sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
sequencelengths 1
348
| keywords
sequencelengths 1
8
| score
int64 1
2.31k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
sequencelengths 1
128
⌀ | former_ids
sequencelengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-28 00:58:08
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A357201 | Coefficients in the power series A(x) such that: A(x) = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1))^(n+1) * A(x)^n. | [
"1",
"1",
"1",
"3",
"1",
"5",
"-26",
"-75",
"-430",
"-1183",
"-4249",
"-10191",
"-27443",
"-42735",
"-35715",
"341250",
"2073952",
"9886007",
"36365567",
"124484714",
"364966293",
"965150205",
"1958034669",
"2048555297",
"-9110607428",
"-76703557685",
"-383500583452",
"-1539890758482",
"-5456784935108",
"-17115737273816"
] | [
"sign"
] | 6 | 0 | 4 | [
"A357151",
"A357161",
"A357200",
"A357201",
"A357202",
"A357203",
"A357204",
"A357205"
] | null | Paul D. Hanna, Sep 17 2022 | 2022-09-18T12:37:05 | oeisdata/seq/A357/A357201.seq | 62290b8ad8013eccaa81d1ab1e0f45ca |
A357202 | Coefficients in the power series A(x) such that: A(x)^2 = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1))^(n+1) * A(x)^n. | [
"1",
"1",
"2",
"9",
"35",
"182",
"921",
"5062",
"28234",
"162330",
"947773",
"5622641",
"33747694",
"204676547",
"1252083028",
"7717376754",
"47878314072",
"298749048454",
"1873637869199",
"11804288518884",
"74673607921030",
"474128308291896",
"3020493580980524",
"19301224674496592",
"123681469340775568"
] | [
"nonn"
] | 6 | 0 | 3 | [
"A357152",
"A357162",
"A357200",
"A357201",
"A357202",
"A357203",
"A357204",
"A357205"
] | null | Paul D. Hanna, Sep 17 2022 | 2022-09-18T12:37:09 | oeisdata/seq/A357/A357202.seq | b608a91b38c0e23335e30469526df475 |
A357203 | Coefficients in the power series A(x) such that: A(x)^3 = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1))^(n+1) * A(x)^n. | [
"1",
"1",
"3",
"18",
"111",
"800",
"5990",
"46995",
"379090",
"3129713",
"26301576",
"224282112",
"1935668344",
"16876028036",
"148410725830",
"1314933853171",
"11726585616205",
"105178923513494",
"948185788906100",
"8586757756571261",
"78079244607685021",
"712592590813142079",
"6525273550226573555"
] | [
"nonn"
] | 7 | 0 | 3 | [
"A357153",
"A357163",
"A357200",
"A357201",
"A357202",
"A357203",
"A357204",
"A357205"
] | null | Paul D. Hanna, Sep 17 2022 | 2022-09-20T00:01:59 | oeisdata/seq/A357/A357203.seq | 95202f8bc216798d789f98cc2c0344c3 |
A357204 | Coefficients in the power series A(x) such that: A(x)^4 = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1))^(n+1) * A(x)^n. | [
"1",
"1",
"4",
"30",
"245",
"2256",
"21849",
"220655",
"2294241",
"24402721",
"264251525",
"2903503779",
"32289673568",
"362755014742",
"4110792367801",
"46933876797456",
"539362815736466",
"6234031681945681",
"72421584940086375",
"845164178044504188",
"9903469546224045896",
"116475680442085941037"
] | [
"nonn"
] | 7 | 0 | 3 | [
"A357154",
"A357164",
"A357200",
"A357201",
"A357202",
"A357203",
"A357204",
"A357205"
] | null | Paul D. Hanna, Sep 17 2022 | 2022-09-20T00:02:25 | oeisdata/seq/A357/A357204.seq | 88ac39c62d93ba97ab89d4911d69ab9d |
A357205 | Coefficients in the power series A(x) such that: A(x)^5 = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1))^(n+1) * A(x)^n. | [
"1",
"1",
"5",
"45",
"453",
"5072",
"59964",
"738449",
"9365617",
"121511799",
"1605113475",
"21514501261",
"291880434822",
"4000334186684",
"55304105835751",
"770323876417969",
"10800108248187952",
"152293211204657100",
"2158477865404685913",
"30732066480408276249",
"439351185869943970405"
] | [
"nonn"
] | 7 | 0 | 3 | [
"A357155",
"A357165",
"A357200",
"A357201",
"A357202",
"A357203",
"A357204",
"A357205"
] | null | Paul D. Hanna, Sep 17 2022 | 2022-09-20T00:02:45 | oeisdata/seq/A357/A357205.seq | 4079ce77b1dbaf82709470ddcfcc1d42 |
A357206 | Coefficients in the power series A(x) such that: x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n. | [
"1",
"1",
"6",
"39",
"267",
"1949",
"14927",
"118517",
"966840",
"8055107",
"68247637",
"586231174",
"5093508706",
"44685394843",
"395287384067",
"3521909281230",
"31576985230764",
"284687856687607",
"2579319718212675",
"23472206080648463",
"214448766193151410",
"1966300700448875377",
"18088031500652556354"
] | [
"nonn"
] | 9 | 0 | 3 | [
"A355361",
"A357206",
"A357207",
"A357208",
"A357209"
] | null | Paul D. Hanna, Sep 18 2022 | 2022-09-19T11:08:51 | oeisdata/seq/A357/A357206.seq | 2f0a5cdb21573357539f9061233f4865 |
A357207 | Coefficients in the power series A(x) such that: x*A(x)^3 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n. | [
"1",
"1",
"7",
"55",
"469",
"4307",
"41678",
"418872",
"4330275",
"45754091",
"491916135",
"5364166402",
"59186372395",
"659556170091",
"7412556531714",
"83921355689635",
"956228695216241",
"10957322339242547",
"126189988012692329",
"1459793848341094130",
"16955390069787782159",
"197653935181097885580"
] | [
"nonn"
] | 7 | 0 | 3 | [
"A355361",
"A357206",
"A357207",
"A357208",
"A357209"
] | null | Paul D. Hanna, Sep 18 2022 | 2022-09-19T11:09:01 | oeisdata/seq/A357/A357207.seq | e9aff60c6ac6594158cfb10086576007 |
A357208 | Coefficients in the power series A(x) such that: x*A(x)^4 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n. | [
"1",
"1",
"8",
"74",
"758",
"8412",
"98605",
"1201739",
"15075377",
"193374064",
"2524704727",
"33440460233",
"448246477551",
"6069174992443",
"82884604316537",
"1140361539606239",
"15791577929661603",
"219930850717175458",
"3078540089119391233",
"43287917046150591163",
"611156850554916771425"
] | [
"nonn"
] | 7 | 0 | 3 | [
"A355361",
"A357206",
"A357207",
"A357208",
"A357209"
] | null | Paul D. Hanna, Sep 18 2022 | 2022-09-19T11:08:34 | oeisdata/seq/A357/A357208.seq | 675ddb44e8e80e43037e6ccb113a1999 |
A357209 | Coefficients in the power series A(x) such that: x*A(x)^5 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n. | [
"1",
"1",
"9",
"96",
"1150",
"14981",
"206426",
"2959249",
"43683374",
"659531482",
"10137150414",
"158089344305",
"2495255246353",
"39785814006395",
"639880150931025",
"10368454503796731",
"169106511176489353",
"2773945868018478593",
"45734618620228469488",
"757469141505480597690"
] | [
"nonn"
] | 7 | 0 | 3 | [
"A355361",
"A357206",
"A357207",
"A357208",
"A357209"
] | null | Paul D. Hanna, Sep 18 2022 | 2022-09-19T11:08:03 | oeisdata/seq/A357/A357209.seq | 83f972f2da6daf8ccbdae236787f44fa |
A357210 | a(n) = Sum_{k=1..n} prime(k/gcd(n,k)). | [
"2",
"4",
"7",
"11",
"19",
"22",
"43",
"46",
"66",
"68",
"131",
"90",
"199",
"158",
"187",
"223",
"383",
"242",
"503",
"320",
"441",
"478",
"793",
"436",
"824",
"716",
"879",
"734",
"1373",
"658",
"1595",
"1118",
"1313",
"1358",
"1579",
"1103",
"2429",
"1776",
"1957",
"1556",
"3089",
"1532",
"3449",
"2192",
"2347",
"2784",
"4229",
"2144",
"4134",
"2882",
"3687",
"3258",
"5591"
] | [
"nonn"
] | 23 | 1 | 1 | [
"A000040",
"A057661",
"A127413",
"A130029",
"A333558",
"A357210"
] | null | Ilya Gutkovskiy, Sep 19 2022 | 2022-09-23T03:18:43 | oeisdata/seq/A357/A357210.seq | e5f290c5993f8a913bdbbe4af553ad85 |
A357211 | a(n) is the real cube root of the value of the j-function for the n-th Heegner number A003173(n). | [
"12",
"20",
"0",
"-15",
"-32",
"-96",
"-960",
"-5280",
"-640320"
] | [
"fini",
"full",
"sign"
] | 32 | 1 | 1 | [
"A003173",
"A199743",
"A267195",
"A357211"
] | null | Alexander R. Povolotsky, Sep 17 2022 | 2022-11-06T08:49:20 | oeisdata/seq/A357/A357211.seq | 662efa97f63573ef9a3ff42b52f4aba3 |
A357212 | a(n) = number of nonempty subsets of {1,2,...,n} having a partition into two subsets with the same sum of elements. | [
"0",
"0",
"1",
"3",
"7",
"17",
"37",
"81",
"174",
"372",
"786",
"1650",
"3438",
"7125",
"14666",
"30048",
"61248",
"124439",
"251921",
"508778",
"1025182",
"2062286",
"4142643",
"8312926",
"16667004",
"33395274"
] | [
"nonn",
"more"
] | 12 | 1 | 4 | [
"A232466",
"A357212"
] | null | Clark Kimberling, Sep 17 2022 | 2022-09-18T09:10:11 | oeisdata/seq/A357/A357212.seq | 98b7ba1a1a72b2c858a04f14242ebf9a |
A357213 | Triangular array read by rows: T(n, k) = number of subsets s of {1, 2, ..., n} such max(s) - min(s) = k, for n >= 1, 0 <= k <= n-1. | [
"1",
"2",
"1",
"3",
"2",
"2",
"4",
"3",
"4",
"4",
"5",
"4",
"6",
"8",
