sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A356701
Records values in A081119.
[ "5", "7", "10", "16", "26", "32" ]
[ "nonn", "hard", "more" ]
6
1
1
[ "A081119", "A081120", "A356699", "A356700", "A356701", "A356702" ]
null
Jianing Song, Aug 23 2022
2022-08-23T21:25:23
oeisdata/seq/A356/A356701.seq
143558c0047c77e083c38547587d6ab3
A356702
Records values in A081120.
[ "1", "2", "4", "6", "8", "14", "18", "20", "22" ]
[ "nonn", "hard", "more" ]
6
1
2
[ "A081119", "A081120", "A356699", "A356700", "A356701", "A356702" ]
null
Jianing Song, Aug 23 2022
2022-08-23T21:25:18
oeisdata/seq/A356/A356702.seq
6dca73f91fd6f9657697cdf251f50408
A356703
Numbers k such that Mordell elliptic curve y^2 = x^3 + k has a number of integral points that is both odd and > 1.
[ "1", "8", "64", "343", "512", "729", "1000", "1331", "2744", "4096", "5832", "9261", "10648", "12167", "15625", "17576", "21952", "32768", "35937", "39304", "42875", "46656", "50653", "54872", "64000", "85184", "97336", "117649", "125000", "175616", "185193", "250047", "262144", "274625", "343000", "357911", "373248", "405224", "474552", "531441", "592704", "636056" ]
[ "nonn" ]
28
1
2
[ "A081119", "A179145", "A179147", "A179149", "A179151", "A179163", "A179419", "A228948", "A356703", "A356709", "A356713", "A356720" ]
null
Jianing Song, Aug 23 2022
2022-09-24T12:33:01
oeisdata/seq/A356/A356703.seq
3e0b651eb05ffcedb64a36acb399b598
A356704
a(n) is the least k such that Mordell's equation y^2 = x^3 + k^3 has exactly 2*n+1 integral solutions.
[ "3", "7", "1", "2", "8", "329", "217", "506", "65", "260", "585" ]
[ "nonn", "hard", "more" ]
9
0
1
[ "A081119", "A081120", "A179162", "A179175", "A356704", "A356705", "A356706", "A356707", "A356708" ]
null
Jianing Song, Aug 23 2022
2022-08-24T09:03:41
oeisdata/seq/A356/A356704.seq
8faf4628bbda6f994542ae75b25fc22a
A356705
a(n) is the least k such that Mordell's equation y^2 = x^3 - k^3 has exactly 2*n+1 integral solutions.
[ "1", "11", "6", "38", "7", "63", "416", "2600", "10400", "93600" ]
[ "nonn", "hard", "more" ]
16
0
2
[ "A081119", "A081120", "A179162", "A179175", "A356704", "A356705" ]
null
Jianing Song, Aug 23 2022
2024-08-05T12:46:35
oeisdata/seq/A356/A356705.seq
7ff6b429cfa107bf741e6f5d57e0c86b
A356706
Number of integral solutions to Mordell's equation y^2 = x^3 + n^3.
[ "5", "7", "1", "5", "1", "1", "3", "9", "5", "5", "3", "1", "1", "5", "1", "5", "1", "7", "1", "1", "3", "3", "3", "1", "5", "3", "1", "5", "1", "1", "1", "9", "5", "3", "3", "5", "5", "3", "1", "5", "1", "1", "1", "3", "1", "3", "1", "1", "5", "7", "1", "1", "1", "1", "1", "7", "7", "1", "1", "1", "1", "1", "3", "5", "17", "1", "1", "1", "1", "5", "3", "9", "1", "3", "1", "1", "1", "9", "1", "1", "5", "1", "1", "5", "1", "3", "1", "5", "1", "5", "5", "3", "1", "1", "3", "1", "1" ]
[ "nonn", "hard" ]
29
1
1
[ "A081119", "A356706", "A356707", "A356708", "A356709", "A356710", "A356711", "A356712" ]
null
Jianing Song, Aug 23 2022
2023-06-02T01:56:49
oeisdata/seq/A356/A356706.seq
f40818b7d5d8203dee5d5d39cdb963d9
A356707
Number of integral solutions to Mordell's equation y^2 = x^3 + n^3 with y positive.
[ "2", "3", "0", "2", "0", "0", "1", "4", "2", "2", "1", "0", "0", "2", "0", "2", "0", "3", "0", "0", "1", "1", "1", "0", "2", "1", "0", "2", "0", "0", "0", "4", "2", "1", "1", "2", "2", "1", "0", "2", "0", "0", "0", "1", "0", "1", "0", "0", "2", "3", "0", "0", "0", "0", "0", "3", "3", "0", "0", "0", "0", "0", "1", "2", "8", "0", "0", "0", "0", "2", "1", "4", "0", "1", "0", "0", "0", "4", "0", "0", "2", "0", "0", "2", "0", "1", "0", "2", "0", "2", "2", "1", "0", "0", "1", "0", "0", "3", "1", "2" ]
[ "nonn", "hard" ]
25
1
1
[ "A081119", "A356706", "A356707", "A356708", "A356709", "A356710", "A356711", "A356712" ]
null
Jianing Song, Aug 23 2022
2023-06-06T15:36:10
oeisdata/seq/A356/A356707.seq
594807f922483ebfec0d6b901b79abc6
A356708
Number of integral solutions to Mordell's equation y^2 = x^3 + n^3 with y nonnegative.
[ "3", "4", "1", "3", "1", "1", "2", "5", "3", "3", "2", "1", "1", "3", "1", "3", "1", "4", "1", "1", "2", "2", "2", "1", "3", "2", "1", "3", "1", "1", "1", "5", "3", "2", "2", "3", "3", "2", "1", "3", "1", "1", "1", "2", "1", "2", "1", "1", "3", "4", "1", "1", "1", "1", "1", "4", "4", "1", "1", "1", "1", "1", "2", "3", "9", "1", "1", "1", "1", "3", "2", "5", "1", "2", "1", "1", "1", "5", "1", "1", "3", "1", "1", "3", "1", "2", "1", "3", "1", "3", "3", "2", "1", "1", "2", "1", "1", "4", "2", "3" ]
[ "nonn", "hard" ]
21
1
1
[ "A081119", "A134108", "A356706", "A356707", "A356708", "A356709", "A356710", "A356711", "A356712" ]
null
Jianing Song, Aug 23 2022
2023-06-02T01:56:41
oeisdata/seq/A356/A356708.seq
a62d6a719c0401226d0101107938ef9e
A356709
Numbers k such that Mordell's equation y^2 = x^3 + k^3 has exactly 1 integral solution.
[ "3", "5", "6", "12", "13", "15", "17", "19", "20", "24", "27", "29", "30", "31", "39", "41", "42", "43", "45", "47", "48", "51", "52", "53", "54", "55", "58", "59", "60", "61", "62", "66", "67", "68", "69", "73", "75", "76", "77", "79", "80", "82", "83", "85", "87", "89", "93", "94", "96", "97", "101", "102", "103", "106", "107", "108", "109", "111", "113", "115", "116", "117", "118", "119" ]
[ "nonn" ]
19
1
1
[ "A081119", "A179145", "A179147", "A179149", "A179151", "A228948", "A356706", "A356707", "A356708", "A356709", "A356710", "A356711", "A356712", "A356713", "A356720" ]
null
Jianing Song, Aug 23 2022
2022-09-24T12:33:48
oeisdata/seq/A356/A356709.seq
af0f0851488f1ad2fbf56c4595884230
A356710
Numbers k such that Mordell's equation y^2 = x^3 + k^3 has exactly 3 integral solutions.
[ "7", "11", "21", "22", "23", "26", "34", "35", "38", "44", "46", "63", "71", "74", "86", "92", "95", "99", "110", "122", "129", "136", "152", "155", "158", "170", "175", "177", "183", "189", "190", "198", "201", "203", "207", "211" ]
[ "nonn", "hard", "more" ]
10
1
1
[ "A081119", "A179145", "A179147", "A179149", "A179151", "A356706", "A356707", "A356708", "A356709", "A356710", "A356711", "A356712" ]
null
Jianing Song, Aug 23 2022
2023-06-02T01:57:00
oeisdata/seq/A356/A356710.seq
5c01f4e6259cd87e284a65849acca5d3
A356711
Numbers k such that Mordell's equation y^2 = x^3 + k^3 has exactly 5 integral solutions.
[ "1", "4", "9", "10", "14", "16", "25", "28", "33", "36", "37", "40", "49", "64", "70", "81", "84", "88", "90", "91", "100", "104", "121", "126", "130", "132", "140", "144", "154", "160", "169", "176", "184", "193", "196" ]
[ "nonn", "hard", "more" ]
16
1
2
[ "A081119", "A179145", "A179147", "A179149", "A179151", "A356706", "A356707", "A356708", "A356709", "A356710", "A356711", "A356712" ]
null
Jianing Song, Aug 23 2022
2023-06-06T17:40:44
oeisdata/seq/A356/A356711.seq
0adb3c92c9e6e2b2ad263f886b8d5f37
A356712
Numbers k such that Mordell's equation y^2 = x^3 + k^3 has exactly 7 integral solutions.
[ "2", "18", "50", "56", "57", "98", "112", "114", "148", "162", "224", "228", "273", "280", "330", "336", "338", "364", "448", "504", "513", "578" ]
[ "nonn", "hard", "more" ]
6
1
1
[ "A081119", "A179145", "A179147", "A179149", "A179151", "A356706", "A356707", "A356708", "A356709", "A356710", "A356711", "A356712" ]
null
Jianing Song, Aug 23 2022
2022-08-24T09:03:09
oeisdata/seq/A356/A356712.seq
6ff5189b75971c1a7cb59270b678eb32
A356713
Numbers k such that Mordell's equation y^2 = x^3 - k^3 has exactly 1 integral solution.
