sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
sequencelengths 1
348
| keywords
sequencelengths 1
8
| score
int64 1
2.31k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
sequencelengths 1
128
⌀ | former_ids
sequencelengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-28 00:58:08
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A357501 | Length of longest induced cycle in the n X n king graph. | [
"0",
"3",
"4",
"8",
"12",
"16",
"24",
"31",
"38",
"47",
"60",
"71",
"82",
"95",
"112",
"127",
"142"
] | [
"nonn",
"more"
] | 24 | 1 | 2 | [
"A000982",
"A165143",
"A357357",
"A357501",
"A361171"
] | null | Pontus von Brömssen, Oct 01 2022 | 2023-03-03T20:24:19 | oeisdata/seq/A357/A357501.seq | 1498976ccc85102386aca140ca2d7f36 |
A357502 | a(n) = ((1 + sqrt(n))^n - (1 - sqrt(n))^n)/(2*sqrt(n)). | [
"1",
"2",
"6",
"20",
"80",
"342",
"1624",
"8136",
"43776",
"246410",
"1463264",
"9033180",
"58200064",
"387905182",
"2679200640",
"19068105488",
"139929124864",
"1054773505170",
"8167509816832",
"64795371984420",
"526534098026496",
"4374163243287398",
"37135913476691968",
"321727849480560600"
] | [
"nonn",
"easy"
] | 26 | 1 | 2 | [
"A099173",
"A357502"
] | null | Alexander R. Povolotsky, Oct 01 2022 | 2022-10-14T16:29:47 | oeisdata/seq/A357/A357502.seq | bbbcf8177f5770a5ba452dfcecfaa59b |
A357503 | a(n) is the hafnian of the 2n X 2n symmetric matrix whose element (i,j) equals abs(i-j). | [
"1",
"1",
"8",
"174",
"7360",
"512720",
"53245824",
"7713320944",
"1486382446592",
"367691598791424",
"113570289012090880"
] | [
"nonn",
"hard",
"more"
] | 15 | 0 | 3 | [
"A049581",
"A085750",
"A085807",
"A094053",
"A144216",
"A338456",
"A357503"
] | null | Stefano Spezia, Oct 01 2022 | 2023-10-15T09:26:44 | oeisdata/seq/A357/A357503.seq | 8c563a22f18448868159be6bab7d1759 |
A357504 | Numbers that are the sum of two distinct triangular numbers. | [
"1",
"3",
"4",
"6",
"7",
"9",
"10",
"11",
"13",
"15",
"16",
"18",
"21",
"22",
"24",
"25",
"27",
"28",
"29",
"31",
"34",
"36",
"37",
"38",
"39",
"42",
"43",
"45",
"46",
"48",
"49",
"51",
"55",
"56",
"57",
"58",
"60",
"61",
"64",
"65",
"66",
"67",
"69",
"70",
"72",
"73",
"76",
"78",
"79",
"81",
"83",
"84",
"87",
"88",
"91",
"92",
"93",
"94",
"97",
"99",
"100",
"101",
"102",
"105",
"106",
"108"
] | [
"nonn",
"easy"
] | 24 | 1 | 2 | [
"A000217",
"A020756",
"A339952",
"A357504",
"A357505",
"A357529"
] | null | Stefano Spezia, Oct 01 2022 | 2023-06-04T08:56:02 | oeisdata/seq/A357/A357504.seq | a618501322ff45d2d06c033bf2c8e01a |
A357505 | Numbers that are not sum of two distinct triangular numbers. | [
"0",
"2",
"5",
"8",
"12",
"14",
"17",
"19",
"20",
"23",
"26",
"30",
"32",
"33",
"35",
"40",
"41",
"44",
"47",
"50",
"52",
"53",
"54",
"59",
"62",
"63",
"68",
"71",
"74",
"75",
"77",
"80",
"82",
"85",
"86",
"89",
"90",
"95",
"96",
"98",
"103",
"104",
"107",
"109",
"110",
"113",
"116",
"117",
"118",
"122",
"124",
"125",
"128",
"129",
"131",
"132",
"134",
"138",
"140",
"143",
"145",
"147"
] | [
"nonn",
"easy"
] | 16 | 1 | 2 | [
"A000217",
"A020757",
"A357504",
"A357505",
"A357529"
] | null | Stefano Spezia, Oct 01 2022 | 2023-06-04T08:56:08 | oeisdata/seq/A357/A357505.seq | 39e4347436a13596ee18cf6c71b12009 |
A357506 | a(n) = A005258(n)^3 * A005258(n-1). | [
"27",
"20577",
"60353937",
"287798988897",
"1782634331587527",
"13011500170881726987",
"106321024671550496694837",
"943479109706472533832704097",
"8916177779855571182824077866307",
"88547154924474394601268826256953077",
"915376390434997094066775480671975209017"
] | [
"nonn",
"easy"
] | 12 | 1 | 1 | [
"A005258",
"A212334",
"A339946",
"A352655",
"A357506",
"A357507",
"A357508",
"A357509"
] | null | Peter Bala, Oct 01 2022 | 2022-10-13T12:58:13 | oeisdata/seq/A357/A357506.seq | e2f6d2ee479c2187d150a8ddf269fdb3 |
A357507 | a(n) = A005259(n)^5 * (A005259(n-1))^7. | [
"3125",
"161958718203125",
"69598400094777710760545478125",
"514885225734532980507136994998009584838203125",
"15708056924221066705174364772957342407662356116035885781253125",
"1125221282019374727979322420623179115437017599670596496532725068048858642578125"
] | [
"nonn",
"easy"
] | 9 | 1 | 1 | [
"A005259",
"A212334",
"A339946",
"A352655",
"A357506",
"A357507",
"A357508",
"A357509",
"A357567",
"A357568",
"A357569",
"A357956",
"A357957",
"A357958",
"A357959"
] | null | Peter Bala, Oct 01 2022 | 2022-11-06T12:24:03 | oeisdata/seq/A357/A357507.seq | 8e58fc21745007263c2d7f5d9cc43e30 |
A357508 | a(n) = binomial(4*n,2*n) - 2*binomial(4*n,n). | [
"-1",
"-2",
"14",
"484",
"9230",
"153748",
"2434964",
"37748520",
"580043790",
"8886848740",
"136151207764",
"2088760285456",
"32108266614164",
"494648505828904",
"7637081136832840",
"118158193386475984",
"1831647087068431374",
"28444051172077725444",
"442429676097305612324"
] | [
"sign",
"easy"
] | 23 | 0 | 2 | [
"A001448",
"A005810",
"A357508",
"A357509"
] | null | Peter Bala, Oct 01 2022 | 2023-03-18T08:49:14 | oeisdata/seq/A357/A357508.seq | 26ffcddb505d38425b1c6ee95aa9da47 |
A357509 | a(n) = 2*binomial(3*n,n) - 9*binomial(2*n,n). | [
"-7",
"-12",
"-24",
"-12",
"360",
"3738",
"28812",
"201672",
"1355112",
"8936070",
"58427226",
"380724552",
"2479017996",
"16151245488",
"105359408760",
"688338793488",
"4504288103784",
"29521135717470",
"193771020939510",
"1273649831269200",
"8382448392851610",
"55234026483856110",
"364347399072847320"
] | [
"sign",
"easy"
] | 26 | 0 | 1 | [
"A000984",
"A005809",
"A268589",
"A357508",
"A357509"
] | null | Peter Bala, Oct 01 2022 | 2022-11-07T17:01:03 | oeisdata/seq/A357/A357509.seq | 84527a5efc02710c5b8c6f095dc5036a |
A357510 | a(n) = Sum_{k = 0..n} k * binomial(n,k)^2 * binomial(n+k,k)^2. | [
"0",
"4",
"108",
"3144",
"95000",
"2935020",
"92054340",
"2918972560",
"93330811440",
"3003683380020",
"97177865060540",
"3157623679795992",
"102973952434618824",
"3368460743291372092",
"110480459392323735540",
"3631941224582026770720",
"119637879389041977365600",
"3947968300820696313987780"
] | [
"nonn",
"easy"
] | 23 | 0 | 2 | [
"A005259",
"A357506",
"A357507",
"A357510",
"A357511",
"A357512",
"A357513"
] | null | Peter Bala, Oct 01 2022 | 2022-10-08T10:09:02 | oeisdata/seq/A357/A357510.seq | c956e2f811bf88e790186b6bf946530d |
A357511 | a(n) = numerator of Sum_{k = 1..n} (1/k) * binomial(n,k)^2 * binomial(n+k,k)^2 for n >= 1 with a(0) = 0 | [
"0",
"4",
"54",
"2182",
"36625",
"3591137",
"25952409",
"4220121443",
"206216140401",
"47128096330129",
"1233722785504429",
"364131107601152519",
"9971452750252847789",
"3611140187389794708497",
"102077670374035974509597",
"2922063451137950165057717",
"169140610796591477659644439"
] | [
"nonn",
"easy"
] | 15 | 0 | 2 | [
"A005259",
"A357506",
"A357507",
"A357510",
"A357511",
"A357512",
"A357513"
