sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
sequencelengths 1
348
| keywords
sequencelengths 1
8
| score
int64 1
2.31k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
sequencelengths 1
128
⌀ | former_ids
sequencelengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-28 00:58:08
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A357401 | Coefficients in the power series expansion of 1/Sum_{n=-oo..+oo} n * x^(2*n+1) * (1 - x^n)^(n+1). | [
"1",
"0",
"1",
"0",
"-2",
"8",
"-14",
"16",
"-7",
"-24",
"103",
"-232",
"334",
"-256",
"-211",
"1400",
"-3562",
"6048",
"-6470",
"512",
"17788",
"-53720",
"102983",
"-134832",
"76147",
"187960",
"-776169",
"1690880",
"-2558499",
"2270952",
"1214672",
"-10443024",
"26674201",
"-45822896",
"51953043",
"-11147384",
"-126256811",
"401311496"
] | [
"sign"
] | 16 | 1 | 5 | [
"A357400",
"A357401",
"A357406"
] | null | Paul D. Hanna, Sep 26 2022 | 2022-09-29T17:46:40 | oeisdata/seq/A357/A357401.seq | ee2d22226574195044b1ae90f6f24f6a |
A357402 | Coefficients in the power series A(x) such that: 2 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n. | [
"1",
"2",
"8",
"42",
"236",
"1420",
"8976",
"58644",
"393200",
"2689522",
"18694164",
"131658910",
"937490780",
"6737990172",
"48816739048",
"356142597586",
"2614103310384",
"19291118713324",
"143044431901580",
"1065237986700788",
"7963426677825000",
"59741019702076168",
"449601401992383464",
"3393484429948103486"
] | [
"nonn"
] | 8 | 0 | 2 | [
"A356783",
"A357400",
"A357402",
"A357403",
"A357404",
"A357405"
] | null | Paul D. Hanna, Sep 26 2022 | 2022-10-08T00:26:48 | oeisdata/seq/A357/A357402.seq | aa90b9bacc3f643a4301cfecc65d5b18 |
A357403 | Coefficients in the power series A(x) such that: 3 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n. | [
"1",
"3",
"18",
"138",
"1161",
"10470",
"98979",
"967719",
"9705378",
"99290130",
"1032123366",
"10870453785",
"115749660723",
"1244016993747",
"13477172250201",
"147021521096445",
"1613619363015645",
"17805435511256394",
"197414608524234453",
"2198189145649419426",
"24571174933256703567",
"275615684936993421462"
] | [
"nonn"
] | 6 | 0 | 2 | [
"A356783",
"A357400",
"A357402",
"A357403",
"A357404",
"A357405"
] | null | Paul D. Hanna, Sep 26 2022 | 2022-09-27T12:00:18 | oeisdata/seq/A357/A357403.seq | 00189eaae64f6ed446ea3a030f8a4fcb |
A357404 | Coefficients in the power series A(x) such that: 4 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n. | [
"1",
"4",
"32",
"324",
"3632",
"43640",
"549472",
"7154952",
"95563392",
"1301943972",
"18022506736",
"252768034908",
"3584103003152",
"51294399688504",
"739984677348512",
"10749373940462452",
"157101410692820448",
"2308378616597302488",
"34080671255517914992",
"505321131709023383016",
"7521442675843527317728"
] | [
"nonn"
] | 6 | 0 | 2 | [
"A356783",
"A357400",
"A357402",
"A357403",
"A357404",
"A357405"
] | null | Paul D. Hanna, Sep 26 2022 | 2022-09-27T12:24:27 | oeisdata/seq/A357/A357404.seq | 16bd24eda3f7b25f717212205862abe6 |
A357405 | Coefficients in the power series A(x) such that: 5 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n. | [
"1",
"5",
"50",
"630",
"8825",
"132490",
"2084115",
"33903705",
"565697930",
"9627904690",
"166493454330",
"2917050253615",
"51670197054515",
"923774673549045",
"16647699155752645",
"302098954307654995",
"5515438344643031325",
"101237254225602624790",
"1867129260849076888865",
"34583287418814030368150"
] | [
"nonn"
] | 6 | 0 | 2 | [
"A356783",
"A357400",
"A357402",
"A357403",
"A357404",
"A357405"
] | null | Paul D. Hanna, Sep 26 2022 | 2022-09-27T12:49:10 | oeisdata/seq/A357/A357405.seq | 424af4fe5f362e38ec8d79800bcc21b7 |
A357406 | Coefficients in the power series expansion of A(x) = Sum_{n=-oo..+oo} n * x^(2*n+2) * (1 - x^n)^(n+1). | [
"1",
"0",
"-1",
"0",
"3",
"-8",
"9",
"0",
"-10",
"0",
"24",
"-24",
"0",
"0",
"15",
"0",
"9",
"-80",
"90",
"0",
"-43",
"0",
"57",
"-80",
"13",
"0",
"175",
"-200",
"15",
"-120",
"313",
"0",
"-346",
"0",
"450",
"-168",
"19",
"-744",
"830",
"0",
"21",
"-224",
"-287",
"0",
"405",
"0",
"1014",
"-1968",
"25",
"0",
"2813",
"-784",
"-2448",
"-360",
"1575",
"0",
"2765",
"-3520",
"450",
"-440",
"31"
] | [
"sign"
] | 9 | 0 | 5 | [
"A356774",
"A357401",
"A357406"
] | null | Paul D. Hanna, Sep 27 2022 | 2022-10-08T15:16:30 | oeisdata/seq/A357/A357406.seq | eb0aa8549408442d1473f2a2af01682b |
A357407 | a(n) = coefficient of x^n, n >= 0, in A(x) = exp( Sum_{n>=1} A183204(n)*x^n/n ), where A183204 equals the central terms of triangle A181544. | [
"1",
"4",
"32",
"360",
"4964",
"78064",
"1344020",
"24708928",
"477282794",
"9580852360",
"198322047840",
"4209371498256",
"91221481924426",
"2011834246746792",
"45039165331725264",
"1021419638492387856",
"23426910170090512779",
"542666070296546760492",
"12681393784980089971368"
] | [
"nonn"
] | 10 | 0 | 2 | [
"A181544",
"A183204",
"A357407"
] | null | Paul D. Hanna, Oct 19 2022 | 2023-03-14T05:22:01 | oeisdata/seq/A357/A357407.seq | 4957922f4c35675e7478e5d70a70735d |
A357408 | a(n) is the least sum n + y such that 1/n + 1/y = 1/z with gcd(n,y,z) = 1, for some integers y and z. | [
"4",
"9",
"16",
"25",
"9",
"49",
"64",
"81",
"25",
"121",
"16",
"169",
"49",
"25",
"256",
"289",
"81",
"361",
"25",
"49",
"121",
"529",
"64",
"625",
"169",
"729",
"49",
"841",
"36",
"961",
"1024",
"121",
"289",
"49",
"81",
"1369",
"361",
"169",
"64",
"1681",
"49",
"1849",
"121",
"81",
"529",
"2209",
"256",
"2401",
"625",
"289",
"169",
"2809",
"729",
"121",
"64",
"361"
] | [
"nonn"
] | 23 | 2 | 1 | [
"A000290",
"A034699",
"A357408"
] | null | Michel Lagneau, Sep 26 2022 | 2022-11-06T08:38:25 | oeisdata/seq/A357/A357408.seq | 9632fa96dae87a342d9f726b71044872 |
A357409 | a(n) is the maximum number of positive numbers in a set of n consecutive positive or negative odd numbers such that the number of pairs that add to a power of 2 is maximal. | [
"1",
"2",
"3",
"3",
"4",
"5",
"5",
"6",
"6",
"7",
"7",
"8",
"9",
"9",
"10",
"10",
"11",
"11",
"12",
"12",
"13",
"13",
"14",
"14",
"15",
"15",
"17",
"18",
"18",
"19",
"19",
"20",
"20",
"21",
"21",
"22",
"22",
"23",
"23",
"24",
"24",
"25",
"25",
"26",
"26",
"27",
"27",
"28",
"28",
"29",
"29",
"30",
"30",
"31",
"31",
"32",
"33",
"33",
"34",
"34",
"35",
"35",
"36",
"36",
"37",
"37",
"38",
"38",
"39"
] | [
"nonn"
] | 39 | 1 | 2 | [
"A274089",
"A347301",
"A352178",
"A357409",
"A357574"
] | null | Thomas Scheuerle, Sep 26 2022 | 2022-10-27T05:33:49 | oeisdata/seq/A357/A357409.seq | 2747c8563d590a7469f072aefd9b1baa |
A357410 | a(n) is the number of covering relations in the poset P of n X n idempotent matrices over GF(2) ordered by A <= B if and only if AB = BA = A. | [
"0",
"1",
"12",
"224",
"6960",
"397792",
"42001344",
"8547291008",
"3336917303040",
"2565880599084544",
"3852698988517260288",
"11517943538435677485056",
"67829192662051610706309120",
"799669932659456441970547744768",
"18652191511341505602408972738871296",
"873360272626100960024734923878091948032"
] | [
"nonn"
] | 18 | 0 | 3 | [
"A002884",
"A132186",
"A296548",
"A342245",
"A357410"
] | null | Geoffrey Critzer, Sep 26 2022 | 2022-09-26T20:03:40 | oeisdata/seq/A357/A357410.seq | 6cceb1351546e24a2d36a2e2ffe7a4d0 |
A357411 | Number of nonempty subsets of {1..n} whose elements have an odd harmonic mean. | [
"1",
"1",
"2",
"2",
"3",
"5",
"6",
"6",
"7",
"9",
"10",
"10",
"11",
"13",
"26",
"26",
"27",
"45",
"46",
"74",
"93",
"99",
"100",
"162",
"163",
"165",
"166",
"458",
"459",
"865",
"866",
"866",
"1647",
"1669",
"2724"
] | [
"nonn",
"more"
] | 25 | 1 | 3 | [
"A339453",
"A357355",
"A357411",
"A357412",
"A357413",
"A357415"
] | null | Ilya Gutkovskiy, Sep 27 2022 | 2022-09-30T14:37:07 | oeisdata/seq/A357/A357411.seq | e702f6176024a899e4650dcaa2cee656 |
A357412 | Number of nonempty subsets of {1..n} whose elements have an even harmonic mean. | [
"0",
"1",
"1",
"2",
"2",
"7",
"7",
"8",
"8",
"9",
"9",
"16",
"16",
"17",
"27",
"28",
"28",
"55",
"55",
"106",
"110",
"111",
"111",
"216",
"216",
"217",
"217",
"634",
"634",
"1155",
"1155",
"1156",
"2286",
"2287",
"3749"
] | [
"nonn",
"more"
] | 25 | 1 | 4 | [
"A339453",
"A357356",
"A357411",
"A357412",
"A357414",
"A357416"
] | null | Ilya Gutkovskiy, Sep 27 2022 | 2022-09-30T14:36:17 | oeisdata/seq/A357/A357412.seq | cf523a23c1870622429c8de30d639619 |
A357413 | Number of nonempty subsets of {1..n} whose elements have an odd geometric mean. | [
"0",
"1",
"1",
"2",
"2",
"3",
"3",
"4",
"4",
"7",
"7",
"8",
"8",
"9",
"9",
"10",
"10",
"11",
"11",
"12",
"12",
"13",
"13",
"14",
"14",
"19",
"19",
"24",
"24",
"25",
"25",
