sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A356501
Coefficients T(n,k) of x^(4*n+1-k)*y^k in A(x,y) for n >= 0, k = 0..3*n+1, where A(x,y) satisfies: y = Sum_{n=-oo..+oo} (-x)^(n^2) * A(x,y)^((n-1)^2), as an irregular triangle read by rows.
[ "1", "1", "0", "3", "6", "4", "1", "0", "9", "54", "120", "135", "84", "28", "4", "0", "22", "294", "1360", "3250", "4662", "4284", "2568", "981", "219", "22", "0", "51", "1260", "10120", "41405", "103020", "170324", "196172", "160965", "94390", "38896", "10764", "1807", "140", "0", "108", "4590", "58380", "368145", "1404102", "3587696", "6515712", "8715465", "8763645", "6684744", "3863496", "1670942", "525980", "114240", "15368", "969" ]
[ "nonn", "tabf" ]
11
0
4
[ "A000716", "A002293", "A355872", "A356500", "A356501" ]
null
Paul D. Hanna, Aug 09 2022
2022-08-11T07:24:57
oeisdata/seq/A356/A356501.seq
bf194d15503d237f99ed13454502681b
A356502
G.f. A(x) satisfies: 2 = Sum_{n=-oo..+oo} (-x)^(n^2) * A(x)^((n-1)^2).
[ "2", "17", "544", "24344", "1261702", "71159152", "4240009152", "262584135640", "16734002688722", "1090225325371424", "72285357987696768", "4861658409827006872", "330874470176939132844", "22744684876060771599568", "1576898258893213475814464", "110136698483814852518084528", "7742091796859524187452564262" ]
[ "nonn" ]
11
0
1
[ "A354248", "A356500", "A356502", "A356503", "A356504" ]
null
Paul D. Hanna, Aug 09 2022
2024-01-18T07:31:40
oeisdata/seq/A356/A356502.seq
12fc6fb32f5b96aef2cad4910c270343
A356503
G.f. A(x) satisfies: 3 = Sum_{n=-oo..+oo} (-x)^(n^2) * A(x)^((n-1)^2).
[ "3", "82", "8856", "1319544", "227536218", "42679033812", "8455886664768", "1741107313315440", "368888770098828828", "79897573332771325074", "17610753240158104125072", "3937441977622780631428392", "890818276864624495645873656", "203562312272030478854160019188", "46914726894168080421554447339136" ]
[ "nonn" ]
10
0
1
[ "A354248", "A356500", "A356502", "A356503" ]
null
Paul D. Hanna, Aug 09 2022
2024-01-18T07:33:20
oeisdata/seq/A356/A356503.seq
4f22e12211e4e1436e0f48f7a2c5855d
A356504
a(n) = A356500(2*n, 2*n+1) for n >= 0.
[ "1", "4", "84", "2568", "94390", "3863496", "169713208", "7836945872", "375608185758", "18527792412380", "935129979113044", "48088668037229040", "2511680568602631894", "132918633258508425944", "7113508747197660153120", "384416086900675623039520", "20951080869890118976964642" ]
[ "nonn" ]
6
0
2
[ "A356500", "A356504", "A356505", "A356506" ]
null
Paul D. Hanna, Aug 09 2022
2022-08-10T07:56:44
oeisdata/seq/A356/A356504.seq
a886cefe16d016e22211cfab00ece313
A356505
a(n) = A356500(2*n+1, 2*n) for n >= 0.
[ "1", "6", "135", "4284", "160965", "6684744", "296679006", "13805453160", "665611197093", "32988925715610", "1671463040525586", "86231285273788180", "4516133521439246825", "239551205985729110664", "12846081444122599438850", "695428535332816056597520", "37960416340437631597631877" ]
[ "nonn" ]
6
0
2
[ "A356500", "A356504", "A356505", "A356506" ]
null
Paul D. Hanna, Aug 09 2022
2022-08-10T07:56:48
oeisdata/seq/A356/A356505.seq
5aa4ab39e02698098171dbb027edc05e
A356506
a(n) = A356500(3*n, n+1) for n >= 0.
[ "1", "6", "120", "3250", "103020", "3587696", "133101836", "5167564380", "207615129579", "8567305854998", "361201849117032", "15498967122249676", "674906101555736960", "29757755664623031984", "1326196334421645347368", "59655785739373960058296", "2705420198806474232850741" ]
[ "nonn" ]
5
0
2
[ "A356500", "A356504", "A356505", "A356506" ]
null
Paul D. Hanna, Aug 09 2022
2022-08-10T07:56:52
oeisdata/seq/A356/A356506.seq
9566d71478549b4b396c31001022bc79
A356507
G.f.: Sum_{n>=0} x^(n*(n+1)/2) * P(x)^n, where P(x) is the partition function (A000041).
[ "1", "1", "1", "3", "5", "10", "18", "34", "60", "109", "192", "339", "591", "1027", "1768", "3032", "5165", "8755", "14766", "24786", "41417", "68912", "114193", "188478", "309939", "507821", "829197", "1349437", "2189105", "3540253", "5708422", "9177939", "14715345", "23530180", "37527544", "59700283", "94741244", "149991677" ]
[ "nonn" ]
8
0
4
[ "A000041", "A008485", "A356507" ]
null
Paul D. Hanna, Aug 11 2022
2022-08-14T15:29:56
oeisdata/seq/A356/A356507.seq
e96de0b0a71c5ebfbd8a33be721ca965
A356508
G.f. A(x) satisfies: 2 = Product_{n>=1} (1 + x^n*A(x)) * (1 + x^(n-1)/A(x)).
[ "1", "4", "14", "84", "444", "2928", "18214", "125428", "844534", "5989816", "42186878", "305757288", "2215509018", "16326672796", "120612763510", "900561207232", "6746557569136", "50906726784700", "385432963013140", "2933390906035044", "22395805754363208", "171660252748284852", "1319474586701337644" ]
[ "nonn" ]
17
0
2
[ "A000041", "A052002", "A356499", "A356508" ]
null
Paul D. Hanna, Aug 11 2022
2023-09-30T05:24:40
oeisdata/seq/A356/A356508.seq
6173e6e8d011e9ef651d52a5c0e18703
A356509
(Negated) Decimal expansion of value of absolute zero in degrees Fahrenheit.
[ "4", "5", "9", "6", "7" ]
[ "nonn", "cons", "fini", "full" ]
14
3
1
[ "A356381", "A356509" ]
null
Jianing Song, Aug 11 2022
2022-08-11T07:22:53
oeisdata/seq/A356/A356509.seq
0e6d717874dbcbcf986571758a98bb3b
A356510
Primes p such that 2*p^2 - 7, 2*p^2 - 1, and 2*p^2 + 3 are prime.
[ "43", "127", "197", "3613", "3767", "4957", "28687", "29723", "40193", "46817", "66403", "78737", "89137", "93253", "104243", "105337", "105673", "110543", "114113", "123397", "127247", "145963", "148303", "168713", "173293", "190387", "201893", "207367", "213613", "241597", "256117", "261323", "268253", "278543", "283807", "333227", "339373", "340913", "356173", "359143" ]
[ "nonn" ]
14
1
1
[ "A106483", "A243595", "A356510" ]
null
J. M. Bergot and Robert Israel, Aug 09 2022
2022-09-05T12:43:16
oeisdata/seq/A356/A356510.seq
d85c322283934b542fc9899378f66b5b
A356511
Total number of distinct numbers that can be obtained by starting with 1 and applying the "Choix de Bruxelles", version 2 operation at most n times in duodecimal (base 12).
[ "1", "2", "3", "4", "5", "9", "19", "45", "107", "275", "778", "2581", "10170", "45237", "222859", "1191214", "6887258", "42894933", "287397837" ]
[ "nonn", "more", "base" ]
30
0
2
[ "A323289", "A356511" ]
null
J. Conrad, Aug 09 2022
2025-01-09T13:04:15
oeisdata/seq/A356/A356511.seq
5345392db35ce1c83d0b9c2295d0c1d4
A356512
a(n) is the number of tilings of the Aztec diamond of order n using dominoes and square tetrominoes.
[ "1", "3", "19", "293", "10917", "996599", "222222039", "121552500713", "162860556763865", "535527565429290907", "4318205059450240425083", "85475498697714319842817853", "4151186175463797888945512144221" ]
[ "nonn" ]
16
0
2
null
null
James Propp, Aug 09 2022
2023-04-29T08:11:05
oeisdata/seq/A356/A356512.seq
aa4ca4587c9b98fdfc3074d8d972f564
A356513
a(n) is the number of tilings of the Aztec diamond of order n using horizontal skew tetrominoes and square tetrominoes.
[ "1", "1", "2", "6", "40", "364", "7904", "226152", "15835008", "1439900880", "324189571584", "94080051207136", "68041472016287744", "63145927127133361600", "146637148542938673930240", "435697213021432661980535936" ]
[ "nonn" ]
16
0
3
null
null
James Propp, Aug 09 2022
2023-04-29T08:11:01
oeisdata/seq/A356/A356513.seq
90c6b3d056cabaeb6da9a3b9ab94c992
A356514
a(n) is the number of tilings of the Aztec diamond of order n using horizontal skew tetrominoes, horizontal straight tetrominoes, and square tetrominoes.