] | null | Peter Bala, Oct 01 2022 | 2022-10-08T10:10:04 | oeisdata/seq/A357/A357511.seq | 509ca5967195203818fd10f246972a6a |
A357512 | a(n) = Sum_{k = 0..n} k^5 * binomial(n,k)^2 * binomial(n+k,k)^2 | [
"0",
"4",
"1188",
"126144",
"10040000",
"682492500",
"41503541940",
"2325305113600",
"122429236976640",
"6140504039242500",
"296222848665342500",
"13841644170257145792",
"629814531655430506944",
"28019919084086921883892",
"1222770835880665252492500",
"52476371578141941012480000",
"2219374467089388085650636800"
] | [
"nonn",
"easy"
] | 16 | 0 | 2 | [
"A005259",
"A007310",
"A357510",
"A357511",
"A357512",
"A357513"
] | null | Peter Bala, Oct 02 2022 | 2022-10-08T10:11:30 | oeisdata/seq/A357/A357512.seq | 76335aca7e822e633c64f4061ce5f5cc |
A357513 | a(n) = numerator of Sum_{k = 1..n} (1/k^3) * binomial(n,k)^2 * binomial(n+k,k)^2 for n >= 1 with a(0) = 0 | [
"0",
"4",
"81",
"14651",
"956875",
"1335793103",
"697621869",
"3929170277787",
"573290332967211",
"8235727724024089939",
"172296487023049395523",
"5032311952710217004416313",
"114828404520381550476341513",
"5947240175728534283432460589661",
"144126887537331651710781931325261"
] | [
"nonn",
"easy"
] | 11 | 0 | 2 | [
"A005259",
"A357510",
"A357511",
"A357512",
"A357513"
] | null | Peter Bala, Oct 02 2022 | 2022-10-08T10:12:35 | oeisdata/seq/A357/A357513.seq | 0d566fea574670eb622d5e9f8af78574 |
A357514 | Minimum number of transversals in an orthogonal diagonal Latin square of order n. | [
"1",
"0",
"0",
"8",
"15",
"0",
"23",
"16",
"132"
] | [
"nonn",
"more",
"hard"
] | 33 | 1 | 4 | [
"A287644",
"A287645",
"A344105",
"A350585",
"A357514"
] | null | Eduard I. Vatutin, Oct 01 2022 | 2024-10-20T20:13:02 | oeisdata/seq/A357/A357514.seq | 309533c04b3e2078e0eaea18fca9d6a0 |
A357515 | Smallest positive integer that doubles when the n rightmost digits are shifted to the left end. | [
"105263157894736842",
"100502512562814070351758793969849246231155778894472361809045226130653266331658291457286432160804020"
] | [
"nonn",
"base"
] | 4 | 1 | 1 | [
"A146088",
"A357515"
] | null | Joseph C. Y. Wong, Oct 01 2022 | 2022-10-02T00:44:15 | oeisdata/seq/A357/A357515.seq | fcf405c6d869c3f7d8e118d8d41a09c0 |
A357516 | Number of snake-like polyominoes in an n X n square that start at the NW corner and end at the SE corner and have the maximum length. | [
"1",
"2",
"6",
"20",
"2",
"64",
"44",
"512",
"28",
"4",
"64",
"520",
"480",
"6720",
"43232",
"14400"
] | [
"nonn",
"walk",
"hard",
"more"
] | 29 | 1 | 2 | [
"A331986",
"A357234",
"A357516"
] | null | Yi Yang, Oct 01 2022 | 2023-02-28T13:07:11 | oeisdata/seq/A357/A357516.seq | 118edd6248bc9d36cae1f7a412ca102e |
A357517 | Primes that are the average of two consecutive primorial numbers A002110 plus one. | [
"5",
"19",
"270271",
"5105101",
"103515091681",
"3810649312471",
"155835500831011",
"313986271960080721",
"282899575838889614011647241",
"113405858671385228324474555982803921209616373612841704311161",
"2900763693484834576932132901212043025388720793126978148639249341"
] | [
"nonn"
] | 18 | 1 | 1 | [
"A002110",
"A276939",
"A357517"
] | null | Nicholas Leonard, Oct 01 2022 | 2022-11-23T08:56:50 | oeisdata/seq/A357/A357517.seq | 4143e3270a0d9835a7a116f60df1a6f9 |
A357518 | Unique fixed point of the two-block substitution 00->111, 01->110, 10->101, 11->100. | [
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1"
] | [
"nonn"
] | 13 | 1 | null | [
"A087088",
"A354896",
"A357448",
"A357518"
] | null | Michel Dekking, Oct 02 2022 | 2022-10-03T08:57:19 | oeisdata/seq/A357/A357518.seq | d157d3f210f23c7d357135a28ecd0337 |
A357519 | Number of compositions (ordered partitions) of n into Jacobsthal numbers 1,3,5,11,21,43, ... (A001045). | [
"1",
"1",
"1",
"2",
"3",
"5",
"8",
"12",
"19",
"30",
"47",
"75",
"118",
"185",
"292",
"460",
"725",
"1143",
"1800",
"2836",
"4469",
"7042",
"11097",
"17485",
"27550",
"43411",
"68403",
"107783",
"169834",
"267606",
"421666",
"664419",
"1046925",
"1649640",
"2599335",
"4095768",
"6453698",
"10169086",
"16023420",
"25248087",
"39783383"
] | [
"nonn"
] | 5 | 0 | 4 | [
"A001045",
"A076739",
"A296371",
"A357519"
] | null | Ilya Gutkovskiy, Oct 02 2022 | 2022-10-02T10:29:16 | oeisdata/seq/A357/A357519.seq | 9a93ad8ef9634e43eb1a4de06c1a1f69 |
A357520 | Expansion of Product_{k>=0} (1 - x^Lucas(k)). | [
"1",
"-1",
"-1",
"0",
"0",
"2",
"0",
"-1",
"0",
"0",
"1",
"-1",
"-1",
"1",
"0",
"1",
"-1",
"-1",
"0",
"1",
"1",
"-1",
"0",
"0",
"0",
"1",
"-1",
"-1",
"0",
"0",
"2",
"0",
"0",
"-1",
"-1",
"1",
"0",
"0",
"0",
"0",
"1",
"-1",
"-1",
"0",
"0",
"2",
"0",
"-1",
"0",
"0",
"1",
"0",
"-2",
"0",
"0",
"1",
"1",
"-1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"-1",
"-1",
"0",
"0",
"2",
"0",
"-1",
"0",
"0",
"1",
"-1",
"-1",
"1",
"0",
"1",
"-1",
"-1",
"1",
"0",
"0",
"-1",
"0",
"2",
"0",
"0",
"-1",
"-1",
"1"
] | [
"sign"
] | 5 | 0 | 6 | [
"A000032",
"A067593",
"A093996",
"A357380",
"A357382",
"A357520"
] | null | Ilya Gutkovskiy, Oct 02 2022 | 2022-10-02T10:29:12 | oeisdata/seq/A357/A357520.seq | 3f41468ac416914e011b604e1cd10c8a |
A357521 | Expansion of Product_{k>=1} (1 - mu(k)*x^k). | [
"1",
"-1",
"1",
"0",
"-1",
"2",
"-3",
"3",
"-2",
"0",
"1",
"-2",
"2",
"-2",
"1",
"-2",
"3",
"-4",
"4",
"-2",
"0",
"2",
"-5",
"6",
"-5",
"3",
"-2",
"1",
"-1",
"1",
"0",
"0",
"3",
"-6",
"6",
"-5",
"4",
"0",
"-5",
"7",
"-7",
"5",
"-2",
"2",
"0",
"-2",
"0",
"1",
"5",
"-7",
"11",
"-14",
"11",
"-6",
"-1",
"9",
"-12",
"8",
"-11",
"11",
"-6",
"10",
"-13",
"8",
"-2",
"-12",
"26",
"-26",
"24",
"-20",
"2",
"11",
"-8",
"14",
"-15",
"9"
] | [
"sign"
] | 6 | 0 | 6 | [
"A008683",
"A117208",
"A185694",
"A292561",
"A300663",
"A306327",
"A357521",
"A357524",
"A357525"
] | null | Ilya Gutkovskiy, Oct 02 2022 | 2022-10-02T10:29:08 | oeisdata/seq/A357/A357521.seq | 96056865685a6bd322a893a0d426e232 |
A357522 | Reverse run lengths in binary expansions of terms of A063037: for n >= 0, a(n) is the unique k such that A063037(1+k) = A056539(A063037(1+n)). | [
"0",
"1",
"2",
"3",
"6",
"5",
"4",
"7",
"8",
"11",
"10",
"9",
"16",
"17",
"18",
"15",
"12",
"13",
"14",
"19",
"32",
"23",
"22",
"21",
"24",
"31",
"28",
"27",
"26",
"29",
"30",
"25",
"20",
"33",
"42",
"49",
"48",
"43",
"44",
"47",
"50",
"41",
"34",
"37",
"38",
"53",
"52",
"39",
"36",
"35",
"40",
"51",
"46",
"45",
"74",
"75",
"84",
"65",
"58",
"59",
"64",
"85",
"86",
"63",
"60",
"57",
"66",
"83"
] | [
"nonn",
"look",
"base"
] | 12 | 0 | 3 | [
"A044918",
"A056539",
"A063037",
"A357522",
"A357523"
] | null | Rémy Sigrist, Oct 02 2022 | 2022-10-03T14:55:27 | oeisdata/seq/A357/A357522.seq | 7cfec58e8809f85834c7f6eb368ed98d |
A357523 | Reverse run lengths in binary expansions of terms of A166535: for n > 0, a(n) is the unique k such that A166535(k) = A056539(A166535(n)); a(0) = 0. | [
"0",
"1",
"2",
"3",
"6",
"5",
"4",
"7",
"14",
"9",
"10",
"13",
"12",
"11",
