sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A356801
a(n) is the least semiprime p*q such that p*q+i*(p+q) is prime for i from 1 to n but not n+1.
[ "4", "6", "15", "155", "35", "851", "34601", "474869", "15157931", "1467715961" ]
[ "nonn", "more", "hard" ]
20
0
1
[ "A001358", "A034386", "A356801", "A356825" ]
null
J. M. Bergot and Robert Israel, Aug 28 2022
2024-04-16T13:41:35
oeisdata/seq/A356/A356801.seq
169d68524ee0d0f3237fdc1accabf768
A356802
A refinement of the Mahonian numbers (non-canonical ordering).
[ "1", "1", "1", "1", "2", "2", "1", "1", "3", "5", "3", "3", "5", "3", "1", "1", "4", "9", "6", "9", "16", "4", "11", "11", "4", "16", "9", "6", "9", "4", "1", "1", "5", "14", "10", "19", "35", "14", "26", "40", "5", "10", "61", "19", "35", "26", "40", "40", "26", "35", "19", "61", "10", "5", "40", "26", "14", "35", "19", "10", "14", "5", "1" ]
[ "nonn", "tabf" ]
30
1
5
[ "A008302", "A356802", "A357611" ]
null
Denis K. Sunko, Aug 28 2022
2023-03-18T08:49:14
oeisdata/seq/A356/A356802.seq
f538bcba14f97161b52aba8fc257bd8c
A356803
a(n) = product of prohibited prime factors of A354790(n).
[ "1", "1", "2", "6", "15", "105", "385", "2310", "6006", "102102", "277134", "6374082", "16804398", "520936338", "3038795305", "66853496710", "190275336790", "7420738134810", "17897074325130", "769574195980590", "1903683537425670", "100895227483560510", "258818192240437830", "15787909726666707630", "36475515575402393490" ]
[ "nonn" ]
11
1
3
[ "A354790", "A355057", "A356803" ]
null
Michael De Vlieger, Sep 06 2022
2022-09-08T01:34:57
oeisdata/seq/A356/A356803.seq
c5b7359b02ecc0b209e84e4fde5d23dd
A356804
a(n) is a binary encoded version of A356803(n).
[ "0", "0", "1", "3", "6", "14", "28", "31", "59", "123", "243", "499", "995", "2019", "2028", "2045", "4061", "4095", "8127", "16319", "32575", "65343", "130623", "261695", "523327", "1047615", "2095167", "4192319", "8386611", "8386679", "16775270", "16775279", "33550447", "67104879", "134213709", "134213727", "268427359", "536862815" ]
[ "nonn", "base" ]
9
1
4
[ "A354790", "A356803", "A356804" ]
null
Michael De Vlieger, Sep 06 2022
2022-09-08T01:35:01
oeisdata/seq/A356/A356804.seq
fe97b2a09105cf9b674db7ba1deb9f84
A356805
Decimal expansion of the unique positive real root of the equation x^x^(x - 1) = x + 1.
[ "1", "8", "5", "5", "6", "6", "0", "2", "3", "1", "9", "6", "1", "7", "3", "1", "1", "1", "2", "6", "7", "8", "8", "3", "9", "3", "7", "4", "4", "4", "3", "4", "8", "0", "8", "7", "7", "9", "0", "3", "4", "8", "4", "1", "9", "2", "8", "0", "0", "3", "4", "4", "9", "5", "5", "1", "8", "0", "8", "8", "5", "2", "3", "4", "5", "2", "8", "5", "5", "9", "6", "7", "9", "7", "3", "8", "7", "3", "8", "5", "8", "3", "4", "7", "4", "8", "9" ]
[ "cons", "nonn" ]
13
1
2
[ "A124930", "A356562", "A356805" ]
null
Marco Ripà and Flavio Niccolò Baglioni, Aug 28 2022
2022-09-05T09:10:16
oeisdata/seq/A356/A356805.seq
88ebb86867d56de1db2f2a5bc0e2750f
A356806
a(n) = Sum_{k=0..n} (k*n-1)^(n-k) * binomial(n,k).
[ "1", "0", "4", "27", "448", "10625", "344736", "14437213", "753991680", "47974773393", "3650824000000", "326917384798301", "33956137832546304", "4041303651931462969", "545552768347831566336", "82828479894303251953125", "14040577418634835164921856", "2640293357854435329683551265" ]
[ "nonn" ]
18
0
3
[ "A052506", "A351736", "A351737", "A356806", "A356811", "A356814", "A356817" ]
null
Seiichi Manyama, Aug 29 2022
2022-09-01T09:31:30
oeisdata/seq/A356/A356806.seq
2f5b2b53cf1b2d9a19a9e299e0b99e2c
A356807
Tetranacci sequence beginning with 3, 7, 12, 24.
[ "3", "7", "12", "24", "46", "89", "171", "330", "636", "1226", "2363", "4555", "8780", "16924", "32622", "62881", "121207", "233634", "450344", "868066", "1673251", "3225295", "6216956", "11983568", "23099070", "44524889", "85824483", "165432010", "318880452", "614661834", "1184798779", "2283773075", "4402114140", "8485347828" ]
[ "nonn", "easy" ]
34
1
1
[ "A022120", "A100683", "A356807" ]
null
Greg Dresden and Hangyu Liang, Aug 29 2022
2024-08-30T09:53:10
oeisdata/seq/A356/A356807.seq
f05bfa5ed53793b8d82adb803004d480
A356808
Number of n-level magic triangles.
[ "1", "4", "96", "238536576" ]
[ "nonn", "hard", "more" ]
5
1
2
null
null
Michel Marcus, Aug 29 2022
2022-08-29T10:22:42
oeisdata/seq/A356/A356808.seq
7267ec456c7da6a775377e47dce329d5
A356809
Fibonacci numbers which are not the sum of two squares.
[ "3", "21", "55", "987", "2584", "6765", "17711", "46368", "317811", "832040", "2178309", "5702887", "14930352", "102334155", "267914296", "701408733", "1836311903", "4807526976", "12586269025", "32951280099", "86267571272", "225851433717", "591286729879", "1548008755920", "10610209857723" ]
[ "nonn" ]
24
1
1
[ "A000045", "A001481", "A022340", "A022544", "A124132", "A124134", "A236264", "A356809" ]
null
Ctibor O. Zizka, Aug 29 2022
2023-01-10T18:19:28
oeisdata/seq/A356/A356809.seq
36bd88000d7bd5545a85c9d633a439d9
A356810
Decimal expansion of the unique root of the equation x^(x^(((log(x))^(x-1) - 1)/(log(x) - 1))) = x+1 for x in the interval [1,2].
[ "1", "8", "4", "4", "1", "6", "2", "9", "7", "4", "9", "0", "1", "6", "0", "9", "2", "5", "8", "5", "2", "9", "3", "4", "7", "2", "0", "8", "8", "4", "8", "0", "6", "3", "2", "5", "5", "5", "8", "0", "4", "7", "6", "6", "4", "5", "6", "4", "4", "5", "0", "9", "0", "7", "1", "3", "9", "8", "0", "4", "3", "8", "3", "0", "2", "7", "5", "0", "8", "0", "2", "1", "1", "3", "9", "1", "5", "8", "0", "9", "5", "8", "3", "8", "4", "2", "1", "8", "9", "1", "8", "7", "8", "6", "0", "3", "1", "7" ]
[ "cons", "nonn" ]
31
1
2
[ "A356805", "A356810" ]
null
Flavio Niccolò Baglioni and Marco Ripà, Aug 29 2022
2022-10-01T01:17:58
oeisdata/seq/A356/A356810.seq
6096b8ade78a7ea163e7efea8044d36d
A356811
a(n) = Sum_{k=0..n} (k*n+1)^(n-k) * binomial(n,k).
[ "1", "2", "8", "71", "1040", "22457", "676000", "26861977", "1347932416", "82873789793", "6114540967424", "532596023373713", "53990083205042176", "6289985311473281329", "833180470332123750400", "124356049859476364116193", "20754548375601491155681280", "3847574240184742568296430273" ]
[ "nonn" ]
14
0
2
[ "A080108", "A240165", "A245834", "A356806", "A356811", "A356814", "A356817" ]
null
Seiichi Manyama, Aug 29 2022
2022-09-01T09:31:08
oeisdata/seq/A356/A356811.seq
949df4a7b218adb9ac9328bb008ea1f2
A356812
Expansion of e.g.f. exp(x * (1 - exp(2*x))).
[ "1", "0", "-4", "-12", "16", "400", "2208", "-448", "-131840", "-1357056", "-4820480", "71120896", "1537308672", "14006460416", "3075702784", "-2224350781440", "-41354996154368", "-359660395495424", "1675436608585728", "121894823709900800", "2317859245604208640", "20543311167964053504" ]
[ "sign" ]
26
0
3
[ "A292893", "A351736", "A356812", "A356813", "A356815", "A356819" ]
null
Seiichi Manyama, Aug 29 2022
2023-10-04T15:07:59
oeisdata/seq/A356/A356812.seq
10cb93223ceeaedc0442fc5aec402b2f
A356813
Expansion of e.g.f. exp(x * (1 - exp(3*x))).
[ "1", "0", "-6", "-27", "0", "1215", "12312", "45927", "-657072", "-15857937", "-167699160", "-266960529", "29356170984", "700068823623", "8419188469104", "-1491045413265", "-2856006296224992", "-79065447339366945", "-1162293393139510824", "-744123842820101745", "538503788896323210360" ]
[ "sign" ]
20
0
3
[ "A292893", "A351737", "A356812", "A356813", "A356816" ]
null
Seiichi Manyama, Aug 29 2022
2023-02-23T18:03:42
oeisdata/seq/A356/A356813.seq
d43d3cea4e8c6cc337889eaeb6e1924a
A356814
a(n) = Sum_{k=0..n} (-1)^k * (k*n+1)^(n-k) * binomial(n,k).