[ "1", "1", "2", "10", "116", "3212", "209152", "32133552", "11631456480", "9922509270288", "19946786274879008", "94492874103638971552", "1054865198752147761744448" ]
[ "nonn" ]
13
0
3
null
null
James Propp, Aug 09 2022
2023-04-29T08:10:57
oeisdata/seq/A356/A356514.seq
a6ba51055c4f2276ed6a44b6e0491442
A356515
For any n >= 0, let x_n(1) = n, and for any b > 1, x_n(b) is the sum of digits of x_n(b-1) in base b; x_n is eventually constant, with value a(n).
[ "0", "1", "1", "2", "1", "2", "2", "1", "1", "2", "2", "1", "2", "1", "1", "2", "1", "2", "2", "1", "2", "1", "1", "2", "2", "1", "1", "2", "1", "2", "2", "3", "1", "2", "2", "1", "2", "1", "1", "2", "2", "1", "1", "2", "1", "2", "2", "3", "2", "1", "1", "2", "1", "2", "2", "3", "1", "2", "2", "3", "2", "3", "3", "2", "1", "2", "2", "1", "2", "1", "1", "2", "2", "1", "1", "2", "1", "2", "2", "3", "2", "1", "1", "2", "1", "2", "2" ]
[ "nonn", "base", "easy" ]
7
0
4
[ "A000120", "A053735", "A356384", "A356515", "A356516" ]
null
Rémy Sigrist, Aug 09 2022
2022-08-12T12:37:31
oeisdata/seq/A356/A356515.seq
bac0fe326c6ef9f3e77aeff1c56d767c
A356516
a(n) is the least k such that A356515(k) = n.
[ "0", "1", "3", "31", "9007199254740991" ]
[ "nonn", "base", "bref" ]
7
0
3
[ "A000225", "A356515", "A356516", "A356517" ]
null
Rémy Sigrist, Aug 10 2022
2022-08-12T12:37:26
oeisdata/seq/A356/A356516.seq
0ca708300480c6bdd6aae91a90c6bbc3
A356517
Square array A(n, k), n >= 2, k >= 0, read by antidiagonals upwards; A(n, k) is the least integer with sum of digits k in base n.
[ "0", "0", "1", "0", "1", "3", "0", "1", "2", "7", "0", "1", "2", "5", "15", "0", "1", "2", "3", "8", "31", "0", "1", "2", "3", "7", "17", "63", "0", "1", "2", "3", "4", "11", "26", "127", "0", "1", "2", "3", "4", "9", "15", "53", "255", "0", "1", "2", "3", "4", "5", "14", "31", "80", "511", "0", "1", "2", "3", "4", "5", "11", "19", "47", "161", "1023", "0", "1", "2", "3", "4", "5", "6", "17", "24", "63", "242", "2047" ]
[ "nonn", "tabl", "base" ]
17
2
6
[ "A000225", "A051885", "A062318", "A138530", "A140576", "A165804", "A180516", "A181287", "A181288", "A181303", "A240236", "A356517" ]
null
Rémy Sigrist, Aug 10 2022
2024-01-05T12:29:30
oeisdata/seq/A356/A356517.seq
757934561012b1059b423e8d477f340d
A356518
Maximal numerators in approximations to the Aurifeuillian factors of p^p +- 1.
[ "2", "28", "1706", "25082", "816634", "157704814" ]
[ "frac", "nonn", "hard", "more" ]
35
1
1
[ "A352400", "A352401", "A352711", "A352732", "A356518", "A356519" ]
null
Patrick A. Thomas, Aug 10 2022
2022-10-15T20:34:30
oeisdata/seq/A356/A356518.seq
30a4db9bbabd8b140e47ab82382f1d9e
A356519
Denominators in approximations to the Aurifeuillian factors of p^p +- 1.
[ "3", "45", "2835", "42525", "1403325", "273648375" ]
[ "frac", "nonn", "more" ]
21
1
1
[ "A352400", "A352401", "A352711", "A352732", "A356518", "A356519" ]
null
Patrick A. Thomas, Aug 10 2022
2022-10-11T05:14:43
oeisdata/seq/A356/A356519.seq
909468dcb4868308c31547b7b14b9da9
A356520
Numbers k such that A000005(A007953(k)) = A007953(k).
[ "1", "2", "10", "11", "20", "100", "101", "110", "200", "1000", "1001", "1010", "1100", "2000", "10000", "10001", "10010", "10100", "11000", "20000", "100000", "100001", "100010", "100100", "101000", "110000", "200000", "1000000", "1000001", "1000010", "1000100", "1001000", "1010000", "1100000", "2000000", "10000000", "10000001" ]
[ "nonn", "easy", "base" ]
27
1
2
[ "A000005", "A007953", "A011557", "A052216", "A101318", "A306509", "A356061", "A356520" ]
null
Ctibor O. Zizka, Aug 10 2022
2022-08-24T09:21:26
oeisdata/seq/A356/A356520.seq
8b25fdf6411187fc98b60cc0c2e1ef14
A356521
The constant coefficient of (x + x*y + y + 1/(x*y))^n.
[ "1", "0", "2", "6", "6", "60", "110", "420", "1750", "4200", "19152", "60060", "201894", "792792", "2525952", "9525516", "33886710", "117738192", "439904036", "1544744916", "5628776296", "20535629400", "73621352532", "270821996016", "982153129126", "3583555257360", "13154522128100", "47970593626020", "176337674294760" ]
[ "nonn" ]
44
0
3
null
null
Ricardo Acuna, Sep 30 2022
2023-12-18T12:47:11
oeisdata/seq/A356/A356521.seq
a936682fa7ff45e3214a6c2092a6ff3a
A356522
Numbers that are nim cubes; numbers in A335170.
[ "0", "1", "8", "10", "13", "14", "16", "17", "20", "21", "24", "25", "30", "31", "36", "38", "45", "47", "49", "50", "61", "62", "72", "74", "76", "78", "88", "90", "93", "95", "105", "106", "108", "111", "113", "114", "117", "118", "128", "130", "131", "133", "136", "138", "139", "141", "145", "151", "152", "158", "160", "161", "163", "167", "169", "170", "171", "173", "177", "182", "186" ]
[ "nonn" ]
9
1
3
[ "A051175", "A335162", "A335170", "A335172", "A356522" ]
null
Jianing Song, Aug 10 2022
2022-08-10T10:07:42
oeisdata/seq/A356/A356522.seq
0089a17f85535d377bae4fda490ffb98
A356523
a(n) is the number of tilings of the Aztec diamond of order n using dominoes and horizontal straight tetrominoes.
[ "1", "2", "11", "209", "12748", "2432209", "1473519065", "2827837404882", "17158790773744279", "329479797284568074621", "20021122370390985464701796", "3849702362426399132776261664897", "2342395734889640880082957470488832361" ]
[ "nonn" ]
16
0
2
null
null
James Propp, Aug 10 2022
2023-04-29T08:10:53
oeisdata/seq/A356/A356523.seq
de2ca2300a9dce5015d75e3ad7f92a04
A356524
Expansion of e.g.f. Product_{k>0} 1/(1 - k * x^k)^(1/k!).
[ "1", "1", "4", "15", "100", "565", "5946", "46039", "605256", "6646329", "103614490", "1320840631", "27185208876", "401901829069", "9042437722878", "168984439301175", "4257225193170256", "85582303577644465", "2593970612953642386", "57441717948059605927", "1862688382990615542900" ]
[ "nonn" ]
13
0
3
[ "A006906", "A209902", "A294462", "A354849", "A356487", "A356524" ]
null
Seiichi Manyama, Aug 10 2022
2022-08-10T22:34:34
oeisdata/seq/A356/A356524.seq
082b00ab3083fb693d5c236b284278c0
A356525
Decimal expansion of number of Pascals (Pa) in 1 millimeter of mercury (mmHg).
[ "1", "3", "3", "3", "2", "2", "3", "8", "7", "4", "1", "5" ]
[ "nonn", "cons", "fini", "full" ]
8
3
2
[ "A072915", "A213611", "A321218", "A356525", "A356526", "A356527", "H2" ]
null
Jianing Song, Aug 10 2022
2022-08-10T22:35:00
oeisdata/seq/A356/A356525.seq
ed790c1f0274f222b74999004efe747b
A356526
Decimal expansion of number of millimeters of mercury (mmHg) in 1 standard atmosphere (atm).
[ "7", "5", "9", "9", "9", "9", "8", "9", "1", "7", "2", "5", "6", "1", "1", "2", "8", "0", "3", "7", "6", "1", "2", "5", "5", "6", "8", "7", "9", "8", "1", "9", "3", "5", "7", "6", "8", "1", "2", "7", "9", "4", "8", "8", "0", "5", "9", "7", "8", "8", "5", "8", "1", "9", "0", "7", "0", "1", "1", "1", "4", "9", "6", "6", "2", "2", "8", "7", "1", "9", "6", "2", "9", "9", "2", "2", "9", "2", "7", "7", "4", "9", "4", "2", "5", "7", "9", "5", "8", "6" ]
[ "nonn", "cons" ]
8
3
1
[ "A213611", "A321218", "A356525", "A356526", "A356527", "A356528", "H2" ]
null
Jianing Song, Aug 10 2022
2022-08-10T22:35:06
oeisdata/seq/A356/A356526.seq
2274676e803a2a2c0a4f2283d4e6d7df
A356527
Decimal expansion of number of millimeters of water (mmH2O) in 1 millimeter of mercury (mmHg).
