", "4", "27", "188", "1730", "18234", "220206", "2958416", "44470296", "729675720", "13002636240", "249986061192", "5154030469848", "113360272804128", "2648908519611480", "65477559553098240", "1707034986277780800", "46798324479957887424", "1345365460101611611584" ]
[ "nonn" ]
13
0
3
[ "A000009", "A356335", "A356390", "A356392", "A356393", "A356394" ]
null
Seiichi Manyama, Aug 05 2022
2022-08-16T10:16:38
oeisdata/seq/A356/A356393.seq
829509b291801232550ee9167308b95d
A356394
Expansion of e.g.f. ( Product_{k>0} (1+x^k)^k )^(1/(1-x)).
[ "1", "1", "6", "51", "452", "5210", "68514", "1032906", "17352320", "323948376", "6594052680", "145585638000", "3461441121192", "88092914635128", "2388119359650192", "68667743686492440", "2086307088847714560", "66762608893508354880", "2243693428523140377024", "78982154604162553529664" ]
[ "nonn" ]
16
0
3
[ "A026007", "A356337", "A356391", "A356392", "A356393", "A356394" ]
null
Seiichi Manyama, Aug 05 2022
2022-08-16T10:16:33
oeisdata/seq/A356/A356394.seq
1a92ea3f32c9936a1b572b7227744fa1
A356395
Nonnegative numbers k such that the negaFibonacci representation of k (A215022(k)) is palindromic.
[ "0", "1", "3", "6", "8", "11", "14", "21", "24", "35", "40", "50", "55", "58", "66", "82", "90", "108", "118", "126", "144", "147", "176", "189", "205", "234", "247", "273", "286", "296", "325", "338", "364", "377", "380", "401", "443", "464", "511", "527", "548", "590", "611", "658", "684", "705", "752", "762", "783", "825", "846", "893", "919", "940", "987", "990" ]
[ "nonn", "base" ]
7
1
3
[ "A094202", "A215022", "A356395", "A356396" ]
null
Rémy Sigrist, Aug 05 2022
2022-08-07T07:52:33
oeisdata/seq/A356/A356395.seq
669d6b528ee908beba8f132fcabe4af0
A356396
Nonnegative numbers k such that the negaFibonacci representation of -k (A215023(k)) is palindromic.
[ "0", "2", "7", "20", "26", "44", "54", "73", "112", "143", "159", "196", "212", "264", "290", "350", "376", "426", "492", "518", "568", "675", "756", "798", "905", "986", "1028", "1125", "1167", "1280", "1361", "1403", "1500", "1542", "1683", "1751", "1908", "1976", "2107", "2290", "2358", "2515", "2583", "2714", "2887", "2955", "3086", "3275", "3343" ]
[ "nonn", "base" ]
5
1
2
[ "A094202", "A215023", "A356395", "A356396" ]
null
Rémy Sigrist, Aug 05 2022
2022-08-07T07:52:37
oeisdata/seq/A356/A356396.seq
f056a9ba1b0c62e92049c4edd296cf62
A356397
a(n) is the product of the terms in the n-th row of triangle A343835; a(0) = 1.
[ "1", "1", "2", "3", "4", "4", "6", "7", "8", "8", "16", "24", "12", "12", "14", "15", "16", "16", "32", "48", "64", "64", "96", "112", "24", "24", "48", "72", "28", "28", "30", "31", "32", "32", "64", "96", "128", "128", "192", "224", "256", "256", "512", "768", "384", "384", "448", "480", "48", "48", "96", "144", "192", "192", "288", "336", "56", "56", "112", "168", "60", "60", "62" ]
[ "nonn", "base" ]
10
0
3
[ "A023758", "A059867", "A246674", "A277561", "A343835", "A356397" ]
null
Rémy Sigrist, Aug 05 2022
2022-08-07T15:37:00
oeisdata/seq/A356/A356397.seq
65c0a43ffcdc555dc23fc936aeb92a47
A356398
a(1) = 4, and for any n > 1, a(n+1) is the a(n)-th squarefree number.
[ "4", "5", "6", "7", "10", "14", "21", "33", "53", "85", "138", "222", "366", "599", "985", "1613", "2651", "4357", "7169", "11795", "19401", "31913", "52487", "86347", "142021", "233615", "384277", "632091", "1039741", "1710305", "2813358", "4627790", "7612435", "12521926", "20597674", "33881799", "55733298", "91677666", "150803687" ]
[ "nonn" ]
8
1
1
[ "A005117", "A006508", "A007097", "A013661", "A071255", "A356398" ]
null
Rémy Sigrist, Aug 05 2022
2022-08-07T07:52:45
oeisdata/seq/A356/A356398.seq
141ea337b697b0277d01c938d7dc46d4
A356399
a(n) is the smallest term (in absolute value) in the negaFibonacci representation of n.
[ "1", "2", "1", "-1", "5", "1", "2", "1", "-1", "-3", "1", "-1", "13", "1", "2", "1", "-1", "5", "1", "2", "1", "-1", "-3", "1", "-1", "-8", "1", "2", "1", "-1", "-3", "1", "-1", "34", "1", "2", "1", "-1", "5", "1", "2", "1", "-1", "-3", "1", "-1", "13", "1", "2", "1", "-1", "5", "1", "2", "1", "-1", "-3", "1", "-1", "-8", "1", "2", "1", "-1", "-3", "1", "-1", "-21", "1", "2", "1", "-1", "5", "1", "2", "1", "-1" ]
[ "sign", "base" ]
9
1
2
[ "A001519", "A039834", "A139764", "A280511", "A356399", "A356400" ]
null
Rémy Sigrist, Aug 06 2022
2022-08-07T15:37:05
oeisdata/seq/A356/A356399.seq
e7f1c0a6e771906da8443c44a73a9725
A356400
a(n) is the smallest term (in absolute value) in the negaFibonacci representation of -n.
[ "-1", "1", "-3", "-1", "1", "2", "1", "-8", "-1", "1", "-3", "-1", "1", "2", "1", "5", "-1", "1", "2", "1", "-21", "-1", "1", "-3", "-1", "1", "2", "1", "-8", "-1", "1", "-3", "-1", "1", "2", "1", "5", "-1", "1", "2", "1", "13", "-1", "1", "-3", "-1", "1", "2", "1", "5", "-1", "1", "2", "1", "-55", "-1", "1", "-3", "-1", "1", "2", "1", "-8", "-1", "1", "-3", "-1", "1", "2", "1", "5", "-1", "1", "2", "1" ]
[ "sign", "base" ]
7
1
3
[ "A001906", "A039834", "A139764", "A356399", "A356400" ]
null
Rémy Sigrist, Aug 06 2022
2022-08-07T15:37:09
oeisdata/seq/A356/A356400.seq
902b85001d432882689c4e849fd79c0f