"26",
"26",
"27",
"27",
"28",
"28",
"29",
"29",
"30",
"30",
"31",
"31",
"32",
"32",
"39",
"39",
"40",
"40",
"49",
"49",
"50",
"50",
"51",
"51",
"52",
"52",
"53",
"53",
"54",
"54",
"55",
"55",
"62",
"62",
"63",
"63",
"64",
"64",
"65",
"65",
"66",
"66",
"67",
"67",
"90",
"90",
"91",
"91",
"92",
"92"
] | [
"nonn"
] | 33 | 0 | 4 | [
"A001055",
"A326027",
"A357355",
"A357411",
"A357413",
"A357414",
"A357415"
] | null | Ilya Gutkovskiy, Sep 27 2022 | 2025-03-07T07:49:41 | oeisdata/seq/A357/A357413.seq | 56a54a0b4cde9b62c3b2fe0e5dcc1736 |
A357414 | Number of nonempty subsets of {1..n} whose elements have an even geometric mean. | [
"0",
"0",
"1",
"1",
"4",
"4",
"5",
"5",
"8",
"12",
"13",
"13",
"20",
"20",
"21",
"21",
"30",
"30",
"59",
"59",
"62",
"62",
"63",
"63",
"94",
"104",
"105",
"187",
"190",
"190",
"191",
"191",
"306",
"306",
"307",
"307",
"564",
"564",
"565",
"565",
"582",
"582",
"583",
"583",
"586",
"600",
"601",
"601",
"1120",
"1134",
"1275",
"1275",
"1278",
"1278",
"2125",
"2125",
"2144",
"2144",
"2145",
"2145",
"2360",
"2360",
"2361",
"2381",
"3938",
"3938",
"3939",
"3939",
"3942",
"3942",
"3943",
"3943",
"6560",
"6560",
"6561",
"9663",
"9666"
] | [
"nonn"
] | 30 | 0 | 5 | [
"A326027",
"A357356",
"A357412",
"A357413",
"A357414",
"A357416"
] | null | Ilya Gutkovskiy, Sep 27 2022 | 2025-03-07T07:49:55 | oeisdata/seq/A357/A357414.seq | c7541c98fb31b6eef94ffb5d7fcacc2e |
A357415 | Number of nonempty subsets of {1..n} whose elements have an odd root mean square. | [
"1",
"1",
"2",
"2",
"3",
"3",
"6",
"6",
"7",
"9",
"16",
"26",
"41",
"85",
"142",
"254",
"461",
"825",
"1454",
"2506",
"4535",
"7987",
"14352",
"26178",
"47861",
"87945",
"162486",
"304864",
"565217",
"1064529",
"1992628",
"3742934",
"7034489",
"13214869",
"24924676",
"46926388",
"88812537",
"167903969",
"318619708",
"604909434",
"1150800393"
] | [
"nonn"
] | 16 | 1 | 3 | [
"A339454",
"A357355",
"A357411",
"A357413",
"A357415",
"A357416"
] | null | Ilya Gutkovskiy, Sep 27 2022 | 2025-03-25T13:29:55 | oeisdata/seq/A357/A357415.seq | 98b90b7c847471381276a752d83b89a3 |
A357416 | Number of nonempty subsets of {1..n} whose elements have an even root mean square. | [
"0",
"1",
"1",
"2",
"2",
"3",
"3",
"4",
"8",
"11",
"13",
"26",
"46",
"81",
"169",
"284",
"482",
"857",
"1461",
"2548",
"4370",
"7917",
"14181",
"25648",
"47330",
"87457",
"163291",
"302678",
"568974",
"1064393",
"1993805",
"3742588",
"7030646",
"13231519",
"24871349",
"46994382",
"88657700",
"167876827",
"318263561",
"604694212",
"1150634498"
] | [
"nonn"
] | 16 | 1 | 4 | [
"A339454",
"A357356",
"A357412",
"A357414",
"A357415",
"A357416"
] | null | Ilya Gutkovskiy, Sep 27 2022 | 2025-03-25T13:29:23 | oeisdata/seq/A357/A357416.seq | 729bfb393bcc105955ccdcffe5032bc1 |
A357417 | Row sums of the triangular array A357431. | [
"1",
"5",
"12",
"27",
"43",
"76",
"109",
"168",
"218",
"301",
"383",
"499",
"591",
"779",
"904",
"1153",
"1322",
"1555",
"1817",
"2143",
"2379",
"2790",
"3164",
"3627",
"3957",
"4546",
"5034",
"5599",
"6062",
"6937",
"7456",
"8369",
"8973",
"9896",
"10678",
"11663",
"12430",
"13732",
"14618",
"15920",
"16996",
"18471",
"19570",
"20934",
"22189",
"24080"
] | [
"nonn"
] | 38 | 1 | 2 | [
"A002411",
"A357417",
"A357431"
] | null | Tamas Sandor Nagy, Sep 27 2022 | 2022-11-20T05:54:38 | oeisdata/seq/A357/A357417.seq | 9434dae823877a67d90025d2954b8bc1 |
A357418 | Decimal expansion of (207 - 33*sqrt(33))/32. | [
"5",
"4",
"4",
"6",
"6",
"9",
"7",
"7",
"0",
"7",
"5",
"7",
"6",
"5",
"7",
"9",
"4",
"4",
"5",
"2",
"9",
"0",
"5",
"6",
"9",
"2",
"3",
"3",
"9",
"9",
"2",
"2",
"9",
"1",
"4",
"0",
"5",
"8",
"5",
"3",
"5",
"2",
"2",
"7",
"7",
"7",
"0",
"5",
"2",
"4",
"5",
"3",
"7",
"0",
"8",
"0",
"9",
"5",
"0",
"1",
"3",
"5",
"8",
"4",
"7",
"8",
"9",
"1",
"4",
"8",
"8",
"0",
"9",
"9",
"7",
"0",
"5",
"1",
"4",
"7",
"8",
"3",
"7",
"8",
"2",
"7",
"6",
"9",
"6",
"6",
"7",
"2",
"8",
"3",
"1"
] | [
"nonn",
"cons",
"easy"
] | 8 | 0 | 1 | [
"A010488",
"A357418"
] | null | Stefano Spezia, Sep 27 2022 | 2022-09-27T13:11:31 | oeisdata/seq/A357/A357418.seq | 828080f5e083957dd4be0704a7dd2e45 |
A357419 | a(n) is the hafnian of the 2n X 2n symmetric Pascal matrix defined by M[i, j] = A007318(i + j - 2, i - 1). | [
"1",
"1",
"17",
"4929",
"23872137",
"1901611778409",
"2469317979267366913",
"52019468048773355156225921",
"17726418489020770628047341494927089",
"97518325438289444681986165275143492027985129",
"8648473129650550498122567373327602114148485950241817345"
] | [
"nonn",
"hard"
] | 16 | 0 | 3 | [
"A006134",
"A007318",
"A095833",
"A202038",
"A320845",
"A336114",
"A336286",
"A336400",
"A338456",
"A356481",
"A356482",
"A356483",
"A356484",
"A357419"
] | null | Stefano Spezia, Sep 27 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357419.seq | fec6eef8b62dcd000a29caab903d007c |
A357420 | a(n) is the hafnian of the 2n X 2n symmetric matrix defined by M[i,j] = abs(i - j) if min(i, j) < max(i, j) <= 2*min(i, j), and otherwise 0. | [
"1",
"1",
"1",
"8",
"86",
"878",
"13730",
"348760",
"11622396",
"509566864",
"26894616012",
"1701189027944",
"125492778658096",
"10738546182981256",
"1049631636279244832",
"117756049412699967072"
] | [
"nonn",
"hard",
"more"
] | 14 | 0 | 4 | [
"A000982",
"A003983",
"A007590",
"A049581",
"A051125",
"A202038",
"A336114",
"A336286",
"A336400",
"A338456",
"A352967",
"A353452",
"A353453",
"A356481",
"A356482",
"A356483",
"A356484",
"A357279",
"A357420"
] | null | Stefano Spezia, Sep 27 2022 | 2023-10-16T11:49:09 | oeisdata/seq/A357/A357420.seq | 974bcd360a8dcee6043381feb4d9a93f |
A357421 | a(n) is the hafnian of the 2n X 2n symmetric matrix whose generic element M[i,j] is equal to the digital root of i*j. | [
"1",
"2",
"54",
"1377",
"55350",
"4164534",
"217595322",
"11974135554",
"999599777190",
"150051627647010",
"11873389098337236"
] | [
"nonn",
"base",
"hard",
"more"
] | 11 | 0 | 2 | [
"A003991",
"A010888",
"A202038",
"A336114",
"A336286",
"A336400",
"A338456",
"A353109",
"A353933",
"A353974",
"A356481",
"A356482",
"A356483",
"A356484",
"A357279",
"A357421"
] | null | Stefano Spezia, Sep 27 2022 | 2023-10-15T09:26:39 | oeisdata/seq/A357/A357421.seq | 2f420336690c217182be1dd98a0a6124 |
A357422 | E.g.f. satisfies A(x) * exp(A(x)) = -log(1 - x * exp(A(x))). | [
"0",
"1",
"1",
"5",
"34",
"324",
"3936",
"58190",
"1014056",
"20354544",
"462472800",
"11733507312",
"328809013776",
"10086567702288",
"336184985751720",
"12097485061713480",
"467445074411402496",
"19303428522591336960",
"848420150154305711616",
"39543441411041750547648"
] | [
"nonn"
] | 13 | 0 | 4 | [
"A006963",
"A141209",
"A357343",
"A357344",
"A357345",
"A357422"
] | null | Seiichi Manyama, Sep 27 2022 | 2024-09-09T09:34:10 | oeisdata/seq/A357/A357422.seq | 9ca22a6c52b810585465607de70ed40e |
A357423 | E.g.f. satisfies A(x) * exp(A(x)) = log(1 + x * exp(A(x))). | [
"0",
"1",
"-1",
"-1",
"10",
"4",
"-384",
"818",
"29800",
"-205200",
"-3612000",
"56042832",
"556589232",
"-19091774352",
"-70128589608",
"8044430218680",
"-25379500932864",
"-4055729067351552",
"48310659088501248",
"2334746679051721536",
"-58078273556262804480",
"-1420062892415588203776"
] | [
"sign"
] | 17 | 0 | 5 | [
"A349587",
"A357349",
"A357350",
"A357351",
"A357423"
] | null | Seiichi Manyama, Sep 27 2022 | 2024-09-10T04:25:55 | oeisdata/seq/A357/A357423.seq | bee0c3a40c10f587d3e2014de980e859 |
A357424 | E.g.f. satisfies A(x) * exp(A(x)) = exp(x * exp(A(x))) - 1. | [
"0",
"1",
"1",
"4",
"21",
"156",
"1470",
"16843",
"227367",
"3533974",
"62163477",
"1220852524",
"26480355110",
"628693388909",
"16216901961481",
"451609382251836",
"13504072800481613",
"431544662700594212",
"14677503631085378170",
"529370720888418692643",
"20180856622352239827687"
] | [
"nonn"
] | 16 | 0 | 4 | [
"A052888",
"A349588",
"A357346",
"A357347",
"A357348",
"A357424"
] | null | Seiichi Manyama, Sep 27 2022 | 2024-09-09T09:34:14 | oeisdata/seq/A357/A357424.seq | 6c1bf7bd3a473302fa280350822e82ff |
A357425 | Smallest number for which the sum of digits in fractional base 4/3 is n. | [
"0",
"1",
"2",
"3",
"5",
"6",
"7",
"10",
"11",
"15",
"21",
"22",
"23",
"31",
"39",
"43",
"54",
"55",
"74",
"75",
"101",
"102",
"103",
"138",
"139",
"183",
"187",
"246",
"247",
"330",
"331",
"439",
"443",
"587",
"783",
"790",
"791",
"1047",
"1355",
"1398",
"1399",
"1866",
"1867",
"2487",
"2491",
"3318",
"3319",
"4199",
"4427",
"5903",
"5911",
"7882",
"7883",
"9959"
] | [
"nonn",
"base"
] | 52 | 0 | 3 | [
"A024631",
"A244041",
"A357425",
"A363758"
