sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-19 00:40:46
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A356601 | Triangle read by rows. T(n, k) = denominator(Integral_{z=0..1} Eulerian(n, k)*z^(k + 1)*(z - 1)^(n - k - 1) dz), where Eulerian(n, k) = A173018(n, k), for n >= 1, and T(0, 0) = 1. | [
"1",
"2",
"1",
"6",
"3",
"1",
"12",
"3",
"4",
"1",
"20",
"30",
"20",
"5",
"1",
"30",
"30",
"10",
"15",
"6",
"1",
"42",
"35",
"70",
"105",
"14",
"7",
"1",
"56",
"7",
"280",
"35",
"56",
"7",
"8",
"1",
"72",
"252",
"56",
"630",
"504",
"28",
"72",
"9",
"1",
"90",
"180",
"105",
"630",
"126",
"420",
"45",
"45",
"10",
"1",
"110",
"495",
"33",
"1155",
"1386",
"1155",
"165",
"99",
"110",
"11",
"1"
]
| [
"nonn",
"tabl",
"frac"
]
| 19 | 0 | 2 | [
"A173018",
"A278075",
"A356545",
"A356547",
"A356601",
"A356602"
]
| null | Peter Luschny, Aug 15 2022 | 2023-12-10T11:10:48 | oeisdata/seq/A356/A356601.seq | 5685426158fb7874277182193afb0f7d |
A356602 | Triangle read by rows. T(n, k) = numerator(Integral_{z=0..1} Eulerian(n, k)*z^(k + 1)*(z - 1)^(n - k - 1) dz), where Eulerian(n, k) = A173018(n, k) for n >= 1, and T(0, 0) = 1. | [
"1",
"1",
"0",
"-1",
"1",
"0",
"1",
"-1",
"1",
"0",
"-1",
"11",
"-11",
"1",
"0",
"1",
"-13",
"11",
"-13",
"1",
"0",
"-1",
"19",
"-151",
"302",
"-19",
"1",
"0",
"1",
"-5",
"1191",
"-302",
"397",
"-15",
"1",
"0",
"-1",
"247",
"-477",
"15619",
"-15619",
"477",
"-247",
"1",
"0",
"1",
"-251",
"1826",
"-44117",
"15619",
"-44117",
"1826",
"-251",
"1",
"0"
]
| [
"sign",
"tabl",
"frac"
]
| 15 | 0 | 12 | [
"A173018",
"A278075",
"A356545",
"A356547",
"A356601",
"A356602"
]
| null | Peter Luschny, Aug 15 2022 | 2023-12-10T11:10:43 | oeisdata/seq/A356/A356602.seq | 462136f0db1df25dd9ec4dfe637cefc5 |
A356603 | Position in A356226 of first appearance of the n-th composition in standard order (row n of A066099). | [
"1",
"2",
"4",
"10",
"8",
"20",
"50",
"110",
"16",
"40",
"100",
"220",
"250",
"550",
"1210",
"1870",
"32",
"80",
"200",
"440",
"500",
"1100",
"2420",
"3740",
"1250",
"2750",
"6050",
"9350",
"13310",
"20570",
"31790",
"43010",
"64",
"160",
"400",
"880",
"1000",
"2200",
"4840",
"7480",
"2500",
"5500",
"12100",
"18700",
"26620",
"41140",
"63580",
"86020"
]
| [
"nonn"
]
| 7 | 0 | 2 | [
"A000005",
"A001221",
"A001222",
"A001414",
"A053251",
"A055932",
"A061395",
"A066205",
"A066208",
"A073491",
"A073492",
"A073493",
"A132747",
"A137921",
"A193829",
"A286470",
"A287170",
"A356224",
"A356226",
"A356227",
"A356228",
"A356229",
"A356230",
"A356231",
"A356232",
"A356237",
"A356603",
"A356604"
]
| null | Gus Wiseman, Aug 30 2022 | 2022-08-30T09:41:41 | oeisdata/seq/A356/A356603.seq | 6f23cd773d08e54b4f85a6fdb8a62032 |
A356604 | Number of integer compositions of n into odd parts covering an initial interval of odd positive integers. | [
"1",
"1",
"1",
"1",
"3",
"4",
"5",
"9",
"13",
"24",
"40",
"61",
"101",
"160",
"257",
"415",
"679",
"1103",
"1774",
"2884",
"4656",
"7517",
"12165",
"19653",
"31753",
"51390",
"83134",
"134412",
"217505",
"351814",
"569081",
"920769",
"1489587",
"2409992",
"3899347",
"6309059",
"10208628",
"16518910",
"26729830",
"43254212",
"69994082"
]
| [
"nonn"
]
| 10 | 0 | 5 | [
"A000009",
"A000041",
"A000045",
"A001221",
"A001222",
"A001227",
"A005408",
"A011782",
"A053251",
"A055932",
"A060142",
"A061395",
"A066205",
"A066208",
"A073493",
"A107428",
"A107429",
"A137921",
"A324969",
"A333217",
"A356224",
"A356232",
"A356603",
"A356604",
"A356605"
]
| null | Gus Wiseman, Aug 30 2022 | 2022-09-01T19:48:14 | oeisdata/seq/A356/A356604.seq | ae594c1b4d453b07a8c4708fe530d95c |
A356605 | Number of integer compositions of n into odd parts covering an interval of odd positive integers. | [
"1",
"1",
"1",
"2",
"3",
"5",
"6",
"10",
"15",
"26",
"41",
"65",
"104",
"164",
"262",
"424",
"687",
"1112",
"1792",
"2898",
"4677",
"7556",
"12197",
"19699",
"31836",
"51466",
"83234",
"134593",
"217674",
"352057",
"569452",
"921165",
"1490173",
"2410784",
"3900288",
"6310436",
"10210358",
"16521108",
"26733020",
"43258086",
"69999295"
]
| [
"nonn"
]
| 13 | 0 | 4 | [
"A000009",
"A000041",
"A000045",
"A001227",
"A011782",
"A053251",
"A055932",
"A060142",
"A066205",
"A066208",
"A073491",
"A107428",
"A107429",
"A137921",
"A324969",
"A332032",
"A333217",
"A356224",
"A356232",
"A356604",
"A356605",
"A356737",
"A356841",
"A356846"
]
| null | Gus Wiseman, Aug 31 2022 | 2022-09-01T19:48:07 | oeisdata/seq/A356/A356605.seq | d69cb80c29596673b562a2a11761c906 |
A356606 | Number of strict integer partitions of n where all parts have neighbors. | [
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"2",
"1",
"1",
"2",
"1",
"2",
"3",
"2",
"2",
"5",
"2",
"4",
"5",
"5",
"4",
"8",
"5",
"7",
"9",
"8",
"8",
"13",
"10",
"11",
"16",
"13",
"15",
"20",
"18",
"18",
"27",
"21",
"26",
"31",
"30",
"30",
"43",
"34",
"42",
"49",
"48",
"48",
"65",
"56",
"65",
"76",
"74",
"77",
"97",
"88",
"98",
"117",
"111",
"119",
"143",
"137",
"146",
"175",
"165",
"182",
"208"
]
| [
"nonn"
]
| 25 | 0 | 10 | [
"A000009",
"A000041",
"A000837",
"A007690",
"A137921",
"A183558",
"A289509",
"A325160",
"A328171",
"A328172",
"A328187",
"A328220",
"A328221",
"A355393",
"A355394",
"A356235",
"A356236",
"A356237",
"A356606",
"A356607"
]
| null | Gus Wiseman, Aug 24 2022 | 2024-02-24T10:05:21 | oeisdata/seq/A356/A356606.seq | e7dfdf9faf8962d16bc4715ec47f4542 |
A356607 | Number of strict integer partitions of n with at least one neighborless part. | [
"0",
"1",
"1",
"1",
"2",
"2",
"3",
"4",
"6",
"6",
"9",
"11",
"13",
"17",
"20",
"24",
"30",
"36",
"41",
"52",
"60",
"71",
"84",
"100",
"114",
"137",
"158",
"183",
"214",
"248",
"283",
"330",
"379",
"432",
"499",
"570",
"648",
"742",
"846",
"955",
"1092",
"1234",
"1395",
"1580",
"1786",
"2005",
"2270",
"2548",
"2861",
"3216",
"3610",
"4032",
"4526",
"5055",
"5642",
"6304",
"7031",
"7820",
"8720",
"9694"
]
| [
"nonn"
]
| 20 | 0 | 5 | [
"A000009",
"A000041",
"A000837",
"A007690",
"A073492",
"A137921",
"A183558",
"A289509",
"A325160",
"A328171",
"A328172",
"A328187",
"A328220",
"A328221",
"A355393",
"A355394",
"A356235",
"A356236",
"A356606",
"A356607"
]
| null | Gus Wiseman, Aug 26 2022 | 2024-02-12T16:32:02 | oeisdata/seq/A356/A356607.seq | a6b27bf08db61a0368ed9f55e5a1f471 |
A356608 | a(n) = n! * Sum_{k=0..floor(n/4)} (n - 4*k)^k/(24^k * (n - 4*k)!). | [
"1",
"1",
"1",
"1",
"1",
"6",
"31",
"106",
"281",
"1261",
"13861",
"106261",
"558361",
"2709136",
"32802771",
"447762316",
"4093711441",
"28011714641",
"293624974441",
"5549250905281",
"80454378591121",
"815886496908946",
"8379058314620071",
"168672787637953446",
"3514729162490432041",
"51656083670790267901"
]
| [
"nonn"
]
| 26 | 0 | 6 | [
"A354436",
"A354552",
"A356029",
"A356328",
"A356608",
"A356630",
"A356634"
]
| null | Seiichi Manyama, Aug 18 2022 | 2022-09-14T09:34:30 | oeisdata/seq/A356/A356608.seq | bb811ea09d5c1eb2cb54fb36013b448f |
A356609 | Numbers k that can be written as the sum of 6 divisors of k (not necessarily distinct). | [
"6",
"8",
"10",
"12",
"14",
"16",
"18",
"20",
"24",
"28",
"30",
"32",
"36",
"40",
"42",
"44",
"48",
"50",
"52",
"54",
"56",
"60",
"64",
"66",
"70",
"72",
"78",
"80",
"84",
"88",
"90",
"96",
"98",
"100",
"102",
"104",
"108",
"110",
"112",
"114",
"120",
"126",
"128",
"130",
"132",
"136",
"138",
"140",
"144",
"150",
"152",
"154",
"156",
"160",
"162",
"168",
"170",
"174",
"176",
"180",
"182",
"184",
"186",
"190"
]
| [
"nonn"
]
| 30 | 1 | 1 | [
"A000027",
"A299174",
"A354591",
"A355200",
"A355641",
"A356609",
"A356635",
"A356657",
"A356659",
"A356660"
]
| null | Wesley Ivan Hurt, Aug 18 2022 | 2023-08-08T03:22:18 | oeisdata/seq/A356/A356609.seq | fb5fde3c09593728259bd20dcf8bdb27 |
A356610 | Number of SAWs crossing a rhomboidal domain of the hexagonal lattice. | [
"2",
"14",
"316",
"25092",
"7374480",
"8029311942",
"32223151155864",
"476605408516689238",
"26016526700583361056456",
"5246595079903462547245876694",
"3911053741699230141571030313824664",
"10780907768757190963361134040036893772360",
"109919900687141309301630828947780890728732496678"
]
| [
"nonn"
]
| 6 | 1 | 1 | [
"A001006",
"A002026",
"A007764",
"A116485",
"A356610"
]
| null | Vaclav Kotesovec, following a suggestion from Anthony Guttmann, Aug 16 2022 | 2022-08-16T05:16:20 | oeisdata/seq/A356/A356610.seq | 7274bd6a68feb382c0a07b12d15a9b96 |