"8",
"15",
"20",
"23",
"24",
"19",
"16",
"27",
"26",
"17",
"18",
"25",
"22",
"21",
"40",
"41",
"46",
"35",
"32",
"49",
"50",
"31",
"36",
"45",
"42",
"39",
"28",
"29",
"38",
"43",
"44",
"37",
"30",
"51",
"48",
"33",
"34",
"47",
"88",
"63",
"62",
"89",
"94",
"57",
"68",
"83",
"80",
"71",
"54",
"53",
"72",
"79",
"84",
"67"
] | [
"nonn",
"base"
] | 9 | 0 | 3 | [
"A044918",
"A056539",
"A166535",
"A357522",
"A357523"
] | null | Rémy Sigrist, Oct 02 2022 | 2022-10-03T15:07:54 | oeisdata/seq/A357/A357523.seq | 0af84f2329c1ccbb6e20e5e6495e440c |
A357524 | Expansion of Product_{k>=1} 1 / (1 + mu(k)*x^k). | [
"1",
"-1",
"2",
"-1",
"2",
"0",
"1",
"2",
"0",
"3",
"0",
"4",
"1",
"4",
"2",
"4",
"4",
"4",
"5",
"6",
"6",
"6",
"8",
"8",
"10",
"9",
"11",
"12",
"13",
"14",
"17",
"17",
"20",
"19",
"23",
"24",
"28",
"27",
"30",
"34",
"34",
"40",
"41",
"47",
"48",
"50",
"56",
"62",
"64",
"71",
"72",
"80",
"85",
"91",
"99",
"104",
"113",
"112",
"128",
"135",
"147",
"153",
"159",
"176",
"180",
"196",
"210",
"220",
"233",
"240",
"264"
] | [
"sign"
] | 6 | 0 | 3 | [
"A008683",
"A117211",
"A185694",
"A300663",
"A306327",
"A329069",
"A357521",
"A357524",
"A357525"
] | null | Ilya Gutkovskiy, Oct 02 2022 | 2022-10-02T10:29:04 | oeisdata/seq/A357/A357524.seq | e0358a789d9ba81105f0d54e26ee0c42 |
A357525 | Expansion of Product_{k>=1} (1 + mu(k)*x^k). | [
"1",
"1",
"-1",
"-2",
"-1",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"-2",
"-2",
"1",
"4",
"3",
"-2",
"-4",
"-2",
"0",
"2",
"3",
"0",
"-1",
"1",
"0",
"-3",
"-3",
"-1",
"2",
"4",
"3",
"0",
"-2",
"-1",
"2",
"0",
"-5",
"-3",
"3",
"3",
"0",
"-2",
"-4",
"-2",
"4",
"5",
"3",
"3",
"1",
"-4",
"-9",
"-8",
"3",
"11",
"6",
"0",
"-3",
"-7",
"-4",
"2",
"-1",
"-2",
"6",
"8",
"-2",
"-10",
"-8",
"4",
"14",
"11",
"2",
"-6",
"-11",
"-5"
] | [
"sign"
] | 6 | 0 | 4 | [
"A008683",
"A087188",
"A117210",
"A185694",
"A300663",
"A306327",
"A357521",
"A357524",
"A357525"
] | null | Ilya Gutkovskiy, Oct 02 2022 | 2022-10-02T10:28:59 | oeisdata/seq/A357/A357525.seq | c2037b9cdf84e76e276548ff99ee5314 |
A357526 | Number of nonnegative integers less than n with the same product of the nonzero decimal digits as n. | [
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"3",
"2",
"2",
"2",
"0",
"0",
"0",
"0",
"0",
"2",
"3",
"3",
"2",
"1",
"0",
"1",
"0",
"0",
"0",
"3",
"4",
"3",
"2",
"1",
"0",
"1",
"0",
"0",
"0",
"2",
"3",
"1",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"4",
"5",
"3",
"2",
"2",
"1",
"1",
"0",
"0",
"0",
"2",
"3",
"1",
"1",
"1",
"1",
"1",
"0",
"0",
"0",
"4",
"5",
"2",
"3",
"1",
"1",
"1",
"1",
"0",
"0",
"3"
] | [
"nonn",
"base"
] | 5 | 0 | 11 | [
"A051801",
"A138471",
"A254524",
"A338505",
"A357526"
] | null | Ilya Gutkovskiy, Oct 02 2022 | 2022-10-02T13:45:43 | oeisdata/seq/A357/A357526.seq | bd1250053e2f3a4f368acff5b3a737ea |
A357527 | Reverse run lengths in binary expansions of terms of A044813: for n > 0, a(n) is the unique k such that A044813(k) = A056539(A044813(n)); a(0) = 0. | [
"0",
"1",
"2",
"4",
"3",
"5",
"7",
"6",
"8",
"12",
"11",
"10",
"9",
"13",
"23",
"18",
"20",
"22",
"15",
"21",
"16",
"19",
"17",
"14",
"24",
"36",
"29",
"33",
"35",
"26",
"34",
"32",
"31",
"27",
"30",
"28",
"25",
"37",
"55",
"44",
"47",
"49",
"52",
"54",
"39",
"53",
"51",
"40",
"50",
"41",
"48",
"46",
"42",
"45",
"43",
"38",
"56",
"82",
"63",
"68",
"76",
"79",
"81",
"58",
"69",
"73",
"80",
"78"
] | [
"nonn",
"look",
"base"
] | 12 | 0 | 3 | [
"A044813",
"A044918",
"A056539",
"A057164",
"A357522",
"A357523",
"A357527"
] | null | Rémy Sigrist, Oct 02 2022 | 2022-10-03T14:56:04 | oeisdata/seq/A357/A357527.seq | af5a3232b5402eefa44acbd2c312a3fa |
A357528 | Decimal expansion of Sum_{j>=1} 1/A031926(j)^2. | [
"0",
"0",
"0",
"1",
"8",
"3",
"9",
"3",
"0",
"8",
"5",
"1",
"7"
] | [
"nonn",
"cons",
"hard",
"more"
] | 20 | 0 | 5 | [
"A031926",
"A085548",
"A160910",
"A242301",
"A356793",
"A357059",
"A357483",
"A357528"
] | null | Artur Jasinski, Oct 02 2022 | 2022-11-06T09:12:56 | oeisdata/seq/A357/A357528.seq | 7593bad52d1c8f4b634a519750d75504 |
A357529 | Triangular numbers k such that 2*k cannot be expressed as a sum of two distinct triangular numbers. | [
"0",
"1",
"6",
"10",
"15",
"45",
"55",
"66",
"91",
"120",
"136",
"231",
"276",
"300",
"406",
"435",
"496",
"561",
"595",
"630",
"741",
"780",
"820",
"861",
"1081",
"1225",
"1326",
"1431",
"1830",
"2016",
"2080",
"2145",
"2211",
"2415",
"2485",
"2701",
"2850",
"3240",
"3321",
"3486",
"3655",
"3916",
"4005",
"4465",
"4560",
"4950",
"5050",
"5356",
"5460",
"5565"
] | [
"nonn",
"easy"
] | 19 | 1 | 3 | [
"A000217",
"A002378",
"A008851",
"A020756",
"A020757",
"A357504",
"A357505",
"A357529"
] | null | Stefano Spezia, Oct 02 2022 | 2022-11-06T14:51:44 | oeisdata/seq/A357/A357529.seq | 802d9ba611a9754d6674224610c01d6c |
A357530 | Reverse run lengths in binary expansions of terms of A031443: for n > 0, a(n) is the unique k such that A031443(k) = A056539(A031443(n)); a(0) = 0. | [
"0",
"1",
"2",
"3",
"4",
"11",
"8",
"7",
"6",
"9",
"12",
"5",
"10",
"13",
"14",
"45",
"41",
"31",
"18",
"38",
"28",
"21",
"22",
"27",
"37",
"36",
"26",
"23",
"20",
"29",
"39",
"17",
"32",
"42",
"46",
"35",
"25",
"24",
"19",
"30",
"40",
"16",
"33",
"43",
"47",
"15",
"34",
"44",
"48",
"49",
"170",
"165",
"150",
"115",
"54",
"161",
"146",
"111",
"58",
"136",
"101",
"68",
"81",
"88",
"123"
] | [
"nonn",
"base"
] | 10 | 0 | 3 | [
"A031443",
"A044918",
"A056539",
"A057164",
"A357530"
] | null | Rémy Sigrist, Oct 02 2022 | 2022-10-03T15:08:00 | oeisdata/seq/A357/A357530.seq | a303cf26814e3f9e36c7cb3615119794 |
A357531 | Final value obtained by traveling clockwise around a circular array with positions numbered clockwise from 1 to n. Each move consists of traveling clockwise k places, where k is the position at the beginning of the move. The first move begins at position 1. a(n) is the position at the end of the n-th move. | [
"1",
"2",
"2",
"4",
"2",
"4",
"2",
"8",
"8",
"4",
"2",
"4",
"2",
"4",
"8",
"16",
"2",
"10",
"2",
"16",
"8",
"4",
"2",
"16",
"7",
"4",
"26",
"16",
"2",
"4",
"2",
"32",
"8",
"4",
"18",
"28",
"2",
"4",
"8",
"16",
"2",
"22",
"2",
"16",
"17",
"4",
"2",
"16",
"30",
"24",
"8",
"16",
"2",
"28",
"43",
"32",
"8",
"4",
"2",
"16",
"2",
"4",
"8",
"64",
"32",
"64",
"2",
"16",
"8",
"44",
"2",
"64",
"2",
"4",
"68",
"16",
"18",
"64",
"2",
"16",
"80",
"4",
"2",
"64",
"32",
"4",
"8",
"80"
] | [
"nonn",
"easy"
] | 68 | 1 | 2 | [
"A015910",
"A082495",
"A357531",
"A358647"
] | null | Moosa Nasir, Nov 19 2022 | 2024-04-27T09:37:44 | oeisdata/seq/A357/A357531.seq | a2e60fcea6b722ef30d573e199127795 |
A357532 | a(n) = Sum_{k=0..floor(n/3)} (n-2*k)!/(n-3*k)!. | [
"1",
"1",
"1",
"2",
"3",
"4",
"7",
"12",
"19",
"34",
"63",
"112",
"211",
"414",
"799",
"1588",
"3267",
"6706",
"13999",
"30024",