] | null | Kevin Ryde, Sep 28 2022 | 2024-04-10T10:45:03 | oeisdata/seq/A357/A357425.seq | d45b997496b7c0dc34ae0e563303b316 |
A357426 | Primes p such that p^2+4 is a prime times 5^k for some k >= 1. | [
"11",
"19",
"31",
"41",
"61",
"71",
"79",
"89",
"109",
"131",
"139",
"149",
"151",
"181",
"191",
"239",
"241",
"251",
"379",
"389",
"409",
"421",
"461",
"499",
"509",
"541",
"599",
"631",
"659",
"661",
"709",
"719",
"769",
"811",
"919",
"1009",
"1019",
"1021",
"1031",
"1109",
"1129",
"1151",
"1201",
"1231",
"1291",
"1361",
"1399",
"1409",
"1451",
"1489",
"1549",
"1601",
"1621",
"1721",
"1789",
"1871",
"1889",
"1931",
"2011",
"2039",
"2069",
"2131",
"2179",
"2221",
"2251",
"2309",
"2341",
"2351"
] | [
"nonn"
] | 17 | 1 | 1 | [
"A062324",
"A357426"
] | null | J. M. Bergot and Robert Israel, Sep 27 2022 | 2022-10-02T19:14:31 | oeisdata/seq/A357/A357426.seq | 1e09e475ca5f8163f36d48b740100d02 |
A357427 | Expansion of Product_{k>=0} 1 / (1 + x^Lucas(k)). | [
"1",
"-1",
"0",
"-1",
"1",
"0",
"1",
"-2",
"2",
"-2",
"2",
"-3",
"3",
"-2",
"4",
"-5",
"4",
"-5",
"5",
"-5",
"6",
"-6",
"8",
"-9",
"8",
"-9",
"9",
"-9",
"11",
"-12",
"13",
"-14",
"14",
"-15",
"15",
"-16",
"20",
"-20",
"20",
"-23",
"23",
"-23",
"25",
"-28",
"31",
"-31",
"32",
"-36",
"36",
"-36",
"41",
"-44",
"45",
"-47",
"49",
"-52",
"54",
"-56",
"62",
"-65",
"65",
"-69",
"72",
"-74",
"79",
"-83",
"87",
"-91"
] | [
"sign"
] | 18 | 0 | 8 | [
"A000032",
"A067595",
"A357383",
"A357427"
] | null | Ilya Gutkovskiy, Sep 28 2022 | 2022-09-28T17:30:03 | oeisdata/seq/A357/A357427.seq | 182e2f8c1ce09e7a59656600484379b8 |
A357428 | Numbers whose digit representation in base 2 is equal to the digit representation in base 2 of the initial terms of their sets of divisors in increasing order. | [
"1",
"6",
"52",
"63",
"222",
"2037",
"6776",
"26896",
"124641",
"220336192",
"222066488"
] | [
"nonn",
"base",
"more"
] | 18 | 1 | 2 | [
"A164894",
"A175252",
"A357428",
"A357429"
] | null | Michel Marcus, Sep 28 2022 | 2022-10-01T19:18:28 | oeisdata/seq/A357/A357428.seq | a0aba451fda10f7eacf249a8f7b17df0 |
A357429 | Numbers whose digit representation in base 3 is equal to the digit representation in base 3 of the initial terms of their sets of divisors in increasing order. | [
"1",
"48",
"50",
"333",
"438",
"448",
"734217",
"6561081"
] | [
"nonn",
"base",
"more"
] | 9 | 1 | 2 | [
"A175252",
"A357428",
"A357429"
] | null | Michel Marcus, Sep 28 2022 | 2022-10-02T10:32:23 | oeisdata/seq/A357/A357429.seq | aa53aaaa28bfe933edce3ef7a92e98ba |
A357430 | a(n) is the least integer > 1 such that its digit representation in base n is equal to the digit representation in base n of the initial terms of its set of divisors in increasing order. | [
"6",
"48",
"6",
"182",
"8",
"66",
"10",
"102",
"12",
"1586",
"14",
"198",
"16",
"258",
"18",
"345",
"20",
"402",
"22",
"486",
"24",
"306484",
"26",
"678",
"28",
"786",
"30",
"26102",
"32",
"1026",
"34",
"1158",
"36",
"1335",
"38",
"1446",
"40",
"1602",
"42",
"204741669824",
"44",
"1938",
"46",
"2118",
"48",
"2355",
"50",
"2502",
"52",
"2706",
"54",
"8199524",
"56"
] | [
"nonn",
"base"
] | 17 | 2 | 1 | [
"A175252",
"A357428",
"A357429",
"A357430"
] | null | Michel Marcus, Sep 28 2022 | 2022-10-06T04:30:49 | oeisdata/seq/A357/A357430.seq | 97bbdd46f1e8cd40100248b8d08b22c1 |
A357431 | Triangle read by rows where each term in row n is the next greater multiple of n..1. | [
"1",
"2",
"3",
"3",
"4",
"5",
"4",
"6",
"8",
"9",
"5",
"8",
"9",
"10",
"11",
"6",
"10",
"12",
"15",
"16",
"17",
"7",
"12",
"15",
"16",
"18",
"20",
"21",
"8",
"14",
"18",
"20",
"24",
"27",
"28",
"29",
"9",
"16",
"21",
"24",
"25",
"28",
"30",
"32",
"33",
"10",
"18",
"24",
"28",
"30",
"35",
"36",
"39",
"40",
"41",
"11",
"20",
"27",
"32",
"35",
"36",
"40",
"44",
"45",
"46",
"47"
] | [
"nonn",
"tabl"
] | 39 | 1 | 2 | [
"A007952",
"A357417",
"A357431",
"A357498"
] | null | Tamas Sandor Nagy, Sep 28 2022 | 2023-05-10T06:25:08 | oeisdata/seq/A357/A357431.seq | 9207034bd652ac85f7a1599416e84cfb |
A357432 | a(1) = 1; a(2) = 2; for n > 2, a(n) is the smallest positive number not occurring earlier such that a(n) plus the sum of all previous terms appears in the string concatenation of a(1)..a(n-1). | [
"1",
"2",
"9",
"17",
"62",
"38",
"47",
"115",
"93",
"87",
"122",
"30",
"88",
"51",
"85",
"4",
"3",
"31",
"32",
"21",
"221",
"64",
"68",
"302",
"53",
"116",
"92",
"268",
"42",
"48",
"18",
"78",
"76",
"97",
"50",
"153",
"233",
"108",
"63",
"20",
"8",
"16",
"89",
"12",
"77",
"537",
"24",
"377",
"83",
"46",
"306",
"28",
"107",
"197",
"170",
"126",
"61",
"566",
"218",
"82",
"43",
"25",
"14",
"148",
"147",
"6",
"209",
"145",
"37",
"103"
] | [
"nonn",
"base"
] | 13 | 1 | 2 | [
"A000027",
"A000217",
"A007908",
"A337227",
"A351753",
"A357432",
"A357433"
] | null | Scott R. Shannon, Sep 28 2022 | 2023-01-16T09:10:46 | oeisdata/seq/A357/A357432.seq | 947f55d9bf79e6d67685872870838dcd |
A357433 | a(1) = 1; a(2) = 2; for n > 2, a(n) is the smallest positive number not occurring earlier such that the binary string of a(n) plus the sum of all previous terms appears in the binary string concatenation of a(1)..a(n-1). | [
"1",
"2",
"3",
"5",
"12",
"4",
"9",
"10",
"11",
"16",
"14",
"6",
"7",
"18",
"17",
"13",
"15",
"8",
"20",
"22",
"24",
"33",
"26",
"31",
"21",
"19",
"25",
"35",
"30",
"28",
"56",
"34",
"36",
"43",
"32",
"42",
"37",
"23",
"29",
"38",
"27",
"58",
"45",
"60",
"46",
"52",
"44",
"50",
"72",
"53",
"54",
"41",
"65",
"47",
"40",
"48",
"66",
"51",
"64",
"49",
"57",
"61",
"67",
"93",
"77",
"59",
"74",
"100",
"75",
"69",
"91",
"73",
"83",
"71",
"81",
"39",
"82"
] | [
"nonn",
"base"
] | 11 | 1 | 2 | [
"A000027",
"A000217",
"A007088",
"A007908",
"A337227",
"A341766",
"A357432",
"A357433"
] | null | Scott R. Shannon, Sep 28 2022 | 2023-01-16T09:10:46 | oeisdata/seq/A357/A357433.seq | 0144320ef973f83dd34bea0f4921e5f4 |
A357434 | a(n) is the number of distinct Q-toothpicks after the n-th stage of the structure described in A211000. | [
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"15",
"15",
"15",
"15",
"15",
"15",
"15",
"15",
"15",
"15",
"15",
"15",
"15",
"15",
"15",
"15",
"16",
"17",
"18",
"18",
"18",
"18",
"19",
"20",
"21",
"22",
"22",
"22",
"22",
"22",
"22",
"22",
"22",
"22",
"22",
"22",
"22",
"22",
"22",
"22",
"22",
"22",
"22",
"22",
"23",
"24",
"25",
"26",
"27",
"28",
"28"
] | [
"nonn"
] | 24 | 0 | 3 | [
"A187210",
"A211000",
"A355479",
"A357434"
] | null | Paolo Xausa, Sep 28 2022 | 2022-10-01T21:15:07 | oeisdata/seq/A357/A357434.seq | 2d785e6135d5767ea0eddea72ca292da |
A357435 | a(n) is the least prime p such that p^2+4 is a prime times 5^n. | [
"3",
"19",
"11",
"239",
"9011",
"61511",
"75989",
"299011",
"4517761",
"24830261",
"666575989",
"2541575989",
"41989674011",
"147951732239",
"455568919739",
"174807200989",
"9513186107239",
"215201662669739",
"759834958424011",
"5581612302174011",
"5404715822825989",
"112788443850169739",
"2606148434986511"
] | [
"nonn"
] | 19 | 0 | 1 | [
"A357426",
"A357435"
] | null | J. M. Bergot and Robert Israel, Sep 28 2022 | 2023-01-05T18:29:38 | oeisdata/seq/A357/A357435.seq | 58e25332517e5013ad7cd815e2d4a409 |
A357436 | Start with a(1)=2; to get a(n+1) insert in a(n) the smallest possible digit at the rightmost possible position such that the new number is a prime. | [
"2",
"23",
"223",
"2203",
"22003",
"220013",
"2200103",
"22000103",
"223000103",
"2230001003",
"22300010023",
"223000100023",
"2230001000203",
"22301001000203",
"223010001000203",
"2230010001000203",
"22300010001000203",
"222300010001000203",
"2223000100010001203",
"22203000100010001203",
"222030001000010001203",
"2220300010200010001203"
] | [
"nonn",
"base"
] | 34 | 1 | 1 | [
"A125001",
"A332603",
"A356557",
"A357436"
] | null | Bartlomiej Pawlik, Sep 28 2022 | 2023-06-12T12:33:19 | oeisdata/seq/A357/A357436.seq | 3789801ea02affc3ef64dfc6cc4d5ab1 |
A357437 | a(1)=0. If there are terms prior to and different from a(n) which have occurred the same number of times as a(n), then a(n+1) = n - m, where a(m) is the most recent occurrence of such a term. If there are no prior terms with the same number of occurrences as a(n), then a(n+1) = n - m, where a(m) is the most recent occurrence of a(n). If a(n) is a first occurrence and no prior term has occurred once only, then a(n+1) = 0 | [
"0",
"0",
"1",
"0",
"2",
"2",
"1",
"1",
"4",
"0",
"6",
"2",
"4",
"4",
"2",
"5",
"5",
"1",
"3",
"8",
"1",
"3",
"5",
"9",
"4",
"10",
"2",
"6",
"6",
"6",
"5",
"1",
"11",
"7",
"1",
"3",
"14",
"3",
"7",
"5",
"13",
"4",
"2",
"16",
"3",
"3",
"3",
"12",
"4",
"6",
"10",
"12",
"1",
"18",
"10",
"4",
"17",