[ "1", "0", "-4", "-27", "-64", "4375", "199584", "6739607", "169934848", "-1012395105", "-709624000000", "-86599643309201", "-8221227668471808", "-638169258399740977", "-27617164284655812608", "3853095093357099609375", "1568756883209662050074624", "360407172063462944082773311" ]
[ "sign" ]
12
0
3
[ "A292893", "A320258", "A356806", "A356811", "A356812", "A356813", "A356814", "A356817" ]
null
Seiichi Manyama, Aug 29 2022
2022-08-29T16:35:56
oeisdata/seq/A356/A356814.seq
903650e5fffb06324f9845e3d133f52b
A356815
Expansion of e.g.f. exp(-x * (exp(2*x) + 1)).
[ "1", "-2", "0", "4", "32", "48", "-608", "-6400", "-24064", "163072", "3567104", "28394496", "6535168", "-3250745344", "-50725740544", "-344530853888", "2476610551808", "110057610608640", "1655672654135296", "9616664975114240", "-195178079811272704", "-6998474114188967936", "-110894925369151848448" ]
[ "sign" ]
17
0
2
[ "A240165", "A351736", "A356812", "A356815", "A356816", "A356818" ]
null
Seiichi Manyama, Aug 29 2022
2022-08-31T09:09:47
oeisdata/seq/A356/A356815.seq
48ee4e9a6e692b251beb259f7b4a5974
A356816
Expansion of e.g.f. exp(-x * (exp(3*x) + 1)).
[ "1", "-2", "-2", "1", "88", "583", "676", "-35597", "-519392", "-3359393", "19013884", "896435395", "13640180896", "85591357135", "-1527872118356", "-61100053650053", "-1076294742932288", "-7610985095240513", "200631806070276988", "9284475508083767059", "200226297062313730816", "1940767272243466116463" ]
[ "sign" ]
14
0
2
[ "A351737", "A356813", "A356815", "A356816", "A356818" ]
null
Seiichi Manyama, Aug 29 2022
2022-08-31T09:09:38
oeisdata/seq/A356/A356816.seq
c81b68bf622a5e256fde4a452128e3b3
A356817
a(n) = Sum_{k=0..n} (-1)^k * (k*n-1)^(n-k) * binomial(n,k).
[ "1", "-2", "0", "1", "144", "4143", "110368", "2535475", "13299968", "-5169863825", "-639341093376", "-59073970497885", "-4677854594527232", "-276406098219258425", "2399871442122924032", "5163244810691492730907", "1331213942683118587674624", "262517264591996332314037215" ]
[ "sign" ]
11
0
2
[ "A356806", "A356811", "A356814", "A356815", "A356816", "A356817", "A356818" ]
null
Seiichi Manyama, Aug 29 2022
2022-08-29T16:36:01
oeisdata/seq/A356/A356817.seq
b92f3c36953725ae11f5149eb240e577
A356818
Expansion of e.g.f. exp(-x * (exp(x) + 1)).
[ "1", "-2", "2", "1", "0", "-17", "-32", "103", "976", "2287", "-12816", "-143585", "-481016", "2339335", "39769720", "209863327", "-397553376", "-16949434913", "-142681662368", "-233212601153", "9138353475736", "128343346833463", "702261255539496", "-4251314594919617", "-135331386127555856" ]
[ "sign" ]
12
0
2
[ "A356815", "A356816", "A356818" ]
null
Seiichi Manyama, Aug 29 2022
2022-08-31T09:09:42
oeisdata/seq/A356/A356818.seq
959170000b87a0ea47a48800cef31c21
A356819
Expansion of e.g.f. exp(-x * exp(2*x)).
[ "1", "-1", "-3", "-1", "41", "239", "229", "-8401", "-87151", "-324577", "3238541", "70271519", "601086265", "142860431", "-81504662539", "-1393683935281", "-10777424809951", "63537986981183", "3552608426329117", "60283510555017023", "441644419610814281", "-6191820436867600081" ]
[ "sign" ]
13
0
3
[ "A216689", "A292952", "A356812", "A356819", "A356820" ]
null
Seiichi Manyama, Aug 29 2022
2023-02-23T18:03:22
oeisdata/seq/A356/A356819.seq
abc85046c3f31107dcccc1454cb875ac
A356820
Expansion of e.g.f. exp(-x * exp(3*x)).
[ "1", "-1", "-5", "-10", "73", "1004", "5473", "-15562", "-746447", "-9174088", "-41916959", "823985546", "24629093641", "335144105828", "1248594602305", "-67564407472426", "-2160461588461343", "-34957074099518608", "-154556217713939903", "10500560586914149250", "409146670525578079801" ]
[ "sign" ]
14
0
3
[ "A292952", "A356813", "A356819", "A356820" ]
null
Seiichi Manyama, Aug 29 2022
2025-03-13T14:36:06
oeisdata/seq/A356/A356820.seq
5d2a5e0b1e29f41008e65d00ac7640dc
A356821
Lucas-Carmichael numbers k that have an abundancy index sigma(k)/k that is larger than the abundancy indices of all smaller Lucas-Carmichael numbers.
[ "399", "6304359999", "408598269695", "517270926095", "20203946790335" ]
[ "nonn", "hard", "more" ]
14
1
1
[ "A000203", "A004394", "A006972", "A328691", "A329460", "A356821" ]
null
Amiram Eldar and Daniel Suteu, Aug 29 2022
2023-07-30T09:04:17
oeisdata/seq/A356/A356821.seq
6ff85676c78a611b176fb5a7ccf95c8a
A356822
Irregular triangle read by rows where row n starts with n and each further term is the sum of the distinct palindromes in the concatenation of the decimal digits of preceding terms.
[ "1", "1", "12", "125", "463", "476", "483", "491", "500", "500", "6055", "6170", "2", "2", "24", "250", "497", "513", "517", "3", "3", "36", "375", "750", "2082", "2112", "4258", "4504", "4504", "4548", "5002", "4", "4", "48", "500", "505", "6065", "62742", "63407", "63410", "63411", "63422", "63444", "5", "5", "60", "66", "738", "756" ]
[ "nonn", "tabf", "look", "base" ]
50
1
3
null
null
Neal Gersh Tolunsky, Sep 17 2022
2023-09-26T19:16:11
oeisdata/seq/A356/A356822.seq
636f77c849d094cf04a5d7b0bf5ecddc
A356823
Tribternary numbers.
[ "0", "1", "3", "4", "9", "10", "12", "27", "28", "30", "31", "36", "37", "81", "82", "84", "85", "90", "91", "93", "108", "109", "111", "112", "243", "244", "246", "247", "252", "253", "255", "270", "271", "273", "274", "279", "280", "324", "325", "327", "328", "333", "334", "336", "729", "730", "732", "733", "738", "739", "741", "756", "757", "759", "760", "765", "766", "810", "811", "813", "814", "819" ]
[ "nonn", "base" ]
9
1
3
[ "A003714", "A003726", "A005836", "A060140", "A356823" ]
null
Tanya Khovanova and PRIMES STEP Senior group, Aug 29 2022
2022-08-30T13:42:41
oeisdata/seq/A356/A356823.seq
d844e33fef11192826fd07356fbcb32c
A356824
Palindromes that can be written as the sum of two palindromic primes.
[ "4", "5", "6", "7", "8", "9", "22", "202", "232", "252", "262", "282", "292", "414", "444", "454", "464", "474", "484", "494", "626", "666", "686", "696", "808", "828", "858", "878", "888", "898", "20002", "20602", "20802", "20902", "21612", "21712", "21812", "21912", "22622", "22722", "22822", "22922", "23632", "23732", "23832", "23932", "24642", "24742", "24842", "24942" ]
[ "nonn", "base" ]
17
1
1
[ "A002113", "A002385", "A261906", "A356824" ]
null
Tanya Khovanova, Aug 29 2022
2022-09-04T12:46:24
oeisdata/seq/A356/A356824.seq
d23f1fda9b5729571cfa25115b7de981
A356825
a(n) is the least semiprime p*q such that p*q-i*(p+q) is prime for i from 1 to n but not n+1.
[ "4", "9", "33", "65", "77", "161", "371", "38981", "2561", "568181" ]
[ "nonn", "more" ]
10
0
1
[ "A001358", "A356801", "A356825" ]
null
J. M. Bergot and Robert Israel, Aug 29 2022
2022-09-04T12:53:28
oeisdata/seq/A356/A356825.seq
d9fb3ba08dd1344cdc059aee9dacdf6a
A356826
Numbers k such that 2^k - 29 is prime.
[ "5", "8", "104", "212", "79316", "102272", "225536", "340688" ]
[ "nonn", "more" ]
26
1
1
[ "A000043", "A050414", "A057220", "A059608", "A059609", "A059610", "A059611", "A059612", "A096502", "A096817", "A096818", "A096819", "A096820", "A356826" ]
null
Craig J. Beisel, Aug 29 2022
2023-12-10T09:17:13
oeisdata/seq/A356/A356826.seq
dc46508bec3407ed880c8f8a8d97f0fa
A356827
Expansion of e.g.f. exp(x * exp(3*x)).
[ "1", "1", "7", "46", "361", "3436", "37729", "463366", "6280369", "93015352", "1491337441", "25684077706", "472217487625", "9221588527204", "190441412508481", "4143470377262806", "94663498086222049", "2264440394856702832", "56570146384760433217", "1472545685988162638722" ]
[ "nonn" ]
17
0
3
[ "A000248", "A003725", "A216689", "A277456", "A295552", "A336951", "A351737", "A355501", "A356820", "A356827" ]
null
Seiichi Manyama, Aug 29 2022
2023-12-04T06:29:10
oeisdata/seq/A356/A356827.seq
e5bd3e4a05d4960be0226a9296dcdb7f
A356828
Number of vertex cuts in the n-ladder graph P_2 x P_n.
[ "0", "2", "23", "147", "748", "3414", "14719", "61495", "252364", "1024938", "4137207", "16639339", "66775964", "267631726", "1071801407", "4290282671", "17168559452", "68692172578", "274811988823", "1099352487299", "4397662311948", "17591258505542", "70366504900671", "281469570617703", "1125886855379628" ]
[ "nonn", "easy" ]
11
1
2
[ "A059020", "A356828" ]
null
Eric W. Weisstein, Aug 30 2022
2025-02-16T08:34:03
oeisdata/seq/A356/A356828.seq
3a59f759bd0fb9e1d95cc7ccb9ea41fc
A356829
Number of vertex cuts in the n-Möbius ladder.