"64723",
"141142",
"314271",
"705724",
"1599619",
"3685338",
"8573167",
"20112016",
"47804499",
"114743614",
"277615903",
"679057092",
"1676636611",
"4171532674",
"10477002159",
"26545428568",
"67755344467",
"174386589606"
] | [
"nonn",
"easy"
] | 30 | 0 | 4 | [
"A072374",
"A122852",
"A357532",
"A357533",
"A357570"
] | null | Seiichi Manyama, Nov 19 2022 | 2022-11-25T06:33:49 | oeisdata/seq/A357/A357532.seq | 9fa26f4c20986ab8c850efb029901611 |
A357533 | a(n) = Sum_{k=0..floor(n/4)} (n-3*k)!/(n-4*k)!. | [
"1",
"1",
"1",
"1",
"2",
"3",
"4",
"5",
"8",
"13",
"20",
"29",
"46",
"77",
"128",
"205",
"338",
"581",
"1012",
"1733",
"2990",
"5293",
"9536",
"17117",
"30778",
"56165",
"104108",
"193621",
"360662",
"677693",
"1289080",
"2467373",
"4735826",
"9142837",
"17814308",
"34950245",
"68835118",
"136197581",
"271384112",
"544302973",
"1096578410",
"2218459013",
"4513377436"
] | [
"nonn",
"easy"
] | 26 | 0 | 5 | [
"A072374",
"A122852",
"A357532",
"A357533",
"A357570"
] | null | Seiichi Manyama, Nov 19 2022 | 2022-11-25T06:31:58 | oeisdata/seq/A357/A357533.seq | e5a9f1790308adb7a2f16bb66f5a0829 |
A357534 | Number of compositions (ordered partitions) of n into two or more powers of 2. | [
"0",
"0",
"1",
"3",
"5",
"10",
"18",
"31",
"55",
"98",
"174",
"306",
"542",
"956",
"1690",
"2983",
"5271",
"9310",
"16448",
"29050",
"51318",
"90644",
"160118",
"282826",
"499590",
"882468",
"1558798",
"2753448",
"4863696",
"8591212",
"15175514",
"26805983",
"47350055",
"83639030",
"147739848",
"260967362",
"460972286",
"814260544",
"1438308328"
] | [
"nonn"
] | 12 | 0 | 4 | [
"A023359",
"A093659",
"A209229",
"A357476",
"A357534"
] | null | Ilya Gutkovskiy, Oct 02 2022 | 2022-12-26T11:39:47 | oeisdata/seq/A357/A357534.seq | 829d9d16e580ab78b04fcdd66fc7f15f |
A357535 | The positive odd numbers x such that x = c^2 - y and +-x = a +- y, where (a,b,c) is a primitive Pythagorean triple (PPT), a is odd and y is an even positive integer. | [
"11",
"87",
"137",
"309",
"431",
"667",
"845",
"1427",
"1855",
"2081",
"2129",
"2637",
"3619",
"3651",
"3941",
"4737",
"5051",
"5895",
"6377",
"7871",
"9437",
"10441",
"10521",
"11075",
"12367",
"14221",
"15047",
"16371",
"17141",
"17189",
"18577",
"19307",
"20919",
"21079",
"24431",
"24481",
"26331"
] | [
"nonn"
] | 19 | 11 | 1 | [
"A020882",
"A357535"
] | null | Laura Jokinen, Oct 02 2022 | 2022-10-19T18:36:59 | oeisdata/seq/A357/A357535.seq | de4e57be369a56fd38b03e57ca4adfd2 |
A357536 | Number of colorings of an n X n grid with at most n interchangeable colors under rotational and reflectional symmetry. | [
"1",
"4",
"490",
"22396971",
"310449924192274",
"1790711048631786194374209",
"6372121790133410693083324907292917240",
"19460266334869242507206895620675207301301857505549306"
] | [
"nonn"
] | 7 | 1 | 2 | [
"A182044",
"A264741",
"A264742",
"A357536"
] | null | Marko Riedel, Oct 02 2022 | 2022-10-06T14:42:05 | oeisdata/seq/A357/A357536.seq | 5715b860bea936f0a58585677cce37ca |
A357537 | a(n) = 2*A080635(n) if n > 0. a(0) = 1. | [
"1",
"2",
"2",
"6",
"18",
"78",
"378",
"2214",
"14562",
"108702",
"897642",
"8171766",
"81066258",
"871695918",
"10091490138",
"125189658054",
"1656458307522",
"23288226400062",
"346663764078282",
"5447099463010326",
"90094171024954098",
"1564653992673809358",
"28467075416816935098",
"541467979789775621094"
] | [
"nonn"
] | 8 | 0 | 2 | [
"A080635",
"A357537"
] | null | Michael Somos, Oct 02 2022 | 2022-10-04T07:29:41 | oeisdata/seq/A357/A357537.seq | 10853e8a608d8b37a77b4dfc1fcde52a |
A357538 | a(n) = coefficient of x^n in A(x) such that A(x) = 1 + x*(2*A(x)^3 + A(x^3))/3. | [
"1",
"1",
"2",
"6",
"21",
"78",
"308",
"1264",
"5332",
"22994",
"100896",
"449004",
"2021712",
"9193509",
"42161222",
"194768936",
"905522052",
"4233712140",
"19893553120",
"93894821200",
"444952447944",
"2116220266360",
"10098086643002",
"48330679370584",
"231954451580616",
"1116046254269592",
"5382402925982248"
] | [
"nonn"
] | 23 | 0 | 3 | [
"A000625",
"A287211",
"A357538",
"A375439"
] | null | Paul D. Hanna, Dec 02 2022 | 2024-08-22T02:06:53 | oeisdata/seq/A357/A357538.seq | 2b2b8a284b2c6bbdcd118789d8d25cfa |
A357539 | a(n) = coefficient of x^n/n! in: Sum_{n>=0} ( x*exp(x) )^(n*(n+1)/2). | [
"1",
"1",
"2",
"9",
"76",
"545",
"3966",
"47257",
"807416",
"13431105",
"201158650",
"2992272041",
"55015365252",
"1383804654817",
"39956273419622",
"1127353750507545",
"29721911064179056",
"748976662158153857",
"19509333366569811570",
"592071561505183956553",
"22102320673776378606140"
] | [
"nonn"
] | 21 | 0 | 3 | null | null | Paul D. Hanna, Dec 05 2022 | 2022-12-06T07:14:17 | oeisdata/seq/A357/A357539.seq | 421b498cfdb7887ad2d06f8c9732d72f |
A357540 | Coefficients T(n,k) of x^(3*n+1)*r^(3*k)/(3*n+1)! in power series S(x,r) = Integral C(x,r)^2 * D(x,r)^2 dx such that C(x,r)^3 - S(x,r)^3 = 1 and D(x,r)^3 - r^3*S(x,r)^3 = 1, as a symmetric triangle read by rows. | [
"1",
"4",
"4",
"160",
"800",
"160",
"20800",
"292800",
"292800",
"20800",
"6476800",
"191910400",
"500121600",
"191910400",
"6476800",
"3946624000",
"210590336000",
"1091343616000",
"1091343616000",
"210590336000",
"3946624000",
"4161608704000",
"361556726784000",
"3216369361920000",
"6333406238720000",
"3216369361920000",
"361556726784000",
"4161608704000",
"6974121256960000",
"919365914368000000",
"12789764316088320000",
"42703786876467200000"
] | [
"nonn",
"tabl"
] | 27 | 0 | 2 | [
"A104133",
"A357540",
"A357541",
"A357542",
"A357543",
"A357544",
"A357800"
] | null | Paul D. Hanna, Oct 09 2022 | 2022-10-14T17:55:27 | oeisdata/seq/A357/A357540.seq | fc60118128c364d71ea6a9804b2b3c4f |
A357541 | Coefficients T(n,k) of x^(3*n)*r^(3*k)/(3*n)! in power series C(x,r) = 1 + Integral S(x,r)^2 * D(x,r)^2 dx such that C(x,r)^3 - S(x,r)^3 = 1 and D(x,r)^3 - r^3*S(x,r)^3 = 1, as a triangle read by rows. | [
"1",
"2",
"0",
"40",
"120",
"0",
"3680",
"37440",
"21600",
"0",
"880000",
"20592000",
"38966400",
"8553600",
"0",
"435776000",
"19269888000",
"79491456000",
"57708288000",
"6329664000",
"0",
"386949376000",
"28748332800000",
"213892766208000",
"335872728576000",
"123646051584000",
"7852204800000",
"0",
"560034421760000",
"64544356546560000",
"774705298498560000",
"2169194182594560000",
"1730103155573760000",
"374841224017920000",
"15132769090560000",
"0"
] | [
"nonn",
"tabl"
] | 28 | 0 | 2 | [
"A104134",
"A178575",
"A357540",
"A357541",
"A357542",
"A357545",
"A357801"
] | null | Paul D. Hanna, Oct 09 2022 | 2023-04-14T09:50:05 | oeisdata/seq/A357/A357541.seq | 70a45ecca4470402dc1d81d190128227 |
A357542 | Coefficients T(n,k) of x^(3*n)*r^(3*k)/(3*n)! in power series D(x,r) = 1 + r^3 * Integral S(x,r)^2 * D(x,r)^2 dx such that C(x,r)^3 - S(x,r)^3 = 1 and D(x,r)^3 - r^3*S(x,r)^3 = 1, as a triangle read by rows. | [
"1",
"0",
"2",
"0",
"120",