"8",
"6",
"5",
"8",
"12",
"16",
"16",
"7",
"6",
"10",
"16",
"24",
"32",
"32",
"8",
"7",
"12",
"20",
"32",
"48",
"64",
"64",
"9",
"8",
"14",
"24",
"40",
"64",
"96",
"128",
"128",
"10",
"9",
"16",
"28",
"48",
"80",
"128",
"192",
"256",
"256",
"11",
"10",
"18",
"32",
"56",
"96",
"160",
"256",
"384",
"512",
"512",
"12",
"11"
] | [
"nonn",
"tabl"
] | 17 | 1 | 2 | [
"A000027",
"A000225",
"A130128",
"A357213"
] | null | Clark Kimberling, Sep 24 2022 | 2022-09-26T17:32:08 | oeisdata/seq/A357/A357213.seq | c5351bf7aa7e7c4e8adb3be43efab374 |
A357214 | a(n) = number of subsets S of {1, 2, ..., n} such that every number in S is a composite. | [
"1",
"1",
"1",
"2",
"2",
"4",
"4",
"8",
"16",
"32",
"32",
"64",
"64",
"128",
"256",
"512",
"512",
"1024",
"1024",
"2048",
"4096",
"8192",
"8192",
"16384",
"32768",
"65536",
"131072",
"262144",
"262144",
"524288",
"524288",
"1048576",
"2097152",
"4194304",
"8388608",
"16777216",
"16777216",
"33554432",
"67108864",
"134217728",
"134217728"
] | [
"nonn",
"easy"
] | 17 | 1 | 4 | [
"A000720",
"A048656",
"A089819",
"A357214",
"A357215"
] | null | Clark Kimberling, Sep 24 2022 | 2023-06-04T23:50:58 | oeisdata/seq/A357/A357214.seq | 479d33c0021a4d4141396b844bf9a072 |
A357215 | a(n) = number of nonempty subsets S of {1, 2, ..., n} that contain only primes. | [
"0",
"1",
"3",
"3",
"7",
"7",
"15",
"15",
"15",
"15",
"31",
"31",
"63",
"63",
"63",
"63",
"127",
"127",
"255",
"255",
"255",
"255",
"511",
"511",
"511",
"511",
"511",
"511",
"1023",
"1023",
"2047",
"2047",
"2047",
"2047",
"2047",
"2047",
"4095",
"4095",
"4095",
"4095",
"8191",
"8191",
"16383",
"16383",
"16383",
"16383",
"32767",
"32767",
"32767",
"32767"
] | [
"nonn",
"easy"
] | 10 | 1 | 3 | [
"A000720",
"A048656",
"A089819",
"A357214",
"A357215"
] | null | Clark Kimberling, Sep 24 2022 | 2022-09-26T20:10:37 | oeisdata/seq/A357/A357215.seq | 45b3234a3832dc5099b3deb00c056163 |
A357216 | Table read by antidiagonals: T(n,k) (n >= 3, k >= 0) is the number of regions in an n-gon when k internal n-gons are drawn between the n*k points that divide each side into k+1 equal parts. | [
"1",
"4",
"1",
"13",
"5",
"1",
"28",
"17",
"6",
"1",
"49",
"37",
"21",
"7",
"1",
"70",
"65",
"46",
"25",
"8",
"1",
"109",
"93",
"81",
"55",
"29",
"9",
"1",
"148",
"145",
"126",
"97",
"64",
"33",
"10",
"1",
"181",
"181",
"181",
"151",
"113",
"73",
"37",
"11",
"1",
"244",
"257",
"246",
"217",
"176",
"129",
"82",
"41",
"12",
"1",
"301",
"309",
"321",
"295",
"253",
"201",
"145",
"91",
"45",
"13",
"1"
] | [
"nonn",
"tabl"
] | 23 | 3 | 2 | [
"A007678",
"A344857",
"A356984",
"A357058",
"A357196",
"A357216",
"A357235",
"A357254"
] | null | Scott R. Shannon, Sep 18 2022 | 2022-09-21T12:00:26 | oeisdata/seq/A357/A357216.seq | fc5cc57cffa615be8218dc401ffbd52c |
A357217 | Array read by descending antidiagonals: T(n,k) is the number of cycles of the permutation given by the order of elimination in the Josephus problem for n numbers and a count of k; n, k >= 1. | [
"1",
"1",
"2",
"1",
"1",
"3",
"1",
"2",
"2",
"4",
"1",
"1",
"1",
"2",
"5",
"1",
"2",
"2",
"2",
"1",
"6",
"1",
"1",
"1",
"2",
"1",
"1",
"7",
"1",
"2",
"2",
"2",
"1",
"2",
"4",
"8",
"1",
"1",
"3",
"2",
"3",
"3",
"3",
"2",
"9",
"1",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"1",
"10",
"1",
"1",
"1",
"2",
"1",
"3",
"3",
"2",
"3",
"5",
"11",
"1",
"2",
"2",
"2",
"3",
"2",
"2",
"4",
"5",
"2",
"2",
"12",
"1",
"1",
"1",
"2",
"3",
"1",
"3",
"2",
"3",
"1",
"3",
"2",
"13"
] | [
"nonn",
"tabl"
] | 9 | 1 | 3 | [
"A003418",
"A006694",
"A163782",
"A163800",
"A198789",
"A321298",
"A357217"
] | null | Pontus von Brömssen, Sep 18 2022 | 2022-09-18T11:22:15 | oeisdata/seq/A357/A357217.seq | 0dba231ec3eadd7c9e871da1e98fd03f |
A357218 | Primes p such that T(p) - 2 is prime, where T(p) is the triangular number (A000217) with index p. | [
"5",
"13",
"17",
"29",
"37",
"41",
"53",
"61",
"73",
"89",
"97",
"149",
"157",
"193",
"197",
"233",
"257",
"269",
"277",
"281",
"313",
"337",
"389",
"401",
"409",
"457",
"509",
"521",
"541",
"613",
"641",
"673",
"701",
"797",
"857",
"877",
"881",
"929",
"953",
"997",
"1009",
"1033",
"1093",
"1109",
"1117",
"1129",
"1153",
"1193",
"1297",
"1301",
"1373",
"1381",
"1433",
"1481",
"1493"
] | [
"nonn"
] | 28 | 1 | 1 | [
"A000217",
"A002144",
"A231847",
"A357218",
"A357219"
] | null | Bernard Schott, Sep 18 2022 | 2022-09-21T01:38:23 | oeisdata/seq/A357/A357218.seq | 68a1beb81905d68a4c68aac6e97f9c0b |
A357219 | Primes of the form T(p) - 2 where T(p) is the triangular number (A000217) with prime index p in A357218. | [
"13",
"89",
"151",
"433",
"701",
"859",
"1429",
"1889",
"2699",
"4003",
"4751",
"11173",
"12401",
"18719",
"19501",
"27259",
"33151",
"36313",
"38501",
"39619",
"49139",
"56951",
"75853",
"80599",
"83843",
"104651",
"129793",
"135979",
"146609",
"188189",
"205759",
"226799",
"246049",
"318001",
"367651",
"385001",
"388519",
"431983",
"454579"
] | [
"nonn"
] | 17 | 1 | 1 | [
"A000217",
"A124199",
"A357218",
"A357219"
] | null | Bernard Schott, Sep 18 2022 | 2022-10-04T13:53:59 | oeisdata/seq/A357/A357219.seq | 51729be03d380b80bfc1525276955066 |
A357220 | a(n) = coefficient of x^n in Sum_{n>=0} x^n/(1 - x*C(x)^n), where C(x) = 1/(1 - x*C(x)) is a g.f. of the Catalan numbers (A000108). | [
"1",
"2",
"3",
"5",
"11",
"31",
"101",
"355",
"1304",
"4938",
"19155",
"75857",
"306075",
"1256782",
"5248018",
"22278742",
"96141427",
"421787510",
"1881594580",
"8537257714",
"39408291543",
"185114771571",
"885043068109",
"4307374572585",
"21340519926034",
"107627435856554",
"552473684683454",
"2885909702592788"
] | [
"nonn"
] | 12 | 0 | 2 | [
"A000108",
"A357220"
] | null | Paul D. Hanna, Oct 16 2022 | 2022-12-03T12:06:30 | oeisdata/seq/A357/A357220.seq | 8f4551643b5f5cd744805bebc2538f8c |
A357221 | Coefficients in the power series A(x) such that: x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n. | [
"1",
"1",
"2",
"8",
"26",
"97",
"361",
"1399",
"5532",
"22318",
"91387",
"379037",
"1588769",
"6720065",
"28645624",
"122937300",
"530748439",
"2303446566",
"10043922651",
"43979954296",
"193309569331",
"852599816069",
"3772220833468",
"16737583785420",
"74461239372631",
"332062396407641",
"1484162266154404"
] | [
"nonn"
] | 5 | 0 | 3 | [
"A355357",
"A355361",
"A357221",
"A357222",
"A357223",
"A357224",
"A357225",
"A357226"
] | null | Paul D. Hanna, Sep 18 2022 | 2022-09-19T11:08:18 | oeisdata/seq/A357/A357221.seq | 96aea7fd4d303a226969729c1d4615ca |
A357222 | Coefficients in the power series A(x) such that: x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n. | [
"1",
"1",
"3",
"15",
"73",
"391",
"2180",
"12620",
"75056",
"456004",
"2817879",
"17656517",
"111919061",
"716379379",
"4623944175",
"30062540989",
"196692237527",
"1294112710358",
"8556766562091",
"56829292404053",
"378936456243142",
"2535866861527016",
"17025875430611442",
"114654511539186113"
] | [
"nonn"
] | 5 | 0 | 3 | [
"A355357",
"A357221",
"A357222",
"A357223",
"A357224",
"A357225",
"A357226"
] | null | Paul D. Hanna, Sep 18 2022 | 2022-09-19T11:16:00 | oeisdata/seq/A357/A357222.seq | aeb16bffd3357d8464b9b8c3ddcb3d90 |
A357223 | Coefficients in the power series A(x) such that: x*A(x)^3 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n. | [
"1",
"1",
"4",
"25",
"164",
"1177",
"8887",
"69748",
"563232",
"4649672",
"39063521",
"332904462",
"2870862974",
"25005954906",
"219675658337",
"1944131038267",
"17316793719372",
"155122164103293",
"1396584226654493",
"12630315100857638",
"114687815080027358",
"1045218902425525155",
"9557367319452886097"
] | [
"nonn"
] | 5 | 0 | 3 | [
"A355357",
"A357221",
"A357222",
"A357223",
"A357224",
"A357225",
"A357226"
] | null | Paul D. Hanna, Sep 18 2022 | 2022-09-19T11:16:10 | oeisdata/seq/A357/A357223.seq | f9d62cbcbbc44c72ccb043ccfc2c2fec |
A357224 | Coefficients in the power series A(x) such that: x*A(x)^4 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n. | [
"1",
"1",
"5",
"38",
"315",
"2855",
"27325",
"272030",
"2788042",
"29221793",
"311767823",
"3374650902",
"36968040004",
"409076635878",
"4565873250981",
"51342245169913",
"581093383193700",
"6614534942714496",
"75675364150733073",
"869713202188274489",
"10036085000519702155",
"116238137830534589525"
] | [
"nonn"
] | 5 | 0 | 3 | [
"A355357",
"A357221",
"A357222",
