sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A357201
Coefficients in the power series A(x) such that: A(x) = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1))^(n+1) * A(x)^n.
[ "1", "1", "1", "3", "1", "5", "-26", "-75", "-430", "-1183", "-4249", "-10191", "-27443", "-42735", "-35715", "341250", "2073952", "9886007", "36365567", "124484714", "364966293", "965150205", "1958034669", "2048555297", "-9110607428", "-76703557685", "-383500583452", "-1539890758482", "-5456784935108", "-17115737273816" ]
[ "sign" ]
6
0
4
[ "A357151", "A357161", "A357200", "A357201", "A357202", "A357203", "A357204", "A357205" ]
null
Paul D. Hanna, Sep 17 2022
2022-09-18T12:37:05
oeisdata/seq/A357/A357201.seq
62290b8ad8013eccaa81d1ab1e0f45ca
A357202
Coefficients in the power series A(x) such that: A(x)^2 = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1))^(n+1) * A(x)^n.
[ "1", "1", "2", "9", "35", "182", "921", "5062", "28234", "162330", "947773", "5622641", "33747694", "204676547", "1252083028", "7717376754", "47878314072", "298749048454", "1873637869199", "11804288518884", "74673607921030", "474128308291896", "3020493580980524", "19301224674496592", "123681469340775568" ]
[ "nonn" ]
6
0
3
[ "A357152", "A357162", "A357200", "A357201", "A357202", "A357203", "A357204", "A357205" ]
null
Paul D. Hanna, Sep 17 2022
2022-09-18T12:37:09
oeisdata/seq/A357/A357202.seq
b608a91b38c0e23335e30469526df475
A357203
Coefficients in the power series A(x) such that: A(x)^3 = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1))^(n+1) * A(x)^n.
[ "1", "1", "3", "18", "111", "800", "5990", "46995", "379090", "3129713", "26301576", "224282112", "1935668344", "16876028036", "148410725830", "1314933853171", "11726585616205", "105178923513494", "948185788906100", "8586757756571261", "78079244607685021", "712592590813142079", "6525273550226573555" ]
[ "nonn" ]
7
0
3
[ "A357153", "A357163", "A357200", "A357201", "A357202", "A357203", "A357204", "A357205" ]
null
Paul D. Hanna, Sep 17 2022
2022-09-20T00:01:59
oeisdata/seq/A357/A357203.seq
95202f8bc216798d789f98cc2c0344c3
A357204
Coefficients in the power series A(x) such that: A(x)^4 = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1))^(n+1) * A(x)^n.
[ "1", "1", "4", "30", "245", "2256", "21849", "220655", "2294241", "24402721", "264251525", "2903503779", "32289673568", "362755014742", "4110792367801", "46933876797456", "539362815736466", "6234031681945681", "72421584940086375", "845164178044504188", "9903469546224045896", "116475680442085941037" ]
[ "nonn" ]
7
0
3
[ "A357154", "A357164", "A357200", "A357201", "A357202", "A357203", "A357204", "A357205" ]
null
Paul D. Hanna, Sep 17 2022
2022-09-20T00:02:25
oeisdata/seq/A357/A357204.seq
88ac39c62d93ba97ab89d4911d69ab9d
A357205
Coefficients in the power series A(x) such that: A(x)^5 = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1))^(n+1) * A(x)^n.
[ "1", "1", "5", "45", "453", "5072", "59964", "738449", "9365617", "121511799", "1605113475", "21514501261", "291880434822", "4000334186684", "55304105835751", "770323876417969", "10800108248187952", "152293211204657100", "2158477865404685913", "30732066480408276249", "439351185869943970405" ]
[ "nonn" ]
7
0
3
[ "A357155", "A357165", "A357200", "A357201", "A357202", "A357203", "A357204", "A357205" ]
null
Paul D. Hanna, Sep 17 2022
2022-09-20T00:02:45
oeisdata/seq/A357/A357205.seq
4079ce77b1dbaf82709470ddcfcc1d42
A357206
Coefficients in the power series A(x) such that: x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
[ "1", "1", "6", "39", "267", "1949", "14927", "118517", "966840", "8055107", "68247637", "586231174", "5093508706", "44685394843", "395287384067", "3521909281230", "31576985230764", "284687856687607", "2579319718212675", "23472206080648463", "214448766193151410", "1966300700448875377", "18088031500652556354" ]
[ "nonn" ]
9
0
3
[ "A355361", "A357206", "A357207", "A357208", "A357209" ]
null
Paul D. Hanna, Sep 18 2022
2022-09-19T11:08:51
oeisdata/seq/A357/A357206.seq
2f0a5cdb21573357539f9061233f4865
A357207
Coefficients in the power series A(x) such that: x*A(x)^3 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
[ "1", "1", "7", "55", "469", "4307", "41678", "418872", "4330275", "45754091", "491916135", "5364166402", "59186372395", "659556170091", "7412556531714", "83921355689635", "956228695216241", "10957322339242547", "126189988012692329", "1459793848341094130", "16955390069787782159", "197653935181097885580" ]
[ "nonn" ]
7
0
3
[ "A355361", "A357206", "A357207", "A357208", "A357209" ]
null
Paul D. Hanna, Sep 18 2022
2022-09-19T11:09:01
oeisdata/seq/A357/A357207.seq
e9aff60c6ac6594158cfb10086576007
A357208
Coefficients in the power series A(x) such that: x*A(x)^4 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
[ "1", "1", "8", "74", "758", "8412", "98605", "1201739", "15075377", "193374064", "2524704727", "33440460233", "448246477551", "6069174992443", "82884604316537", "1140361539606239", "15791577929661603", "219930850717175458", "3078540089119391233", "43287917046150591163", "611156850554916771425" ]
[ "nonn" ]
7
0
3
[ "A355361", "A357206", "A357207", "A357208", "A357209" ]
null
Paul D. Hanna, Sep 18 2022
2022-09-19T11:08:34
oeisdata/seq/A357/A357208.seq
675ddb44e8e80e43037e6ccb113a1999
A357209
Coefficients in the power series A(x) such that: x*A(x)^5 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
[ "1", "1", "9", "96", "1150", "14981", "206426", "2959249", "43683374", "659531482", "10137150414", "158089344305", "2495255246353", "39785814006395", "639880150931025", "10368454503796731", "169106511176489353", "2773945868018478593", "45734618620228469488", "757469141505480597690" ]
[ "nonn" ]
7
0
3
[ "A355361", "A357206", "A357207", "A357208", "A357209" ]
null
Paul D. Hanna, Sep 18 2022
2022-09-19T11:08:03
oeisdata/seq/A357/A357209.seq
83f972f2da6daf8ccbdae236787f44fa
A357210
a(n) = Sum_{k=1..n} prime(k/gcd(n,k)).
[ "2", "4", "7", "11", "19", "22", "43", "46", "66", "68", "131", "90", "199", "158", "187", "223", "383", "242", "503", "320", "441", "478", "793", "436", "824", "716", "879", "734", "1373", "658", "1595", "1118", "1313", "1358", "1579", "1103", "2429", "1776", "1957", "1556", "3089", "1532", "3449", "2192", "2347", "2784", "4229", "2144", "4134", "2882", "3687", "3258", "5591" ]
[ "nonn" ]
23
1
1
[ "A000040", "A057661", "A127413", "A130029", "A333558", "A357210" ]
null
Ilya Gutkovskiy, Sep 19 2022
2022-09-23T03:18:43
oeisdata/seq/A357/A357210.seq
e5f290c5993f8a913bdbbe4af553ad85
A357211
a(n) is the real cube root of the value of the j-function for the n-th Heegner number A003173(n).
[ "12", "20", "0", "-15", "-32", "-96", "-960", "-5280", "-640320" ]
[ "fini", "full", "sign" ]
32
1
1
[ "A003173", "A199743", "A267195", "A357211" ]
null
Alexander R. Povolotsky, Sep 17 2022
2022-11-06T08:49:20
oeisdata/seq/A357/A357211.seq
662efa97f63573ef9a3ff42b52f4aba3
A357212
a(n) = number of nonempty subsets of {1,2,...,n} having a partition into two subsets with the same sum of elements.
[ "0", "0", "1", "3", "7", "17", "37", "81", "174", "372", "786", "1650", "3438", "7125", "14666", "30048", "61248", "124439", "251921", "508778", "1025182", "2062286", "4142643", "8312926", "16667004", "33395274" ]
[ "nonn", "more" ]
12
1
4
[ "A232466", "A357212" ]
null
Clark Kimberling, Sep 17 2022
2022-09-18T09:10:11
oeisdata/seq/A357/A357212.seq
98b7ba1a1a72b2c858a04f14242ebf9a
A357213
Triangular array read by rows: T(n, k) = number of subsets s of {1, 2, ..., n} such max(s) - min(s) = k, for n >= 1, 0 <= k <= n-1.
[ "1", "2", "1", "3", "2", "2", "4", "3", "4", "4", "5", "4", "6", "8", "8", "6", "5", "8", "12", "16", "16", "7", "6", "10", "16", "24", "32", "32", "8", "7", "12", "20", "32", "48", "64", "64", "9", "8", "14", "24", "40", "64", "96", "128", "128", "10", "9", "16", "28", "48", "80", "128", "192", "256", "256", "11", "10", "18", "32", "56", "96", "160", "256", "384", "512", "512", "12", "11" ]
[ "nonn", "tabl" ]
17
1
2
[ "A000027", "A000225", "A130128", "A357213" ]
null
Clark Kimberling, Sep 24 2022
2022-09-26T17:32:08
oeisdata/seq/A357/A357213.seq
c5351bf7aa7e7c4e8adb3be43efab374
A357214
a(n) = number of subsets S of {1, 2, ..., n} such that every number in S is a composite.