"3",
"5",
"16",
"8",
"1",
"9",
"2",
"8",
"10",
"56",
"10",
"18",
"6",
"11",
"2",
"14",
"2",
"12",
"10",
"6",
"21",
"11",
"4",
"22",
"3"
] | [
"nonn"
] | 14 | 1 | 5 | [
"A181391",
"A357437"
] | null | Neal Gersh Tolunsky, Sep 28 2022 | 2022-10-23T19:39:40 | oeisdata/seq/A357/A357437.seq | 480724c344a9275dbe1e316efa62cc25 |
A357438 | Triangle T(n,k) read by rows, defined by the equation f(x, y) := Sum_{n, k} T(n, k) * y^k * x^n = 1/(1 - x*y - x^2*y*f(x, y+1)). | [
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"3",
"1",
"0",
"2",
"6",
"6",
"1",
"0",
"5",
"16",
"20",
"10",
"1",
"0",
"15",
"51",
"71",
"50",
"15",
"1",
"0",
"52",
"186",
"281",
"231",
"105",
"21",
"1",
"0",
"203",
"759",
"1223",
"1114",
"616",
"196",
"28",
"1",
"0",
"877",
"3409",
"5795",
"5701",
"3564",
"1428",
"336",
"36",
"1",
"0",
"4140",
"16655",
"29634",
"31011",
"21187",
"9780"
] | [
"nonn",
"tabl"
] | 17 | 1 | 9 | [
"A000110",
"A049347",
"A074664",
"A357438"
] | null | Michael Somos, Sep 27 2022 | 2022-09-29T03:50:52 | oeisdata/seq/A357/A357438.seq | ed9ae77c635058949fb652edc706c892 |
A357439 | Sums of squares of two odd primes. | [
"18",
"34",
"50",
"58",
"74",
"98",
"130",
"146",
"170",
"178",
"194",
"218",
"242",
"290",
"298",
"314",
"338",
"370",
"386",
"410",
"458",
"482",
"530",
"538",
"554",
"578",
"650",
"698",
"722",
"818",
"850",
"866",
"890",
"962",
"970",
"986",
"1010",
"1058",
"1082",
"1130",
"1202",
"1250",
"1322",
"1370",
"1378",
"1394",
"1418",
"1490",
"1538",
"1658",
"1682"
] | [
"nonn"
] | 7 | 1 | 1 | [
"A045636",
"A103739",
"A143850",
"A227697",
"A357439"
] | null | Giuseppe Melfi, Oct 06 2022 | 2022-10-10T13:48:21 | oeisdata/seq/A357/A357439.seq | 75e61c385aeff125f09909c104cd95f9 |
A357440 | Possible half-lengths of self-similar sequences over a finite alphabet that are invariant under retrograde inversion. | [
"3",
"11",
"15",
"23",
"35",
"36",
"39",
"44",
"51",
"63",
"75",
"83",
"95",
"99"
] | [
"nonn",
"more"
] | 3 | 1 | 1 | [
"A357440",
"A357441"
] | null | N. J. A. Sloane, Oct 14 2022 | 2022-10-14T21:29:15 | oeisdata/seq/A357/A357440.seq | f7fce287524eb1ad5d3c2a202efc27fa |
A357441 | Size of alphabet associated with A357440(n). | [
"2",
"2",
"6",
"2",
"2",
"8",
"2",
"8",
"2",
"18",
"10",
"2",
"2"
] | [
"nonn",
"more"
] | 7 | 1 | 1 | [
"A357440",
"A357441"
] | null | N. J. A. Sloane, Oct 14 2022 | 2022-10-14T21:46:35 | oeisdata/seq/A357/A357441.seq | 39f69786db1325b195aa51079cc30d8a |
A357442 | Consider a clock face with 2*n "hours" marked around the dial; a(n) = number of ways to match the even hours to the odd hours, modulo rotations and reflections. | [
"1",
"1",
"3",
"5",
"17",
"53",
"260",
"1466",
"10915",
"93196",
"917898",
"10015299",
"119914982",
"1557364352",
"21797494987",
"326930305166",
"5230756117008",
"88922108947567",
"1600594738591550",
"30411281088326498",
"608225534389576956",
"12772735698577492558"
] | [
"nonn"
] | 37 | 1 | 3 | [
"A000031",
"A000699",
"A007769",
"A059375",
"A357442"
] | null | N. J. A. Sloane, Nov 06 2022, based on an email from Barry Cipra, Oct 26 2022 | 2024-02-06T12:59:25 | oeisdata/seq/A357/A357442.seq | fb4f72c6abfacb62223d4bac1832ec12 |
A357443 | Inventory sequence, second version: record where the 1's, 2's, etc. are located starting with a(1) = 1, a(2) = 1. | [
"1",
"1",
"1",
"2",
"1",
"2",
"3",
"4",
"1",
"2",
"3",
"5",
"4",
"6",
"7",
"8",
"1",
"2",
"3",
"5",
"9",
"4",
"6",
"10",
"7",
"11",
"8",
"13",
"12",
"14",
"15",
"16",
"1",
"2",
"3",
"5",
"9",
"17",
"4",
"6",
"10",
"18",
"7",
"11",
"19",
"8",
"13",
"22",
"12",
"20",
"14",
"23",
"15",
"25",
"16",
"27",
"21",
"24",
"26",
"29",
"28",
"30",
"31",
"32",
"1",
"2",
"3",
"5",
"9",
"17",
"33",
"4",
"6",
"10",
"18",
"34"
] | [
"nonn",
"tabf"
] | 16 | 1 | 4 | [
"A342585",
"A356784",
"A357443",
"A358066"
] | null | Ctibor O. Zizka, Oct 29 2022, edited by N. J. A. Sloane, Nov 07 2022. (Because of a missing term in the initial submission, the definition could be interpreted in two ways: A358066 was the first interpretation, this is the second.) | 2022-11-11T09:53:29 | oeisdata/seq/A357/A357443.seq | 122afa19d8f95a3f9db278c3b8c7ddcf |
A357444 | Numerators of certain densities associated with partitions into squares. | [
"1",
"1",
"13",
"37",
"1",
"299",
"253",
"14113",
"317311",
"264659"
] | [
"nonn",
"frac",
"more"
] | 9 | 1 | 3 | [
"A357444",
"A357445"
] | null | N. J. A. Sloane, Nov 07 2022 | 2022-11-08T05:46:32 | oeisdata/seq/A357/A357444.seq | 42dbc402027ca881947438c9b52d03c3 |
A357445 | Denominators of certain densities associated with partitions into squares. | [
"1",
"2",
"36",
"144",
"2",
"600",
"504",
"28224",
"635040",
"529200"
] | [
"nonn",
"frac",
"more"
] | 10 | 1 | 2 | [
"A357444",
"A357445"
] | null | N. J. A. Sloane, Nov 07 2022 | 2022-11-08T05:46:47 | oeisdata/seq/A357/A357445.seq | 5a5809f489a6a3ab1e273c7c7487f8ab |
A357446 | Number of connected cubic graphs with 2*n nodes and zero edge-Kempe equivalence classes. | [
"0",
"0",
"0",
"2",
"5",
"34",
"212",
"1614",
"14059",
"144712",
"1726497",
"23550891",
"361098825",
"6137247735"
] | [
"nonn",
"more"
] | 10 | 2 | 4 | [
"A002851",
"A357446"
] | null | N. J. A. Sloane, Nov 08 2022 | 2022-11-13T02:04:22 | oeisdata/seq/A357/A357446.seq | 5fa4fb427c96f64ecabbcee63cf37f3f |
A357447 | Number of connected cubic graphs with 2*n nodes and exactly one edge-Kempe equivalence class. | [
"1",
"1",
"4",
"9",
"44",
"188",
"1258",
"8917",
"75630",
"680055",
"6496848",
"63963867",
"644968468",
"6606598953"
] | [
"nonn",
"more"
] | 14 | 2 | 3 | [
"A002851",
"A357447"
] | null | N. J. A. Sloane, Nov 08 2022 | 2022-11-13T02:04:27 | oeisdata/seq/A357/A357447.seq | 85d214bff32076db893f1c71b34cb1ab |
A357448 | Fixed point starting with 0 of the two-block substitution 00->010, 01->010, 10->101, 11->101. | [
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1"
] | [
"nonn",
"base"
] | 17 | 0 | null | [
"A010060",
"A244040",
"A354896",
"A357448"
] | null | Michel Dekking, Sep 29 2022 | 2023-03-24T15:55:10 | oeisdata/seq/A357/A357448.seq | b3c499099bfd9e33d0020f4ca178f304 |
A357449 | a(0) = 0; for n > 0, a(n) is the smallest positive number not occurring earlier such that the binary string of a(n) plus the largest previous term does not appear in the binary string concatenation of a(0)..a(n-1). | [
"0",
"1",
"2",
"3",
"4",
"5",
"10",
"6",
"7",
"9",
"14",
"15",
"16",
"17",
"18",
"20",
"12",
"24",
"8",
"28",
"26",
"30",
"22",
"33",
"11",
"21",
"31",
"32",
"36",
"37",
"27",
"35",
"41",
"13",
"23",
"40",
"44",
"38",
"62",
"46",
"66",
"19",
"42",
"63",
"65",
"69",
"39",
"59",
"60",
"68",
"72",
"56",
"57",
"71",
"76",
"52",
"53",
"80",
"48",
"49",
"55",
"58",
"61",
"64",
"83",
"45",
"73",
"77",
"81",
"82",
"85",
"43",
"50",
"75",
"79",
"87",
"51"
] | [
"nonn",
"base",
"look"
] | 12 | 0 | 3 | [
"A007088",
"A030302",
"A118248",
"A341766",
"A355611",
"A357082",
"A357449"
] | null | Scott R. Shannon, Sep 29 2022 | 2023-01-16T09:10:46 | oeisdata/seq/A357/A357449.seq | d8f07af53e45e0e022b65be368908984 |
A357450 | a(n) is the smallest integer having exactly n odd square divisors (A298735). | [
"1",
"9",
"81",
"225",
"6561",
"2025",
"531441",
"11025",
"50625",
"164025",
"3486784401",
"99225",
"282429536481",
"13286025",
"4100625",
"893025",
"1853020188851841",
"2480625",
"150094635296999121",
"8037225",
"332150625",
"87169610025",
"984770902183611232881",
"12006225",
"2562890625",
"7060738412025",
"121550625"
] | [
"nonn"
] | 37 | 1 | 2 | [
"A000290",
"A016754",
"A038547",
"A130279",
"A147516",
"A298735",
"A357450"
] | null | Bernard Schott, Sep 29 2022 | 2022-10-03T08:45:09 | oeisdata/seq/A357/A357450.seq | 0ff490160cbf7b4ce2472e6bcbc03d90 |
A357451 | Number of compositions (ordered partitions) of n into tribonacci numbers 1,2,4,7,13,24, ... (A000073). | [
"1",
"1",
"2",
"3",
"6",
"10",
"18",
"32",
"57",
"101",
"179",
"318",
"564",
"1002",
"1778",
"3157",
"5603",
"9947",
"17656",
"31342",
"55635",
"98759",
"175308",
"311191",
"552400",
"980571",
"1740625",
"3089803",
"5484750",
"9736045",
"17282576",
"30678512",
"54457808",
"96668726",
"171597851",
"304605465",
"540708924"
] | [
"nonn"
] | 5 | 0 | 3 | [
"A000073",
"A076739",
"A117546",
"A240844",
"A357451",
"A357453",
"A357455"
] | null | Ilya Gutkovskiy, Sep 29 2022 | 2022-10-01T00:36:50 | oeisdata/seq/A357/A357451.seq | 46c4920bbff4b34403dc24fef0addb32 |
A357452 | Number of partitions of n into tetranacci numbers 1,2,4,8,15,29, ... (A000078). | [
"1",
"1",
"2",
"2",
"4",
"4",
"6",
"6",
"10",
"10",
"14",
"14",
"20",
"20",
"26",
"27",
"36",
"37",