"A357223",
"A357224",
"A357225",
"A357226"
] | null | Paul D. Hanna, Sep 18 2022 | 2022-09-19T11:16:24 | oeisdata/seq/A357/A357224.seq | fd6f925f3eb0094eed9934e0248ae1df |
A357225 | Coefficients in the power series A(x) such that: x*A(x)^5 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n. | [
"1",
"1",
"6",
"54",
"542",
"5950",
"69089",
"834807",
"10387628",
"132206325",
"1713016233",
"22520857313",
"299667203315",
"4028078782339",
"54615552455056",
"746073353306341",
"10258385111897258",
"141862903772876529",
"1971827463536643265",
"27532294076219156008",
"386001188585539328720"
] | [
"nonn"
] | 5 | 0 | 3 | [
"A355357",
"A357221",
"A357222",
"A357223",
"A357224",
"A357225",
"A357226"
] | null | Paul D. Hanna, Sep 18 2022 | 2022-09-19T11:09:38 | oeisdata/seq/A357/A357225.seq | 9a8c06da50ba46f3f3e99ddd6da56342 |
A357226 | Coefficients in the power series A(x) such that: x*A(x)^6 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n. | [
"1",
"1",
"7",
"73",
"861",
"11112",
"151822",
"2159143",
"31627140",
"473909468",
"7230035454",
"111924733904",
"1753728878625",
"27759947012294",
"443247756591472",
"7130680715081049",
"115466397372003479",
"1880525144522628300",
"30783524695736369568",
"506215648672559259036",
"8358521379108937920413"
] | [
"nonn"
] | 5 | 0 | 3 | [
"A355357",
"A357221",
"A357222",
"A357223",
"A357224",
"A357225",
"A357226"
] | null | Paul D. Hanna, Sep 18 2022 | 2022-09-19T11:09:17 | oeisdata/seq/A357/A357226.seq | 3ad7ac1d35ee34da98037566c15a5572 |
A357227 | a(n) = coefficient of x^n, n >= 0, in A(x) such that: 1 = Sum_{n=-oo..+oo} x^n * (2*A(x) - x^n)^(n-1). | [
"1",
"1",
"5",
"27",
"156",
"961",
"6145",
"40546",
"273784",
"1883468",
"13153544",
"93012247",
"664640794",
"4791939802",
"34816034143",
"254659426691",
"1873698891024",
"13858201221637",
"102975937795619",
"768385165594607",
"5755185884844403",
"43253819566052165",
"326093530416255178",
"2465456045342545908"
] | [
"nonn"
] | 22 | 0 | 3 | [
"A355865",
"A355868",
"A357227",
"A357232",
"A358937",
"A358961",
"A358962",
"A358963",
"A358964",
"A358965",
"A363312",
"A363313",
"A363314",
"A363315"
] | null | Paul D. Hanna, Oct 17 2022 | 2023-06-07T03:38:12 | oeisdata/seq/A357/A357227.seq | f3b07295870a384ca9cbf8d511c30c05 |
A357228 | a(n) = coefficient of x^(2*n-1)/(2*n-1)! in the odd function A(x) = Integral Product_{n>=1} 1/(1 - x^(2*n))^((2*n-1)/(2*n)) dx. | [
"1",
"1",
"27",
"1095",
"100905",
"11189745",
"2378802195",
"524908799415",
"186506150655825",
"72527385885379425",
"38034576658499496075",
"21992048437363887457575",
"16748861395227762355580025",
"13415760683905948372840460625",
"13429242464029329763489941151875",
"14657793954450002863353646629204375"
] | [
"nonn"
] | 7 | 1 | 3 | [
"A357228",
"A357229",
"A357550"
] | null | Paul D. Hanna, Oct 02 2022 | 2022-12-03T12:02:25 | oeisdata/seq/A357/A357228.seq | da392bf8111127c48ce9404cdfcf3f9b |
A357229 | a(n) = coefficient of x^(2*n-1)/(2*n-1)! in the odd function A(x) = Integral Product_{n>=1} 1/(1 + x^(2*n))^((2*n-1)/(2*n)) dx. | [
"1",
"-1",
"-9",
"-555",
"7665",
"-1777545",
"114147495",
"-27004972995",
"20805419059425",
"-4204053743915025",
"1822343877322543575",
"-505299954078654810075",
"786572202448438396815825",
"-304143708374573670923945625",
"297888516150523156788428874375",
"-379957456647051856809688318741875"
] | [
"sign"
] | 10 | 1 | 3 | [
"A357228",
"A357229",
"A357230"
] | null | Paul D. Hanna, Oct 02 2022 | 2022-12-03T12:02:54 | oeisdata/seq/A357/A357229.seq | 74d78148905375475a6d01e935d4f80e |
A357230 | a(n) = coefficient of x^(2*n-1)/(2*n-1)! in the expansion of the odd function S(x) defined by: S(x) = Integral Product_{n>=1} C(n,x)^(2*n-1) dx, where C(n,x) = (1 + S(x)^(2*n))^(1/(2*n)) for n >= 1. | [
"1",
"1",
"19",
"1339",
"126121",
"22936441",
"6074972299",
"2211448022179",
"1068596557553041",
"664819086091727281",
"515877228619611775939",
"487979294159765398810699",
"553450493012139154035025081",
"740913321416698764680850005161",
"1156005387497662040937215014248379",
"2079652309814657123017240379855646259"
] | [
"nonn"
] | 33 | 1 | 3 | [
"A357229",
"A357230",
"A357231",
"A357550"
] | null | Paul D. Hanna, Sep 30 2022 | 2022-12-03T12:01:16 | oeisdata/seq/A357/A357230.seq | 99bca1a00fcbb1c323c7879b0699984b |
A357231 | a(n) = coefficient of x^(2*n)/(2*n)! in the expansion of the even function C(x) = sqrt(1 + S(x)^2) where S(x) is defined by A357230. | [
"1",
"1",
"1",
"109",
"8689",
"1053481",
"243813361",
"75186825109",
"31749087943969",
"17410718947341841",
"12133565064814788001",
"10416041727982093437949",
"10802433235439921115170449",
"13331645872563084893190746041",
"19290709211545941944044481913361",
"32353568912665546881189872548732069"
] | [
"nonn"
] | 11 | 0 | 4 | [
"A357230",
"A357231",
"A357551"
] | null | Paul D. Hanna, Oct 04 2022 | 2022-12-03T12:03:21 | oeisdata/seq/A357/A357231.seq | bd201be4ac997316c8409555a7bf3a5a |
A357232 | a(n) = coefficient of x^n, n >= 0, in A(x) such that: 2 = Sum_{n=-oo..+oo} (-1)^n * x^n * (2*A(x) + x^n)^(2*n+1). | [
"1",
"3",
"25",
"254",
"2763",
"32180",
"393169",
"4964017",
"64254694",
"848214039",
"11375359344",
"154547261539",
"2122630191360",
"29423373611509",
"411105855956011",
"5783709944279141",
"81862107418919278",
"1164873718427628846",
"16654829725736560441",
"239140138388082634266",
"3446933945466334214525"
] | [
"nonn"
] | 12 | 0 | 2 | [
"A355865",
"A355868",
"A357232",
"A357402"
] | null | Paul D. Hanna, Oct 14 2022 | 2022-12-03T12:04:53 | oeisdata/seq/A357/A357232.seq | b5fc8f753b2fa9d83b5b5baeee77901d |
A357233 | a(n) = coefficient of x^n in power series A(x) such that: 0 = Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * A(x)^(n*(n+1)/2). | [
"1",
"1",
"3",
"11",
"46",
"207",
"980",
"4810",
"24258",
"124951",
"654587",
"3476985",
"18682885",
"101372340",
"554655435",
"3056823864",
"16953795008",
"94555853982",
"529986289496",
"2983788539017",
"16865736120654",
"95677703975144",
"544554485912572",
"3108656601838926",
"17794927199793895"
] | [
"nonn"
] | 18 | 0 | 3 | [
"A107590",
"A193111",
"A195980",
"A357233"
] | null | Paul D. Hanna, Oct 17 2022 | 2023-07-14T09:03:21 | oeisdata/seq/A357/A357233.seq | 930713d31c4a69a48672f4cc61b892cf |
A357234 | a(n) is the maximum length of a snake-like polyomino in an n X n square that starts and ends at opposite corners. | [
"1",
"3",
"5",
"7",
"17",
"23",
"31",
"39",
"51",
"63",
"75",
"89",
"105",
"121",
"139",
"159"
] | [
"nonn",
"hard",
"more"
] | 48 | 1 | 2 | [
"A331968",
"A357234",
"A357516"
] | null | Yi Yang, Sep 18 2022 | 2023-02-28T13:07:15 | oeisdata/seq/A357/A357234.seq | 6a7b0e1a7e31e5213a57886587031c72 |
A357235 | Table read by antidiagonals: T(n,k) (n >= 3, k >= 0) is the number of vertices in an n-gon when k internal n-gons are drawn between the n*k points that divide each side into k+1 equal parts. | [
"3",
"6",
"4",
"15",
"8",
"5",
"30",
"20",
"10",
"6",
"51",
"40",
"25",
"12",
"7",
"66",
"68",
"50",
"30",
"14",
"8",
"111",
"88",
"85",
"60",
"35",
"16",
"9",
"150",
"148",
"130",
"102",
"70",
"40",
"18",
"10",
"171",
"168",
"185",
"156",
"119",
"80",
"45",
"20",
"11",
"246",
"260",
"250",
"222",
"182",
"136",
"90",
"50",
"22",
"12",
"303",
"296",
"325",
"300",
"259",
"208",
"153",
"100",
"55",
"24",
"13"
] | [
"nonn",
"tabl"
] | 23 | 3 | 1 | [
"A007569",
"A146212",
"A357007",
"A357060",
"A357197",
"A357216",
"A357235",
"A357254"
] | null | Scott R. Shannon, Sep 19 2022 | 2022-09-21T12:00:32 | oeisdata/seq/A357/A357235.seq | 65be05ca20e58723474b9391a63cbf7c |
A357236 | Number of compositions (ordered partitions) of n into distinct semiprimes. | [
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"3",
"0",
"0",
"2",
"3",
"3",
"2",
"0",
"2",
"10",
"8",
"3",
"1",
"8",
"10",
"17",
"3",
"8",
"14",
"40",
"16",
"18",
"10",
"37",
"63",
"55",
"24",
"40",
"45",
"79",
"84",
"82",
"70",
"170",
"228",
"166",
"135",
"86",
"232",
"295",
"334",
"309",
"292",
"228",
"604",
"719",
"600",
"383",
"1265",
"904",
"1020",
"840",
"867",
"1008",
"1864",
"2569",
"2154",
"1676",
"2414",
"3541",
"3958"
] | [
"nonn"
] | 4 | 0 | 11 | [
"A001358",
"A101048",
"A112020",
"A280238",
"A357236"
] | null | Ilya Gutkovskiy, Sep 19 2022 | 2022-09-23T03:18:56 | oeisdata/seq/A357/A357236.seq | 3fb1444f73c0156f37378371ceb2d6d0 |