[ "1", "1", "1", "2", "2", "4", "4", "8", "16", "32", "32", "64", "64", "128", "256", "512", "512", "1024", "1024", "2048", "4096", "8192", "8192", "16384", "32768", "65536", "131072", "262144", "262144", "524288", "524288", "1048576", "2097152", "4194304", "8388608", "16777216", "16777216", "33554432", "67108864", "134217728", "134217728" ]
[ "nonn", "easy" ]
17
1
4
[ "A000720", "A048656", "A089819", "A357214", "A357215" ]
null
Clark Kimberling, Sep 24 2022
2023-06-04T23:50:58
oeisdata/seq/A357/A357214.seq
479d33c0021a4d4141396b844bf9a072
A357215
a(n) = number of nonempty subsets S of {1, 2, ..., n} that contain only primes.
[ "0", "1", "3", "3", "7", "7", "15", "15", "15", "15", "31", "31", "63", "63", "63", "63", "127", "127", "255", "255", "255", "255", "511", "511", "511", "511", "511", "511", "1023", "1023", "2047", "2047", "2047", "2047", "2047", "2047", "4095", "4095", "4095", "4095", "8191", "8191", "16383", "16383", "16383", "16383", "32767", "32767", "32767", "32767" ]
[ "nonn", "easy" ]
10
1
3
[ "A000720", "A048656", "A089819", "A357214", "A357215" ]
null
Clark Kimberling, Sep 24 2022
2022-09-26T20:10:37
oeisdata/seq/A357/A357215.seq
45b3234a3832dc5099b3deb00c056163
A357216
Table read by antidiagonals: T(n,k) (n >= 3, k >= 0) is the number of regions in an n-gon when k internal n-gons are drawn between the n*k points that divide each side into k+1 equal parts.
[ "1", "4", "1", "13", "5", "1", "28", "17", "6", "1", "49", "37", "21", "7", "1", "70", "65", "46", "25", "8", "1", "109", "93", "81", "55", "29", "9", "1", "148", "145", "126", "97", "64", "33", "10", "1", "181", "181", "181", "151", "113", "73", "37", "11", "1", "244", "257", "246", "217", "176", "129", "82", "41", "12", "1", "301", "309", "321", "295", "253", "201", "145", "91", "45", "13", "1" ]
[ "nonn", "tabl" ]
23
3
2
[ "A007678", "A344857", "A356984", "A357058", "A357196", "A357216", "A357235", "A357254" ]
null
Scott R. Shannon, Sep 18 2022
2022-09-21T12:00:26
oeisdata/seq/A357/A357216.seq
fc5cc57cffa615be8218dc401ffbd52c
A357217
Array read by descending antidiagonals: T(n,k) is the number of cycles of the permutation given by the order of elimination in the Josephus problem for n numbers and a count of k; n, k >= 1.
[ "1", "1", "2", "1", "1", "3", "1", "2", "2", "4", "1", "1", "1", "2", "5", "1", "2", "2", "2", "1", "6", "1", "1", "1", "2", "1", "1", "7", "1", "2", "2", "2", "1", "2", "4", "8", "1", "1", "3", "2", "3", "3", "3", "2", "9", "1", "2", "2", "2", "3", "2", "2", "2", "1", "10", "1", "1", "1", "2", "1", "3", "3", "2", "3", "5", "11", "1", "2", "2", "2", "3", "2", "2", "4", "5", "2", "2", "12", "1", "1", "1", "2", "3", "1", "3", "2", "3", "1", "3", "2", "13" ]
[ "nonn", "tabl" ]
9
1
3
[ "A003418", "A006694", "A163782", "A163800", "A198789", "A321298", "A357217" ]
null
Pontus von Brömssen, Sep 18 2022
2022-09-18T11:22:15
oeisdata/seq/A357/A357217.seq
0dba231ec3eadd7c9e871da1e98fd03f
A357218
Primes p such that T(p) - 2 is prime, where T(p) is the triangular number (A000217) with index p.
[ "5", "13", "17", "29", "37", "41", "53", "61", "73", "89", "97", "149", "157", "193", "197", "233", "257", "269", "277", "281", "313", "337", "389", "401", "409", "457", "509", "521", "541", "613", "641", "673", "701", "797", "857", "877", "881", "929", "953", "997", "1009", "1033", "1093", "1109", "1117", "1129", "1153", "1193", "1297", "1301", "1373", "1381", "1433", "1481", "1493" ]
[ "nonn" ]
28
1
1
[ "A000217", "A002144", "A231847", "A357218", "A357219" ]
null
Bernard Schott, Sep 18 2022
2022-09-21T01:38:23
oeisdata/seq/A357/A357218.seq
68a1beb81905d68a4c68aac6e97f9c0b
A357219
Primes of the form T(p) - 2 where T(p) is the triangular number (A000217) with prime index p in A357218.
[ "13", "89", "151", "433", "701", "859", "1429", "1889", "2699", "4003", "4751", "11173", "12401", "18719", "19501", "27259", "33151", "36313", "38501", "39619", "49139", "56951", "75853", "80599", "83843", "104651", "129793", "135979", "146609", "188189", "205759", "226799", "246049", "318001", "367651", "385001", "388519", "431983", "454579" ]
[ "nonn" ]
17
1
1
[ "A000217", "A124199", "A357218", "A357219" ]
null
Bernard Schott, Sep 18 2022
2022-10-04T13:53:59
oeisdata/seq/A357/A357219.seq
51729be03d380b80bfc1525276955066
A357220
a(n) = coefficient of x^n in Sum_{n>=0} x^n/(1 - x*C(x)^n), where C(x) = 1/(1 - x*C(x)) is a g.f. of the Catalan numbers (A000108).
[ "1", "2", "3", "5", "11", "31", "101", "355", "1304", "4938", "19155", "75857", "306075", "1256782", "5248018", "22278742", "96141427", "421787510", "1881594580", "8537257714", "39408291543", "185114771571", "885043068109", "4307374572585", "21340519926034", "107627435856554", "552473684683454", "2885909702592788" ]
[ "nonn" ]
12
0
2
[ "A000108", "A357220" ]
null
Paul D. Hanna, Oct 16 2022
2022-12-03T12:06:30
oeisdata/seq/A357/A357220.seq
8f4551643b5f5cd744805bebc2538f8c
A357221
Coefficients in the power series A(x) such that: x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.
[ "1", "1", "2", "8", "26", "97", "361", "1399", "5532", "22318", "91387", "379037", "1588769", "6720065", "28645624", "122937300", "530748439", "2303446566", "10043922651", "43979954296", "193309569331", "852599816069", "3772220833468", "16737583785420", "74461239372631", "332062396407641", "1484162266154404" ]
[ "nonn" ]
5
0
3
[ "A355357", "A355361", "A357221", "A357222", "A357223", "A357224", "A357225", "A357226" ]
null
Paul D. Hanna, Sep 18 2022
2022-09-19T11:08:18
oeisdata/seq/A357/A357221.seq
96aea7fd4d303a226969729c1d4615ca
A357222
Coefficients in the power series A(x) such that: x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.
[ "1", "1", "3", "15", "73", "391", "2180", "12620", "75056", "456004", "2817879", "17656517", "111919061", "716379379", "4623944175", "30062540989", "196692237527", "1294112710358", "8556766562091", "56829292404053", "378936456243142", "2535866861527016", "17025875430611442", "114654511539186113" ]
[ "nonn" ]
5
0
3
[ "A355357", "A357221", "A357222", "A357223", "A357224", "A357225", "A357226" ]
null
Paul D. Hanna, Sep 18 2022
2022-09-19T11:16:00
oeisdata/seq/A357/A357222.seq
aeb16bffd3357d8464b9b8c3ddcb3d90
A357223
Coefficients in the power series A(x) such that: x*A(x)^3 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.
[ "1", "1", "4", "25", "164", "1177", "8887", "69748", "563232", "4649672", "39063521", "332904462", "2870862974", "25005954906", "219675658337", "1944131038267", "17316793719372", "155122164103293", "1396584226654493", "12630315100857638", "114687815080027358", "1045218902425525155", "9557367319452886097" ]
[ "nonn" ]
5
0
3
[ "A355357", "A357221", "A357222", "A357223", "A357224", "A357225", "A357226" ]
null
Paul D. Hanna, Sep 18 2022
2022-09-19T11:16:10
oeisdata/seq/A357/A357223.seq
f9d62cbcbbc44c72ccb043ccfc2c2fec
A357224
Coefficients in the power series A(x) such that: x*A(x)^4 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.
[ "1", "1", "5", "38", "315", "2855", "27325", "272030", "2788042", "29221793", "311767823", "3374650902", "36968040004", "409076635878", "4565873250981", "51342245169913", "581093383193700", "6614534942714496", "75675364150733073", "869713202188274489", "10036085000519702155", "116238137830534589525" ]
[ "nonn" ]
5
0
3
[ "A355357", "A357221", "A357222", "A357223", "A357224", "A357225", "A357226" ]
null
Paul D. Hanna, Sep 18 2022
2022-09-19T11:16:24
oeisdata/seq/A357/A357224.seq
fd6f925f3eb0094eed9934e0248ae1df
A357225
Coefficients in the power series A(x) such that: x*A(x)^5 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.
[ "1", "1", "6", "54", "542", "5950", "69089", "834807", "10387628", "132206325", "1713016233", "22520857313", "299667203315", "4028078782339", "54615552455056", "746073353306341", "10258385111897258", "141862903772876529", "1971827463536643265", "27532294076219156008", "386001188585539328720" ]
[ "nonn" ]
5
0
3
[ "A355357", "A357221", "A357222", "A357223", "A357224", "A357225", "A357226" ]
null
Paul D. Hanna, Sep 18 2022
2022-09-19T11:09:38
oeisdata/seq/A357/A357225.seq
9a8c06da50ba46f3f3e99ddd6da56342
A357226
Coefficients in the power series A(x) such that: x*A(x)^6 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) * A(x)^n.