A356611 | Number of SAWs spanning a rhomboidal domain of the hexagonal lattice. | [
"2",
"50",
"2256",
"292006",
"124394172",
"182189852062",
"937116505296162",
"17167376550995687961",
"1130911800993488803731078",
"269650395624478266477331223678",
"233772496350603982679550385266064014",
"739330863241806743025423160490836132227125",
"8551000409049037000098287028025432585191736309022"
]
| [
"nonn"
]
| 6 | 1 | 1 | [
"A001006",
"A002026",
"A007764",
"A116485",
"A356611"
]
| null | Vaclav Kotesovec, following a suggestion from Anthony Guttmann, Aug 16 2022 | 2022-08-16T05:16:04 | oeisdata/seq/A356/A356611.seq | 99c0e3ef0dcdd1fd00a2e94e5e27ae5c |
A356612 | Number of SAPs crossing a rhomboidal domain of the hexagonal lattice. | [
"1",
"3",
"48",
"3126",
"775842",
"727870836",
"2575728525240",
"34244061451559094",
"1703999058661009145746",
"316543880488539946466963896",
"219157996022284922702859434801868",
"564858713948847373563461482383973674774",
"5415142061627863782256892670635702203299498106"
]
| [
"nonn"
]
| 6 | 1 | 2 | [
"A001006",
"A002026",
"A007764",
"A116485",
"A356612"
]
| null | Vaclav Kotesovec, following a suggestion from Anthony Guttmann, Aug 16 2022 | 2022-08-16T05:15:49 | oeisdata/seq/A356/A356612.seq | 7a2ea25b3e912ccc306a8f9546e9a31d |
A356613 | Number of SAWs crossing a triangular domain of the hexagonal lattice. | [
"2",
"7",
"44",
"515",
"11500",
"493704",
"40751496",
"6463642330",
"1970190022696",
"1154437344815284",
"1300686960810345198",
"2818300749120970598426",
"11745284697899678209887246",
"94153940687296424300453605522",
"1451915619132744566900848537333082",
"43072062058620235613855525243039798546"
]
| [
"nonn"
]
| 6 | 1 | 1 | [
"A001006",
"A002026",
"A007764",
"A116485",
"A356613"
]
| null | Vaclav Kotesovec, following a suggestion from Anthony Guttmann, Aug 16 2022 | 2022-08-16T05:15:36 | oeisdata/seq/A356/A356613.seq | 3d39be2c76689f143e3f34d76036779f |
A356614 | Number of SAWs crossing a triangular domain of the hexagonal lattice and including the top vertex. | [
"1",
"3",
"18",
"210",
"4716",
"203130",
"16781528",
"2661898722",
"811337884328",
"475395297020430",
"535618774376758222",
"1160567857061063474508",
"4836675324919658534327348",
"38772333263059858336182467950",
"597894854584620490267288203881970",
"17736956492510173648327596231133813426"
]
| [
"nonn"
]
| 6 | 1 | 2 | [
"A001006",
"A002026",
"A007764",
"A116485",
"A356614"
]
| null | Vaclav Kotesovec, following a suggestion from Anthony Guttmann, Aug 16 2022 | 2022-08-16T05:15:25 | oeisdata/seq/A356/A356614.seq | 41accd18f26792b550d508dadce2bb85 |
A356615 | Number of SAPs crossing a triangular domain of the hexagonal lattice. | [
"1",
"2",
"9",
"85",
"1605",
"59896",
"4392639",
"629739138",
"175745776816",
"95207239875508",
"99934927799315359",
"202993550188918062298",
"797200289814680588454420",
"6048794511036987586252009778",
"88623124229469033988344357343229",
"2506168305598107863294101582119745559"
]
| [
"nonn"
]
| 6 | 1 | 2 | [
"A001006",
"A002026",
"A007764",
"A116485",
"A356615"
]
| null | Vaclav Kotesovec, following a suggestion from Anthony Guttmann, Aug 16 2022 | 2022-08-16T05:15:11 | oeisdata/seq/A356/A356615.seq | da7c45bd2005a0004a2e8fcd05743642 |
A356616 | Number of SAPs crossing a triangular domain of the hexagonal lattice and including top vertex. | [
"1",
"1",
"4",
"36",
"666",
"24696",
"1808820",
"259300148",
"72369408510",
"39205936157880",
"41152969216872016",
"83592236529606631688",
"328284931491454739745904",
"2490876950205850778116435156",
"36494758452603010620499864088198",
"1032033208911845667821292289616451218"
]
| [
"nonn"
]
| 6 | 1 | 3 | [
"A001006",
"A002026",
"A007764",
"A116485",
"A356616"
]
| null | Vaclav Kotesovec, following a suggestion from Anthony Guttmann, Aug 16 2022 | 2022-08-16T05:14:52 | oeisdata/seq/A356/A356616.seq | caee1e26fbb181b2ecbde15d08fa8e47 |
A356617 | Number of square lattice worms w_n. | [
"1",
"1",
"3",
"7",
"19",
"41",
"113",
"261",
"713",
"1681",
"4567",
"10993",
"29717",
"72493",
"195269",
"481261",
"1292729",
"3211263",
"8606801",
"21515135",
"57561815",
"144631085",
"386382359",
"974968645",
"2601469419",
"6587913395",
"17560287513",
"44605607915",
"118794020215",
"302552020141",
"805154546027"
]
| [
"nonn"
]
| 6 | 1 | 3 | null | null | Vaclav Kotesovec, following a suggestion from Anthony Guttmann, Aug 16 2022 | 2022-08-16T05:13:51 | oeisdata/seq/A356/A356617.seq | 95e43ec6718910cf9dce42cb074c8554 |
A356618 | Number of triangular lattice worms w_n. | [
"1",
"3",
"11",
"41",
"155",
"603",
"2361",
"9321",
"37015",
"147657",
"591227",
"2374539",
"9561487",
"38585555",
"156007667",
"631806555",
"2562434223",
"10405918209",
"42306525037",
"172180092143",
"701397054549",
"2859651782649",
"11668050956347",
"47642140547239",
"194655761552949",
"795800965884627"
]
| [
"nonn"
]
| 6 | 1 | 2 | null | null | Vaclav Kotesovec, following a suggestion from Anthony Guttmann, Aug 16 2022 | 2022-08-16T05:13:33 | oeisdata/seq/A356/A356618.seq | 52cad1ed7b39acc7162cedaa8fec4dd7 |
A356619 | a(n) = number of k-tuples (u(1), u(2), ..., u(k)) with 1 <= u(1) < u(2) < ... < u(k) <= n such that u(i) - u(i-1) <= 3 for i = 2,...,k. | [
"0",
"1",
"4",
"11",
"25",
"52",
"103",
"198",
"374",
"699",
"1298",
"2401",
"4431",
"8166",
"15037",
"27676",
"50924",
"93685",
"172336",
"316999",
"583077",
"1072472",
"1972611",
"3628226",
"6673378",
"12274287",
"22575966",
"41523709",
"76374043",
"140473802",
"258371641",
"475219576",
"874065112",
"1607656425"
]
| [
"nonn",
"easy"
]
| 23 | 0 | 3 | [
"A001891",
"A062544",
"A221949",
"A356619",
"A356620",
"A356621"
]
| null | Clark Kimberling, Aug 24 2022 | 2022-09-04T12:55:57 | oeisdata/seq/A356/A356619.seq | eeab5bf2cb8dbe3de55ae1d4c0beb141 |
A356620 | a(n) = number of k-tuples (u(1), u(2), ..., u(k)) with 1 <= u(1) < u(2) < ... < u(k) <= n such that u(i) - u(i-1) <= 4 for i = 2,...,k. | [
"0",
"1",
"4",
"11",
"26",
"56",
"115",
"230",
"453",
"884",
"1716",
"3321",
"6416",
"12383",
"23886",
"46060",
"88803",
"171194",
"330009",
"636136",
"1226216",
"2363633",
"4556076",
"8782147",
"16928162",
"32630112",
"62896595",
"121237118",
"233692093",
"450456028",
"868281948",
"1673667305",
"3226097496",
"6218502903"
]
| [
"nonn",
"easy"
]
| 12 | 0 | 3 | [
"A001891",
"A356619",
"A356620",
"A356621"
]
| null | Clark Kimberling, Sep 04 2022 | 2022-09-07T12:27:18 | oeisdata/seq/A356/A356620.seq | ded29fed9abf3f157907eaab0775350b |
A356621 | a(n) = number of k-tuples (u(1), u(2), ..., u(k)) with 1 <= u(1) < u(2) < ... < u(k) <= n such that u(i) - u(i-1) <= 5 for i = 2,...,k. | [
"0",
"1",
"4",
"11",
"26",
"57",
"119",
"242",
"485",
"964",
"1907",
"3762",
"7410",
"14583",
"28686",
"56413",
"110924",
"218091",
"428777",
"842976",
"1657271",
"3258134",
"6405349",
"12592612",
"24756452",
"48669933",
"95682600",
"188107071",
"369808798",
"727024989",
"1429293531",
"2809917134",
"5524151673"
]
| [
"nonn",
"easy"
]
| 14 | 0 | 3 | [
"A001891",
"A356619",
"A356620",
"A356621"
]
| null | Clark Kimberling, Sep 04 2022 | 2022-09-30T09:41:52 | oeisdata/seq/A356/A356621.seq | 78eaa63da5ca2f78dce24520485916f7 |
A356622 | Number of ways to tile a hexagonal strip made up of 4*n equilateral triangles, using triangles and diamonds. | [
"1",
"5",
"39",
"317",
"2585",
"21085",
"171987",
"1402873",
"11443033",
"93339173",
"761354199",
"6210256613",
"50656169297",
"413195081581",
"3370372805763",
"27491645850097",
"224245398092113",
"1829137434684101",
"14920010771362215"
]
| [
"nonn",
"easy"
]
| 11 | 0 | 2 | [
"A355327",
"A356622",
"A356623"
]
| null | Greg Dresden and Aarnav Gogri, Aug 16 2022 | 2022-08-17T22:39:50 | oeisdata/seq/A356/A356622.seq | 34440697ff21e5897b3e412bc7e91692 |
A356623 | Number of ways to tile a hexagonal strip made up of 4*n+2 equilateral triangles, using triangles and diamonds. | [
"2",
"18",
"148",
"1208",
"9854",
"80378",
"655632",
"5347896",
"43622018",
"355818522",
"2902360468",
"23674136576",
"193106524430",
"1575142124306",
"12848207584320",
"104800979913168",
"854846508252578",
"6972859922465346",
"56876614724333236"
]
| [
"nonn"
]
| 26 | 0 | 1 | [
"A190984",
"A356622",