A357237 | Number of compositions (ordered partitions) of n into distinct parts of the form 2^j - 1. | [
"1",
"1",
"0",
"1",
"2",
"0",
"0",
"1",
"2",
"0",
"2",
"6",
"0",
"0",
"0",
"1",
"2",
"0",
"2",
"6",
"0",
"0",
"2",
"6",
"0",
"6",
"24",
"0",
"0",
"0",
"0",
"1",
"2",
"0",
"2",
"6",
"0",
"0",
"2",
"6",
"0",
"6",
"24",
"0",
"0",
"0",
"2",
"6",
"0",
"6",
"24",
"0",
"0",
"6",
"24",
"0",
"24",
"120",
"0",
"0",
"0",
"0",
"0",
"1",
"2",
"0",
"2",
"6",
"0",
"0",
"2",
"6",
"0",
"6",
"24",
"0",
"0",
"0",
"2",
"6",
"0",
"6",
"24",
"0",
"0",
"6",
"24"
] | [
"nonn"
] | 11 | 0 | 5 | [
"A000929",
"A079559",
"A093659",
"A104977",
"A357237"
] | null | Ilya Gutkovskiy, Sep 19 2022 | 2022-09-25T11:03:13 | oeisdata/seq/A357/A357237.seq | 779f31c2f89e0585ca84106adafcc929 |
A357238 | Inverse Moebius transform of tribonacci numbers (A000073). | [
"0",
"1",
"1",
"3",
"4",
"9",
"13",
"27",
"45",
"86",
"149",
"285",
"504",
"941",
"1710",
"3163",
"5768",
"10662",
"19513",
"35978",
"66026",
"121565",
"223317",
"411053",
"755480",
"1390042",
"2555802",
"4701713",
"8646064",
"15904390",
"29249425",
"53801243",
"98950246",
"182003370",
"334745794",
"615704412",
"1132436852",
"2082895617",
"3831006934"
] | [
"nonn"
] | 7 | 1 | 4 | [
"A000073",
"A007435",
"A357238",
"A357239"
] | null | Ilya Gutkovskiy, Sep 19 2022 | 2022-09-23T03:20:41 | oeisdata/seq/A357/A357238.seq | 2c44a8263bcb48eee80eb4c56e54bb3c |
A357239 | Inverse Moebius transform of tetranacci number (A000078). | [
"0",
"0",
"1",
"1",
"2",
"5",
"8",
"16",
"30",
"58",
"108",
"214",
"401",
"781",
"1493",
"2888",
"5536",
"10705",
"20569",
"39707",
"76433",
"147420",
"283953",
"547566",
"1055028",
"2034029",
"3919974",
"7556717",
"14564533",
"28075593",
"54114452",
"104311848",
"201062094",
"387564973",
"747044844",
"1439986130",
"2775641472",
"5350241528",
"10312882883"
] | [
"nonn"
] | 4 | 1 | 5 | [
"A000078",
"A007435",
"A357238",
"A357239"
] | null | Ilya Gutkovskiy, Sep 19 2022 | 2022-09-23T03:20:48 | oeisdata/seq/A357/A357239.seq | 2adaef0cee2523f66de120ffc9f55c2a |
A357240 | Expansion of e.g.f. 2 * (exp(x) - 1) / (exp(exp(x) - 1) + 1). | [
"0",
"1",
"0",
"-2",
"-5",
"-4",
"32",
"225",
"794",
"190",
"-22291",
"-200298",
"-920244",
"924223",
"65848880",
"716920754",
"3831260555",
"-13147083976",
"-575844827780",
"-7162425813919",
"-40755845041730",
"320194436283162",
"11810647258173653",
"161108090793013130",
"896865861205240824",
"-14305712791762925929",
"-487306962045115504436"
] | [
"sign"
] | 16 | 0 | 4 | [
"A001469",
"A003149",
"A036968",
"A059371",
"A357240"
] | null | Ilya Gutkovskiy, Sep 19 2022 | 2023-06-23T18:22:34 | oeisdata/seq/A357/A357240.seq | 6abbe8dfeac8ff88595116114f5b05ae |
A357241 | a(n) is the number of j in the range 1 <= j <= n such that j / rad(j) = n / rad(n). | [
"1",
"2",
"3",
"1",
"4",
"5",
"6",
"1",
"1",
"7",
"8",
"2",
"9",
"10",
"11",
"1",
"12",
"2",
"13",
"3",
"14",
"15",
"16",
"2",
"1",
"17",
"1",
"4",
"18",
"19",
"20",
"1",
"21",
"22",
"23",
"1",
"24",
"25",
"26",
"3",
"27",
"28",
"29",
"5",
"3",
"30",
"31",
"2",
"1",
"2",
"32",
"6",
"33",
"2",
"34",
"4",
"35",
"36",
"37",
"7",
"38",
"39",
"4",
"1",
"40",
"41",
"42",
"8",
"43",
"44",
"45",
"1",
"46",
"47",
"3",
"9",
"48",
"49",
"50",
"3"
] | [
"nonn"
] | 10 | 1 | 2 | [
"A001694",
"A003557",
"A008479",
"A357241"
] | null | Ilya Gutkovskiy, Sep 19 2022 | 2022-11-01T13:41:03 | oeisdata/seq/A357/A357241.seq | cc0aa78ecb6248d320582bfbba2404ad |
A357242 | Number of n node tournaments that have exactly two circular triads. | [
"24",
"240",
"2240",
"21840",
"228480",
"2580480",
"31449600",
"412473600",
"5801241600",
"87178291200",
"1394852659200",
"23683435776000",
"425430061056000",
"8062248370176000",
"160770717499392000",
"3365514444644352000",
"73798027581358080000",
"1691677863018823680000",
"40464026199993876480000"
] | [
"nonn",
"easy"
] | 21 | 4 | 1 | null | null | Ian R Harris, Sep 19 2022 | 2025-01-06T06:31:22 | oeisdata/seq/A357/A357242.seq | a124d161920af79eddc14c3176ee2b9c |
A357243 | E.g.f. satisfies A(x)^A(x) = 1/(1 - x)^(1 - x). | [
"1",
"1",
"-2",
"6",
"-52",
"540",
"-7608",
"129304",
"-2612608",
"60867360",
"-1608663840",
"47527158624",
"-1552431588288",
"55547889458880",
"-2160724031160576",
"90782738645280000",
"-4097139872604807168",
"197675862365363088384",
"-10153243488783257091072"
] | [
"sign"
] | 18 | 0 | 3 | [
"A005727",
"A155456",
"A349561",
"A356905",
"A356908",
"A357243"
] | null | Seiichi Manyama, Sep 19 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357243.seq | f3c670da0b3967aa5a21fe514dbeaa05 |
A357244 | E.g.f. satisfies A(x) * log(A(x)) = 2 * (exp(x) - 1). | [
"1",
"2",
"-2",
"22",
"-266",
"4614",
"-102442",
"2777030",
"-88914730",
"3283693254",
"-137408080298",
"6425417730758",
"-332055079469610",
"18792899306652358",
"-1156017201432075946",
"76796076655220486854",
"-5479395288838822143786",
"417905042599836811225798",
"-33928512587303405767179178"
] | [
"sign"
] | 20 | 0 | 2 | [
"A349583",
"A356908",
"A357244",
"A357245"
] | null | Seiichi Manyama, Sep 19 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357244.seq | 68ccd2b52bb372daa9a50cc522d93be0 |
A357245 | E.g.f. satisfies A(x) * log(A(x)) = 3 * (exp(x) - 1). | [
"1",
"3",
"-6",
"84",
"-1599",
"42906",
"-1477716",
"62171661",
"-3090518556",
"177237143040",
"-11518529575857",
"836601742598628",
"-67156626492464064",
"5904119985344031639",
"-564188922815428792914",
"58225175660113940932032",
"-6453955474121138652732903",
"764716767229825444834522086"
] | [
"sign"
] | 18 | 0 | 2 | [
"A349583",
"A357244",
"A357245"
] | null | Seiichi Manyama, Sep 19 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357245.seq | c3d3def0209e3f74708fde80b3f4c18b |
A357246 | E.g.f. satisfies A(x) * log(A(x)) = (1-x) * (exp(x) - 1). | [
"1",
"1",
"-2",
"5",
"-49",
"497",
"-6926",
"116510",
"-2325422",
"53538315",
"-1397740279",
"40792008435",
"-1316056239994",
"46509292766172",
"-1786748828967402",
"74139054468535061",
"-3304409577659864305",
"157444695280699565069",
"-7986085592316390890618",
"429645521271113815480246"
] | [
"sign"
] | 19 | 0 | 3 | [
"A356902",
"A357243",
"A357246",
"A357247"
] | null | Seiichi Manyama, Sep 19 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357246.seq | 71fce10a9696661a5305c166204f76a7 |
A357247 | E.g.f. satisfies A(x) * log(A(x)) = x * exp(-x). | [
"1",
"1",
"-3",
"13",
"-103",
"1241",
"-19691",
"384805",
"-8918351",
"238966705",
"-7265920339",
"247123552061",
"-9295263915191",
"383095792217737",
"-17167554097899323",
"831082449069928021",
"-43221681697593767071",
"2403219105771778162529",
"-142263939562414917333155"
] | [
"sign"
] | 28 | 0 | 3 | [
"A177885",
"A216857",
"A357243",
"A357246",
"A357247",
"A359759"
] | null | Seiichi Manyama, Sep 19 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357247.seq | f1840f65a54d843f0cf98d2967b99129 |
A357248 | Number of n-node tournaments that have exactly four circular triads. | [
"280",
"6240",
"75600",
"954240",
"12579840",
"175392000",
"2594592000",
"40721049600",
"677053977600",
"11901451161600",
"220690229760000",
"4307253350400000",
"88289523818496000",
"1896762491559936000",
"42625344258072576000",
"1000193047805952000000",
"24463730767033958400000",
"622724156293184225280000"
] | [
"nonn"
] | 52 | 5 | 1 | [
"A357242",
"A357248",
"A357257",
"A357266"
] | null | Ian R Harris, Ryan P. A. McShane, Sep 22 2022 | 2025-01-06T06:31:19 | oeisdata/seq/A357/A357248.seq | 352a71d8bc235faf89fe0595485389c9 |
A357249 | a(n) = A139315(n)*n. | [
"2",
"6",
"24",
"60",
"360",
"840",
"10080",
"7560",
"0",
"27720",
"332640",
"720720",
"0",
"10810800",
"17297280",
"36756720",
"1102701600",
"698377680",
"27935107200",
"48886437600",
"0",
"16062686640",
"385504479360",
"1204701498000",
"0",
"20238985166400",
"4497552259200",
"6987268688400",
"0",
"216605329340400"
] | [
"nonn"
] | 15 | 2 | 1 | [
"A129902",
"A139315",
"A357249"
] | null | J. Lowell, Sep 19 2022 | 2022-09-20T07:42:44 | oeisdata/seq/A357/A357249.seq | 23dc9740917eb6976106fe8231af85bb |
A357250 | Number of quaternary steady words of length n (with respect to the permutations of symbols). | [
"1",
"2",
"3",
"5",
"5",
"7",
"9",
"12",
"16",
"21",
"28",
"37",
"45",
"58",
"73",
"93",
"101",
"124",
"150",
"179",
"216",
