sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A356401
a(n) = n! * Sum_{k=1..n} Sum_{d|k} (-1)^(d+1)/(d * (k/d)!).
[ "1", "2", "9", "25", "150", "841", "6608", "41945", "437986", "4364741", "51640952", "526219585", "7319856206", "102469338245", "1671439939276", "23909485105217", "427384036676690", "7518024186420421", "149244833247716000", "2756811766466473601", "61545779138627817622", "1354007126970517958885" ]
[ "nonn" ]
9
1
2
[ "A356009", "A356401", "A356402" ]
null
Seiichi Manyama, Aug 05 2022
2022-08-05T10:48:17
oeisdata/seq/A356/A356401.seq
07004030ebd95b3b111a34187528d77c
A356402
Expansion of e.g.f. ( Product_{k>0} (1+x^k)^(1/k!) )^(1/(1-x)).
[ "1", "1", "3", "16", "86", "626", "5267", "50793", "543279", "6544805", "86503762", "1242678141", "19259416827", "321457169151", "5736414618209", "108931865485750", "2191495621647324", "46604972526167314", "1043844453093239627", "24555321244430950299", "605239630722584461955", "15600222966916650541099" ]
[ "nonn" ]
10
0
3
[ "A298906", "A356025", "A356392", "A356401", "A356402" ]
null
Seiichi Manyama, Aug 05 2022
2022-08-05T10:48:20
oeisdata/seq/A356/A356402.seq
e49a3b0421cdfb194bfd525026e6818f
A356403
a(n) is the first prime p such that the average of p and the next n-1 primes congruent to p (mod n) is a prime.
[ "5", "17", "11", "19", "11", "7", "5", "3", "3", "13", "3", "23", "7", "3", "29", "5", "3", "127", "17", "7", "7", "7", "31", "79", "5", "17", "3", "17", "37", "7", "23", "5", "3", "5", "17", "17", "11", "3", "5", "107", "23", "23", "7", "7", "11", "11", "5", "37", "11", "7", "3", "19", "37", "47", "37", "101", "11", "71", "5", "151", "13", "23", "3", "23", "3", "71", "11", "11", "29", "13", "3", "7", "97", "5", "47", "17", "3", "19", "11", "83", "17", "11" ]
[ "nonn" ]
8
3
1
[ "A356383", "A356403" ]
null
J. M. Bergot and Robert Israel, Aug 05 2022
2022-08-26T11:22:39
oeisdata/seq/A356/A356403.seq
b88dadc1dc07d398a2beeaffc7d3d2cf
A356404
The number of closed routes of the chess knight, different in shape, consisting of 2 * n jumps on a checkered field without repeating cells of the route.
[ "1", "3", "25", "480", "11997", "350275", "10780478" ]
[ "nonn", "walk", "hard", "more" ]
15
1
2
[ "A323131", "A323559", "A356404" ]
null
Nicolay Avilov, Aug 05 2022
2024-07-14T08:53:37
oeisdata/seq/A356/A356404.seq
c8d98f303bcca66ad3cd71512fed88e3
A356405
Primes that are the sum of a set of numbers taken from 1 and 2^(2^k) for k >= 0.
[ "2", "3", "5", "7", "17", "19", "23", "257", "263", "277", "65537", "65539", "65543", "65557", "65809", "4294967569", "4295032837", "4295033107", "340282366920938463463374607431768211729", "340282366920938463463374607431768277267", "340282366920938463463374607436063179013", "340282366920938463481821351505477763347" ]
[ "nonn", "base" ]
9
1
1
[ "A131577", "A356405" ]
null
J. M. Bergot and Robert Israel, Aug 05 2022
2022-08-26T11:22:48
oeisdata/seq/A356/A356405.seq
2c603ae8df2330dc88aeb5c34f416348
A356406
a(n) = n! * Sum_{k=1..n} Sum_{d|k} 1/(d * (k/d)^d).
[ "1", "4", "16", "79", "443", "2968", "22216", "189698", "1792402", "18745036", "213452996", "2653142952", "35448861576", "509724975264", "7824794618208", "128006170541328", "2217950478978576", "40686737647774368", "785852762719168992", "15974195890305405696", "340376906088298319616" ]
[ "nonn" ]
14
1
2
[ "A308345", "A356009", "A356010", "A356406", "A356407", "A356408" ]
null
Seiichi Manyama, Aug 05 2022
2022-08-05T15:36:54
oeisdata/seq/A356/A356406.seq
e7136d3b9a26f2a3d72118d50e270fe6
A356407
a(n) = n! * Sum_{k=1..n} Sum_{d|k} 1/(d * ((k/d)!)^d).
[ "1", "4", "15", "70", "375", "2411", "17598", "146490", "1359291", "13978597", "157393368", "1929989029", "25568858978", "364288345409", "5551537358188", "90142504077194", "1553345359200299", "28317316174307405", "544431381017568696", "11010510372888267555", "233653645911730002976" ]
[ "nonn" ]
15
1
2
[ "A182926", "A356009", "A356406", "A356407", "A356409" ]
null
Seiichi Manyama, Aug 05 2022
2022-08-05T15:36:57
oeisdata/seq/A356/A356407.seq
15b3ce5a5f1d58539f9d0f23ac99c82f
A356408
Expansion of e.g.f. ( Product_{k>0} 1/(1 - x^k/k) )^(1/(1-x)).
[ "1", "1", "5", "29", "216", "1919", "20012", "236977", "3145832", "46122546", "739703182", "12865212172", "241040899668", "4836265824740", "103410589256452", "2346358252787094", "56285005757022752", "1422783492250963296", "37790069818311971640", "1051924374853915254048" ]
[ "nonn" ]
12
0
3
[ "A007841", "A356336", "A356406", "A356408", "A356409" ]
null
Seiichi Manyama, Aug 05 2022
2022-08-05T15:37:04
oeisdata/seq/A356/A356408.seq
9d74770899f1d03dc7b382d179e645f8
A356409
Expansion of e.g.f. ( Product_{k>0} 1/(1 - x^k/k!) )^(1/(1-x)).
[ "1", "1", "5", "28", "203", "1756", "17802", "205010", "2644287", "37669096", "586855058", "9914829508", "180429770402", "3516313661706", "73029591042943", "1609531482261375", "37504691293842367", "920966310015565936", "23764054962685200642", "642681497080268685092", "18174504398294667649782" ]
[ "nonn" ]
12
0
3
[ "A005651", "A356025", "A356407", "A356408", "A356409" ]
null
Seiichi Manyama, Aug 05 2022
2022-08-05T15:37:08
oeisdata/seq/A356/A356409.seq
ea07c8499aa009590a2fe5396de651a1
A356410
Numbers k for which k^3 is divisible by sigma(k).
[ "1", "6", "28", "30", "84", "102", "120", "364", "420", "496", "672", "840", "1080", "1092", "1320", "1428", "1488", "1782", "2280", "2716", "2760", "3276", "3360", "3444", "3472", "3480", "3720", "4452", "5640", "7080", "7392", "7440", "7560", "8128", "8148", "8736", "8910", "9240", "9480", "10416", "10920", "11880", "12400", "15456", "15960" ]
[ "nonn" ]
26
1
2
[ "A000203", "A000578", "A090777", "A356410" ]
null
Zdenek Cervenka, Aug 05 2022
2024-09-04T16:20:55
oeisdata/seq/A356/A356410.seq
9bbc8894e904594ff0167884442bdd0c
A356411
Sum of powers of roots of x^3 - x^2 - x - 3.
[ "3", "1", "3", "13", "19", "41", "99", "197", "419", "913", "1923", "4093", "8755", "18617", "39651", "84533", "180035", "383521", "817155", "1740781", "3708499", "7900745", "16831587", "35857829", "76391651", "162744241", "346709379", "738628573", "1573570675", "3352327385", "7141783779" ]
[ "nonn", "easy" ]
24
0
1
[ "A103143", "A123102", "A247594", "A273065", "A356411", "A356463" ]
null
Greg Dresden, Aug 05 2022
2022-08-11T07:25:45
oeisdata/seq/A356/A356411.seq
0b9d86e36abcad349c1ae84a70e5d702
A356412
First differences of A007770 (happy numbers).
[ "6", "3", "3", "6", "4", "5", "3", "1", "12", "5", "19", "2", "9", "3", "4", "5", "3", "3", "3", "3", "6", "20", "1", "3", "6", "28", "9", "12", "2", "2", "1", "10", "5", "11", "7", "4", "6", "3", "23", "1", "17", "11", "2", "8", "1", "8", "3", "6", "1", "6", "3", "2", "7", "18", "6", "3", "2", "1", "8", "3", "4", "3", "5", "1", "5", "7", "5", "31", "6", "18", "5", "9", "9", "3", "6", "40", "20", "7", "2", "1", "42", "9", "5", "1", "9", "3", "2", "1" ]
[ "nonn", "base" ]
15
1
1
[ "A007770", "A356412" ]
null
Darío D. Devia, Aug 05 2022
2022-08-30T14:29:05
oeisdata/seq/A356/A356412.seq
c2754117641308239a2a0dac3a1fb30a
A356413
Numbers with an equal sum of the even and odd exponents in their prime factorizations.
[ "1", "60", "84", "90", "126", "132", "140", "150", "156", "198", "204", "220", "228", "234", "260", "276", "294", "306", "308", "315", "340", "342", "348", "350", "364", "372", "380", "414", "444", "460", "476", "490", "492", "495", "516", "522", "525", "532", "550", "558", "564", "572", "580", "585", "620", "636", "644", "650", "666", "693", "708", "726", "732", "735" ]
[ "nonn" ]
10
1
2
[ "A028260", "A048109", "A085987", "A179698", "A187039", "A190109", "A190110", "A348097", "A350386", "A350387", "A356413" ]
null
Amiram Eldar, Aug 06 2022
2022-08-07T07:53:13
oeisdata/seq/A356/A356413.seq
b7c2c8e3ee78516a39f401de234a5e31
A356414
Number k such that k and k+1 both have an equal sum of even and odd exponents in their prime factorization (A356413).