[ "1", "2", "3", "4", "5", "8", "9", "10", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "25", "27", "29", "30", "32", "33", "34", "35", "36", "37", "39", "40", "41", "43", "45", "46", "48", "49", "50", "51", "52", "53", "56", "57", "58", "59", "60", "62", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "80", "81", "82", "83", "85", "86", "87", "88" ]
[ "nonn" ]
16
1
2
[ "A081120", "A179163", "A228948", "A356709", "A356713", "A356720" ]
null
Jianing Song, Aug 23 2022
2022-09-24T12:34:10
oeisdata/seq/A356/A356713.seq
81ac744c9b6ec42f3d02fe8236642c6e
A356714
Cardinality of the set{a_1+a_2+a_3+a_4: -floor((n-1)/2) <= a_1,a_2,a_3,a_4 <= floor(n/2), and a_1^2,a_2^2,a_3^2,a_4^2 are pairwise distinct}.
[ "0", "0", "0", "0", "0", "4", "7", "15", "21", "25", "29", "33", "37", "41", "45", "49", "53", "57", "61", "65", "69", "73", "77", "81", "85", "89", "93", "97", "101", "105", "109", "113", "117", "121", "125", "129", "133", "137", "141", "145", "149", "153", "157", "161", "165", "169", "173", "177", "181", "185" ]
[ "nonn" ]
45
1
6
[ "A000290", "A004546", "A356714" ]
null
Zhi-Wei Sun, Sep 26 2022
2022-09-28T05:37:10
oeisdata/seq/A356/A356714.seq
dbfd7e35d2a13dba439ea718bcf21e70
A356715
Total number of distinct numbers that can be obtained by starting with 1 and applying the "Choix de Bruxelles", version 2 operation at most n times in ternary (base 3).
[ "1", "2", "3", "6", "11", "26", "68", "177", "492", "1403", "4113", "12149", "36225", "108268", "324529", "973163", "2920533", "8764041", "26303715", "78935398", "236878491", "710783343" ]
[ "nonn", "base", "more" ]
26
0
2
[ "A323289", "A356511", "A356715" ]
null
J. Conrad, Aug 24 2022
2025-01-09T13:05:51
oeisdata/seq/A356/A356715.seq
4ee5bd8af30208b221bd062f9801e434
A356716
a(n) is the integer w such that (c(n)^2, -d(n)^2, -w) is a primitive solution to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 11^3, where c(n) = F(n+2) + (-1)^n * F(n-3), d(n) = F(n+1) + (-1)^n * F(n-4) and F(n) is the n-th Fibonacci number (A000045).
[ "5", "19", "31", "101", "179", "655", "1189", "4451", "8111", "30469", "55555", "208799", "380741", "1431091", "2609599", "9808805", "17886419", "67230511", "122595301", "460804739", "840280655", "3158402629", "5759369251", "21648013631", "39475304069", "148377692755", "270567759199", "1016995835621", "1854499010291" ]
[ "nonn", "easy" ]
42
1
1
[ "A000045", "A081016", "A089270", "A206351", "A228208", "A237132", "A337928", "A354336", "A356716", "A356717" ]
null
XU Pingya, Aug 24 2022
2024-08-03T19:22:10
oeisdata/seq/A356/A356716.seq
96f9741bf37673b6643ca2aac1605eb7
A356717
a(n) is the integer w such that (c(n)^2, -d(n)^2, w) is a primitive solution to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 11^3, where c(n) = F(n+2) + (-1)^n * F(n-3), d(n) = F(n+3) + (-1)^n * F(n-2) and F(n) is the n-th Fibonacci number (A000045).
[ "1", "29", "59", "241", "445", "1691", "3089", "11629", "21211", "79745", "145421", "546619", "996769", "3746621", "6831995", "25679761", "46827229", "176011739", "320958641", "1206402445", "2199883291", "8268805409", "15078224429", "56675235451", "103347687745", "388457842781", "708355589819", "2662529664049" ]
[ "nonn", "easy" ]
18
1
2
[ "A000045", "A081016", "A081018", "A089270", "A228208", "A237132", "A337929", "A354337", "A356716", "A356717" ]
null
XU Pingya, Aug 24 2022
2022-10-02T00:22:02
oeisdata/seq/A356/A356717.seq
9d71c35e61d8fa89b0ad05b571020790
A356718
T(n,k) is the total number of prime factors, counted with multiplicity, of k!*(n-k)!, for 0 <= k <= n. Triangle read by rows.
[ "0", "0", "0", "1", "0", "1", "2", "1", "1", "2", "4", "2", "2", "2", "4", "5", "4", "3", "3", "4", "5", "7", "5", "5", "4", "5", "5", "7", "8", "7", "6", "6", "6", "6", "7", "8", "11", "8", "8", "7", "8", "7", "8", "8", "11", "13", "11", "9", "9", "9", "9", "9", "9", "11", "13", "15", "13", "12", "10", "11", "10", "11", "10", "12", "13", "15", "16", "15", "14", "13", "12", "12", "12" ]
[ "nonn", "tabl", "easy", "look" ]
89
0
7
[ "A001222", "A007318", "A022559", "A132896", "A303279", "A356718" ]
null
Dario T. de Castro, Aug 24 2022
2025-03-04T23:15:23
oeisdata/seq/A356/A356718.seq
9a52d90a08520d12e517c5efd23ba2f7
A356719
a(n) = Sum_{k=0..n} k^binomial(n,k).
[ "0", "1", "3", "12", "150", "61103", "4560574625", "1180642129099670883352", "1395184353688945915375285901200638422723404", "11754943508230112085264929216560108802852371298464244215700837207032911162905441549473573" ]
[ "nonn", "easy" ]
6
0
3
[ "A001315", "A064405", "A087314", "A356719" ]
null
Seiichi Manyama, Aug 24 2022
2022-08-24T12:09:55
oeisdata/seq/A356/A356719.seq
e37bb70fc4c1aa8be231b0b82a96efb8
A356720
Numbers k such that Mordell's equation y^2 = x^3 + k^3 has more than 1 integral solution.
[ "1", "2", "4", "7", "8", "9", "10", "11", "14", "16", "18", "21", "22", "23", "25", "26", "28", "32", "33", "34", "35", "36", "37", "38", "40", "44", "46", "49", "50", "56", "57", "63", "64", "65", "70", "71", "72", "74", "78", "81", "84", "86", "88", "90", "91", "92", "95", "98", "99", "100", "104", "105", "110", "112", "114", "121", "122", "126", "128", "129", "130", "132", "136", "140", "144", "148" ]
[ "nonn" ]
18
1
2
[ "A081119", "A103254", "A228948", "A356703", "A356709", "A356710", "A356711", "A356712", "A356713", "A356720" ]
null
Jianing Song, Aug 24 2022
2022-09-24T12:34:25
oeisdata/seq/A356/A356720.seq
0e7d2ead4c6ab4fd8d14950929e19962
A356721
Numbers written using exactly two distinct Roman numerals.
[ "4", "6", "7", "8", "9", "11", "12", "13", "15", "19", "21", "22", "23", "25", "29", "31", "32", "33", "35", "39", "40", "51", "52", "53", "55", "60", "70", "80", "90", "101", "102", "103", "105", "110", "120", "130", "150", "190", "201", "202", "203", "205", "210", "220", "230", "250", "290", "301", "302", "303", "305", "310", "320", "330", "350", "390", "400", "501", "502" ]
[ "nonn", "base", "fini", "easy" ]
14
1
1
null
null
Alain Cousquer and Pierre-Hugues Villaume, Aug 24 2022
2022-10-05T05:10:20
oeisdata/seq/A356/A356721.seq
8b0d46beaa8c0fde6a6b7336df2bbe2d
A356722
Number of n X n tables where each row represents a permutation of { 1, 2, ..., n } and the column sums are equal.
[ "1", "2", "12", "2520", "7015680", "1395793843200", "20278935204394809600", "33190120270913939567661168000" ]
[ "nonn", "more" ]
17
1
2
[ "A356722", "A356723", "A356724", "A356725" ]
null
Max Alekseyev, Aug 24 2022
2023-10-30T09:44:39
oeisdata/seq/A356/A356722.seq
ed29c2ce9d25c87472978c1c9fb35d5c
A356723
Number of n X n tables where each row represents a permutation of { 1, 2, ..., n } and the column sums are equal, with the first row being the identity permutation.
[ "1", "1", "2", "105", "58464", "1938602560", "4023598254840240", "823167665449254453563025" ]
[ "nonn", "more" ]
5
1
3
[ "A356722", "A356723", "A356724", "A356725" ]
null
Max Alekseyev, Aug 25 2022
2022-08-25T08:34:08
oeisdata/seq/A356/A356723.seq
bc6221c02c8a711207fd75078976627d
A356724
Number of n X n tables where each row represents a permutation of { 1, 2, ..., n } and the column sums are equal, up to permutation of rows.
[ "1", "1", "2", "114", "60024", "1951262760", "4029043460476320", "823357371521186302202640" ]
[ "nonn", "hard", "more" ]
13
1
3
[ "A356722", "A356723", "A356724", "A356725" ]
null
Max Alekseyev, Aug 25 2022
2022-10-11T20:11:02
oeisdata/seq/A356/A356724.seq
1fee290a6870b80432a09572dc967337
A356725
Number of n X n tables where each row represents a permutation of { 1, 2, ..., n } and the column sums are equal, up to permutation of rows and columns.
[ "1", "1", "1", "10", "505", "2712342", "799413385118", "20420569739290737009" ]
[ "hard", "more", "nonn" ]
9
1
4
[ "A356722", "A356723", "A356724", "A356725", "A357766", "A357767", "A357768" ]
null
Max Alekseyev, Oct 11 2022
2022-10-18T06:23:57
oeisdata/seq/A356/A356725.seq
d764de377fab4dace5aa5922e5a34724
A356726
Integers which have in Roman numerals more distinct symbols than any smaller number.
[ "1", "4", "14", "44", "144", "444", "1444" ]
[ "nonn", "fini", "full", "easy" ]
26
1
2
[ "A038378", "A057226", "A356726" ]
null
Alain Cousquer, Aug 24 2022
2022-09-11T00:51:50
oeisdata/seq/A356/A356726.seq
8f940b572bb7e0841fbc5f6517672a1e
A356727
Primes of the form 4*k^2 + 84*k + 43.