[ "0", "0", "8", "82", "512", "2644", "12364", "54598", "232772", "970520", "3988624", "16239066", "65709256", "264814140", "1064414100", "4271035662", "17118683020", "68563527616", "274481537112", "1098506723042", "4395504614544", "17585769696164", "70352578566620", "281434319454038", "1125797816327892" ]
[ "nonn" ]
16
1
3
[ "A286185", "A356829" ]
null
Eric W. Weisstein, Aug 30 2022
2025-02-16T08:34:03
oeisdata/seq/A356/A356829.seq
38ef413086288b28a7da04f459b13e7c
A356830
Number of vertex cuts in the n-prism graph.
[ "0", "2", "12", "88", "520", "2654", "12376", "54612", "232788", "970538", "3988644", "16239088", "65709280", "264814166", "1064414128", "4271035692", "17118683052", "68563527650", "274481537148", "1098506723080", "4395504614584", "17585769696206", "70352578566664", "281434319454084", "1125797816327940" ]
[ "nonn" ]
25
1
2
[ "A000129", "A002203", "A286182", "A356830" ]
null
Eric W. Weisstein, Aug 30 2022
2025-02-16T08:34:03
oeisdata/seq/A356/A356830.seq
1b94f4c7ac881afe9b35db0e0f7a261f
A356831
Size of the automorphism group for the underlying graph of the divisibility graph of size n.
[ "1", "2", "2", "2", "4", "2", "4", "4", "4", "2", "4", "2", "6", "4", "2", "4", "12", "12", "48", "48", "48", "12", "48", "24", "24", "12", "12", "12", "48", "48", "240", "480", "240", "96", "96", "96", "480", "288", "192", "192", "960", "960", "5760", "2880", "2880", "1440", "8640", "4320", "4320", "4320", "2880", "2880", "20160", "20160", "10080", "10080", "10080", "2880", "20160", "20160", "161280", "60480", "60480", "120960", "241920", "120960" ]
[ "nonn" ]
25
1
2
null
null
Nils Gaute Voll, Aug 30 2022
2024-12-19T11:45:36
oeisdata/seq/A356/A356831.seq
cd1c25ee89bb8ad459ea5cc1de38f448
A356832
Number of permutations p of [n] such that at most one element of {p(1),...,p(i-1)} is between p(i) and p(i+1) for all i < n and n = 0 or p(n) < 3.
[ "1", "1", "2", "4", "10", "26", "72", "206", "608", "1834", "5636", "17578", "55516", "177192", "570700", "1852572", "6055080", "19910730", "65823752", "218654100", "729459552", "2443051214", "8210993364", "27685671844", "93625082140", "317470233150", "1079183930828", "3676951654520", "12554734605496", "42952566314236" ]
[ "nonn" ]
20
0
3
[ "A000142", "A102407", "A216837", "A291683", "A356692", "A356832" ]
null
Alois P. Heinz, Aug 30 2022
2022-09-03T22:09:43
oeisdata/seq/A356/A356832.seq
64757b184a66620df3441a2e36d76520
A356833
Primes p such that the minimum number of divisors among the numbers between p and NextPrime(p) is a square.
[ "5", "13", "19", "31", "37", "43", "53", "61", "67", "73", "79", "83", "89", "103", "109", "127", "131", "139", "151", "157", "163", "173", "181", "193", "199", "211", "223", "233", "241", "251", "257", "263", "269", "271", "277", "293", "307", "311", "313", "317", "331", "337", "353", "367", "373", "379", "383", "389", "397", "401", "409", "421", "433", "443", "449", "457", "461", "463", "467", "479" ]
[ "nonn", "easy" ]
50
1
1
[ "A000005", "A000040", "A000290", "A036436", "A061112", "A353284", "A353285", "A353286", "A356833", "A357170", "A357175" ]
null
Claude H. R. Dequatre, Sep 16 2022
2022-11-02T07:51:34
oeisdata/seq/A356/A356833.seq
882ee297e1152d98741df4f14f873dcf
A356834
a(n) = n! * Sum_{k=0..floor(n/2)} (n - 2*k)^n/(n - 2*k)!.
[ "1", "1", "4", "33", "448", "8105", "192576", "5946913", "226097152", "10389920913", "571788928000", "36818407010561", "2741300619657216", "234014330510734969", "22620660476040331264", "2457467449742570271105", "298061856229112792743936", "40058727579693211737837857" ]
[ "nonn" ]
39
0
3
[ "A256016", "A352082", "A356834", "A357146", "A357174" ]
null
Seiichi Manyama, Sep 16 2022
2022-09-16T12:13:56
oeisdata/seq/A356/A356834.seq
4759a45ae4eeeba9f86913d3fcdad665
A356835
Coordination sequence of the {4,3,5} hyperbolic honeycomb.
[ "1", "6", "30", "126", "498", "1982", "7854", "31014", "122562", "484422", "1914254", "7564542", "29893554", "118131966", "466827678", "1844789414", "7290156162", "28808903814", "113845717662", "449890341534", "1777856189330", "7025651266782", "27763649373966", "109715127592326", "433567254075330", "1713351367231142", "6770744053574286" ]
[ "nonn" ]
20
0
2
[ "A247308", "A356835" ]
null
Eryk Kopczynski, Aug 31 2022
2022-11-06T08:52:51
oeisdata/seq/A356/A356835.seq
9242d6190af9956ab4ffd4fa3fc42816
A356836
Coordination sequence of the {5,3,4} hyperbolic honeycomb.
[ "1", "12", "102", "812", "6402", "50412", "396902", "3124812", "24601602", "193688012", "1524902502", "12005532012", "94519353602", "744149296812", "5858675020902", "46125250870412", "363143331942402", "2859021404668812", "22509027905408102", "177213201838596012", "1395196586803360002", "10984359492588284012" ]
[ "nonn" ]
18
0
2
[ "A076765", "A095004", "A356835", "A356836" ]
null
Eryk Kopczynski, Aug 31 2022
2022-11-06T08:58:24
oeisdata/seq/A356/A356836.seq
21e9cd51e8398920b156106b8a26e7ab
A356837
Coordination sequence of the {3,5,3} hyperbolic honeycomb.
[ "1", "20", "260", "3212", "39470", "484760", "5953532", "73117640", "897985850", "11028509072", "135445355180", "1663456422080", "20429547136382", "250903113935780", "3081437496506420", "37844317258279532", "464780593592780450", "5708148959489987900", "70103969470537620692", "860973771077827270580" ]
[ "nonn" ]
14
0
2
null
null
Eryk Kopczynski, Aug 31 2022
2022-11-06T09:03:40
oeisdata/seq/A356/A356837.seq
3a1b1371c70ca1c8d598ff756f64b081
A356838
The smallest of the most common prime factors of n.
[ "2", "3", "2", "5", "2", "7", "2", "3", "2", "11", "2", "13", "2", "3", "2", "17", "3", "19", "2", "3", "2", "23", "2", "5", "2", "3", "2", "29", "2", "31", "2", "3", "2", "5", "2", "37", "2", "3", "2", "41", "2", "43", "2", "3", "2", "47", "2", "7", "5", "3", "2", "53", "3", "5", "2", "3", "2", "59", "2", "61", "2", "3", "2", "5", "2", "67", "2", "3", "2", "71", "2", "73", "2", "5", "2", "7", "2", "79", "2", "3", "2", "83", "2", "5", "2", "3", "2", "89" ]
[ "nonn", "easy" ]
47
2
1
[ "A020639", "A051903", "A356838", "A356840", "A356862" ]
null
Jens Ahlström, Aug 31 2022
2022-09-13T04:06:42
oeisdata/seq/A356/A356838.seq
581b335da6dd07f9734fc92f521491a5
A356839
a(n) = A005132(2*n) + A005132(2*n+1).
[ "1", "9", "9", "33", "33", "33", "33", "33", "33", "105", "105", "59", "59", "59", "59", "59", "125", "191", "191", "117", "117", "117", "117", "117", "117", "117", "117", "117", "117", "117", "117", "117", "117", "381", "381", "381", "381", "381", "227", "227", "227", "227", "227", "227", "227", "227", "227", "227", "227", "227", "429", "631", "631", "631", "631", "191", "417", "873", "873" ]
[ "nonn" ]
31
0
2
[ "A005132", "A356839" ]
null
Paul Curtz, Aug 31 2022
2022-09-16T02:10:49
oeisdata/seq/A356/A356839.seq
28da45a7cbd20c34059bd34c58ad0dac
A356840
Largest most common prime factor of n.
[ "2", "3", "2", "5", "3", "7", "2", "3", "5", "11", "2", "13", "7", "5", "2", "17", "3", "19", "2", "7", "11", "23", "2", "5", "13", "3", "2", "29", "5", "31", "2", "11", "17", "7", "3", "37", "19", "13", "2", "41", "7", "43", "2", "3", "23", "47", "2", "7", "5", "17", "2", "53", "3", "11", "2", "19", "29", "59", "2", "61", "31", "3", "2", "13", "11", "67", "2", "23", "7", "71", "2", "73", "37", "5", "2", "11", "13", "79", "2", "3", "41", "83" ]
[ "nonn", "easy" ]
38
2
1
[ "A051903", "A356838", "A356840", "A356862" ]
null
Jens Ahlström, Aug 31 2022
2022-09-13T04:06:34
oeisdata/seq/A356/A356840.seq
d2e97924c56b0e2dcbe6b3bab44633f0
A356841
Numbers k such that the k-th composition in standard order covers an interval of positive integers (gapless).