[ "819", "1035", "1196", "1274", "1275", "1449", "1665", "1924", "1925", "1988", "2324", "2331", "2540", "3068", "3195", "3324", "3339", "3549", "3555", "3626", "3717", "4164", "4220", "4235", "4556", "4598", "4635", "4675", "4796", "5084", "5525", "5634", "5660", "6003", "6027", "6068", "6164", "6363", "6740", "6867", "6908", "7028", "7227", "7275" ]
[ "nonn" ]
8
1
1
[ "A350386", "A350387", "A356413", "A356414" ]
null
Amiram Eldar, Aug 06 2022
2022-08-07T07:53:19
oeisdata/seq/A356/A356414.seq
950606cf5bc8f548f036efab0dd3becd
A356415
a(n) is the least start of exactly n consecutive numbers that have an equal number of even and odd exponents in their prime factorization (A187039), or -1 if no such run of consecutive numbers exists.
[ "1", "44", "603", "906596", "792007675" ]
[ "nonn", "more" ]
4
1
2
[ "A187039", "A348076", "A348077", "A348078", "A356415" ]
null
Amiram Eldar, Aug 06 2022
2022-08-06T08:09:34
oeisdata/seq/A356/A356415.seq
fde83b284d92c351b095824d98a4141b
A356416
a(n) is the least start of exactly n consecutive numbers that have an equal sum of even and odd exponents in their prime factorization (A356413), or -1 if no such run of consecutive numbers exists.
[ "1", "819", "1274", "19940", "204323", "149228720", "3144583275" ]
[ "nonn", "more" ]
10
1
2
[ "A356413", "A356415", "A356416" ]
null
Amiram Eldar, Aug 06 2022
2023-08-28T08:21:08
oeisdata/seq/A356/A356416.seq
9ce9bc0dc0d08ee2590e3eb10a69353f
A356417
Numbers whose reversal is a square.
[ "0", "1", "4", "9", "10", "18", "40", "46", "52", "61", "63", "90", "94", "100", "121", "144", "148", "163", "169", "180", "400", "423", "441", "460", "484", "487", "520", "522", "526", "610", "630", "652", "675", "676", "691", "900", "925", "927", "940", "961", "982", "1000", "1042", "1062", "1089", "1210", "1251", "1273", "1297", "1405", "1426", "1440", "1480" ]
[ "nonn", "base" ]
43
1
3
[ "A002942", "A004086", "A074896", "A356417" ]
null
Daniel Blam, Aug 06 2022
2022-08-07T12:59:43
oeisdata/seq/A356/A356417.seq
3e9ce1c50a6fcce3b56b2b7e64c4b14d
A356418
Decimal expansion of sqrt(4/3 + 1/sqrt(3)).
[ "1", "3", "8", "2", "2", "7", "4", "7", "9", "2", "6", "9", "6", "0", "6", "8", "4", "8", "2", "3", "6", "5", "1", "0", "8", "0", "4", "4", "9", "1", "8", "0", "4", "1", "9", "0", "3", "9", "5", "1", "4", "1", "5", "1", "5", "2", "1", "7", "1", "8", "1", "3", "1", "0", "3", "3", "3", "0", "3", "2", "3", "4", "4", "9", "8", "5", "3", "5", "4", "0", "6", "9", "7", "8", "7", "8", "5", "6", "6", "6", "6", "8", "3", "2", "7", "0", "0", "8", "4", "5", "0", "0", "5", "3", "6", "0", "1" ]
[ "nonn", "cons", "easy" ]
60
1
2
[ "A002194", "A020760", "A356418" ]
null
Christoph B. Kassir, Aug 21 2022
2022-08-26T10:27:20
oeisdata/seq/A356/A356418.seq
f6097477566a385ba64862f24efb9601
A356419
Inverse of A067576 considered as a permutation of the positive integers.
[ "1", "2", "3", "4", "5", "8", "6", "7", "12", "17", "9", "23", "13", "18", "10", "11", "30", "38", "24", "47", "31", "39", "14", "57", "48", "58", "19", "69", "25", "32", "15", "16", "68", "80", "81", "93", "94", "108", "40", "107", "123", "139", "49", "156", "59", "70", "20", "122", "174", "193", "82", "213", "95", "109", "26", "234", "124", "140", "33", "157", "41", "50", "21", "22", "138", "155", "256" ]
[ "nonn", "look", "easy" ]
20
1
2
[ "A000120", "A067576", "A067587", "A068076", "A263017", "A356419" ]
null
Jianing Song, Aug 06 2022
2023-03-02T11:55:08
oeisdata/seq/A356/A356419.seq
1eeea2852f8b45f5521eeadad2413470
A356420
Integers k such that for some m >= 0, psi(k) = rad(k)^m, where psi(k) = A001615(k) and rad(k) = A007947(k).
[ "1", "18", "108", "648", "3888", "11250", "23328", "139968", "337500", "501126", "839808", "5038848", "8696754", "10125000", "30233088", "51114852", "57177414", "181398528", "303750000", "573985764", "1088391168", "2401451388", "5018345916", "5213714904", "6530347008", "9112500000", "23981814018", "26622318750", "37883060424" ]
[ "nonn" ]
17
1
2
[ "A001615", "A007947", "A355045", "A356420" ]
null
Michel Marcus, Aug 06 2022
2022-08-13T15:48:06
oeisdata/seq/A356/A356420.seq
b1a919592932657cba155ad62519df30
A356421
Positive integers k such that k + p is a power of 2, where p is the least prime greater than k.
[ "3", "15", "61", "255", "2043", "4093", "32765", "65535", "262141", "8388599", "33554397", "134217699", "268435453", "1073741821", "17179869159", "137438953463", "274877906937", "1099511627761", "8796093022179", "17592186044409", "70368744177649", "140737488355323", "281474976710635", "562949953421243" ]
[ "nonn" ]
28
1
1
[ "A000040", "A000079", "A014210", "A356421", "A356434" ]
null
Ali Sada, Aug 06 2022
2022-09-11T10:31:08
oeisdata/seq/A356/A356421.seq
cddff8a308a70a449aa4d17e42083372
A356422
Heptagonal numbers which are products of three distinct primes.
[ "286", "874", "970", "1918", "3367", "3553", "4558", "6682", "8323", "8614", "11122", "11458", "12145", "14707", "16687", "17098", "17935", "18361", "19669", "21022", "27931", "30085", "33466", "38254", "42055", "42706", "44023", "44689", "46717", "48094", "50197", "55279", "61387", "64561", "73702", "79834", "81631", "82537", "85285", "88078", "89965", "92833", "101707", "105781", "108889" ]
[ "nonn" ]
19
1
1
[ "A000566", "A007304", "A356422" ]
null
Massimo Kofler, Aug 07 2022
2025-03-10T12:26:57
oeisdata/seq/A356/A356422.seq
f8cd2e2fee002d8e4e929013f4f753f2
A356423
Leyland numbers which are products of two distinct primes.
[ "57", "145", "177", "1649", "7073", "23401", "131361", "423393", "2012174", "4785713", "33555057", "43050817", "177264449", "364568617", "1073792449", "4486784401", "13877119009", "31381070257", "94143190994", "125937424601", "2552470327702", "8796093024057", "33233199005057", "130291290501553", "1628414210130481", "1853020188884609" ]
[ "nonn" ]
6
1
1
[ "A006881", "A076980", "A356423" ]
null
Massimo Kofler, Aug 07 2022
2022-10-02T00:53:55
oeisdata/seq/A356/A356423.seq
a77d3f61067206d3ac094493e8683172
A356424
9-gonal numbers that are semiprimes.
[ "9", "46", "111", "559", "1639", "3961", "4699", "7291", "11629", "12871", "23329", "30691", "32689", "41311", "48439", "85879", "114211", "129889", "142309", "159751", "262081", "267859", "310069", "342109", "389611", "418141", "486019", "542341", "584461", "619291", "729829", "758881", "923401", "967051", "1011709", "1104049", "1163809" ]
[ "nonn" ]
17
1
1
[ "A001106", "A001358", "A356424" ]
null
Massimo Kofler, Aug 07 2022
2023-01-16T04:28:35
oeisdata/seq/A356/A356424.seq
0abd6560b5dd0b2dec6f96ca5013bf64
A356425
Sum of divisors of numbers of least prime signature: a(n) = A000203(A025487(n)).
[ "1", "3", "7", "12", "15", "28", "31", "60", "72", "63", "91", "124", "168", "127", "195", "252", "360", "255", "403", "546", "508", "576", "600", "744", "511", "819", "1170", "1020", "1344", "1240", "1512", "1023", "1651", "2418", "2044", "2880", "2520", "2821", "3048", "2047", "3600", "3315", "4368", "3751", "4914", "4092", "5952", "5080", "6045", "6120" ]
[ "nonn" ]
52
1
2
[ "A000005", "A000203", "A025487", "A146288", "A356425" ]
null
Hal M. Switkay, Dec 11 2022
2022-12-15T17:00:35
oeisdata/seq/A356/A356425.seq
9c1a7de301cb1bbe2eee212e66c512dd
A356426
Even bisection of A003278.
[ "2", "5", "11", "14", "29", "32", "38", "41", "83", "86", "92", "95", "110", "113", "119", "122", "245", "248", "254", "257", "272", "275", "281", "284", "326", "329", "335", "338", "353", "356", "362", "365", "731", "734", "740", "743", "758", "761", "767", "770", "812", "815", "821", "824", "839", "842", "848", "851", "974", "977", "983", "986", "1001", "1004", "1010", "1013", "1055", "1058" ]
[ "nonn" ]
25
1
1
[ "A003278", "A191107", "A356426" ]
null
Arie Bos, Aug 07 2022
2022-09-07T12:27:24
oeisdata/seq/A356/A356426.seq
26d84f71c7b4c67d02b5cd7b43b66d37
A356427
a(0) = 0, a(1) = 1; for n > 1, a(n) is the last step before reaching 0 of the iterations x -> x - gpf(x) starting at n, where gpf = A006530.