[ "43", "131", "227", "331", "443", "563", "691", "827", "971", "1123", "1283", "1451", "1627", "1811", "2003", "2203", "2411", "2851", "3083", "3323", "3571", "4091", "4363", "4643", "4931", "5227", "5531", "5843", "6163", "6491", "6827", "7523", "7883", "8627", "9011", "9403", "9803", "10211", "10627", "11483", "11923", "13291", "13763", "14243", "14731", "15227", "15731" ]
[ "nonn", "less" ]
22
1
1
[ "A005846", "A221712", "A331940", "A356727" ]
null
Charles Delaporte, Aug 24 2022
2023-05-07T18:52:58
oeisdata/seq/A356/A356727.seq
eea5173c010c864a052215e59cb8386a
A356728
The number of 3-permutations that avoid the patterns 132 and 213.
[ "1", "4", "12", "28", "58", "114", "220", "424", "822", "1606", "3160", "6252", "12418", "24730", "49332", "98512", "196846", "393486", "786736", "1573204", "3146106", "6291874", "12583372", "25166328", "50332198", "100663894", "201327240", "402653884", "805307122", "1610613546", "3221226340" ]
[ "nonn", "easy" ]
18
1
2
[ "A308580", "A356728" ]
null
Nathan Sun, Aug 24 2022
2022-12-09T23:04:19
oeisdata/seq/A356/A356728.seq
e4bd7d9f9b14e402a5573250dbb85558
A356729
Numbers having at least 4 distinct partitions into exactly 3 parts with the same product.
[ "118", "130", "133", "135", "137", "140", "148", "149", "153", "155", "161", "167", "169", "174", "175", "182", "183", "185", "189", "190", "194", "195", "200", "202", "205", "206", "208", "209", "210", "213", "214", "215", "216", "217", "220", "221", "222", "223", "224", "225", "228", "229", "231", "234", "235", "236", "239", "240", "243", "244", "245", "247", "248", "249", "250", "251", "253", "254" ]
[ "nonn" ]
15
1
1
[ "A119028", "A356729" ]
null
Tanya Khovanova, Sep 09 2022
2022-09-11T00:24:37
oeisdata/seq/A356/A356729.seq
e9e58ffada62c51b94f76b34e47e0d6e
A356730
Conductor of the elliptic curve y^2 = x^3 + n.
[ "36", "1728", "3888", "108", "2700", "15552", "21168", "576", "972", "14400", "52272", "3888", "18252", "84672", "97200", "27", "10404", "15552", "51984", "2700", "47628", "209088", "228528", "15552", "2700", "97344", "144", "7056", "90828", "388800", "415152", "1728", "117612", "499392", "176400", "972", "49284", "623808", "657072", "43200", "181548" ]
[ "nonn" ]
11
1
1
[ "A060950", "A356730", "A356731" ]
null
Jianing Song, Aug 24 2022
2022-08-25T09:54:35
oeisdata/seq/A356/A356730.seq
7340205da910de2aebd97deeac6c90d5
A356731
Conductor of the elliptic curve y^2 = x^3 - n.
[ "144", "1728", "972", "432", "10800", "15552", "5292", "576", "3888", "14400", "13068", "972", "73008", "84672", "24300", "432", "41616", "15552", "12996", "10800", "190512", "209088", "57132", "15552", "10800", "97344", "36", "1764", "363312", "388800", "103788", "1728", "470448", "499392", "44100", "3888", "197136", "623808", "164268", "43200", "726192" ]
[ "nonn" ]
11
1
1
[ "A060951", "A356730", "A356731" ]
null
Jianing Song, Aug 24 2022
2022-08-25T09:54:39
oeisdata/seq/A356/A356731.seq
6b44ba41ebd16d6726660fa29f7681b4
A356732
Let u defined by u(1) = p and for 1 < i, u(i) = u(i-1) + primorial(i), such that all u(i) are primes for 1 <= i <= k, and u(k+1) is not prime. Let m the length of the longest run of primes obtained when u is repeatedly applied to an n-digit p. Triangle read by rows: for 1 <= n, 1 <= k <= m, T(n,k) is the least n-digit prime p beginning a run of only k primes when applied u, or -1 if no such prime p exists.
[ "2", "-1", "7", "5", "19", "13", "53", "11", "37", "23", "-1", "-1", "-1", "61", "109", "107", "131", "257", "103", "101", "331", "-1", "193", "1009", "1063", "1087", "1013", "1601", "1543", "1447", "9397", "1741", "10007", "10061", "10133", "10847", "11251", "10253", "17203", "10267", "47563", "100003", "100043", "100357", "101833", "101113", "109583", "115657", "101287", "106747", "895667", "306847" ]
[ "sign", "tabf", "base" ]
67
1
1
[ "A002110", "A356732" ]
null
Jean-Marc Rebert, Aug 24 2022
2025-05-06T11:24:43
oeisdata/seq/A356/A356732.seq
aeed89287f968fea4b887fc7570da92f
A356733
Number of neighborless parts in the integer partition with Heinz number n.
[ "0", "1", "1", "1", "1", "0", "1", "1", "1", "2", "1", "0", "1", "2", "0", "1", "1", "0", "1", "2", "2", "2", "1", "0", "1", "2", "1", "2", "1", "0", "1", "1", "2", "2", "0", "0", "1", "2", "2", "2", "1", "1", "1", "2", "0", "2", "1", "0", "1", "2", "2", "2", "1", "0", "2", "2", "2", "2", "1", "0", "1", "2", "2", "1", "2", "1", "1", "2", "2", "1", "1", "0", "1", "2", "0", "2", "0", "1", "1", "2", "1", "2", "1", "1", "2", "2", "2", "2", "1", "0", "2", "2", "2", "2", "2", "0", "1", "2", "2", "2", "1", "1", "1", "2", "0" ]
[ "nonn" ]
12
1
10
[ "A000005", "A001221", "A001222", "A001414", "A003963", "A007690", "A056239", "A066205", "A066312", "A073491", "A073492", "A112798", "A132747", "A132881", "A183558", "A286470", "A287170", "A289508", "A325160", "A328166", "A328335", "A355393", "A355394", "A356069", "A356224", "A356225", "A356231", "A356233", "A356234", "A356235", "A356236", "A356237", "A356606", "A356607", "A356733", "A356734", "A356735" ]
null
Gus Wiseman, Aug 26 2022
2025-01-28T16:55:06
oeisdata/seq/A356/A356733.seq
1d0d3fd7561482c346bebf30fd186275
A356734
Heinz numbers of integer partitions with at least one neighborless part.
[ "2", "3", "4", "5", "7", "8", "9", "10", "11", "13", "14", "16", "17", "19", "20", "21", "22", "23", "25", "26", "27", "28", "29", "31", "32", "33", "34", "37", "38", "39", "40", "41", "42", "43", "44", "46", "47", "49", "50", "51", "52", "53", "55", "56", "57", "58", "59", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70", "71", "73", "74", "76", "78", "79", "80", "81", "82", "83" ]
[ "nonn" ]
7
1
1
[ "A000005", "A001221", "A001222", "A001414", "A003963", "A007690", "A056239", "A066205", "A073491", "A073492", "A112798", "A132747", "A132881", "A183558", "A286470", "A287170", "A289508", "A325160", "A328166", "A328335", "A355393", "A355394", "A356069", "A356224", "A356225", "A356231", "A356233", "A356234", "A356235", "A356236", "A356237", "A356606", "A356607", "A356734", "A356736" ]
null
Gus Wiseman, Aug 26 2022
2022-08-30T09:41:50
oeisdata/seq/A356/A356734.seq
9cc14999b449e87b718cd301544fe157
A356735
Number of distinct parts that have neighbors in the integer partition with Heinz number n.
[ "0", "0", "0", "0", "0", "2", "0", "0", "0", "0", "0", "2", "0", "0", "2", "0", "0", "2", "0", "0", "0", "0", "0", "2", "0", "0", "0", "0", "0", "3", "0", "0", "0", "0", "2", "2", "0", "0", "0", "0", "0", "2", "0", "0", "2", "0", "0", "2", "0", "0", "0", "0", "0", "2", "0", "0", "0", "0", "0", "3", "0", "0", "0", "0", "0", "2", "0", "0", "0", "2", "0", "2", "0", "0", "2", "0", "2", "2", "0", "0", "0", "0", "0", "2", "0", "0", "0", "0", "0", "3", "0", "0", "0", "0", "0", "2", "0", "0", "0", "0", "0", "2", "0", "0", "3" ]
[ "nonn" ]
13
1
6
[ "A000005", "A001221", "A001222", "A001414", "A002110", "A007690", "A056239", "A066205", "A066312", "A073491", "A073492", "A112798", "A183558", "A231209", "A286470", "A287170", "A289508", "A325160", "A328166", "A328335", "A355393", "A355394", "A356226", "A356227", "A356228", "A356229", "A356230", "A356231", "A356232", "A356233", "A356234", "A356235", "A356236", "A356237", "A356733", "A356734", "A356735", "A356736" ]
null
Gus Wiseman, Aug 31 2022
2025-01-28T16:54:54
oeisdata/seq/A356/A356735.seq
98bc5a7f4982bae2a0e5ce83badf606e
A356736
Heinz numbers of integer partitions with no neighborless parts.
[ "1", "6", "12", "15", "18", "24", "30", "35", "36", "45", "48", "54", "60", "72", "75", "77", "90", "96", "105", "108", "120", "135", "143", "144", "150", "162", "175", "180", "192", "210", "216", "221", "225", "240", "245", "270", "288", "300", "315", "323", "324", "360", "375", "384", "385", "405", "420", "432", "437", "450", "462", "480", "486", "525", "539", "540" ]
[ "nonn" ]
10
1
2
[ "A000009", "A000041", "A001221", "A001222", "A001414", "A003963", "A007690", "A056239", "A066205", "A066312", "A073491", "A073492", "A112798", "A183558", "A286470", "A287170", "A328171", "A328187", "A328221", "A328335", "A355393", "A355394", "A356231", "A356234", "A356235", "A356236", "A356237", "A356606", "A356607", "A356734", "A356736" ]
null
Gus Wiseman, Aug 31 2022
2022-09-01T09:33:46
oeisdata/seq/A356/A356736.seq
317e263d3f818d429079a4ed8168bc29
A356737
Number of integer partitions of n into odd parts covering an interval of odd numbers.