[ "1", "3", "5", "9", "5", "1" ]
[ "nonn", "cons", "fini", "full" ]
10
2
2
[ "A072915", "A356525", "A356526", "A356527", "A356528", "H2" ]
null
Jianing Song, Aug 10 2022
2023-07-01T15:24:17
oeisdata/seq/A356/A356527.seq
562769c35eeb6f74063aeedfff038fd9
A356528
Decimal expansion of number of millimeters of water (mmH2O) in 1 standard atmosphere (atm).
[ "1", "0", "3", "3", "2", "2", "7", "4", "5", "2", "7", "9", "9", "8", "8", "5", "7", "9", "1", "7", "8", "4", "1", "4", "6", "4", "7", "2", "0", "3", "6", "8", "3", "2", "1", "4", "9", "6", "1", "2", "7", "6", "2", "7", "6", "8", "1", "2", "1", "6", "3", "1", "7", "4", "9", "8", "8", "4", "0", "0", "7", "2", "8", "0", "7", "7", "3", "7", "6", "0", "6", "6", "2", "4", "0", "7", "6", "5", "1", "9", "5", "0", "4", "6", "2", "1", "8", "6", "3", "7" ]
[ "nonn", "cons", "easy" ]
15
5
3
[ "A072915", "A213611", "A356526", "A356527", "A356528", "H2" ]
null
Jianing Song, Aug 10 2022
2022-08-13T15:51:09
oeisdata/seq/A356/A356528.seq
8224bf3db78fefd11ca2901ffdba8e22
A356529
a(n) = (n-1)! * Sum_{d|n} d^(n-d+1).
[ "1", "3", "8", "78", "144", "14400", "5760", "5851440", "88583040", "5859786240", "43545600", "24077414592000", "6706022400", "35948640894566400", "4395744249613516800", "263312496059348736000", "376610217984000", "5901087844517892009984000", "128047474114560000" ]
[ "nonn" ]
14
1
2
[ "A342675", "A356486", "A356529", "A356530" ]
null
Seiichi Manyama, Aug 10 2022
2022-08-10T22:34:39
oeisdata/seq/A356/A356529.seq
7faf629419e646d2a77b39e58327536c
A356530
Expansion of e.g.f. Product_{k>0} 1/(1 - (k * x)^k)^(1/k^k).
[ "1", "1", "4", "18", "156", "1020", "23040", "189000", "8462160", "174741840", "8418513600", "110288455200", "26670240273600", "364684824504000", "46300470369753600", "5169242034644688000", "359472799348030368000", "7508907247291081632000", "6157317530690533823616000" ]
[ "nonn" ]
11
0
3
[ "A023882", "A294462", "A356487", "A356529", "A356530" ]
null
Seiichi Manyama, Aug 10 2022
2022-08-10T22:34:44
oeisdata/seq/A356/A356530.seq
e5d9f3cdca5483792c7408b52ad40162
A356531
Primes p == 1 (mod 23) which are norms of elements in the 23rd cyclotomic field.
[ "599", "691", "829", "1151", "2347", "2393", "3037", "3313", "3359", "4463", "4831", "5107", "5521", "5659", "6763", "8741", "9109", "9661", "10627", "10949", "11593", "12743", "13249", "14537", "14767", "14951", "15319", "15733", "16883", "17573" ]
[ "nonn" ]
13
1
1
null
null
Paul Vanderveen, Aug 10 2022
2022-10-02T00:58:29
oeisdata/seq/A356/A356531.seq
e61a6f5df969c24a2aab5ec858871a3f
A356532
Decimal expansion of the Coulomb constant in SI units as defined after 20 May 2019.
[ "8", "9", "8", "7", "5", "5", "1", "7", "9" ]
[ "nonn", "cons", "more" ]
10
10
1
[ "A003673", "A003676", "A003678", "A081823", "A182999", "A356532" ]
null
Jianing Song, Aug 11 2022
2022-08-11T14:48:43
oeisdata/seq/A356/A356532.seq
0a0bcad9c2f478cef8530411000b41bf
A356533
a(n) = sigma_2(n)^2.
[ "1", "25", "100", "441", "676", "2500", "2500", "7225", "8281", "16900", "14884", "44100", "28900", "62500", "67600", "116281", "84100", "207025", "131044", "298116", "250000", "372100", "280900", "722500", "423801", "722500", "672400", "1102500", "708964", "1690000", "925444", "1863225", "1488400", "2102500", "1690000", "3651921" ]
[ "nonn", "mult" ]
17
1
2
[ "A001157", "A035116", "A072861", "A127473", "A356533", "A356535" ]
null
Vaclav Kotesovec, Aug 11 2022
2023-03-10T10:24:47
oeisdata/seq/A356/A356533.seq
b5c3761ddf425599dc8faea52167669f
A356534
a(n) = sigma_3(n)^2.
[ "1", "81", "784", "5329", "15876", "63504", "118336", "342225", "573049", "1285956", "1774224", "4177936", "4831204", "9585216", "12446784", "21911761", "24147396", "46416969", "47059600", "84603204", "92775424", "143712144", "148060224", "268304400", "248094001", "391327524", "417793600", "630612544", "594872100" ]
[ "nonn", "mult" ]
14
1
2
[ "A001158", "A035116", "A072861", "A127473", "A356534", "A356536" ]
null
Vaclav Kotesovec, Aug 11 2022
2023-03-10T10:26:18
oeisdata/seq/A356/A356534.seq
7897c842de42caec19d186d9225c1404
A356535
a(n) = Sum_{k=1..n} sigma_2(k)^2.
[ "1", "26", "126", "567", "1243", "3743", "6243", "13468", "21749", "38649", "53533", "97633", "126533", "189033", "256633", "372914", "457014", "664039", "795083", "1093199", "1343199", "1715299", "1996199", "2718699", "3142500", "3865000", "4537400", "5639900", "6348864", "8038864", "8964308", "10827533", "12315933", "14418433" ]
[ "nonn" ]
13
1
2
[ "A001157", "A035116", "A057434", "A061502", "A072379", "A072861", "A127473", "A356533", "A356534", "A356535", "A356536" ]
null
Vaclav Kotesovec, Aug 11 2022
2022-10-09T04:23:00
oeisdata/seq/A356/A356535.seq
b79584c348d5a7f9359f1c4335d83e3c
A356536
a(n) = Sum_{k=1..n} sigma_3(k)^2.
[ "1", "82", "866", "6195", "22071", "85575", "203911", "546136", "1119185", "2405141", "4179365", "8357301", "13188505", "22773721", "35220505", "57132266", "81279662", "127696631", "174756231", "259359435", "352134859", "495847003", "643907227", "912211627", "1160305628", "1551633152", "1969426752", "2600039296" ]
[ "nonn" ]
20
1
2
[ "A001158", "A035116", "A057434", "A061502", "A072379", "A072861", "A127473", "A356533", "A356534", "A356535", "A356536" ]
null
Vaclav Kotesovec, Aug 11 2022
2023-02-27T16:49:22
oeisdata/seq/A356/A356536.seq
41c0d8ece039dd5feba08cf90f16388d
A356537
Numbers k whose binary expansion is a substring of the binary expansion of binomial(k,2).
[ "3", "5", "9", "11", "17", "33", "44", "50", "58", "65", "129", "257", "396", "452", "513", "581", "864", "971", "1025", "1139", "1843", "1881", "1914", "2049", "2541", "2676", "2929", "3130", "4097", "4596", "5254", "6621", "7010", "7111", "8193", "10771", "11140", "12655", "16385", "17090", "19135", "19371", "19580", "20985", "27117", "27845", "32769", "35272", "44278", "46779", "56069" ]
[ "nonn", "base" ]
15
1
1
[ "A000217", "A030190", "A187752", "A351753", "A356537" ]
null
Scott R. Shannon, Aug 11 2022
2022-08-11T08:53:46
oeisdata/seq/A356/A356537.seq
008e1b3d9a7123da68da5d73887c006d
A356538
Expansion of e.g.f. Product_{k>0} 1/(1 - (2 * x)^k)^(1/2^k).
[ "1", "1", "5", "27", "249", "2085", "30645", "354375", "6542865", "108554985", "2330525925", "45331607475", "1288779532425", "28889867731725", "876160258298325", "25315531795929375", "860642393272286625", "26527678331237708625", "1063065483349950205125", "36393649136002135852875" ]
[ "nonn" ]
11
0
3
[ "A000041", "A006950", "A090879", "A356530", "A356538", "A356540" ]
null
Seiichi Manyama, Aug 11 2022
2022-08-11T08:54:07
oeisdata/seq/A356/A356538.seq
ca2b73a2e19149dafdb133f4b9063b32
A356539
a(n) = Sum_{d|n} d * 3^(n-d).
[ "1", "5", "12", "49", "86", "492", "736", "3977", "8757", "34030", "59060", "384924", "531454", "2672528", "6672552", "26093113", "43046738", "261646137", "387420508", "2181624374", "4682526672", "17435870644", "31381059632", "204908769276", "299863458511", "1412168408630", "3392641222200", "13912336721584" ]
[ "nonn" ]
11
1
2
[ "A090879", "A342675", "A356539", "A356540" ]
null
Seiichi Manyama, Aug 11 2022
2022-08-11T08:54:12
oeisdata/seq/A356/A356539.seq
d4345fa883f20ce98de6461d40179cd4
A356540
Expansion of e.g.f. Product_{k>0} 1/(1 - (3 * x)^k)^(1/3^k).