[ "0", "1", "2", "3", "2", "5", "3", "7", "3", "3", "5", "11", "3", "13", "7", "5", "7", "17", "5", "19", "5", "7", "11", "23", "7", "5", "13", "7", "7", "29", "5", "31", "5", "11", "17", "7", "11", "37", "19", "13", "7", "41", "7", "43", "11", "7", "23", "47", "7", "7", "7", "17", "13", "53", "17", "11", "7", "19", "29", "59", "11", "61", "31", "7", "31", "13", "11", "67", "17", "23", "7", "71", "23", "73", "37", "7", "19", "11" ]
[ "nonn" ]
11
0
3
[ "A006530", "A076563", "A309892", "A356427", "A356438", "A356441" ]
null
Jianing Song, Aug 07 2022
2022-08-07T22:11:00
oeisdata/seq/A356/A356427.seq
5109483437c27fbe79d481c77fa64261
A356428
a(0) = a(1) = 0; for n > 1, a(n) is the number of distinct gpf(x)'s in the iterations x -> x - gpf(x) starting at n and ending at 0, where gpf = A006530.
[ "0", "0", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "3", "1", "2", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "2", "2", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1" ]
[ "nonn" ]
23
0
9
[ "A006530", "A076563", "A309892", "A356428", "A356429" ]
null
Jianing Song, Aug 07 2022
2022-08-09T15:33:36
oeisdata/seq/A356/A356428.seq
033c4e8c248023f55e11abcd9f836cfd
A356429
Smallest m such that A356428(m) = n, or -1 if there is no such m.
[ "2", "8", "48", "315", "320", "6664", "135450", "273000", "518661", "519440", "519622", "148830266", "558797841", "558797968", "24900609294" ]
[ "nonn", "hard", "more", "changed" ]
25
1
1
[ "A006530", "A076563", "A309892", "A356428", "A356429" ]
null
Jianing Song, Aug 07 2022
2025-07-07T10:52:16
oeisdata/seq/A356/A356429.seq
7f58a7e48473fd2fc60b0e0ab9f34bc6
A356430
a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest positive number not occurring earlier that shares a factor with the number of divisors of a(n-1).
[ "1", "2", "4", "3", "6", "8", "10", "12", "9", "15", "14", "16", "5", "18", "20", "21", "22", "24", "26", "28", "27", "30", "32", "33", "34", "36", "39", "38", "40", "42", "44", "45", "46", "48", "25", "51", "50", "52", "54", "56", "58", "60", "57", "62", "64", "7", "66", "68", "63", "69", "70", "72", "74", "76", "75", "78", "80", "35", "82", "84", "81", "55", "86", "88", "90", "87", "92", "93", "94", "96", "98", "99", "100", "102", "104" ]
[ "nonn" ]
7
1
2
[ "A000005", "A348086", "A354960", "A356430", "A356431", "A356432" ]
null
Scott R. Shannon, Aug 07 2022
2023-01-16T09:10:46
oeisdata/seq/A356/A356430.seq
0c75655a543d379d75dbe09a1e096493
A356431
a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest positive number not occurring earlier that shares a factor with both a(n-1) and the number of divisors of a(n-1).
[ "1", "2", "4", "6", "8", "10", "12", "3", "18", "9", "15", "20", "14", "16", "30", "22", "24", "26", "28", "21", "36", "27", "42", "32", "34", "38", "40", "44", "33", "48", "45", "39", "52", "46", "50", "54", "56", "58", "60", "51", "66", "62", "64", "70", "68", "72", "57", "76", "74", "78", "80", "5", "90", "63", "69", "84", "75", "81", "105", "96", "82", "86", "88", "92", "94", "98", "100", "102", "104", "106", "108", "87", "114", "110" ]
[ "nonn" ]
9
1
2
[ "A000005", "A348086", "A354960", "A356430", "A356431", "A356432" ]
null
Scott R. Shannon, Aug 07 2022
2023-01-16T09:10:46
oeisdata/seq/A356/A356431.seq
759f3b5ef7070dce483fe763d8ba8f07
A356432
a(1) = 1; for n > 1, a(n) is the smallest positive number not occurring earlier that shares a factor with a(n-1) plus the number of divisors of a(n-1).
[ "1", "2", "4", "7", "3", "5", "14", "6", "8", "9", "10", "12", "15", "19", "18", "16", "21", "20", "13", "24", "22", "26", "25", "28", "17", "38", "27", "31", "11", "39", "43", "30", "32", "34", "36", "33", "37", "42", "35", "45", "48", "29", "62", "40", "44", "46", "50", "49", "52", "54", "56", "58", "60", "51", "55", "59", "61", "57", "122", "63", "23", "65", "66", "64", "71", "73", "69", "146", "68", "70", "72", "74", "75", "78", "76", "41" ]
[ "nonn" ]
13
1
2
[ "A000005", "A348086", "A354960", "A356430", "A356431", "A356432" ]
null
Scott R. Shannon, Aug 07 2022
2023-01-16T14:56:50
oeisdata/seq/A356/A356432.seq
64d1180a9b333935115db6b33c99aeec
A356433
Numbers k such that, in the prime factorization of k, the least common multiple of the exponents equals the least common multiple of the prime factors.
[ "1", "4", "27", "72", "108", "192", "576", "800", "1458", "1728", "2916", "3125", "5120", "5832", "6272", "12500", "21600", "25600", "30375", "36000", "46656", "48600", "77760", "84375", "114688", "116640", "121500", "138240", "169344", "225000", "247808", "337500", "384000", "388800", "395136", "583200", "600000", "653184", "691200", "750141", "802816", "823543", "857304", "979776" ]
[ "nonn" ]
28
1
2
[ "A007947", "A051674", "A054411", "A054412", "A068935", "A068936", "A068937", "A068938", "A072411", "A082949", "A356433" ]
null
Jean-Marc Rebert, Aug 07 2022
2023-02-02T04:25:33
oeisdata/seq/A356/A356433.seq
8f35526826417a6e7d5f9f97ad7f1a96
A356434
Prime nearest to 2^n. In case of a tie, choose the larger.
[ "2", "2", "5", "7", "17", "31", "67", "127", "257", "509", "1021", "2053", "4099", "8191", "16381", "32771", "65537", "131071", "262147", "524287", "1048573", "2097143", "4194301", "8388617", "16777213", "33554467", "67108859", "134217757", "268435459", "536870909", "1073741827", "2147483647", "4294967291", "8589934583" ]
[ "nonn" ]
17
0
1
[ "A014210", "A014234", "A117387", "A226178", "A340707", "A356434" ]
null
Peter Munn, Aug 07 2022
2023-02-19T15:10:48
oeisdata/seq/A356/A356434.seq
d95b078483c41eb77ffd50ece791d185
A356435
a(n) is the minimum number of Z x Z lattice points inside or on a circle of radius n^(1/2) for any position of the center of the circle.
[ "0", "2", "4", "8", "10", "14", "16", "20", "22", "26", "29", "32", "32", "39", "41", "44", "46", "51", "52", "56", "58", "62", "66", "69", "69", "74", "79", "82", "85", "88", "88", "92", "96", "100", "103", "106", "108", "113", "116", "119", "120", "122", "124", "132", "135", "138", "141", "143", "145", "146", "152", "158", "160", "164", "164", "166", "172", "175", "179", "181", "184", "186", "189", "193", "194", "199" ]
[ "nonn" ]
30
0
2
[ "A057655", "A123689", "A291259", "A356435" ]
null
Bernard Montaron, Aug 07 2022
2025-02-17T08:30:02
oeisdata/seq/A356/A356435.seq
187f09e1601ba64f15a2820b904de750
A356436
a(n) = n! * Sum_{k=1..n} ( Sum_{d|k} d^(k/d) )/k.
[ "1", "5", "23", "146", "874", "8124", "62628", "707664", "7860816", "103284000", "1179669600", "24454569600", "324615427200", "5740203974400", "119579523436800", "2688723275212800", "46084905896601600", "1383333631684300800", "26411386476116275200", "868104140064602112000" ]
[ "nonn" ]
15
1
2
[ "A055225", "A353992", "A356297", "A356436", "A356437", "A356439" ]
null
Seiichi Manyama, Aug 07 2022
2022-08-07T12:30:17
oeisdata/seq/A356/A356436.seq
36610be835e2140e5fba1b39a846ddd7
A356437
a(n) = n! * Sum_{k=1..n} sigma_k(k)/k.
[ "1", "7", "77", "1946", "84754", "6202524", "636369348", "89979720144", "16431405256656", "3796658174518560", "1077102230236529760", "368915006390671969920", "149873555740938949215360", "71297150722148582901815040", "39244301012876892023553235200" ]
[ "nonn" ]
14
1
2
[ "A023887", "A356297", "A356436", "A356437", "A356440" ]
null
Seiichi Manyama, Aug 07 2022
2022-08-07T12:59:05
oeisdata/seq/A356/A356437.seq
46aeac403d48f1b2997587c7616e661a
A356438
Numbers k such that A309892(k) = k/gpf(k), where gpf = A006530.
[ "1", "2", "3", "4", "5", "6", "7", "9", "10", "11", "12", "13", "14", "15", "17", "19", "20", "21", "22", "23", "25", "26", "28", "29", "30", "31", "33", "34", "35", "37", "38", "39", "41", "42", "43", "44", "46", "47", "49", "51", "52", "53", "55", "56", "57", "58", "59", "61", "62", "63", "65", "66", "67", "68", "69", "70", "71", "73", "74", "76", "77", "78", "79", "82", "83", "85" ]
[ "nonn", "easy" ]
11
1
2
[ "A000040", "A001358", "A006530", "A076563", "A151800", "A309892", "A356428", "A356438", "A356441" ]
null
Jianing Song, Aug 07 2022
2022-08-07T22:10:38
oeisdata/seq/A356/A356438.seq
7a095e1c65919f8411b572f653e0a57a
A356439
Expansion of e.g.f. ( Product_{k>0} 1/(1 - k * x^k)^(1/k) )^(1/(1-x)).
[ "1", "1", "6", "39", "344", "3410", "42234", "567126", "8812880", "149409144", "2793232440", "56224856160", "1234342760232", "28773852409848", "718719835537872", "19045601930731320", "534564416062012800", "15792205306586537280", "491639547448322794944", "16024048206145815040704" ]
[ "nonn" ]
8
0
3
[ "A353993", "A356436", "A356439", "A356440" ]
null
Seiichi Manyama, Aug 07 2022
2022-08-07T12:59:15
oeisdata/seq/A356/A356439.seq
50bb27d3983394f8cc6759779d80f795
A356440
Expansion of e.g.f. ( Product_{k>0} 1/(1 - (k * x)^k)^(1/k) )^(1/(1-x)).