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "10", "11", "13", "14", "15", "16", "18", "20", "21", "22", "23", "26", "27", "29", "30", "31", "32", "36", "37", "38", "41", "42", "43", "44", "45", "46", "47", "50", "52", "53", "54", "55", "58", "59", "61", "62", "63", "64", "68", "72", "74", "75", "77", "78", "82", "83", "84", "85", "86", "87", "89", "90", "91", "92", "93", "94", "95", "101" ]
[ "nonn" ]
11
1
3
[ "A053251", "A055932", "A073491", "A073492", "A073493", "A107428", "A132747", "A137921", "A286470", "A356224", "A356225", "A356230", "A356233", "A356603", "A356841", "A356842", "A356843", "A356844", "A356845" ]
null
Gus Wiseman, Aug 31 2022
2022-09-01T19:48:36
oeisdata/seq/A356/A356841.seq
657ae95ee181fcee3b64f35afae8edcc
A356842
Numbers k such that the k-th composition in standard order does not cover an interval of positive integers (not gapless).
[ "9", "12", "17", "19", "24", "25", "28", "33", "34", "35", "39", "40", "48", "49", "51", "56", "57", "60", "65", "66", "67", "69", "70", "71", "73", "76", "79", "80", "81", "88", "96", "97", "98", "99", "100", "103", "104", "112", "113", "115", "120", "121", "124", "129", "130", "131", "132", "133", "134", "135", "137", "138", "139", "140", "141", "142", "143", "144", "145" ]
[ "nonn" ]
4
1
1
[ "A053251", "A055932", "A073491", "A073492", "A073493", "A107428", "A132747", "A137921", "A286470", "A333217", "A356224", "A356225", "A356230", "A356233", "A356603", "A356841", "A356842", "A356843", "A356844", "A356845" ]
null
Gus Wiseman, Sep 01 2022
2022-09-01T19:48:31
oeisdata/seq/A356/A356842.seq
ec12d0067daa13a74ab85f374b09c8f6
A356843
Numbers k such that the k-th composition in standard order covers an interval of positive integers (gapless) but contains no 1's.
[ "2", "4", "8", "10", "16", "18", "20", "32", "36", "42", "64", "68", "72", "74", "82", "84", "128", "136", "146", "148", "164", "170", "256", "264", "272", "274", "276", "290", "292", "296", "298", "324", "328", "330", "338", "340", "512", "528", "548", "580", "584", "586", "594", "596", "658", "660", "676", "682", "1024", "1040", "1056", "1092", "1096", "1098" ]
[ "nonn" ]
8
1
1
[ "A022340", "A053251", "A055932", "A073491", "A073492", "A073493", "A107428", "A137921", "A251729", "A333217", "A356224", "A356225", "A356230", "A356233", "A356603", "A356841", "A356842", "A356843", "A356844", "A356845", "A356846" ]
null
Gus Wiseman, Sep 01 2022
2022-09-01T19:48:26
oeisdata/seq/A356/A356843.seq
a273ad4be9d88059100d95993219a3d6
A356844
Numbers k such that the k-th composition in standard order contains at least one 1. Numbers that are odd or whose binary expansion contains at least two adjacent 1's.
[ "1", "3", "5", "6", "7", "9", "11", "12", "13", "14", "15", "17", "19", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "33", "35", "37", "38", "39", "41", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "65", "67", "69", "70", "71", "73", "75", "76", "77", "78", "79", "81", "83", "85", "86", "87" ]
[ "nonn" ]
9
1
2
[ "A004754", "A004760", "A004780", "A005408", "A022340", "A055932", "A073492", "A073493", "A099036", "A132747", "A212804", "A333217", "A356843", "A356844", "A356845" ]
null
Gus Wiseman, Sep 02 2022
2022-09-03T12:20:22
oeisdata/seq/A356/A356844.seq
b41bd4c0b55714dc278d501065b37926
A356845
Odd numbers with gapless prime indices.
[ "1", "3", "5", "7", "9", "11", "13", "15", "17", "19", "23", "25", "27", "29", "31", "35", "37", "41", "43", "45", "47", "49", "53", "59", "61", "67", "71", "73", "75", "77", "79", "81", "83", "89", "97", "101", "103", "105", "107", "109", "113", "121", "125", "127", "131", "135", "137", "139", "143", "149", "151", "157", "163", "167", "169", "173", "175", "179", "181", "191" ]
[ "nonn" ]
7
1
2
[ "A001221", "A001222", "A001414", "A003963", "A034296", "A055932", "A056239", "A073491", "A073493", "A107428", "A112798", "A136107", "A251729", "A264396", "A287170", "A289508", "A294674", "A325160", "A356069", "A356224", "A356225", "A356230", "A356231", "A356233", "A356234", "A356603", "A356841", "A356843", "A356845" ]
null
Gus Wiseman, Sep 03 2022
2022-09-03T12:19:58
oeisdata/seq/A356/A356845.seq
adb5205b052b0b433174be64d310623f
A356846
Number of integer compositions of n into parts not covering an interval of positive integers.
[ "0", "0", "0", "0", "2", "5", "11", "25", "57", "115", "236", "482", "978", "1986", "4003", "8033", "16150", "32402", "64943", "130207", "260805", "522123", "1045168", "2091722", "4185431", "8374100", "16753538", "33515122", "67042865", "134106640", "268246886", "536549760", "1073194999", "2146553011", "4293391411", "8587283895" ]
[ "nonn" ]
8
0
5
[ "A000009", "A000041", "A001227", "A011782", "A034296", "A053251", "A055932", "A060142", "A066208", "A073491", "A073492", "A080259", "A107428", "A107429", "A188575", "A239327", "A239955", "A356604", "A356605", "A356841", "A356842", "A356846" ]
null
Gus Wiseman, Sep 03 2022
2022-09-03T12:19:49
oeisdata/seq/A356/A356846.seq
e05302714babc2a1b9fd4d7736e78971
A356847
Greedily choose a(n) to be the least prime p > a(n-1) such that all sums a(i) + a(j) - 1, 1 <= i < j, are also prime.
[ "5", "7", "13", "67", "97", "9337", "28657", "516157", "2193637", "1725215287", "5858906527", "10845974467", "311697041437", "2748104242057", "478834469031547", "30509330585363257" ]
[ "nonn", "more" ]
31
1
1
null
null
Jeffrey Shallit, Feb 23 2023
2023-03-05T13:30:45
oeisdata/seq/A356/A356847.seq
eda76496aa62ef3e153c980121fe6482
A356848
Expansion of g.f. A(x) satisfying A(x) = x * Sum_{n>=0} d^n/dx^n x^(2*n-1) * A(x)^n / n!.
[ "1", "1", "5", "37", "353", "4061", "54221", "820205", "13829377", "256853629", "5208050365", "114465346733", "2711004465185", "68846143222013", "1866577974450733", "53824099877628077", "1645120108520147713", "53135285623703158429", "1808560829585046118685", "64707781796679229092045", "2428043851750587122468513" ]
[ "nonn" ]
16
0
3
[ "A356848", "A360579" ]
null
Paul D. Hanna, Feb 23 2023
2025-03-23T20:52:57
oeisdata/seq/A356/A356848.seq
8792d7eb197a4765f2ad2656151b8f3c
A356849
a(n) = a(n-1) - a(n-2) + 3*a(n-3) with a(0) = 1, a(1) = 2 and a(2) = 4.
[ "1", "2", "4", "5", "7", "14", "22", "29", "49", "86", "124", "185", "319", "506", "742", "1193", "1969", "3002", "4612", "7517", "11911", "18230", "28870", "46373", "72193", "112430", "179356", "283505", "441439", "696002", "1105078", "1733393", "2716321", "4298162", "6782020", "10632821", "16745287", "26458526", "41611702", "65389037" ]
[ "nonn", "easy" ]
19
0
2
null
null
Giorgos Kalogeropoulos, Aug 31 2022
2022-10-12T11:13:54
oeisdata/seq/A356/A356849.seq
7f8e450ad1671db9c075edac87478867
A356850
a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest positive number not occurring earlier such that a(n) is coprime to the previous Omega(a(n)) terms.
[ "1", "2", "3", "5", "4", "7", "9", "10", "11", "13", "6", "17", "19", "14", "15", "23", "22", "21", "25", "26", "29", "27", "31", "8", "33", "35", "34", "37", "39", "38", "41", "43", "45", "28", "47", "51", "46", "49", "53", "55", "12", "59", "61", "57", "20", "67", "69", "58", "65", "71", "62", "63", "73", "74", "77", "75", "79", "52", "83", "85", "81", "44", "89", "87", "82", "91", "93", "86", "95", "97", "94", "99", "101", "103", "50", "107" ]
[ "nonn" ]
31
1
2
[ "A000040", "A001222", "A093714", "A336957", "A356850", "A356851", "A356903" ]
null
Scott R. Shannon, Aug 31 2022
2025-05-07T13:16:04
oeisdata/seq/A356/A356850.seq
024a87ac12a0b6f1dff5fbfbd65ce9a2
A356851
a(1) = 1, a(2) = 2, a(3) = 4; for n > 3, a(n) is the smallest positive number not occurring earlier such that a(n) shares a factor with the previous Omega(a(n)) terms.
[ "1", "2", "4", "6", "3", "9", "12", "15", "5", "10", "20", "14", "7", "21", "28", "35", "30", "25", "40", "45", "50", "18", "22", "8", "16", "24", "26", "13", "39", "52", "65", "78", "60", "33", "11", "44", "55", "66", "70", "34", "17", "51", "68", "85", "102", "90", "38", "19", "57", "76", "95", "114", "110", "46", "23", "69", "92", "115", "138", "130", "58", "29", "87", "116", "145", "174", "150", "62", "31", "93", "124", "155", "186" ]
[ "nonn" ]
18
1
2
[ "A000040", "A001222", "A064413", "A093714", "A336957", "A356850", "A356851" ]
null
Scott R. Shannon, Aug 31 2022
2023-05-07T19:33:09
oeisdata/seq/A356/A356851.seq
80dffff16c71b44a8fd875c8faa7fd30
A356852
Minimum over all order two bases for the interval [1, n] of the maximum number of ways some number in the interval [1, n] can be written as a sum of at most two elements of the basis.