[ "1", "1", "7", "73", "861", "11112", "151822", "2159143", "31627140", "473909468", "7230035454", "111924733904", "1753728878625", "27759947012294", "443247756591472", "7130680715081049", "115466397372003479", "1880525144522628300", "30783524695736369568", "506215648672559259036", "8358521379108937920413" ]
[ "nonn" ]
5
0
3
[ "A355357", "A357221", "A357222", "A357223", "A357224", "A357225", "A357226" ]
null
Paul D. Hanna, Sep 18 2022
2022-09-19T11:09:17
oeisdata/seq/A357/A357226.seq
3ad7ac1d35ee34da98037566c15a5572
A357227
a(n) = coefficient of x^n, n >= 0, in A(x) such that: 1 = Sum_{n=-oo..+oo} x^n * (2*A(x) - x^n)^(n-1).
[ "1", "1", "5", "27", "156", "961", "6145", "40546", "273784", "1883468", "13153544", "93012247", "664640794", "4791939802", "34816034143", "254659426691", "1873698891024", "13858201221637", "102975937795619", "768385165594607", "5755185884844403", "43253819566052165", "326093530416255178", "2465456045342545908" ]
[ "nonn" ]
22
0
3
[ "A355865", "A355868", "A357227", "A357232", "A358937", "A358961", "A358962", "A358963", "A358964", "A358965", "A363312", "A363313", "A363314", "A363315" ]
null
Paul D. Hanna, Oct 17 2022
2023-06-07T03:38:12
oeisdata/seq/A357/A357227.seq
f3b07295870a384ca9cbf8d511c30c05
A357228
a(n) = coefficient of x^(2*n-1)/(2*n-1)! in the odd function A(x) = Integral Product_{n>=1} 1/(1 - x^(2*n))^((2*n-1)/(2*n)) dx.
[ "1", "1", "27", "1095", "100905", "11189745", "2378802195", "524908799415", "186506150655825", "72527385885379425", "38034576658499496075", "21992048437363887457575", "16748861395227762355580025", "13415760683905948372840460625", "13429242464029329763489941151875", "14657793954450002863353646629204375" ]
[ "nonn" ]
7
1
3
[ "A357228", "A357229", "A357550" ]
null
Paul D. Hanna, Oct 02 2022
2022-12-03T12:02:25
oeisdata/seq/A357/A357228.seq
da392bf8111127c48ce9404cdfcf3f9b
A357229
a(n) = coefficient of x^(2*n-1)/(2*n-1)! in the odd function A(x) = Integral Product_{n>=1} 1/(1 + x^(2*n))^((2*n-1)/(2*n)) dx.
[ "1", "-1", "-9", "-555", "7665", "-1777545", "114147495", "-27004972995", "20805419059425", "-4204053743915025", "1822343877322543575", "-505299954078654810075", "786572202448438396815825", "-304143708374573670923945625", "297888516150523156788428874375", "-379957456647051856809688318741875" ]
[ "sign" ]
10
1
3
[ "A357228", "A357229", "A357230" ]
null
Paul D. Hanna, Oct 02 2022
2022-12-03T12:02:54
oeisdata/seq/A357/A357229.seq
74d78148905375475a6d01e935d4f80e
A357230
a(n) = coefficient of x^(2*n-1)/(2*n-1)! in the expansion of the odd function S(x) defined by: S(x) = Integral Product_{n>=1} C(n,x)^(2*n-1) dx, where C(n,x) = (1 + S(x)^(2*n))^(1/(2*n)) for n >= 1.
[ "1", "1", "19", "1339", "126121", "22936441", "6074972299", "2211448022179", "1068596557553041", "664819086091727281", "515877228619611775939", "487979294159765398810699", "553450493012139154035025081", "740913321416698764680850005161", "1156005387497662040937215014248379", "2079652309814657123017240379855646259" ]
[ "nonn" ]
33
1
3
[ "A357229", "A357230", "A357231", "A357550" ]
null
Paul D. Hanna, Sep 30 2022
2022-12-03T12:01:16
oeisdata/seq/A357/A357230.seq
99bca1a00fcbb1c323c7879b0699984b
A357231
a(n) = coefficient of x^(2*n)/(2*n)! in the expansion of the even function C(x) = sqrt(1 + S(x)^2) where S(x) is defined by A357230.
[ "1", "1", "1", "109", "8689", "1053481", "243813361", "75186825109", "31749087943969", "17410718947341841", "12133565064814788001", "10416041727982093437949", "10802433235439921115170449", "13331645872563084893190746041", "19290709211545941944044481913361", "32353568912665546881189872548732069" ]
[ "nonn" ]
11
0
4
[ "A357230", "A357231", "A357551" ]
null
Paul D. Hanna, Oct 04 2022
2022-12-03T12:03:21
oeisdata/seq/A357/A357231.seq
bd201be4ac997316c8409555a7bf3a5a
A357232
a(n) = coefficient of x^n, n >= 0, in A(x) such that: 2 = Sum_{n=-oo..+oo} (-1)^n * x^n * (2*A(x) + x^n)^(2*n+1).
[ "1", "3", "25", "254", "2763", "32180", "393169", "4964017", "64254694", "848214039", "11375359344", "154547261539", "2122630191360", "29423373611509", "411105855956011", "5783709944279141", "81862107418919278", "1164873718427628846", "16654829725736560441", "239140138388082634266", "3446933945466334214525" ]
[ "nonn" ]
12
0
2
[ "A355865", "A355868", "A357232", "A357402" ]
null
Paul D. Hanna, Oct 14 2022
2022-12-03T12:04:53
oeisdata/seq/A357/A357232.seq
b5fc8f753b2fa9d83b5b5baeee77901d
A357233
a(n) = coefficient of x^n in power series A(x) such that: 0 = Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * A(x)^(n*(n+1)/2).
[ "1", "1", "3", "11", "46", "207", "980", "4810", "24258", "124951", "654587", "3476985", "18682885", "101372340", "554655435", "3056823864", "16953795008", "94555853982", "529986289496", "2983788539017", "16865736120654", "95677703975144", "544554485912572", "3108656601838926", "17794927199793895" ]
[ "nonn" ]
18
0
3
[ "A107590", "A193111", "A195980", "A357233" ]
null
Paul D. Hanna, Oct 17 2022
2023-07-14T09:03:21
oeisdata/seq/A357/A357233.seq
930713d31c4a69a48672f4cc61b892cf
A357234
a(n) is the maximum length of a snake-like polyomino in an n X n square that starts and ends at opposite corners.
[ "1", "3", "5", "7", "17", "23", "31", "39", "51", "63", "75", "89", "105", "121", "139", "159" ]
[ "nonn", "hard", "more" ]
48
1
2
[ "A331968", "A357234", "A357516" ]
null
Yi Yang, Sep 18 2022
2023-02-28T13:07:15
oeisdata/seq/A357/A357234.seq
6a7b0e1a7e31e5213a57886587031c72
A357235
Table read by antidiagonals: T(n,k) (n >= 3, k >= 0) is the number of vertices in an n-gon when k internal n-gons are drawn between the n*k points that divide each side into k+1 equal parts.
[ "3", "6", "4", "15", "8", "5", "30", "20", "10", "6", "51", "40", "25", "12", "7", "66", "68", "50", "30", "14", "8", "111", "88", "85", "60", "35", "16", "9", "150", "148", "130", "102", "70", "40", "18", "10", "171", "168", "185", "156", "119", "80", "45", "20", "11", "246", "260", "250", "222", "182", "136", "90", "50", "22", "12", "303", "296", "325", "300", "259", "208", "153", "100", "55", "24", "13" ]
[ "nonn", "tabl" ]
23
3
1
[ "A007569", "A146212", "A357007", "A357060", "A357197", "A357216", "A357235", "A357254" ]
null
Scott R. Shannon, Sep 19 2022
2022-09-21T12:00:32
oeisdata/seq/A357/A357235.seq
65be05ca20e58723474b9391a63cbf7c
A357236
Number of compositions (ordered partitions) of n into distinct semiprimes.
[ "1", "0", "0", "0", "1", "0", "1", "0", "0", "1", "3", "0", "0", "2", "3", "3", "2", "0", "2", "10", "8", "3", "1", "8", "10", "17", "3", "8", "14", "40", "16", "18", "10", "37", "63", "55", "24", "40", "45", "79", "84", "82", "70", "170", "228", "166", "135", "86", "232", "295", "334", "309", "292", "228", "604", "719", "600", "383", "1265", "904", "1020", "840", "867", "1008", "1864", "2569", "2154", "1676", "2414", "3541", "3958" ]
[ "nonn" ]
4
0
11
[ "A001358", "A101048", "A112020", "A280238", "A357236" ]
null
Ilya Gutkovskiy, Sep 19 2022
2022-09-23T03:18:56
oeisdata/seq/A357/A357236.seq
3fb1444f73c0156f37378371ceb2d6d0
A357237
Number of compositions (ordered partitions) of n into distinct parts of the form 2^j - 1.
[ "1", "1", "0", "1", "2", "0", "0", "1", "2", "0", "2", "6", "0", "0", "0", "1", "2", "0", "2", "6", "0", "0", "2", "6", "0", "6", "24", "0", "0", "0", "0", "1", "2", "0", "2", "6", "0", "0", "2", "6", "0", "6", "24", "0", "0", "0", "2", "6", "0", "6", "24", "0", "0", "6", "24", "0", "24", "120", "0", "0", "0", "0", "0", "1", "2", "0", "2", "6", "0", "0", "2", "6", "0", "6", "24", "0", "0", "0", "2", "6", "0", "6", "24", "0", "0", "6", "24" ]
[ "nonn" ]
11
0
5
[ "A000929", "A079559", "A093659", "A104977", "A357237" ]
null
Ilya Gutkovskiy, Sep 19 2022
2022-09-25T11:03:13
oeisdata/seq/A357/A357237.seq
779f31c2f89e0585ca84106adafcc929
A357238
Inverse Moebius transform of tribonacci numbers (A000073).