"A356623"
]
| null | Greg Dresden and Aarnav Gogri, Aug 17 2022 | 2023-07-04T14:24:33 | oeisdata/seq/A356/A356623.seq | e668de117acd252d91917d1371ed5e92 |
A356624 | After n iterations of the "Square Multiscale" substitution, the largest tiles have side length 3^t / 5^f; a(n) = t (A356625 gives corresponding f's). | [
"0",
"1",
"2",
"3",
"0",
"4",
"1",
"5",
"2",
"6",
"3",
"0",
"7",
"4",
"1",
"8",
"5",
"2",
"9",
"6",
"3",
"0",
"10",
"7",
"4",
"1",
"11",
"8",
"5",
"2",
"12",
"9",
"6",
"3",
"0",
"13",
"10",
"7",
"4",
"1",
"14",
"11",
"8",
"5",
"2",
"15",
"12",
"9",
"6",
"3",
"0",
"16",
"13",
"10",
"7",
"4",
"1",
"17",
"14",
"11",
"8",
"5",
"2",
"18",
"15",
"12",
"9",
"6",
"3",
"0",
"19",
"16",
"13",
"10",
"7",
"4",
"1",
"20",
"17"
]
| [
"nonn"
]
| 14 | 0 | 3 | [
"A022336",
"A329919",
"A354535",
"A356624",
"A356625"
]
| null | Rémy Sigrist, Aug 17 2022 | 2022-08-21T06:15:11 | oeisdata/seq/A356/A356624.seq | 364eb3d4e9cbb647275906c2d39edb40 |
A356625 | After n iterations of the "Square Multiscale" substitution, the largest tiles have side length 3^t / 5^f; a(n) = f (A356624 gives corresponding t's). | [
"0",
"1",
"2",
"3",
"1",
"4",
"2",
"5",
"3",
"6",
"4",
"2",
"7",
"5",
"3",
"8",
"6",
"4",
"9",
"7",
"5",
"3",
"10",
"8",
"6",
"4",
"11",
"9",
"7",
"5",
"12",
"10",
"8",
"6",
"4",
"13",
"11",
"9",
"7",
"5",
"14",
"12",
"10",
"8",
"6",
"15",
"13",
"11",
"9",
"7",
"5",
"16",
"14",
"12",
"10",
"8",
"6",
"17",
"15",
"13",
"11",
"9",
"7",
"18",
"16",
"14",
"12",
"10",
"8",
"6",
"19",
"17",
"15",
"13",
"11",
"9",
"7"
]
| [
"nonn"
]
| 13 | 0 | 3 | [
"A022337",
"A329919",
"A354535",
"A356624",
"A356625"
]
| null | Rémy Sigrist, Aug 17 2022 | 2022-08-21T06:15:28 | oeisdata/seq/A356/A356625.seq | 74cd507e69faedf129dc15ee000cb730 |
A356626 | Position of A332979(n) in the Doudna sequence A005940. | [
"1",
"2",
"4",
"7",
"15",
"29",
"61",
"125",
"249",
"497",
"1009",
"2033",
"4081",
"8177",
"16369",
"32753",
"65521",
"131057",
"262081",
"524225",
"1048513",
"2097089",
"4194241",
"8388545",
"16777153",
"33553921",
"67108353",
"134217217",
"268434945",
"536870401",
"1073741313",
"2147483137",
"4294966785",
"8589934081",
"17179868673"
]
| [
"nonn"
]
| 9 | 0 | 2 | [
"A000120",
"A000961",
"A005940",
"A006530",
"A023416",
"A023758",
"A180944",
"A332979",
"A356626"
]
| null | Michael De Vlieger, Aug 24 2022 | 2022-09-08T01:35:05 | oeisdata/seq/A356/A356626.seq | 8b0cb002b22b046de0b4ce797b0c0328 |
A356627 | Primes whose powers appear in A332979. | [
"2",
"3",
"5",
"7",
"11",
"17",
"29",
"37",
"41",
"59",
"67",
"71",
"97",
"127",
"149",
"191",
"223",
"269",
"307",
"347",
"419",
"431",
"557",
"563",
"569",
"587",
"593",
"599",
"641",
"727",
"809",
"937",
"967",
"1009",
"1213",
"1277",
"1423",
"1861",
"1973",
"2237",
"2267",
"2657",
"3163",
"3299",
"3449",
"3457",
"3527",
"3907",
"4001",
"4211",
"4441",
"4637"
]
| [
"nonn"
]
| 10 | 1 | 1 | [
"A000040",
"A000961",
"A005940",
"A180944",
"A180945",
"A302334",
"A332979",
"A356627"
]
| null | Michael De Vlieger, Sep 27 2022 | 2022-09-30T23:09:53 | oeisdata/seq/A356/A356627.seq | 602e3371b0b3a657c692840386ea332a |
A356628 | a(n) = n! * Sum_{k=0..floor(n/2)} (n - 2*k)^k/(n - 2*k)!. | [
"1",
"1",
"1",
"7",
"25",
"181",
"1561",
"12811",
"188497",
"2071945",
"38889361",
"620762671",
"12917838121",
"291278938237",
"6667342764265",
"194869722610291",
"5137978752994081",
"177509783765281681",
"5610285632192738977",
"215195998789004395735",
"8228064506323330305721"
]
| [
"nonn"
]
| 20 | 0 | 4 | [
"A216688",
"A354436",
"A356628",
"A356629",
"A356630",
"A356632",
"A358064"
]
| null | Seiichi Manyama, Aug 18 2022 | 2022-11-01T11:55:53 | oeisdata/seq/A356/A356628.seq | 5bdee9a4b10a9414a0b43f1030e4a445 |
A356629 | a(n) = n! * Sum_{k=0..floor(n/3)} (n - 3*k)^k/(n - 3*k)!. | [
"1",
"1",
"1",
"1",
"25",
"121",
"361",
"5881",
"82321",
"547345",
"6053041",
"167991121",
"2179469161",
"22892967241",
"788375451865",
"18046198202761",
"245523704069281",
"7548055281543841",
"270833271588545761",
"5369819950838359585",
"141456920470310708281",
"6760255576117937586841"
]
| [
"nonn"
]
| 21 | 0 | 5 | [
"A354436",
"A354553",
"A356628",
"A356629",
"A356630",
"A356633",
"A358065"
]
| null | Seiichi Manyama, Aug 18 2022 | 2022-11-01T12:10:35 | oeisdata/seq/A356/A356629.seq | e910cedfa5c8e262ace17554ec9aade4 |
A356630 | a(n) = n! * Sum_{k=0..floor(n/4)} (n - 4*k)^k/(n - 4*k)!. | [
"1",
"1",
"1",
"1",
"1",
"121",
"721",
"2521",
"6721",
"378001",
"7287841",
"59930641",
"319429441",
"7524471241",
"353072319601",
"5897248517161",
"55827317669761",
"726274560953761",
"53139878190826561",
"1650487849152976801",
"25981849479032542081",
"317292238756098973081"
]
| [
"nonn"
]
| 14 | 0 | 6 | [
"A354436",
"A354554",
"A356628",
"A356629",
"A356630",
"A356634"
]
| null | Seiichi Manyama, Aug 18 2022 | 2022-08-19T09:25:16 | oeisdata/seq/A356/A356630.seq | e96ce2b31b0a7afccf3c9d6b51d58d0d |
A356631 | a(n) is the least number k such that the sum (with multiplicity) of prime factors of k*(k+1)*...*(k+n-1) is a perfect power. | [
"1",
"4",
"2",
"1",
"4",
"5",
"2",
"1",
"11",
"18",
"8",
"12",
"8",
"15",
"4",
"41",
"10",
"65",
"10",
"39",
"21",
"5",
"54",
"30",
"25",
"2",
"1",
"17",
"43",
"2",
"1",
"80",
"12",
"41",
"206",
"11",
"70",
"39",
"81",
"5",
"289",
"50",
"18",
"56",
"24",
"10",
"49",
"103",
"146",
"77",
"53",
"582",
"31",
"58",
"37",
"419",
"140",
"174",
"77",
"44",
"100",
"168",
"44",
"42",
"99",
"13",
"11",
"80",
"60",
"101",
"71",
"12",
"24",
"70",
"11",
"52",
"671"
]
| [
"nonn"
]
| 12 | 1 | 2 | [
"A001414",
"A001597",
"A356631",
"A356646"
]
| null | J. M. Bergot and Robert Israel, Aug 18 2022 | 2022-09-05T09:10:32 | oeisdata/seq/A356/A356631.seq | ab4f49b27c0e3957291e663a6d2b1b3f |
A356632 | a(n) = n! * Sum_{k=0..floor(n/2)} (n - 2*k)^k/2^k. | [
"1",
"1",
"2",
"9",
"48",
"330",
"2880",
"29610",
"362880",
"5148360",
"83462400",
"1535549400",
"31614105600",
"724183059600",
"18307441152000",
"507367438578000",
"15336404987904000",
"502812808754256000",
"17805001275629568000",
"678167395781763888000",
"27681559049033809920000"
]
| [
"nonn"
]
| 13 | 0 | 3 | [
"A352944",
"A356632",
"A356633",
"A356634"
]
| null | Seiichi Manyama, Aug 18 2022 | 2022-11-01T11:24:55 | oeisdata/seq/A356/A356632.seq | 1647ee993b8b702017d71df5edf572e3 |
A356633 | a(n) = n! * Sum_{k=0..floor(n/3)} (n - 3*k)^k/6^k. | [
"1",
"1",
"2",
"6",
"28",
"160",
"1080",
"8540",
"78400",
"816480",
"9492000",
"122337600",
"1736380800",
"26930904000",
"453515462400",
"8254694448000",
"161734564992000",
"3397235761920000",
"76228261933824000",
"1821644243362944000",
"46233794313907200000",
"1242946827521118720000"
]
| [
"nonn"
]
| 11 | 0 | 3 | [
"A352946",
"A356632",
"A356633",
"A356634"
]
| null | Seiichi Manyama, Aug 18 2022 | 2022-08-19T09:25:51 | oeisdata/seq/A356/A356633.seq | d5cc966183ca9c37a7be8aa7faac6abe |
A356634 | a(n) = n! * Sum_{k=0..floor(n/4)} (n - 4*k)^k/24^k. | [
"1",
"1",
"2",
"6",
"24",
"125",
"780",
"5670",
"47040",
"439110",
"4561200",
"52182900",
"651974400",
"8832874050",
"129001672800",
"2020822303500",
"33805804032000",
"601587281295000",
"11348960759136000",
"226275153994890000",
"4755046903326720000",
"105061084389756495000",
"2435176811445618240000"
]
| [
"nonn"
]
| 11 | 0 | 3 | [
"A356632",
"A356633",
"A356634"
]
| null | Seiichi Manyama, Aug 18 2022 | 2022-08-19T09:25:56 | oeisdata/seq/A356/A356634.seq | e4deaaffd896cd3df7257b4f7d1e2a34 |
A356635 | Numbers k that can be written as the sum of 7 divisors of k (not necessarily distinct). | [
"7",
"8",
"9",
"10",
"12",
"14",
"15",
"16",
"18",
"20",
"21",
"22",
"24",
"27",
"28",
"30",
"32",
"33",
"35",
"36",
"39",
"40",
"42",
"44",
"45",
"48",
"49",
"50",
"52",
"54",
"55",
"56",
"60",
"63",
"64",
"66",
"68",
"70",
"72",
"75",
"77",
"78",
"80",
"81",
"84",
"88",
"90",
"91",
"96",
"98",
"99",
"100",
"102",
"104",
"105",
"108",
"110",
"112",
"114",
"117",
"119",
"120",
"126",
"128",
"130"
]
| [
"nonn"
]
| 22 | 1 | 1 | [
"A000027",
"A299174",
"A354591",
"A355200",
"A355641",
"A356609",
"A356635",
"A356657",
"A356659",
"A356660"
]
| null | Wesley Ivan Hurt, Aug 18 2022 | 2023-08-08T03:22:21 | oeisdata/seq/A356/A356635.seq | 07a9ab9382b9a298a3c1e1545450e418 |