"40",
"0",
"21600",
"37440",
"3680",
"0",
"8553600",
"38966400",
"20592000",
"880000",
"0",
"6329664000",
"57708288000",
"79491456000",
"19269888000",
"435776000",
"0",
"7852204800000",
"123646051584000",
"335872728576000",
"213892766208000",
"28748332800000",
"386949376000",
"0",
"15132769090560000",
"374841224017920000",
"1730103155573760000",
"2169194182594560000",
"774705298498560000",
"64544356546560000",
"560034421760000"
] | [
"nonn",
"tabl"
] | 23 | 0 | 3 | [
"A104134",
"A178575",
"A357540",
"A357541",
"A357542",
"A357545",
"A357802"
] | null | Paul D. Hanna, Oct 09 2022 | 2022-10-14T17:57:03 | oeisdata/seq/A357/A357542.seq | e3a8756391c9adf204822a661bafcab5 |
A357543 | a(n) = (3*n+1)!/(3^n*n!) * Product_{k=1..n} (3*k - 2), for n >= 0. | [
"1",
"8",
"1120",
"627200",
"896896000",
"2611761152000",
"13497581633536000",
"112839782456360960000",
"1427423248072966144000000",
"25979103114927983820800000000",
"653945983608967208737177600000000",
"22056290135163246016287526092800000000",
"971138454651237722097139773865984000000000"
] | [
"nonn"
] | 8 | 0 | 2 | [
"A004117",
"A178575",
"A357540",
"A357543"
] | null | Paul D. Hanna, Oct 10 2022 | 2022-10-11T00:50:00 | oeisdata/seq/A357/A357543.seq | 9145b83d1c1c2652d6cefd26db8137a6 |
A357544 | Central terms of triangle A357540: a(n) = A357540(2*n,n). | [
"1",
"800",
"500121600",
"6333406238720000",
"588750579021316096000000",
"243397196351152229173100544000000",
"331908261581281694863434866648678400000000",
"1223826698292228823742554320600270140080128000000000",
"10588007775487579454220040763957899854099800653824000000000000"
] | [
"nonn"
] | 7 | 0 | 2 | [
"A357540",
"A357544"
] | null | Paul D. Hanna, Oct 10 2022 | 2022-10-11T00:50:09 | oeisdata/seq/A357/A357544.seq | a6a7c1da747b780385ecd771b8e290b3 |
A357545 | Central terms of triangle A357541: a(n) = A357541(2*n,n). | [
"1",
"120",
"38966400",
"335872728576000",
"23676862831649280000000",
"7884265450248813494550528000000",
"9001018126678397460727568113336320000000",
"28542885018291526761600709316931461578752000000000",
"216619327660243309425808505300579182909935738421248000000000"
] | [
"nonn"
] | 6 | 0 | 2 | [
"A357541",
"A357542",
"A357545"
] | null | Paul D. Hanna, Oct 10 2022 | 2022-10-11T00:50:19 | oeisdata/seq/A357/A357545.seq | a33992a1195881dc100b7b12d1f5a3d2 |
A357546 | a(n) = coefficient of x^n, n >= 0, in A(x) such that: 2 = Sum_{n=-oo..+oo} x^(2*n) * (1 - x^n)^(2*n) * A(x)^n. | [
"1",
"2",
"4",
"6",
"12",
"18",
"52",
"92",
"278",
"606",
"1736",
"4378",
"11974",
"31826",
"86592",
"234514",
"645864",
"1763784",
"4904844",
"13503716",
"37762996",
"104922104",
"294474340",
"824706556",
"2322523264",
"6544002006",
"18497507308",
"52357115006",
"148540658418",
"421986604840",
"1201221586484"
] | [
"nonn"
] | 8 | 0 | 2 | null | null | Paul D. Hanna, Nov 17 2022 | 2022-12-03T12:07:40 | oeisdata/seq/A357/A357546.seq | 104bb9d99783d5d1d5289cd1fbd713dd |
A357547 | a(n) = coefficient of x^n in A(x) such that: A(x)^2 = A( x^2/(1 - 4*x - 4*x^2) ). | [
"1",
"2",
"9",
"38",
"176",
"832",
"4039",
"19938",
"99861",
"506042",
"2590099",
"13370898",
"69540016",
"364028992",
"1916585714",
"10142059868",
"53911982971",
"287736310102",
"1541243386819",
"8282387269058",
"44638363790176",
"241216694913632",
"1306608966475854",
"7092980525443588",
"38581011402034156"
] | [
"nonn"
] | 18 | 1 | 2 | [
"A264224",
"A274483",
"A274484",
"A357547",
"A357548",
"A357785"
] | null | Paul D. Hanna, Dec 01 2022 | 2022-12-04T07:34:08 | oeisdata/seq/A357/A357547.seq | ff6a968b97374b627bcd6dca6b0ad645 |
A357548 | a(n) = coefficient of x^n in A(x) where A(x)^2 = A( x^2/(1 - 4*x - 8*x^2) ). | [
"1",
"2",
"11",
"50",
"261",
"1362",
"7344",
"40112",
"222338",
"1245476",
"7043605",
"40153390",
"230518723",
"1331576430",
"7733934030",
"45138530004",
"264596552838",
"1557101158092",
"9195520745412",
"54477134410680",
"323668083179382",
"1928047124332764",
"11512382184408072",
"68889282756213840"
] | [
"nonn"
] | 19 | 1 | 2 | [
"A264224",
"A274483",
"A274484",
"A357547",
"A357548",
"A357786"
] | null | Paul D. Hanna, Dec 01 2022 | 2022-12-04T07:36:01 | oeisdata/seq/A357/A357548.seq | 66e714aa622502da56650d114260a352 |
A357549 | a(n) = floor( Sum_{k=0..n-1} n^k / (k! * a(k)) ), for n > 0 with a(0) = 1. | [
"1",
"1",
"3",
"5",
"9",
"17",
"30",
"52",
"91",
"161",
"285",
"503",
"889",
"1573",
"2782",
"4920",
"8697",
"15368",
"27146",
"47928",
"84590",
"149246",
"263247",
"464214",
"818445",
"1442762",
"2543025",
"4482001",
"7898979",
"13920609",
"24532535",
"43234510",
"76195273",
"134288583",
"236682848",
"417170144",
"735325596",
"1296184444"
] | [
"nonn"
] | 13 | 0 | 3 | [
"A030178",
"A357549"
] | null | Paul D. Hanna, Dec 01 2022 | 2022-12-04T13:24:00 | oeisdata/seq/A357/A357549.seq | 1be894af76102c77e6ea223dff60f7c7 |
A357550 | a(n) = coefficient of x^(2*n-1)/(2*n-1)! in the expansion of the odd function S(x) defined by: S(x) = Integral Product_{n>=1} C(n,x)^(2*n-1) dx, where C(n,x) = (1 - S(x)^(2*n))^(1/(2*n)) for n >= 1. | [
"1",
"-1",
"-17",
"137",
"13009",
"3098111",
"-499973633",
"13063051433",
"-12602400051359",
"1142264265564479",
"4900244939751731023",
"-1617265022962564577143",
"-876540661492989775332431",
"772526162637086182379155391",
"-84757568544981649947240558113",
"-969537581289651588574578501447127"
] | [
"sign"
] | 13 | 1 | 3 | [
"A357228",
"A357230",
"A357550",
"A357551"
] | null | Paul D. Hanna, Oct 02 2022 | 2022-12-03T12:01:38 | oeisdata/seq/A357/A357550.seq | db7c003d7917a865153bfdad40cb785c |
A357551 | a(n) = coefficient of x^(2*n)/(2*n)! in the expansion of the even function C(x) = sqrt(1 - S(x)^2) where S(x) is defined by A357550. | [
"1",
"-1",
"1",
"107",
"913",
"-131449",
"-46887791",
"4109309363",
"406392278497",
"295047521858639",
"5615320767861601",
"-121434328185686247493",
"13788915057049470673393",
"30743837939769538654859351",
"-10050889695209166245600514191",
"-2332393553453526728340631941757"
] | [
"sign"
] | 12 | 0 | 4 | [
"A357231",
"A357550",
"A357551"
] | null | Paul D. Hanna, Oct 04 2022 | 2022-12-03T12:03:38 | oeisdata/seq/A357/A357551.seq | ff8c68cec504406a987ca8b35b2f067d |
A357552 | a(n) = sigma(n) * binomial(2*n-1,n), for n >= 1. | [
"1",
"9",
"40",
"245",
"756",
"5544",
"13728",
"96525",
"316030",
"1662804",
"4232592",
"37858184",
"72804200",
"481399200",
"1861410240",
"9316746045",
"21002455980",
"176965138350",
"353452638000",
"2894777105220",
"8612125991040",
"37873781346960",
"98801168731200",
"967428110493000",
"1959364399785156"
] | [
"nonn"
] | 13 | 1 | 2 | [
"A000203",
"A001700",
"A156305",
"A158267",
"A225528",
"A357552"
] | null | Paul D. Hanna, Nov 14 2022 | 2022-11-19T21:06:25 | oeisdata/seq/A357/A357552.seq | 9076e6bab394843dbd1bd2ed32802806 |