[ "0", "1", "1", "3", "4", "9", "13", "27", "45", "86", "149", "285", "504", "941", "1710", "3163", "5768", "10662", "19513", "35978", "66026", "121565", "223317", "411053", "755480", "1390042", "2555802", "4701713", "8646064", "15904390", "29249425", "53801243", "98950246", "182003370", "334745794", "615704412", "1132436852", "2082895617", "3831006934" ]
[ "nonn" ]
7
1
4
[ "A000073", "A007435", "A357238", "A357239" ]
null
Ilya Gutkovskiy, Sep 19 2022
2022-09-23T03:20:41
oeisdata/seq/A357/A357238.seq
2c44a8263bcb48eee80eb4c56e54bb3c
A357239
Inverse Moebius transform of tetranacci number (A000078).
[ "0", "0", "1", "1", "2", "5", "8", "16", "30", "58", "108", "214", "401", "781", "1493", "2888", "5536", "10705", "20569", "39707", "76433", "147420", "283953", "547566", "1055028", "2034029", "3919974", "7556717", "14564533", "28075593", "54114452", "104311848", "201062094", "387564973", "747044844", "1439986130", "2775641472", "5350241528", "10312882883" ]
[ "nonn" ]
4
1
5
[ "A000078", "A007435", "A357238", "A357239" ]
null
Ilya Gutkovskiy, Sep 19 2022
2022-09-23T03:20:48
oeisdata/seq/A357/A357239.seq
2adaef0cee2523f66de120ffc9f55c2a
A357240
Expansion of e.g.f. 2 * (exp(x) - 1) / (exp(exp(x) - 1) + 1).
[ "0", "1", "0", "-2", "-5", "-4", "32", "225", "794", "190", "-22291", "-200298", "-920244", "924223", "65848880", "716920754", "3831260555", "-13147083976", "-575844827780", "-7162425813919", "-40755845041730", "320194436283162", "11810647258173653", "161108090793013130", "896865861205240824", "-14305712791762925929", "-487306962045115504436" ]
[ "sign" ]
16
0
4
[ "A001469", "A003149", "A036968", "A059371", "A357240" ]
null
Ilya Gutkovskiy, Sep 19 2022
2023-06-23T18:22:34
oeisdata/seq/A357/A357240.seq
6abbe8dfeac8ff88595116114f5b05ae
A357241
a(n) is the number of j in the range 1 <= j <= n such that j / rad(j) = n / rad(n).
[ "1", "2", "3", "1", "4", "5", "6", "1", "1", "7", "8", "2", "9", "10", "11", "1", "12", "2", "13", "3", "14", "15", "16", "2", "1", "17", "1", "4", "18", "19", "20", "1", "21", "22", "23", "1", "24", "25", "26", "3", "27", "28", "29", "5", "3", "30", "31", "2", "1", "2", "32", "6", "33", "2", "34", "4", "35", "36", "37", "7", "38", "39", "4", "1", "40", "41", "42", "8", "43", "44", "45", "1", "46", "47", "3", "9", "48", "49", "50", "3" ]
[ "nonn" ]
10
1
2
[ "A001694", "A003557", "A008479", "A357241" ]
null
Ilya Gutkovskiy, Sep 19 2022
2022-11-01T13:41:03
oeisdata/seq/A357/A357241.seq
cc0aa78ecb6248d320582bfbba2404ad
A357242
Number of n node tournaments that have exactly two circular triads.
[ "24", "240", "2240", "21840", "228480", "2580480", "31449600", "412473600", "5801241600", "87178291200", "1394852659200", "23683435776000", "425430061056000", "8062248370176000", "160770717499392000", "3365514444644352000", "73798027581358080000", "1691677863018823680000", "40464026199993876480000" ]
[ "nonn", "easy" ]
21
4
1
null
null
Ian R Harris, Sep 19 2022
2025-01-06T06:31:22
oeisdata/seq/A357/A357242.seq
a124d161920af79eddc14c3176ee2b9c
A357243
E.g.f. satisfies A(x)^A(x) = 1/(1 - x)^(1 - x).
[ "1", "1", "-2", "6", "-52", "540", "-7608", "129304", "-2612608", "60867360", "-1608663840", "47527158624", "-1552431588288", "55547889458880", "-2160724031160576", "90782738645280000", "-4097139872604807168", "197675862365363088384", "-10153243488783257091072" ]
[ "sign" ]
18
0
3
[ "A005727", "A155456", "A349561", "A356905", "A356908", "A357243" ]
null
Seiichi Manyama, Sep 19 2022
2025-02-16T08:34:04
oeisdata/seq/A357/A357243.seq
f3c670da0b3967aa5a21fe514dbeaa05
A357244
E.g.f. satisfies A(x) * log(A(x)) = 2 * (exp(x) - 1).
[ "1", "2", "-2", "22", "-266", "4614", "-102442", "2777030", "-88914730", "3283693254", "-137408080298", "6425417730758", "-332055079469610", "18792899306652358", "-1156017201432075946", "76796076655220486854", "-5479395288838822143786", "417905042599836811225798", "-33928512587303405767179178" ]
[ "sign" ]
20
0
2
[ "A349583", "A356908", "A357244", "A357245" ]
null
Seiichi Manyama, Sep 19 2022
2025-02-16T08:34:04
oeisdata/seq/A357/A357244.seq
68ccd2b52bb372daa9a50cc522d93be0
A357245
E.g.f. satisfies A(x) * log(A(x)) = 3 * (exp(x) - 1).
[ "1", "3", "-6", "84", "-1599", "42906", "-1477716", "62171661", "-3090518556", "177237143040", "-11518529575857", "836601742598628", "-67156626492464064", "5904119985344031639", "-564188922815428792914", "58225175660113940932032", "-6453955474121138652732903", "764716767229825444834522086" ]
[ "sign" ]
18
0
2
[ "A349583", "A357244", "A357245" ]
null
Seiichi Manyama, Sep 19 2022
2025-02-16T08:34:04
oeisdata/seq/A357/A357245.seq
c3d3def0209e3f74708fde80b3f4c18b
A357246
E.g.f. satisfies A(x) * log(A(x)) = (1-x) * (exp(x) - 1).
[ "1", "1", "-2", "5", "-49", "497", "-6926", "116510", "-2325422", "53538315", "-1397740279", "40792008435", "-1316056239994", "46509292766172", "-1786748828967402", "74139054468535061", "-3304409577659864305", "157444695280699565069", "-7986085592316390890618", "429645521271113815480246" ]
[ "sign" ]
19
0
3
[ "A356902", "A357243", "A357246", "A357247" ]
null
Seiichi Manyama, Sep 19 2022
2025-02-16T08:34:04
oeisdata/seq/A357/A357246.seq
71fce10a9696661a5305c166204f76a7
A357247
E.g.f. satisfies A(x) * log(A(x)) = x * exp(-x).
[ "1", "1", "-3", "13", "-103", "1241", "-19691", "384805", "-8918351", "238966705", "-7265920339", "247123552061", "-9295263915191", "383095792217737", "-17167554097899323", "831082449069928021", "-43221681697593767071", "2403219105771778162529", "-142263939562414917333155" ]
[ "sign" ]
28
0
3
[ "A177885", "A216857", "A357243", "A357246", "A357247", "A359759" ]
null
Seiichi Manyama, Sep 19 2022
2025-02-16T08:34:04
oeisdata/seq/A357/A357247.seq
f1840f65a54d843f0cf98d2967b99129
A357248
Number of n-node tournaments that have exactly four circular triads.
[ "280", "6240", "75600", "954240", "12579840", "175392000", "2594592000", "40721049600", "677053977600", "11901451161600", "220690229760000", "4307253350400000", "88289523818496000", "1896762491559936000", "42625344258072576000", "1000193047805952000000", "24463730767033958400000", "622724156293184225280000" ]
[ "nonn" ]
52
5
1
[ "A357242", "A357248", "A357257", "A357266" ]
null
Ian R Harris, Ryan P. A. McShane, Sep 22 2022
2025-01-06T06:31:19
oeisdata/seq/A357/A357248.seq
352a71d8bc235faf89fe0595485389c9
A357249
a(n) = A139315(n)*n.
[ "2", "6", "24", "60", "360", "840", "10080", "7560", "0", "27720", "332640", "720720", "0", "10810800", "17297280", "36756720", "1102701600", "698377680", "27935107200", "48886437600", "0", "16062686640", "385504479360", "1204701498000", "0", "20238985166400", "4497552259200", "6987268688400", "0", "216605329340400" ]
[ "nonn" ]
15
2
1
[ "A129902", "A139315", "A357249" ]
null
J. Lowell, Sep 19 2022
2022-09-20T07:42:44
oeisdata/seq/A357/A357249.seq
23dc9740917eb6976106fe8231af85bb
A357250
Number of quaternary steady words of length n (with respect to the permutations of symbols).
[ "1", "2", "3", "5", "5", "7", "9", "12", "16", "21", "28", "37", "45", "58", "73", "93", "101", "124", "150", "179", "216", "257", "309", "376", "453", "551", "662", "798", "957", "1149", "1371", "1647", "1977", "2382", "2871", "3450", "4160", "4995", "5991", "7190", "8631", "10370", "12462", "14991", "17983", "21608", "25947", "31157", "37406", "44921", "53921" ]
[ "nonn" ]
17
3
2
null
null
Michel Marcus, Sep 20 2022
2024-01-08T16:47:32
oeisdata/seq/A357/A357250.seq
aaa2f4a22803e19a72fb771b752cd5bd
A357251
a(n) = Sum_{1<=i<=j<=n} prime(i)*prime(j).