A356636 | Triangle read by rows. T(n, k) = binomial(n, k) * n!^2 / floor(n/2)!^2. | [
"1",
"1",
"1",
"4",
"8",
"4",
"36",
"108",
"108",
"36",
"144",
"576",
"864",
"576",
"144",
"3600",
"18000",
"36000",
"36000",
"18000",
"3600",
"14400",
"86400",
"216000",
"288000",
"216000",
"86400",
"14400",
"705600",
"4939200",
"14817600",
"24696000",
"24696000",
"14817600",
"4939200",
"705600"
]
| [
"nonn",
"tabl"
]
| 6 | 0 | 4 | [
"A056040",
"A193282",
"A253666",
"A356636"
]
| null | Peter Luschny, Aug 19 2022 | 2022-08-19T02:48:25 | oeisdata/seq/A356/A356636.seq | 2617eecf7375a6bfd97acac407a4c28e |
A356637 | a(n) = A000265(A263931(n)). | [
"1",
"1",
"1",
"1",
"1",
"9",
"3",
"3",
"45",
"5",
"1",
"21",
"7",
"175",
"675",
"45",
"45",
"1485",
"5775",
"5775",
"45045",
"2145",
"195",
"8775",
"2925",
"5733",
"22491",
"833",
"6545",
"373065",
"24871",
"24871",
"1566873",
"3086265",
"181545",
"357903",
"39767",
"39767",
"156975",
"309925",
"61985",
"5020785",
"239085",
"20322225",
"160730325"
]
| [
"nonn"
]
| 29 | 0 | 6 | [
"A000265",
"A000984",
"A001316",
"A006519",
"A056040",
"A059097",
"A261130",
"A263931",
"A356637"
]
| null | Peter Luschny, Sep 07 2022 | 2022-09-08T05:47:33 | oeisdata/seq/A356/A356637.seq | 71f1588a16583f648d23c6802abe34f2 |
A356638 | Odd composite numbers k such that 2^((k-1)/2) == -1 (mod k). | [
"3277",
"29341",
"49141",
"80581",
"88357",
"104653",
"196093",
"314821",
"458989",
"476971",
"489997",
"800605",
"838861",
"873181",
"877099",
"1004653",
"1251949",
"1302451",
"1325843",
"1373653",
"1397419",
"1441091",
"1507963",
"1509709",
"1530787",
"1678541",
"1811573",
"1907851",
"1987021",
"2004403",
"2269093"
]
| [
"nonn"
]
| 7 | 1 | 1 | [
"A244626",
"A244628",
"A356638"
]
| null | Jeppe Stig Nielsen, Aug 19 2022 | 2022-08-19T09:13:46 | oeisdata/seq/A356/A356638.seq | 10402fb97bd88505c402bf07ae6d052c |
A356639 | Number of integer sequences b with b(1) = 1, b(m) > 0 and b(m+1) - b(m) > 0, of length n which transform under the map S into a nonnegative integer sequence. The transform c = S(b) is defined by c(m) = Product_{k=1..m} b(k) / Product_{k=2..m} (b(k) - b(k-1)). | [
"1",
"1",
"3",
"17",
"155",
"2677",
"73327",
"3578339",
"329652351"
]
| [
"more",
"nonn"
]
| 51 | 1 | 3 | [
"A000005",
"A000027",
"A000045",
"A000079",
"A000142",
"A001405",
"A001654",
"A004277",
"A006501",
"A008233",
"A010551",
"A019442",
"A019464",
"A026549",
"A031923",
"A038754",
"A057895",
"A058295",
"A062112",
"A066332",
"A079352",
"A082458",
"A087811",
"A093968",
"A098011",
"A098558",
"A100071",
"A100538",
"A111286",
"A137326",
"A138278",
"A166447",
"A171647",
"A205825",
"A208147",
"A264557",
"A264635",
"A308546",
"A329227",
"A336496",
"A349079",
"A349080",
"A356639",
"A359039"
]
| null | Thomas Scheuerle, Aug 19 2022 | 2024-08-01T09:19:00 | oeisdata/seq/A356/A356639.seq | 45e1808a2559392eea2b8940ca4e0d0c |
A356640 | a(n) is the least number k such that the least base in which k is a Niven number is n, i.e., A356552(k) = n, or -1 if no such k exists. | [
"1",
"3",
"50",
"5",
"44",
"7",
"161",
"119",
"201",
"11",
"253",
"13",
"494",
"226",
"1444",
"17",
"799",
"19",
"437",
"1189",
"957",
"23",
"1081",
"2263",
"755",
"767",
"927",
"29",
"932",
"31",
"1147",
"5141",
"1191",
"1226",
"2009",
"37",
"1517",
"1522",
"1641",
"41",
"1927",
"43",
"2021",
"2026",
"2164",
"47",
"2491",
"4559",
"5001",
"2602",
"2757",
"53",
"2972"
]
| [
"nonn",
"base"
]
| 12 | 2 | 2 | [
"A005349",
"A049445",
"A064150",
"A064438",
"A064481",
"A249634",
"A356552",
"A356640"
]
| null | Amiram Eldar, Aug 19 2022 | 2022-08-23T10:50:20 | oeisdata/seq/A356/A356640.seq | efce4fa32e5bb2abc752eedcfae33760 |
A356641 | Indices of records in A356640. | [
"2",
"3",
"4",
"8",
"10",
"12",
"14",
"16",
"25",
"33",
"56",
"63",
"64",
"75",
"78",
"81",
"93",
"120",
"121",
"125",
"144",
"160",
"162",
"169",
"172",
"196",
"216",
"225",
"237",
"244",
"256",
"288",
"320",
"361",
"400",
"456",
"474",
"484",
"513",
"592",
"634",
"676",
"784",
"808",
"961",
"1089",
"1369",
"1936",
"2286",
"2302",
"2360",
"2362",
"2397",
"2401"
]
| [
"nonn",
"base"
]
| 8 | 1 | 1 | [
"A356552",
"A356640",
"A356641",
"A356642"
]
| null | Amiram Eldar, Aug 19 2022 | 2022-09-07T15:45:41 | oeisdata/seq/A356/A356641.seq | c3963a5b9743623459b0983e0e9aa47d |
A356642 | Record values in A356640. | [
"1",
"3",
"50",
"161",
"201",
"253",
"494",
"1444",
"2263",
"5141",
"5695",
"8153",
"9271",
"10877",
"18337",
"23377",
"23989",
"30353",
"33017",
"50003",
"51947",
"55067",
"55867",
"56279",
"88922",
"94231",
"95251",
"100127",
"131021",
"134899",
"169141",
"252566",
"314563",
"323729",
"389113",
"415883",
"453613",
"523147",
"902219",
"1017505"
]
| [
"nonn",
"base"
]
| 5 | 1 | 2 | [
"A356552",
"A356640",
"A356641",
"A356642"
]
| null | Amiram Eldar, Aug 19 2022 | 2022-08-23T09:51:16 | oeisdata/seq/A356/A356642.seq | 549e59155ccd1c37373f0ed2c031eb7b |
A356643 | a(n) is the number of order-n magic triangles composed of the numbers from 1 to n(n+1)/2 in which the sum of the k-th row and the (n-k)-th row is same for all k and all three directions, counted up to rotations and reflections. | [
"1",
"0",
"0",
"0",
"612",
"22411",
"0"
]
| [
"nonn",
"more"
]
| 14 | 1 | 5 | [
"A000217",
"A004767",
"A006052",
"A342467",
"A355119",
"A356643"
]
| null | Donghwi Park, Aug 19 2022 | 2022-10-05T05:00:24 | oeisdata/seq/A356/A356643.seq | 27f1e3308bf7a79e35d7eeba064db260 |
A356644 | Number of vertex cuts in the n-antiprism graph. | [
"0",
"0",
"3",
"48",
"360",
"2057",
"10276",
"47552",
"209871",
"898168",
"3765080",
"15560725",
"63681228",
"258826128",
"1046920155",
"4220390592",
"16973219016",
"68148598817",
"273305152756",
"1095189435488",
"4386195036135",
"17559755662600",
"70280167711928",
"281233465458733",
"1125242449638300",
"4501812479503152"
]
| [
"nonn"
]
| 37 | 1 | 3 | [
"A286183",
"A356644"
]
| null | Eric W. Weisstein, Aug 19 2022 | 2025-02-16T08:34:03 | oeisdata/seq/A356/A356644.seq | 00d0b77bf1fb9f600901c155d72abe77 |
A356645 | a(n) = tau(n)^2 - 4*n^11 where tau is Ramanujan's tau function A000594. | [
"-3",
"-7616",
"-645084",
"-14610432",
"-171983600",
"-1414609920",
"-7628945436",
"-27222867968",
"-112609506987",
"-386562553600",
"-855436691900",
"-2834434031616",
"-6834860379504",
"-16036772433920",
"-33117544971900",
"-69394306695168",
"-89395660818176",
"-249634755002304",
"-352295159176476",
"-768651312742400"
]
| [
"sign"
]
| 6 | 1 | 1 | [
"A000594",
"A008455",
"A356645"
]
| null | Michel Marcus, Aug 19 2022 | 2022-08-19T13:52:49 | oeisdata/seq/A356/A356645.seq | a202a5519f5ceb61885bb457a1160fc1 |
A356646 | Numbers k such that the integer log of k! is a perfect power. | [
"4",
"8",
"27",
"31",
"575",
"669",
"1201",
"2505",
"4784",
"7618",
"35710",
"65005",
"166422",
"870062",
"994086",
"1105670",
"1209538",
"2140133",
"3020610",
"9147713",
"9404277",
"14492743",
"16792162",
"18566766",
"19445469",
"21264479",
"46483343",
"109424090",
"292374429",
"293351547",
"362681674",
"399576585",
"450622855"
]
| [
"nonn"
]
| 20 | 1 | 1 | [
"A001414",
"A001597",
"A025281",
"A356631",
"A356646"
]
| null | J. M. Bergot and Robert Israel, Aug 19 2022 | 2022-08-30T22:08:32 | oeisdata/seq/A356/A356646.seq | 1092db5780d956181cf74d6ca397f2b0 |
A356647 | Concatenation of runs {y..x} for each x>=1, using each y from 1 to x before moving on to the next value for x. | [
"1",
"1",
"2",
"2",
"1",
"2",
"3",
"2",
"3",
"3",
"1",
"2",
"3",
"4",
"2",
"3",
"4",
"3",
"4",
"4",
"1",
"2",
"3",
"4",
"5",
"2",
"3",
"4",
"5",
"3",
"4",
"5",
"4",
"5",
"5",
"1",
"2",
"3",
"4",
"5",
"6",
"2",
"3",
"4",
"5",
"6",
"3",
"4",
"5",
"6",
"4",
"5",
"6",
"5",
"6",
"6",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"2",
"3",
"4",
"5",
"6",
"7",
"3",
"4",
"5",
"6",
"7",
"4",
"5",
"6",
"7",
"5",
"6",
"7",
"6",
"7",
"7",
"1",
"2",
"3"
]
| [
"nonn",
"easy"
]
| 42 | 1 | 3 | [
"A000120",
"A004006",
"A087118",
"A356647"
]
| null | Jonathan Kal-El Peréz, Aug 19 2022 | 2023-02-27T22:51:42 | oeisdata/seq/A356/A356647.seq | ced86654b1fe2009ca5c1cec95db6c44 |
A356648 | Numbers whose square is of the form k + reversal of digits of k, for some k. | [
"2",
"4",
"11",
"22",
"25",
"33",
"101",
"121",
"141",
"202",
"222",
"264",
"303",
"307",
"451",
"836",
"1001",
"1111",
"1221",
"1232",
"2002",
"2068",