[ "1", "1", "8", "99", "2444", "101450", "7045194", "701736966", "97147459184", "17505366041880", "4005462950166600", "1128394974054308400", "384386423684496873672", "155497732356686080354968", "73718160600338917089657216", "40462026280443230503858113240" ]
[ "nonn" ]
8
0
3
[ "A356437", "A356439", "A356440" ]
null
Seiichi Manyama, Aug 07 2022
2022-08-07T12:59:25
oeisdata/seq/A356/A356440.seq
3d2bdf3f36393bb2d4260c71ffb327e1
A356441
Numbers k such that A309892(k) < k/gpf(k), where gpf = A006530; complement of A356438.
[ "8", "16", "18", "24", "27", "32", "36", "40", "45", "48", "50", "54", "60", "64", "72", "75", "80", "81", "84", "90", "96", "98", "100", "105", "108", "112", "120", "125", "126", "128", "135", "140", "144", "147", "150", "154", "160", "162", "165", "168", "175", "176", "180", "189", "192", "196", "198", "200", "210", "216", "220", "224", "225", "231", "234", "240", "242", "243" ]
[ "nonn", "easy" ]
10
1
1
[ "A006530", "A076563", "A151800", "A309892", "A356438", "A356441" ]
null
Jianing Song, Aug 07 2022
2022-08-07T20:58:23
oeisdata/seq/A356/A356441.seq
a1dbd6b4ca2e04238b7903565a8b67f0
A356442
a(n) is the least positive even number that is the unordered sum of two primes congruent mod 10 in exactly n ways.
[ "2", "4", "26", "86", "126", "174", "264", "324", "396", "456", "546", "594", "624", "876", "966", "984", "924", "954", "1326", "1344", "1386", "1512", "1596", "1638", "1848", "1764", "2046", "2226", "2838", "2574", "2706", "2604", "2772", "2436", "3366", "3066", "2964", "3432", "3894", "3738", "3234", "3696", "3654", "4074", "4446", "4158", "4368", "4494", "4788", "5016", "4746", "5754", "4914" ]
[ "nonn", "base" ]
12
0
1
[ "A023036", "A356442" ]
null
J. M. Bergot and Robert Israel, Aug 07 2022
2022-08-31T09:07:23
oeisdata/seq/A356/A356442.seq
1590610b9068c886dba31fb3f2fb2ab1
A356443
Primes p such that the concatenation of p and 2*p is the average of a twin prime pair.
[ "569", "661", "1249", "1559", "1571", "1949", "1999", "2389", "2441", "2609", "2879", "3761", "3911", "5689", "5701", "5749", "5779", "6389", "6481", "6971", "7559", "7561", "7741", "8191", "8971", "9221", "9391", "9521", "10061", "10111", "10289", "10601", "10949", "11821", "11941", "12071", "12281", "12689", "12721", "12809", "13151", "13469", "13681", "14821", "15569", "16931", "18661" ]
[ "nonn", "base" ]
12
1
1
[ "A014574", "A356443" ]
null
J. M. Bergot and Robert Israel, Aug 07 2022
2022-08-31T09:07:27
oeisdata/seq/A356/A356443.seq
4c5c7b8347736f12435d97ef02241854
A356444
Number of ways to create an angle excess of n degrees using 3 regular polygons with integral internal angles.
[ "0", "1", "3", "1", "3", "6", "1", "3", "4", "6", "2", "9", "2", "5", "7", "5", "2", "9", "2", "6", "6", "4", "2", "8", "4", "5", "7", "7", "2", "12", "3", "6", "7", "5", "7", "10", "4", "6", "9", "10", "5", "12", "6", "10", "11", "8", "6", "14", "6", "11", "9", "8", "6", "12", "8", "7", "8", "8", "5", "15", "3", "7", "8", "8", "7", "12", "6", "8", "10", "12", "7", "14", "6", "10", "13" ]
[ "nonn" ]
24
1
3
[ "A356444", "A356663" ]
null
Joseph C. Y. Wong, Aug 21 2022
2022-10-02T00:42:29
oeisdata/seq/A356/A356444.seq
5928a776ad84e4fa03aa34ea039f1670
A356445
a(n) is the number of times that A064440(n) occurs as the sum of proper divisors function (A001065).
[ "2", "3", "5", "7", "13", "17", "19", "23", "31", "41", "59", "61", "67", "79", "83", "97", "101", "109", "113", "127", "131", "139", "149", "151", "193", "199", "223", "227", "229", "277", "283", "317", "397", "433", "521", "541", "577", "607", "677", "743", "757", "811", "863", "881", "911", "971", "1031", "1049", "1063", "1093", "1249", "1319", "1373", "1433", "1489" ]
[ "nonn" ]
35
1
1
[ "A001065", "A048138", "A064440", "A238895", "A238896", "A356445" ]
null
Amiram Eldar, Sep 23 2022
2022-09-24T07:14:51
oeisdata/seq/A356/A356445.seq
1c4528f8c727085d766a55a0e4f16ccd
A356446
Number of permutations f of {1,...,n} with f(1) = 2 and f(2) = 1 such that the numbers f(k)*f(k+1) (0 < k < n) are distinct and Sum_{k=1..n-1} 1/(f(k)*f(k+1)) = 1.
[ "0", "0", "0", "0", "1", "1", "1", "1", "2", "1", "11", "7", "61", "388", "2933", "2741" ]
[ "nonn", "more" ]
18
2
9
[ "A000961", "A322069", "A322070", "A356187", "A356446" ]
null
Zhi-Wei Sun, Aug 07 2022
2022-08-20T08:50:30
oeisdata/seq/A356/A356446.seq
7fed10849ca36ad3afe13cacce9e72f9
A356447
Integers k such that (k+1)*(2*k-1) does not divide the central binomial coefficient B(k) = binomial(2*k,k) = A000984(k).
[ "2", "5", "8", "11", "14", "26", "29", "32", "35", "38", "41", "80", "83", "86", "89", "92", "95", "107", "110", "113", "116", "119", "122", "242", "245", "248", "251", "254", "257", "269", "272", "275", "278", "281", "284", "323", "326", "329", "332", "335", "338", "350", "353", "356", "359", "362", "365", "728", "731", "734", "737", "740", "743", "755", "758", "761" ]
[ "nonn", "easy" ]
59
1
1
[ "A000108", "A000984", "A073076", "A096304", "A356447" ]
null
Valerio De Angelis, Aug 07 2022
2022-10-02T01:30:38
oeisdata/seq/A356/A356447.seq
defc68a5f36754c97b3ea13c6cfaf477
A356448
Even numbers k such that k^2 is in A014567.
[ "2", "4", "6", "8", "10", "12", "16", "18", "20", "22", "24", "26", "28", "30", "32", "34", "36", "38", "40", "44", "46", "48", "50", "52", "54", "56", "58", "60", "62", "64", "66", "68", "72", "74", "76", "80", "82", "86", "88", "90", "92", "94", "96", "100", "102", "104", "106", "108", "110", "116", "118", "120", "122", "128", "130", "132", "134", "136", "138", "140", "142", "144", "146", "148" ]
[ "nonn", "easy" ]
13
1
1
[ "A000203", "A014567", "A356382", "A356448", "A356449", "A356451", "A356452" ]
null
Jianing Song, Aug 07 2022
2022-08-08T09:15:17
oeisdata/seq/A356/A356448.seq
0dd06efd5c8a60a3177bec812d65db1a
A356449
Numbers k such that 2*k^2 is in A014567.
[ "1", "2", "4", "5", "7", "8", "11", "13", "14", "16", "17", "19", "20", "22", "23", "25", "26", "29", "31", "32", "34", "35", "37", "38", "41", "43", "44", "46", "47", "49", "52", "53", "55", "56", "58", "59", "61", "62", "64", "65", "67", "68", "71", "73", "74", "76", "79", "80", "82", "83", "85", "86", "88", "89", "91", "92", "94", "95", "97", "98", "100", "101", "103", "104", "106", "107", "109", "112", "113" ]
[ "nonn", "easy" ]
16
1
2
[ "A000203", "A014567", "A065766", "A356382", "A356448", "A356449", "A356451", "A356453" ]
null
Jianing Song, Aug 07 2022
2022-08-08T09:15:33
oeisdata/seq/A356/A356449.seq
cf11b56e0a09f749275985a12120afbd
A356450
Positions of numbers m = A005940(n+1) such that m < n.
[ "8", "16", "17", "32", "33", "34", "35", "64", "65", "66", "67", "68", "69", "71", "128", "129", "130", "131", "132", "133", "134", "135", "136", "137", "139", "143", "256", "257", "258", "259", "260", "261", "262", "263", "264", "265", "266", "267", "269", "271", "272", "273", "275", "279", "287", "288", "384", "512", "513", "514", "515", "516", "517", "518", "519", "520" ]
[ "nonn" ]
14
1
1
[ "A005940", "A029747", "A356450", "A356455" ]
null
Michael De Vlieger, Aug 07 2022
2023-08-16T21:14:47
oeisdata/seq/A356/A356450.seq
515f5a02ff0d7dca8d1051499c0f9b07
A356451
Numbers k such that 4*k^2 is in A014567.
[ "1", "2", "3", "4", "5", "6", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "36", "37", "38", "40", "41", "43", "44", "45", "46", "47", "48", "50", "51", "52", "53", "54", "55", "58", "59", "60", "61", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73", "74", "75", "76", "79", "80", "81", "82", "83" ]
[ "nonn", "easy" ]
12
1
2
[ "A000203", "A014567", "A356382", "A356448", "A356449", "A356451", "A356454" ]
null
Jianing Song, Aug 07 2022
2022-08-08T09:15:21
oeisdata/seq/A356/A356451.seq
e86c14d125b5712781efd14f58138668
A356452
Even numbers k such that k^2 is not in A014567; complement of A356448 in the even numbers.