[ "4", "19", "69", "188", "496", "1029", "2015", "3478", "5778", "9519", "14479", "21768", "31526", "43609", "59025", "79218", "105178", "135739", "173795", "219164", "271140", "333629", "406171", "491878", "594698", "711959", "842151", "988848", "1150168", "1330177", "1548617", "1791098", "2063454", "2359107", "2698231", "3064708", "3470396", "3918157", "4404795", "4938846" ]
[ "nonn" ]
21
1
1
[ "A007504", "A024447", "A024450", "A065762", "A143215", "A343751", "A357251", "A357252" ]
null
J. M. Bergot and Robert Israel, Sep 20 2022
2023-09-29T20:53:11
oeisdata/seq/A357/A357251.seq
369c10151ea0e784665a85411bbcadb0
A357252
Primes in A357251.
[ "19", "14479", "43609", "406171", "711959", "1330177", "2698231", "3918157", "18987169", "26135339", "194727347", "269998639", "975929347", "5005853669", "8430389621", "24830247671", "36372313009", "69703708967", "93194681917", "126628534313", "139478926201", "304123612349", "359101509211", "384305009171", "387550106843", "400722388999" ]
[ "nonn" ]
8
1
1
[ "A357251", "A357252" ]
null
J. M. Bergot and Robert Israel, Sep 20 2022
2022-10-02T19:54:13
oeisdata/seq/A357/A357252.seq
27719956494f871759948bac7ff2a359
A357253
a(n) is the largest prime < 6*n.
[ "5", "11", "17", "23", "29", "31", "41", "47", "53", "59", "61", "71", "73", "83", "89", "89", "101", "107", "113", "113", "113", "131", "137", "139", "149", "151", "157", "167", "173", "179", "181", "191", "197", "199", "199", "211", "211", "227", "233", "239", "241", "251", "257", "263", "269", "271", "281", "283", "293", "293", "293", "311", "317", "317", "317", "331", "337", "347", "353" ]
[ "nonn", "easy" ]
34
1
1
[ "A002476", "A007528", "A007917", "A008588", "A060308", "A118749", "A151799", "A357253" ]
null
Michel Marcus, Sep 20 2022
2024-01-28T03:44:22
oeisdata/seq/A357/A357253.seq
3e3c480550338dedfe79b421196f5681
A357254
Table read by antidiagonals: T(n,k) (n >= 3, k >= 0) is the number of edges in an n-gon when k internal n-gons are drawn between the n*k points that divide each side into k+1 equal parts.
[ "3", "9", "4", "27", "12", "5", "57", "36", "15", "6", "99", "76", "45", "18", "7", "135", "132", "95", "54", "21", "8", "219", "180", "165", "114", "63", "24", "9", "297", "292", "255", "198", "133", "72", "27", "10", "351", "348", "365", "306", "231", "152", "81", "30", "11", "489", "516", "495", "438", "357", "264", "171", "90", "33", "12", "603", "604", "645", "594", "511", "408", "297", "190", "99", "36", "13" ]
[ "nonn", "tabl" ]
22
3
1
[ "A135565", "A344899", "A356984", "A357008", "A357058", "A357061", "A357196", "A357198", "A357216", "A357235", "A357254" ]
null
Scott R. Shannon, Sep 20 2022
2022-09-21T12:00:37
oeisdata/seq/A357/A357254.seq
932b1971e6851eaca8c9b98e68d7ac16
A357255
Triangular array: row n gives the recurrence coefficients for the sequence (c(k) = number of subsets of {1,2,...,n} that have at least k-1 elements) for k >= 1.
[ "2", "3", "-2", "4", "-5", "2", "5", "-9", "7", "-2", "6", "-14", "16", "-9", "2", "7", "-20", "30", "-25", "11", "-2", "8", "-27", "50", "-55", "36", "-13", "2", "9", "-35", "77", "-105", "91", "-49", "15", "-2", "10", "-44", "112", "-182", "196", "-140", "64", "-17", "2", "11", "-54", "156", "-294", "378", "-336", "204", "-81", "19", "-2" ]
[ "tabl", "sign" ]
20
1
1
[ "A000079", "A000225", "A000295", "A002662", "A002663", "A002664", "A029635", "A029638", "A035038", "A035039", "A357255" ]
null
Clark Kimberling, Sep 24 2022
2025-03-23T20:53:14
oeisdata/seq/A357/A357255.seq
327b6095cf0bfc6f0b1355e4b900f61c
A357256
"Forest Fire" sequence with the additional condition that no progression of the form ABA is allowed for any terms A and B
[ "1", "1", "2", "2", "4", "4", "5", "3", "3", "5", "6", "6", "7", "10", "10", "7", "9", "12", "11", "9", "12", "8", "8", "14", "14", "11", "15", "13", "13", "17", "23", "20", "16", "15", "17", "23", "24", "16", "18", "18", "19", "26", "21", "28", "25", "19", "22", "22", "29", "24", "20", "30", "27", "21", "32", "29", "30", "35", "26", "34", "36", "25", "31", "32", "34", "37", "39", "36", "28", "27" ]
[ "nonn" ]
29
1
3
[ "A229037", "A357256" ]
null
Neal Gersh Tolunsky, Dec 11 2022
2022-12-13T02:04:14
oeisdata/seq/A357/A357256.seq
21630e6c2da4a77d47e0ad46a18c4f8e
A357257
Number of n-node tournaments that have exactly three circular triads.
[ "240", "2880", "33600", "403200", "5093760", "68275200", "972787200", "14724864000", "236396160000", "4016659046400", "72067387392000", "1362306097152000", "27071765360640000", "564357385912320000", "12317692759916544000", "280955128203509760000" ]
[ "nonn" ]
27
5
1
[ "A357242", "A357248", "A357257", "A357266" ]
null
Ian R Harris, Ryan P. A. McShane, Sep 20 2022
2025-01-06T06:31:16
oeisdata/seq/A357/A357257.seq
5beaf32ba43c2bfe0909c8747ca589ab
A357258
a(n) is the smallest prime p such that the minimum number of divisors among the numbers between p and NextPrime(p) is n, or -1 if no such prime exists.
[ "3", "5", "12117359", "11", "7212549413159", "29", "42433", "7207", "51110866676606486280448872612994247", "59", "494606165132621236223919803061511452090140639", "191", "149767", "269", "14634848452286682176094429263857838452673635407760468708604736302749897919", "179" ]
[ "nonn" ]
10
3
1
[ "A061112", "A356833", "A357170", "A357175", "A357258" ]
null
Jon E. Schoenfield, Sep 20 2022
2022-09-24T15:40:42
oeisdata/seq/A357/A357258.seq
4552149b90a039b67c0d84ca36ea5591
A357259
a(n) is the number of 2 X 2 Euclid-reduced matrices having determinant n.
[ "1", "2", "3", "5", "5", "8", "7", "11", "10", "14", "11", "19", "13", "20", "18", "24", "17", "30", "19", "31", "26", "32", "23", "44", "26", "38", "34", "45", "29", "54", "31", "52", "42", "50", "38", "70", "37", "56", "50", "70", "41", "76", "43", "73", "63", "68", "47", "97", "50", "80", "66", "87", "53", "100", "62", "96", "74", "86", "59", "132", "61", "92", "85", "109", "74", "124", "67", "115", "90", "118" ]
[ "nonn" ]
30
1
2
[ "A038548", "A079667", "A357259", "A357260" ]
null
Michel Marcus, Sep 21 2022
2024-05-18T09:53:22
oeisdata/seq/A357/A357259.seq
6d11f9919f2255e42ee591bc49735f45
A357260
a(n) is the number of 2 X 2 Euclid-reduced matrices having coprime elements and determinant n.
[ "1", "2", "3", "4", "5", "8", "7", "9", "9", "14", "11", "16", "13", "20", "18", "19", "17", "28", "19", "26", "26", "32", "23", "36", "25", "38", "31", "38", "29", "54", "31", "41", "42", "50", "38", "56", "37", "56", "50", "56", "41", "76", "43", "62", "58", "68", "47", "78", "49", "78", "66", "74", "53", "92", "62", "76", "74", "86", "59", "114", "61", "92", "78", "85", "74", "124", "67", "98", "90", "118" ]
[ "nonn" ]
14
1
2
[ "A357259", "A357260" ]
null
Michel Marcus, Sep 21 2022
2022-09-21T12:02:09
oeisdata/seq/A357/A357260.seq
bd3f36d5b7ef1f398f6b8c1345f18c06
A357261
a(n) is the number of blocks in the bottom row after adding n blocks to the preceding structure of rows. See Comments and Example sections for more details.
[ "1", "3", "3", "3", "4", "1", "3", "1", "5", "4", "3", "3", "4", "6", "1", "3", "6", "3", "1", "7", "5", "3", "2", "2", "3", "5", "8", "1", "3", "6", "1", "6", "3", "1", "9", "6", "3", "1", "10", "7", "4", "2", "1", "1", "2", "4", "7", "11", "1", "3", "6", "10", "3", "9", "4", "12", "5", "11", "5", "13", "5", "11", "4", "12", "7", "3", "14", "8", "2", "12", "8", "5", "3", "2", "2", "3", "5" ]
[ "nonn", "look", "easy" ]
75
1
2
[ "A002024", "A057176", "A064434", "A096535", "A104647", "A275204", "A357261" ]
null
John Tyler Rascoe, Oct 08 2022
2023-07-22T21:03:10
oeisdata/seq/A357/A357261.seq
4ec815b22c72a3456aaeea8ff83fcfce
A357262
Numbers k such that the product of distinct digits of k equals the sum of the prime divisors of k.