[ "1", "1", "6", "40", "496", "5400", "114400", "1760080", "47671680", "1090230400", "34312096000", "916877068800", "39605683532800", "1211405062067200", "55580939301888000", "2260295506653184000", "115398744818925568000", "4928605977341190144000", "305987190350116667392000" ]
[ "nonn" ]
9
0
3
[ "A000041", "A006950", "A356530", "A356538", "A356539", "A356540" ]
null
Seiichi Manyama, Aug 11 2022
2022-08-11T08:54:15
oeisdata/seq/A356/A356540.seq
abaa6b717c4c1787f3a1a93057f644e9
A356541
a(n) = Sum_{d|n} d * (d!)^(n/d-1).
[ "1", "3", "4", "9", "6", "33", "8", "121", "118", "643", "12", "7349", "14", "35423", "75904", "378129", "18", "6400179", "20", "46256149", "177951190", "439086871", "24", "21025820825", "1036800026", "80951278619", "1185142088476", "2117428953117", "30", "153033887545887", "32", "859169550303265", "17526860326038562" ]
[ "nonn" ]
13
1
2
[ "A356541", "A356542", "A356543" ]
null
Seiichi Manyama, Aug 11 2022
2023-08-30T02:00:36
oeisdata/seq/A356/A356541.seq
f494cad208186f4b324e486c4836fd5b
A356542
Expansion of e.g.f. Product_{k>0} 1/(1 - k! * x^k)^(1/k!).
[ "1", "1", "4", "18", "132", "900", "11160", "100800", "1809360", "25053840", "608428800", "8610386400", "469291838400", "7110609105600", "404607162960000", "13958116204032000", "821937470818464000", "17420311428103584000", "2860701872247483264000", "60029296274562398784000" ]
[ "nonn" ]
8
0
3
[ "A209902", "A356524", "A356541", "A356542" ]
null
Seiichi Manyama, Aug 11 2022
2022-08-11T08:54:24
oeisdata/seq/A356/A356542.seq
8c8342a52af0eca276ea279b925aa31b
A356543
a(n) = Sum_{d|n} (d!)^(n/d-1).
[ "1", "2", "2", "4", "2", "12", "2", "34", "38", "138", "2", "1546", "2", "5106", "15698", "54274", "2", "889314", "2", "5689090", "25448258", "39917826", "2", "2486196610", "207360002", "6227024898", "131683574018", "215393466370", "2", "14769495662082", "2", "86475697160194", "1593350982706178", "355687428161538", "648227266560002" ]
[ "nonn" ]
13
1
2
[ "A087909", "A342628", "A356541", "A356543" ]
null
Seiichi Manyama, Aug 11 2022
2023-08-30T02:00:46
oeisdata/seq/A356/A356543.seq
fdd4995bacd3c90b7a38f4dffcc08959
A356544
Number of strict closure operators on a set of n elements such that all pairs of nonempty disjoint closed sets can be separated by clopen sets.
[ "0", "1", "4", "35", "857", "84230", "70711467" ]
[ "nonn", "hard", "more" ]
51
0
3
[ "A334255", "A356544", "A358144", "A358152" ]
null
Tian Vlasic, Aug 11 2022
2024-06-13T11:36:43
oeisdata/seq/A356/A356544.seq
a4b1149016e1045693e5e2586669a18b
A356545
Triangle read by rows. T(n, k) are the coefficients of polynomials p_n(x) based on the Eulerian numbers of first order representing the Bernoulli numbers as B_n = p_n(1) / (n + 1)!.
[ "1", "1", "0", "2", "-1", "0", "6", "-8", "2", "0", "24", "-66", "44", "-6", "0", "120", "-624", "792", "-312", "24", "0", "720", "-6840", "14496", "-10872", "2736", "-120", "0", "5040", "-86400", "285840", "-347904", "171504", "-28800", "720", "0", "40320", "-1244880", "6181920", "-11245680", "8996544", "-3090960", "355680", "-5040", "0" ]
[ "sign", "tabl" ]
41
0
4
[ "A027642", "A098361", "A123125", "A129814", "A164555", "A173018", "A356545", "A356546", "A356547", "A356601", "A356602" ]
null
Peter Luschny, Aug 11 2022
2022-08-15T15:28:46
oeisdata/seq/A356/A356545.seq
a3784e86db3ea4dd51673e5cf9910fe6
A356546
Triangle read by rows. T(n, k) = RisingFactorial(n + 1, n) / (k! * (n - k)!).
[ "1", "2", "2", "6", "12", "6", "20", "60", "60", "20", "70", "280", "420", "280", "70", "252", "1260", "2520", "2520", "1260", "252", "924", "5544", "13860", "18480", "13860", "5544", "924", "3432", "24024", "72072", "120120", "120120", "72072", "24024", "3432", "12870", "102960", "360360", "720720", "900900", "720720", "360360", "102960", "12870" ]
[ "sign", "tabl" ]
24
0
2
[ "A000108", "A000897", "A000984", "A003506", "A059304", "A173018", "A265609", "A343842", "A356546" ]
null
Peter Luschny, Aug 12 2022
2023-02-15T04:41:01
oeisdata/seq/A356/A356546.seq
c6abdb2aa8277f2aa1c30f1a4ab55ed1
A356547
Triangle read by rows. T(n, k) are the coefficients of polynomials p_n(x) based on the Eulerian numbers of second order representing the Bernoulli numbers as B_n = p_n(1) / (2*(2*n - 1)!).
[ "1", "1", "0", "6", "-4", "0", "120", "-192", "72", "0", "5040", "-15840", "13920", "-3456", "0", "362880", "-2096640", "3306240", "-1918080", "345600", "0", "39916800", "-413683200", "1053803520", "-1064448000", "448519680", "-62208000", "0", "6227020800", "-114960384000", "447866496000", "-699342336000", "506348236800", "-164428185600", "18289152000", "0" ]
[ "sign", "tabl" ]
17
0
4
[ "A027642", "A164555", "A201637", "A356545", "A356547" ]
null
Peter Luschny, Aug 12 2022
2023-03-18T08:49:14
oeisdata/seq/A356/A356547.seq
87719dde0ad64a452fa169704a2b8ff7
A356548
Let S(n)=sigma(n)/3. Numbers k such that S^m(k)=k, 1/3-sociable numbers (of any order).
[ "120", "672", "7560", "7680", "8064", "8184", "8840", "9600", "10540", "34944", "36576", "38080", "65520", "71680", "75264", "77748", "90272", "472416", "510720", "523776", "605024", "654080", "1100190", "1124352", "14913024", "16149760", "27797760", "33931072", "34012160", "459818240" ]
[ "nonn", "more" ]
16
1
1
[ "A005820", "A113546", "A356548" ]
null
Michel Marcus, Aug 11 2022
2022-08-14T06:53:16
oeisdata/seq/A356/A356548.seq
6000a6834556156186aa13735aa5a0e1
A356549
a(n) is the number of divisors of 10^n whose first digit is 1.
[ "1", "2", "3", "5", "8", "11", "15", "20", "25", "31", "38", "45", "52", "60", "69", "78", "88", "99", "110", "122", "135", "148", "161", "175", "190", "205", "221", "238", "255", "273", "292", "311", "330", "350", "371", "392", "414", "437", "460", "484", "509", "534", "559", "585", "612", "639", "667", "696", "725", "755", "786", "817", "848", "880", "913", "946", "980", "1015", "1050", "1086" ]
[ "nonn", "base" ]
46
0
2
[ "A011557", "A356549", "A357299" ]
null
Michel Marcus, Sep 23 2022
2022-09-24T01:43:29
oeisdata/seq/A356/A356549.seq
20ec142143cfe75e6b1236f50d509731
A356550
a(n) is the period of {F(F(k)) mod n, k >= 0}, where F denotes the Fibonacci numbers (A000045).
[ "1", "4", "12", "24", "60", "12", "24", "24", "24", "60", "60", "24", "48", "24", "60", "24", "24", "24", "24", "120", "24", "60", "24", "24", "300", "48", "24", "24", "48", "60", "120", "24", "60", "24", "120", "24", "18", "24", "48", "120", "60", "24", "60", "120", "120", "24", "48", "24", "48", "300", "24", "48", "72", "24", "60", "24", "24", "48", "42", "120", "120", "120", "24" ]
[ "nonn" ]
5
1
2
[ "A000045", "A001175", "A007570", "A356550" ]
null
Rémy Sigrist, Aug 11 2022
2022-08-15T05:19:56
oeisdata/seq/A356/A356550.seq
c36d3e32ef094299fba3f36129bdcb98
A356551
a(n) = A005132(n+2) - A005132(n).
[ "3", "5", "-1", "1", "11", "13", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "35", "37", "-1", "1", "-1", "-45", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "65", "67", "-1", "1", "-1", "-75", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "131", "133", "-1", "1", "-1" ]
[ "sign" ]
50
0
1
[ "A005132", "A160356", "A356551" ]
null
Paul Curtz, Aug 12 2022
2022-09-16T02:13:54
oeisdata/seq/A356/A356551.seq
994a32a429148d5136dd0b96c84c403e
A356552
a(n) is the least base b > 1 where the sum of digits of n divides n.