[ "1", "1", "1", "2", "2", "3", "3", "4", "4", "6", "6", "7", "8", "9", "10", "13", "13", "15", "17", "19", "21", "25", "26", "29", "33", "37", "40", "46", "49", "54", "61", "66", "72", "81", "87", "97", "106", "115", "125", "139", "150", "163", "179", "193", "210", "232", "248", "269", "293", "317", "343", "373", "401", "433", "470", "507", "545", "590", "633", "682", "737", "790" ]
[ "nonn" ]
6
0
4
[ "A000009", "A000041", "A001227", "A011782", "A034178", "A053251", "A055932", "A060142", "A066205", "A066208", "A073491", "A107428", "A107429", "A332032", "A333217", "A356224", "A356232", "A356603", "A356604", "A356605", "A356737", "A356841", "A356846" ]
null
Gus Wiseman, Sep 03 2022
2022-09-03T12:19:54
oeisdata/seq/A356/A356737.seq
cc114523e3dc370487a8d99a4426640e
A356738
Smallest positive integer whose American English name consists of n words.
[ "1", "21", "101", "121", "1101", "1121", "21121", "101121", "121121", "1101121", "1121121", "21121121", "101121121", "121121121", "1101121121", "1121121121", "21121121121", "121121121121", "1101121121121", "1121121121121", "21121121121121", "101121121121121", "121121121121121", "1101121121121121" ]
[ "nonn", "word", "fini" ]
6
1
2
[ "A080777", "A356738" ]
null
Ivan N. Ianakiev, Aug 25 2022
2022-09-04T12:39:27
oeisdata/seq/A356/A356738.seq
7b05fdd5a5b06107cafbc3e28382ec68
A356739
a(n) is the smallest k such that k! has at least n consecutive zeros immediately after the leading digit in base 10.
[ "7", "153", "197", "7399", "24434", "24434", "9242360", "238861211", "238861211" ]
[ "nonn", "base", "more" ]
17
1
1
[ "A000142", "A027869", "A356739" ]
null
Christian Perfect, Aug 25 2022
2022-10-02T00:23:54
oeisdata/seq/A356/A356739.seq
25f6f2e33a356cf3dfc16d4a8996984c
A356740
a(n) is the least emirp that begins a sequence of exactly n emirps under the map p -> (p*R(p)) mod (p+R(p)), where R(p) is the digit reversal of p.
[ "13", "389", "15013", "7149589", "1471573153" ]
[ "nonn", "base", "more", "less" ]
53
1
1
[ "A004086", "A006567", "A355651", "A356740" ]
null
J. M. Bergot and Robert Israel, Sep 04 2022
2022-09-09T10:03:31
oeisdata/seq/A356/A356740.seq
c6729c15c5fcc44c4c7d2d365308d89e
A356741
a(n) is the least prime(m) such that prime(n) + prime(m)# is prime, where prime(m)# denotes the product of the first m primes, or -1 if no such prime(m) exists.
[ "2", "2", "3", "2", "3", "2", "7", "3", "2", "3", "3", "2", "5", "3", "3", "2", "3", "3", "2", "3", "5", "3", "11", "3", "2", "3", "2", "5", "11", "5", "3", "2", "7", "2", "3", "3", "5", "3", "3", "2", "5", "2", "3", "2", "5", "5", "3", "2", "7", "3", "2", "5", "3", "3", "3", "2", "3", "3", "2", "5", "7", "3", "2", "7", "5", "3", "5", "2", "5", "3", "5", "3", "3", "5", "3", "5", "7", "5", "5", "2", "7", "2", "3", "11", "3", "5", "3" ]
[ "nonn" ]
59
2
1
[ "A002110", "A100380", "A356741" ]
null
Alain Rocchelli, Sep 04 2022
2022-10-18T11:21:08
oeisdata/seq/A356/A356741.seq
709982c3f00a58b553c4a5c82de58ef7
A356742
Numbers k such that k and k+2 both have exactly 4 divisors.
[ "6", "8", "33", "55", "85", "91", "93", "123", "141", "143", "159", "183", "185", "201", "203", "213", "215", "217", "219", "235", "247", "265", "299", "301", "303", "319", "321", "327", "339", "341", "391", "393", "411", "413", "415", "445", "451", "469", "471", "515", "517", "533", "535", "543", "551", "579", "581", "589", "633", "667", "669", "679", "685", "687", "695", "697" ]
[ "nonn" ]
10
1
1
[ "A001359", "A039832", "A356742", "A356743", "A356744" ]
null
Jianing Song, Aug 25 2022
2022-10-07T11:56:53
oeisdata/seq/A356/A356742.seq
68127168767547cd299f63e791915120
A356743
Numbers k such that k and k+2 both have exactly 6 divisors.
[ "18", "50", "242", "243", "423", "475", "603", "637", "722", "845", "925", "1682", "1773", "2007", "2523", "2525", "2527", "3123", "3175", "3177", "4203", "4475", "4525", "4923", "5823", "6725", "6811", "6962", "7299", "7442", "7675", "8425", "8957", "8973", "9457", "9925", "10051", "10082", "10467", "11673", "11709", "12427", "12482", "12591", "13023", "13075" ]
[ "nonn" ]
10
1
1
[ "A001359", "A048161", "A049103", "A356742", "A356743", "A356744" ]
null
Jianing Song, Aug 25 2022
2022-08-25T09:13:32
oeisdata/seq/A356/A356743.seq
d6ad97b95fe5ea71eaa136e743aa996f
A356744
Numbers k such that both k and k+2 have exactly 8 divisors.
[ "40", "54", "102", "128", "136", "152", "182", "184", "230", "246", "248", "374", "424", "470", "472", "534", "582", "663", "710", "806", "822", "824", "854", "872", "902", "904", "999", "1105", "1192", "1256", "1309", "1334", "1336", "1432", "1446", "1526", "1542", "1545", "1576", "1593", "1645", "1686", "1784", "1832", "1864", "1885", "1910", "1928", "2006", "2013" ]
[ "nonn" ]
8
1
1
[ "A001359", "A274357", "A356742", "A356744" ]
null
Jianing Song, Aug 25 2022
2022-08-25T09:13:22
oeisdata/seq/A356/A356744.seq
5930b20b8530a48b12fc538511c5fbed
A356745
a(n) is the first prime that starts a string of exactly n consecutive primes where the prime + the next prime + 1 is prime.
[ "37", "5", "283", "929", "13", "696607", "531901", "408079937", "17028422981" ]
[ "nonn", "more" ]
30
1
1
[ "A177017", "A356745" ]
null
J. M. Bergot and Robert Israel, Sep 17 2022
2022-09-19T20:24:00
oeisdata/seq/A356/A356745.seq
c9203d2c05cc9115fd67a8d8c7c1a444
A356746
Number of 2-colored labeled directed acyclic graphs on n nodes such that all black nodes are sources.
[ "1", "2", "8", "74", "1664", "90722", "11756288", "3544044674", "2439773425664", "3777981938265602", "12999312305021800448", "98399334883456516073474", "1625096032161083727093530624", "58150966795467956854830216929282" ]
[ "nonn" ]
39
0
2
[ "A003024", "A356746" ]
null
Geoffrey Critzer, Oct 08 2022
2022-10-08T22:17:01
oeisdata/seq/A356/A356746.seq
7259a35fe15995d1d78c59a353f91345
A356747
Numbers m that divide A306070(m) = Sum_{k=1..m} bphi(k), where bphi is the bi-unitary totient function (A116550).
[ "1", "2", "141", "1035", "2388", "3973", "5157", "14160", "37023", "68861", "99889", "116106", "117939", "627400", "1561944", "1626983", "5901444", "10054091", "12260525", "32619981", "49775099" ]
[ "nonn", "more" ]
8
1
2
[ "A048290", "A116550", "A306070", "A306950", "A356747" ]
null
Amiram Eldar, Aug 25 2022
2022-08-26T07:30:06
oeisdata/seq/A356/A356747.seq
d4a84f4e4221577802211b1f573ca2a2
A356748
Numbers k such that k and k+1 are both products of 2 triangular numbers.
[ "0", "9", "90", "135", "945", "1710", "1890", "4959", "5670", "8910", "10584", "11025", "11934", "13860", "19305", "21735", "26334", "32130", "36855", "44550", "49140", "65340", "107415", "138600", "172080", "239085", "305370", "351540", "366795", "459360", "849555", "873180", "933660", "1100385", "1413720", "1516410", "1904175", "2297295" ]
[ "nonn" ]
16
1
2
[ "A085780", "A356748" ]
null
Amiram Eldar, Aug 25 2022
2023-04-05T16:40:38
oeisdata/seq/A356/A356748.seq
40946041ad43b5762dfa0408188b93ed
A356749
a(n) is the number of trailing 1's in the dual Zeckendorf representation of n (A104326).
[ "0", "1", "0", "2", "1", "0", "3", "0", "2", "1", "0", "4", "1", "0", "3", "0", "2", "1", "0", "5", "0", "2", "1", "0", "4", "1", "0", "3", "0", "2", "1", "0", "6", "1", "0", "3", "0", "2", "1", "0", "5", "0", "2", "1", "0", "4", "1", "0", "3", "0", "2", "1", "0", "7", "0", "2", "1", "0", "4", "1", "0", "3", "0", "2", "1", "0", "6", "1", "0", "3", "0", "2", "1", "0", "5", "0", "2", "1", "0", "4", "1", "0", "3", "0", "2", "1", "0" ]
[ "nonn", "base" ]
11
0
4
[ "A001622", "A003849", "A035614", "A104326", "A276084", "A278045", "A356749" ]
null
Amiram Eldar, Aug 25 2022
2022-08-26T07:28:39
oeisdata/seq/A356/A356749.seq
a591f142817f3a42562c79766a9dc1b3
A356750
Palindromic odd numbers with an odd number of distinct prime factors.
[ "3", "5", "7", "9", "11", "101", "121", "131", "151", "181", "191", "313", "343", "353", "373", "383", "525", "555", "585", "595", "727", "757", "777", "787", "797", "919", "929", "969", "1001", "1221", "1331", "1551", "1771", "1881", "3333", "3553", "3663", "5225", "5335", "5445", "5555", "5665", "5885", "5995", "7007", "7227", "7337", "7557", "7667", "7777", "7887", "9339", "9669", "9779", "9889", "9999", "10201", "10301" ]
[ "nonn", "base" ]
24
1
1
null
null
Tanya Khovanova, Aug 25 2022
2022-09-14T08:25:41
oeisdata/seq/A356/A356750.seq
dddaa456d18756f765227137d182cddc
A356751
Positive integers m such that x^2 - x + m contains more than m/2 prime numbers for x = 1, 2, ..., m.