"2112",
"2222",
"2305",
"2515",
"2626",
"2636",
"2776",
"3003",
"3958",
"3972",
"4015",
"4081",
"7975",
"8184",
"9757",
"10001",
"10201",
"10401",
"11011",
"11121",
"11211",
"12012",
"12021",
"12221",
"13046",
"16581",
"20002"
]
| [
"nonn",
"base"
]
| 56 | 1 | 1 | [
"A056964",
"A061230",
"A067030",
"A356648",
"A358880",
"A358984"
]
| null | Nicolay Avilov, data a(10)-a(37) from Oleg Sorokin, Dec 10 2022 | 2023-03-15T10:55:56 | oeisdata/seq/A356/A356648.seq | d65a23c205e7c5a5a74300310847afb7 |
A356649 | Domination number of the Cartesian product of three n-cycles. | [
"1",
"2",
"5",
"12",
"20",
"36",
"49"
]
| [
"nonn",
"hard",
"more"
]
| 11 | 1 | 2 | [
"A094087",
"A356649"
]
| null | Richard Bean, Aug 19 2022 | 2022-10-02T00:44:50 | oeisdata/seq/A356/A356649.seq | f56b69b0c3fe4fec935c1519ccea94f5 |
A356650 | Domination number of the Cartesian product of four n-cycles. | [
"1",
"4",
"9",
"32"
]
| [
"hard",
"more",
"nonn"
]
| 10 | 1 | 2 | [
"A094087",
"A356650"
]
| null | Richard Bean, Aug 20 2022 | 2022-10-02T00:44:59 | oeisdata/seq/A356/A356650.seq | 2ecd42569a308a7b9c724e0dcb1cf87e |
A356651 | Triangle read by rows. T(n, k) = [x^k](0^n + 4^n * ((1 - x)^(-1/2) - 1)). | [
"1",
"0",
"2",
"0",
"8",
"6",
"0",
"32",
"24",
"20",
"0",
"128",
"96",
"80",
"70",
"0",
"512",
"384",
"320",
"280",
"252",
"0",
"2048",
"1536",
"1280",
"1120",
"1008",
"924",
"0",
"8192",
"6144",
"5120",
"4480",
"4032",
"3696",
"3432",
"0",
"32768",
"24576",
"20480",
"17920",
"16128",
"14784",
"13728",
"12870",
"0",
"131072",
"98304",
"81920",
"71680",
"64512",
"59136",
"54912",
"51480",
"48620"
]
| [
"nonn",
"tabl"
]
| 10 | 0 | 3 | [
"A000984",
"A004171",
"A172060",
"A356651",
"A357012"
]
| null | Peter Luschny, Sep 08 2022 | 2022-09-09T04:06:21 | oeisdata/seq/A356/A356651.seq | 45bca70821c96ee2501dec547ec6fd4b |
A356652 | Triangle read by rows. Numerators of the coefficients of a sequence of rational polynomials r_n(x) with r_n(1) = B(2*n), where B(n) are the Bernoulli numbers. | [
"1",
"0",
"1",
"0",
"1",
"-1",
"0",
"1",
"-1",
"5",
"0",
"1",
"-41",
"14",
"-140",
"0",
"1",
"-23",
"93",
"-40",
"100",
"0",
"1",
"-157",
"2948",
"-3652",
"7700",
"-15400",
"0",
"1",
"-341",
"18759",
"-1937936",
"520520",
"-280280",
"1401400",
"0",
"1",
"-1927",
"3478",
"-7384676",
"4364360",
"-1430000",
"5605600",
"-8008000"
]
| [
"sign",
"frac",
"tabl"
]
| 10 | 0 | 10 | [
"A000367",
"A002445",
"A269941",
"A356652",
"A356653"
]
| null | Peter Luschny, Sep 02 2022 | 2022-09-02T08:00:39 | oeisdata/seq/A356/A356652.seq | 8c8c59e2588c54193bfbfa4c5fffb154 |
A356653 | Triangle read by rows. Denominators of the coefficients of a sequence of rational polynomials r_n(x) with r_n(1) = B(2*n), where B(n) are the Bernoulli numbers. | [
"1",
"1",
"6",
"1",
"70",
"21",
"1",
"434",
"31",
"93",
"1",
"2286",
"1905",
"127",
"1143",
"1",
"11242",
"1533",
"511",
"73",
"219",
"1",
"53222",
"14329",
"10235",
"2047",
"2047",
"6141",
"1",
"245730",
"40955",
"40955",
"368595",
"24573",
"8191",
"73719",
"1",
"1114078",
"294903",
"4681",
"491505",
"42129",
"4681",
"14043",
"42129"
]
| [
"nonn",
"frac",
"tabl"
]
| 11 | 0 | 3 | [
"A269941",
"A356652",
"A356653"
]
| null | Peter Luschny, Sep 02 2022 | 2022-09-02T08:00:30 | oeisdata/seq/A356/A356653.seq | 9174545d241be02a3d2c2e5d92044c39 |
A356654 | Triangle read by rows. T(n, k) = k! * Sum_{j=k..n} Lah(n, j) * Stirling2(j, k), where Lah(n, k) = A271703(n, k). | [
"1",
"0",
"1",
"0",
"3",
"2",
"0",
"13",
"18",
"6",
"0",
"73",
"158",
"108",
"24",
"0",
"501",
"1510",
"1590",
"720",
"120",
"0",
"4051",
"15962",
"23040",
"15960",
"5400",
"720",
"0",
"37633",
"186270",
"345786",
"325920",
"168000",
"45360",
"5040",
"0",
"394353",
"2385182",
"5469492",
"6579384",
"4594800",
"1884960",
"423360",
"40320"
]
| [
"nonn",
"tabl"
]
| 8 | 0 | 5 | [
"A000262",
"A048993",
"A052838",
"A084358",
"A225479",
"A271703",
"A356654"
]
| null | Peter Luschny, Sep 01 2022 | 2022-09-01T17:29:13 | oeisdata/seq/A356/A356654.seq | 54d1e332d27eacb07b2a95527aae3291 |
A356655 | Clausen numbers based on the strictly proper divisors of n, 1 < d < n. | [
"1",
"1",
"1",
"1",
"3",
"1",
"3",
"1",
"15",
"1",
"3",
"1",
"105",
"1",
"3",
"1",
"15",
"1",
"21",
"1",
"165",
"1",
"3",
"1",
"1365",
"1",
"3",
"1",
"15",
"1",
"231",
"1",
"255",
"1",
"3",
"1",
"25935",
"1",
"3",
"1",
"165",
"1",
"21",
"1",
"345",
"1",
"3",
"1",
"23205",
"1",
"33",
"1",
"15",
"1",
"399",
"1",
"435",
"1",
"3",
"1",
"465465",
"1",
"3",
"1",
"255",
"1",
"483",
"1",
"15",
"1",
"33",
"1"
]
| [
"nonn"
]
| 14 | 0 | 5 | [
"A160014",
"A166120",
"A356655"
]
| null | Peter Luschny, Aug 20 2022 | 2022-08-21T06:13:03 | oeisdata/seq/A356/A356655.seq | 98e90365680ad6c1693b68de0cf35044 |
A356656 | Partition triangle read by rows. The coefficients of the incomplete Bell polynomials. | [
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"3",
"1",
"0",
"1",
"4",
"3",
"6",
"1",
"0",
"1",
"5",
"10",
"10",
"15",
"10",
"1",
"0",
"1",
"6",
"15",
"10",
"15",
"60",
"15",
"20",
"45",
"15",
"1",
"0",
"1",
"7",
"21",
"35",
"21",
"105",
"70",
"105",
"35",
"210",
"105",
"35",
"105",
"21",
"1",
"0",
"1",
"8",
"28",
"56",
"35",
"28",
"168",
"280",
"210",
"280",
"56",
"420",
"280",
"840",
"105",
"70",
"560",
"420",
"56",
"210",
"28",
"1"
]
| [
"nonn",
"tabf"
]
| 11 | 0 | 9 | [
"A000110",
"A036040",
"A048993",
"A052810",
"A080575",
"A132393",
"A178867",
"A356656"
]
| null | Peter Luschny, Aug 28 2022 | 2022-08-28T16:57:36 | oeisdata/seq/A356/A356656.seq | 898df046baf4cefae4e8b35cec0a39a3 |
A356657 | Numbers k that can be written as the sum of 8 divisors of k (not necessarily distinct). | [
"8",
"10",
"12",
"14",
"16",
"18",
"20",
"22",
"24",
"26",
"28",
"30",
"32",
"36",
"40",
"42",
"44",
"48",
"50",
"52",
"54",
"56",
"60",
"64",
"66",
"68",
"70",
"72",
"76",
"78",
"80",
"84",
"88",
"90",
"96",
"98",
"100",
"102",
"104",
"108",
"110",
"112",
"114",
"120",
"126",
"128",
"130",
"132",
"136",
"138",
"140",
"144",
"150",
"152",
"154",
"156",
"160",
"162",
"168",
"170",
"174",
"176"
]
| [
"nonn"
]
| 21 | 1 | 1 | [
"A000027",
"A299174",
"A354591",
"A355200",
"A355641",
"A356609",
"A356635",
"A356657",
"A356659",
"A356660"
]
| null | Wesley Ivan Hurt, Aug 20 2022 | 2022-09-04T12:28:00 | oeisdata/seq/A356/A356657.seq | 5216a992f7f048aec7ae819f4e196807 |
A356658 | The number of orderings of the hypercube Q_n whose disorder number is equal to the disorder number of Q_n. | [
"2",
"8",
"48",
"2304",
"4024320"
]
| [
"nonn",
"more"
]
| 9 | 1 | 1 | [
"A271771",
"A356658"
]
| null | Sela Fried, Aug 20 2022 | 2022-09-11T09:30:28 | oeisdata/seq/A356/A356658.seq | 2f0bce71eb5f9fdad29a0ed33344cf05 |
A356659 | Numbers k that can be written as the sum of 9 divisors of k (not necessarily distinct). | [
"9",
"10",
"12",
"14",
"15",
"16",
"18",
"20",
"21",
"22",
"24",
"25",
"26",
"27",
"28",
"30",
"32",
"33",
"35",
"36",
"39",
"40",
"42",
"44",
"45",
"48",
"50",
"51",
"52",
"54",
"55",
"56",
"57",
"60",
"63",
"64",
"65",
"66",
"68",
"70",
"72",
"75",
"76",
"77",
"78",
"80",
"81",
"84",
"85",
"88",
"90",
"92",
"96",
"98",
"99",
"100",
"102",
"104",
"105",
"108",
"110",
"112",
"114",
"117",
"120",
"125"
]
| [
"nonn"
]
| 15 | 1 | 1 | [
"A000027",
"A299174",
"A354591",
"A355200",
"A355641",
"A356609",
"A356635",
"A356657",
"A356659",
"A356660"
]
| null | Wesley Ivan Hurt, Aug 20 2022 | 2022-10-09T09:42:18 | oeisdata/seq/A356/A356659.seq | 0563a71c8eff1fa4446929974b892ec2 |
A356660 | Numbers k that can be written as the sum of 10 divisors of k (not necessarily distinct). | [
"10",
"12",
"14",
"16",
"18",
"20",
"22",
"24",
"26",
"28",
"30",
"32",
"34",
"36",
"40",
"42",
"44",
"48",
"50",
"52",
"54",
"56",
"60",
"64",
"66",
"68",
"70",
"72",
"76",
"78",
"80",
"84",
"88",
"90",
"92",
"96",
"98",
"100",
"102",
"104",
"108",
"110",
"112",
"114",
"116",
"120",
"126",
"128",
"130",
"132",
"136",
"138",
"140",
"144",
"150",
"152",
"154",
"156",
"160",
"162"
]
| [
"nonn"
]
| 24 | 1 | 1 | [
"A000027",
"A299174",
"A354591",
"A355200",
"A355641",
"A356609",
"A356635",
"A356657",
"A356659",
"A356660"
]
| null | Wesley Ivan Hurt, Aug 20 2022 | 2022-10-09T09:42:22 | oeisdata/seq/A356/A356660.seq | 19dc8c7c34496bbf5c3828e0cba1413b |
A356661 | a(n) = n! * Sum_{d|n} 1/d^(n/d - 1). | [