[ "2", "2", "3", "2", "5", "2", "7", "2", "3", "2", "11", "2", "13", "7", "3", "2", "17", "2", "19", "2", "2", "11", "23", "2", "3", "5", "3", "3", "29", "3", "31", "2", "3", "2", "3", "2", "37", "19", "3", "2", "41", "2", "43", "6", "3", "23", "47", "2", "7", "4", "5", "4", "53", "3", "2", "3", "3", "29", "59", "2", "61", "31", "3", "2", "3", "2", "67", "2", "2", "6", "71", "2", "73", "37", "3", "4", "3", "3", "79" ]
[ "nonn", "base" ]
11
1
1
[ "A049445", "A356552", "A356553" ]
null
Rémy Sigrist, Aug 12 2022
2022-09-19T07:23:24
oeisdata/seq/A356/A356552.seq
da2229bf4f9266135394a66fe462596b
A356553
For any n > 0, let b > 1 be the least base where the sum of digits of n divides n; a(n) is the sum of digits of n in base b.
[ "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "2", "1", "2", "3", "1", "1", "2", "1", "2", "3", "2", "1", "2", "5", "2", "1", "2", "1", "2", "1", "1", "3", "2", "5", "2", "1", "2", "3", "2", "1", "3", "1", "4", "3", "2", "1", "2", "1", "5", "3", "4", "1", "2", "5", "4", "3", "2", "1", "4", "1", "2", "3", "1", "5", "2", "1", "2", "3", "10", "1", "2", "1", "2", "5", "4", "7", "6", "1", "2", "3", "2", "1", "3", "5", "2", "3" ]
[ "nonn", "base" ]
9
1
6
[ "A356552", "A356553" ]
null
Rémy Sigrist, Aug 12 2022
2022-09-19T07:23:21
oeisdata/seq/A356/A356553.seq
d7e2a9f575a57d5913fa7bec772e33cf
A356554
Expansion of e.g.f. ( Product_{k>0} 1/(1-x^k)^k )^x.
[ "1", "0", "2", "15", "92", "930", "8514", "116760", "1445744", "23020200", "373858920", "6756785640", "130982295432", "2751191997840", "61046788571664", "1445520760702200", "36387213668348160", "960383111961228480", "26780931923301572544", "781864626481646405760", "23925584882896903854720" ]
[ "nonn" ]
19
0
3
[ "A001157", "A066166", "A354623", "A355064", "A356337", "A356554", "A356566" ]
null
Seiichi Manyama, Aug 12 2022
2022-08-13T11:27:50
oeisdata/seq/A356/A356554.seq
cd35804297dc5c078af9ff1f7c2bda5c
A356555
Irregular triangle T(n, k), n > 0, k = 1..A080221(n) read by rows; the n-th row contains, in ascending order, the bases b from 2..n+1 where the sum of digits of n divides n.
[ "2", "2", "3", "3", "4", "2", "3", "4", "5", "5", "6", "2", "3", "4", "5", "6", "7", "7", "8", "2", "3", "4", "5", "7", "8", "9", "3", "4", "7", "9", "10", "2", "3", "5", "6", "9", "10", "11", "11", "12", "2", "3", "4", "5", "6", "7", "9", "10", "11", "12", "13", "13", "14", "7", "8", "13", "14", "15", "3", "5", "6", "7", "11", "13", "15", "16", "2", "3", "4", "5", "7", "8", "9", "13", "15", "16", "17", "17", "18" ]
[ "nonn", "base", "tabf" ]
10
1
1
[ "A080221", "A356552", "A356555" ]
null
Rémy Sigrist, Aug 12 2022
2022-08-15T05:22:59
oeisdata/seq/A356/A356555.seq
83f2b86bc896418f57c18fbae1a52a42
A356556
Parity of A061418.
[ "0", "1", "0", "0", "1", "1", "1", "0", "0", "1", "0", "1", "1", "0", "0", "1", "0", "1", "0", "1", "1", "0", "0", "1", "0", "1", "1", "0", "1", "0", "1", "1", "1", "1", "1", "0", "0", "1", "0", "1", "1", "1", "1", "1", "1", "1", "0", "1", "0", "0", "0", "0", "0", "1", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "1", "1", "0", "1", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "1", "1", "1", "1", "1", "0", "0", "1", "0", "0", "1", "0", "1", "0", "0", "1", "1", "0", "1", "1", "0" ]
[ "easy", "nonn" ]
27
1
null
[ "A061418", "A356556" ]
null
Jacob Fauman, Aug 12 2022
2022-12-26T11:39:27
oeisdata/seq/A356/A356556.seq
7274d81c6b99f631c4cab0fcdd1995ce
A356557
Start with a(1)=2; to get a(n+1) insert in a(n) at the rightmost possible position the smallest possible digit such that the new number is a prime.
[ "2", "23", "233", "2333", "23333", "233323", "2333231", "23332301", "233323001", "2333230019", "23332030019", "233320360019", "2333203600159", "23332036001959", "233320360019569", "2333203600195669", "23332036001956469", "233320360019564269", "2333203600195642469", "23332036001956424629", "233320360019564246269" ]
[ "nonn", "base" ]
49
1
1
[ "A125001", "A332603", "A356557", "A357436" ]
null
Bartlomiej Pawlik, Aug 12 2022
2023-06-12T12:33:09
oeisdata/seq/A356/A356557.seq
917bbdaeffbd8789d8a2772ea8253ac6
A356558
Triangle read by rows: T(n,k), where n, k >= 2, is the number of n-element unlabeled connected series-parallel posets with k ordinal terms that are either the singleton or disconnected posets.
[ "1", "2", "1", "5", "3", "1", "16", "9", "4", "1", "52", "31", "14", "5", "1", "188", "108", "52", "20", "6", "1", "690", "402", "193", "80", "27", "7", "1", "2638", "1523", "744", "315", "116", "35", "8", "1", "10272", "5934", "2908", "1261", "483", "161", "44", "9", "1", "40782", "23505", "11580", "5085", "2010", "707", "216", "54", "10", "1" ]
[ "nonn", "tabl", "more" ]
13
2
2
[ "A007453", "A263864", "A349488", "A356558" ]
null
Salah Uddin Mohammad, Aug 12 2022
2022-10-05T04:46:37
oeisdata/seq/A356/A356558.seq
919fa5affb5471327b42401103898220
A356559
a(n) = exp(-1) * n! * Sum_{k>=0} Laguerre(n,k) / k!.
[ "1", "0", "0", "1", "7", "43", "281", "2056", "17004", "157809", "1622515", "18245335", "222004597", "2898508416", "40343356184", "595578837205", "9287308741827", "152459628788599", "2627373030049669", "47425289731038656", "895098852673047772", "17644305594671247141", "363065584549610882703", "7799894520723959486795" ]
[ "nonn" ]
8
0
5
[ "A000110", "A009940", "A101053", "A317362", "A317366", "A356559" ]
null
Ilya Gutkovskiy, Aug 12 2022
2025-02-16T08:34:03
oeisdata/seq/A356/A356559.seq
159cf72edee79cd7983e48191aaadd86
A356560
Expansion of e.g.f. Product_{k>0} 1/(1 - k^2 * x^k)^(1/k^2).
[ "1", "1", "4", "18", "156", "1020", "16560", "143640", "2898000", "43016400", "926856000", "13749674400", "524416939200", "8626888670400", "284030505158400", "7950850859952000", "284397434953632000", "6752059834744224000", "357295791069689472000", "9098085523917918528000" ]
[ "nonn" ]
13
0
3
[ "A077335", "A294462", "A294469", "A308688", "A356530", "A356560", "A356561" ]
null
Seiichi Manyama, Aug 12 2022
2022-08-12T09:21:18
oeisdata/seq/A356/A356560.seq
90e9dedf63060383dc79a892e01bf282
A356561
Expansion of e.g.f. Product_{k>0} 1/(1 - k^3 * x^k)^(1/k^3).
[ "1", "1", "4", "18", "204", "1260", "37440", "299880", "11002320", "204860880", "6618628800", "92924647200", "8181137764800", "124123075876800", "7211104918617600", "288085376346768000", "14964000305173920000", "340302035937191328000", "42619767305209750656000" ]
[ "nonn" ]
10
0
3
[ "A265837", "A294462", "A294469", "A308689", "A356530", "A356560", "A356561" ]
null
Seiichi Manyama, Aug 12 2022
2022-08-12T09:21:13
oeisdata/seq/A356/A356561.seq
cdc598ba119489cb604c47c229f4ff43
A356562
Decimal expansion of the unique positive real root of the equation x^x^x = x^x + 1.
[ "1", "6", "7", "1", "2", "9", "2", "1", "9", "7", "9", "8", "8", "9", "3", "2", "5", "5", "2", "8", "0", "2", "2", "2", "4", "6", "3", "4", "1", "4", "8", "1", "4", "6", "1", "1", "1", "1", "2", "9", "6", "8", "4", "7", "9", "7", "6", "0", "4", "9", "2", "9", "7", "3", "6", "2", "3", "5", "4", "2", "2", "3", "3", "8", "0", "3", "3", "7", "1", "7", "7", "3", "9", "6", "0", "2", "3", "3", "6", "4", "9", "0", "6", "4", "2", "6", "9" ]
[ "cons", "nonn" ]
33
1
2
[ "A073229", "A124930", "A356562" ]
null
Marco Ripà, Aug 12 2022
2022-08-22T22:16:14
oeisdata/seq/A356/A356562.seq
50dec69a7df8d5bded08767dbbf96d62
A356563
Sums of powers of roots of x^3 - 2*x^2 - x - 2.