[ "2", "3", "5", "7", "126", "154", "315", "329", "342", "418", "833", "884", "1134", "1344", "1595", "1776", "1826", "1955", "2354", "4248", "4332", "5828", "7588", "7791", "9983", "14161", "15194", "16416", "21479", "22165", "23472", "25994", "26128", "27383", "33282", "42479", "42772", "43416", "43492", "44733", "45428", "51988", "55223", "61755", "72171", "72471" ]
[ "nonn", "base" ]
30
1
1
[ "A008472", "A357262" ]
null
Alexandru Petrescu, Sep 21 2022
2023-09-23T12:11:30
oeisdata/seq/A357/A357262.seq
5344adef26c872367122e6a83e01fdd6
A357263
Numbers k such that the sum of the distinct digits of k is equal to the product of the prime divisors of k.
[ "1", "2", "3", "5", "6", "7", "24", "343", "375", "392", "640", "686", "2401", "3375", "4802", "4913", "6400", "13122", "14336", "14641", "30375", "33614", "64000", "468750", "640000", "1703936", "2725888", "2839714", "2883584", "4687500", "5537792", "6298560", "6400000", "7864320", "13668750", "14172488", "19267584", "21807104", "26040609", "28629151" ]
[ "nonn", "base" ]
21
1
2
[ "A008472", "A217928", "A357263" ]
null
Alexandru Petrescu, Sep 21 2022
2022-11-19T21:20:06
oeisdata/seq/A357/A357263.seq
d02ffd53c187e860a4825ebc43f3c3f8
A357264
Circumference of the n X n giraffe graph.
[ "16", "28", "46", "62", "80", "100", "118", "144" ]
[ "nonn", "more" ]
15
5
1
null
null
Eric W. Weisstein, Sep 21 2022
2024-12-04T16:22:34
oeisdata/seq/A357/A357264.seq
1f183065f6799a5aeb1ab4509df983c3
A357265
Expansion of e.g.f. -LambertW(x * log(1-x)).
[ "0", "0", "2", "3", "32", "150", "1884", "16380", "249808", "3255336", "59596560", "1037413080", "22432698144", "486784686960", "12233449250736", "316660035739320", "9111729094222080", "273147758526888000", "8880267446524694016", "301952732236006556160", "10963551960785051470080" ]
[ "nonn" ]
10
0
3
[ "A052807", "A355842", "A357265", "A357267" ]
null
Seiichi Manyama, Sep 21 2022
2025-02-16T08:34:04
oeisdata/seq/A357/A357265.seq
d0ff4e8d5c1cbe103da30423d236256d
A357266
Number of n-node tournaments that have exactly five circular triads.
[ "24", "3648", "90384", "1304576", "19958400", "311592960", "5054353920", "85709352960", "1523221539840", "28387834675200", "554575551129600", "11345938174771200", "242796629621145600", "5427273747293798400", "126546947417899008000" ]
[ "nonn", "easy" ]
44
5
1
[ "A357242", "A357248", "A357257", "A357266" ]
null
Ian R Harris, Ryan P. A. McShane, Sep 22 2022
2025-01-06T06:31:12
oeisdata/seq/A357/A357266.seq
fe9b043e6433bdeda14528ac51acfc1c
A357267
Expansion of e.g.f. -LambertW(x * (1 - exp(x))).
[ "0", "0", "2", "3", "28", "125", "1506", "12607", "186600", "2352681", "41839750", "705821171", "14818593516", "311784460429", "7603945309338", "190868446707135", "5328147004384336", "154893585657590609", "4884408906341245326", "161057122218190660555", "5671407469802947722900" ]
[ "nonn" ]
11
0
3
[ "A048802", "A355843", "A357265", "A357267" ]
null
Seiichi Manyama, Sep 21 2022
2025-02-16T08:34:04
oeisdata/seq/A357/A357267.seq
77c29ef65c8002a284153e9e892e64ae
A357268
If n is a power of 2, a(n) = n. Otherwise, if 2^j is the greatest power of 2 not exceeding n, and if k = n - 2^j, then a(n) is the smallest m*a(k) which has not occurred already, where m is an odd number.
[ "1", "2", "3", "4", "5", "6", "9", "8", "7", "10", "15", "12", "25", "18", "27", "16", "11", "14", "21", "20", "35", "30", "45", "24", "49", "50", "75", "36", "125", "54", "81", "32", "13", "22", "33", "28", "55", "42", "63", "40", "77", "70", "105", "60", "175", "90", "135", "48", "99", "98", "147", "100", "245", "150", "225", "72", "343", "250", "375", "108", "625", "162", "243", "64", "17" ]
[ "nonn" ]
38
1
2
[ "A005940", "A053644", "A053645", "A356867", "A356886", "A357268" ]
null
David James Sycamore, Sep 21 2022
2022-10-02T10:33:30
oeisdata/seq/A357/A357268.seq
9fec7caf82e1658bfe5b6cd99f1f4107
A357269
Maximum number of stable matchings in the stable marriage problem of order n.
[ "1", "2", "3", "10", "16" ]
[ "nonn", "more" ]
25
1
2
[ "A069156", "A351409", "A351430", "A357269", "A357271" ]
null
Dan Eilers, Sep 21 2022
2022-11-06T08:35:08
oeisdata/seq/A357/A357269.seq
5f54690024f440113b6b7a75325ef0aa
A357270
a(n) = s(n) mod prime(n+1), where s = A143293.
[ "1", "0", "4", "4", "7", "11", "0", "3", "15", "6", "11", "9", "4", "41", "4", "26", "28", "56", "4", "54", "23", "37", "78", "48", "11", "17", "32", "68", "85", "34", "78", "12", "120", "28", "68", "24", "76", "116", "17", "55", "40", "3", "91", "111", "132", "133", "195", "75", "179", "44", "211", "108", "3", "63", "21", "28", "85", "22", "208", "237", "9", "166", "81", "183", "205", "208" ]
[ "nonn", "easy" ]
37
0
3
[ "A000040", "A143293", "A357270" ]
null
Christopher A. Curry, Sep 21 2022
2022-10-16T01:16:27
oeisdata/seq/A357/A357270.seq
3f7c5b1e0896ffc6f5b3f488ed465e2a
A357271
Lower bounds for the maximum number of stable matchings in the stable marriage problem based on composing smaller instances.
[ "1", "2", "3", "10", "16", "48", "71", "268", "330", "1000", "1231", "6472", "6720", "20176", "25011", "195472", "200832", "456300", "637336", "3419680", "3506880", "11221136", "15481956", "126112960", "127885440", "262860800", "384418176", "2000043808" ]
[ "nonn" ]
10
1
2
[ "A069156", "A357269", "A357271" ]
null
Dan Eilers, Sep 21 2022
2022-11-06T08:35:54
oeisdata/seq/A357/A357271.seq
59f0ec8120dc689b99a151d3074ab3dc
A357272
a(n) is the number of ways n can be calculated with expressions of the form "d1 o1 d2 o2 d3 o3 d4" where d1-d4 are decimal digits (0-9) and o1-o3 are chosen from the four basic arithmetic operators (+, -, *, /).
[ "29235", "12654", "12450", "12425", "12427", "11915", "12419", "11792", "12062", "11725", "8748", "7686", "8180", "6632", "6549", "6077", "5758", "4532", "4915", "3503", "3649", "3451", "2684", "2468", "3253", "2288", "1957", "2347", "2197", "1627", "2028", "1444", "1899", "1439", "1281", "1531", "2080", "1195", "1126", "1147", "1513" ]
[ "nonn", "base" ]
39
0
1
null
null
Rod McFarland, Sep 22 2022
2022-11-10T12:36:09
oeisdata/seq/A357/A357272.seq
477d841602f9ef651d16835494713978
A357273
Integers m whose decimal expansion is a prefix of the concatenation of the divisors of m.
[ "1", "11", "12", "124", "135", "1111", "1525", "13515", "124816", "1223462", "12356910", "13919571", "1210320658", "1243162124", "1525125625", "12346121028", "12478141928", "12510153130", "12510254150", "1234689111216", "1351553159265", "1597717414885", "1713913539247", "12356910151830", "13791121336377" ]
[ "nonn", "base" ]
39
1
2
[ "A004022", "A037278", "A131835", "A175252", "A357273" ]
null
Michel Marcus, Sep 22 2022
2022-10-20T05:05:01
oeisdata/seq/A357/A357273.seq
1d59f5f0a373499f1ffec61a517d3766
A357274
List of primitive triples for integer-sided triangles with angles A < B < C and C = 2*Pi/3 = 120 degrees.
[ "3", "5", "7", "7", "8", "13", "5", "16", "19", "11", "24", "31", "7", "33", "37", "13", "35", "43", "16", "39", "49", "9", "56", "61", "32", "45", "67", "17", "63", "73", "40", "51", "79", "11", "85", "91", "19", "80", "91", "55", "57", "97", "40", "77", "103", "24", "95", "109", "13", "120", "127", "23", "120", "133", "65", "88", "133", "69", "91", "139", "56", "115", "151", "25", "143", "157", "75", "112", "163", "15", "161", "169", "104", "105", "181" ]
[ "nonn", "tabf" ]
31
1
1
[ "A263728", "A335893", "A336750", "A357274", "A357275", "A357276", "A357277", "A357278" ]
null
Bernard Schott, Sep 22 2022
2022-12-04T11:58:29
oeisdata/seq/A357/A357274.seq
6cb8c043948181b6aeb8b9ca3bcc8fa2
A357275
Smallest side of integer-sided primitive triangles whose angles satisfy A < B < C = 2*Pi/3.