[ "14", "42", "70", "78", "84", "98", "112", "114", "124", "126", "154", "156", "168", "182", "186", "198", "210", "222", "228", "234", "238", "252", "258", "266", "294", "308", "310", "312", "322", "336", "342", "350", "366", "372", "378", "390", "396", "402", "406", "418", "420", "434", "438", "444", "456", "462", "468", "474", "490", "504", "516", "518", "532", "546", "550", "558" ]
[ "nonn", "easy" ]
13
1
1
[ "A000203", "A014567", "A356448", "A356452", "A356453", "A356454" ]
null
Jianing Song, Aug 07 2022
2023-03-09T15:34:25
oeisdata/seq/A356/A356452.seq
c613b0a54371d20878aea83b2abddc1c
A356453
Numbers k such that 2*k^2 is not in A014567; complement of A356449.
[ "3", "6", "9", "10", "12", "15", "18", "21", "24", "27", "28", "30", "33", "36", "39", "40", "42", "45", "48", "50", "51", "54", "57", "60", "63", "66", "69", "70", "72", "75", "77", "78", "81", "84", "87", "90", "93", "96", "99", "102", "105", "108", "110", "111", "114", "117", "120", "123", "126", "129", "130", "132", "133", "135", "136", "138", "140", "141", "144", "147", "150", "153", "154", "155" ]
[ "nonn", "easy" ]
21
1
1
[ "A000203", "A014567", "A065766", "A356448", "A356449", "A356452", "A356453", "A356454", "A356456" ]
null
Jianing Song, Aug 07 2022
2024-08-07T14:11:12
oeisdata/seq/A356/A356453.seq
d2fd00e9480c38f0446e10d94b9406d2
A356454
Numbers k such that 4*k^2 is not in A014567; complement of A356451.
[ "7", "21", "35", "39", "42", "49", "56", "57", "62", "63", "77", "78", "84", "91", "93", "99", "105", "111", "114", "117", "119", "126", "129", "133", "147", "154", "155", "156", "161", "168", "171", "175", "183", "186", "189", "195", "198", "201", "203", "209", "210", "217", "219", "222", "228", "231", "234", "237", "245", "252", "258", "259", "266", "273", "275", "279", "280", "285" ]
[ "nonn", "easy" ]
9
1
1
[ "A000203", "A014567", "A356448", "A356452", "A356453", "A356454" ]
null
Jianing Song, Aug 07 2022
2022-08-08T09:15:39
oeisdata/seq/A356/A356454.seq
e33568e407dab5a9dcef487ac2970caf
A356455
Numbers m = A005940(n) such that A005940(n) < (n-1), listed in order of appearance in A005940.
[ "7", "11", "14", "13", "22", "33", "28", "17", "26", "39", "44", "65", "66", "56", "19", "34", "51", "52", "85", "78", "117", "88", "119", "130", "132", "112", "23", "38", "57", "68", "95", "102", "153", "104", "133", "170", "255", "156", "234", "176", "209", "238", "260", "264", "224", "247", "361", "29", "46", "69", "76", "115", "114", "171", "136", "161", "190", "285", "204" ]
[ "nonn" ]
9
1
1
[ "A005940", "A029747", "A356450", "A356455" ]
null
Michael De Vlieger, Aug 07 2022
2022-08-09T02:04:45
oeisdata/seq/A356/A356455.seq
f0eb8ce91274ef02c9fff7c60f63bbb4
A356456
Numbers k not divisible by 3 such that 2*k^2 is not in A014567.
[ "10", "28", "40", "50", "70", "77", "110", "130", "133", "136", "140", "154", "155", "160", "161", "170", "176", "190", "196", "200", "209", "224", "230", "250", "259", "266", "275", "280", "290", "308", "310", "322", "350", "364", "370", "371", "377", "385", "410", "416", "418", "430", "440", "469", "470", "476", "490", "496", "518", "520", "530", "532", "539", "550", "553", "590" ]
[ "nonn", "easy" ]
11
1
1
[ "A000203", "A008585", "A014567", "A065766", "A356453", "A356456" ]
null
Jianing Song, Aug 07 2022
2022-08-08T09:15:43
oeisdata/seq/A356/A356456.seq
a822870c954d132c8d30a072d60ef430
A356457
a(n) is the least number that can be written in exactly n ways as p*q + q*r + p*r where (p,q,r) is an unordered triple of distinct primes.
[ "1", "31", "71", "151", "191", "491", "671", "887", "311", "1151", "1391", "1751", "1031", "2711", "2831", "3911", "1991", "3191", "5351", "9551", "7031", "20951", "8951", "8711", "10631", "5591", "15431", "10391", "15791", "28031", "20471", "17111", "48191", "27191", "31391", "39191", "52631", "35591", "42311", "61871", "50951", "92231", "70391", "108071", "99431", "103991", "96071" ]
[ "nonn" ]
14
0
2
[ "A003415", "A007304", "A087053", "A356457" ]
null
J. M. Bergot and Robert Israel, Aug 07 2022
2022-08-14T10:20:18
oeisdata/seq/A356/A356457.seq
85b3b8dfce49fa5de8cc3ae6deb2afb9
A356458
Expansion of e.g.f. ( Product_{k>0} B(x^k) )^(1/(1-x)) where B(x) = exp(exp(x)-1) = e.g.f. of Bell numbers.
[ "1", "1", "6", "38", "319", "3117", "36359", "476121", "7025708", "114118746", "2029450055", "39078892305", "810834093733", "17998186069489", "425672049713174", "10676653292086790", "283014906314277059", "7901659174554937925", "231719030698518379003", "7118469816302381503209" ]
[ "nonn" ]
13
0
3
[ "A000110", "A209903", "A355886", "A356025", "A356458", "A356461" ]
null
Seiichi Manyama, Aug 08 2022
2022-08-08T09:39:49
oeisdata/seq/A356/A356458.seq
1427bfc9e04f15db1f2ab2b14ee9264f
A356459
a(n) = n! * Sum_{k=1..n} Sum_{d|k} d/(k/d)!.
[ "1", "7", "40", "281", "2006", "17677", "159020", "1678721", "18555850", "230978981", "2979853592", "43323807265", "644160764846", "10543905398405", "178896116995276", "3284281839169217", "61879477543508690", "1264313089711322821", "26333205612282941600", "588074615109602665601" ]
[ "nonn" ]
9
1
2
[ "A354863", "A355886", "A356009", "A356459" ]
null
Seiichi Manyama, Aug 08 2022
2022-08-08T09:39:53
oeisdata/seq/A356/A356459.seq
ea238728b96de606e13cb7ed30c22ef2
A356460
Expansion of e.g.f. Product_{k>0} B(x^k)^k where B(x) = exp(exp(x)-1) = e.g.f. of Bell numbers.
[ "1", "1", "6", "35", "303", "2772", "32903", "410335", "6051692", "95183187", "1675869175", "31437027030", "644157830077", "13976891765137", "325719071472590", "8007861177420275", "208953947981129027", "5725964099963426924", "165258064179632753563", "4987477844227598529047" ]
[ "nonn" ]
15
0
3
[ "A000110", "A209902", "A209903", "A354863", "A356460", "A356461" ]
null
Seiichi Manyama, Aug 08 2022
2022-08-09T11:19:08
oeisdata/seq/A356/A356460.seq
9b2c84cdd5ad68378c6ad46dbcf0dd67
A356461
Expansion of e.g.f. ( Product_{k>0} B(x^k)^k )^(1/(1-x)) where B(x) = exp(exp(x)-1) = e.g.f. of Bell numbers.
[ "1", "1", "8", "62", "631", "7417", "104489", "1648845", "29319588", "572982162", "12250559615", "283321630605", "7053444523393", "187711377451249", "5317981377046420", "159652557864884330", "5061465465801168419", "168886786171198864725", "5914650120884760212977", "216844308186908733542877" ]
[ "nonn" ]
10
0
3
[ "A000110", "A356025", "A356458", "A356459", "A356460", "A356461" ]
null
Seiichi Manyama, Aug 08 2022
2022-08-08T09:40:03
oeisdata/seq/A356/A356461.seq
6ab4c238862447e3bc90d2d3211cd9dd
A356462
a(n) is the maximum number of Z x Z lattice points inside or on a circle of radius n^(1/2) for any position of the center of the circle.
[ "1", "5", "9", "12", "14", "21", "21", "24", "28", "32", "37", "37", "41", "45", "48", "52", "52", "57", "61", "63", "69", "69", "72", "76", "78", "81", "89", "89", "92", "97", "97", "100", "104", "112", "112", "115", "116", "121", "122", "127", "129", "137", "137", "140", "144", "148", "148", "152", "155", "157", "161", "164", "169", "177", "177" ]
[ "nonn" ]
22
0
2
[ "A057655", "A123690", "A346993", "A356462" ]
null
Bernard Montaron, Aug 08 2022
2025-02-17T08:30:13
oeisdata/seq/A356/A356462.seq
c11825a134188a897927ced8bbd467e5
A356463
Sum of powers of roots of x^3 - 4*x^2 + x + 1.
[ "3", "4", "14", "49", "178", "649", "2369", "8649", "31578", "115294", "420949", "1536924", "5611453", "20487939", "74803379", "273114124", "997165178", "3640743209", "13292693534", "48532865749", "177198026253", "646966545729", "2362135290914" ]
[ "nonn", "easy" ]
22
0
1
[ "A052941", "A356463" ]
null
Greg Dresden and Ding Hao, Aug 08 2022
2022-09-13T09:36:48
oeisdata/seq/A356/A356463.seq
9d72906f71f60fe8b9f84bafbab2ac01
A356464
Number of black keys in each group of black keys on a standard 88-key piano (left to right).
[ "1", "2", "3", "2", "3", "2", "3", "2", "3", "2", "3", "2", "3", "2", "3" ]
[ "easy", "fini", "full", "nonn" ]
37
1
2
[ "A059620", "A060106", "A060107", "A081031", "A081032", "A329207", "A356464" ]
null
Peter Woodward, Aug 08 2022
2022-08-20T09:00:46
oeisdata/seq/A356/A356464.seq
205487359b5be551e4612461563dcbce
A356465
The number of unit squares enclosed by the rectangular spiral of which the n-th side has length prime(n).