[ "3", "5", "7", "11", "17", "41", "47", "59", "67", "101", "107", "161", "221", "227", "347", "377" ]
[ "nonn", "more" ]
63
1
1
[ "A005846", "A007635", "A007641", "A014556", "A057604", "A188424", "A331940", "A356751", "A356756" ]
null
Marco Ripà, Aug 25 2022
2024-06-20T16:26:36
oeisdata/seq/A356/A356751.seq
9befcf42b80381a0c6cbd4e814cd8209
A356752
E.g.f. satisfies A(x) = 1/(1 - x)^(x^2/2 * A(x)).
[ "1", "0", "0", "3", "6", "20", "360", "2394", "17220", "260280", "3076920", "35980560", "595686960", "9760411440", "159321570408", "3093987619800", "63314740616400", "1318245318411840", "30240056863978560", "736919729169603840", "18522487833889334400", "495842871278901363840", "14014346231616983128800" ]
[ "nonn" ]
27
0
4
[ "A351492", "A355842", "A356752", "A356753", "A356912" ]
null
Seiichi Manyama, Sep 03 2022
2025-02-16T08:34:03
oeisdata/seq/A356/A356752.seq
ffc1baf02a759830b2e182904d0f6350
A356753
E.g.f. satisfies A(x) = 1/(1 - x)^(x^3/6 * A(x)).
[ "1", "0", "0", "0", "4", "10", "40", "210", "3024", "25200", "225000", "2217600", "29974560", "400720320", "5558957040", "81340459200", "1344965825280", "23566775232000", "432681781459200", "8309927446329600", "170258024427580800", "3679448236206220800", "83235946152090547200", "1962840630226968307200" ]
[ "nonn" ]
27
0
5
[ "A351493", "A355842", "A356752", "A356753", "A356913" ]
null
Seiichi Manyama, Sep 03 2022
2025-02-16T08:34:03
oeisdata/seq/A356/A356753.seq
96043729727e46b5913ace9005b02a5f
A356754
Triangle read by rows: T(n,k) = ((n-1)*(n+2))/2 + 2*k.
[ "2", "4", "6", "7", "9", "11", "11", "13", "15", "17", "16", "18", "20", "22", "24", "22", "24", "26", "28", "30", "32", "29", "31", "33", "35", "37", "39", "41", "37", "39", "41", "43", "45", "47", "49", "51", "46", "48", "50", "52", "54", "56", "58", "60", "62", "56", "58", "60", "62", "64", "66", "68", "70", "72", "74", "67", "69", "71", "73", "75", "77", "79", "81", "83", "85", "87" ]
[ "nonn", "tabl", "easy" ]
48
1
1
[ "A000124", "A004120", "A046691", "A051938", "A055999", "A056000", "A155212", "A167487", "A167499", "A167614", "A246172", "A334563", "A356288", "A356754" ]
null
Torlach Rush, Aug 25 2022
2023-05-26T14:10:04
oeisdata/seq/A356/A356754.seq
19d46a31efd45aa483889c4b8389abcb
A356755
Semiprimes k such that k is congruent to 2 modulo k's index in the sequence of semiprimes.
[ "4", "6", "10", "119", "155", "158", "215", "27682", "3066887", "3066907", "3067027", "3067167", "3067187", "3067247", "3067277", "3067682", "3067687", "3067742", "3067787", "3067847", "3067907", "3067917", "3067937", "3067942", "3068042", "3068067", "348933302", "348933422", "44690978131", "44690978257", "44690978537", "44690978719", "44690978971" ]
[ "nonn", "hard" ]
45
1
1
[ "A001358", "A106127", "A356755" ]
null
Lucas A. Brown, Oct 13 2022
2022-10-15T16:29:04
oeisdata/seq/A356/A356755.seq
94802ad702f1d69399f2a428e4dbcdf6
A356756
Positive integers m such that x^2 + x + m contains at least m/2 prime numbers for x = 1, 2, ..., m.
[ "1", "5", "11", "17", "41", "47", "59", "67", "101", "107", "161", "221", "227", "347", "377" ]
[ "nonn", "more" ]
35
1
2
[ "A005846", "A007635", "A007641", "A057604", "A188424", "A331940", "A356751", "A356756" ]
null
Marco Ripà, Aug 26 2022
2022-09-05T22:22:39
oeisdata/seq/A356/A356756.seq
82ab91d716b5c09cd92dc7ac6951b059
A356757
Omit zero digits from factorial numbers.
[ "1", "1", "2", "6", "24", "12", "72", "54", "432", "36288", "36288", "399168", "47916", "622728", "871782912", "137674368", "2922789888", "35568742896", "64237375728", "121645148832", "243292817664", "5199421717944", "11247277776768", "258521673888497664", "624484173323943936", "15511214333985984", "4329146112665635584" ]
[ "nonn", "base" ]
11
0
3
[ "A000142", "A004154", "A004719", "A027869", "A243657", "A321475", "A356757", "A356758" ]
null
Stefano Spezia, Aug 26 2022
2022-08-30T13:57:35
oeisdata/seq/A356/A356757.seq
7d010c32b83716e014e6552b6519497b
A356758
a(n) is the number of nonzero digits in n!.
[ "1", "1", "1", "1", "2", "2", "2", "2", "3", "5", "5", "6", "5", "6", "9", "9", "10", "11", "11", "12", "12", "13", "14", "18", "18", "17", "19", "20", "20", "24", "24", "27", "26", "29", "28", "32", "32", "32", "29", "35", "39", "35", "39", "40", "43", "44", "42", "49", "48", "49", "46", "49", "50", "53", "54", "56", "58", "57", "62", "62", "63", "58", "66", "67", "70", "71", "70", "73", "72", "78", "81" ]
[ "easy", "base", "nonn" ]
19
0
5
[ "A000142", "A027869", "A034886", "A356757", "A356758" ]
null
Stefano Spezia, Aug 26 2022
2024-08-10T21:39:05
oeisdata/seq/A356/A356758.seq
82d859888c47793fab8072eb5e134915
A356759
Bit-reverse the odd part of the dual Zeckendorf representation of n: a(n) = A022290(A057889(A003754(n+1))).
[ "0", "1", "2", "3", "4", "5", "6", "7", "9", "8", "10", "11", "12", "15", "17", "13", "16", "14", "18", "19", "20", "25", "22", "28", "30", "21", "26", "29", "23", "27", "24", "31", "32", "33", "41", "46", "36", "43", "38", "49", "51", "34", "42", "37", "47", "50", "35", "44", "48", "39", "45", "40", "52", "53", "54", "67", "59", "75", "80", "56", "70", "77", "62", "72", "64", "83", "85", "55" ]
[ "nonn", "base", "look" ]
20
0
3
[ "A000045", "A003714", "A003754", "A022290", "A057889", "A104326", "A345201", "A356331", "A356759" ]
null
Rémy Sigrist, Aug 26 2022
2022-08-29T10:28:41
oeisdata/seq/A356/A356759.seq
69b4ae615c98a2ffdf0e4e05fffffc02
A356760
a(n) = L(2*F(n)) + L(2*F(n+1)), where L(n) is the n-th Lucas number (A000032), and F(n) is the n-th Fibonacci number (A000045).
[ "5", "6", "10", "25", "141", "2330", "273650", "599346021", "162615199748425", "97418273437938007563970", "15841633607002514292104722681296528726", "1543264591854508694059707631430587191184612139118583889182925" ]
[ "nonn" ]
13
0
1
[ "A000032", "A000045", "A316275", "A356760", "A356761" ]
null
Amiram Eldar, Aug 26 2022
2025-01-05T19:51:42
oeisdata/seq/A356/A356760.seq
f65e2265733f68667fcaa756d108426f
A356761
a(n) = L(2*L(n)) + L(2*L(n+1)), where L(n) is the n-th Lucas number (A000032).
[ "10", "21", "65", "890", "40446", "33424885", "1322190707485", "44140596372269298846", "58360810951947188228658239895890", "2576080923024092500207469693559464507701547824744865", "150342171745412969401059031474740559845525757221446054521410222913066501974929718621" ]
[ "nonn" ]
12
0
1
[ "A000032", "A356760", "A356761" ]
null
Amiram Eldar, Aug 26 2022
2025-01-05T19:51:42
oeisdata/seq/A356/A356761.seq
5aacf583e06d5dcf7789f7a0c22645e8
A356762
Primes p such that, if q is the next prime, p*q+p+q, p*q-p-q, p*q+2*(p+q) and p*q-2*(p+q) are all prime.
[ "5", "50929", "74759", "127541", "349849", "1287731", "1294753", "3941711", "4190023", "6130739", "6310061", "6593329", "6816973", "7347709", "7573849", "8690351", "9813409", "10985959", "11703187", "12130553", "12504001", "18032059", "18468763", "20207471", "21357191", "23635603", "24301309", "25078181", "28509521", "28729567", "28855459", "30200411", "31304239" ]
[ "nonn" ]
16
1
1
[ "A356762", "A356765" ]
null
J. M. Bergot and Robert Israel, Aug 26 2022
2022-09-05T09:10:37
oeisdata/seq/A356/A356762.seq
0d4cf3b08587258aa7372801fffa3621
A356763
Triprime gaps (A114403) in the order of first occurrence.
[ "4", "6", "2", "7", "1", "12", "5", "11", "3", "14", "8", "9", "10", "18", "13", "15", "16", "21", "17", "19", "22", "32", "24", "20", "23", "29", "28", "25", "26", "33", "34", "27", "30", "31", "37", "40", "35", "36", "46", "39", "41", "44", "45", "42", "38", "50", "58", "43", "51", "54", "49", "52", "48", "47", "56", "55", "53", "60", "57", "59", "63", "61", "65", "66", "69", "64", "62", "67", "68", "70", "83", "71", "73", "78", "72" ]
[ "nonn" ]
13
1
1
[ "A014320", "A014612", "A114403", "A356763", "A356769" ]
null
Zak Seidov, Aug 26 2022
2022-08-28T21:12:22
oeisdata/seq/A356/A356763.seq
3a66c6167efe2da449c6bfbd278a168b
A356764
Semiprimes divisible by their indices in the sequence of semiprimes, divided by those indices.