[ "3", "2", "6", "20", "50", "132", "354", "940", "2498", "6644", "17666", "46972", "124898", "332100", "883042", "2347980", "6243202", "16600468", "44140098", "117367068", "312075170", "829797604", "2206404514", "5866756972", "15599513666", "41478593332", "110290214274" ]
[ "nonn", "easy" ]
10
0
1
[ "A077996", "A348909", "A356563" ]
null
Greg Dresden and Hanzhang Fang, Aug 12 2022
2022-08-13T06:24:46
oeisdata/seq/A356/A356563.seq
eb98b80e3ae09b2ca96b60045c6dbcf9
A356564
Expansion of e.g.f. ( Product_{k>0} (1+x^k)^(1/k) )^x.
[ "1", "0", "2", "0", "28", "-30", "888", "-1260", "51728", "-196560", "5293080", "-22286880", "710229408", "-4851269280", "138348035616", "-1091188098000", "36482139114240", "-379928382462720", "11812558481332992", "-137793570801143040", "4609972759421554560", "-67292912045817561600" ]
[ "sign" ]
13
0
3
[ "A007113", "A048272", "A338814", "A356392", "A356564", "A356565", "A356566" ]
null
Seiichi Manyama, Aug 12 2022
2022-08-13T11:28:05
oeisdata/seq/A356/A356564.seq
c028c3308916c14528290813065db50f
A356565
Expansion of e.g.f. ( Product_{k>0} (1+x^k) )^x.
[ "1", "0", "2", "3", "44", "90", "2034", "9240", "168944", "951048", "24042600", "185387400", "4411634952", "44020650960", "1166597641104", "14101322278680", "399099955203840", "5522583764698560", "169123038510919104", "2779010889700890240", "87888034148774728320", "1637061268780618450560" ]
[ "nonn" ]
15
0
3
[ "A000593", "A007113", "A356393", "A356564", "A356565", "A356566" ]
null
Seiichi Manyama, Aug 12 2022
2022-08-17T02:35:14
oeisdata/seq/A356/A356565.seq
c49a016469aaa45ac613d99c807802b3
A356566
Expansion of e.g.f. ( Product_{k>0} (1+x^k)^k )^x.
[ "1", "0", "2", "9", "92", "510", "7074", "68040", "1002224", "12529944", "228706920", "3565888920", "71035245192", "1348127454960", "30270949077264", "661700017709640", "16516072112482560", "408336559236083520", "11204399270843020224", "309489391954850336640", "9258803420755891835520" ]
[ "nonn" ]
14
0
3
[ "A007113", "A078306", "A356394", "A356564", "A356565", "A356566" ]
null
Seiichi Manyama, Aug 12 2022
2022-08-13T11:28:30
oeisdata/seq/A356/A356566.seq
6a9fd575d2ed57c061aeb43afc244e55
A356567
Numbers that generate increasing numbers of consecutive primes when doubled and added to the sequence of odd squares. (Positions of records in A354499.)
[ "1", "2", "11", "29", "326" ]
[ "nonn", "more" ]
38
1
2
[ "A016754", "A145202", "A188459", "A354499", "A356567" ]
null
Steven M. Altschuld, Aug 12 2022
2022-10-05T04:52:39
oeisdata/seq/A356/A356567.seq
2d4797cec12f5319a13870a58c5929cd
A356568
a(n) = (4^n - 1)*n^(2*n).
[ "0", "3", "240", "45927", "16711680", "9990234375", "8913923665920", "11111328602485167", "18446462598732840960", "39346257980661240576303", "104857500000000000000000000", "341427795961470170556885610263", "1333735697353436921058237339402240", "6156119488473827117528057630000587767" ]
[ "nonn", "easy" ]
55
0
2
[ "A062206", "A085534", "A356568" ]
null
Enrique Navarrete, Sep 30 2022
2025-03-09T10:30:47
oeisdata/seq/A356/A356568.seq
c14350e7bfb67553ad0008a48e084ca5
A356569
Sums of powers of roots of x^4 - 2*x^3 - 6*x^2 + 2*x + 1.
[ "4", "2", "16", "38", "164", "522", "1936", "6638", "23684", "82802", "292496", "1027798", "3621284", "12741562", "44862736", "157904478", "555880964", "1956721762", "6888057616", "24246779398", "85352580004", "300452999402", "1057639862416" ]
[ "nonn", "easy" ]
17
0
1
[ "A158934", "A192380", "A356569" ]
null
Greg Dresden and Ding Hao, Aug 12 2022
2022-08-15T10:27:33
oeisdata/seq/A356/A356569.seq
0524a37f9733c2080e9483d81e56a5a3
A356570
a(n) is the first prime that starts a sequence of exactly n consecutive primes that are in A048519.
[ "19", "11", "97", "72461", "346373", "2587093", "1534359019", "1010782220887" ]
[ "nonn", "base", "more" ]
11
1
1
[ "A048519", "A356570" ]
null
J. M. Bergot and Robert Israel, Aug 12 2022
2022-09-04T12:52:16
oeisdata/seq/A356/A356570.seq
6ed7157487d81f1f354daedb30a41176
A356571
a(n) = floor(f(n)), where f(n) = n^4*(15-24*n+10*n^2) + 20*n^5*(1-n)^3 / (1-2*n(1-n)).
[ "0", "1", "-16", "-318", "-1895", "-6936", "-19313", "-45055", "-92831", "-174433", "-305249", "-504751", "-796967", "-1210969", "-1781345", "-2548687", "-3560063", "-4869505", "-6538481", "-8636383", "-11240999", "-14439001", "-18326417", "-23009119", "-28603295", "-35235937", "-43045313", "-52181455", "-62806631", "-75095833", "-89237249" ]
[ "sign" ]
35
0
3
null
null
Christoph B. Kassir, Aug 12 2022
2022-10-05T05:05:51
oeisdata/seq/A356/A356571.seq
43776d1c37a694d546e172081d532266
A356572
Expansion of e.g.f. sinh( (exp(3*x) - 1)/3 ).
[ "0", "1", "3", "10", "45", "307", "2718", "26371", "265359", "2778976", "30916863", "372113623", "4873075056", "68908186765", "1037694932823", "16438615126282", "271972422548361", "4687666317874495", "84181305836224422", "1576083180118379527", "30757003280682603699", "624671260245315540568" ]
[ "nonn" ]
33
0
3
[ "A009599", "A024429", "A356572", "A357617", "A357649" ]
null
Seiichi Manyama, Oct 07 2022
2022-10-07T15:47:07
oeisdata/seq/A356/A356572.seq
1b135aff4858d4b899daff5a0c187ecb
A356573
Sigma-dense numbers: integers k such that sigma(k) * log(1+log(1+log(1+k))) / (k * log(1+log(1+k))) sets a new record.
[ "1", "2", "4", "6", "12", "24", "60", "120", "240", "360", "720", "840", "1260", "1680", "2520", "5040", "10080", "15120", "27720", "55440", "110880", "166320", "277200", "332640", "554400", "720720", "1441440", "2162160", "3603600", "4324320", "7207200", "10810800", "21621600", "36756720", "61261200", "73513440", "122522400", "183783600" ]
[ "nonn" ]
70
1
2
[ "A000005", "A000203", "A210594", "A356573" ]
null
Hal M. Switkay, Dec 11 2022
2022-12-12T09:38:41
oeisdata/seq/A356/A356573.seq
da16fd57576d6b2bce5dfd67ca47ddc6
A356574
a(n) = Sum_{d|n} tau(d^4), where tau(n) = number of divisors of n, cf. A000005.
[ "1", "6", "6", "15", "6", "36", "6", "28", "15", "36", "6", "90", "6", "36", "36", "45", "6", "90", "6", "90", "36", "36", "6", "168", "15", "36", "28", "90", "6", "216", "6", "66", "36", "36", "36", "225", "6", "36", "36", "168", "6", "216", "6", "90", "90", "36", "6", "270", "15", "90", "36", "90", "6", "168", "36", "168", "36", "36", "6", "540", "6", "36", "90", "91", "36", "216", "6", "90", "36", "216", "6", "420", "6", "36", "90", "90" ]
[ "nonn", "easy", "mult" ]
63
1
2
[ "A000005", "A007425", "A035116", "A061391", "A321348", "A356574", "A358380", "A359037", "A359038" ]
null
Seiichi Manyama, Dec 13 2022
2022-12-15T09:59:49
oeisdata/seq/A356/A356574.seq
24364c64811a4619dfebd72c3f309837
A356575
Expansion of e.g.f. ( Product_{k>0} 1/(1-x^k)^(1/k!) )^x.
[ "1", "0", "2", "6", "24", "185", "990", "9877", "72968", "824553", "8495560", "102689741", "1317098772", "18729163609", "270642677396", "4396374315075", "73997950572016", "1318896555293137", "24900891903482832", "499312682762581945", "10301544926241347140", "227464062944112566481" ]
[ "nonn" ]
16
0
3
[ "A087906", "A356025", "A356575", "A356576" ]
null
Seiichi Manyama, Aug 12 2022
2022-08-13T11:29:02
oeisdata/seq/A356/A356575.seq
5356187dbea38ccf65ad594f1867cf17
A356576
Expansion of e.g.f. ( Product_{k>0} (1+x^k)^(1/k!) )^x.
[ "1", "0", "2", "0", "24", "-55", "630", "-2723", "30968", "-294327", "3047320", "-30255379", "387690732", "-5565964391", "77090414492", "-1114263777885", "18473122449616", "-331776991760303", "6106973926830192", "-112710455017397639", "2233663985151902860", "-50049383051597936559" ]
[ "sign" ]
13
0
3
[ "A352013", "A356402", "A356575", "A356576" ]
null
Seiichi Manyama, Aug 12 2022
2022-08-13T11:29:48
oeisdata/seq/A356/A356576.seq
50f31ff9602189b2072cb0dce5b40d18
A356577
Expansion of e.g.f. ( Product_{k>0} 1/(1 - x^k/k) )^x.