A357553 | a(n) = A000045(n)*A000045(n+1) mod A000032(n). | [
"0",
"0",
"2",
"2",
"1",
"7",
"14",
"12",
"9",
"46",
"98",
"80",
"64",
"313",
"674",
"546",
"441",
"2143",
"4622",
"3740",
"3025",
"14686",
"31682",
"25632",
"20736",
"100657",
"217154",
"175682",
"142129",
"689911",
"1488398",
"1204140",
"974169",
"4728718",
"10201634",
"8253296",
"6677056",
"32411113",
"69923042",
"56568930",
"45765225",
"222149071",
"479259662",
"387729212"
] | [
"nonn"
] | 17 | 0 | 3 | [
"A000032",
"A000045",
"A333599",
"A347861",
"A357553"
] | null | J. M. Bergot and Robert Israel, Oct 02 2022 | 2022-10-12T08:57:56 | oeisdata/seq/A357/A357553.seq | 0ebda57c94932b7049f8e97231b52d69 |
A357554 | Triangular array read by rows. For T(n,k) where 1 <= k <= n, start with x = k and repeat the map x -> floor(n/x) + (n mod x) until an x occurs that has already appeared, then that is T(n,k). | [
"1",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"2",
"4",
"1",
"3",
"3",
"3",
"5",
"1",
"2",
"3",
"3",
"2",
"6",
"1",
"4",
"3",
"4",
"3",
"4",
"7",
"1",
"2",
"4",
"4",
"4",
"4",
"2",
"8",
"1",
"5",
"3",
"3",
"5",
"3",
"3",
"5",
"9",
"1",
"2",
"4",
"4",
"5",
"5",
"4",
"4",
"2",
"10",
"1",
"6",
"3",
"5",
"5",
"6",
"5",
"5",
"3",
"6",
"11",
"1",
"2",
"3",
"4",
"4",
"6",
"6",
"4",
"4",
"3",
"2",
"12",
"1",
"7",
"5",
"4",
"5",
"5",
"7",
"5",
"5",
"4",
"5",
"7",
"13"
] | [
"nonn",
"tabl",
"look"
] | 33 | 1 | 3 | [
"A357554",
"A357610"
] | null | J. M. Bergot and Robert Israel, Oct 02 2022 | 2022-10-16T16:35:37 | oeisdata/seq/A357/A357554.seq | e624ecd4d6e7f8c418fb0815d8b76709 |
A357555 | a(n) is the numerator of Sum_{d|n} (-1)^(d+1) / d^2. | [
"1",
"3",
"10",
"11",
"26",
"5",
"50",
"43",
"91",
"39",
"122",
"55",
"170",
"75",
"52",
"171",
"290",
"91",
"362",
"143",
"500",
"183",
"530",
"215",
"651",
"255",
"820",
"275",
"842",
"13",
"962",
"683",
"1220",
"435",
"52",
"1001",
"1370",
"543",
"1700",
"559",
"1682",
"125",
"1850",
"61",
"2366",
"795",
"2210",
"95",
"2451",
"1953",
"2900",
"935",
"2810",
"205",
"3172"
] | [
"nonn",
"frac"
] | 10 | 1 | 2 | [
"A017667",
"A064027",
"A098987",
"A119682",
"A321543",
"A357555",
"A357556"
] | null | Ilya Gutkovskiy, Oct 03 2022 | 2022-10-08T15:11:12 | oeisdata/seq/A357/A357555.seq | fab026c3ce698b4d657ab9e5490a29d1 |
A357556 | a(n) is the denominator of Sum_{d|n} (-1)^(d+1) / d^2. | [
"1",
"4",
"9",
"16",
"25",
"6",
"49",
"64",
"81",
"50",
"121",
"72",
"169",
"98",
"45",
"256",
"289",
"108",
"361",
"200",
"441",
"242",
"529",
"288",
"625",
"338",
"729",
"392",
"841",
"15",
"961",
"1024",
"1089",
"578",
"49",
"1296",
"1369",
"722",
"1521",
"800",
"1681",
"147",
"1849",
"88",
"2025",
"1058",
"2209",
"128",
"2401",
"2500",
"2601",
"1352",
"2809",
"243",
"3025"
] | [
"nonn",
"frac"
] | 9 | 1 | 2 | [
"A017668",
"A064027",
"A098988",
"A321543",
"A334580",
"A357555",
"A357556"
] | null | Ilya Gutkovskiy, Oct 03 2022 | 2022-10-08T15:11:16 | oeisdata/seq/A357/A357556.seq | a66688a7342f6733e5d0ea3c9ce08979 |
A357557 | a(n) is the numerator of the coefficient c in the polynomial of the form y(x)=x^n+c such that starting with y(x)=x for n=1 each polynomial is C-1 continuous with the previous one. | [
"0",
"1",
"43",
"3481",
"12647597",
"380547619",
"340607106994117",
"23867104301800579837",
"13408353860832026243555117",
"43926321999197203038889578577",
"13055436009603783636664151666161626100547",
"6766346844526064783736339920897644104961"
] | [
"nonn",
"frac"
] | 24 | 1 | 3 | [
"A061464",
"A357557"
] | null | Inigo Quilez, Oct 03 2022 | 2022-10-18T13:33:12 | oeisdata/seq/A357/A357557.seq | f455bbf768d1236c5296553eb57c35cb |
A357558 | a(n) = Sum_{k = 0..n} (-1)^(n+k)*k*binomial(n,k)*binomial(n+k,k)^2. | [
"0",
"4",
"54",
"648",
"7500",
"85440",
"965202",
"10849552",
"121566744",
"1359160020",
"15172321890",
"169175039616",
"1884704860116",
"20982512553912",
"233474575117770",
"2596777575029280",
"28872014164369968",
"320917108809011868",
"3566175414049854306",
"39620770883613043240",
"440115513924937822020"
] | [
"nonn",
"easy"
] | 11 | 0 | 2 | [
"A005258",
"A357510",
"A357511",
"A357512",
"A357513",
"A357558",
"A357559",
"A357560",
"A357561"
] | null | Peter Bala, Oct 03 2022 | 2022-10-08T10:15:01 | oeisdata/seq/A357/A357558.seq | ff4d7babe24b52e5dd8e8237130f976c |
A357559 | a(n) = Sum_{k = 0..n} (-1)^(n+k)*k^3*binomial(n,k)*binomial(n+k,k)^2. | [
"0",
"4",
"270",
"8448",
"192000",
"3669300",
"62952162",
"1003770880",
"15182515584",
"220700443500",
"3110529630450",
"42769154678976",
"576313309494000",
"7636526099508852",
"99765264496070250",
"1287663145631539200",
"16446680778536421888",
"208154776511034178380",
"2613380452317012835386"
] | [
"nonn",
"easy"
] | 14 | 0 | 2 | [
"A005258",
"A357510",
"A357512",
"A357558",
"A357559",
"A357560",
"A357561"
] | null | Peter Bala, Oct 04 2022 | 2023-06-02T14:40:14 | oeisdata/seq/A357/A357559.seq | 9797526e78073ec4153745779ca4b0c4 |
A357560 | a(n) = the numerator of ( Sum_{k = 1..n} (-1)^(n+k)*(1/k)*binomial(n,k)* binomial(n+k,k)^2 ). | [
"0",
"4",
"0",
"94",
"500",
"19262",
"50421",
"2929583",
"25197642",
"2007045752",
"3634262225",
"368738402141",
"6908530637021",
"852421484283739",
"1168833981781025",
"56641833705924527",
"276827636652242789",
"46345946530867053437",
"51051733540797155872",
"9673584199611903429172"
] | [
"nonn",
"easy"
] | 10 | 0 | 2 | [
"A005258",
"A357510",
"A357511",
"A357512",
"A357513",
"A357558",
"A357559",
"A357560",
"A357561"
] | null | Peter Bala, Oct 04 2022 | 2022-10-08T10:18:19 | oeisdata/seq/A357/A357560.seq | feb3ee62bd1162115d8aa1cfcd7e4cee |
A357561 | a(n) = the numerator of ( Sum_{k = 1..n} (-1)^(n+k)*(1/k^3)*binomial(n,k)* binomial(n+k,k)^2 ). | [
"0",
"4",
"-27",
"1367",
"-15625",
"3129353",
"-14749",
"308477847",
"14343020119",
"80826490175689",
"618729030402659",
"6526775794564145231",
"52975460244520902439",
"965428117884339747694757",
"8161435689582967449592663",
"70159702295938799645630801",
"4897311439674525483507166097",
"212741477113936719632186271679919"
] | [
"sign",
"easy"
] | 13 | 0 | 2 | [
"A005258",
"A357510",
"A357511",
"A357512",
"A357513",
"A357558",
"A357559",
"A357560",
"A357561"
] | null | Peter Bala, Oct 04 2022 | 2022-10-08T10:19:27 | oeisdata/seq/A357/A357561.seq | a3dcc0c18e8ba93cb4d6fe1fb026c90e |
A357562 | a(n) = n - 2*b(b(n)) for n >= 2, where b(n) = A356988(n). | [
"0",
"1",
"0",
"1",
"0",
"1",
"2",
"1",
"0",
"1",
"2",
"3",
"2",
"1",
"0",
"1",
"2",
"3",
"4",
"5",
"4",
"3",
"2",
"1",
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"7",
"6",
"5",
"4",
"3",
"2",
"1",
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"12",
"11",
"10",
"9",
"8",
"7",
"6",
"5",
"4",
"3",
"2",
"1",
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"20",
"19",
"18",
"17",
"16",
"15",
"14",
"13",
"12"
] | [
"nonn",
"easy"