"46",
"48",
"60",
"62",
"74",
"78",
"94",
"98",
"114",
"120",
"140",
"147",
"168",
"178",
"204",
"215",
"242",
"256",
"288",
"304",
"338",
"358",
"398",
"420",
"462",
"488",
"537",
"567",
"619",
"654",
"714",
"753",
"816",
"860",
"932",
"982",
"1058",
"1114"
] | [
"nonn"
] | 5 | 0 | 3 | [
"A000078",
"A003107",
"A240844",
"A287656",
"A357452",
"A357453",
"A357454"
] | null | Ilya Gutkovskiy, Sep 29 2022 | 2022-10-01T00:37:02 | oeisdata/seq/A357/A357452.seq | e0a767e88be6cefb10e50f64f2651374 |
A357453 | Number of compositions (ordered partitions) of n into tetranacci numbers 1,2,4,8,15,29, ... (A000078). | [
"1",
"1",
"2",
"3",
"6",
"10",
"18",
"31",
"56",
"98",
"174",
"306",
"542",
"956",
"1690",
"2984",
"5273",
"9313",
"16453",
"29062",
"51340",
"90689",
"160203",
"282994",
"499908",
"883078",
"1559948",
"2755624",
"4867776",
"8598858",
"15189770",
"26832521",
"47399291",
"83730207",
"147908288",
"261277998",
"461544073"
] | [
"nonn"
] | 5 | 0 | 3 | [
"A000078",
"A076739",
"A287656",
"A357451",
"A357452",
"A357453",
"A357455"
] | null | Ilya Gutkovskiy, Sep 29 2022 | 2022-10-01T00:37:09 | oeisdata/seq/A357/A357453.seq | a877c3c5080e161ad4a10115bd5a801e |
A357454 | Number of partitions of n into pentanacci numbers 1,2,4,8,16,31, ... (A001591). | [
"1",
"1",
"2",
"2",
"4",
"4",
"6",
"6",
"10",
"10",
"14",
"14",
"20",
"20",
"26",
"26",
"36",
"36",
"46",
"46",
"60",
"60",
"74",
"74",
"94",
"94",
"114",
"114",
"140",
"140",
"166",
"167",
"202",
"203",
"238",
"240",
"284",
"286",
"330",
"334",
"390",
"394",
"450",
"456",
"524",
"530",
"598",
"608",
"692",
"702",
"786",
"800",
"900",
"914",
"1014",
"1034"
] | [
"nonn"
] | 5 | 0 | 3 | [
"A001591",
"A003107",
"A240844",
"A288120",
"A357452",
"A357454",
"A357455"
] | null | Ilya Gutkovskiy, Sep 29 2022 | 2022-10-01T00:37:16 | oeisdata/seq/A357/A357454.seq | 4c920cdbfb050eab0298827cf3d77af7 |
A357455 | Number of compositions (ordered partitions) of n into pentanacci numbers 1,2,4,8,16,31, ... (A001591). | [
"1",
"1",
"2",
"3",
"6",
"10",
"18",
"31",
"56",
"98",
"174",
"306",
"542",
"956",
"1690",
"2983",
"5272",
"9310",
"16448",
"29050",
"51318",
"90644",
"160118",
"282826",
"499590",
"882468",
"1558798",
"2753448",
"4863696",
"8591212",
"15175514",
"26805984",
"47350057",
"83639033",
"147739853",
"260967374",
"460972308",
"814260589"
] | [
"nonn"
] | 5 | 0 | 3 | [
"A001591",
"A076739",
"A288120",
"A357451",
"A357453",
"A357454",
"A357455"
] | null | Ilya Gutkovskiy, Sep 29 2022 | 2022-10-01T00:37:23 | oeisdata/seq/A357/A357455.seq | 10bd0beb537d0d3f33bec034ab64b9b6 |
A357456 | Number of partitions of n into two or more odd parts. | [
"0",
"0",
"1",
"1",
"2",
"2",
"4",
"4",
"6",
"7",
"10",
"11",
"15",
"17",
"22",
"26",
"32",
"37",
"46",
"53",
"64",
"75",
"89",
"103",
"122",
"141",
"165",
"191",
"222",
"255",
"296",
"339",
"390",
"447",
"512",
"584",
"668",
"759",
"864",
"981",
"1113",
"1259",
"1426",
"1609",
"1816",
"2047",
"2304",
"2589",
"2910",
"3263",
"3658",
"4096",
"4582",
"5119",
"5718",
"6377",
"7108"
] | [
"nonn"
] | 5 | 0 | 5 | [
"A000009",
"A000035",
"A111133",
"A357456",
"A357457"
] | null | Ilya Gutkovskiy, Sep 29 2022 | 2022-10-01T00:37:31 | oeisdata/seq/A357/A357456.seq | fde10290f9bd432796bd1b4fb00768ec |
A357457 | Number of partitions of n into two or more distinct odd parts. | [
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"2",
"1",
"2",
"1",
"3",
"2",
"3",
"3",
"5",
"4",
"5",
"5",
"7",
"7",
"8",
"8",
"11",
"11",
"12",
"13",
"16",
"16",
"18",
"19",
"23",
"24",
"26",
"28",
"33",
"34",
"37",
"40",
"46",
"48",
"52",
"56",
"63",
"67",
"72",
"77",
"87",
"92",
"98",
"106",
"117",
"124",
"133",
"143",
"157",
"167",
"178",
"191",
"209",
"222",
"236",
"254",
"276",
"293",
"312",
"334"
] | [
"nonn"
] | 4 | 0 | 9 | [
"A000035",
"A000700",
"A357456",
"A357457"
] | null | Ilya Gutkovskiy, Sep 29 2022 | 2022-10-01T00:37:39 | oeisdata/seq/A357/A357457.seq | 6255f94f6a528c7f8c58b018bec13143 |
A357458 | First differences of A325033 = "Sum of sums of the multiset of prime indices of each prime index of n." | [
"0",
"1",
"-1",
"2",
"-1",
"1",
"-2",
"2",
"0",
"1",
"-2",
"2",
"-1",
"1",
"-3",
"4",
"-2",
"1",
"-1",
"1",
"0",
"1",
"-3",
"3",
"-1",
"0",
"-1",
"2",
"-1",
"2",
"-5",
"4",
"0",
"0",
"-2",
"2",
"-1",
"1",
"-2",
"4",
"-3",
"2",
"-2",
"1",
"0",
"1",
"-4",
"3",
"0",
"1",
"-2",
"1",
"-1",
"2",
"-3",
"2",
"0",
"3",
"-4",
"2",
"0",
"-1",
"-4",
"5",
"-1",
"4",
"-4",
"1",
"-1",
"1",
"-3",
"4",
"-2",
"1",
"-2",
"2"
] | [
"sign"
] | 7 | 1 | 4 | [
"A000720",
"A000961",
"A001221",
"A001222",
"A003963",
"A005117",
"A007716",
"A056239",
"A109082",
"A275024",
"A302242",
"A302243",
"A302505",
"A324926",
"A325032",
"A325033",
"A325034",
"A357139",
"A357187",
"A357458"
] | null | Gus Wiseman, Sep 30 2022 | 2022-10-01T10:25:34 | oeisdata/seq/A357/A357458.seq | 622dc02cb2d2ed990aa887f64b947339 |
A357459 | The total number of fixed points among all partitions of n, when parts are written in nondecreasing order. | [
"0",
"1",
"1",
"3",
"4",
"7",
"10",
"17",
"22",
"34",
"46",
"66",
"88",
"123",
"160",
"218",
"283",
"375",
"482",
"630",
"799",
"1030",
"1299",
"1651",
"2066",
"2602",
"3230",
"4032",
"4976",
"6157",
"7554",
"9288",
"11326",
"13837",
"16793",
"20393",
"24632",
"29763",
"35783",
"43031",
"51527",
"61683",
"73577",
"87729",
"104252",
"123834",
"146664"
] | [
"nonn"
] | 14 | 0 | 4 | [
"A001522",
"A099036",
"A357459"
] | null | Jeremy Lovejoy, Sep 29 2022 | 2022-09-30T03:51:00 | oeisdata/seq/A357/A357459.seq | c7288246751e84c7d93abb8c7076ff90 |
A357460 | Numbers whose number of deficient divisors is equal to their number of nondeficient divisors. | [
"72",
"108",
"120",
"168",
"180",
"252",
"420",
"528",
"560",
"624",
"1188",
"1224",
"1368",
"1400",
"1404",
"1632",
"1656",
"1824",
"1836",
"1960",
"1980",
"2040",
"2052",
"2088",
"2208",
"2232",
"2280",
"2340",
"2484",
"2664",
"2760",
"2772",
"2784",
"2856",
"2952",
"2976",
"3060",
"3096",
"3132",
"3192",
"3200",
"3276",
"3348",
"3384",
"3420",
"3432"
] | [
"nonn"
] | 12 | 1 | 1 | [
"A000037",
"A005101",
"A080226",
"A335543",
"A335544",
"A341620",
"A357460",
"A357461",
"A357462"
] | null | Amiram Eldar, Sep 29 2022 | 2022-09-30T04:25:21 | oeisdata/seq/A357/A357460.seq | bb5f5f0ce0c4cd2196ce7c836b0427e8 |
A357461 | Odd numbers whose number of deficient divisors is equal to their number of nondeficient divisors. | [
"3010132125",
"4502334375",
"5065535475",
"6456074625",
"8813660625",
"9881746875",
"15395254875",
"15452011575",
"16874983125",
"18699305625",
"19814169375",
"19909992375",
"21380506875",
"25366375125",
"26643400875",
"26746594875",
"28943578125",
"31562182575",
"33074966925",
"34315506225",
"35300640375"
] | [
"nonn"
] | 10 | 1 | 1 | [
"A005101",
"A005231",
"A335543",
"A357460",
"A357461"
] | null | Amiram Eldar, Sep 29 2022 | 2022-09-30T04:25:18 | oeisdata/seq/A357/A357461.seq | 6035d229f8664d2bf6a2dc793fdc3d18 |
A357462 | Numbers whose sum of deficient divisors is equal to their sum of nondeficient divisors. | [
"6",
"28",
"30",
"42",
"66",
"78",
"102",
"114",
"138",
"150",
"174",
"186",
"222",
"246",
"258",
"282",
"294",
"308",
"318",
"330",
"354",
"364",
"366",
"390",
"402",
"426",
"438",
"462",
"474",
"476",
"496",
"498",
"510",
"532",
"534",
"546",
"570",
"582",
"606",
"618",
"642",
"644",
"654",
"678",
"690",
"714",
"726",
"750",
"762",
"786",
"798",
"812",
"822",
"834"
] | [
"nonn"
] | 8 | 1 | 1 | [
"A000396",
"A023196",
"A028983",
"A187793",
"A187794",
"A187795",
"A335543",
"A357460",
"A357462"
] | null | Amiram Eldar, Sep 29 2022 | 2022-09-30T04:25:13 | oeisdata/seq/A357/A357462.seq | 16f513102d7edd2b45f661a0b979467f |
A357463 | Decimal expansion of the real root of 2*x^3 + 2*x - 1. | [
"4",
"2",
"3",
"8",
"5",
"3",
"7",
"9",
"9",
"0",
"6",
"9",
"7",
"8",
"3",
"2",
"7",
"1",
"3",
"7",
"8",
"0",
"4",
"0",
"0",
"6",
"2",
"6",
"2",
"5",
"5",
"1",
"5",
"2",
"3",
"3",
"6",
"7",
"6",
"3",
"8",
"8",
"1",
"9",
"7",
"1",
"8",
"5",
"1",
"7",
"7",
"5",
"4",
"0",
"8",
"2",
"3",
"0",
"0",
"8",
"3",
"9",
"6",
"8",
"1",
"9",
"9",
"5",
"4",
"7",
"2",
"8",
"6",
"4",
"0",
"7",
"0",
"3"
] | [
"nonn",
"cons",
"easy"
] | 7 | 0 | 1 | [
"A316711",
"A357463"
] | null | Wolfdieter Lang, Sep 29 2022 | 2022-10-13T13:04:40 | oeisdata/seq/A357/A357463.seq | b9d562809d9e3dd3375a0c8c7f886f66 |
A357464 | Decimal expansion of the real root of 3*x^3 + x^2 - 1. | [
"5",
"9",
"8",
"1",
"9",
"3",
"4",
"9",
"8",
"1",
"1",
"0",
"8",
"5",
"5",
"3",
"3",
"0",
"4",
"2",
"7",
"8",
"3",
"7",
"9",
"0",
"6",
"2",
"1",
"0",
"0",
"4",
"9",
"4",
"4",