[ "3", "7", "5", "11", "7", "13", "16", "9", "32", "17", "40", "11", "19", "55", "40", "24", "13", "23", "65", "69", "56", "25", "75", "15", "104", "32", "56", "29", "17", "87", "85", "119", "31", "72", "93", "64", "144", "19", "95", "133", "40", "136", "35", "105", "21", "105", "37", "111", "185", "88", "152", "176", "23", "80", "115", "161", "41", "123", "240", "48", "205", "240", "43", "25", "129", "175", "215", "88" ]
[ "nonn" ]
23
1
1
[ "A002324", "A050931", "A088514", "A106505", "A229849", "A357274", "A357275", "A357276", "A357277", "A357278" ]
null
Bernard Schott, Sep 23 2022
2022-09-25T22:56:03
oeisdata/seq/A357/A357275.seq
d4a21b1cf5c90a94407bc28cd9a45c39
A357276
Middle side of integer-sided primitive triangles whose angles satisfy A < B < C = 2*Pi/3 = 120 degrees.
[ "5", "8", "16", "24", "33", "35", "39", "56", "45", "63", "51", "85", "80", "57", "77", "95", "120", "120", "88", "91", "115", "143", "112", "161", "105", "175", "165", "195", "208", "160", "168", "145", "224", "203", "187", "221", "155", "261", "217", "192", "279", "209", "288", "247", "320", "272", "323", "280", "231", "315", "273", "259", "385", "357", "333", "304", "399", "352", "253", "407", "299", "287", "440" ]
[ "nonn" ]
11
1
1
[ "A088586", "A229849", "A229859", "A357274", "A357275", "A357276", "A357277", "A357278" ]
null
Bernard Schott, Sep 25 2022
2022-09-30T23:43:01
oeisdata/seq/A357/A357276.seq
9d72cf26cf659507daaccfbe145b994e
A357277
Largest side c of primitive triples, in nondecreasing order, for integer-sided triangles with angles A < B < C = 2*Pi/3 = 120 degrees.
[ "7", "13", "19", "31", "37", "43", "49", "61", "67", "73", "79", "91", "91", "97", "103", "109", "127", "133", "133", "139", "151", "157", "163", "169", "181", "193", "199", "211", "217", "217", "223", "229", "241", "247", "247", "259", "259", "271", "277", "283", "301", "301", "307", "313", "331", "337", "343", "349", "361", "367", "373", "379", "397", "403", "403", "409", "421", "427", "427", "433", "439", "457" ]
[ "nonn" ]
27
1
1
[ "A004611", "A050931", "A088513", "A121940", "A133290", "A335895", "A357274", "A357275", "A357276", "A357277", "A357278" ]
null
Bernard Schott, Oct 01 2022
2023-01-29T19:45:54
oeisdata/seq/A357/A357277.seq
341f921227cd8b962aaf6a3dd2274799
A357278
Perimeters of primitive integer-sided triangles with angles A < B < C = 2*Pi/3 = 120 degrees.
[ "15", "28", "40", "66", "77", "91", "104", "126", "144", "153", "170", "187", "190", "209", "220", "228", "260", "276", "286", "299", "322", "325", "350", "345", "390", "400", "420", "435", "442", "464", "476", "493", "496", "522", "527", "544", "558", "551", "589", "608", "620", "646", "630", "665", "672", "714", "703", "740", "777", "770", "798", "814", "805" ]
[ "nonn" ]
17
1
1
[ "A350045", "A350047", "A357274", "A357275", "A357276", "A357277", "A357278" ]
null
Bernard Schott, Oct 24 2022
2022-10-29T10:41:55
oeisdata/seq/A357/A357278.seq
279a7ad8bdafd91d992ca9c56fb2bbb8
A357279
a(n) is the hafnian of the 2n X 2n symmetric matrix defined by M[i, j] = i + j - 1.
[ "1", "2", "43", "2610", "312081", "61825050", "18318396195", "7586241152490", "4184711271725985", "2965919152834367730", "2626408950849351178875" ]
[ "nonn", "hard", "more" ]
59
0
2
[ "A002024", "A002415", "A095833", "A202038", "A204248", "A336114", "A336286", "A336400", "A338456", "A356481", "A356482", "A356483", "A356484", "A357279" ]
null
Stefano Spezia, Sep 25 2022
2023-10-14T15:38:12
oeisdata/seq/A357/A357279.seq
26bf5cabb0e235800d7acac2eef83ed3
A357280
Smallest m such that m^k-2 and m^k+2 are prime for k=1..n.
[ "5", "9", "102795", "559838181", "27336417022509" ]
[ "nonn", "more", "hard" ]
29
1
1
[ "A189051", "A245510", "A245512", "A329727", "A357280" ]
null
Kellen Shenton, Sep 24 2022
2022-11-29T10:31:45
oeisdata/seq/A357/A357280.seq
c82fd102b9544de70f35bd0dd4203668
A357281
The numbers of a square spiral with 1 in the center, lying at integer points of the right branch of the parabola y=n^2.
[ "1", "9", "79", "355", "1077", "2581", "5299", "9759", "16585", "26497", "40311", "58939", "83389", "114765", "154267", "203191", "262929", "334969", "420895", "522387", "641221", "779269", "938499", "1120975", "1328857", "1564401", "1829959", "2127979", "2461005", "2831677", "3242731", "3696999", "4197409" ]
[ "nonn", "easy" ]
60
0
2
[ "A000583", "A033951", "A054552", "A056108", "A357281" ]
null
Nicolay Avilov, Sep 22 2022
2023-10-15T16:24:50
oeisdata/seq/A357/A357281.seq
1c0c67867757bbd11635baa93a0c4d48
A357282
a(n) = number of subsets S of {1,2,...,n} having more than 1 element such that (difference between least two elements of S) = difference between greatest two elements of S.
[ "0", "0", "1", "4", "9", "18", "33", "60", "109", "202", "381", "732", "1425", "2802", "5545", "11020", "21957", "43818", "87525", "174924", "349705", "699250", "1398321", "2796444", "5592669", "11185098", "22369933", "44739580", "89478849", "178957362", "357914361", "715828332", "1431656245", "2863312042", "5726623605" ]
[ "nonn", "easy" ]
5
0
4
[ "A000295", "A272144", "A357282" ]
null
Clark Kimberling, Sep 27 2022
2022-10-01T19:33:28
oeisdata/seq/A357/A357282.seq
bb9d748190767169125c35b4f7fc004e
A357283
a(n) = number of subsets S of {1,2,...,n} having more than 1 element such that (sum of least two elements of S) < max(S).
[ "0", "0", "0", "0", "2", "8", "26", "68", "166", "376", "826", "1756", "3678", "7584", "15522", "31524", "63782", "128552", "258602", "519212", "1041454", "2086960", "4180018", "8368180", "16748598", "33513528", "67051578", "134135868", "268320830", "536707136", "1073512514", "2147156036", "4294508614", "8589279304" ]
[ "nonn", "easy" ]
4
0
5
[ "A357283", "A357284" ]
null
Clark Kimberling, Sep 27 2022
2022-10-01T19:33:39
oeisdata/seq/A357/A357283.seq
a2222404ef6c3096343a109fd0b3f021
A357284
a(n) = (1/2)*A357283(n).
[ "0", "0", "0", "0", "1", "4", "13", "34", "83", "188", "413", "878", "1839", "3792", "7761", "15762", "31891", "64276", "129301", "259606", "520727", "1043480", "2090009", "4184090", "8374299", "16756764", "33525789", "67067934", "134160415", "268353568", "536756257", "1073578018", "2147254307", "4294639652", "8589475877" ]
[ "nonn", "easy" ]
8
0
6
[ "A274230", "A357283", "A357284" ]
null
Clark Kimberling, Sep 27 2022
2022-11-09T07:56:32
oeisdata/seq/A357/A357284.seq
0430150dfce12646a39ca02bee30874d
A357285
a(n) = number of subsets S of {1,2,...,n} having more than 2 elements such that (sum of least three elements of S) < max(S).
[ "0", "0", "0", "0", "0", "0", "0", "8", "32", "104", "304", "792", "1920", "4520", "10192", "22392", "48416", "102856", "215664", "448792", "925632", "1897064", "3872016", "7868344", "15936096", "32208136", "64946096", "130738776", "262886656", "527990696", "1059498576", "2124829944", "4258791328", "8532044360", "17087943920" ]
[ "nonn", "easy" ]
4
0
8
[ "A357285", "A357286", "A357287", "A357289" ]
null
Clark Kimberling, Oct 02 2022
2022-10-02T13:34:06
oeisdata/seq/A357/A357285.seq
dd559fbfdff03c842f55a4f0435f8902
A357286
a(n) = (1/8)*A357285.
[ "0", "0", "0", "0", "0", "0", "0", "1", "4", "13", "38", "99", "240", "565", "1274", "2799", "6052", "12857", "26958", "56099", "115704", "237133", "484002", "983543", "1992012", "4026017", "8118262", "16342347", "32860832", "65998837", "132437322", "265603743", "532348916", "1066505545", "2135992990", "4276649971", "8560661832" ]
[ "nonn", "easy" ]
6
0
9
[ "A357285", "A357286" ]
null
Clark Kimberling, Oct 02 2022
2023-12-10T09:24:12
oeisdata/seq/A357/A357286.seq
b80a5fbb8eff7dc39580d15f16519b76
A357287
a(n) = number of subsets S of {1,2,...,n} having more than 2 elements such that (sum of least three elements of S) = max(S).
[ "0", "0", "0", "0", "0", "0", "4", "8", "20", "48", "92", "168", "340", "576", "1004", "1816", "3012", "4976", "8732", "14024", "22900", "38944", "62156", "99704", "167972", "264912", "423292", "704552", "1108692", "1758592", "2916396", "4565720", "7230852", "11927600", "18655964", "29447560", "48496692", "75672288", "119362956" ]
[ "nonn", "easy" ]
5
0
7
[ "A357285", "A357287", "A357288", "A357289" ]
null
Clark Kimberling, Oct 02 2022
2022-10-02T13:34:29
oeisdata/seq/A357/A357287.seq
8c5c7eb95412ac40d79115eff004756a
A357288
a(n) = (1/4)*A357287(n).