[ "4", "3", "3", "3", "3", "3", "3", "5", "5", "5", "5", "5", "5", "7", "7", "7", "7" ]
[ "nonn", "hard", "more" ]
37
1
1
[ "A001358", "A106125", "A356764", "A357741" ]
null
Lucas A. Brown, Oct 13 2022
2022-10-16T03:23:06
oeisdata/seq/A356/A356764.seq
051e4a6a6a50d3841d707a5eb4895b42
A356765
Semiprimes p*q such that p*q+p+q, p*q-(p+q), p*q+2*(p+q) and p*q-2*(p+q) are all primes.
[ "33", "35", "65", "111", "209", "321", "371", "395", "545", "815", "1385", "1841", "1865", "4101", "5241", "6119", "6905", "8735", "10361", "13061", "14811", "15321", "16145", "18689", "22235", "25079", "32405", "36095", "38789", "39395", "43739", "43829", "43881", "49745", "50811", "52331", "57701", "59195", "60035", "62765", "65561", "71931", "72329", "76019", "77135", "79751", "81311", "84395" ]
[ "nonn" ]
10
1
1
[ "A356762", "A356765" ]
null
J. M. Bergot and Robert Israel, Aug 26 2022
2022-09-05T09:10:27
oeisdata/seq/A356/A356765.seq
d324d386b9f7932b7a1eb8cfeb9c4634
A356766
Least number k such that k and k+2 both have exactly 2n divisors, or -1 if no such number exists.
[ "3", "6", "18", "40", "127251", "198", "26890623", "918", "17298", "6640", "25269208984375", "3400", "3900566650390623", "640062", "8418573", "18088", "1164385682220458984373", "41650", "69528379848480224609373", "128464", "34084859373", "12164094", "150509919493198394775390625", "90270", "418514293125", "64505245696" ]
[ "nonn" ]
29
1
1
[ "A000005", "A001359", "A003680", "A005238", "A006558", "A006601", "A062832", "A067888", "A067889", "A075036", "A356742", "A356743", "A356744", "A356766" ]
null
Jean-Marc Rebert, Aug 26 2022
2023-07-01T11:00:08
oeisdata/seq/A356/A356766.seq
cd018c9b94b236b5f479da29f9d5c7b7
A356767
Tetraprimes (products of four distinct primes) whose reversals are different tetraprimes.
[ "1518", "2046", "2226", "2262", "2418", "2478", "2618", "2622", "2814", "2838", "2886", "3135", "3927", "4170", "4182", "4386", "4389", "4746", "4785", "4935", "5313", "5394", "5406", "5478", "5565", "5655", "5838", "5874", "6018", "6045", "6222", "6402", "6438", "6474", "6486", "6690", "6699", "6834", "6846", "6882", "7293", "7458", "8106", "8142" ]
[ "nonn", "base" ]
11
1
1
[ "A046394", "A270175", "A356767" ]
null
Tanya Khovanova, Aug 26 2022
2022-08-28T10:37:38
oeisdata/seq/A356/A356767.seq
3c7165a365c7272f4b656ef3041ef9e3
A356768
a(n) = (n^2+n+1)*(n^2+n)*n^2.
[ "0", "6", "168", "1404", "6720", "23250", "65016", "156408", "336384", "663390", "1221000", "2124276", "3526848", "5628714", "8684760", "13014000", "19009536", "27149238", "38007144", "52265580", "70728000", "94332546", "124166328", "161480424", "207705600", "264468750", "333610056", "417200868", "517562304" ]
[ "nonn", "easy" ]
33
0
2
[ "A169938", "A356768" ]
null
R. J. Mathar, Aug 29 2022
2025-04-19T19:36:48
oeisdata/seq/A356/A356768.seq
830494ec80164faa6d66303122ad73a2
A356769
Semiprime gaps (A065516) in the order of first occurrences.
[ "2", "3", "1", "4", "6", "7", "5", "11", "9", "8", "10", "14", "13", "12", "19", "15", "17", "20", "16", "18", "24", "22", "21", "25", "28", "27", "30", "32", "38", "23", "31", "26", "36", "35", "34", "29", "47", "33", "40", "41", "54", "50", "43", "55", "39", "48", "37", "42", "45", "44", "53", "70", "46", "56", "74", "52", "62", "51", "66", "49", "58", "68", "59", "63", "67", "60", "57", "61", "72", "64", "65", "76", "69", "73", "75", "82", "85" ]
[ "nonn" ]
20
1
1
[ "A001358", "A065516", "A356769" ]
null
Zak Seidov, Aug 27 2022
2022-08-30T17:14:51
oeisdata/seq/A356/A356769.seq
814b33d39c7afabdc7750b45cfd4eb46
A356770
a(n) is the number of equations in the set {x+2y=n, 2x+3y=n, ..., k*x+(k+1)*y=n, ..., n*x+(n+1)*y=n} which admit at least one nonnegative integer solution.
[ "1", "2", "3", "4", "4", "5", "5", "6", "6", "7", "6", "8", "7", "8", "8", "9", "8", "10", "8", "10", "10", "10", "9", "12", "10", "11", "11", "12", "10", "13", "11", "13", "12", "12", "12", "15", "12", "13", "13", "15", "12", "15", "13", "15", "15", "14", "13", "17", "14", "16", "15", "16", "14", "17", "15", "17", "16", "16", "15", "20", "15", "16", "17", "18", "17", "19", "16", "18", "17", "19", "16", "21", "17", "18", "19", "19" ]
[ "nonn" ]
32
1
2
[ "A000005", "A356770" ]
null
Luca Onnis, Aug 27 2022
2022-10-01T01:16:57
oeisdata/seq/A356/A356770.seq
7ba7499462544a5d309e7e34e9f8d603
A356771
a(n) is the sum of the Fibonacci numbers in common in the Zeckendorf and dual Zeckendorf representations of n.
[ "0", "1", "2", "0", "4", "0", "1", "7", "0", "1", "2", "3", "12", "0", "1", "2", "0", "4", "5", "6", "20", "0", "1", "2", "3", "4", "0", "1", "7", "8", "9", "10", "11", "33", "0", "1", "2", "0", "4", "5", "6", "7", "0", "1", "2", "3", "12", "13", "14", "15", "13", "17", "18", "19", "54", "0", "1", "2", "3", "4", "0", "1", "7", "8", "9", "10", "11", "12", "0", "1", "2", "0", "4", "5", "6", "20", "21", "22", "23", "24" ]
[ "nonn", "base" ]
22
0
3
[ "A000071", "A003714", "A003754", "A022290", "A035517", "A112309", "A331467", "A356326", "A356771" ]
null
Rémy Sigrist, Aug 27 2022
2022-09-06T10:29:15
oeisdata/seq/A356/A356771.seq
907929286cce86061340276d3a7185b4
A356772
E.g.f. A(x) satisfies: A(x) = Sum_{n>=0} ( x^n + x*A(x) )^n / n!.
[ "1", "2", "5", "34", "329", "3716", "55777", "1010206", "21187049", "511352272", "13929248861", "422450642054", "14129873671069", "516664310959720", "20503766568423881", "877759284120870526", "40321132468408643153", "1978363648482263649728", "103262474042895179595061", "5713315282015940379009862" ]
[ "nonn" ]
9
0
2
[ "A108459", "A326009", "A326090", "A326091", "A326261", "A356772", "A356773" ]
null
Paul D. Hanna, Aug 27 2022
2025-07-03T12:59:02
oeisdata/seq/A356/A356772.seq
40f543c7a573b612424d152fa3427a4b
A356773
E.g.f. A(x) satisfies: A(x) = Sum_{n>=0} ( x^n + A(x) )^n * x^n / n!.
[ "1", "1", "5", "22", "197", "2076", "29527", "477394", "9248745", "204340600", "5111234891", "142148945214", "4362830874877", "146338813894612", "5328688224075231", "209295914833477546", "8821420994034588113", "397128156446044087536", "19019218255697847951955", "965527468715744517674998" ]
[ "nonn" ]
11
0
3
[ "A108459", "A326009", "A326090", "A326091", "A326261", "A356772", "A356773" ]
null
Paul D. Hanna, Aug 27 2022
2025-07-03T13:02:00
oeisdata/seq/A356/A356773.seq
4e3bb1874cd95c29dbe4759567f1d6a7
A356774
Coefficients in the power series expansion of A(x) = Sum_{n=-oo..+oo} n * x^n * (1 - x^n)^(n-2).
[ "1", "4", "7", "11", "16", "17", "29", "21", "46", "21", "67", "22", "92", "1", "151", "-23", "154", "22", "191", "-118", "407", "-175", "277", "23", "326", "-363", "946", "-643", "436", "282", "497", "-1199", "1948", "-1019", "701", "-47", "704", "-1519", "3641", "-3127", "862", "1759", "947", "-5301", "7036", "-2943", "1129", "-1187", "1226", "-2149", "10252" ]
[ "sign" ]
20
1
2
[ "A291937", "A356774", "A356775", "A357156", "A357157" ]
null
Paul D. Hanna, Sep 22 2022
2022-12-25T07:26:47
oeisdata/seq/A356/A356774.seq
bed8b0874b34a3d426cace053d37f728
A356775
Coefficients in the power series expansion of A(x) = Sum_{n=-oo..+oo} n*(n+1)/2 * x^(2*n) * (1 - x^n)^(n-2).
[ "1", "1", "5", "1", "11", "1", "21", "-8", "36", "1", "22", "1", "85", "-89", "137", "1", "-23", "1", "302", "-349", "287", "1", "23", "-24", "456", "-944", "1177", "1", "-903", "1", "2113", "-2078", "970", "-559", "709", "1", "1331", "-4003", "4293", "1", "-3323", "1", "9153", "-10694", "2301", "1", "5869", "-48", "-4774", "-11474", "20294", "1", "-7334", "-14783" ]
[ "sign" ]
9
2
3
[ "A291937", "A356774", "A356775", "A357156", "A357157" ]
null
Paul D. Hanna, Sep 22 2022
2022-09-23T03:11:06
oeisdata/seq/A356/A356775.seq
e352b243255526c356643a93d1a71a92
A356776
a(n) = coefficient in the power series expansion of A(x) = Sum_{n=-oo..+oo} x^n * (1-x)^n * ((1-x)^n + x^n)^n.