"6",
"7",
"3",
"3",
"9",
"8",
"4",
"2",
"4",
"7",
"1",
"5",
"0",
"5",
"6",
"1",
"0",
"6",
"8",
"0",
"3",
"2",
"3",
"5",
"9",
"8",
"9",
"0",
"5",
"1",
"1",
"0",
"3",
"4",
"9",
"8",
"8",
"1",
"2",
"4"
] | [
"nonn",
"cons",
"easy"
] | 9 | 0 | 1 | [
"A357464",
"A357465"
] | null | Wolfdieter Lang, Sep 30 2022 | 2022-11-09T05:00:39 | oeisdata/seq/A357/A357464.seq | 7858ab95dbd4b89c3b9a0f5dd84a420d |
A357465 | Decimal expansion of the real root of 3*x^3 - x^2 - 1. | [
"8",
"2",
"4",
"1",
"2",
"2",
"6",
"2",
"1",
"1",
"0",
"9",
"1",
"3",
"2",
"9",
"6",
"6",
"3",
"1",
"2",
"2",
"7",
"8",
"9",
"7",
"9",
"8",
"7",
"0",
"2",
"8",
"2",
"5",
"6",
"2",
"6",
"4",
"3",
"3",
"2",
"6",
"4",
"1",
"4",
"3",
"7",
"0",
"6",
"3",
"8",
"7",
"2",
"8",
"9",
"1",
"6",
"0",
"4",
"3",
"7",
"6",
"5",
"4",
"2",
"0",
"9",
"7",
"8",
"0",
"9",
"8",
"6",
"8",
"1",
"2"
] | [
"nonn",
"cons",
"easy"
] | 9 | 0 | 1 | [
"A357464",
"A357465"
] | null | Wolfdieter Lang, Sep 30 2022 | 2022-11-09T05:02:08 | oeisdata/seq/A357/A357465.seq | caa9b8cbf12e111aed9551bb6eb6d320 |
A357466 | Decimal expansion of the real root of 3*x^3 - x - 1. | [
"8",
"5",
"1",
"3",
"8",
"3",
"0",
"7",
"2",
"8",
"6",
"6",
"9",
"2",
"4",
"3",
"9",
"3",
"4",
"9",
"3",
"9",
"4",
"0",
"1",
"1",
"2",
"1",
"8",
"7",
"8",
"5",
"9",
"3",
"8",
"5",
"0",
"9",
"6",
"1",
"4",
"9",
"9",
"2",
"3",
"9",
"3",
"8",
"0",
"4",
"1",
"9",
"6",
"5",
"0",
"5",
"9",
"0",
"0",
"2",
"3",
"9",
"6",
"2",
"7",
"9",
"7",
"2",
"2",
"5",
"5",
"3",
"0",
"4",
"5",
"7",
"2",
"4",
"8",
"6",
"5",
"8",
"6",
"9",
"6"
] | [
"nonn",
"cons",
"easy"
] | 10 | 0 | 1 | [
"A357465",
"A357466",
"A357467"
] | null | Wolfdieter Lang, Oct 17 2022 | 2022-12-29T06:23:42 | oeisdata/seq/A357/A357466.seq | eb9c3f60da98b494382159cafa87b857 |
A357467 | Decimal expansion of the real root of 3*x^3 + x - 1. | [
"5",
"3",
"6",
"5",
"6",
"5",
"1",
"6",
"4",
"6",
"7",
"2",
"2",
"2",
"2",
"9",
"1",
"8",
"7",
"5",
"7",
"4",
"2",
"4",
"5",
"1",
"2",
"2",
"3",
"8",
"7",
"7",
"3",
"8",
"3",
"3",
"8",
"2",
"1",
"2",
"4",
"2",
"2",
"6",
"3",
"7",
"5",
"2",
"1",
"8",
"8",
"0",
"6",
"6",
"3",
"1",
"4",
"2",
"3",
"7",
"1",
"5",
"1",
"4",
"2",
"0",
"6",
"7",
"0",
"1",
"1",
"2",
"4",
"5",
"4",
"8"
] | [
"nonn",
"cons",
"easy"
] | 10 | 0 | 1 | [
"A357464",
"A357466",
"A357467"
] | null | Wolfdieter Lang, Oct 17 2022 | 2025-03-23T20:53:25 | oeisdata/seq/A357/A357467.seq | 76b1545dc310f1a8b052cf09f078a7cd |
A357468 | Decimal expansion of the real root of x^3 + x^2 + x - 2. | [
"8",
"1",
"0",
"5",
"3",
"5",
"7",
"1",
"3",
"7",
"6",
"6",
"1",
"3",
"6",
"7",
"7",
"4",
"0",
"2",
"1",
"2",
"5",
"1",
"4",
"1",
"4",
"3",
"2",
"5",
"6",
"6",
"8",
"2",
"1",
"4",
"1",
"0",
"7",
"2",
"6",
"1",
"4",
"9",
"0",
"0",
"0",
"0",
"5",
"3",
"0",
"2",
"4",
"7",
"4",
"4",
"3",
"0",
"9",
"7",
"6",
"7",
"4",
"5",
"0",
"9",
"4",
"5",
"9",
"4",
"0",
"8",
"7",
"4",
"7",
"2"
] | [
"nonn",
"cons",
"easy"
] | 10 | 0 | 1 | [
"A137421",
"A357468"
] | null | Wolfdieter Lang, Oct 17 2022 | 2022-12-15T17:01:34 | oeisdata/seq/A357/A357468.seq | b3a01b53f73e9c26c27f8c8f3b984b86 |
A357469 | Decimal expansion of the real root of x^3 - x^2 + x - 2. | [
"1",
"3",
"5",
"3",
"2",
"0",
"9",
"9",
"6",
"4",
"1",
"9",
"9",
"3",
"2",
"4",
"4",
"2",
"9",
"4",
"8",
"3",
"1",
"0",
"1",
"3",
"3",
"2",
"5",
"7",
"7",
"3",
"8",
"8",
"4",
"5",
"7",
"2",
"7",
"0",
"7",
"0",
"5",
"6",
"1",
"3",
"8",
"5",
"6",
"8",
"4",
"6",
"8",
"2",
"6",
"8",
"0",
"6",
"6",
"9",
"3",
"0",
"4",
"2",
"6",
"5",
"1",
"5",
"1",
"8",
"9",
"7",
"2",
"3",
"2",
"2",
"0",
"9",
"2",
"0",
"8",
"5",
"9",
"1",
"6",
"5",
"8",
"0",
"3",
"9",
"7",
"7"
] | [
"nonn",
"cons",
"easy"
] | 18 | 1 | 2 | [
"A137421",
"A197032",
"A357468",
"A357469"
] | null | Wolfdieter Lang, Oct 17 2022 | 2023-08-14T10:33:44 | oeisdata/seq/A357/A357469.seq | 319519023f44067137b7f5c67626ff21 |
A357470 | Decimal expansion of the real root of x^3 - x^2 - 2*x - 1. | [
"2",
"1",
"4",
"7",
"8",
"9",
"9",
"0",
"3",
"5",
"7",
"0",
"4",
"7",
"8",
"7",
"3",
"5",
"4",
"0",
"2",
"6",
"2",
"1",
"4",
"9",
"6",
"4",
"9",
"3",
"0",
"9",
"8",
"7",
"3",
"6",
"4",
"9",
"1",
"6",
"7",
"6",
"6",
"1",
"5",
"0",
"3",
"7",
"0",
"2",
"8",
"4",
"2",
"7",
"9",
"4",
"4",
"6",
"9",
"1",
"1",
"7",
"1",
"7",
"8",
"8",
"9",
"1",
"5",
"9",
"6",
"7",
"5",
"3",
"7",
"2",
"0",
"1"
] | [
"nonn",
"cons",
"easy"
] | 17 | 1 | 1 | [
"A160389",
"A255249",
"A255524",
"A357470",
"A357471",
"A357472"
] | null | Wolfdieter Lang, Oct 25 2022 | 2022-11-14T05:58:50 | oeisdata/seq/A357/A357470.seq | dd8b7f7a651678364bcc32dd32d1341b |
A357471 | Decimal expansion of the real root of x^3 - x^2 + 2*x - 1. | [
"5",
"6",
"9",
"8",
"4",
"0",
"2",
"9",
"0",
"9",
"9",
"8",
"0",
"5",
"3",
"2",
"6",
"5",
"9",
"1",
"1",
"3",
"9",
"9",
"9",
"5",
"8",
"1",
"1",
"9",
"5",
"6",
"8",
"6",
"4",
"8",
"8",
"3",
"9",
"7",
"9",
"7",
"4",
"3",
"9",
"1",
"2",
"8",
"9",
"4",
"0",
"2",
"2",
"0",
"5",
"4",
"4",
"7",
"3",
"1",
"0",
"7",
"9",
"6",
"5",
"6",
"7",
"4",
"7",
"1",
"9",
"6",
"1",
"1",
"7",
"4",
"6",
"6"
] | [
"nonn",
"cons",
"easy"
] | 12 | 0 | 1 | [
"A160389",
"A255249",
"A255524",
"A357470",
"A357471",
"A357472"
] | null | Wolfdieter Lang, Oct 25 2022 | 2022-11-09T05:10:53 | oeisdata/seq/A357/A357471.seq | f2b851fbb1a22dc096333d38aee5f1dc |
A357472 | Decimal expansion of the real root of x^3 + x^2 + 2*x - 1. | [
"3",
"9",
"2",
"6",
"4",
"6",
"7",
"8",
"1",
"7",
"0",
"2",
"6",
"4",
"0",
"8",
"1",
"1",
"7",
"6",
"4",
"8",
"7",
"9",
"5",
"9",
"4",
"8",
"8",
"4",
"3",
"4",
"1",
"2",
"5",
"0",
"7",
"0",
"3",
"7",
"6",
"4",
"9",
"6",
"8",
"5",
"9",
"3",
"4",
"8",
"2",
"5",
"8",
"9",
"7",
"3",
"1",
"1",
"3",
"9",
"6",
"4",
"9",
"8",
"4",
"4",
"5",
"1",
"7",
"1",
"6",
"6",
"8",
"4",
"7",
"0",
"8"
] | [
"nonn",
"cons",
"easy"
] | 16 | 0 | 1 | [
"A160389",
"A255249",
"A255524",
"A357470",
"A357471",
"A357472"
] | null | Wolfdieter Lang, Oct 25 2022 | 2022-11-09T05:13:09 | oeisdata/seq/A357/A357472.seq | c5b2d274ed39059807b321c193f6fd97 |
A357473 | Number of types of generalized symmetries in diagonal Latin squares of order n. | [
"1",
"0",
"0",
"10",
"8",
"12",
"12"
] | [
"nonn",
"more",
"hard"
] | 41 | 1 | 4 | [
"A000041",
"A274171",
"A287649",
"A287650",
"A293777",
"A357473",
"A358394",
"A358515",
"A358891"
] | null | Eduard I. Vatutin, Sep 29 2022 | 2023-05-03T23:29:06 | oeisdata/seq/A357/A357473.seq | 6e5dcd75e670ac74c43268bfcfe061d8 |
A357474 | Squarely correct numbers. | [
"1",
"4",
"9",
"11",
"14",
"16",
"19",
"25",
"36",
"41",
"44",
"49",
"64",
"81",
"91",
"94",
"99",
"100",
"111",
"114",
"116",
"119",
"121",
"125",
"136",
"141",
"144",
"149",
"161",
"164",
"169",
"181",
"191",
"194",
"196",
"199",
"225",
"251",
"254",
"256",
"259",
"289",
"324",
"361",
"364",
"369",
"400",
"411",
"414",
"416",
"419",
"425",
"436",
"441",
"444",
"449",
"464"
] | [
"nonn",
"easy",
"base"
] | 20 | 1 | 2 | [
"A000290",
"A018851",
"A036435",
"A357474"
] | null | Freddy Barrera, Sep 29 2022 | 2022-11-19T03:28:30 | oeisdata/seq/A357/A357474.seq | 15d78d735af75397ed7981ee9f8bbffc |
A357475 | Expansion of Product_{k>=1} 1 / (1 + x^k)^Fibonacci(k). | [
"1",
"-1",
"0",
"-2",
"0",
"-3",
"0",
"-4",
"2",
"-5",
"8",
"0",
"26",
"19",
"74",
"74",
"195",
"221",
"464",
"560",
"1042",
"1258",
"2154",
"2536",
"3997",
"4341",
"6152",
"5204",
"5447",
"-1617",
"-10790",
"-39710",
"-83915",
"-181639",
"-336564",
"-633844",
"-1108334",
"-1952371",
"-3293590",
"-5568202",
"-9148916",
"-15017471",
"-24144556",
"-38697396",
"-61005748",
"-95708150"
] | [
"sign"
] | 15 | 0 | 4 | [
"A000045",
"A166861",
"A261050",
"A337009",
"A357179",
"A357475"
] | null | Ilya Gutkovskiy, Oct 02 2022 | 2023-04-30T15:45:04 | oeisdata/seq/A357/A357475.seq | 66077bf986f5d70406ae25f9b7fa6855 |
A357476 | Number of partitions of n into two or more powers of 2. | [
"0",
"0",
"1",
"2",
"3",
"4",
"6",
"6",
"9",
"10",
"14",
"14",
"20",
"20",
"26",
"26",
"35",
"36",
"46",
"46",
"60",
"60",
"74",
"74",
"94",
"94",
"114",
"114",
"140",
"140",
"166",
"166",
"201",
"202",
"238",
"238",
"284",
"284",
"330",
"330",
"390",
"390",
"450",
"450",
"524",
"524",
"598",
"598",
"692",
"692",
"786",
"786",
"900",
"900",
"1014",
"1014",
"1154",
"1154",
"1294",
"1294",
"1460"
] | [
"nonn"
] | 13 | 0 | 4 | [
"A000065",
"A018819",
"A209229",
"A357476",
"A357534"
] | null | Ilya Gutkovskiy, Oct 02 2022 | 2022-10-08T14:23:13 | oeisdata/seq/A357/A357476.seq | 93394a814d6bbb58d322f3848095f312 |
A357477 | a(n) is the smallest k such that the square root of k*n rounds to a prime. | [
"3",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"2",