[ "1", "1", "1", "1", "1", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "3", "3", "3", "3", "3", "3", "3", "3", "3", "3" ]
[ "nonn" ]
17
1
6
[ "A001212", "A265262", "A356852" ]
null
Javier Múgica, Aug 31 2022
2022-10-15T10:28:19
oeisdata/seq/A356/A356852.seq
b5cf408a40b1facc3ce3845452bf05d5
A356853
Number of permutations p of [2n+1] such that at most one element of {p(1),...,p(i-1)} is between p(i) and p(i+1) for all i <= 2n and p(2n+1) = n+1.
[ "1", "2", "20", "216", "2720", "36228", "503216", "7171404", "104142520", "1533200656", "22811374568", "342216338652", "5168324302672", "78483423004680", "1197266739443160", "18335055482658748", "281714880491273736", "4340894020114398672", "67055152953864109240", "1038097819961270208088" ]
[ "nonn" ]
14
0
2
[ "A356692", "A356853" ]
null
Alois P. Heinz, Aug 31 2022
2022-09-03T22:10:51
oeisdata/seq/A356/A356853.seq
e0af33352d325b1ea3b45890d4a0a0fb
A356854
Palindromes that can be written in more than one way as the sum of two distinct palindromic primes.
[ "282", "484", "858", "888", "21912", "22722", "23832", "24642", "25752", "26662", "26762", "26862", "26962", "27672", "27772", "27872", "27972", "28482", "28782", "28882", "28982", "29692", "29792", "29892", "29992", "40704", "41514", "41614", "41814", "42624", "42824", "42924", "43434", "43734", "43834", "43934", "44744", "44844", "44944", "45354" ]
[ "nonn", "base" ]
11
1
1
[ "A356824", "A356854" ]
null
Tanya Khovanova and Massimo Kofler, Aug 31 2022
2022-09-04T12:46:38
oeisdata/seq/A356/A356854.seq
79cd48ea2d84f1c35458c674b95f1004
A356855
a(n) is the least number m such that u defined by u(i) = bigomega(m + 2i) satisfies u(i) = u(0) for 0 <= i < n and u(n) != u(0), or -1 if no such number exists.
[ "1", "4", "3", "215", "213", "1383", "3091", "8129", "151403", "151401", "2560187", "33396293", "33396291", "56735777", "1156217487", "2514196079" ]
[ "nonn", "more" ]
110
1
2
[ "A001222", "A073093", "A091304", "A113752", "A356855", "A356893" ]
null
Jean-Marc Rebert, Sep 04 2022
2022-10-24T00:09:29
oeisdata/seq/A356/A356855.seq
0545f18d14f565893d49065e3298e722
A356856
Primes p such that the least positive primitive root of p (A001918) divides p-1.
[ "2", "3", "5", "7", "11", "13", "19", "29", "31", "37", "43", "53", "59", "61", "67", "71", "79", "83", "101", "107", "109", "127", "131", "139", "149", "151", "163", "173", "179", "181", "191", "197", "199", "211", "223", "227", "229", "239", "269", "271", "283", "293", "317", "331", "347", "349", "367", "373", "379", "389", "419", "421", "443", "461", "463", "467", "487" ]
[ "nonn" ]
13
1
1
[ "A001918", "A006093", "A356856" ]
null
Giorgos Kalogeropoulos, Aug 31 2022
2023-08-31T14:58:48
oeisdata/seq/A356/A356856.seq
32979ba8df3337b9a451179c87c6ae5c
A356857
Triangle of numbers T(n,k) = (-1)^(n-k)*(n+1)!*Stirling2(n,k)/(k+1).
[ "1", "-3", "2", "12", "-24", "6", "-60", "280", "-180", "24", "360", "-3600", "4500", "-1440", "120", "-2520", "52080", "-113400", "65520", "-12600", "720", "20160", "-846720", "3034080", "-2822400", "940800", "-120960", "5040", "-181440", "15361920", "-87635520", "123451776", "-63504000", "13789440", "-1270080", "40320" ]
[ "sign", "tabl" ]
26
1
2
[ "A019538", "A356857" ]
null
Samuel Gantner, Aug 31 2022
2025-06-02T15:26:04
oeisdata/seq/A356/A356857.seq
6607548655ffb2a6b4b409675d6f5fa7
A356858
a(n) is the product of the first n numbers not divisible by 5.
[ "1", "1", "2", "6", "24", "144", "1008", "8064", "72576", "798336", "9580032", "124540416", "1743565824", "27897053184", "474249904128", "8536498274304", "162193467211776", "3406062811447296", "74933381851840512", "1723467782592331776", "41363226782215962624", "1075443896337615028224", "29036985201115605762048" ]
[ "nonn" ]
17
0
3
[ "A000142", "A000351", "A002266", "A047201", "A356858", "A356859", "A356860", "A356861" ]
null
Stefano Spezia, Sep 01 2022
2024-11-03T16:13:42
oeisdata/seq/A356/A356858.seq
bf46900b713d41efb456c777ec56ac7c
A356859
a(n) is the number of zero digits in the product of the first n numbers not divisible by 5.
[ "0", "0", "0", "0", "0", "0", "2", "1", "0", "0", "2", "1", "0", "1", "1", "1", "0", "2", "1", "0", "0", "2", "4", "1", "2", "2", "2", "6", "5", "2", "3", "5", "4", "2", "5", "3", "4", "6", "4", "3", "8", "3", "3", "4", "8", "9", "6", "3", "5", "9", "6", "10", "9", "7", "4", "11", "10", "10", "8", "13", "9", "5", "8", "8", "11", "7", "8", "10", "13", "11", "10", "12", "11", "13", "13", "16", "6", "16", "10", "21", "17" ]
[ "nonn", "base" ]
6
0
7
[ "A047201", "A055641", "A356858", "A356859", "A356860", "A356861" ]
null
Stefano Spezia, Sep 01 2022
2022-09-04T12:38:30
oeisdata/seq/A356/A356859.seq
f1ac815be80967ba6336d98fc0deecb0
A356860
a(n) is the number of digits in the product of the first n numbers not divisible by 5.
[ "1", "1", "1", "1", "2", "3", "4", "4", "5", "6", "7", "9", "10", "11", "12", "13", "15", "16", "17", "19", "20", "22", "23", "24", "26", "27", "29", "30", "32", "33", "35", "37", "38", "40", "41", "43", "45", "46", "48", "50", "51", "53", "55", "57", "58", "60", "62", "64", "65", "67", "69", "71", "73", "74", "76", "78", "80", "82", "84", "85", "87", "89", "91", "93", "95", "97", "99", "101", "103" ]
[ "nonn", "base" ]
6
0
5
[ "A047201", "A055642", "A356858", "A356859", "A356860", "A356861" ]
null
Stefano Spezia, Sep 01 2022
2022-09-04T12:38:41
oeisdata/seq/A356/A356860.seq
1d3f73e6bc539e7c3951c0d098f40911
A356861
a(n) is the number of nonzero digits in the product of the first n numbers not divisible by 5.
[ "1", "1", "1", "1", "2", "3", "2", "3", "5", "6", "5", "8", "10", "10", "11", "12", "15", "14", "16", "19", "20", "20", "19", "23", "24", "25", "27", "24", "27", "31", "32", "32", "34", "38", "36", "40", "41", "40", "44", "47", "43", "50", "52", "53", "50", "51", "56", "61", "60", "58", "63", "61", "64", "67", "72", "67", "70", "72", "76", "72", "78", "84", "83", "85", "84", "90", "91", "91", "90" ]
[ "nonn", "base" ]
7
0
5
[ "A047201", "A055640", "A356858", "A356859", "A356860", "A356861" ]
null
Stefano Spezia, Sep 01 2022
2022-09-04T12:38:51
oeisdata/seq/A356/A356861.seq
bc6ce54dbd81ecf15cc5d662d2e487b1
A356862
Numbers with a unique largest prime exponent.
[ "2", "3", "4", "5", "7", "8", "9", "11", "12", "13", "16", "17", "18", "19", "20", "23", "24", "25", "27", "28", "29", "31", "32", "37", "40", "41", "43", "44", "45", "47", "48", "49", "50", "52", "53", "54", "56", "59", "60", "61", "63", "64", "67", "68", "71", "72", "73", "75", "76", "79", "80", "81", "83", "84", "88", "89", "90", "92", "96", "97", "98", "99", "101", "103", "104" ]
[ "nonn", "easy" ]
53
1
1
[ "A000041", "A001221", "A001222", "A002865", "A027746", "A051903", "A056239", "A070003", "A102750", "A112798", "A124010", "A246655", "A247180", "A283050", "A319161", "A327473", "A356838", "A356840", "A356862", "A359178", "A362605", "A362606", "A362607", "A362608", "A362609", "A362610", "A362611", "A362613", "A362614", "A362615", "A376250" ]
null
Jens Ahlström, Sep 01 2022
2024-09-17T04:02:44
oeisdata/seq/A356/A356862.seq
5b09a63f1769da065bcd3b55623e97ba
A356863
Numbers that are the product of two palindromes in two or more ways and are the concatenation of two palindromes, with all the palindromes having the same number of decimal digits.
[ "12", "16", "18", "24", "36", "113131311886868688", "153535351846464648", "182919281817080718", "183838381816161618", "185676581814323418", "192919291807080708", "193838391806161608", "283919382716080617", "293656392403040304", "293919392706080607", "365838563634161436", "385838583614161416", "387676783612323216", "567838765432161234", "587838785412161214" ]
[ "nonn", "base" ]
18
1
1
[ "A002113", "A355148", "A356863" ]
null
Chai Wah Wu, Sep 01 2022
2022-09-04T12:45:19
oeisdata/seq/A356/A356863.seq
d88bbd1ddeb87f0a47d343e2181d0c59
A356864
a(n) is the number of primes p < n such that 2*n-p and p*(2*n-p)+2*n are also prime.