"257",
"309",
"376",
"453",
"551",
"662",
"798",
"957",
"1149",
"1371",
"1647",
"1977",
"2382",
"2871",
"3450",
"4160",
"4995",
"5991",
"7190",
"8631",
"10370",
"12462",
"14991",
"17983",
"21608",
"25947",
"31157",
"37406",
"44921",
"53921"
] | [
"nonn"
] | 17 | 3 | 2 | null | null | Michel Marcus, Sep 20 2022 | 2024-01-08T16:47:32 | oeisdata/seq/A357/A357250.seq | aaa2f4a22803e19a72fb771b752cd5bd |
A357251 | a(n) = Sum_{1<=i<=j<=n} prime(i)*prime(j). | [
"4",
"19",
"69",
"188",
"496",
"1029",
"2015",
"3478",
"5778",
"9519",
"14479",
"21768",
"31526",
"43609",
"59025",
"79218",
"105178",
"135739",
"173795",
"219164",
"271140",
"333629",
"406171",
"491878",
"594698",
"711959",
"842151",
"988848",
"1150168",
"1330177",
"1548617",
"1791098",
"2063454",
"2359107",
"2698231",
"3064708",
"3470396",
"3918157",
"4404795",
"4938846"
] | [
"nonn"
] | 21 | 1 | 1 | [
"A007504",
"A024447",
"A024450",
"A065762",
"A143215",
"A343751",
"A357251",
"A357252"
] | null | J. M. Bergot and Robert Israel, Sep 20 2022 | 2023-09-29T20:53:11 | oeisdata/seq/A357/A357251.seq | 369c10151ea0e784665a85411bbcadb0 |
A357252 | Primes in A357251. | [
"19",
"14479",
"43609",
"406171",
"711959",
"1330177",
"2698231",
"3918157",
"18987169",
"26135339",
"194727347",
"269998639",
"975929347",
"5005853669",
"8430389621",
"24830247671",
"36372313009",
"69703708967",
"93194681917",
"126628534313",
"139478926201",
"304123612349",
"359101509211",
"384305009171",
"387550106843",
"400722388999"
] | [
"nonn"
] | 8 | 1 | 1 | [
"A357251",
"A357252"
] | null | J. M. Bergot and Robert Israel, Sep 20 2022 | 2022-10-02T19:54:13 | oeisdata/seq/A357/A357252.seq | 27719956494f871759948bac7ff2a359 |
A357253 | a(n) is the largest prime < 6*n. | [
"5",
"11",
"17",
"23",
"29",
"31",
"41",
"47",
"53",
"59",
"61",
"71",
"73",
"83",
"89",
"89",
"101",
"107",
"113",
"113",
"113",
"131",
"137",
"139",
"149",
"151",
"157",
"167",
"173",
"179",
"181",
"191",
"197",
"199",
"199",
"211",
"211",
"227",
"233",
"239",
"241",
"251",
"257",
"263",
"269",
"271",
"281",
"283",
"293",
"293",
"293",
"311",
"317",
"317",
"317",
"331",
"337",
"347",
"353"
] | [
"nonn",
"easy"
] | 34 | 1 | 1 | [
"A002476",
"A007528",
"A007917",
"A008588",
"A060308",
"A118749",
"A151799",
"A357253"
] | null | Michel Marcus, Sep 20 2022 | 2024-01-28T03:44:22 | oeisdata/seq/A357/A357253.seq | 3e3c480550338dedfe79b421196f5681 |
A357254 | Table read by antidiagonals: T(n,k) (n >= 3, k >= 0) is the number of edges in an n-gon when k internal n-gons are drawn between the n*k points that divide each side into k+1 equal parts. | [
"3",
"9",
"4",
"27",
"12",
"5",
"57",
"36",
"15",
"6",
"99",
"76",
"45",
"18",
"7",
"135",
"132",
"95",
"54",
"21",
"8",
"219",
"180",
"165",
"114",
"63",
"24",
"9",
"297",
"292",
"255",
"198",
"133",
"72",
"27",
"10",
"351",
"348",
"365",
"306",
"231",
"152",
"81",
"30",
"11",
"489",
"516",
"495",
"438",
"357",
"264",
"171",
"90",
"33",
"12",
"603",
"604",
"645",
"594",
"511",
"408",
"297",
"190",
"99",
"36",
"13"
] | [
"nonn",
"tabl"
] | 22 | 3 | 1 | [
"A135565",
"A344899",
"A356984",
"A357008",
"A357058",
"A357061",
"A357196",
"A357198",
"A357216",
"A357235",
"A357254"
] | null | Scott R. Shannon, Sep 20 2022 | 2022-09-21T12:00:37 | oeisdata/seq/A357/A357254.seq | 932b1971e6851eaca8c9b98e68d7ac16 |
A357255 | Triangular array: row n gives the recurrence coefficients for the sequence (c(k) = number of subsets of {1,2,...,n} that have at least k-1 elements) for k >= 1. | [
"2",
"3",
"-2",
"4",
"-5",
"2",
"5",
"-9",
"7",
"-2",
"6",
"-14",
"16",
"-9",
"2",
"7",
"-20",
"30",
"-25",
"11",
"-2",
"8",
"-27",
"50",
"-55",
"36",
"-13",
"2",
"9",
"-35",
"77",
"-105",
"91",
"-49",
"15",
"-2",
"10",
"-44",
"112",
"-182",
"196",
"-140",
"64",
"-17",
"2",
"11",
"-54",
"156",
"-294",
"378",
"-336",
"204",
"-81",
"19",
"-2"
] | [
"tabl",
"sign"
] | 20 | 1 | 1 | [
"A000079",
"A000225",
"A000295",
"A002662",
"A002663",
"A002664",
"A029635",
"A029638",
"A035038",
"A035039",
"A357255"
] | null | Clark Kimberling, Sep 24 2022 | 2025-03-23T20:53:14 | oeisdata/seq/A357/A357255.seq | 327b6095cf0bfc6f0b1355e4b900f61c |
A357256 | "Forest Fire" sequence with the additional condition that no progression of the form ABA is allowed for any terms A and B | [
"1",
"1",
"2",
"2",
"4",
"4",
"5",
"3",
"3",
"5",
"6",
"6",
"7",
"10",
"10",
"7",
"9",
"12",
"11",
"9",
"12",
"8",
"8",
"14",
"14",
"11",
"15",
"13",
"13",
"17",
"23",
"20",
"16",
"15",
"17",
"23",
"24",
"16",
"18",
"18",
"19",
"26",
"21",
"28",
"25",
"19",
"22",
"22",
"29",
"24",
"20",
"30",
"27",
"21",
"32",
"29",
"30",
"35",
"26",
"34",
"36",
"25",
"31",
"32",
"34",
"37",
"39",
"36",
"28",
"27"
] | [
"nonn"
] | 29 | 1 | 3 | [
"A229037",
"A357256"
] | null | Neal Gersh Tolunsky, Dec 11 2022 | 2022-12-13T02:04:14 | oeisdata/seq/A357/A357256.seq | 21630e6c2da4a77d47e0ad46a18c4f8e |
A357257 | Number of n-node tournaments that have exactly three circular triads. | [
"240",
"2880",
"33600",
"403200",
"5093760",
"68275200",
"972787200",
"14724864000",
"236396160000",
"4016659046400",
"72067387392000",
"1362306097152000",
"27071765360640000",
"564357385912320000",
"12317692759916544000",
"280955128203509760000"
] | [
"nonn"
] | 27 | 5 | 1 | [
"A357242",
"A357248",
"A357257",
"A357266"
] | null | Ian R Harris, Ryan P. A. McShane, Sep 20 2022 | 2025-01-06T06:31:16 | oeisdata/seq/A357/A357257.seq | 5beaf32ba43c2bfe0909c8747ca589ab |
A357258 | a(n) is the smallest prime p such that the minimum number of divisors among the numbers between p and NextPrime(p) is n, or -1 if no such prime exists. | [
"3",
"5",
"12117359",
"11",
"7212549413159",
"29",
"42433",
"7207",
"51110866676606486280448872612994247",
"59",
"494606165132621236223919803061511452090140639",
"191",
"149767",
"269",
"14634848452286682176094429263857838452673635407760468708604736302749897919",
"179"
] | [
"nonn"
] | 10 | 3 | 1 | [
"A061112",
"A356833",
"A357170",
"A357175",
"A357258"
] | null | Jon E. Schoenfield, Sep 20 2022 | 2022-09-24T15:40:42 | oeisdata/seq/A357/A357258.seq | 4552149b90a039b67c0d84ca36ea5591 |
A357259 | a(n) is the number of 2 X 2 Euclid-reduced matrices having determinant n. | [
"1",
"2",
"3",
"5",
"5",
"8",
"7",
"11",
"10",
"14",
"11",
"19",
"13",
"20",
"18",
"24",
"17",
"30",
"19",
"31",
"26",
"32",
"23",
"44",
"26",
"38",
"34",
"45",
"29",
"54",
"31",
"52",
"42",
"50",
"38",
"70",
"37",
"56",
"50",
"70",
"41",
"76",
"43",
"73",
"63",
"68",
"47",
"97",
"50",
"80",
"66",
"87",
"53",
"100",
"62",
"96",
"74",
"86",
"59",
"132",
"61",
"92",
"85",
"109",
"74",
"124",
"67",
"115",
"90",
"118"
] | [
"nonn"
] | 30 | 1 | 2 | [
"A038548",
"A079667",
"A357259",
"A357260"
] | null | Michel Marcus, Sep 21 2022 | 2024-05-18T09:53:22 | oeisdata/seq/A357/A357259.seq | 6d11f9919f2255e42ee591bc49735f45 |
A357260 | a(n) is the number of 2 X 2 Euclid-reduced matrices having coprime elements and determinant n. | [
"1",
"2",
"3",
"4",
"5",
"8",
"7",
"9",
"9",
"14",
"11",
"16",
"13",
"20",
"18",
"19",
"17",
"28",
"19",
"26",
"26",
"32",
"23",
"36",
"25",
"38",
"31",
"38",
"29",
"54",
"31",
"41",
"42",
"50",
"38",
"56",
"37",
"56",
"50",
"56",
"41",
"76",
"43",
"62",
"58",
"68",
"47",
"78",
"49",
"78",
"66",
"74",
"53",
"92",
"62",
"76",
"74",
"86",
"59",
"114",
"61",
"92",
"78",
"85",
"74",
"124",
"67",
"98",
"90",
"118"
] | [
"nonn"
] | 14 | 1 | 2 | [
"A357259",
"A357260"
] | null | Michel Marcus, Sep 21 2022 | 2022-09-21T12:02:09 | oeisdata/seq/A357/A357260.seq | bd3f36d5b7ef1f398f6b8c1345f18c06 |
A357261 | a(n) is the number of blocks in the bottom row after adding n blocks to the preceding structure of rows. See Comments and Example sections for more details. | [
"1",
"3",
"3",
"3",
"4",
"1",
"3",
"1",
"5",
"4",
"3",
"3",
"4",
"6",
"1",
"3",
"6",
"3",
"1",
"7",
"5",
"3",
"2",
"2",
"3",
"5",
"8",
"1",
"3",
"6",
"1",
"6",
"3",
"1",
"9",
"6",
"3",
"1",
"10",
"7",
"4",
"2",
"1",
"1",
"2",
"4",
"7",
"11",
"1",
"3",
"6",
"10",
"3",
"9",
"4",
"12",
"5",
"11",
"5",
"13",
"5",
"11",
"4",
"12",
"7",
"3",
"14",
"8",
"2",
"12",
"8",
"5",
"3",
"2",
"2",
"3",
"5"
] | [
"nonn",
"look",
"easy"
] | 75 | 1 | 2 | [
"A002024",
"A057176",
"A064434",
"A096535",
"A104647",
"A275204",
"A357261"
] | null | John Tyler Rascoe, Oct 08 2022 | 2023-07-22T21:03:10 | oeisdata/seq/A357/A357261.seq | 4ec815b22c72a3456aaeea8ff83fcfce |