[ "2", "1", "1", "-3", "7", "15", "-39", "-307", "917", "2540", "-16939", "-25016", "441962", "-498346", "-10210949", "42714405", "195220459", "-2142879945", "532985665", "83535107090", "-365902332521", "-2233273290797", "28143121253695", "-20874136499710", "-1436795595314700", "8862053852144592", "38496064560804831" ]
[ "sign" ]
11
0
1
[ "A319016", "A356776" ]
null
Paul D. Hanna, Sep 04 2022
2022-12-03T12:05:42
oeisdata/seq/A356/A356776.seq
faf098c94811410e5e9de9f41b05e633
A356777
G.f.: Sum_{n=-oo..+oo} x^(n^2) * C(x)^(2*n-1), where C(x) = 1 + x*C(x)^2 is a g.f. of the Catalan numbers (A000108).
[ "1", "1", "-3", "0", "1", "-5", "5", "0", "0", "1", "-7", "14", "-7", "0", "0", "0", "1", "-9", "27", "-30", "9", "0", "0", "0", "0", "1", "-11", "44", "-77", "55", "-11", "0", "0", "0", "0", "0", "1", "-13", "65", "-156", "182", "-91", "13", "0", "0", "0", "0", "0", "0", "1", "-15", "90", "-275", "450", "-378", "140", "-15", "0", "0", "0", "0", "0", "0", "0", "1", "-17", "119", "-442", "935", "-1122", "714", "-204", "17", "0", "0", "0", "0", "0", "0", "0", "0", "1", "-19", "152", "-665", "1729", "-2717", "2508", "-1254", "285", "-19" ]
[ "sign" ]
8
0
3
[ "A000108", "A082985", "A355341", "A355342", "A355345", "A356777", "A356778" ]
null
Paul D. Hanna, Sep 08 2022
2022-09-13T04:42:16
oeisdata/seq/A356/A356777.seq
832d93edf4a710dab971e7ebd026c589
A356778
G.f.: Sum_{n=-oo..+oo} x^(n^2) * C(x)^(4*n-4), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
[ "1", "-2", "-6", "20", "-15", "-10", "54", "-112", "105", "-35", "-14", "104", "-352", "660", "-672", "336", "-63", "-18", "170", "-800", "2275", "-4004", "4290", "-2640", "825", "-99", "-22", "252", "-1520", "5814", "-14688", "24752", "-27456", "19305", "-8008", "1716", "-143", "-26", "350", "-2576", "12397", "-40964", "94962", "-155040", "176358", "-136136", "68068", "-20384", "3185" ]
[ "sign" ]
12
0
2
[ "A000108", "A034807", "A355341", "A355345", "A356777", "A356778" ]
null
Paul D. Hanna, Sep 08 2022
2022-09-13T04:43:13
oeisdata/seq/A356/A356778.seq
852bbc2d58eae7d73dfcedd152f2aa83
A356779
G.f.: Sum_{n=-oo..+oo} x^(n^2) * C(x)^(6*n-9), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
[ "1", "-7", "9", "60", "-265", "429", "-189", "-812", "2925", "-5732", "6980", "-4824", "-198", "10010", "-32298", "69768", "-104651", "107373", "-72435", "26422", "19656", "-115011", "361763", "-834900", "1427679", "-1797817", "1641447", "-1057446", "454155", "-69564", "-298980", "1307448", "-4102104", "9924525", "-18599295" ]
[ "sign" ]
9
0
2
[ "A000108", "A034807", "A355341", "A355345", "A356777", "A356778", "A356779" ]
null
Paul D. Hanna, Sep 08 2022
2022-09-13T04:44:15
oeisdata/seq/A356/A356779.seq
8d4f17194894384d2d8c7e9eee6b853f
A356780
Coefficients in the odd function A(x) such that: A(x) = A( x^2 + 2*x^2*A(x)^2 )^(1/2), with A(0)=0, A'(0)=1.
[ "1", "1", "2", "6", "21", "78", "303", "1223", "5085", "21623", "93585", "410894", "1825682", "8193544", "37087449", "169114547", "776110247", "3581944258", "16614576945", "77410877233", "362126147797", "1700179143293", "8008689767674", "37838553977426", "179268540549758", "851478474635404", "4053760582437106" ]
[ "nonn" ]
11
1
3
[ "A000108", "A271931", "A271932", "A271933", "A356780", "A356781" ]
null
Paul D. Hanna, Aug 27 2022
2022-09-02T18:55:35
oeisdata/seq/A356/A356780.seq
221058729b75b2639591e64a56ee1d97
A356781
Expansion of g.f. A(x) satisfying A(x) = A( x^2 + 2*x^2*A(x) )^(1/2), with A(0)=0, A'(0)=1.
[ "1", "1", "1", "2", "4", "7", "14", "32", "74", "172", "408", "978", "2349", "5662", "13737", "33568", "82596", "204618", "510208", "1279544", "3224828", "8162144", "20735397", "52848816", "135088609", "346214873", "889451320", "2290164276", "5908894762", "15274778235", "39555942836", "102603159040", "266545251022" ]
[ "nonn" ]
27
1
4
[ "A000108", "A356781", "A370540" ]
null
Paul D. Hanna, Aug 27 2022
2024-03-14T08:00:17
oeisdata/seq/A356/A356781.seq
e16bcb458d52beb0d29e25aafe692cb0
A356782
Expansion of g.f. A(x) satisfies A(x) = x * Product_{n>=0} (1 + 2*A(x)^(2^n)).
[ "1", "2", "6", "24", "106", "496", "2428", "12288", "63762", "337392", "1813628", "9876096", "54365876", "302037408", "1691327224", "9536234496", "54093070626", "308474110000", "1767481876540", "10170367611008", "58746459504884", "340513035730944", "1979964903739992", "11546094361266176", "67509252360531940" ]
[ "nonn" ]
22
1
2
[ "A000120", "A001316", "A356782", "A372534" ]
null
Paul D. Hanna, Sep 01 2022
2024-05-30T06:59:30
oeisdata/seq/A356/A356782.seq
ec0406977fb19622644d9733200b70fa
A356783
Coefficients in the power series A(x) such that: 1 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
[ "1", "1", "2", "6", "17", "50", "163", "525", "1770", "6066", "21154", "74787", "267371", "965233", "3513029", "12877687", "47499333", "176167086", "656568385", "2457710598", "9236079055", "34832753818", "131792634266", "500121476517", "1902979982421", "7258942377746", "27752992782498", "106333425162358", "408213503595652" ]
[ "nonn" ]
24
0
3
[ "A356783", "A357151", "A357152", "A357153", "A357154", "A357155", "A357200", "A357400", "A357402", "A357403", "A357404", "A357405" ]
null
Paul D. Hanna, Sep 15 2022
2025-03-22T09:37:46
oeisdata/seq/A356/A356783.seq
0ff2a1bf0de8f66043164e45ec5944e5
A356784
Inventory of positions as an irregular table; row 0 contains 0, subsequent rows contain the 0-based positions of 0's, followed by the position of 1's, of 2's, etc. in prior rows flattened.
[ "0", "0", "0", "1", "0", "1", "2", "3", "0", "1", "2", "4", "3", "5", "6", "7", "0", "1", "2", "4", "8", "3", "5", "9", "6", "10", "7", "12", "11", "13", "14", "15", "0", "1", "2", "4", "8", "16", "3", "5", "9", "17", "6", "10", "18", "7", "12", "21", "11", "19", "13", "22", "14", "24", "15", "26", "20", "23", "25", "28", "27", "29", "30", "31", "0", "1", "2", "4", "8", "16", "32", "3", "5", "9", "17", "33" ]
[ "nonn", "tabf" ]
73
0
7
[ "A000051", "A005126", "A011782", "A052548", "A131577", "A342585", "A356784", "A357317", "A357491" ]
null
Rémy Sigrist, Oct 01 2022
2022-11-01T10:26:19
oeisdata/seq/A356/A356784.seq
7de651a58e3860645f28618e5e114ac9
A356785
E.g.f. satisfies log(A(x)) = x * (exp(x*A(x)) - 1) * A(x).
[ "1", "0", "2", "3", "64", "365", "7356", "85687", "1920752", "34821369", "905128300", "22172123171", "672107454888", "20552960420005", "721088019634724", "26257726364294895", "1053711696230404576", "44336326818388565105", "2010106841636689325532", "95747319823049127621019" ]
[ "nonn" ]
23
0
3
[ "A184949", "A349557", "A349560", "A355843", "A356785", "A356788", "A356789" ]
null
Seiichi Manyama, Aug 27 2022
2024-09-21T13:25:23
oeisdata/seq/A356/A356785.seq
8431d011a5524289fd684dccc4e6917d
A356786
E.g.f. satisfies A(x) = 1/(1 - x * A(x))^(x * A(x)^2).
[ "1", "0", "2", "3", "92", "510", "15114", "174300", "5558944", "103712616", "3672530280", "96397602840", "3830335035240", "129817630491120", "5796134828193696", "239906921239210680", "11996259216566469120", "584024600798956215360", "32523678395272329425856" ]
[ "nonn" ]
14
0
3
[ "A184949", "A349559", "A355766", "A356786", "A356787" ]
null
Seiichi Manyama, Aug 27 2022
2022-08-28T04:24:55
oeisdata/seq/A356/A356786.seq
23a122d90b1db4b37db71f145614ba50
A356787
E.g.f. satisfies A(x) = 1/(1 - x * A(x))^(x * A(x)^3).
[ "1", "0", "2", "3", "116", "630", "24054", "273000", "11105072", "207213552", "9175467960", "245785969440", "11954556125544", "421832039016960", "22609694372667024", "991695134898861120", "58565049582761702400", "3065736317041568378880", "199024242549235933723200" ]
[ "nonn" ]
11
0
3
[ "A184949", "A349559", "A356786", "A356787" ]
null
Seiichi Manyama, Aug 27 2022
2022-08-28T04:24:51
oeisdata/seq/A356/A356787.seq
40285da47e970c4452dfc2f8b3a597d1
A356788
E.g.f. satisfies log(A(x)) = x * (exp(x*A(x)) - 1) * A(x)^2.