"3",
"3",
"3",
"6",
"6",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"4",
"4",
"4",
"5",
"5",
"5",
"3",
"3",
"3",
"3",
"3",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"8",
"8",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"7",
"7",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"3",
"3",
"3"
] | [
"nonn",
"easy"
] | 34 | 1 | 1 | [
"A357477",
"A357675",
"A357676"
] | null | Jake M. Gotlieb, Sep 30 2022 | 2022-10-19T13:40:21 | oeisdata/seq/A357/A357477.seq | b54773474efbcd80e766a5d7b23ae47e |
A357478 | Numbers n such that both n and n+1 are in A175729. | [
"7105",
"37583",
"229177",
"309281",
"343865",
"480654",
"794625",
"808860",
"977185",
"2135895",
"2174080",
"2755841",
"5978490",
"6865055",
"7147761",
"8784216",
"11207889",
"15251713",
"15854166",
"21526897",
"28432040",
"29831601",
"32865300",
"33531212",
"40931731",
"53237184",
"57766731",
"63564985",
"67849950",
"70751360",
"72352760",
"85121596"
] | [
"nonn"
] | 14 | 1 | 1 | [
"A175729",
"A357478"
] | null | J. M. Bergot and Robert Israel, Sep 30 2022 | 2022-10-02T10:33:17 | oeisdata/seq/A357/A357478.seq | f46297ac88a6877f72ff36bef0e0b83a |
A357479 | a(n) = (n!/6) * Sum_{k=0..n-3} 1/k!. | [
"0",
"0",
"0",
"1",
"8",
"50",
"320",
"2275",
"18256",
"164388",
"1644000",
"18084165",
"217010200",
"2821132886",
"39495860768",
"592437911975",
"9479006592160",
"161143112067400",
"2900576017214016",
"55110944327067273",
"1102218886541346600",
"23146596617368279930",
"509225125582102160000"
] | [
"nonn",
"easy"
] | 26 | 0 | 5 | [
"A000292",
"A000449",
"A000522",
"A007526",
"A038155",
"A073107",
"A357479",
"A357480"
] | null | Seiichi Manyama, Sep 30 2022 | 2023-04-02T14:24:48 | oeisdata/seq/A357/A357479.seq | 95b6d3a2ba21b0c684d066f6119b1845 |
A357480 | a(n) = (n!/24) * Sum_{k=0..n-4} 1/k!. | [
"0",
"0",
"0",
"0",
"1",
"10",
"75",
"560",
"4550",
"41076",
"410970",
"4521000",
"54252495",
"705283150",
"9873965101",
"148109477880",
"2369751647900",
"40285778016680",
"725144004303300",
"13777736081766576",
"275554721635336365",
"5786649154342069650",
"127306281395525539615",
"2928044472097087420000"
] | [
"nonn",
"easy"
] | 18 | 0 | 6 | [
"A000332",
"A000475",
"A000522",
"A007526",
"A038155",
"A073107",
"A357479",
"A357480"
] | null | Seiichi Manyama, Sep 30 2022 | 2022-10-01T02:06:38 | oeisdata/seq/A357/A357480.seq | f68678020d7b610af676912d2d2da52e |
A357481 | a(n) is the least integer b such that the digit representation of n in base b is equal to the digit representation in base b of the initial terms of the sets of divisors of n in increasing order, or -1 if no such b exists. | [
"2",
"-1",
"-1",
"-1",
"-1",
"2",
"-1",
"6",
"6",
"8",
"-1",
"10",
"-1",
"12",
"12",
"14",
"-1",
"16",
"-1",
"18",
"18",
"20",
"-1",
"22",
"20",
"24",
"24",
"26",
"-1",
"28",
"-1",
"30",
"30",
"32",
"30",
"34",
"-1",
"36",
"36",
"38",
"-1",
"40",
"-1",
"42",
"42",
"44",
"-1",
"3",
"42",
"3",
"48",
"2",
"-1",
"52",
"50",
"54",
"54",
"56",
"-1",
"58",
"-1",
"60",
"2",
"62",
"60",
"7",
"-1",
"66",
"66",
"68",
"-1",
"70",
"-1",
"72",
"7"
] | [
"sign",
"base"
] | 23 | 1 | 1 | [
"A056653",
"A175252",
"A357428",
"A357429",
"A357481"
] | null | Michel Marcus, Sep 30 2022 | 2022-10-06T04:30:54 | oeisdata/seq/A357/A357481.seq | 87b81bc93dd552b3dafd0cac0b3329f2 |
A357482 | a(0) = 0; for n > 0, a(n) is the smallest positive number not occurring earlier such that the binary string of the number of 1's in the binary value of a(n) + the number of 1's in the binary values of all previous terms does not appear in the binary string concatenation of a(0)..a(n-1). | [
"0",
"1",
"2",
"3",
"7",
"4",
"5",
"63",
"8",
"6",
"9",
"16",
"127",
"11",
"10",
"12",
"13",
"14",
"19",
"511",
"1023",
"15",
"21",
"17",
"31",
"18",
"20",
"22",
"24",
"25",
"33",
"23",
"27",
"26",
"28",
"35",
"37",
"38",
"41",
"1535",
"29",
"30",
"32",
"34",
"47",
"36",
"40",
"55",
"39",
"43",
"42",
"45",
"255",
"46",
"51",
"383",
"48",
"44",
"4095",
"64",
"447",
"65",
"95",
"53",
"191",
"767",
"1791",
"59",
"49",
"54",
"57",
"50",
"52"
] | [
"nonn",
"base"
] | 9 | 0 | 3 | [
"A007088",
"A030302",
"A118248",
"A355611",
"A357082",
"A357449",
"A357482"
] | null | Scott R. Shannon, Sep 30 2022 | 2023-01-16T09:10:46 | oeisdata/seq/A357/A357482.seq | be3bfc4a5cd67d58ca37d6e254da667d |
A357483 | Decimal expansion of sum of squares of reciprocals of primes whose distance to the next prime is equal to 6, Sum_{j>=1} 1/A031924(j)^2. | [
"0",
"0",
"4",
"7",
"5",
"7",
"2",
"8",
"6",
"9",
"7",
"5"
] | [
"nonn",
"cons",
"hard",
"more"
] | 13 | 0 | 3 | [
"A031924",
"A085548",
"A160910",
"A242301",
"A356793",
"A357059",
"A357483"
] | null | Artur Jasinski, Sep 30 2022 | 2022-10-02T00:27:46 | oeisdata/seq/A357/A357483.seq | 69074accca8a7899f30f79c35590ec10 |
A357484 | Number of linearity regions of a max-pooling function with a 3 by n input and 2 by 2 pooling windows. | [
"1",
"14",
"150",
"1536",
"15594",
"158050",
"1601356",
"16223814",
"164366170",
"1665216896",
"16870539234",
"170917714410",
"1731590444316",
"17542976546494",
"177730263461890",
"1800609290091936",
"18242215773029194",
"184814350419581330",
"1872379131238643436",
"18969325721395559574"
] | [
"nonn",
"easy"
] | 26 | 1 | 2 | [
"A007070",
"A033303",
"A357484"
] | null | Alejandro H. Morales, Sep 30 2022 | 2022-10-06T16:26:40 | oeisdata/seq/A357/A357484.seq | 288b1f1c51c44fa1f9a155a8b6d221bf |
A357485 | Heinz numbers of integer partitions with the same length as reverse-alternating sum. | [
"1",
"2",
"20",
"42",
"45",
"105",
"110",
"125",
"176",
"182",
"231",
"245",
"312",
"374",
"396",
"429",
"494",
"605",
"663",
"680",
"702",
"780",
"782",
"845",
"891",
"969",
"1064",
"1088",
"1100",
"1102",
"1311",
"1426",
"1428",
"1445",
"1530",
"1755",
"1805",
"1820",
"1824",
"1950",
"2001",
"2024",
"2146",
"2156",
"2394",
"2448",
"2475",
"2508",
"2542"
] | [
"nonn"
] | 6 | 1 | 2 | [
"A000009",
"A000041",
"A000712",
"A001055",
"A004526",
"A006330",
"A025047",
"A051159",
"A131044",
"A262046",
"A301987",
"A349159",
"A349160",
"A357136",
"A357182",
"A357184",
"A357189",
"A357485",
"A357486",
"A357487"
] | null | Gus Wiseman, Oct 01 2022 | 2022-10-02T10:33:45 | oeisdata/seq/A357/A357485.seq | a539fe3e4cf6e134767f1604b4b01722 |
A357486 | Heinz numbers of integer partitions with the same length as alternating sum. | [
"1",
"2",
"10",
"20",
"21",
"42",
"45",
"55",
"88",
"91",
"105",
"110",
"125",
"156",
"176",
"182",
"187",
"198",
"231",
"245",
"247",
"312",
"340",
"351",
"374",
"390",
"391",
"396",
"429",
"494",
"532",
"544",
"550",
"551",
"605",
"663",
"680",
"702",
"713",
"714",
"765",
"780",
"782",
"845",
"891",
"910",
"912",
"969",
"975",
"1012",
"1064",
"1073",
"1078"
] | [
"nonn"
] | 6 | 1 | 2 | [
"A000009",
"A000041",
"A000712",
"A001055",
"A004526",
"A006330",
"A025047",
"A051159",
"A131044",
"A262046",
"A301987",
"A349159",
"A349160",
"A357136",
"A357182",
"A357184",
"A357189",
"A357486",
"A357487"
] | null | Gus Wiseman, Oct 01 2022 | 2022-10-02T10:33:39 | oeisdata/seq/A357/A357486.seq | 0b399cb4765d4aa8740fd20a1aadf1af |
A357487 | Number of integer partitions of n with the same length as reverse-alternating sum. | [
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"2",
"0",
"4",
"0",
"5",
"0",
"9",
"0",
"13",
"0",
"23",
"0",
"34",
"0",
"54",
"0",
"78",
"0",
"120",
"0",
"170",
"0",
"252",
"0",
"358",
"0",
"517",
"0",
"725",
"0",
"1030",
"0",
"1427",
"0",
"1992",
"0",
"2733",
"0",
"3759",
"0",
"5106",
"0",
"6946",
"0",
"9345",
"0",
"12577",
"0",
"16788",
"0",
"22384",
"0",
"29641",
"0"
] | [
"nonn"
] | 5 | 0 | 8 | [
"A000009",
"A000041",
"A001055",
"A004526",
"A025047",
"A051159",
"A097805",
"A103919",
"A114220",
"A131044",
"A262046",
"A262977",
"A301987",
"A335405",
"A344651",
"A357136",
"A357182",
"A357183",
"A357184",
"A357189",
"A357485",
"A357486",
"A357487",
"A357488"
] | null | Gus Wiseman, Oct 01 2022 | 2022-10-02T10:33:35 | oeisdata/seq/A357/A357487.seq | a063002e2caf74e764201267b3ed3e12 |
A357488 | Number of integer partitions of 2n - 1 with the same length as alternating sum. | [
"1",
"0",
"1",
"2",
"4",
"5",
"9",
"13",
"23",
"34",
"54",
"78",
"120",
"170",
"252",
"358",
"517",
"725",
"1030",
"1427",
"1992",
"2733",
"3759",
"5106",
"6946",
"9345",
"12577",
"16788",
"22384",
"29641",
"39199",
"51529",
"67626",
"88307",
"115083",
"149332",
"193383",
"249456",
"321134",
"411998",
"527472",
"673233",
"857539",
"1089223",
"1380772"
] | [
"nonn"
] | 11 | 1 | 4 | [
"A000009",
"A000041",
"A001055",
"A004526",
"A025047",
"A051159",
"A097805",
"A103919",