] | 13 | 2 | 7 | [
"A000045",
"A053646",
"A356988",
"A357562",
"A357563",
"A357564"
] | null | Peter Bala, Oct 14 2022 | 2023-03-10T02:21:08 | oeisdata/seq/A357/A357562.seq | b707aec94c962ac72b8b7ad04b61ad83 |
A357563 | a(n) = b(n) - 2*b(b(b(n))) for n >= 3, where b(n) = A356988(n). | [
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"2",
"2",
"2",
"1",
"0",
"1",
"2",
"3",
"3",
"3",
"3",
"2",
"1",
"0",
"1",
"2",
"3",
"4",
"5",
"5",
"5",
"5",
"5",
"5",
"4",
"3",
"2",
"1",
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"7",
"6",
"5",
"4",
"3",
"2",
"1",
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"13",
"13",
"13",
"13",
"13",
"13",
"13",
"13",
"13",
"13",
"13",
"13",
"13",
"12",
"11",
"10",
"9",
"8",
"7",
"6",
"5",
"4",
"3",
"2"
] | [
"nonn",
"easy"
] | 10 | 3 | 9 | [
"A000032",
"A000045",
"A356988",
"A357562",
"A357563"
] | null | Peter Bala, Oct 14 2022 | 2022-10-23T23:35:24 | oeisdata/seq/A357/A357563.seq | de2d22310bd081b926457aca3655f760 |
A357564 | a(n) = n - 2*b(b(n)) for n >= 2, where b(n) = A006165(n). | [
"0",
"1",
"2",
"1",
"2",
"3",
"4",
"3",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"7",
"6",
"5",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"15",
"14",
"13",
"12",
"11",
"10",
"9",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"24",
"25",
"26",
"27",
"28",
"29",
"30",
"31",
"32",
"31",
"30",
"29",
"28",
"27",
"26",
"25",
"24",
"23",
"22",
"21",
"20",
"19",
"18",
"17",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23"
] | [
"nonn",
"easy"
] | 8 | 2 | 3 | [
"A006165",
"A357562",
"A357564"
] | null | Peter Bala, Oct 15 2022 | 2022-10-23T23:35:45 | oeisdata/seq/A357/A357564.seq | afe19ea5b0d39b90564f9361fb8f563b |
A357565 | a(n) = 3*Sum_{k = 0..n} binomial(n+k-1,k)^2 + 2*Sum_{k = 0..n} binomial(n+k-1,k)^3. | [
"5",
"10",
"114",
"2926",
"109106",
"4846260",
"234488526",
"11913003294",
"625130924082",
"33590792825200",
"1838547540484364",
"102135528447552060",
"5743779960435245774",
"326352202770939600460",
"18706076476872783254286",
"1080345839256279791104926",
"62806507721442655949609010"
] | [
"nonn",
"easy"
] | 10 | 0 | 1 | [
"A357565",
"A357566",
"A357671",
"A357672",
"A357673",
"A357674"
] | null | Peter Bala, Oct 16 2022 | 2022-10-25T05:16:01 | oeisdata/seq/A357/A357565.seq | 1287774317c6242446af2b3c7318f597 |
A357566 | a(n) = ( Sum_{k = 0..n} binomial(n+k-1,k)^2 )^3 * ( Sum_{k = 0..n} binomial(n+k-1,k)^3 )^2. | [
"1",
"32",
"3556224",
"4816142496896",
"14260946236464636800",
"62923492736113950202540032",
"355372959542696519903013302282592",
"2376354966106399942850054560101358877184",
"17973185649572984869873798116070605084766512000",
"149319509846904520286037745483655872001727895961600000"
] | [
"nonn",
"easy"
] | 10 | 0 | 2 | [
"A357565",
"A357566",
"A357671",
"A357672",
"A357673",
"A357674"
] | null | Peter Bala, Oct 16 2022 | 2022-10-25T05:17:27 | oeisdata/seq/A357/A357566.seq | d8e58687cd4bd0cdb1bf01998b107e76 |
A357567 | a(n) = 5*A005259(n) - 14*A005258(n). | [
"-9",
"-17",
"99",
"5167",
"147491",
"3937483",
"105834699",
"2907476527",
"81702447651",
"2342097382483",
"68273597307599",
"2018243113678027",
"60365426282638091",
"1823553517258576723",
"55557712038989195099",
"1705170989220937925167",
"52672595030914982754851",
"1636296525812843554700323"
] | [
"sign",
"easy"
] | 14 | 0 | 1 | [
"A005258",
"A005259",
"A212334",
"A352655",
"A357506",
"A357507",
"A357508",
"A357509",
"A357567",
"A357568",
"A357569",
"A357956",
"A357957",
"A357958",
"A357959",
"A357960"
] | null | Peter Bala, Oct 19 2022 | 2022-11-06T12:24:16 | oeisdata/seq/A357/A357567.seq | 75f9394bcf3429ae01c5aac4274742c5 |
A357568 | a(n) = 9*binomial(2*n,n)^2 - 8*binomial(3*n,n). | [
"1",
"12",
"204",
"2928",
"40140",
"547512",
"7535472",
"105077376",
"1484848332",
"21237645000",
"306972655704",
"4477160465856",
"65802123629424",
"973487343836448",
"14483651478207360",
"216550246159148928",
"3251660678391659724",
"49011343741651501800",
"741221951008966181160",
"11243583961952559386400"
] | [
"nonn",
"easy"
] | 34 | 0 | 2 | [
"A000984",
"A002894",
"A005809",
"A357509",
"A357567",
"A357568",
"A357569",
"A357955"
] | null | Peter Bala, Oct 21 2022 | 2024-07-17T09:00:28 | oeisdata/seq/A357/A357568.seq | 3a1f1cb81f70ce78381b79988d1fc54e |
A357569 | a(n) = binomial(3*n,n)^2 - 27*binomial(2*n,n). | [
"-26",
"-45",
"63",
"6516",
"243135",
"9011205",
"344597148",
"13520945736",
"540917244351",
"21966327267885",
"902702921361813",
"37456461969311736",
"1566697064604277788",
"65973795093057780936",
"2794203818388994498200",
"118933541228931589568016",
"5084343623375039833670079",
"218184481964802862563857685"
] | [
"sign",
"easy"
] | 17 | 0 | 1 | [
"A000984",
"A005809",
"A188662",
"A357509",
"A357567",
"A357568",
"A357569",
"A357955"
] | null | Peter Bala, Oct 21 2022 | 2024-07-07T21:08:01 | oeisdata/seq/A357/A357569.seq | 051b860fb029be46b5de8e3f910e9861 |
A357570 | a(n) = Sum_{k=0..floor(n/5)} (n-4*k)!/(n-5*k)!. | [
"1",
"1",
"1",
"1",
"1",
"2",
"3",
"4",
"5",
"6",
"9",
"14",
"21",
"30",
"41",
"60",
"93",
"146",
"225",
"336",
"509",
"798",
"1281",
"2060",
"3261",
"5154",
"8273",
"13536",
"22365",
"36806",
"60369",
"99588",
"166301",
"280650",
"474801",
"802424",
"1358973",
"2317806",
"3987185",
"6893196",
"11933949",
"20690738",
"36022161",
"63107520",
"111146141",
"196322454",
"347412753"
] | [
"nonn",
"easy"
] | 31 | 0 | 6 | [
"A072374",
"A122852",
"A357532",
"A357533",
"A357570"
] | null | Seiichi Manyama, Nov 19 2022 | 2023-02-15T09:41:00 | oeisdata/seq/A357/A357570.seq | 3f35fe51a4d708014dbcca7980531c9f |
A357571 | The sixth moment of an n X n random +-1 matrix. | [
"1",
"1",
"32",
"1536",
"282624",
"66846720",
"27053752320",
"16104538275840",
"13681567224299520",
"15874223643851489280",
"24412997036693834956800",
"48514602066025722465484800",
"121994703799547846503012761600",
"381343447691461317926230740172800",
"1459468400650603118890910517244723200"
] | [
"nonn"
] | 36 | 0 | 3 | [
"A052127",
"A357571"
] | null | Zelin Lv, Oct 03 2022 | 2023-04-21T11:08:00 | oeisdata/seq/A357/A357571.seq | b4d7437f013801f705cf5a5b30970e7a |
A357572 | Expansion of e.g.f. sinh(sqrt(3) * (exp(x)-1)) / sqrt(3). | [
"0",
"1",
"1",
"4",
"19",
"85",
"406",
"2191",
"13105",
"84190",
"573121",
"4127521",
"31434184",
"252388957",
"2126998693",
"18740283556",
"172134162631",
"1644920020417",
"16324076578870",
"167938152551491",
"1787952325142341",
"19667748794844550",
"223217829954224029",
"2610546296216999197"
] | [
"nonn"
] | 34 | 0 | 4 | [
"A024429",
"A027710",
"A264037",
"A357572",
"A357598",
"A357615",
"A357737"
] | null | Seiichi Manyama, Oct 05 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357572.seq | 054869a6b1def7c8b3c257249ddef143 |