A357262 | Numbers k such that the product of distinct digits of k equals the sum of the prime divisors of k. | [
"2",
"3",
"5",
"7",
"126",
"154",
"315",
"329",
"342",
"418",
"833",
"884",
"1134",
"1344",
"1595",
"1776",
"1826",
"1955",
"2354",
"4248",
"4332",
"5828",
"7588",
"7791",
"9983",
"14161",
"15194",
"16416",
"21479",
"22165",
"23472",
"25994",
"26128",
"27383",
"33282",
"42479",
"42772",
"43416",
"43492",
"44733",
"45428",
"51988",
"55223",
"61755",
"72171",
"72471"
] | [
"nonn",
"base"
] | 30 | 1 | 1 | [
"A008472",
"A357262"
] | null | Alexandru Petrescu, Sep 21 2022 | 2023-09-23T12:11:30 | oeisdata/seq/A357/A357262.seq | 5344adef26c872367122e6a83e01fdd6 |
A357263 | Numbers k such that the sum of the distinct digits of k is equal to the product of the prime divisors of k. | [
"1",
"2",
"3",
"5",
"6",
"7",
"24",
"343",
"375",
"392",
"640",
"686",
"2401",
"3375",
"4802",
"4913",
"6400",
"13122",
"14336",
"14641",
"30375",
"33614",
"64000",
"468750",
"640000",
"1703936",
"2725888",
"2839714",
"2883584",
"4687500",
"5537792",
"6298560",
"6400000",
"7864320",
"13668750",
"14172488",
"19267584",
"21807104",
"26040609",
"28629151"
] | [
"nonn",
"base"
] | 21 | 1 | 2 | [
"A008472",
"A217928",
"A357263"
] | null | Alexandru Petrescu, Sep 21 2022 | 2022-11-19T21:20:06 | oeisdata/seq/A357/A357263.seq | d02ffd53c187e860a4825ebc43f3c3f8 |
A357264 | Circumference of the n X n giraffe graph. | [
"16",
"28",
"46",
"62",
"80",
"100",
"118",
"144"
] | [
"nonn",
"more"
] | 15 | 5 | 1 | null | null | Eric W. Weisstein, Sep 21 2022 | 2024-12-04T16:22:34 | oeisdata/seq/A357/A357264.seq | 1f183065f6799a5aeb1ab4509df983c3 |
A357265 | Expansion of e.g.f. -LambertW(x * log(1-x)). | [
"0",
"0",
"2",
"3",
"32",
"150",
"1884",
"16380",
"249808",
"3255336",
"59596560",
"1037413080",
"22432698144",
"486784686960",
"12233449250736",
"316660035739320",
"9111729094222080",
"273147758526888000",
"8880267446524694016",
"301952732236006556160",
"10963551960785051470080"
] | [
"nonn"
] | 10 | 0 | 3 | [
"A052807",
"A355842",
"A357265",
"A357267"
] | null | Seiichi Manyama, Sep 21 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357265.seq | d0ff4e8d5c1cbe103da30423d236256d |
A357266 | Number of n-node tournaments that have exactly five circular triads. | [
"24",
"3648",
"90384",
"1304576",
"19958400",
"311592960",
"5054353920",
"85709352960",
"1523221539840",
"28387834675200",
"554575551129600",
"11345938174771200",
"242796629621145600",
"5427273747293798400",
"126546947417899008000"
] | [
"nonn",
"easy"
] | 44 | 5 | 1 | [
"A357242",
"A357248",
"A357257",
"A357266"
] | null | Ian R Harris, Ryan P. A. McShane, Sep 22 2022 | 2025-01-06T06:31:12 | oeisdata/seq/A357/A357266.seq | fe9b043e6433bdeda14528ac51acfc1c |
A357267 | Expansion of e.g.f. -LambertW(x * (1 - exp(x))). | [
"0",
"0",
"2",
"3",
"28",
"125",
"1506",
"12607",
"186600",
"2352681",
"41839750",
"705821171",
"14818593516",
"311784460429",
"7603945309338",
"190868446707135",
"5328147004384336",
"154893585657590609",
"4884408906341245326",
"161057122218190660555",
"5671407469802947722900"
] | [
"nonn"
] | 11 | 0 | 3 | [
"A048802",
"A355843",
"A357265",
"A357267"
] | null | Seiichi Manyama, Sep 21 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357267.seq | 77c29ef65c8002a284153e9e892e64ae |
A357268 | If n is a power of 2, a(n) = n. Otherwise, if 2^j is the greatest power of 2 not exceeding n, and if k = n - 2^j, then a(n) is the smallest m*a(k) which has not occurred already, where m is an odd number. | [
"1",
"2",
"3",
"4",
"5",
"6",
"9",
"8",
"7",
"10",
"15",
"12",
"25",
"18",
"27",
"16",
"11",
"14",
"21",
"20",
"35",
"30",
"45",
"24",
"49",
"50",
"75",
"36",
"125",
"54",
"81",
"32",
"13",
"22",
"33",
"28",
"55",
"42",
"63",
"40",
"77",
"70",
"105",
"60",
"175",
"90",
"135",
"48",
"99",
"98",
"147",
"100",
"245",
"150",
"225",
"72",
"343",
"250",
"375",
"108",
"625",
"162",
"243",
"64",
"17"
] | [
"nonn"
] | 38 | 1 | 2 | [
"A005940",
"A053644",
"A053645",
"A356867",
"A356886",
"A357268"
] | null | David James Sycamore, Sep 21 2022 | 2022-10-02T10:33:30 | oeisdata/seq/A357/A357268.seq | 9fec7caf82e1658bfe5b6cd99f1f4107 |
A357269 | Maximum number of stable matchings in the stable marriage problem of order n. | [
"1",
"2",
"3",
"10",
"16"
] | [
"nonn",
"more"
] | 25 | 1 | 2 | [
"A069156",
"A351409",
"A351430",
"A357269",
"A357271"
] | null | Dan Eilers, Sep 21 2022 | 2022-11-06T08:35:08 | oeisdata/seq/A357/A357269.seq | 5f54690024f440113b6b7a75325ef0aa |
A357270 | a(n) = s(n) mod prime(n+1), where s = A143293. | [
"1",
"0",
"4",
"4",
"7",
"11",
"0",
"3",
"15",
"6",
"11",
"9",
"4",
"41",
"4",
"26",
"28",
"56",
"4",
"54",
"23",
"37",
"78",
"48",
"11",
"17",
"32",
"68",
"85",
"34",
"78",
"12",
"120",
"28",
"68",
"24",
"76",
"116",
"17",
"55",
"40",
"3",
"91",
"111",
"132",
"133",
"195",
"75",
"179",
"44",
"211",
"108",
"3",
"63",
"21",
"28",
"85",
"22",
"208",
"237",
"9",
"166",
"81",
"183",
"205",
"208"
] | [
"nonn",
"easy"
] | 37 | 0 | 3 | [
"A000040",
"A143293",
"A357270"
] | null | Christopher A. Curry, Sep 21 2022 | 2022-10-16T01:16:27 | oeisdata/seq/A357/A357270.seq | 3f7c5b1e0896ffc6f5b3f488ed465e2a |
A357271 | Lower bounds for the maximum number of stable matchings in the stable marriage problem based on composing smaller instances. | [
"1",
"2",
"3",
"10",
"16",
"48",
"71",
"268",
"330",
"1000",
"1231",
"6472",
"6720",
"20176",
"25011",
"195472",
"200832",
"456300",
"637336",
"3419680",
"3506880",
"11221136",
"15481956",
"126112960",
"127885440",
"262860800",
"384418176",
"2000043808"
] | [
"nonn"
] | 10 | 1 | 2 | [
"A069156",
"A357269",
"A357271"
] | null | Dan Eilers, Sep 21 2022 | 2022-11-06T08:35:54 | oeisdata/seq/A357/A357271.seq | 59f0ec8120dc689b99a151d3074ab3dc |
A357272 | a(n) is the number of ways n can be calculated with expressions of the form "d1 o1 d2 o2 d3 o3 d4" where d1-d4 are decimal digits (0-9) and o1-o3 are chosen from the four basic arithmetic operators (+, -, *, /). | [
"29235",
"12654",
"12450",
"12425",
"12427",
"11915",
"12419",
"11792",
"12062",
"11725",
"8748",
"7686",
"8180",
"6632",
"6549",
"6077",
"5758",
"4532",
"4915",
"3503",
"3649",
"3451",
"2684",
"2468",
"3253",
"2288",
"1957",
"2347",
"2197",
"1627",
"2028",
"1444",
"1899",
"1439",
"1281",
"1531",
"2080",
"1195",
"1126",
"1147",
"1513"
] | [
"nonn",
"base"
] | 39 | 0 | 1 | null | null | Rod McFarland, Sep 22 2022 | 2022-11-10T12:36:09 | oeisdata/seq/A357/A357272.seq | 477d841602f9ef651d16835494713978 |
A357273 | Integers m whose decimal expansion is a prefix of the concatenation of the divisors of m. | [
"1",
"11",
"12",
"124",
"135",
"1111",
"1525",
"13515",
"124816",
"1223462",
"12356910",
"13919571",
"1210320658",
"1243162124",
"1525125625",
"12346121028",
"12478141928",
"12510153130",
"12510254150",
"1234689111216",
"1351553159265",
"1597717414885",
"1713913539247",
"12356910151830",
"13791121336377"
] | [
"nonn",
"base"
] | 39 | 1 | 2 | [
"A004022",
"A037278",
"A131835",
"A175252",
"A357273"
] | null | Michel Marcus, Sep 22 2022 | 2022-10-20T05:05:01 | oeisdata/seq/A357/A357273.seq | 1d59f5f0a373499f1ffec61a517d3766 |
A357274 | List of primitive triples for integer-sided triangles with angles A < B < C and C = 2*Pi/3 = 120 degrees. | [
"3",
"5",
"7",
"7",
"8",
"13",
"5",
"16",
"19",
"11",
"24",
"31",
"7",
"33",
"37",
"13",
"35",
"43",
"16",
"39",
"49",
"9",
"56",
"61",
"32",
"45",
"67",
"17",
"63",
"73",
"40",
"51",
"79",
"11",
"85",
"91",
"19",
"80",
"91",
"55",
"57",
"97",
"40",
"77",
"103",
"24",
"95",
"109",
"13",
"120",
"127",
"23",
"120",
"133",
"65",
"88",
"133",
"69",
"91",
"139",
"56",
"115",
"151",
"25",
"143",
"157",
"75",
"112",
"163",
"15",
"161",
"169",
"104",
"105",
"181"
] | [
"nonn",
"tabf"
] | 31 | 1 | 1 | [
"A263728",
"A335893",
"A336750",
"A357274",
"A357275",
"A357276",
"A357277",
"A357278"
] | null | Bernard Schott, Sep 22 2022 | 2022-12-04T11:58:29 | oeisdata/seq/A357/A357274.seq | 6cb8c043948181b6aeb8b9ca3bcc8fa2 |
A357275 | Smallest side of integer-sided primitive triangles whose angles satisfy A < B < C = 2*Pi/3. | [
"3",
"7",
"5",
"11",
"7",
"13",
"16",
"9",
"32",
"17",
"40",
"11",
"19",
"55",
"40",
"24",
"13",
"23",