"A114220",
"A131044",
"A222763",
"A262046",
"A262977",
"A335405",
"A344651",
"A357136",
"A357182",
"A357183",
"A357184",
"A357189",
"A357485",
"A357486",
"A357487",
"A357488"
] | null | Gus Wiseman, Oct 02 2022 | 2022-10-04T08:40:18 | oeisdata/seq/A357/A357488.seq | b22638bb221d8ad0c9e4bcdaef34ae9e |
A357489 | Numbers k such that the k-th composition in standard order is a triple (w,x,y) such that 2w = 3x + 4y. | [
"133",
"1034",
"4113",
"8212",
"32802",
"65576",
"131137",
"262212",
"524368",
"1048706",
"2097288",
"4194464",
"4194561",
"8388868",
"16777488",
"33554752",
"33554946",
"67109384",
"134218272",
"134218753",
"268436096",
"268436484",
"536871952",
"1073742912",
"1073743874",
"2147484928",
"2147485704",
"4294969376"
] | [
"nonn"
] | 11 | 1 | 1 | [
"A000120",
"A008676",
"A011782",
"A029837",
"A029931",
"A066099",
"A070939",
"A133494",
"A357489",
"A357849",
"A358102"
] | null | Gus Wiseman, Nov 02 2022 | 2022-11-03T05:41:43 | oeisdata/seq/A357/A357489.seq | 452de868f10fed275d3b39558e12196c |
A357490 | Numbers k such that the k-th composition in standard order has integer geometric mean. | [
"1",
"2",
"3",
"4",
"7",
"8",
"10",
"15",
"16",
"17",
"24",
"31",
"32",
"36",
"42",
"63",
"64",
"69",
"70",
"81",
"88",
"98",
"104",
"127",
"128",
"136",
"170",
"255",
"256",
"277",
"278",
"282",
"292",
"325",
"326",
"337",
"344",
"354",
"360",
"394",
"418",
"424",
"511",
"512",
"513",
"514",
"515",
"528",
"547",
"561",
"568",
"640",
"682",
"768",
"769",
"785",
"792",
"896"
] | [
"nonn"
] | 5 | 1 | 2 | [
"A051293",
"A067538",
"A067539",
"A078174",
"A078175",
"A096199",
"A102627",
"A271654",
"A301987",
"A320322",
"A326027",
"A326028",
"A326567",
"A326568",
"A326622",
"A326623",
"A326624",
"A326625",
"A326641",
"A326645",
"A335405",
"A339452",
"A357184",
"A357490",
"A357710"
] | null | Gus Wiseman, Oct 16 2022 | 2022-10-17T07:07:27 | oeisdata/seq/A357/A357490.seq | 7f697e1acf3b805091ae8407dceb9f8a |
A357491 | Distinct values in A356784, in order of appearance. | [
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"12",
"11",
"13",
"14",
"15",
"16",
"17",
"18",
"21",
"19",
"22",
"24",
"26",
"20",
"23",
"25",
"28",
"27",
"29",
"30",
"31",
"32",
"33",
"34",
"38",
"35",
"39",
"42",
"45",
"36",
"40",
"43",
"48",
"46",
"50",
"52",
"54",
"37",
"41",
"44",
"49",
"56",
"47",
"51",
"57",
"53",
"58",
"55",
"60",
"59",
"61",
"62",
"63",
"64",
"65",
"66",
"71"
] | [
"nonn"
] | 12 | 0 | 3 | [
"A356784",
"A357491",
"A357492"
] | null | Rémy Sigrist, Oct 01 2022 | 2022-10-02T10:53:14 | oeisdata/seq/A357/A357491.seq | 028077188e7b5e541b23fca8116943c3 |
A357492 | Inverse permutation to A357491. | [
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"12",
"11",
"13",
"14",
"15",
"16",
"17",
"18",
"20",
"24",
"19",
"21",
"25",
"22",
"26",
"23",
"28",
"27",
"29",
"30",
"31",
"32",
"33",
"34",
"36",
"40",
"48",
"35",
"37",
"41",
"49",
"38",
"42",
"50",
"39",
"44",
"53",
"43",
"51",
"45",
"54",
"46",
"56",
"47",
"58",
"52",
"55",
"57",
"60",
"59",
"61",
"62",
"63",
"64",
"65",
"66",
"68"
] | [
"nonn"
] | 10 | 0 | 3 | [
"A356784",
"A357491",
"A357492"
] | null | Rémy Sigrist, Oct 01 2022 | 2022-10-02T10:53:18 | oeisdata/seq/A357/A357492.seq | 4bc08a1c6108e698e75021c4520ec870 |
A357493 | Numbers k such that s(k) = 3*k, where s(k) is the sum of divisors of k that have a square factor (A162296). | [
"480",
"2688",
"56304",
"89400",
"195216",
"2095104",
"9724032",
"69441408",
"1839272960",
"5905219584"
] | [
"nonn",
"more"
] | 9 | 1 | 1 | [
"A001248",
"A005117",
"A005820",
"A013929",
"A068403",
"A162296",
"A322609",
"A325314",
"A357493",
"A357494"
] | null | Amiram Eldar, Oct 01 2022 | 2022-10-01T19:29:48 | oeisdata/seq/A357/A357493.seq | ce95553332e5abf6521087a464289538 |
A357494 | Numbers k such that s(k) = 4*k, where s(k) is the sum of divisors of k that have a square factor (A162296). | [
"902880",
"1534680",
"361674720",
"767685600",
"4530770640",
"4941414720",
"5405788800",
"5517818880",
"16993944000",
"20429240832",
"94820077440"
] | [
"nonn",
"more"
] | 5 | 1 | 1 | [
"A001248",
"A005117",
"A013929",
"A023198",
"A027687",
"A162296",
"A322609",
"A325314",
"A357493",
"A357494"
] | null | Amiram Eldar, Oct 01 2022 | 2022-10-01T19:29:57 | oeisdata/seq/A357/A357494.seq | c0f95670d8320bd983ac5bf45beaef18 |
A357495 | Lesser of a pair of amicable numbers k < m such that s(k) = m and s(m) = k, where s(k) = A162296(k) - k is the sum of aliquot divisors of k that have a square factor. | [
"880",
"10480",
"20080",
"24928",
"42976",
"69184",
"110565",
"252080",
"267712",
"489472",
"566656",
"569240",
"603855",
"626535",
"631708",
"687424",
"705088",
"741472",
"786896",
"904365",
"1100385",
"1234480",
"1280790",
"1425632",
"1749824",
"1993750",
"2012224",
"2401568",
"2439712",
"2496736",
"2542496",
"2573344",
"2671856"
] | [
"nonn"
] | 10 | 1 | 1 | [
"A002025",
"A002952",
"A013929",
"A126165",
"A126169",
"A162296",
"A259038",
"A292980",
"A322541",
"A322609",
"A324708",
"A325314",
"A348343",
"A357493",
"A357494",
"A357495",
"A357496"
] | null | Amiram Eldar, Oct 01 2022 | 2022-10-03T04:09:59 | oeisdata/seq/A357/A357495.seq | bfc6baeb9e30f56449f89301961315b6 |
A357496 | Greater of a pair of amicable numbers k < m such that s(k) = m and s(m) = k, where s(k) = A162296(k) - k is the sum of aliquot divisors of k that have a square factor. | [
"1136",
"11696",
"22256",
"25472",
"43424",
"73664",
"131355",
"304336",
"267968",
"492608",
"612704",
"674920",
"640305",
"788697",
"691292",
"705344",
"723392",
"813728",
"809776",
"1117395",
"1258335",
"1559696",
"1518570",
"1598368",
"1821376",
"2218250",
"2058944",
"2678752",
"2744288",
"2765024",
"2848864",
"2610656",
"3134224"
] | [
"nonn"
] | 12 | 1 | 1 | [
"A002046",
"A002953",
"A013929",
"A126166",
"A126170",
"A162296",
"A259039",
"A292981",
"A322542",
"A322609",
"A324709",
"A325314",
"A348344",
"A357493",
"A357494",
"A357495",
"A357496"
] | null | Amiram Eldar, Oct 01 2022 | 2022-10-03T04:11:09 | oeisdata/seq/A357/A357496.seq | 6ed39697d34dac8ce4e1a2a388d234e1 |
A357497 | Nonsquarefree numbers whose harmonic mean of nonsquarefree divisors in an integer. | [
"4",
"9",
"12",
"18",
"24",
"25",
"28",
"45",
"49",
"54",
"60",
"90",
"112",
"121",
"126",
"132",
"150",
"153",
"168",
"169",
"198",
"270",
"289",
"294",
"336",
"361",
"364",
"414",
"529",
"560",
"594",
"630",
"637",
"684",
"726",
"841",
"918",
"961",
"1014",
"1140",
"1232",
"1305",
"1350",
"1369",
"1512",
"1521",
"1638",
"1680",
"1681",
"1710",
"1734",
"1849",
"1984"
] | [
"nonn"
] | 9 | 1 | 1 | [
"A001248",
"A001599",
"A006086",
"A013929",
"A063947",
"A162296",
"A286325",
"A319745",
"A322609",
"A335387",
"A357493",
"A357494",
"A357495",
"A357496",
"A357497"
] | null | Amiram Eldar, Oct 01 2022 | 2022-10-03T04:16:49 | oeisdata/seq/A357/A357497.seq | 81c1d09bc390d36b13153f9ea7557162 |
A357498 | Triangle read by rows where each term in row n is the next greater multiple of n..1 divided by n..1. | [
"1",
"1",
"3",
"1",
"2",
"5",
"1",
"2",
"4",
"9",
"1",
"2",
"3",
"5",
"11",
"1",
"2",
"3",
"5",
"8",
"17",
"1",
"2",
"3",
"4",
"6",
"10",
"21",
"1",
"2",
"3",
"4",
"6",
"9",
"14",
"29",
"1",
"2",
"3",
"4",
"5",
"7",
"10",
"16",
"33",
"1",
"2",
"3",
"4",
"5",
"7",
"9",
"13",
"20",
"41",
"1",
"2",
"3",
"4",
"5",
"6",
"8",
"11",
"15",
"23",
"47",
"1",
"2",
"3",
"4",
"5",
"6",
"8",
"10",
"13",
"18",
"28",
"57"
] | [
"nonn",
"tabl",
"easy"
] | 42 | 1 | 3 | [
"A007952",
"A357431",
"A357498",
"A358435"
] | null | Tamas Sandor Nagy, Oct 01 2022 | 2023-05-10T07:28:21 | oeisdata/seq/A357/A357498.seq | 843da643bb3a67c9e08e56234eb0e099 |
A357499 | Triangle read by rows: T(n,k) is the length of the longest induced path in the n-dimensional hypercube, such that the end points of the path are at Hamming distance k, 0 <= k <= n. | [
"0",
"0",
"1",
"0",
"1",
"2",
"0",
"1",
"4",
"3",
"0",
"1",
"6",
"7",
"4",
"0",
"1",
"12",
"13",
"12",
"11",
"0",
"1",
"26",
"25",
"24",
"25",
"24"
] | [
"nonn",
"tabl",
"more",
"hard"
] | 7 | 0 | 6 | [
"A099155",
"A357360",
"A357499"
] | null | Pontus von Brömssen, Oct 01 2022 | 2022-10-02T08:34:07 | oeisdata/seq/A357/A357499.seq | ab92fbffc4b49c42ac77c7647054160b |
A357500 | Largest number of nodes of an induced path in the n X n knight graph. | [
"1",
"1",
"7",
"9",
"15",
"21",
"24",
"34"
] | [
"nonn",
"more"
] | 23 | 1 | 3 | [
"A165143",
"A331968",
"A357500"
] | null | Pontus von Brömssen, Oct 01 2022 | 2023-01-31T01:13:15 | oeisdata/seq/A357/A357500.seq | 405f4e4a9f8119d0f8468c9f829d1914 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.