[ "0", "2", "6", "12", "27", "59", "113", "179", "257", "359", "497", "747", "963", "1227", "1577", "1799", "2081", "2611", "3223", "3663", "4167", "4817", "5231", "5847", "6657", "7527", "8801", "9869", "10439", "11057", "11699", "12425", "14675", "16817", "18027", "19139", "20855", "22595", "23803", "25711", "27321", "29011", "31063", "32495" ]
[ "nonn" ]
25
0
2
[ "A000040", "A356465" ]
null
Bob Andriesse, Aug 08 2022
2022-10-23T22:57:45
oeisdata/seq/A356/A356465.seq
8208034b9fc18f12d60025b255b2635f
A356466
Prime numbers in the sublists defined in A348168 that contain exactly two primes.
[ "11", "13", "17", "19", "29", "31", "59", "61", "79", "83", "127", "131", "137", "139", "149", "151", "163", "167", "179", "181", "191", "193", "197", "199", "239", "241", "331", "337", "347", "349", "397", "401", "419", "421", "431", "433", "439", "443", "521", "523", "541", "547", "673", "677", "701", "709", "787", "797", "809", "811", "821", "823", "827", "829" ]
[ "nonn" ]
10
1
1
[ "A348168", "A356466" ]
null
Ya-Ping Lu, Aug 08 2022
2024-04-25T13:53:45
oeisdata/seq/A356/A356466.seq
911f88fe65ab6c8f2f28db74a010ce93
A356467
Smallest prime congruent to 1 (mod prime(n)) which is the norm of some principal ideal in the ring of prime(n)-th cyclotomic integers.
[ "7", "11", "29", "23", "53", "103", "191", "599", "4931", "5953", "32783", "101107", "178021", "549149" ]
[ "nonn", "more" ]
11
2
1
[ "A035095", "A356467" ]
null
Paul Vanderveen, Aug 08 2022
2023-07-15T10:36:23
oeisdata/seq/A356/A356467.seq
0eb8efd1febf06f3d219441ab2ad1100
A356468
Yu. V. Matiyasevich's Riemann Hypothesis test.
[ "1", "10", "143", "1221", "21249", "274815", "5639631", "90945117", "1826620833", "38618333559", "1129082889375", "28218286333125", "915660945621585", "26435665650141135", "888640364800590255", "28827658089741286125", "1176745390297425986625", "43482016069074330150375", "1949108731388102309925375" ]
[ "nonn" ]
12
1
2
[ "A000720", "A356468" ]
null
Peter Luschny, Aug 08 2022
2023-08-25T17:20:51
oeisdata/seq/A356/A356468.seq
163fc3886614fe7ed2e18b6d9de14814
A356469
a(n) = [(n + 1)/(1 - 1/r)] - [n - n/r] where r = sqrt(2) and [] denotes the floor function.
[ "3", "6", "10", "13", "16", "19", "22", "25", "28", "32", "35", "37", "41", "44", "47", "50", "54", "57", "59", "63", "66", "69", "72", "75", "78", "81", "85", "88", "91", "94", "97", "100", "103", "107", "110", "112", "116", "119", "122", "125", "128", "131", "134", "138", "141", "144", "147", "150", "153", "156", "160", "163", "165", "169", "172", "175", "178", "182", "185" ]
[ "nonn" ]
4
0
1
[ "A285684", "A356469" ]
null
Peter Luschny, Aug 31 2022
2022-08-31T13:30:36
oeisdata/seq/A356/A356469.seq
8e03584dd5d19edde8bb610aca5b3851
A356470
Decimal expansion of (3 - sqrt(5))/(2*sqrt(2)).
[ "2", "7", "0", "0", "9", "0", "7", "5", "6", "7", "3", "7", "7", "2", "6", "4", "5", "3", "6", "0", "1", "5", "4", "3", "1", "5", "7", "0", "4", "9", "0", "9", "3", "9", "2", "5", "4", "9", "7", "3", "6", "5", "1", "2", "1", "7", "0", "1", "4", "0", "6", "8", "4", "8", "1", "6", "8", "1", "3", "3", "5", "9", "0", "2", "9", "4", "9", "0", "0", "7", "4", "9", "1", "8", "6", "7", "7", "0", "7", "2", "3", "8", "0", "1", "7", "2", "8", "6", "2" ]
[ "nonn", "cons" ]
20
0
1
[ "A002193", "A356470" ]
null
Andrew Slattery, Aug 08 2022
2023-08-21T12:16:15
oeisdata/seq/A356/A356470.seq
aa9caceaf120cfc55ec0473f5b3048e3
A356471
First of 5 consecutive primes p,q,r,s,t such that p*q+ q*r + r*s + s*t + t*p is prime.
[ "19", "41", "47", "53", "157", "199", "491", "557", "563", "571", "647", "1063", "1091", "1097", "1109", "1163", "1171", "1217", "1259", "1279", "1361", "1367", "1487", "1601", "1621", "1753", "1901", "1951", "2053", "2161", "2383", "2441", "2549", "2777", "2851", "2879", "2887", "2953", "2957", "3041", "3061", "3067", "3163", "3191", "3491", "3499", "3719", "3881", "4003", "4007", "4013", "4093" ]
[ "nonn" ]
16
1
1
[ "A356471", "A356475", "A356477" ]
null
J. M. Bergot and Robert Israel, Aug 08 2022
2022-09-03T08:07:03
oeisdata/seq/A356/A356471.seq
e673b2e455256b531763debca976e054
A356472
Numerator of the average of gcd(i,n) for i = 1..n.
[ "1", "3", "5", "2", "9", "5", "13", "5", "7", "27", "21", "10", "25", "39", "3", "3", "33", "7", "37", "18", "65", "63", "45", "25", "13", "75", "3", "26", "57", "9", "61", "7", "35", "99", "117", "14", "73", "111", "125", "9", "81", "65", "85", "42", "21", "135", "93", "5", "19", "39", "55", "50", "105", "9", "189", "65", "185", "171", "117", "6", "121", "183", "13", "4", "45", "105", "133", "66", "75", "351", "141", "35", "145", "219", "13", "74", "39", "125", "157" ]
[ "easy", "frac", "nonn" ]
51
1
2
[ "A001620", "A013661", "A018804", "A057661", "A306016", "A356472", "A356473" ]
null
Matthias Kaak, Aug 08 2022
2024-12-25T05:34:19
oeisdata/seq/A356/A356472.seq
4b7ddb76900040a0284fc33e28c45821
A356473
Denominator of the average of gcd(i,n) for i = 1..n.
[ "1", "2", "3", "1", "5", "2", "7", "2", "3", "10", "11", "3", "13", "14", "1", "1", "17", "2", "19", "5", "21", "22", "23", "6", "5", "26", "1", "7", "29", "2", "31", "2", "11", "34", "35", "3", "37", "38", "39", "2", "41", "14", "43", "11", "5", "46", "47", "1", "7", "10", "17", "13", "53", "2", "55", "14", "57", "58", "59", "1", "61", "62", "3", "1", "13", "22", "67", "17", "23", "70", "71", "6", "73", "74", "3", "19", "11", "26", "79", "5", "3", "82", "83", "21", "85", "86", "29" ]
[ "easy", "frac", "nonn", "look" ]
50
1
2
[ "A018804", "A356472", "A356473" ]
null
Matthias Kaak, Aug 08 2022
2023-04-28T08:16:52
oeisdata/seq/A356/A356473.seq
8fc4ba40d9321adcbed7199dd0272d1e
A356474
a(n) = phi(rad(prime(n)-1)), where phi = A000010 and rad = A007947.
[ "1", "1", "1", "2", "4", "2", "1", "2", "10", "6", "8", "2", "4", "12", "22", "12", "28", "8", "20", "24", "2", "24", "40", "10", "2", "4", "32", "52", "2", "6", "12", "48", "16", "44", "36", "8", "24", "2", "82", "42", "88", "8", "72", "2", "6", "20", "48", "72", "112", "36", "28", "96", "8", "4", "1", "130", "66", "8", "44", "24", "92", "72", "32", "120", "24", "78", "80", "12", "172", "56", "10", "178", "120", "60" ]
[ "nonn", "easy" ]
24
1
4
[ "A000010", "A007947", "A077063", "A173557", "A356474" ]
null
Jianing Song, Aug 09 2022
2022-08-09T09:02:16
oeisdata/seq/A356/A356474.seq
64e97280130875c109390d5f5d953ded
A356475
First of three consecutive primes p,q,r such that p*q + q*r + r*p is prime.
[ "2", "3", "5", "7", "17", "29", "37", "41", "43", "67", "83", "103", "137", "157", "179", "181", "193", "227", "277", "283", "347", "359", "383", "431", "457", "461", "607", "661", "701", "709", "757", "773", "823", "827", "839", "859", "937", "967", "1013", "1051", "1061", "1109", "1129", "1187", "1201", "1213", "1249", "1283", "1307", "1327", "1373", "1423", "1439", "1471", "1481", "1487", "1543", "1567" ]
[ "nonn" ]
17
1
1
[ "A189759", "A356471", "A356475", "A356477" ]
null
J. M. Bergot and Robert Israel, Aug 08 2022
2022-09-06T10:54:16
oeisdata/seq/A356/A356475.seq
f17a94e4cda549cac13cbea59e77c623
A356476
Decimal expansion of Loschmidt constant in m^-3 (273.15 K, 100 kPa).
[ "2", "6", "5", "1", "6", "4", "5", "8", "0", "4", "8", "8", "3", "7", "3", "4", "3", "4", "2", "4", "1", "1", "2", "0", "4", "6", "9", "5", "2", "3", "5", "4", "9", "7", "7", "7", "2", "9", "9", "0", "2", "7", "9", "0", "0", "6", "6", "8", "4", "6", "8", "3", "3", "2", "9", "7", "7", "2", "5", "1", "1", "1", "0", "2", "2", "1", "4", "6", "0", "0", "7", "8", "7", "6", "0", "3", "7", "4", "2", "8", "5", "6", "2", "3", "0", "7", "0", "2", "3", "5", "0", "1", "7", "3", "4", "4", "4" ]
[ "nonn", "cons", "easy" ]
17
26
1
[ "A070063", "A070064", "A228163", "A322578", "A356476" ]
null
Christoph B. Kassir, Aug 08 2022
2022-09-18T12:35:02
oeisdata/seq/A356/A356476.seq
84319ca02e1a08d8ef488d6ad8d37b6f
A356477
a(n) is the start of the first sequence of 2*n+1 consecutive primes p_1, p_2, ..., p_(2*n+1) such that p_1*p_2 + p_2*p_3 + ... + p_(2*n)*p_(2*n+1) + p_(2*n+1)*p_1 is prime.