"65",
"69",
"56",
"25",
"75",
"15",
"104",
"32",
"56",
"29",
"17",
"87",
"85",
"119",
"31",
"72",
"93",
"64",
"144",
"19",
"95",
"133",
"40",
"136",
"35",
"105",
"21",
"105",
"37",
"111",
"185",
"88",
"152",
"176",
"23",
"80",
"115",
"161",
"41",
"123",
"240",
"48",
"205",
"240",
"43",
"25",
"129",
"175",
"215",
"88"
] | [
"nonn"
] | 23 | 1 | 1 | [
"A002324",
"A050931",
"A088514",
"A106505",
"A229849",
"A357274",
"A357275",
"A357276",
"A357277",
"A357278"
] | null | Bernard Schott, Sep 23 2022 | 2022-09-25T22:56:03 | oeisdata/seq/A357/A357275.seq | d4a21b1cf5c90a94407bc28cd9a45c39 |
A357276 | Middle side of integer-sided primitive triangles whose angles satisfy A < B < C = 2*Pi/3 = 120 degrees. | [
"5",
"8",
"16",
"24",
"33",
"35",
"39",
"56",
"45",
"63",
"51",
"85",
"80",
"57",
"77",
"95",
"120",
"120",
"88",
"91",
"115",
"143",
"112",
"161",
"105",
"175",
"165",
"195",
"208",
"160",
"168",
"145",
"224",
"203",
"187",
"221",
"155",
"261",
"217",
"192",
"279",
"209",
"288",
"247",
"320",
"272",
"323",
"280",
"231",
"315",
"273",
"259",
"385",
"357",
"333",
"304",
"399",
"352",
"253",
"407",
"299",
"287",
"440"
] | [
"nonn"
] | 11 | 1 | 1 | [
"A088586",
"A229849",
"A229859",
"A357274",
"A357275",
"A357276",
"A357277",
"A357278"
] | null | Bernard Schott, Sep 25 2022 | 2022-09-30T23:43:01 | oeisdata/seq/A357/A357276.seq | 9d72cf26cf659507daaccfbe145b994e |
A357277 | Largest side c of primitive triples, in nondecreasing order, for integer-sided triangles with angles A < B < C = 2*Pi/3 = 120 degrees. | [
"7",
"13",
"19",
"31",
"37",
"43",
"49",
"61",
"67",
"73",
"79",
"91",
"91",
"97",
"103",
"109",
"127",
"133",
"133",
"139",
"151",
"157",
"163",
"169",
"181",
"193",
"199",
"211",
"217",
"217",
"223",
"229",
"241",
"247",
"247",
"259",
"259",
"271",
"277",
"283",
"301",
"301",
"307",
"313",
"331",
"337",
"343",
"349",
"361",
"367",
"373",
"379",
"397",
"403",
"403",
"409",
"421",
"427",
"427",
"433",
"439",
"457"
] | [
"nonn"
] | 27 | 1 | 1 | [
"A004611",
"A050931",
"A088513",
"A121940",
"A133290",
"A335895",
"A357274",
"A357275",
"A357276",
"A357277",
"A357278"
] | null | Bernard Schott, Oct 01 2022 | 2023-01-29T19:45:54 | oeisdata/seq/A357/A357277.seq | 341f921227cd8b962aaf6a3dd2274799 |
A357278 | Perimeters of primitive integer-sided triangles with angles A < B < C = 2*Pi/3 = 120 degrees. | [
"15",
"28",
"40",
"66",
"77",
"91",
"104",
"126",
"144",
"153",
"170",
"187",
"190",
"209",
"220",
"228",
"260",
"276",
"286",
"299",
"322",
"325",
"350",
"345",
"390",
"400",
"420",
"435",
"442",
"464",
"476",
"493",
"496",
"522",
"527",
"544",
"558",
"551",
"589",
"608",
"620",
"646",
"630",
"665",
"672",
"714",
"703",
"740",
"777",
"770",
"798",
"814",
"805"
] | [
"nonn"
] | 17 | 1 | 1 | [
"A350045",
"A350047",
"A357274",
"A357275",
"A357276",
"A357277",
"A357278"
] | null | Bernard Schott, Oct 24 2022 | 2022-10-29T10:41:55 | oeisdata/seq/A357/A357278.seq | 279a7ad8bdafd91d992ca9c56fb2bbb8 |
A357279 | a(n) is the hafnian of the 2n X 2n symmetric matrix defined by M[i, j] = i + j - 1. | [
"1",
"2",
"43",
"2610",
"312081",
"61825050",
"18318396195",
"7586241152490",
"4184711271725985",
"2965919152834367730",
"2626408950849351178875"
] | [
"nonn",
"hard",
"more"
] | 59 | 0 | 2 | [
"A002024",
"A002415",
"A095833",
"A202038",
"A204248",
"A336114",
"A336286",
"A336400",
"A338456",
"A356481",
"A356482",
"A356483",
"A356484",
"A357279"
] | null | Stefano Spezia, Sep 25 2022 | 2023-10-14T15:38:12 | oeisdata/seq/A357/A357279.seq | 26bf5cabb0e235800d7acac2eef83ed3 |
A357280 | Smallest m such that m^k-2 and m^k+2 are prime for k=1..n. | [
"5",
"9",
"102795",
"559838181",
"27336417022509"
] | [
"nonn",
"more",
"hard"
] | 29 | 1 | 1 | [
"A189051",
"A245510",
"A245512",
"A329727",
"A357280"
] | null | Kellen Shenton, Sep 24 2022 | 2022-11-29T10:31:45 | oeisdata/seq/A357/A357280.seq | c82fd102b9544de70f35bd0dd4203668 |
A357281 | The numbers of a square spiral with 1 in the center, lying at integer points of the right branch of the parabola y=n^2. | [
"1",
"9",
"79",
"355",
"1077",
"2581",
"5299",
"9759",
"16585",
"26497",
"40311",
"58939",
"83389",
"114765",
"154267",
"203191",
"262929",
"334969",
"420895",
"522387",
"641221",
"779269",
"938499",
"1120975",
"1328857",
"1564401",
"1829959",
"2127979",
"2461005",
"2831677",
"3242731",
"3696999",
"4197409"
] | [
"nonn",
"easy"
] | 60 | 0 | 2 | [
"A000583",
"A033951",
"A054552",
"A056108",
"A357281"
] | null | Nicolay Avilov, Sep 22 2022 | 2023-10-15T16:24:50 | oeisdata/seq/A357/A357281.seq | 1c0c67867757bbd11635baa93a0c4d48 |
A357282 | a(n) = number of subsets S of {1,2,...,n} having more than 1 element such that (difference between least two elements of S) = difference between greatest two elements of S. | [
"0",
"0",
"1",
"4",
"9",
"18",
"33",
"60",
"109",
"202",
"381",
"732",
"1425",
"2802",
"5545",
"11020",
"21957",
"43818",
"87525",
"174924",
"349705",
"699250",
"1398321",
"2796444",
"5592669",
"11185098",
"22369933",
"44739580",
"89478849",
"178957362",
"357914361",
"715828332",
"1431656245",
"2863312042",
"5726623605"
] | [
"nonn",
"easy"
] | 5 | 0 | 4 | [
"A000295",
"A272144",
"A357282"
] | null | Clark Kimberling, Sep 27 2022 | 2022-10-01T19:33:28 | oeisdata/seq/A357/A357282.seq | bb9d748190767169125c35b4f7fc004e |
A357283 | a(n) = number of subsets S of {1,2,...,n} having more than 1 element such that (sum of least two elements of S) < max(S). | [
"0",
"0",
"0",
"0",
"2",
"8",
"26",
"68",
"166",
"376",
"826",
"1756",
"3678",
"7584",
"15522",
"31524",
"63782",
"128552",
"258602",
"519212",
"1041454",
"2086960",
"4180018",
"8368180",
"16748598",
"33513528",
"67051578",
"134135868",
"268320830",
"536707136",
"1073512514",
"2147156036",
"4294508614",
"8589279304"
] | [
"nonn",
"easy"
] | 4 | 0 | 5 | [
"A357283",
"A357284"
] | null | Clark Kimberling, Sep 27 2022 | 2022-10-01T19:33:39 | oeisdata/seq/A357/A357283.seq | a2222404ef6c3096343a109fd0b3f021 |
A357284 | a(n) = (1/2)*A357283(n). | [
"0",
"0",
"0",
"0",
"1",
"4",
"13",
"34",
"83",
"188",
"413",
"878",
"1839",
"3792",
"7761",
"15762",
"31891",
"64276",
"129301",
"259606",
"520727",
"1043480",
"2090009",
"4184090",
"8374299",
"16756764",
"33525789",
"67067934",
"134160415",
"268353568",
"536756257",
"1073578018",
"2147254307",
"4294639652",
"8589475877"
] | [
"nonn",
"easy"
] | 8 | 0 | 6 | [
"A274230",
"A357283",
"A357284"
] | null | Clark Kimberling, Sep 27 2022 | 2022-11-09T07:56:32 | oeisdata/seq/A357/A357284.seq | 0430150dfce12646a39ca02bee30874d |
A357285 | a(n) = number of subsets S of {1,2,...,n} having more than 2 elements such that (sum of least three elements of S) < max(S). | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"8",
"32",
"104",
"304",
"792",
"1920",
"4520",
"10192",
"22392",
"48416",
"102856",
"215664",
"448792",
"925632",
"1897064",
"3872016",
"7868344",
"15936096",
"32208136",
"64946096",
"130738776",
"262886656",
"527990696",
"1059498576",
"2124829944",
"4258791328",
"8532044360",
"17087943920"
] | [
"nonn",
"easy"
] | 4 | 0 | 8 | [
"A357285",
"A357286",
"A357287",
"A357289"
] | null | Clark Kimberling, Oct 02 2022 | 2022-10-02T13:34:06 | oeisdata/seq/A357/A357285.seq | dd559fbfdff03c842f55a4f0435f8902 |
A357286 | a(n) = (1/8)*A357285. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"4",
"13",
"38",
"99",
"240",
"565",
"1274",
"2799",
"6052",
"12857",
"26958",
"56099",
"115704",
"237133",
"484002",
"983543",
"1992012",
"4026017",
"8118262",
"16342347",
"32860832",
"65998837",
"132437322",
"265603743",
"532348916",
"1066505545",
"2135992990",
"4276649971",
"8560661832"
] | [
"nonn",
"easy"
] | 6 | 0 | 9 | [
"A357285",
"A357286"
] | null | Clark Kimberling, Oct 02 2022 | 2023-12-10T09:24:12 | oeisdata/seq/A357/A357286.seq | b80a5fbb8eff7dc39580d15f16519b76 |
A357287 | a(n) = number of subsets S of {1,2,...,n} having more than 2 elements such that (sum of least three elements of S) = max(S). | [
"0",
"0",
"0",
"0",
"0",
"0",
"4",
"8",
"20",
"48",
"92",
"168",
"340",
"576",
"1004",
"1816",
"3012",
"4976",
"8732",
"14024",
"22900",
"38944",
"62156",
"99704",
"167972",
"264912",
"423292",
"704552",
"1108692",
"1758592",
"2916396",
"4565720",
"7230852",
"11927600",
"18655964",
"29447560",
"48496692",
"75672288",
"119362956"
] | [