[ "0", "0", "0", "1", "1", "1", "1", "1", "1", "1", "2", "1", "0", "0", "3", "0", "2", "3", "0", "3", "4", "1", "1", "2", "1", "2", "3", "0", "0", "3", "1", "3", "1", "0", "5", "3", "0", "2", "1", "0", "3", "6", "0", "1", "2", "1", "1", "3", "0", "2", "2", "0", "2", "1", "1", "4", "6", "0", "2", "11", "0", "3", "3", "0", "2", "2", "0", "0", "2", "0", "4", "4", "0", "1", "3", "1", "5", "3", "0", "2", "8", "0", "2", "3", "0", "1", "5", "0", "0", "6", "1", "4", "5", "0", "3", "4", "0", "3", "1" ]
[ "nonn" ]
12
1
11
[ "A061357", "A356864" ]
null
J. M. Bergot and Robert Israel, Sep 01 2022
2022-09-06T10:29:20
oeisdata/seq/A356/A356864.seq
e87779baf7b59cb936db49258ac0e2b3
A356865
Minimal absolute value of determinant of a nonsingular n X n symmetric Toeplitz matrix using the integers 1 to n.
[ "1", "1", "3", "8", "12", "3", "13", "19", "5", "5", "1", "3", "1" ]
[ "nonn", "hard", "more" ]
12
0
3
[ "A348891", "A350953", "A350954", "A356865" ]
null
Lucas A. Brown, Sep 01 2022
2022-10-11T00:55:10
oeisdata/seq/A356/A356865.seq
2270ffef088e41c8946a0358831cda64
A356866
Smallest Carmichael number (A002997) with n prime factors that is also a strong pseudoprime to base 2 (A001262).
[ "15841", "5310721", "440707345", "10761055201", "5478598723585", "713808066913201", "1022751992545146865", "5993318051893040401", "120459489697022624089201", "27146803388402594456683201", "14889929431153115006659489681" ]
[ "nonn", "more" ]
61
3
1
[ "A001262", "A002997", "A006931", "A063847", "A180065", "A356866" ]
null
Daniel Suteu, Oct 01 2022
2022-10-02T13:32:40
oeisdata/seq/A356/A356866.seq
f20f810c7aa099b6245d7fd3e093ff77
A356867
For n >= 1, write n = 3^m + k, where m >= 0 is the greatest power of 3 <= n, and k is in the range 0 <= k < 3^(m+1) - 3^m, then for n such that k=0, a(n)=n, and for n such that k > 0, a(n) is the smallest prime multiple p*a(k), p != 3, that is not already a term.
[ "1", "2", "3", "5", "4", "6", "10", "8", "9", "7", "14", "15", "25", "20", "12", "50", "16", "18", "35", "28", "30", "125", "40", "24", "100", "32", "27", "11", "22", "21", "55", "44", "42", "70", "56", "45", "49", "98", "75", "175", "140", "60", "250", "80", "36", "245", "196", "150", "625", "200", "48", "500", "64", "54", "77", "110", "105", "275", "88", "84", "350", "112", "90", "343" ]
[ "nonn", "look" ]
64
1
2
[ "A005940", "A007089", "A007949", "A011655", "A046523", "A048473", "A053735", "A100484", "A348717", "A356867", "A364611", "A364628", "A364958", "A365390", "A365424", "A365459", "A365462", "A365463", "A365464", "A365465", "A365717", "A365719", "A365721", "A365722" ]
null
David James Sycamore, Sep 01 2022
2025-07-01T10:08:03
oeisdata/seq/A356/A356867.seq
34f01bf491068412971f57ac15a78e05
A356868
a(n) = n^2 * prime(n).
[ "2", "12", "45", "112", "275", "468", "833", "1216", "1863", "2900", "3751", "5328", "6929", "8428", "10575", "13568", "17051", "19764", "24187", "28400", "32193", "38236", "43907", "51264", "60625", "68276", "75087", "83888", "91669", "101700", "122047", "134144", "149193", "160684", "182525", "195696", "214933", "235372", "254007", "276800", "300899" ]
[ "nonn", "easy" ]
15
1
1
[ "A000040", "A000290", "A004232", "A033286", "A196421", "A356868" ]
null
Alex Ratushnyak, Sep 01 2022
2022-09-03T22:23:46
oeisdata/seq/A356/A356868.seq
0885e63b3ccc21b270ba66dff53a7687
A356869
Decimal expansion of 4 / sqrt(5).
[ "1", "7", "8", "8", "8", "5", "4", "3", "8", "1", "9", "9", "9", "8", "3", "1", "7", "5", "7", "1", "2", "7", "3", "3", "8", "9", "3", "4", "9", "8", "5", "0", "2", "0", "9", "8", "8", "3", "5", "2", "4", "9", "4", "6", "8", "7", "6", "8", "9", "2", "2", "0", "5", "7", "9", "4", "1", "6", "7", "1", "7", "7", "9", "6", "3", "2", "8", "4", "1", "6", "7", "4", "0", "5", "1", "0", "2", "4", "3", "9", "1", "9", "5", "3", "1", "5", "3", "1", "5", "2", "6", "7", "0", "3", "0", "2", "5" ]
[ "nonn", "cons", "easy" ]
56
1
2
[ "A121570", "A179290", "A204188", "A356869" ]
null
Michal Paulovic, Sep 01 2022
2022-09-09T23:37:48
oeisdata/seq/A356/A356869.seq
a54e65c73af1ae535074516b507b9e8e
A356870
a(n) = (A005132(2*n-1) + A005132(2*n))/4.
[ "1", "2", "5", "8", "8", "8", "8", "8", "17", "26", "26", "15", "15", "15", "15", "15", "48", "48", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "62", "95", "95", "95", "95", "95", "57", "57", "57", "57", "57", "57", "57", "57", "57", "57", "57", "57", "158", "158", "158", "158", "103", "48", "161", "218", "218", "99", "99", "99", "99", "99", "35", "35", "168", "100", "100", "100" ]
[ "nonn", "look" ]
53
1
2
[ "A005132", "A356839", "A356870" ]
null
Paul Curtz, Sep 02 2022
2022-09-16T10:16:07
oeisdata/seq/A356/A356870.seq
a8fe33ffc8afea4b5ad974ea5e8490ae
A356871
Primitive coreful abundant numbers (second definition): coreful abundant numbers (A308053) that are powerful numbers (A001694).
[ "72", "108", "144", "200", "216", "288", "324", "400", "432", "576", "648", "784", "800", "864", "900", "972", "1000", "1152", "1296", "1568", "1600", "1728", "1764", "1800", "1936", "1944", "2000", "2304", "2592", "2700", "2704", "2744", "2916", "3136", "3200", "3456", "3528", "3600", "3872", "3888", "4000", "4356", "4500", "4608", "4900", "5000", "5184" ]
[ "nonn" ]
9
1
1
[ "A001694", "A057723", "A307959", "A308053", "A328136", "A339940", "A356871" ]
null
Amiram Eldar, Sep 02 2022
2022-09-03T08:49:47
oeisdata/seq/A356/A356871.seq
dcccf1da0c30a98a6a9b2e48f83215db
A356872
a(n) = k is the smallest number such that 3*k+1 contains n distinct prime factors.
[ "1", "3", "23", "303", "4363", "56723", "1077743", "33410043", "718854803", "22284498903", "824526459423", "35454637755203", "1588862487308763", "68321086954276823", "4167586304210886223", "213640038906023626563", "13032042373267441220363", "873146839008918561764343", "63739719247651055008797063" ]
[ "nonn" ]
30
1
2
[ "A002110", "A180278", "A219108", "A356872" ]
null
Alex Ratushnyak, Sep 02 2022
2022-09-28T11:16:39
oeisdata/seq/A356/A356872.seq
23ccc72479392d784ec83d5794a5ace7
A356873
a(n) is the smallest number k such that 2^k+1 has at least n distinct prime factors.
[ "0", "5", "14", "18", "30", "42", "78", "78", "78", "90", "150", "150", "210", "210", "234", "234", "270", "390", "390", "390", "390", "450", "510", "630", "630", "630", "810", "810", "810", "966", "966", "1170", "1170", "1170", "1170", "1170", "1170", "1170" ]
[ "nonn", "hard", "more" ]
27
1
2
[ "A046799", "A071852", "A180278", "A219108", "A356872", "A356873" ]
null
Alex Ratushnyak, Sep 02 2022
2022-10-13T09:50:58
oeisdata/seq/A356/A356873.seq
5490744430bc557f9fe1c769059b31d8
A356874
Write n as Sum_{i in S} 2^(i-1), where S is a set of positive integers, then a(n) = Sum_{i in S} F_i, where F_i is the i-th Fibonacci number, A000045(i).
[ "0", "1", "1", "2", "2", "3", "3", "4", "3", "4", "4", "5", "5", "6", "6", "7", "5", "6", "6", "7", "7", "8", "8", "9", "8", "9", "9", "10", "10", "11", "11", "12", "8", "9", "9", "10", "10", "11", "11", "12", "11", "12", "12", "13", "13", "14", "14", "15", "13", "14", "14", "15", "15", "16", "16", "17", "16", "17", "17", "18", "18", "19", "19", "20", "13", "14", "14", "15", "15", "16", "16", "17", "16", "17", "17", "18", "18", "19", "19", "20" ]
[ "nonn", "base", "easy" ]
20
0
4
[ "A000045", "A000121", "A000201", "A022290", "A022342", "A287870", "A356874" ]
null
Peter Munn, Sep 02 2022
2023-08-08T12:10:24
oeisdata/seq/A356/A356874.seq
a5fa7fd41ae2233283552872fe676c06
A356875
Square array, n >= 0, k >= 0, read by descending antidiagonals. A(n,k) = A022341(n)*2^k.