[ "0", "0", "0", "0", "0", "0", "1", "2", "5", "12", "23", "42", "85", "144", "251", "454", "753", "1244", "2183", "3506", "5725", "9736", "15539", "24926", "41993", "66228", "105823", "176138", "277173", "439648", "729099", "1141430", "1807713", "2981900", "4663991", "7361890", "12124173", "18918072", "29840739", "49020942" ]
[ "nonn", "easy" ]
10
0
8
[ "A357287", "A357288" ]
null
Clark Kimberling, Oct 02 2022
2022-10-20T12:44:47
oeisdata/seq/A357/A357288.seq
fdb49e2c2adae84a20781a53fee30337
A357289
a(n) = number of subsets S of {1,2,...,n} having more than 2 elements such that (sum of least three elements of S) > max(S).
[ "0", "0", "0", "1", "5", "16", "38", "83", "167", "314", "572", "1021", "1757", "3004", "5082", "8439", "13971", "23086", "37576", "61281", "99833", "160912", "259878", "420283", "672847", "1081058", "1739124", "2774021", "4439701", "7121188", "11326386", "18087487", "28944587", "45962070", "73268704", "117090409", "185684721", "295697784", "472033278", "747983491" ]
[ "nonn", "easy" ]
4
0
5
[ "A357287", "A357289", "A357290" ]
null
Clark Kimberling, Oct 02 2022
2022-10-02T13:34:41
oeisdata/seq/A357/A357289.seq
c26a2922fb4cdbb230caf91cf45e0d9a
A357290
a(n) = number of subsets S of {1,2,...,n} having more than 2 elements such that (sum of least two elements of S) > difference between greatest two elements of S.
[ "0", "0", "0", "1", "5", "15", "39", "91", "200", "424", "879", "1796", "3639", "7334", "14734", "29545", "59179", "118459", "237033", "474195", "948534", "1897228", "3794633", "7589460", "15179133", "30358498", "60717248", "121434769", "242869833", "485739983", "971480307", "1942960979", "3885922348", "7771845112" ]
[ "nonn", "easy" ]
7
0
5
[ "A357290", "A357291", "A357292" ]
null
Clark Kimberling, Oct 02 2022
2022-10-02T13:33:51
oeisdata/seq/A357/A357290.seq
3333f666acc4ad99a0bd4777ec41f412
A357291
a(n) = number of subsets S of {1,2,...,n} having more than 2 elements such that (sum of least two elements of S) < difference between greatest two elements of S.
[ "0", "0", "0", "0", "0", "0", "1", "3", "8", "19", "42", "89", "185", "378", "766", "1544", "3102", "6220", "12459", "24939", "49902", "99831", "199692", "399417", "798871", "1597782", "3195608", "6391264", "12782580", "25565216", "51130493", "102261051", "204522172", "409044419", "818088918", "1636177921", "3272355933" ]
[ "nonn", "easy" ]
12
0
8
[ "A021025", "A357290", "A357291", "A357292" ]
null
Clark Kimberling, Oct 02 2022
2022-10-13T13:09:01
oeisdata/seq/A357/A357291.seq
08df327ee183c12ef8b2b1ee90b9bce3
A357292
a(n) = number of subsets S of {1,2,...,n} having more than 2 elements such that (sum of least two elements of S) = difference between greatest two elements of S.
[ "0", "0", "0", "0", "0", "1", "2", "5", "11", "23", "47", "96", "193", "388", "778", "1558", "3118", "6239", "12480", "24963", "49929", "99861", "199725", "399454", "798911", "1597826", "3195656", "6391316", "12782636", "25565277", "51130558", "102261121", "204522247", "409044499", "818089003", "1636178012", "3272356029" ]
[ "nonn", "easy" ]
9
0
7
[ "A357290", "A357291", "A357292" ]
null
Clark Kimberling, Oct 02 2022
2022-10-23T23:45:38
oeisdata/seq/A357/A357292.seq
73739e483498d61cd58b37c3e703bb5c
A357293
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} Stirling2(n,k*j).
[ "1", "1", "0", "1", "1", "0", "1", "0", "2", "0", "1", "0", "1", "5", "0", "1", "0", "0", "3", "15", "0", "1", "0", "0", "1", "8", "52", "0", "1", "0", "0", "0", "6", "25", "203", "0", "1", "0", "0", "0", "1", "25", "97", "877", "0", "1", "0", "0", "0", "0", "10", "91", "434", "4140", "0", "1", "0", "0", "0", "0", "1", "65", "322", "2095", "21147", "0", "1", "0", "0", "0", "0", "0", "15", "350", "1232", "10707", "115975", "0", "1", "0", "0", "0", "0", "0", "1", "140", "1702", "5672", "58194", "678570", "0" ]
[ "nonn", "tabl" ]
26
0
9
[ "A000007", "A000110", "A024430", "A143815", "A357119", "A357293" ]
null
Seiichi Manyama, Oct 17 2022
2025-02-16T08:34:04
oeisdata/seq/A357/A357293.seq
bda9a8234bf58f157239969ece17ed02
A357294
Number of integral quantales on n elements, up to isomorphism.
[ "1", "1", "2", "9", "49", "364", "3335", "37026", "496241" ]
[ "nonn", "more" ]
6
1
3
[ "A354493", "A354495", "A354497", "A357294", "A357295" ]
null
Arman Shamsgovara, Sep 22 2022
2022-11-06T12:27:43
oeisdata/seq/A357/A357294.seq
7054b620721d122707c4953d89d8d74b
A357295
Number of balanced quantales on n elements, up to isomorphism.
[ "1", "1", "9", "106", "1597", "29720", "663897", "17747907", "620659554" ]
[ "nonn", "more" ]
8
1
3
[ "A354493", "A357295" ]
null
Arman Shamsgovara, Sep 22 2022
2022-11-06T12:27:57
oeisdata/seq/A357/A357295.seq
dbae315b5d0c3f9369a94cf1ef50f827
A357296
Expansion of e.g.f. Sum_{k>0} x^k / (k! * (1 - x^k/k)).
[ "1", "3", "7", "31", "121", "851", "5041", "43261", "369601", "3748249", "39916801", "490801081", "6227020801", "87861842641", "1310800947457", "21018206008801", "355687428096001", "6419518510204801", "121645100408832001", "2435836129700029057", "51102829650622464001", "1124549558817839481601" ]
[ "nonn" ]
19
1
2
[ "A038507", "A057625", "A327578", "A354891", "A357296" ]
null
Seiichi Manyama, Feb 23 2023
2023-07-31T02:25:39
oeisdata/seq/A357/A357296.seq
02dd227376af17eda0e7d2c1883d0b95
A357297
T(m,n) is the number of linear extensions of n fork-join DAGs of width m, read by downward antidiagonals.
[ "1", "1", "1", "6", "1", "1", "90", "20", "2", "1", "2520", "1680", "280", "6", "1", "113400", "369600", "277200", "9072", "24", "1", "7484400", "168168000", "1009008000", "163459296", "532224", "120", "1", "681080400", "137225088000", "9777287520000", "15205637551104", "237124952064", "49420800", "720", "1", "81729648000", "182509367040000", "207786914375040000", "4847253138540933120", "765985681152147456", "689598074880000", "6671808000", "5040", "1" ]
[ "nonn", "tabl" ]
27
0
4
[ "A000012", "A000142", "A000680", "A014606", "A260331", "A357297", "A361901", "A362565" ]
null
José E. Solsona, Feb 22 2023
2023-05-23T05:38:07
oeisdata/seq/A357/A357297.seq
39679755ece2257296dd5d654dc3597b
A357298
Triangle read by rows where all entries in every even row are 1's and the entries in every odd row alternate between 0 (start/end) and 1.
[ "0", "1", "1", "0", "1", "0", "1", "1", "1", "1", "0", "1", "0", "1", "0", "1", "1", "1", "1", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "easy", "tabl" ]
58
1
1
[ "A065423", "A357298", "A358125" ]
null
Ambrosio Valencia-Romero, Dec 20 2022
2023-01-11T06:41:08
oeisdata/seq/A357/A357298.seq
d7cbe352de62ad76f09c99f39d9f8795
A357299
a(n) is the number of divisors of n whose first digit equals the first digit of n.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "1", "2", "1", "2", "1", "2", "1", "2", "1", "2", "1", "1", "2", "1", "1", "2", "1", "1", "2", "2", "1", "1", "1", "2", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "2", "3" ]
[ "nonn", "base" ]
28
1
10
[ "A000030", "A131835", "A330348", "A356549", "A357299", "A357300" ]
null
Bernard Schott, Sep 23 2022
2022-09-24T08:16:19
oeisdata/seq/A357/A357299.seq
ada68db906714ad5ae780e175bc7072c
A357300
a(n) is the smallest number m with exactly n divisors whose first digit equals the first digit of m.
[ "1", "10", "100", "108", "120", "180", "1040", "1020", "1170", "1008", "1260", "1680", "10010", "10530", "10200", "10260", "10560", "10800", "11340", "10920", "12600", "10080", "15840", "18480", "15120", "102060", "104400", "101640", "100320", "102600", "100980", "117600", "114660", "107100", "174240", "113400", "105840", "100800", "120120", "143640" ]
[ "nonn", "base" ]
27
1
2
[ "A206287", "A333456", "A335038", "A335491", "A355592", "A357299", "A357300" ]
null
Bernard Schott, Sep 23 2022
2022-09-26T06:17:45
oeisdata/seq/A357/A357300.seq
5740604f019d88589ed522a2731dbdb5