"nonn",
"easy"
] | 5 | 0 | 7 | [
"A357285",
"A357287",
"A357288",
"A357289"
] | null | Clark Kimberling, Oct 02 2022 | 2022-10-02T13:34:29 | oeisdata/seq/A357/A357287.seq | 8c5c7eb95412ac40d79115eff004756a |
A357288 | a(n) = (1/4)*A357287(n). | [
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"2",
"5",
"12",
"23",
"42",
"85",
"144",
"251",
"454",
"753",
"1244",
"2183",
"3506",
"5725",
"9736",
"15539",
"24926",
"41993",
"66228",
"105823",
"176138",
"277173",
"439648",
"729099",
"1141430",
"1807713",
"2981900",
"4663991",
"7361890",
"12124173",
"18918072",
"29840739",
"49020942"
] | [
"nonn",
"easy"
] | 10 | 0 | 8 | [
"A357287",
"A357288"
] | null | Clark Kimberling, Oct 02 2022 | 2022-10-20T12:44:47 | oeisdata/seq/A357/A357288.seq | fdb49e2c2adae84a20781a53fee30337 |
A357289 | a(n) = number of subsets S of {1,2,...,n} having more than 2 elements such that (sum of least three elements of S) > max(S). | [
"0",
"0",
"0",
"1",
"5",
"16",
"38",
"83",
"167",
"314",
"572",
"1021",
"1757",
"3004",
"5082",
"8439",
"13971",
"23086",
"37576",
"61281",
"99833",
"160912",
"259878",
"420283",
"672847",
"1081058",
"1739124",
"2774021",
"4439701",
"7121188",
"11326386",
"18087487",
"28944587",
"45962070",
"73268704",
"117090409",
"185684721",
"295697784",
"472033278",
"747983491"
] | [
"nonn",
"easy"
] | 4 | 0 | 5 | [
"A357287",
"A357289",
"A357290"
] | null | Clark Kimberling, Oct 02 2022 | 2022-10-02T13:34:41 | oeisdata/seq/A357/A357289.seq | c26a2922fb4cdbb230caf91cf45e0d9a |
A357290 | a(n) = number of subsets S of {1,2,...,n} having more than 2 elements such that (sum of least two elements of S) > difference between greatest two elements of S. | [
"0",
"0",
"0",
"1",
"5",
"15",
"39",
"91",
"200",
"424",
"879",
"1796",
"3639",
"7334",
"14734",
"29545",
"59179",
"118459",
"237033",
"474195",
"948534",
"1897228",
"3794633",
"7589460",
"15179133",
"30358498",
"60717248",
"121434769",
"242869833",
"485739983",
"971480307",
"1942960979",
"3885922348",
"7771845112"
] | [
"nonn",
"easy"
] | 7 | 0 | 5 | [
"A357290",
"A357291",
"A357292"
] | null | Clark Kimberling, Oct 02 2022 | 2022-10-02T13:33:51 | oeisdata/seq/A357/A357290.seq | 3333f666acc4ad99a0bd4777ec41f412 |
A357291 | a(n) = number of subsets S of {1,2,...,n} having more than 2 elements such that (sum of least two elements of S) < difference between greatest two elements of S. | [
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"3",
"8",
"19",
"42",
"89",
"185",
"378",
"766",
"1544",
"3102",
"6220",
"12459",
"24939",
"49902",
"99831",
"199692",
"399417",
"798871",
"1597782",
"3195608",
"6391264",
"12782580",
"25565216",
"51130493",
"102261051",
"204522172",
"409044419",
"818088918",
"1636177921",
"3272355933"
] | [
"nonn",
"easy"
] | 12 | 0 | 8 | [
"A021025",
"A357290",
"A357291",
"A357292"
] | null | Clark Kimberling, Oct 02 2022 | 2022-10-13T13:09:01 | oeisdata/seq/A357/A357291.seq | 08df327ee183c12ef8b2b1ee90b9bce3 |
A357292 | a(n) = number of subsets S of {1,2,...,n} having more than 2 elements such that (sum of least two elements of S) = difference between greatest two elements of S. | [
"0",
"0",
"0",
"0",
"0",
"1",
"2",
"5",
"11",
"23",
"47",
"96",
"193",
"388",
"778",
"1558",
"3118",
"6239",
"12480",
"24963",
"49929",
"99861",
"199725",
"399454",
"798911",
"1597826",
"3195656",
"6391316",
"12782636",
"25565277",
"51130558",
"102261121",
"204522247",
"409044499",
"818089003",
"1636178012",
"3272356029"
] | [
"nonn",
"easy"
] | 9 | 0 | 7 | [
"A357290",
"A357291",
"A357292"
] | null | Clark Kimberling, Oct 02 2022 | 2022-10-23T23:45:38 | oeisdata/seq/A357/A357292.seq | 73739e483498d61cd58b37c3e703bb5c |
A357293 | Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} Stirling2(n,k*j). | [
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"1",
"5",
"0",
"1",
"0",
"0",
"3",
"15",
"0",
"1",
"0",
"0",
"1",
"8",
"52",
"0",
"1",
"0",
"0",
"0",
"6",
"25",
"203",
"0",
"1",
"0",
"0",
"0",
"1",
"25",
"97",
"877",
"0",
"1",
"0",
"0",
"0",
"0",
"10",
"91",
"434",
"4140",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"65",
"322",
"2095",
"21147",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"15",
"350",
"1232",
"10707",
"115975",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"140",
"1702",
"5672",
"58194",
"678570",
"0"
] | [
"nonn",
"tabl"
] | 26 | 0 | 9 | [
"A000007",
"A000110",
"A024430",
"A143815",
"A357119",
"A357293"
] | null | Seiichi Manyama, Oct 17 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357293.seq | bda9a8234bf58f157239969ece17ed02 |
A357294 | Number of integral quantales on n elements, up to isomorphism. | [
"1",
"1",
"2",
"9",
"49",
"364",
"3335",
"37026",
"496241"
] | [
"nonn",
"more"
] | 6 | 1 | 3 | [
"A354493",
"A354495",
"A354497",
"A357294",
"A357295"
] | null | Arman Shamsgovara, Sep 22 2022 | 2022-11-06T12:27:43 | oeisdata/seq/A357/A357294.seq | 7054b620721d122707c4953d89d8d74b |
A357295 | Number of balanced quantales on n elements, up to isomorphism. | [
"1",
"1",
"9",
"106",
"1597",
"29720",
"663897",
"17747907",
"620659554"
] | [
"nonn",
"more"
] | 8 | 1 | 3 | [
"A354493",
"A357295"
] | null | Arman Shamsgovara, Sep 22 2022 | 2022-11-06T12:27:57 | oeisdata/seq/A357/A357295.seq | dbae315b5d0c3f9369a94cf1ef50f827 |
A357296 | Expansion of e.g.f. Sum_{k>0} x^k / (k! * (1 - x^k/k)). | [
"1",
"3",
"7",
"31",
"121",
"851",
"5041",
"43261",
"369601",
"3748249",
"39916801",
"490801081",
"6227020801",
"87861842641",
"1310800947457",
"21018206008801",
"355687428096001",
"6419518510204801",
"121645100408832001",
"2435836129700029057",
"51102829650622464001",
"1124549558817839481601"
] | [
"nonn"
] | 19 | 1 | 2 | [
"A038507",
"A057625",
"A327578",
"A354891",
"A357296"
] | null | Seiichi Manyama, Feb 23 2023 | 2023-07-31T02:25:39 | oeisdata/seq/A357/A357296.seq | 02dd227376af17eda0e7d2c1883d0b95 |
A357297 | T(m,n) is the number of linear extensions of n fork-join DAGs of width m, read by downward antidiagonals. | [
"1",
"1",
"1",
"6",
"1",
"1",
"90",
"20",
"2",
"1",
"2520",
"1680",
"280",
"6",
"1",
"113400",
"369600",
"277200",
"9072",
"24",
"1",
"7484400",
"168168000",
"1009008000",
"163459296",
"532224",
"120",
"1",
"681080400",
"137225088000",
"9777287520000",
"15205637551104",
"237124952064",
"49420800",
"720",
"1",
"81729648000",
"182509367040000",
"207786914375040000",
"4847253138540933120",
"765985681152147456",
"689598074880000",
"6671808000",
"5040",
"1"
] | [
"nonn",
"tabl"
] | 27 | 0 | 4 | [
"A000012",
"A000142",
"A000680",
"A014606",
"A260331",
"A357297",
"A361901",
"A362565"
] | null | José E. Solsona, Feb 22 2023 | 2023-05-23T05:38:07 | oeisdata/seq/A357/A357297.seq | 39679755ece2257296dd5d654dc3597b |
A357298 | Triangle read by rows where all entries in every even row are 1's and the entries in every odd row alternate between 0 (start/end) and 1. | [
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1"
] | [
"nonn",
"easy",
"tabl"
] | 58 | 1 | 1 | [
"A065423",
"A357298",
"A358125"
] | null | Ambrosio Valencia-Romero, Dec 20 2022 | 2023-01-11T06:41:08 | oeisdata/seq/A357/A357298.seq | d7cbe352de62ad76f09c99f39d9f8795 |
A357299 | a(n) is the number of divisors of n whose first digit equals the first digit of n. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"3"
] | [
"nonn",
"base"
] | 28 | 1 | 10 | [
"A000030",
"A131835",
"A330348",
"A356549",
"A357299",
"A357300"
] | null | Bernard Schott, Sep 23 2022 | 2022-09-24T08:16:19 | oeisdata/seq/A357/A357299.seq | ada68db906714ad5ae780e175bc7072c |
A357300 | a(n) is the smallest number m with exactly n divisors whose first digit equals the first digit of m. | [
"1",
"10",
"100",
"108",
"120",
"180",
"1040",
"1020",
"1170",
"1008",
"1260",
"1680",
"10010",
"10530",
"10200",
"10260",
"10560",
"10800",
"11340",
"10920",
"12600",
"10080",
"15840",
"18480",
"15120",
"102060",
"104400",
"101640",
"100320",
"102600",
"100980",
"117600",
"114660",
"107100",
"174240",
"113400",
"105840",
"100800",
"120120",
"143640"
] | [
"nonn",
"base"
] | 27 | 1 | 2 | [
"A206287",
"A333456",
"A335038",
"A335491",
"A355592",
"A357299",
"A357300"
] | null | Bernard Schott, Sep 23 2022 | 2022-09-26T06:17:45 | oeisdata/seq/A357/A357300.seq | 5740604f019d88589ed522a2731dbdb5 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.