[ "2", "19", "19", "2", "23", "2", "7", "7", "2", "5", "113", "5", "29", "13", "67", "53", "11", "11", "5", "23", "7", "43", "5", "2", "31", "73", "13", "3", "89", "5", "11", "3", "89", "31", "43", "2", "37", "2", "23", "7", "11", "19", "43", "23", "5", "2", "23", "3", "29", "5", "17", "3", "31", "29", "53", "29", "7", "13", "73", "3", "5", "43", "29", "17", "5", "37", "19", "11", "71", "7", "2", "43", "13", "19", "2", "59", "7", "29", "113", "13", "5", "11" ]
[ "nonn" ]
16
1
1
[ "A070934", "A356471", "A356475", "A356477" ]
null
J. M. Bergot and Robert Israel, Aug 08 2022
2022-09-04T12:51:22
oeisdata/seq/A356/A356477.seq
5c0545ac13c32b45b7fe135fb7bad802
A356478
a(n) is the least k such that there are exactly n primes p <= k such that 2*k-p and p*(2*k-p)+2*k are also prime.
[ "2", "4", "11", "15", "21", "35", "42", "111", "81", "117", "126", "60", "291", "147", "225", "417", "210", "330", "357", "555", "561", "375", "315", "477", "735", "552", "420", "975", "630", "585", "816", "840", "930", "1925", "1302", "1170", "1140", "2202", "1215", "1155", "1911", "1551", "2031", "1590", "1365", "2136", "1425", "2562", "1740", "1485", "2331", "2790", "2160", "2100", "2640", "2010", "3681", "2400", "1785", "2262", "3252", "2622", "2940", "1575", "2310", "2541", "3987", "2772" ]
[ "nonn" ]
58
0
1
[ "A072511", "A356478", "A356864" ]
null
J. M. Bergot and Robert Israel, Sep 01 2022
2022-09-05T09:10:42
oeisdata/seq/A356/A356478.seq
fd4783475c8f0fd87e776805031b4b2f
A356479
Decimal expansion of (sqrt(3)/Pi) * sinh(Pi/sqrt(3)).
[ "1", "6", "4", "5", "9", "0", "2", "5", "1", "5", "2", "2", "5", "3", "9", "6", "1", "1", "9", "3", "5", "4", "4", "1", "1", "8", "8", "1", "5", "6", "6", "3", "2", "7", "6", "4", "1", "6", "1", "9", "2", "2", "3", "1", "0", "6", "5", "4", "6", "3", "8", "3", "3", "1", "3", "5", "7", "7", "9", "6", "6", "4", "5", "2", "6", "8", "1", "7", "4", "3", "1", "1", "1", "5", "8", "6", "4", "4", "2", "2", "1", "3", "4", "8", "7", "1", "0", "3", "8", "6", "2", "9", "1", "8", "9", "7", "4", "8", "9", "4", "8", "9", "0", "6", "5", "7" ]
[ "nonn", "cons" ]
37
1
2
[ "A000796", "A002194", "A334401", "A356479" ]
null
Christoph B. Kassir, Aug 08 2022
2022-08-13T15:57:29
oeisdata/seq/A356/A356479.seq
a7d4acb13e587775cb075184bfd7d6b1
A356480
a(n) is the minimal number of river crossings necessary to solve the missionaries and cannibals problem for n missionaries and n cannibals where the boat capacity is the minimum necessary to allow a solution.
[ "1", "5", "11", "9", "11", "9", "11", "13", "15", "17", "19", "21", "23", "25", "27", "29", "31", "33", "35", "37", "39", "41", "43", "45", "47", "49", "51", "53", "55", "57", "59", "61", "63", "65", "67", "69", "71", "73", "75", "77", "79", "81", "83", "85", "87", "89", "91", "93", "95", "97", "99", "101", "103", "105", "107", "109", "111", "113", "115", "117", "119", "121", "123", "125", "127", "129", "131", "133", "135" ]
[ "nonn", "easy" ]
75
1
2
[ "A060747", "A167484", "A356480" ]
null
Sela Fried, Aug 09 2022
2022-08-20T06:25:48
oeisdata/seq/A356/A356480.seq
8d4efa141e4b769c5c822e5949034e60
A356481
a(n) is the hafnian of a symmetric Toeplitz matrix M(2*n) whose first row consists of 1, 2, ..., 2*n.
[ "1", "2", "21", "532", "24845", "1856094", "203076097", "30633787976", "6097546660185", "1548899852221210", "489114616743840461" ]
[ "nonn", "hard", "more" ]
18
0
2
[ "A001792", "A202038", "A204235", "A336114", "A336286", "A336400", "A338456", "A356481", "A356482", "A356483", "A356484" ]
null
Stefano Spezia, Aug 09 2022
2023-10-14T23:54:18
oeisdata/seq/A356/A356481.seq
67d2c905c92e59e49223fac646bc1745
A356482
a(n) is the hafnian of a symmetric Toeplitz matrix M(2*n) whose first row consists of 2*n, 2*n-1, ..., 1.
[ "1", "1", "16", "714", "62528", "9056720", "1960138560", "592615689904", "238560786221056", "123358665203311104", "79683847063011614720" ]
[ "nonn", "hard", "more" ]
14
0
3
[ "A001792", "A202038", "A307783", "A336114", "A336286", "A336400", "A338456", "A356481", "A356482", "A356483", "A356484" ]
null
Stefano Spezia, Aug 09 2022
2023-10-14T23:54:27
oeisdata/seq/A356/A356482.seq
90f8164b595bc6bc9d685dc24b9d704c
A356483
a(n) is the hafnian of a symmetric Toeplitz matrix M(2*n) whose first row consists of prime(1), prime(2), ..., prime(2*n).
[ "1", "3", "55", "2999", "347391", "69702479", "22441691645", "10776262328919", "7190279422736061", "6439969796874334809", "7447188585071730451961" ]
[ "nonn", "hard", "more" ]
16
0
2
[ "A202038", "A336114", "A336286", "A336400", "A338456", "A356481", "A356482", "A356483", "A356484", "A356490", "A356491" ]
null
Stefano Spezia, Aug 09 2022
2023-10-14T23:54:38
oeisdata/seq/A356/A356483.seq
e69e1b3a0005f49fd53142d270068217
A356484
a(n) is the hafnian of a symmetric Toeplitz matrix M(2*n) whose first row consists of prime(2*n), prime(2*n-1), ..., prime(1).
[ "1", "2", "44", "5210", "1368900", "604109562", "535920536336", "728155179271474", "1103827431509790216", "2651375713654260218986", "7537958658258053003685636" ]
[ "nonn", "hard", "more" ]
25
0
2
[ "A202038", "A336114", "A336286", "A336400", "A338456", "A356481", "A356482", "A356483", "A356484", "A356492", "A356493" ]
null
Stefano Spezia, Aug 09 2022
2023-10-14T23:54:50
oeisdata/seq/A356/A356484.seq
cf1fef83c5324e99ee0249d22643769b
A356485
a(n) = n! * Sum_{k=1..n} A000010(k)/k.
[ "1", "3", "13", "64", "416", "2736", "23472", "207936", "2113344", "22584960", "284722560", "3576337920", "52240412160", "768727895040", "12228344755200", "206114911027200", "3838718125670400", "71231050830643200", "1468632692485324800", "30345814652977152000", "666456931810639872000", "15172961921551171584000" ]
[ "nonn" ]
11
1
2
[ "A000010", "A002088", "A011755", "A356010", "A356297", "A356298", "A356323", "A356485" ]
null
Vaclav Kotesovec, Aug 09 2022
2025-02-16T08:34:03
oeisdata/seq/A356/A356485.seq
9f6b45e8d6a9331ed0318fecfcdf9839
A356486
a(n) = (n-1)! * Sum_{d|n} d^n / (d-1)!.
[ "1", "5", "29", "358", "3149", "98196", "824263", "73122736", "784270089", "158028202000", "285315299411", "855386690484096", "302875585593853", "5876921233326141376", "111916280261483009775", "73985874496557113890816", "827240282809126652177", "1625215094103508198780449024" ]
[ "nonn" ]
17
1
2
[ "A087906", "A354890", "A356486", "A356487" ]
null
Seiichi Manyama, Aug 09 2022
2023-08-30T02:00:40
oeisdata/seq/A356/A356486.seq
d2369e3159205bacb6533384c35678e3
A356487
Expansion of e.g.f. Product_{k>0} 1/(1 - (k * x)^k)^(1/k!).
[ "1", "1", "6", "45", "580", "7105", "170076", "2654575", "116426528", "2386183761", "209503380160", "3455683548691", "969334978024920", "15164681616944353", "6510178188269825720", "223847763757748796975", "81261936394687862700256", "1581790511799886415713825" ]
[ "nonn" ]
12
0
3
[ "A023882", "A209902", "A356486", "A356487" ]
null
Seiichi Manyama, Aug 09 2022
2022-08-09T11:20:01
oeisdata/seq/A356/A356487.seq
7def72d260bd32af278c1bbe53483b5a
A356488
Numbers k such that the equation x^2 - k*y^4 = -1 has a solution for which |y| > 2.
[ "2", "53", "314", "1042", "1685", "1825", "3281", "4586", "5521", "6770", "8597", "9050", "11509", "13858", "17498", "20369", "24737", "28085", "28130", "29041", "31226", "33226", "37141", "37585", "42965", "47402", "49205", "53954", "57125", "58913", "66193", "71674", "79682", "85685", "94421", "100946", "110410", "113290", "115202" ]
[ "nonn" ]
11
1
1
[ "A031396", "A130227", "A182468", "A356488" ]
null
Jinyuan Wang, Aug 09 2022
2022-08-11T14:49:21
oeisdata/seq/A356/A356488.seq
136e237dc79ce5557fd258eb958cdd68
A356489
a(n) = A000265(rad(prime(n)-1)), rad = A007947.