"1",
"4",
"12",
"60",
"240",
"1860",
"10080",
"95760",
"766080",
"8210160",
"79833600",
"1100484000",
"12454041600",
"188172784800",
"2683799838720",
"44951306400000",
"711374856192000",
"13745322470880000",
"243290200817664000",
"5142812718440517120",
"103294640229580800000",
"2351280996859354560000"
]
| [
"nonn"
]
| 13 | 1 | 2 | [
"A087905",
"A087909",
"A098558",
"A356661",
"A356662"
]
| null | Seiichi Manyama, Aug 21 2022 | 2022-08-21T09:26:47 | oeisdata/seq/A356/A356661.seq | d6644ac39fbcd98b0dcda8afc562fbe4 |
A356662 | a(n) = n! * Sum_{d|n} 1/(d!)^(n/d - 1). | [
"1",
"4",
"12",
"60",
"240",
"1740",
"10080",
"87360",
"735840",
"7514640",
"79833600",
"976686480",
"12454041600",
"175736040480",
"2616448554720",
"42011071502400",
"711374856192000",
"12830610027755520",
"243290200817664000",
"4870565189425615680",
"102182981410948838400",
"2249099140674523737600"
]
| [
"nonn"
]
| 13 | 1 | 2 | [
"A061095",
"A098558",
"A356543",
"A356661",
"A356662"
]
| null | Seiichi Manyama, Aug 21 2022 | 2022-08-21T09:26:51 | oeisdata/seq/A356/A356662.seq | 128dda36608b04a0522e693ae847679e |
A356663 | Number of ways to create an angle excess of n degrees using 3 distinct regular polygons with integral internal angles. | [
"0",
"1",
"3",
"1",
"3",
"5",
"1",
"3",
"4",
"5",
"2",
"7",
"2",
"5",
"6",
"4",
"2",
"6",
"2",
"4",
"5",
"4",
"2",
"5",
"4",
"4",
"6",
"5",
"2",
"7",
"2",
"5",
"6",
"4",
"6",
"7",
"4",
"6",
"9",
"7",
"5",
"9",
"6",
"9",
"9",
"8",
"6",
"10",
"6",
"7",
"8",
"6",
"6",
"8",
"6",
"5",
"7",
"6",
"4",
"10",
"3",
"7",
"7",
"7",
"7",
"10",
"6",
"6",
"10",
"9",
"7",
"9",
"6",
"9",
"11",
"10",
"7",
"10"
]
| [
"nonn"
]
| 15 | 1 | 3 | [
"A356444",
"A356663"
]
| null | Joseph C. Y. Wong, Aug 21 2022 | 2022-10-02T00:43:30 | oeisdata/seq/A356/A356663.seq | 7703cca76f0eb55893aaf8cf5e176aac |
A356664 | Numbers k such that A225205(k) is in A354549. | [
"0",
"2",
"4",
"10",
"12",
"14",
"18",
"20",
"22",
"30",
"32",
"34",
"38",
"40",
"44",
"48",
"52",
"60",
"62",
"72",
"76",
"78",
"80",
"82",
"92",
"94",
"100",
"104",
"116",
"120",
"126",
"130",
"132",
"134",
"138",
"140",
"142",
"144",
"146",
"148",
"152",
"154",
"156",
"158",
"160",
"168",
"176",
"180",
"182",
"186",
"188",
"192",
"194",
"202",
"210",
"222",
"224",
"226",
"228",
"230",
"232"
]
| [
"nonn"
]
| 14 | 1 | 2 | [
"A001622",
"A225204",
"A225205",
"A354513",
"A354549",
"A356591",
"A356664"
]
| null | Jianing Song, Aug 21 2022 | 2022-08-28T08:28:59 | oeisdata/seq/A356/A356664.seq | acdd2a5d51dee6e53382c2277ede1991 |
A356665 | Number of correct decimal digits of the approximation of Pi obtained from the continued fraction convergents A002485(n)/A002486(n). | [
"1",
"3",
"5",
"7",
"10",
"10",
"10",
"10",
"12",
"11",
"13",
"13",
"15",
"16",
"16",
"17",
"18",
"18",
"19",
"20",
"22",
"24",
"25",
"25",
"26",
"28",
"30",
"31",
"31",
"33",
"34",
"35",
"38",
"40",
"41",
"41",
"42",
"43",
"45",
"46",
"46",
"47",
"48",
"50",
"51",
"52",
"52",
"54",
"55",
"56",
"56",
"57",
"57",
"59",
"60",
"60",
"61",
"61",
"62",
"61",
"63",
"65",
"64"
]
| [
"nonn",
"base",
"easy"
]
| 34 | 2 | 2 | [
"A000796",
"A002485",
"A002486",
"A356665"
]
| null | Daniel Mondot, Aug 21 2022 | 2023-01-01T17:14:44 | oeisdata/seq/A356/A356665.seq | 31f675e59e770bb3be524f857917d06c |
A356666 | Smallest m such that the m-th Lucas number has exactly n divisors that are also Lucas numbers. | [
"1",
"0",
"3",
"6",
"15",
"30",
"45",
"90",
"105",
"210",
"405",
"810",
"315",
"630",
"3645",
"2025",
"945",
"1890",
"1575",
"3150",
"2835",
"5670",
"36450",
"25025",
"3465",
"6930",
"101250",
"11025",
"22050",
"51030",
"14175",
"28350",
"10395",
"20790",
"2952450",
"175175",
"17325",
"34650",
"1937102445",
"625625",
"31185",
"62370",
"127575",
"255150"
]
| [
"nonn"
]
| 19 | 1 | 3 | [
"A000032",
"A038547",
"A102460",
"A105802",
"A304092",
"A356123",
"A356666"
]
| null | Michel Marcus, Aug 22 2022 | 2022-09-04T12:35:44 | oeisdata/seq/A356/A356666.seq | 51c04d1629c0d62fb4b772071837210f |
A356667 | Expansion of e.g.f. Sum_{k>=0} x^k / (1 - k*x^k/k!). | [
"1",
"1",
"4",
"12",
"72",
"240",
"2520",
"10080",
"127680",
"816480",
"11037600",
"79833600",
"1514177280",
"12454041600",
"261655954560",
"2699348652000",
"62869385779200",
"711374856192000",
"19407798693803520",
"243290200817664000",
"7300765959334848000",
"102980278869910041600"
]
| [
"nonn"
]
| 16 | 0 | 3 | [
"A356632",
"A356633",
"A356634",
"A356667",
"A356668"
]
| null | Seiichi Manyama, Aug 22 2022 | 2022-08-22T10:06:07 | oeisdata/seq/A356/A356667.seq | 925d3385933f19c13b3a861edb1caf69 |
A356668 | Expansion of e.g.f. Sum_{k>=0} x^k / (k! - k*x^k). | [
"1",
"1",
"3",
"7",
"37",
"121",
"1141",
"5041",
"60761",
"378001",
"5444461",
"39916801",
"729041545",
"6227020801",
"130767460825",
"1321314894901",
"31388220966961",
"355687428096001",
"9636906872926477",
"121645100408832001",
"3649432697160095561",
"51223991519836175041",
"1686001091666419279753"
]
| [
"nonn"
]
| 15 | 0 | 3 | [
"A038507",
"A327578",
"A356029",
"A356328",
"A356608",
"A356667",
"A356668"
]
| null | Seiichi Manyama, Aug 22 2022 | 2022-08-22T10:06:03 | oeisdata/seq/A356/A356668.seq | e450365496b840010706fc9d8e7246ff |
A356669 | The number of controllable graphs on n vertices. | [
"1",
"0",
"0",
"0",
"0",
"8",
"92",
"2332",
"85036",
"5578994"
]
| [
"nonn",
"hard",
"more"
]
| 12 | 1 | 6 | [
"A356669",
"A371897"
]
| null | R. J. Mathar, Aug 22 2022 | 2024-04-11T18:09:31 | oeisdata/seq/A356/A356669.seq | 859571e7e488533a20d677bf26b9fd0f |
A356670 | a(n) is the number of correct decimal digits of Pi obtained from the fraction A355622(n)/A355623(n). | [
"0",
"2",
"3",
"2",
"4",
"4",
"7",
"8",
"8",
"10",
"10",
"11",
"11",
"14",
"14",
"15",
"16",
"18",
"18",
"18",
"19",
"20",
"22"
]
| [
"nonn",
"base",
"more"
]
| 23 | 1 | 2 | [
"A000796",
"A355622",
"A355623",
"A356670",
"A356671"
]
| null | Stefano Spezia, Aug 22 2022 | 2022-10-13T10:58:41 | oeisdata/seq/A356/A356670.seq | c5408293f6a85ee5682540b0bd5e2e78 |
A356671 | Positive integers k such that A356670(k) = k. | [
"2",
"7",
"8",
"10",
"14",
"18",
"22"
]
| [
"nonn",
"more"
]
| 9 | 1 | 1 | [
"A356670",
"A356671"
]
| null | Stefano Spezia, Aug 22 2022 | 2022-10-13T10:58:37 | oeisdata/seq/A356/A356671.seq | b50307ac4dbc47f9f7a731bdc1f820fc |
A356672 | a(n) = n! * Sum_{k=0..n} k^(2*(n-k))/k!. | [
"1",
"1",
"3",
"19",
"253",
"5661",
"188191",
"8983423",
"594848409",
"52174034713",
"5852229698971",
"822684190381131",
"142739480367287893",
"30074750245383836149",
"7575373641076070706423",
"2252600759590927171373431",
"783103569459739402827046321",
"315587346190678252431713684913"
]
| [
"nonn"
]
| 9 | 0 | 3 | [
"A234568",
"A354436",
"A356628",
"A356672",
"A356673"
]
| null | Seiichi Manyama, Aug 22 2022 | 2022-08-22T14:28:48 | oeisdata/seq/A356/A356672.seq | a8d623038069a2daa154d06ba0dc348e |
A356673 | a(n) = n! * Sum_{k=0..n} k^(3*(n-k))/k!. | [
"1",
"1",
"3",
"31",
"901",
"45741",
"3960871",
"584698843",
"130554106761",
"40790044059481",
"17681098707667531",
"10491554658622447191",
"8198225417359164798733",
"8172446419302496167191941",
"10264848632098736708582150511"
]
| [
"nonn"
]
| 14 | 0 | 3 | [
"A349880",
"A354436",
"A356629",
"A356672",
"A356673",
"A358687"
]
| null | Seiichi Manyama, Aug 22 2022 | 2022-11-27T06:44:31 | oeisdata/seq/A356/A356673.seq | c9b7b7c62fbefdd81c633b55e6fda174 |
A356674 | a(n) = n! * Sum_{k=0..n} k^(k*(n-k))/k!. | [
"1",
"2",
"5",
"25",
"349",
"19941",
"4440391",
"4382699203",
"17687865017481",
"356274213630958297",
"33338407933090938442411",
"16214021627369697901867402911",
"43817834057167927861655409052462093",
"595284492835035398061242850538179192931525"
]
| [
"nonn"
]
| 15 | 0 | 2 | [
"A327578",
"A349893",
"A354436",
"A356672",
"A356673",
"A356674"
]
| null | Seiichi Manyama, Aug 22 2022 | 2022-11-27T05:12:41 | oeisdata/seq/A356/A356674.seq | 039bee9a383e22e90f5cb8e967bd29e1 |
A356675 | Lexicographically earliest infinite sequence satisfying a(1) > -1 and a(n-1) = A075826(a(n)). | [
"1",
"5",
"9",
"16",
"27",
"38",
"48",
"58",
"66",
"76",
"87",
"98",
"117",
"136",
"155",
"177",
"198",
"215",
"235",
"254",
"275",
"295",
"310",
"333",
"350",
"372",
"394",
"411",
"433",
"452",
"474",
"495",
"514",
"535",
"555",