[ "1", "0", "2", "6", "28", "195", "1248", "11200", "97088", "1036602", "11477230", "142038996", "1883459928", "27044341896", "412487825540", "6745633845210", "116679466051968", "2137078798914128", "41252266236703320", "838320793571448408", "17846205347898263960", "398262850748807921856" ]
[ "nonn" ]
11
0
3
[ "A308345", "A356408", "A356577" ]
null
Seiichi Manyama, Aug 12 2022
2022-08-13T11:29:30
oeisdata/seq/A356/A356577.seq
f4b8665a8c97625936fa5aae7f103574
A356578
Expansion of e.g.f. ( Product_{k>0} 1/(1 - k * x^k) )^x.
[ "1", "0", "2", "15", "92", "1050", "8514", "147000", "1546544", "29673000", "478186920", "9011752200", "178483287432", "4205087686800", "91775320005264", "2290742704668600", "63289842765692160", "1696665419122968000", "50287699532618564544", "1549916411848463721600" ]
[ "nonn" ]
12
0
3
[ "A078308", "A353993", "A354848", "A356578" ]
null
Seiichi Manyama, Aug 12 2022
2022-08-13T11:29:17
oeisdata/seq/A356/A356578.seq
0abe4c6b3ed5236d0f18b41bbfcaa811
A356579
Expansion of e.g.f. ( Product_{k>0} 1/(1 - x^k/k!) )^x.
[ "1", "0", "2", "6", "24", "170", "990", "8267", "67928", "661698", "6923010", "78997457", "983728812", "13101433501", "187893745130", "2869108871085", "46643882262448", "803224515183482", "14618310020427402", "280340253237270977", "5651276469430635620", "119483759770082806035", "2644015844432596590946" ]
[ "nonn" ]
9
0
3
[ "A182926", "A356409", "A356579" ]
null
Seiichi Manyama, Aug 12 2022
2022-08-13T11:28:42
oeisdata/seq/A356/A356579.seq
8f9b2fc2158e643535220906e749ffd5
A356580
Decimal expansion of log(2) - gamma - 1/2 (negated).
[ "3", "8", "4", "0", "6", "8", "4", "8", "4", "3", "4", "1", "5", "8", "7", "5", "5", "1", "1", "8", "9", "2", "7", "9", "9", "6", "8", "6", "2", "4", "2", "2", "5", "8", "6", "2", "9", "6", "6", "6", "5", "9", "2", "0", "1", "5", "7", "9", "6", "6", "8", "3", "4", "4", "6", "8", "5", "0", "8", "7", "2", "2", "5", "3", "9", "1", "4", "7", "4", "1", "0", "4", "8", "0", "7", "9", "6", "9", "9", "5", "5", "3", "3", "1", "0", "8", "3", "7", "3", "6", "2", "9", "5", "3", "2", "8", "0", "6", "1", "9", "7", "2", "6", "2", "9" ]
[ "nonn", "cons" ]
9
0
1
[ "A001620", "A002162", "A356580", "A356581" ]
null
Amiram Eldar, Aug 13 2022
2022-08-13T10:08:04
oeisdata/seq/A356/A356580.seq
c85bae85a0f96cf25e1fbeca29ea28b3
A356581
Decimal expansion of gamma - 3*log(2) + log(3) + 17/24.
[ "3", "0", "4", "7", "1", "9", "7", "4", "5", "2", "2", "3", "1", "3", "9", "9", "5", "7", "0", "8", "3", "3", "9", "4", "2", "9", "5", "9", "6", "3", "7", "3", "1", "7", "6", "4", "7", "9", "6", "4", "8", "2", "8", "2", "4", "0", "1", "5", "2", "4", "0", "6", "2", "1", "5", "1", "1", "7", "5", "4", "8", "7", "3", "3", "7", "5", "5", "1", "4", "4", "8", "7", "4", "2", "0", "5", "2", "2", "8", "2", "4", "3", "2", "6", "3", "0", "6", "1", "7", "0", "4", "4", "9", "5", "5", "6", "1", "0", "9", "0", "0", "9", "9", "3", "0" ]
[ "nonn", "cons" ]
7
0
1
[ "A001620", "A002162", "A002391", "A356580", "A356581" ]
null
Amiram Eldar, Aug 13 2022
2022-08-14T03:43:38
oeisdata/seq/A356/A356581.seq
0b35dae9367f4f1cd35f3e0bd83eb0b1
A356582
T(n,k) is the number of degree n polynomials in GF_2[x] that have exactly k linear factors in their prime factorization when the factors are counted with multiplicity, n >= 0, 0 <= k <= n. Triangular array read by rows.
[ "1", "0", "2", "1", "0", "3", "2", "2", "0", "4", "4", "4", "3", "0", "5", "8", "8", "6", "4", "0", "6", "16", "16", "12", "8", "5", "0", "7", "32", "32", "24", "16", "10", "6", "0", "8", "64", "64", "48", "32", "20", "12", "7", "0", "9", "128", "128", "96", "64", "40", "24", "14", "8", "0", "10", "256", "256", "192", "128", "80", "48", "28", "16", "9", "0", "11" ]
[ "nonn", "tabl" ]
13
0
3
[ "A001037", "A356582" ]
null
Geoffrey Critzer, Aug 13 2022
2022-08-23T10:20:22
oeisdata/seq/A356/A356582.seq
6691245b0c7f85c28686e5dc62956fb4
A356583
T(n,k) is the number of degree n polynomials p in GF_2[x] whose squarefree part has degree k, n >= 0, 0 <= k <= n. Triangular array read by rows.
[ "1", "0", "2", "2", "0", "2", "2", "2", "0", "4", "4", "2", "2", "0", "8", "4", "4", "2", "6", "0", "16", "10", "2", "4", "6", "10", "0", "32", "8", "10", "4", "10", "10", "22", "0", "64", "20", "4", "10", "10", "20", "22", "42", "0", "128", "20", "18", "6", "24", "16", "44", "42", "86", "0", "256", "40", "14", "18", "18", "48", "38", "80", "86", "170", "0", "512", "40", "36", "16", "48", "32", "106", "68", "166", "170", "342", "0", "1024" ]
[ "nonn", "tabl" ]
17
0
3
[ "A001037", "A356583" ]
null
Geoffrey Critzer, Aug 13 2022
2022-08-23T10:20:53
oeisdata/seq/A356/A356583.seq
966717182b4ecfc7b53939def77ac1d5
A356584
Number of instances of the stable roommates problem of cardinality n (extension to instances of odd cardinality).
[ "1", "1", "2", "60", "66360", "4147236820", "19902009929142960", "10325801406739620796634430", "776107138571279347069904891019268480", "10911068841557131648034491574230872615312437194176" ]
[ "nonn" ]
85
1
3
[ "A200472", "A356584" ]
null
Zacharie Moughanim, Aug 13 2022
2025-03-23T18:38:42
oeisdata/seq/A356/A356584.seq
a9ce8dd6ba1abdc32a6f417bcefabdd7
A356585
Number of decimal digits in the n-th Gosper hyperfactorial of n (A330716).
[ "1", "1", "2", "16", "198", "2927", "50060", "979361", "21645853", "534381060", "14590180163", "436814197446", "14235563000269", "501817445873045", "19029286646922723", "772532087068933899", "33434018751249535666", "1536767964161539414904", "74769012084248550773909" ]
[ "nonn", "base" ]
30
0
3
[ "A055642", "A330716", "A356585", "A356586" ]
null
Greg Huber, Aug 13 2022
2022-11-19T21:18:01
oeisdata/seq/A356/A356585.seq
f8008ffa0fd5bbcec66494ad87f8eba9
A356586
Number of binary digits in the n-th Gosper hyperfactorial of n (A330716).
[ "1", "1", "5", "51", "657", "9722", "166296", "3253365", "71905965", "1775175455", "48467529392", "1451065354742", "47289516677131", "1667001471950287", "63213921938077523", "2566296044236261518", "111065406214766719510", "5105032675471072965466", "248377281869637961805657" ]
[ "nonn", "base" ]
29
0
3
[ "A070939", "A330716", "A356585", "A356586" ]
null
Greg Huber, Aug 13 2022
2022-11-19T21:18:28
oeisdata/seq/A356/A356586.seq
2f00f028d77151a447d32c7eafd38fc4
A356587
Expansion of e.g.f. ( Product_{k>0} 1/(1 - (k * x)^k)^(1/k) )^x.
[ "1", "0", "2", "15", "236", "8490", "459234", "40325880", "4777773104", "767688946920", "156746202491880", "40056474754165320", "12448131138826294152", "4634982982962988690320", "2033625840922821008112144", "1039060311676326627685615800", "611331728108400284878223051520" ]
[ "nonn" ]
10
0
3
[ "A023887", "A354623", "A355064", "A356440", "A356554", "A356587", "A356588" ]
null
Seiichi Manyama, Aug 14 2022
2022-08-14T10:15:54
oeisdata/seq/A356/A356587.seq
9e043b646b47c7d52f0fb5cc5a4f6191
A356588
Expansion of e.g.f. ( Product_{k>0} 1/(1 - k * x^k)^(1/k) )^x.