[ "1", "1", "1", "3", "5", "3", "1", "3", "11", "7", "15", "3", "5", "21", "23", "13", "29", "15", "33", "35", "3", "39", "41", "11", "3", "5", "51", "53", "3", "7", "21", "65", "17", "69", "37", "15", "39", "3", "83", "43", "89", "15", "95", "3", "7", "33", "105", "111", "113", "57", "29", "119", "15", "5", "1", "131", "67", "15", "69", "35", "141", "73", "51", "155", "39", "79", "165", "21", "173", "87", "11", "179" ]
[ "nonn", "easy" ]
11
1
4
[ "A000265", "A007947", "A057023", "A077063", "A204455", "A356489" ]
null
Jianing Song, Aug 09 2022
2022-08-09T10:56:35
oeisdata/seq/A356/A356489.seq
b235db69e6e8cf8c89574f177dd85ce9
A356490
a(n) is the determinant of a symmetric Toeplitz matrix M(n) whose first row consists of prime(1), prime(2), ..., prime(n).
[ "1", "2", "-5", "12", "-19", "-22", "1143", "-4284", "14265", "-46726", "-84405", "1306096", "32312445", "522174906", "4105967871", "5135940112", "-642055973735", "-2832632334858", "14310549077571", "380891148658140", "4888186898996125", "-49513565563840210", "383405170118692791", "-2517836083641473036", "-3043377347606882055" ]
[ "sign" ]
25
0
2
[ "A005843", "A309131", "A350955", "A350956", "A356483", "A356490", "A356491" ]
null
Stefano Spezia, Aug 09 2022
2023-01-31T05:35:07
oeisdata/seq/A356/A356490.seq
21d626d108ae0ca670cba31dd0d71f03
A356491
a(n) is the permanent of a symmetric Toeplitz matrix M(n) whose first row consists of prime(1), prime(2), ..., prime(n).
[ "1", "2", "13", "184", "4745", "215442", "14998965", "1522204560", "208682406913", "37467772675962", "8809394996942597", "2597094620811897948", "954601857873086235553", "428809643170145564168434", "229499307540038336275308821", "144367721963876506217872778284", "106064861375232790889279725340713" ]
[ "nonn" ]
25
0
2
[ "A005843", "A309131", "A351021", "A351022", "A356483", "A356490", "A356491" ]
null
Stefano Spezia, Aug 09 2022
2023-01-31T05:36:23
oeisdata/seq/A356/A356491.seq
4c282ab4554ad2ec650d849f693722d3
A356492
a(n) is the determinant of a symmetric Toeplitz matrix M(n) whose first row consists of prime(n), prime(n-1), ..., prime(1).
[ "1", "2", "5", "51", "264", "19532", "-11904", "1261296", "-2052864", "70621632", "24618221568", "3996020736", "743171562496", "24567175118848", "-1257930752000", "864893030400", "12289833785344000", "1099483729459478528", "100515455071223808", "757166323365314560", "6294658173770137600", "7801939905505132544" ]
[ "sign" ]
20
0
2
[ "A033286", "A350955", "A350956", "A356484", "A356492", "A356493" ]
null
Stefano Spezia, Aug 09 2022
2023-10-13T12:28:14
oeisdata/seq/A356/A356492.seq
49150eadf051da318fe20a291855b861
A356493
a(n) is the permanent of a symmetric Toeplitz matrix M(n) whose first row consists of prime(n), prime(n-1), ..., prime(1).
[ "1", "2", "13", "271", "12030", "1346758", "214022024", "51763672608", "16088934953136", "6611717516842608", "4412314619046451200", "3533754988232088933120", "3506189715435673999194112", "4444138735439968822425464576", "5893766827264238066914528545792", "8502284313901016361834901076874240", "15350799440394462109333953415858960384" ]
[ "nonn" ]
16
0
2
[ "A033286", "A351021", "A351022", "A356484", "A356492", "A356493" ]
null
Stefano Spezia, Aug 09 2022
2023-10-13T11:50:34
oeisdata/seq/A356/A356493.seq
7e20b54415510721c06968b7a5be351b
A356494
Expansion of e.g.f. Product_{k>0} B(k * x^k) where B(x) = exp(exp(x)-1) = e.g.f. of Bell numbers.
[ "1", "1", "6", "35", "327", "2892", "37943", "459895", "7330172", "116054835", "2168292295", "41072348550", "898738816957", "19782331776937", "487091519709590", "12305361661242275", "337777113607935587", "9528258228302443724", "289373132780801591323", "9016757353084706862647" ]
[ "nonn" ]
11
0
3
[ "A000110", "A209903", "A346055", "A354843", "A356460", "A356494", "A356495" ]
null
Seiichi Manyama, Aug 09 2022
2022-08-09T11:20:15
oeisdata/seq/A356/A356494.seq
24c20c6667e6ef698f6d6e4370bbc272
A356495
Expansion of e.g.f. Product_{k>0} B((k * x)^k) where B(x) = exp(exp(x)-1) = e.g.f. of Bell numbers.
[ "1", "1", "10", "191", "7287", "424292", "37434683", "4512452023", "726390985036", "149098938941283", "38187088904721655", "11903871288193251930", "4442392007373264794677", "1953788894138983864638457", "1000334575509506861927067378", "589712001176601700420819946615" ]
[ "nonn" ]
8
0
3
[ "A000110", "A209903", "A346055", "A354892", "A356494", "A356495" ]
null
Seiichi Manyama, Aug 09 2022
2022-08-09T11:20:47
oeisdata/seq/A356/A356495.seq
fc4665a726b990486c4491544681478c
A356496
Squarefree integers k such that x^4 - k*y^2 = 1 has a nontrivial solution.
[ "5", "6", "15", "29", "39", "145", "210", "255", "410", "455", "791", "905", "915", "985", "1111", "1295", "1785", "2031", "3603", "3815", "4199", "7215", "8547", "8555", "10421", "12155", "13015", "13271", "14430", "16913", "17490", "18530", "20735", "22327", "24414", "26390", "28230", "29039", "33215", "36411", "38415", "41943", "44205", "54795", "60639", "61535", "63546" ]
[ "nonn" ]
8
1
1
null
null
Michel Marcus, Aug 09 2022
2022-08-09T14:11:30
oeisdata/seq/A356/A356496.seq
4328f511056b329209e290966f3f64e9
A356497
a(n) = maximal 2^k such that there exists a (2^k)-th root of unity modulo n.
[ "1", "1", "2", "2", "4", "2", "2", "2", "2", "4", "2", "2", "4", "2", "4", "4", "16", "2", "2", "4", "2", "2", "2", "2", "4", "4", "2", "2", "4", "4", "2", "8", "2", "16", "4", "2", "4", "2", "4", "4", "8", "2", "2", "2", "4", "2", "2", "4", "2", "4", "16", "4", "4", "2", "4", "2", "2", "4", "2", "4", "4", "2", "2", "16", "4", "2", "2", "16", "2", "4", "2", "2", "8", "4", "4", "2", "2", "4", "2", "4", "2", "8", "2", "2", "16", "2", "4", "2", "8", "4", "4", "2", "2", "2", "4", "8", "32", "2", "2", "4" ]
[ "nonn" ]
8
1
3
null
null
Dmitry Grekov, Aug 09 2022
2022-10-02T00:55:50
oeisdata/seq/A356/A356497.seq
e7e035e989de820f03860ccb4431a77c
A356498
Primes p such that 100*p + 11 is also prime.
[ "2", "3", "23", "41", "83", "101", "107", "113", "137", "179", "233", "239", "251", "281", "293", "353", "359", "401", "419", "479", "503", "557", "563", "569", "587", "683", "701", "743", "809", "839", "857", "863", "941", "953", "977", "1049", "1091", "1103", "1193", "1217", "1277", "1283", "1361", "1367", "1427", "1487", "1499", "1523", "1607", "1619", "1847", "1871", "1877", "1889", "1907", "1949", "1973" ]
[ "nonn" ]
17
1
1
[ "A000040", "A002476", "A023237", "A356498" ]
null
Daniel Blam, Aug 09 2022
2022-09-11T16:50:44
oeisdata/seq/A356/A356498.seq
14b42693a8011998cf828686217d1dfc
A356499
G.f. A(x) satisfies: x = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)).
[ "1", "1", "3", "10", "32", "108", "382", "1419", "5437", "21288", "84618", "340499", "1384711", "5683834", "23520471", "98018975", "410998473", "1732666697", "7339612244", "31224662178", "133353750962", "571527895700", "2457293364403", "10596053295516", "45813536708704", "198570001079591", "862624530201300" ]
[ "nonn" ]
15
0
3
[ "A000041", "A356499", "A356508" ]
null
Paul D. Hanna, Aug 11 2022
2023-10-04T04:19:26
oeisdata/seq/A356/A356499.seq
2c601824b72929aec3fd51f96c3c7f46
A356500
Coefficients T(n,k) of x^n*y^k in A(x,y) for n >= 0, k = 0..3*n+1, where A(x,y) satisfies: y = Sum_{n=-oo..+oo} (-x)^(n^2) * A(x,y)^((n-1)^2), as an irregular triangle read by rows.
[ "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "4", "0", "0", "0", "4", "0", "0", "6", "0", "0", "0", "28", "0", "0", "0", "22", "0", "3", "0", "0", "0", "84", "0", "0", "0", "219", "0", "0", "0", "140", "0", "0", "0", "0", "135", "0", "0", "0", "981", "0", "0", "0", "1807", "0", "0", "0", "969", "0", "0", "0", "120", "0", "0", "0", "2568", "0", "0", "0", "10764", "0", "0", "0", "15368", "0", "0", "0", "7084", "0", "0", "54", "0", "0", "0", "4284", "0", "0", "0", "38896", "0", "0", "0", "114240", "0", "0", "0", "133266", "0", "0", "0", "53820", "0", "9", "0", "0", "0", "4662", "0", "0", "0", "94390", "0", "0", "0", "525980", "0", "0", "0", "1187433", "0", "0", "0", "1171390", "0", "0", "0", "420732" ]
[ "nonn", "tabf" ]
24
0
11
[ "A000716", "A002293", "A354248", "A354655", "A354656", "A355350", "A355360", "A355365", "A355870", "A355872", "A356500", "A356501", "A356502", "A356503", "A356504", "A356505" ]
null
Paul D. Hanna, Aug 09 2022
2025-03-23T18:38:47
oeisdata/seq/A356/A356500.seq
7126696c47490a55a7a387c4245e3dc3