"576",
"598",
"615",
"635",
"650",
"669",
"689",
"705",
"728",
"749",
"773",
"795",
"810",
"833",
"850",
"872",
"894",
"913",
"934",
"950",
"973",
"994",
"1013",
"1034",
"1050",
"1071",
"1093"
]
| [
"nonn",
"word"
]
| 47 | 1 | 2 | [
"A005589",
"A075826",
"A356675"
]
| null | Aidan Clarke, Aug 22 2022 | 2022-11-26T09:38:28 | oeisdata/seq/A356/A356675.seq | f9503e74a5cc9f7aa6a511cd0c65a46d |
A356676 | A certain morphism applied to A007814 that is related to the lexicographically least infinite squarefree words over the nonnegative integers. | [
"0",
"1",
"0",
"2",
"0",
"3",
"0",
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0",
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0",
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0",
"1",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0",
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0",
"2",
"0"
]
| [
"nonn"
]
| 21 | 1 | 4 | [
"A007814",
"A356676",
"A356677",
"A356679"
]
| null | Joey Lakerdas-Gayle, Aug 22 2022 | 2022-11-27T09:02:56 | oeisdata/seq/A356/A356676.seq | cc4c5b65b53fb1812ecc35362e94e3c4 |
A356677 | The lexicographically earliest infinite squarefree sequence of nonnegative integers that starts with 1. | [
"1",
"0",
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0",
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"3",
"0",
"1",
"0",
"3",
"0",
"2",
"0",
"1",
"0",
"2",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"3",
"0",
"1",
"0",
"3",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0",
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0",
"1",
"2",
"0",
"2",
"3",
"0",
"1",
"0"
]
| [
"nonn"
]
| 43 | 1 | 4 | [
"A007814",
"A356676",
"A356677",
"A356678",
"A356679",
"A356680",
"A356681",
"A356682"
]
| null | Joey Lakerdas-Gayle, Aug 22 2022 | 2022-11-27T09:02:48 | oeisdata/seq/A356/A356677.seq | 5727ce1e6bbee99b56386db3efce5639 |
A356678 | The lexicographically earliest infinite squarefree sequence of nonnegative integers that starts with 2. | [
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0",
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0",
"2",
"0",
"1",
"0",
"2",
"1",
"0",
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0",
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0",
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0",
"1",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"3",
"0",
"1",
"0",
"2"
]
| [
"nonn"
]
| 24 | 1 | 1 | [
"A007814",
"A356677",
"A356678",
"A356679",
"A356680",
"A356681",
"A356682"
]
| null | Joey Lakerdas-Gayle, Aug 22 2022 | 2023-01-03T01:27:41 | oeisdata/seq/A356/A356678.seq | ee96b1a75e3e216c3b304c46dc2932b6 |
A356679 | The lexicographically earliest infinite squarefree sequence of nonnegative integers that starts with 3. | [
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0",
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0",
"1",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0",
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0",
"2",
"0",
"1",
"0",
"2",
"1",
"0",
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0"
]
| [
"nonn"
]
| 17 | 1 | 1 | [
"A007814",
"A356676",
"A356677",
"A356678",
"A356679",
"A356680",
"A356681",
"A356682"
]
| null | Joey Lakerdas-Gayle, Oct 18 2022 | 2022-11-28T12:20:00 | oeisdata/seq/A356/A356679.seq | cac6cfaf46fca25ee1274c788b0b6833 |
A356680 | The lexicographically earliest infinite squarefree sequence of nonnegative integers that starts with 1, 2. | [
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0",
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"3",
"0",
"1",
"0",
"3",
"0",
"2",
"0",
"1",
"0",
"2",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"3",
"0",
"1",
"0",
"3",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1"
]
| [
"nonn"
]
| 17 | 1 | 2 | [
"A007814",
"A356677",
"A356678",
"A356679",
"A356680",
"A356681",
"A356682"
]
| null | Joey Lakerdas-Gayle, Oct 18 2022 | 2023-01-03T00:47:43 | oeisdata/seq/A356/A356680.seq | 12275e67d19644de54a08a397ef0314c |
A356681 | The lexicographically earliest infinite squarefree sequence of nonnegative integers that starts with 1, 3. | [
"1",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0",
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0",
"1",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0",
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"3",
"0",
"1"
]
| [
"nonn"
]
| 15 | 1 | 2 | [
"A007814",
"A356677",
"A356678",
"A356679",
"A356680",
"A356681",
"A356682"
]
| null | Joey Lakerdas-Gayle, Oct 18 2022 | 2023-01-03T01:27:14 | oeisdata/seq/A356/A356681.seq | 57b7d56358ae9731f872f1f27ad0900f |
A356682 | The lexicographically earliest infinite squarefree sequence of nonnegative integers that starts with 2, 1. | [
"2",
"1",
"0",
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"0",
"2",
"1",
"0",
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"2",
"1",
"0",
"1",
"2",
"0",
"1",
"0",
"2",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"3",
"0",
"1",
"0",
"3",
"0",
"2",
"0",
"1",
"0",
"2",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"3",
"0",
"1",
"0",
"2",
"0",
"3",
"0",
"1",
"0",
"3",
"1",
"0",
"1",
"2",
"0",
"1",
"0",
"2"
]
| [
"nonn"
]
| 15 | 1 | 1 | [
"A007814",
"A356677",
"A356678",
"A356679",
"A356680",
"A356681",
"A356682"
]
| null | Joey Lakerdas-Gayle, Oct 18 2022 | 2023-01-03T09:26:04 | oeisdata/seq/A356/A356682.seq | 5a668b95437989e936edde5432c51b26 |
A356683 | a(n) is the smallest positive k such that the count of squarefree numbers <= k that have n prime factors is equal to the count of squarefree numbers <= k that have n-1 prime factors (and the count is positive). | [
"2",
"39",
"1279786",
"8377774397163159586"
]
| [
"nonn",
"bref",
"hard",
"more"
]
| 51 | 1 | 1 | [
"A000040",
"A005117",
"A006881",
"A007304",
"A046386",
"A046387",
"A067885",
"A072047",
"A115343",
"A123321",
"A123322",
"A281222",
"A340316",
"A356683"
]
| null | Jon E. Schoenfield, Nov 22 2022 | 2025-01-31T17:23:48 | oeisdata/seq/A356/A356683.seq | 7dcd9fcf3dd9b7643542dd3e7b782da4 |
A356684 | a(n) = (n-1)*a(n-1) - n*a(n-2), with a(1) = a(2) = -1. | [
"-1",
"-1",
"1",
"7",
"23",
"73",
"277",
"1355",
"8347",
"61573",
"523913",
"5024167",
"53479135",
"624890417",
"7946278813",
"109195935523",
"1612048228547",
"25439293045885",
"427278358483537",
"7609502950269503",
"143217213477235783",
"2840152418116022377"
]
| [
"sign",
"easy"
]
| 21 | 1 | 4 | [
"A051403",
"A356247",
"A356684"
]
| null | Mohammed Bouras, Aug 22 2022 | 2023-06-05T07:36:53 | oeisdata/seq/A356/A356684.seq | 96973dc6378e49b29b24f575f69b1740 |
A356685 | Number of inequivalent simultaneous colorings of the faces, vertices and edges of the cube under rotational symmetry using at most n colors. | [
"1",
"2802752",
"105912891117",
"187650085502976",
"62088173933203125",
"7107572036889562176",
"391145014323085681337",
"12592977289302016786432",
"269211745393024690982601",
"4166666666704170025000000"
]
| [
"nonn",
"easy"
]
| 20 | 1 | 2 | [
"A355502",
"A356685"
]
| null | Marko Riedel, Aug 22 2022 | 2022-08-24T09:31:33 | oeisdata/seq/A356/A356685.seq | 20e3744b873acb11280f85f5dc19e793 |
A356686 | Decimal expansion of the constant p^*_0 related to Shallit's constant (A086276). | [
"1",
"4",
"4",
"7",
"0",
"5",
"4",
"3",
"5",
"0",
"0",
"1",
"6",
"2",
"7",
"9",
"4",
"0",
"6",
"5",
"6",
"4",
"3",
"6",
"5",
"3",
"2",
"0",
"2",
"2",
"3",
"2",
"2",
"1",
"5",
"0",
"1",
"3",
"4",
"5",
"1",
"1",
"4",
"7",
"7",
"6",
"6",
"0",
"9",
"9",
"6",
"3",
"3",
"5",
"4",
"1",
"9",
"1",
"1",
"6",
"0",
"4",
"2",
"6",
"0",
"9",
"2",
"8",
"8",
"8",
"4",
"5",
"9",
"4",
"9",
"5",
"5",
"3",
"8",
"1",
"5"
]
| [
"nonn",
"cons"
]
| 17 | 1 | 2 | [
"A086276",
"A356686"
]
| null | Georg Fischer, Aug 23 2022 | 2022-08-25T08:58:21 | oeisdata/seq/A356/A356686.seq | cc3fe46f315efbc4b04435add6c8a150 |
A356687 | a(n) = n! * Sum_{k=0..n} k^(2*n)/k!. | [
"1",
"1",
"18",
"927",
"94876",
"16251045",
"4210190766",
"1543550310211",
"764096247603480",
"493254380867214249",
"404269328278061434810",
"411862088865696890314311",
"512690851568229926690616948",
"768775988931240685277619894157"
]
| [
"nonn"
]
| 17 | 0 | 3 | [
"A030297",
"A249459",
"A256016",
"A356672",
"A356687",