[ "1", "0", "2", "9", "44", "450", "2754", "45360", "340304", "6481944", "81801000", "1370631240", "21731534472", "511117017840", "8113055559504", "193958323289640", "4765385232157440", "108183734293844160", "2754467397591689664", "80416694712647352960", "2132862160676063137920", "67803682111729108433280" ]
[ "nonn" ]
10
0
3
[ "A055225", "A355064", "A356439", "A356587", "A356588" ]
null
Seiichi Manyama, Aug 14 2022
2022-08-14T10:15:50
oeisdata/seq/A356/A356588.seq
f6a9856d9ac5cb33983c6315c9a91626
A356589
a(n) = n! * Sum_{k=1..n} sigma_k(k)/(k * (n-k)!).
[ "1", "7", "74", "1896", "83829", "6169915", "634444586", "89796130088", "16407420884385", "3792452363345383", "1076168167972120354", "368657061467873013440", "149787334364400115372677", "71262783791831946810277899", "39228224120114488162020163762" ]
[ "nonn" ]
15
1
2
[ "A002745", "A002746", "A356437", "A356589", "A356590" ]
null
Seiichi Manyama, Aug 14 2022
2022-08-17T02:42:32
oeisdata/seq/A356/A356589.seq
b690558b22edc030da62bf2c8ed424cf
A356590
Expansion of e.g.f. ( Product_{k>0} 1/(1 - (k * x)^k)^(1/k) )^exp(x).
[ "1", "1", "8", "96", "2382", "100035", "6995185", "699004551", "96910745876", "17476222963065", "4000562831147323", "1127335505294104887", "384099492016873956422", "155403154609857016567601", "73680868272553092728379865", "40444727351284600806487687057" ]
[ "nonn" ]
13
0
3
[ "A023881", "A346545", "A346547", "A356588", "A356589", "A356590" ]
null
Seiichi Manyama, Aug 14 2022
2022-08-14T15:29:24
oeisdata/seq/A356/A356590.seq
380c81be9efe4a8489223057bb6cee40
A356591
Numbers k such that A225205(k) is in A354513.
[ "3", "5", "7", "15", "19", "20", "25", "27", "34", "37", "40", "44", "47", "48", "52", "57", "65", "77", "89", "91", "92", "100", "105", "107", "111", "121", "123", "126", "127", "129", "138", "141", "153", "163", "165", "167", "171", "173", "179", "182", "183", "185", "189", "193", "195", "202", "205", "209", "211", "213", "215", "222", "224", "226", "230", "232", "234", "236", "238" ]
[ "nonn" ]
45
1
1
[ "A001622", "A225204", "A225205", "A354513", "A356591", "A356664" ]
null
Jianing Song, Aug 21 2022
2022-08-28T08:28:51
oeisdata/seq/A356/A356591.seq
cdcb9eb7dcaf3fd3afc168773b4a016f
A356592
Array A(n, k), n, k >= 0, read by antidiagonals; A(n, k) = Sum_{i, j >= 3} t_i * u_j * T(i+j) where Sum_{i >= 3} t_i * T(i) and Sum_{j >= 3} u_j * T(j) are the greedy tribonacci representations of n and k, respectively, and T = A000073.
[ "0", "0", "0", "0", "7", "0", "0", "13", "13", "0", "0", "20", "24", "20", "0", "0", "24", "37", "37", "24", "0", "0", "31", "44", "57", "44", "31", "0", "0", "37", "57", "68", "68", "57", "37", "0", "0", "44", "68", "88", "81", "88", "68", "44", "0", "0", "51", "81", "105", "105", "105", "105", "81", "51", "0", "0", "57", "94", "125", "125", "136", "125", "125", "94", "57", "0" ]
[ "nonn", "tabl" ]
21
0
5
[ "A000045", "A000073", "A101330", "A135090", "A356592" ]
null
Rémy Sigrist, Sep 11 2022
2022-09-14T08:26:16
oeisdata/seq/A356/A356592.seq
8090344d82d08d8b55aa2a6b9e519c37
A356593
Smallest k such that primorial(k) > n^2.
[ "1", "2", "3", "3", "3", "4", "4", "4", "4", "4", "4", "4", "4", "4", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6" ]
[ "nonn" ]
11
1
2
[ "A000290", "A002110", "A337769", "A356593" ]
null
Christoph B. Kassir, Aug 14 2022
2022-08-19T10:09:02
oeisdata/seq/A356/A356593.seq
3f68df4bae4e37c491034e4988e54272
A356594
Numbers k for which there exists at least one pair of positive integers (x,y) such that k = x + y and k' = x' + y', and every such pair is coprime.
[ "3", "25", "55", "82", "85", "95", "116", "121", "145", "194", "226", "245", "253", "289", "295", "301", "305", "332", "335", "343", "362", "391", "407", "418", "422", "446", "455", "493", "529", "535", "548", "583", "611", "671", "731", "745", "749", "754", "778", "779", "781", "785", "799", "805", "815", "817", "818", "833", "838", "845", "866", "869", "899", "917", "931", "943", "955", "959", "985", "995", "998" ]
[ "nonn" ]
52
1
1
[ "A003415", "A212662", "A356594" ]
null
Giosuè Cavallo, Aug 14 2022
2025-03-23T18:24:02
oeisdata/seq/A356/A356594.seq
f5edd1b36db019d2ae6506345c57c18f
A356595
Expansion of e.g.f. ( Product_{k>0} 1/(1 - x^k)^k )^exp(x).
[ "1", "1", "8", "60", "582", "6555", "88585", "1333731", "22602020", "420261225", "8536210843", "187294058787", "4420961159582", "111409233290537", "2986570482052729", "84773698697674837", "2539347801355477960", "80003306259203052465", "2644032803825175398175", "91425359712959262036223" ]
[ "nonn" ]
11
0
3
[ "A346545", "A346547", "A356337", "A356595", "A356600" ]
null
Seiichi Manyama, Aug 15 2022
2022-08-15T08:45:52
oeisdata/seq/A356/A356595.seq
3f75d3ac9d199f7386f4e7397e06ce19
A356596
Expansion of e.g.f. ( Product_{k>0} 1/(1 - x^k)^(1/k!) )^exp(x).
[ "1", "1", "5", "25", "162", "1231", "10988", "109481", "1220005", "14915924", "198841997", "2861122716", "44290863499", "731732469209", "12865489418525", "239613961313353", "4712991199268122", "97557259778360215", "2120682504988009054", "48270952330701285107", "1148400573894718809487" ]
[ "nonn" ]
12
0
3
[ "A354338", "A356025", "A356596" ]
null
Seiichi Manyama, Aug 15 2022
2022-08-15T10:30:55
oeisdata/seq/A356/A356596.seq
8bc743d98f70fb93435f70c7338c2dd2
A356597
Expansion of e.g.f. ( Product_{k>0} 1/(1 - x^k/k) )^exp(x).
[ "1", "1", "5", "26", "172", "1354", "12403", "127945", "1471006", "18589503", "255951308", "3808299648", "60871219649", "1039240205691", "18868377309780", "362838034712928", "7364831540699076", "157305165900364641", "3526069495916583260", "82744901973286823822", "2028396974232995349291" ]
[ "nonn" ]
10
0
3
[ "A354339", "A356408", "A356597" ]
null
Seiichi Manyama, Aug 15 2022
2022-08-15T10:30:59
oeisdata/seq/A356/A356597.seq
fdb93ff77365a69a07d12f2e3e6ef4ab
A356598
Expansion of e.g.f. ( Product_{k>0} 1/(1 - k * x^k) )^exp(x).
[ "1", "1", "8", "60", "606", "6795", "96145", "1458051", "25584020", "487911129", "10231475323", "230541036627", "5647620829862", "146760059424017", "4075332758190265", "119876230004510557", "3727336891407329320", "121841674696261466385", "4187995620589733257695", "150589951713517027739551" ]
[ "nonn" ]
11
0
3
[ "A353993", "A354340", "A356598" ]
null
Seiichi Manyama, Aug 15 2022
2022-08-15T10:31:03
oeisdata/seq/A356/A356598.seq
4664a998501a3d1f1d63e83f4ebb4e10
A356599
Expansion of e.g.f. ( Product_{k>0} 1/(1 - x^k/k!) )^exp(x).
[ "1", "1", "5", "25", "159", "1201", "10488", "102901", "1121375", "13406353", "174284898", "2445111373", "36799134584", "591042564425", "10086822013726", "182218681622851", "3472980343846199", "69632877583186121", "1464890891351327598", "32260213678562913097", "742152913359395190170" ]
[ "nonn" ]
11
0
3
[ "A354341", "A356409", "A356599" ]
null
Seiichi Manyama, Aug 15 2022
2022-08-15T10:30:52
oeisdata/seq/A356/A356599.seq
c0897cbfc25772a16859ac27879f793f
A356600
a(n) = n! * Sum_{k=1..n} sigma_2(k)/(k * (n-k)!).
[ "1", "7", "38", "240", "1509", "12115", "96326", "929432", "9421089", "108909943", "1249105054", "17862483320", "241674418101", "3676733397363", "59149265744302", "1058605924855568", "18041587282787489", "363409114370324295", "6970858463185187062", "153017341796727034336", "3360005220780469981157" ]
[ "nonn" ]
15
1
2
[ "A002745", "A002746", "A356298", "A356589", "A356600" ]
null
Seiichi Manyama, Aug 15 2022
2022-08-17T03:08:12
oeisdata/seq/A356/A356600.seq
9891d5c5424798603487dc21c5621f6f