[ "1", "2", "5", "4", "10", "9", "8", "20", "18", "17", "16", "40", "36", "34", "21", "32", "80", "72", "68", "42", "33", "64", "160", "144", "136", "84", "66", "37", "128", "320", "288", "272", "168", "132", "74", "41", "256", "640", "576", "544", "336", "264", "148", "82", "65", "512", "1280", "1152", "1088", "672", "528", "296", "164", "130", "69", "1024", "2560", "2304", "2176", "1344", "1056", "592", "328", "260", "138", "73" ]
[ "nonn", "easy", "tabl" ]
8
0
2
[ "A000045", "A003714", "A022290", "A022341", "A035513", "A054582", "A287870", "A356874", "A356875" ]
null
Peter Munn, Sep 02 2022
2022-09-07T18:58:08
oeisdata/seq/A356/A356875.seq
a3cf84805c72a6b65012653152ed6d1d
A356876
Binary weight of the composite numbers (A002808).
[ "1", "2", "1", "2", "2", "2", "3", "4", "1", "2", "2", "3", "3", "2", "3", "3", "4", "3", "4", "1", "2", "2", "3", "2", "3", "4", "2", "3", "3", "4", "4", "2", "3", "3", "4", "3", "4", "5", "3", "4", "4", "4", "5", "6", "1", "2", "2", "2", "3", "3", "2", "3", "4", "3", "4", "4", "2", "3", "3", "3", "4", "4", "5", "3", "4", "5", "4", "5", "5", "6", "2", "3", "4", "3", "4", "3", "4", "4", "4", "5", "6", "3", "4", "5", "4", "5", "5", "6", "4", "5", "5" ]
[ "base", "nonn", "easy" ]
25
1
2
[ "A000120", "A002808", "A014499", "A356876" ]
null
Karl-Heinz Hofmann, Oct 02 2022
2022-10-05T15:40:18
oeisdata/seq/A356/A356876.seq
99e791257afdf829f3d58476b0fbf051
A356877
a(n) is the least number k such that (the binary weight of k) - (the binary weight of k^2) = n.
[ "0", "23", "111", "479", "1471", "6015", "24319", "28415", "114175", "457727", "490495", "1964031", "6025215", "8122367", "32497663", "98549759", "132104191", "528449535", "1593769983", "1862205439", "7448952831", "25635323903", "29930291199", "119721689087", "411242070015", "479961546751", "514321285119", "2057287237631", "7687987265535" ]
[ "nonn", "base" ]
41
0
2
[ "A000120", "A159918", "A260986", "A356877", "A357750" ]
null
Karl-Heinz Hofmann, Oct 10 2022
2022-10-18T01:43:03
oeisdata/seq/A356/A356877.seq
99ce8eea3009f1fb886c1aa1038dfb88
A356878
a(n) is the least number of binary zeros of squares with binary weight n.
[ "1", "0", "2", "2", "4", "2", "3", "4", "3", "4", "5", "5", "5", "2", "5", "5", "5", "6", "6", "6", "6", "6", "6", "6", "6", "6", "7", "7", "7", "7", "7", "7", "8", "7", "6", "8", "9", "6", "7", "8", "9", "8", "9", "9", "8", "10", "9", "9", "10", "9", "9", "9", "9", "10", "10", "10", "11", "10" ]
[ "nonn", "base", "hard", "more" ]
31
0
3
[ "A000120", "A164343", "A164344", "A356878" ]
null
Karl-Heinz Hofmann, Sep 30 2022
2022-10-13T16:33:35
oeisdata/seq/A356/A356878.seq
8985b658d4b7696000b361b97b832008
A356879
Numbers k such that the sum k^x + k^y can be a square with {x, y} >= 0.
[ "0", "2", "3", "8", "15", "18", "24", "32", "35", "48", "50", "63", "72", "80", "98", "99", "120", "128", "143", "162", "168", "195", "200", "224", "242", "255", "288", "323", "338", "360", "392", "399", "440", "450", "483", "512", "528", "575", "578", "624", "648", "675", "722", "728", "783", "800", "840", "882", "899", "960", "968", "1023", "1058", "1088", "1152", "1155", "1224" ]
[ "nonn" ]
34
0
2
[ "A001105", "A132411", "A132592", "A270473", "A356879", "A356880" ]
null
Karl-Heinz Hofmann, Sep 12 2022
2022-10-13T13:58:56
oeisdata/seq/A356/A356879.seq
9ac01a7ed9cd841bb7df43899f834234
A356880
Squares that can be expressed as the sum of two powers of two (2^x + 2^y).
[ "4", "9", "16", "36", "64", "144", "256", "576", "1024", "2304", "4096", "9216", "16384", "36864", "65536", "147456", "262144", "589824", "1048576", "2359296", "4194304", "9437184", "16777216", "37748736", "67108864", "150994944", "268435456", "603979776", "1073741824", "2415919104", "4294967296", "9663676416", "17179869184" ]
[ "nonn", "easy" ]
50
1
1
[ "A000290", "A000302", "A002063", "A029744", "A048645", "A220221", "A270473", "A272711", "A356880" ]
null
Karl-Heinz Hofmann, Sep 02 2022
2022-09-25T09:34:29
oeisdata/seq/A356/A356880.seq
eb0a604f1e5d14b3250f471d4e1eaeb0
A356881
Palindromes that can be written in more than one way as the sum of two palindromic primes.
[ "202", "282", "484", "858", "888", "21912", "22722", "23832", "24642", "24842", "25752", "26662", "26762", "26862", "26962", "27672", "27772", "27872", "27972", "28482", "28682", "28782", "28882", "28982", "29692", "29792", "29892", "29992", "40704", "41514", "41614", "41814", "42624", "42824", "42924", "43434", "43734" ]
[ "nonn", "base" ]
11
1
1
[ "A356824", "A356854", "A356881" ]
null
Tanya Khovanova, Sep 02 2022
2024-02-22T20:11:30
oeisdata/seq/A356/A356881.seq
8dc47c2e045eb6d172d31a8a217487c9
A356882
E.g.f. satisfies: A(x) * log(A(x)) = x * (exp(x*A(x)) - 1).
[ "1", "0", "2", "3", "16", "125", "756", "7567", "85968", "994905", "14373460", "225366251", "3800667960", "72169966453", "1469546796732", "32150706096615", "760806334538656", "19142440567996721", "512272692571487652", "14560087915617858883", "436598686303562722440", "13796641165956117509901" ]
[ "nonn" ]
9
0
3
[ "A349560", "A349588", "A356785", "A356788", "A356789", "A356882", "A356883" ]
null
Seiichi Manyama, Sep 02 2022
2022-09-02T18:06:43
oeisdata/seq/A356/A356882.seq
5a4cf4903adf857fad5d5629c7e6dff3
A356883
E.g.f. satisfies: A(x)^2 * log(A(x)) = x * (exp(x*A(x)) - 1).
[ "1", "0", "2", "3", "-8", "5", "696", "2527", "-40144", "-178407", "8337880", "76134971", "-1781542344", "-24938260763", "691630553264", "14216543752335", "-312910463346464", "-9343318015483471", "195539694928047144", "8145971436703039363", "-142317653823753257560", "-8498984155838272275459" ]
[ "sign" ]
8
0
3
[ "A349560", "A355763", "A356785", "A356788", "A356789", "A356882", "A356883" ]
null
Seiichi Manyama, Sep 02 2022
2022-09-02T18:06:48
oeisdata/seq/A356/A356883.seq
4addf1e52ae4538f10cace1b10477856
A356884
E.g.f. satisfies A(x)^A(x) = 1/(1 - x*A(x))^x.
[ "1", "0", "2", "3", "20", "150", "1254", "14280", "190000", "2863728", "49465080", "954312480", "20303200488", "473604468480", "12007399511184", "328671680500800", "9663415159357440", "303695188102656000", "10159173955921651776", "360424299614544829440", "13517056067747847719040" ]
[ "nonn" ]
8
0
3
[ "A141209", "A184949", "A349559", "A356786", "A356787", "A356884", "A356885" ]
null
Seiichi Manyama, Sep 02 2022
2022-09-02T18:06:52
oeisdata/seq/A356/A356884.seq
86ea4cb372b6068f34e7ce64e3b06f5e
A356885
E.g.f. satisfies A(x)^(A(x)^2) = 1/(1 - x*A(x))^x.
[ "1", "0", "2", "3", "-4", "30", "954", "6300", "6432", "424872", "18273960", "260682840", "1754408424", "47063118960", "2314149100704", "54798086299320", "773632032345600", "20746972036284480", "1072205580591921600", "36098491880448944640", "816375193722964932480", "25160238159364392336000" ]
[ "sign" ]
7
0
3
[ "A184949", "A349559", "A355767", "A356786", "A356787", "A356884", "A356885" ]
null
Seiichi Manyama, Sep 02 2022
2022-09-02T18:06:56
oeisdata/seq/A356/A356885.seq
c40c9e96ccd80db0117f25dbd40daef7
A356886
Write n as 2^m - k, where 2^m is the least power of 2 such that 2^m >= n, and k is a number in the range 0 <= k < 2^(m-1) - 1. Then for n such that k=0, a(n)=n, and for n such that k > 0, a(n) is the smallest odd prime multiple of a(k) that is not already a term.
[ "1", "2", "3", "4", "9", "6", "5", "8", "15", "18", "27", "12", "21", "10", "7", "16", "35", "30", "63", "36", "81", "54", "45", "24", "25", "42", "99", "20", "33", "14", "11", "32", "55", "70", "165", "60", "297", "126", "75", "72", "135", "162", "243", "108", "189", "90", "105", "48", "49", "50", "147", "84", "351", "198", "195", "40", "65", "66", "117", "28", "39", "22", "13", "64", "91" ]
[ "nonn" ]
37
1
2
[ "A005940", "A356886" ]
null
David James Sycamore, Sep 02 2022
2023-01-12T21:19:43
oeisdata/seq/A356/A356886.seq
c61a5c13c11bb05206cb002d48f93a24
A356887
Number of n X n matrices over GF(2) whose characteristic polynomial is a single monic irreducible (prime) raised to some power.
[ "1", "2", "10", "176", "14016", "4032512", "6213763072", "32018926665728", "870713558978002944", "89293629194528350011392", "40675925233031615853327548416", "72389802739964734146185851566030848", "563250609270594469597103043401725627072512" ]
[ "nonn" ]
11
0
2
null
null
Geoffrey Critzer, Sep 02 2022
2025-06-20T20:22:29
oeisdata/seq/A356/A356887.seq
a172bf7788a6b38defc740f8a4acc166
A356888
a(n) = ((n-1)^2 + 2)*2^(n-2).