[ "1", "0", "2", "3", "88", "485", "13896", "158767", "4919664", "90698841", "3130084360", "81025744811", "3144372342552", "104942286748741", "4582896912897408", "186591555463556895", "9135453970592830816", "437146665470130792497", "23852990622867670807704", "1307029600226135900982835" ]
[ "nonn" ]
12
0
3
[ "A349560", "A355762", "A356785", "A356788", "A356789" ]
null
Seiichi Manyama, Aug 27 2022
2022-08-28T04:24:32
oeisdata/seq/A356/A356788.seq
7b89b03abe03047163b54d416759969b
A356789
E.g.f. satisfies log(A(x)) = x * (exp(x*A(x)) - 1) * A(x)^3.
[ "1", "0", "2", "3", "112", "605", "22596", "254527", "10166416", "188035353", "8190917380", "217293592571", "10408915205976", "363500829796117", "19203682103461324", "833182131498018135", "48525371633295259936", "2511705297938365594289", "160874324235464440678164" ]
[ "nonn" ]
11
0
3
[ "A349560", "A356785", "A356788", "A356789" ]
null
Seiichi Manyama, Aug 27 2022
2022-08-28T04:24:29
oeisdata/seq/A356/A356789.seq
d28f5e179084c2a4f5f45f0e6d092d64
A356790
Table read by antidiagonals: T(n,k) (n >= 1, k >= 1) is the number of regions formed by straight line segments when connecting the k-1 points along the top side of a rectangle to each of the k-1 points along the bottom side that divide these sides into k equal parts, along with straight lines that directly connect the n-1 points along the left side to the diametrically opposite point on the right side that divide these sides into n equal parts.
[ "1", "2", "2", "6", "4", "3", "18", "10", "6", "4", "48", "24", "16", "8", "5", "106", "56", "34", "20", "10", "6", "216", "116", "70", "44", "26", "12", "7", "382", "228", "134", "84", "58", "30", "14", "8", "650", "396", "250", "152", "112", "60", "36", "16", "9", "1030", "666", "422", "272", "190", "112", "78", "40", "18", "10", "1564", "1048", "696", "448", "320", "196", "150", "84", "46", "20", "11" ]
[ "nonn", "tabl" ]
32
1
2
[ "A146951", "A290131", "A306302", "A331452", "A355798", "A355902", "A356790" ]
null
Scott R. Shannon and N. J. A. Sloane, Sep 04 2022
2022-09-08T15:20:50
oeisdata/seq/A356/A356790.seq
f2e79fa529722aaedb78df8f19b64aba
A356791
Emirps p such that R(p) > p and R(p) mod p is prime, where R(p) is the reversal of p.
[ "13", "17", "107", "149", "337", "1009", "1069", "1109", "1409", "1499", "1559", "3257", "3347", "3407", "3467", "3527", "3697", "3767", "10009", "10429", "10739", "10859", "10939", "11057", "11149", "11159", "11257", "11497", "11657", "11677", "11717", "11897", "11959", "13759", "13829", "14029", "14479", "14549", "15149", "15299", "15649", "30367", "30557", "31267", "31307", "32257" ]
[ "nonn", "base" ]
55
1
1
[ "A004086", "A006567", "A109308", "A356791" ]
null
J. M. Bergot and Robert Israel, Sep 18 2022
2022-09-24T21:51:04
oeisdata/seq/A356/A356791.seq
4f0504c0908a78f3e1470ff848bc0266
A356792
Smallest number k with A355915(k) = n.
[ "1", "11", "49", "103", "179", "313", "545", "601", "959", "1087", "1675", "1931", "2813", "2909", "3133", "4565", "4673", "6049", "5089", "8837", "8095", "9463", "10883", "14771", "12023", "9911", "15587", "16883", "17891", "18179", "17315", "16739", "26461", "17635", "29221", "30437", "28709", "33161", "39193", "39401", "30757", "40165", "55625" ]
[ "nonn" ]
31
1
2
[ "A355915", "A356792" ]
null
Michael S. Branicky and N. J. A. Sloane, Sep 21 2022
2022-09-21T19:04:36
oeisdata/seq/A356/A356792.seq
5dc86d94dff667505bbe102fa87e86de
A356793
Decimal expansion of sum of squares of reciprocals of lesser twin primes, Sum_{j>=1} 1/(A001359(j))^2.
[ "1", "6", "5", "6", "1", "8", "4", "6", "5", "3", "9", "5" ]
[ "nonn", "cons", "hard", "more" ]
65
0
2
[ "A006512", "A065421", "A077800", "A078437", "A085548", "A096247", "A160910", "A194098", "A209328", "A209329", "A242301", "A242302", "A242303", "A242304", "A306539", "A342714", "A347278", "A356793" ]
null
Artur Jasinski, Sep 04 2022
2022-09-29T22:05:29
oeisdata/seq/A356/A356793.seq
bcc9a6eebe02a7a49c3877f999da637f
A356794
Odd numbers that have at least one prime factor congruent to 1 (mod 4) and at least one prime factor congruent to 3 (mod 4).
[ "15", "35", "39", "45", "51", "55", "75", "87", "91", "95", "105", "111", "115", "117", "119", "123", "135", "143", "153", "155", "159", "165", "175", "183", "187", "195", "203", "215", "219", "225", "235", "245", "247", "255", "259", "261", "267", "273", "275", "285", "287", "291", "295", "299", "303", "315", "319", "323", "327", "333", "335", "339", "345", "351" ]
[ "nonn" ]
10
1
1
[ "A004613", "A004614", "A356794" ]
null
Jon E. Schoenfield, Aug 27 2022
2022-08-29T10:30:05
oeisdata/seq/A356/A356794.seq
7dbf1164ade59f24d474ec1f51697183
A356795
E.g.f. satisfies A(x) = 1/(1 - x)^(x * A(x)^2).
[ "1", "0", "2", "3", "68", "330", "7674", "73080", "1883440", "28281960", "818625960", "17120406600", "557507325000", "15014517495120", "548643259812816", "18056683281775320", "736892260092195840", "28579282973977498560", "1295028345251832359616", "57666859088090317591680" ]
[ "nonn" ]
21
0
3
[ "A066166", "A355842", "A356786", "A356795", "A356796" ]
null
Seiichi Manyama, Aug 28 2022
2025-02-16T08:34:03
oeisdata/seq/A356/A356795.seq
c1e89040dd77d887ea65c03ed2f69f7d
A356796
E.g.f. satisfies A(x) = 1/(1 - x)^(x * A(x)^3).
[ "1", "0", "2", "3", "92", "450", "14454", "141540", "4980128", "78711696", "3048567480", "68677353360", "2930551701384", "86832573553440", "4079649847428960", "150444517302424800", "7768028697749806080", "342721736137376184960", "19392702029822685015360", "994397473912386435004800" ]
[ "nonn" ]
24
0
3
[ "A066166", "A355842", "A356787", "A356795", "A356796" ]
null
Seiichi Manyama, Aug 28 2022
2025-02-16T08:34:03
oeisdata/seq/A356/A356796.seq
69c99241537f21aea26f2758f12f9cda
A356797
E.g.f. satisfies log(A(x)) = x * (exp(x) - 1) * A(x)^2.
[ "1", "0", "2", "3", "64", "305", "6936", "64897", "1645008", "24290289", "692240680", "14243244521", "456748635432", "12105737521033", "435619742434800", "14112089558682585", "567134312211275296", "21653262317886286817", "966207399513747354072", "42358800314758614030505" ]
[ "nonn" ]
33
0
3
[ "A052506", "A355843", "A356788", "A356797", "A356798" ]
null
Seiichi Manyama, Aug 28 2022
2025-02-16T08:34:03
oeisdata/seq/A356/A356797.seq
e813ec420b54b92ce90e388c0b378d1b
A356798
E.g.f. satisfies log(A(x)) = x * (exp(x) - 1) * A(x)^3.
[ "1", "0", "2", "3", "88", "425", "13476", "130417", "4543120", "71005041", "2723297860", "60685651961", "2564091428856", "75166650583609", "3496499475113932", "127585829832674865", "6521845096842043936", "284745004488498858209", "15950013722559213419412", "809403234909367349670409" ]
[ "nonn" ]
23
0
3
[ "A052506", "A355843", "A356789", "A356797", "A356798" ]
null
Seiichi Manyama, Aug 28 2022
2025-02-16T08:34:03
oeisdata/seq/A356/A356798.seq
4f31c3f792fbd2d13512184ec7a335f6
A356799
Table read by antidiagonals: T(n,k) (n >= 2, k >= 1) is the number of regions formed in a regular 2n-gon by straight line segments when connecting the k+1 points that divide each side into k equal parts to the equivalent point on the side diagonally opposite.
[ "1", "4", "13", "9", "24", "25", "16", "55", "48", "41", "25", "66", "105", "70", "61", "36", "121", "144", "171", "108", "85", "49", "126", "233", "220", "253", "140", "113", "64", "211", "288", "381", "312", "351", "192", "145", "81", "204", "409", "450", "565", "448", "465", "234", "181", "100", "325", "480", "671", "636", "785", "608", "595", "300", "221", "121", "300", "633", "760", "997", "924", "1041", "738", "741", "352", "265" ]
[ "nonn", "tabl" ]
48
2
2
[ "A000096", "A000217", "A000290", "A001105", "A001844", "A005563", "A051890", "A249127", "A265225", "A356044", "A356799" ]
null
Scott R. Shannon, Aug 28 2022
2022-08-30T09:41:12
oeisdata/seq/A356/A356799.seq
ec7ebb610e84ea26c40046e8c2b776f0
A356800
Numbers m for which Sum_{k=1..m} 1/k^s has no zero in the half-plane Re(s)>1.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "20", "21", "28" ]
[ "nonn", "fini", "full" ]
10
1
2
null
null
Benoit Cloitre, Aug 28 2022
2022-08-28T08:22:31
oeisdata/seq/A356/A356800.seq
23334974ebc693df3ee578e8dc657917