"A356688"
]
| null | Seiichi Manyama, Aug 23 2022 | 2022-08-24T12:09:11 | oeisdata/seq/A356/A356687.seq | 904eceb18645f886d7263f930e059892 |
A356688 | a(n) = n! * Sum_{k=0..n} k^(3*n)/k!. | [
"1",
"1",
"66",
"21225",
"18952156",
"36175231585",
"126556309395486",
"733064060959310689",
"6540867625730306094360",
"85180334386943946887707617",
"1552697061493449955344530003290",
"38315904135534199560725372265381721",
"1245605749857294018587318829355458646068"
]
| [
"nonn"
]
| 16 | 0 | 3 | [
"A256016",
"A337001",
"A349901",
"A356673",
"A356687",
"A356688"
]
| null | Seiichi Manyama, Aug 23 2022 | 2022-08-24T12:09:20 | oeisdata/seq/A356/A356688.seq | 876516c0556c25de524072f940604ed2 |
A356689 | a(n) = n! * Sum_{k=0..n} k^(k*n)/k!. | [
"1",
"2",
"20",
"19887",
"4297096180",
"298028721722131825",
"10314430386434427534836297166",
"256923580889667624113335512704714686054849",
"6277101737079381675512518990977258744796239498871290255000"
]
| [
"nonn"
]
| 13 | 0 | 2 | [
"A256016",
"A349886",
"A356674",
"A356687",
"A356688",
"A356689"
]
| null | Seiichi Manyama, Aug 23 2022 | 2022-09-17T08:44:42 | oeisdata/seq/A356/A356689.seq | 0058c284f93fe21ab1ba07d769db88fd |
A356690 | Product of the prime numbers that are between 10*n and 10*(n+1). | [
"210",
"46189",
"667",
"1147",
"82861",
"3127",
"4087",
"409457",
"7387",
"97",
"121330189",
"113",
"127",
"2494633",
"149",
"23707",
"27221",
"30967",
"181",
"1445140189",
"1",
"211",
"11592209",
"55687",
"241",
"64507",
"70747",
"75067",
"79523",
"293",
"307",
"30857731",
"1",
"111547",
"121103",
"126727",
"367",
"141367",
"148987",
"397",
"164009",
"419",
"421"
]
| [
"nonn",
"easy"
]
| 45 | 0 | 1 | [
"A000040",
"A000720",
"A032352",
"A179816",
"A216292",
"A356690"
]
| null | Hemjyoti Nath, Aug 23 2022 | 2022-09-30T16:30:08 | oeisdata/seq/A356/A356690.seq | e420672345be63a689f20546ac0cf6ec |
A356691 | a(n) = n! * Sum_{k=0..n} k^(2*k)/k!. | [
"1",
"2",
"20",
"789",
"68692",
"10109085",
"2237436846",
"693885130771",
"287026057756824",
"152677869816810537",
"101526778698168105370",
"82519543952519610272391",
"80487081730821079456710228",
"92779662255769290691336848973",
"124775610962828705895908497741878"
]
| [
"nonn"
]
| 14 | 0 | 2 | [
"A062206",
"A277506",
"A350008",
"A356689",
"A356691"
]
| null | Seiichi Manyama, Aug 23 2022 | 2022-08-23T09:41:10 | oeisdata/seq/A356/A356691.seq | d16211e2f32d7d8a9bca2ad55ac6fe5f |
A356692 | Pascal-like triangle, where each entry is the sum of the four entries above it starting with 1 at the top. | [
"1",
"1",
"1",
"2",
"2",
"2",
"4",
"6",
"6",
"4",
"10",
"16",
"20",
"16",
"10",
"26",
"46",
"62",
"62",
"46",
"26",
"72",
"134",
"196",
"216",
"196",
"134",
"72",
"206",
"402",
"618",
"742",
"742",
"618",
"402",
"206",
"608",
"1226",
"1968",
"2504",
"2720",
"2504",
"1968",
"1226",
"608",
"1834",
"3802",
"6306",
"8418",
"9696",
"9696",
"8418",
"6306",
"3802",
"1834",
"5636",
"11942",
"20360",
"28222",
"34116",
"36228",
"34116",
"28222",
"20360",
"11942",
"5636"
]
| [
"nonn",
"tabl"
]
| 28 | 0 | 4 | [
"A007318",
"A064189",
"A216837",
"A356692",
"A356832",
"A356853"
]
| null | Greg Dresden and Sadek Mohammed, Aug 23 2022 | 2022-09-03T22:08:23 | oeisdata/seq/A356/A356692.seq | 9e50b3944cd9d3eab8fe1b51402987aa |
A356693 | Decimal expansion of the constant B(2) = Sum_{n>=1} Sum_{m>=n+1} 1/(z(n)*z(m))^2 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function. | [
"0",
"0",
"0",
"2",
"4",
"8",
"3",
"3",
"4",
"0",
"5",
"3",
"7",
"8",
"9",
"1",
"4",
"4",
"1",
"7",
"5",
"7",
"2",
"3",
"8",
"5",
"6",
"4",
"4",
"5",
"2",
"0",
"8",
"8",
"1",
"7",
"7",
"2",
"6",
"2",
"0",
"1",
"4",
"7",
"6",
"4",
"7",
"2",
"5",
"9",
"8",
"0",
"2",
"0",
"3",
"0",
"7",
"3",
"3",
"8",
"1",
"5",
"4",
"5",
"2",
"6",
"0",
"6",
"7",
"4",
"9",
"8",
"3",
"3",
"2",
"5",
"1",
"8",
"3",
"1",
"4",
"9",
"0",
"4",
"6",
"9",
"7",
"9",
"2",
"4",
"0",
"4",
"8",
"3",
"7",
"2",
"0",
"2",
"3",
"1",
"7",
"1",
"9",
"8",
"2",
"2",
"2",
"8",
"7",
"6",
"5",
"6",
"9",
"1",
"7",
"4",
"5",
"9"
]
| [
"nonn",
"cons"
]
| 26 | 0 | 4 | [
"A013629",
"A074760",
"A104539",
"A104540",
"A104541",
"A104542",
"A245275",
"A245276",
"A306339",
"A306340",
"A306341",
"A332645",
"A333360",
"A335814",
"A335815",
"A355283",
"A356693"
]
| null | Artur Jasinski, Aug 23 2022 | 2022-11-06T09:11:59 | oeisdata/seq/A356/A356693.seq | 1cc552ebabe048a808534f47660f18bd |
A356694 | Number of unrooted hypermaps of genus 4 with n darts. | [
"900",
"58032",
"2112300",
"57017238",
"1269067260",
"24635879496",
"431403755052",
"6967561712925",
"105413618746896",
"1510962076238986",
"20695115375890776",
"272660503240047690",
"3473773540061130158",
"42978345198144175632",
"518176854304561585680",
"6105782484587260861256",
"70484498508285180442512",
"798783395497239872773008"
]
| [
"nonn"
]
| 4 | 9 | 1 | [
"A318104",
"A356694"
]
| null | R. J. Mathar, Aug 23 2022 | 2022-08-23T14:11:08 | oeisdata/seq/A356/A356694.seq | 8c03d5840d569599ee6d5b969abb489a |
A356695 | Expansion of x*(1+x-7*x^3-3*x^4+x^5)/(1-2*x^2-9*x^3+3*x^5). | [
"1",
"1",
"2",
"4",
"10",
"24",
"53",
"132",
"310",
"711",
"1736",
"4053",
"9475",
"22800",
"53294",
"125667",
"299629",
"702555",
"1661861",
"3941889",
"9269716",
"21941640",
"51908768",
"122325141",
"289466629",
"684020046",
"1614034607",
"3817513449",
"9017274205",
"21292938474",
"50340109313",
"118899240972"
]
| [
"nonn",
"easy"
]
| 14 | 1 | 3 | [
"A131572",
"A356695"
]
| null | R. J. Mathar, Aug 23 2022 | 2023-04-20T18:14:32 | oeisdata/seq/A356/A356695.seq | 2f295f5f8c1c6e66070e8bff631dca5d |
A356696 | a(n) = Fibonacci(2n-1) - 2^n + binomial(n,2) + 2. | [
"2",
"1",
"1",
"2",
"5",
"14",
"42",
"128",
"384",
"1123",
"3204",
"8955",
"24629",
"66913",
"180127",
"481568",
"1280855",
"3393644",
"8965476",
"23633702",
"62197602",
"163483201",
"429300366",
"1126514817",
"2954438135",
"7745187919",
"20297902537",
"53182073798",
"139315427369",
"364898425658",
"955648284654"
]
| [
"nonn",
"easy"
]
| 25 | 0 | 1 | [
"A000045",
"A000108",
"A000325",
"A307464",
"A307465",
"A307466",
"A356696"
]
| null | R. J. Mathar, Aug 23 2022 | 2024-08-29T15:03:13 | oeisdata/seq/A356/A356696.seq | be6e34116b55ba49da5d66e882dd1011 |
A356697 | Number of Catalan words of length n avoiding the pattern 0000. | [
"1",
"1",
"2",
"5",
"13",
"36",
"101",
"280",
"788",
"2212",
"6186",
"17384",
"48755",
"136649",
"383584",
"1075734",
"3016924",
"8464693",
"23740844",
"66592246",
"186807727",
"523973400",
"1469769653",
"4122833303",
"11564436141",
"32438795011",
"90992182917",
"255234015580",
"715941436278",
"2008237780651"
]
| [
"nonn",
"easy"
]
| 9 | 0 | 3 | [
"A000108",
"A307464",
"A356697",
"A356698"
]
| null | Alois P. Heinz, Aug 23 2022 | 2022-08-25T08:49:11 | oeisdata/seq/A356/A356697.seq | d65dbf576ddf73a28738a9a57c4b332c |
A356698 | Number of Catalan words of length n avoiding the pattern 00000. | [
"1",
"1",
"2",
"5",
"14",
"41",
"125",
"389",
"1220",
"3829",
"12091",
"38237",
"120869",
"382000",
"1208863",
"3824981",
"12098811",
"38272739",
"121105815",
"383157721",
"1212151630",
"3835001361",
"12133807832",
"38388624860",
"121452176437",
"384255298818",
"1215726271065",
"3846304406380",
"12168956318213"
]
| [
"nonn",
"easy"
]
| 8 | 0 | 3 | [
"A000108",
"A307464",
"A356697",
"A356698"
]
| null | Alois P. Heinz, Aug 23 2022 | 2022-08-25T08:47:28 | oeisdata/seq/A356/A356698.seq | 59e61a6dd6dfbd5e5d0df26e0a3ec757 |
A356699 | Numbers k such that Mordell's equation y^2 = x^3 + k has a record number of integral solutions. | [
"1",
"8",
"9",
"17",
"225",
"1025"
]
| [
"nonn",
"hard",
"more"
]
| 9 | 1 | 2 | [
"A081119",
"A081120",
"A356699",
"A356700",
"A356701",
"A356702"
]
| null | Jianing Song, Aug 23 2022 | 2022-08-24T09:03:38 | oeisdata/seq/A356/A356699.seq | a2b1efa517e9aaa451231993fe6729cf |
A356700 | Numbers k such that Mordell's equation y^2 = x^3 - k has a record number of integral solutions. | [
"1",
"2",
"4",
"28",
"116",
"207",
"431",
"2351",
"3807"
]
| [
"nonn",
"hard",
"more"
]
| 34 | 1 | 2 | [
"A081119",
"A081120",
"A356699",
"A356700",
"A356701",
"A356702"
]
| null | Jianing Song, Aug 23 2022 | 2024-08-15T03:46:40 | oeisdata/seq/A356/A356700.seq | 66070a3e2d409778ec4abcd2da44033f |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.