[ "1", "3", "12", "44", "144", "432", "1216", "3264", "8448", "21248", "52224", "125952", "299008", "700416", "1622016", "3719168", "8454144", "19070976", "42729472", "95158272", "210763776", "464519168", "1019215872", "2227175424", "4848615424", "10519314432", "22749904896", "49056579584", "105495134208", "226291089408" ]
[ "nonn", "easy" ]
26
1
2
[ "A334551", "A356888" ]
null
Jack Hanke, Sep 02 2022
2024-10-07T03:23:24
oeisdata/seq/A356/A356888.seq
f9dcb1bbccc0e247394dd45639de8afd
A356889
a(n) = (n^2 + 3*n + 10/3)*4^(n-3) - 1/3.
[ "3", "21", "125", "693", "3669", "18773", "93525", "456021", "2184533", "10310997", "48059733", "221599061", "1012225365", "4585772373", "20624790869", "92162839893", "409453548885", "1809612887381", "7960006055253", "34863681197397", "152099108509013", "661172992169301", "2864594294232405", "12373170851239253" ]
[ "nonn", "easy" ]
22
2
1
[ "A334551", "A356889" ]
null
Jack Hanke, Sep 02 2022
2024-01-07T13:34:06
oeisdata/seq/A356/A356889.seq
93ee7d5f10886ca4c42d19110420c06d
A356890
a(n) is the first twin prime that begins a sequence of exactly n twin primes under the map t -> 3*t+2.
[ "7", "3", "19", "40951819", "12454922269" ]
[ "nonn", "more" ]
15
1
1
null
null
J. M. Bergot and Robert Israel, Sep 02 2022
2022-09-08T08:15:54
oeisdata/seq/A356/A356890.seq
1639258a0751089c152ec5b1fea8d685
A356891
a(n) = a(n-1) * a(n-2) + 1 if n is even, otherwise a(n) = a(n-3) + 1, with a(0) = a(1) = 1.
[ "1", "1", "2", "2", "5", "3", "16", "6", "97", "17", "1650", "98", "161701", "1651", "266968352", "161702", "43169316455105", "266968353", "11524841314155180292066", "43169316455106", "497519521785644682185076928856988997", "11524841314155180292067" ]
[ "nonn" ]
26
0
3
[ "A007660", "A356891" ]
null
J. Conrad, Sep 02 2022
2022-11-06T08:40:18
oeisdata/seq/A356/A356891.seq
b7760341c1cb5c9449057c1314926a19
A356892
E.g.f. satisfies log(A(x)) = x^3 * (exp(x * A(x)) - 1) * A(x).
[ "1", "0", "0", "0", "24", "60", "120", "210", "101136", "1089144", "7409520", "39917790", "4097460840", "100410712116", "1474154203704", "16356956618730", "786764261166240", "30867868254267120", "778327514455987296", "14658714575197061814", "522720977799308061240", "25075479032600008569900" ]
[ "nonn" ]
38
0
5
[ "A349557", "A355508", "A356785", "A356892", "A356963" ]
null
Seiichi Manyama, Sep 07 2022
2022-09-12T03:05:12
oeisdata/seq/A356/A356892.seq
89f37067036c34510b66d99410446aa8
A356893
a(n) is the smallest number m such that m, m+1, m+2 and m+3 each have exactly n prime factors (counted with multiplicity).
[ "602", "4023", "57967", "8706123", "296299374", "4109290623" ]
[ "nonn", "more" ]
18
3
1
[ "A113752", "A356893" ]
null
Zak Seidov, Sep 03 2022
2022-09-04T12:37:25
oeisdata/seq/A356/A356893.seq
34f6bcf16250687e9ea4554a577d311b
A356894
a(n) is the number of 0's in the maximal tribonacci representation of n (A352103).
[ "1", "0", "1", "0", "2", "1", "1", "0", "2", "2", "1", "2", "1", "1", "0", "3", "2", "3", "2", "2", "1", "2", "2", "1", "2", "1", "1", "0", "4", "3", "3", "2", "3", "3", "2", "3", "2", "2", "1", "3", "2", "3", "2", "2", "1", "2", "2", "1", "2", "1", "1", "0", "4", "4", "3", "4", "3", "3", "2", "4", "3", "4", "3", "3", "2", "3", "3", "2", "3", "2", "2", "1", "4", "3", "3", "2", "3", "3", "2", "3", "2", "2", "1", "3", "2", "3", "2" ]
[ "nonn", "base" ]
12
0
5
[ "A000073", "A023416", "A102364", "A117479", "A278042", "A352103", "A352104", "A356894", "A356895" ]
null
Amiram Eldar, Sep 03 2022
2022-09-05T05:24:32
oeisdata/seq/A356/A356894.seq
e968028eb135bb77022b9cd802f1b730
A356895
a(n) is the length of the maximal tribonacci representation of n (A352103).
[ "1", "1", "2", "2", "3", "3", "3", "3", "4", "4", "4", "4", "4", "4", "4", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7", "7" ]
[ "nonn", "base" ]
8
0
3
[ "A070939", "A072649", "A095791", "A278044", "A352103", "A352104", "A356894", "A356895" ]
null
Amiram Eldar, Sep 03 2022
2022-09-05T05:24:36
oeisdata/seq/A356/A356895.seq
f69e36e2effb48b8550adee237fd4a46
A356896
Nonnegative numbers whose maximal tribonacci representation (A352103) ends in an even number of 1's.
[ "0", "2", "3", "4", "6", "9", "10", "11", "13", "14", "15", "16", "17", "19", "22", "23", "24", "26", "28", "30", "33", "34", "35", "37", "38", "39", "40", "41", "43", "46", "47", "48", "50", "51", "53", "54", "55", "57", "58", "59", "60", "61", "63", "66", "67", "68", "70", "72", "74", "77", "78", "79", "81", "82", "83", "84", "85", "87", "90", "91", "92", "94", "96", "97", "98", "100", "103" ]
[ "nonn", "base" ]
8
1
2
[ "A058265", "A308197", "A342051", "A352103", "A356896", "A356897", "A356898" ]
null
Amiram Eldar, Sep 03 2022
2022-09-05T05:24:46
oeisdata/seq/A356/A356896.seq
e21b2662ef88bc6a51fc4a611c1ddd97
A356897
Nonnegative numbers whose maximal tribonacci representation (A352103) ends in an odd number of 1's.
[ "1", "5", "7", "8", "12", "18", "20", "21", "25", "27", "29", "31", "32", "36", "42", "44", "45", "49", "52", "56", "62", "64", "65", "69", "71", "73", "75", "76", "80", "86", "88", "89", "93", "95", "99", "101", "102", "106", "108", "110", "112", "113", "117", "123", "125", "126", "130", "133", "137", "143", "145", "146", "150", "152", "154", "156", "157", "161", "167", "169" ]
[ "nonn", "base" ]
8
1
2
[ "A001950", "A058265", "A308198", "A342050", "A352103", "A356896", "A356897", "A356898" ]
null
Amiram Eldar, Sep 03 2022
2022-09-05T05:24:50
oeisdata/seq/A356/A356897.seq
8f980f8c32e6d10c08213b6907336445
A356898
a(n) is the number of trailing 1's in the maximal tribonacci representation of n (A352103).
[ "0", "1", "0", "2", "0", "1", "0", "3", "1", "0", "2", "0", "1", "0", "4", "0", "2", "0", "1", "0", "3", "1", "0", "2", "0", "1", "0", "5", "0", "1", "0", "3", "1", "0", "2", "0", "1", "0", "4", "0", "2", "0", "1", "0", "3", "1", "0", "2", "0", "1", "0", "6", "1", "0", "2", "0", "1", "0", "4", "0", "2", "0", "1", "0", "3", "1", "0", "2", "0", "1", "0", "5", "0", "1", "0", "3", "1", "0", "2", "0", "1", "0", "4", "0", "2", "0", "1" ]
[ "nonn", "base" ]
8
0
4
[ "A058265", "A278045", "A352103", "A356749", "A356896", "A356897", "A356898" ]
null
Amiram Eldar, Sep 03 2022
2022-09-05T05:24:39
oeisdata/seq/A356/A356898.seq
518c3dc949db7ce1e376762cdf0ce8d7
A356899
Nonnegative numbers whose minimal and maximal tribonacci representations are the same.
[ "0", "1", "2", "3", "4", "5", "6", "8", "9", "10", "11", "12", "15", "16", "17", "18", "19", "21", "22", "23", "28", "29", "30", "32", "33", "34", "35", "36", "39", "40", "41", "42", "43", "52", "53", "54", "55", "56", "59", "60", "61", "62", "63", "65", "66", "67", "72", "73", "74", "76", "77", "78", "79", "80", "96", "97", "98", "99", "100", "102", "103", "104", "109", "110", "111", "113" ]
[ "nonn", "base" ]
8
1
3
[ "A000071", "A089068", "A278038", "A352103", "A356899" ]
null
Amiram Eldar, Sep 03 2022
2022-09-05T05:24:42
oeisdata/seq/A356/A356899.seq
57cf57e23db7603755c3cca70a7a8b5a
A356900
a(n) = P(n, 1/2) where P(n, x) = x^(-n)*Sum_{k=0..n} A241171(n, k)*x^k.
[ "1", "1", "8", "154", "5552", "321616", "27325088", "3200979664", "494474723072", "97390246272256", "23820397371219968", "7083386168647642624", "2516691244849530785792", "1052914814802404260765696", "512347915163742179541659648", "286902390859642414913802102784", "183187476890368376930869730803712" ]
[ "nonn" ]
11
0
3
[ "A000364", "A002105", "A094088", "A241171", "A269941", "A327022", "A356900" ]
null
Peter Luschny, Sep 03 2022
2022-09-03T08:13:12
oeisdata/seq/A356/A356900.seq
08807a62f2e31880e4ff362134198f60