A357573 | Largest even k such that h(-k) = 2n, where h(D) is the class number of the quadratic field with discriminant D; or 0 if no such k exists. | [
"232",
"1012",
"1588",
"3448",
"5272",
"8248",
"9172",
"14008",
"21652",
"21508",
"26548",
"32008",
"45208",
"53188",
"57688",
"65668",
"73588",
"85012",
"121972",
"120712",
"117748",
"137272",
"189352",
"162628",
"174868",
"201268",
"194968",
"249208",
"188248",
"332872",
"341608",
"424708",
"370792",
"411832",
"377512",
"539092",
"332308",
"486088",
"369832",
"435268",
"604948",
"667192",
"548788",
"601528",
"596212",
"566008",
"737752",
"795832",
"645208",
"802888"
] | [
"nonn",
"hard"
] | 5 | 1 | 1 | [
"A038552",
"A344072",
"A357573"
] | null | Jianing Song, Oct 03 2022 | 2022-10-06T14:43:09 | oeisdata/seq/A357/A357573.seq | 83ff6f9c5ee342149e432a54d37be097 |
A357574 | a(n) is the maximum number of pairs that sum to a power of 2 in a set of n consecutive odd numbers. | [
"0",
"1",
"2",
"4",
"5",
"7",
"9",
"11",
"13",
"15",
"17",
"19",
"21",
"24",
"26",
"29",
"31",
"34",
"36",
"39",
"41",
"44",
"46",
"49",
"51",
"54",
"56",
"59",
"62",
"65",
"68",
"71",
"74",
"77",
"80",
"83",
"86",
"89",
"92",
"95",
"98",
"101",
"104",
"107",
"110",
"113",
"116",
"119",
"122",
"125",
"128",
"131",
"134",
"137",
"140",
"143",
"146",
"150",
"153",
"157",
"160",
"164",
"167"
] | [
"nonn"
] | 43 | 1 | 3 | [
"A020515",
"A129868",
"A274089",
"A347301",
"A352178",
"A357409",
"A357574"
] | null | Thomas Scheuerle, Oct 04 2022 | 2023-03-10T09:10:58 | oeisdata/seq/A357/A357574.seq | 11ffe1367c5c9dce83b55071df2fad87 |
A357575 | Half area of the convex hull of {(x,y) | x,y integers and x^2 + y^2 <= n^2}. | [
"0",
"1",
"4",
"12",
"21",
"37",
"52",
"69",
"93",
"120",
"152",
"181",
"212",
"258",
"297",
"345",
"388",
"444",
"495",
"552",
"616",
"673",
"749",
"814",
"881",
"965",
"1046",
"1132",
"1211",
"1301",
"1396",
"1483",
"1589",
"1686",
"1800",
"1907",
"2006",
"2128",
"2235",
"2371",
"2490",
"2607",
"2741",
"2872",
"3020",
"3155",
"3293",
"3442",
"3581",
"3739"
] | [
"nonn"
] | 24 | 0 | 3 | [
"A292276",
"A357575",
"A357576"
] | null | Gerhard Kirchner, Oct 04 2022 | 2022-10-23T20:46:34 | oeisdata/seq/A357/A357575.seq | 69f303111090ffc8fe230a988f8e1b86 |
A357576 | Half area of the convex hull of {(x,y)| x,y integers and x^2 + y^2 < n^2}. | [
"0",
"2",
"8",
"17",
"28",
"46",
"63",
"87",
"112",
"142",
"173",
"204",
"244",
"287",
"333",
"378",
"428",
"485",
"540",
"602",
"661",
"737",
"802",
"869",
"947",
"1030",
"1118",
"1197",
"1278",
"1378",
"1469",
"1575",
"1670",
"1776",
"1889",
"1990",
"2108",
"2219",
"2353",
"2472",
"2587",
"2723",
"2854",
"3002",
"3135",
"3275",
"3424",
"3563",
"3721"
] | [
"nonn"
] | 16 | 1 | 2 | [
"A000328",
"A004144",
"A292276",
"A357575",
"A357576"
] | null | Gerhard Kirchner, Oct 05 2022 | 2022-10-23T11:27:26 | oeisdata/seq/A357/A357576.seq | eae179611a86053dd40534359ed6d5e7 |
A357577 | Least half area of a convex polygon enclosing a circle with radius n and center (0,0) such that all vertex coordinates are integers. | [
"2",
"7",
"16",
"26",
"42",
"59",
"80",
"104",
"132",
"163",
"194",
"229",
"274",
"312",
"360",
"406",
"465",
"516",
"573",
"637",
"698",
"772",
"838",
"910",
"993",
"1073",
"1158",
"1238",
"1333",
"1425",
"1520",
"1621",
"1719",
"1835",
"1936",
"2043",
"2165",
"2280",
"2405",
"2525",
"2650",
"2782",
"2919",
"3059",
"3195",
"3340",
"3486",
"3632",
"3786"
] | [
"nonn"
] | 14 | 1 | 1 | [
"A357575",
"A357576",
"A357577"
] | null | Gerhard Kirchner, Oct 17 2022 | 2024-03-02T12:27:58 | oeisdata/seq/A357/A357577.seq | 0e3d93d8d618257b829e742123e3df5f |
A357578 | Lexicographically earliest infinite sequence of distinct positive numbers with the property that a(n) is the smallest number not yet in the sequence with a Hamming weight equal to the Hamming weight of the XOR of previous two terms. | [
"1",
"2",
"3",
"4",
"7",
"5",
"8",
"11",
"6",
"13",
"14",
"9",
"19",
"21",
"10",
"31",
"22",
"12",
"25",
"26",
"17",
"28",
"35",
"63",
"37",
"38",
"18",
"41",
"47",
"20",
"55",
"42",
"15",
"44",
"49",
"23",
"50",
"52",
"24",
"56",
"16",
"33",
"67",
"69",
"34",
"59",
"70",
"95",
"73",
"74",
"36",
"61",
"76",
"27",
"62",
"81",
"111",
"79",
"32",
"119",
"87",
"64",
"29",
"91",
"82",
"40",
"93",
"94",
"48",
"103",
"107",
"65",
"84",
"88"
] | [
"nonn",
"base"
] | 24 | 1 | 2 | [
"A000120",
"A357578"
] | null | Nathan Nichols, Oct 04 2022 | 2022-10-23T23:53:41 | oeisdata/seq/A357/A357578.seq | 6a1ab7822b0f31535abc9418f2769be6 |
A357579 | Lexicographically earliest sequence of distinct numbers such that no sum of consecutive terms is a square or higher power of an integer. | [
"2",
"3",
"7",
"5",
"6",
"12",
"10",
"11",
"17",
"18",
"15",
"13",
"20",
"14",
"23",
"19",
"28",
"26",
"22",
"21",
"29",
"33",
"35",
"37",
"24",
"31",
"30",
"38",
"34",
"41",
"39",
"40",
"44",
"43",
"46",
"42",
"51",
"45",
"54",
"53",
"48",
"57",
"47",
"50",
"59",
"52",
"61",
"58",
"55",
"60",
"56",
"66",
"67",
"65",
"62",
"70",
"63",
"69",
"73",
"72",
"76",
"74",
"68",
"79"
] | [
"nonn"
] | 22 | 1 | 1 | [
"A254337",
"A357579"
] | null | Carl Witthoft, Oct 03 2022 | 2022-10-23T04:33:00 | oeisdata/seq/A357/A357579.seq | 300d3ff5881f8fc8b9fca160b2586551 |
A357580 | a(n) = ((1 + sqrt(n))^n - (1 - sqrt(n))^n)/(2*n*sqrt(n)). | [
"1",
"1",
"2",
"5",
"16",
"57",
"232",
"1017",
"4864",
"24641",
"133024",
"752765",
"4476928",
"27707513",
"178613376",
"1191756593",
"8231124992",
"58598528065",
"429868937728",
"3239768599221",
"25073052286976",
"198825601967609",
"1614604933769216",
"13405327061690025",
"113725655719346176"
] | [
"nonn"
] | 24 | 1 | 3 | [
"A099173",
"A357502",
"A357580"
] | null | Alexander R. Povolotsky, Oct 04 2022 | 2022-10-14T16:28:48 | oeisdata/seq/A357/A357580.seq | 3005526eaa14d652abefa8c48e896d10 |
A357581 | Square array read by antidiagonals of numbers whose symmetric representation of sigma consists only of parts that have width 1; column k indicates the number of parts and row n indicates the n-th number in increasing order in each of the columns. | [
"1",
"2",
"3",
"4",
"5",
"9",
"8",
"7",
"25",
"21",
"16",
"10",
"49",
"27",
"81",
"32",
"11",
"50",
"33",
"625",
"147",
"64",
"13",
"98",
"39",
"1250",
"171",
"729",
"128",
"14",
"121",
"51",
"2401",
"207",
"15625",
"903",
"256",
"17",
"169",
"55",
"4802",
"243",
"31250",
"987",
"3025",
"512",
"19",
"242",
"57",
"14641",
"261",
"117649",
"1029",
"3249",
"6875"
] | [
"nonn",
"tabl"
] | 16 | 1 | 2 | [
"A000079",
"A001248",
"A030514",
"A030516",
"A174905",
"A174973",
"A237593",
"A238443",
"A239929",
"A241008",
"A241010",
"A246955",
"A247687",
"A264102",
"A279102",
"A280107",
"A318843",
"A320066",
"A320511",
"A341969",
"A341970",
"A341971",
"A357581"
] | null | Hartmut F. W. Hoft, Oct 04 2022 | 2022-10-11T01:01:57 | oeisdata/seq/A357/A357581.seq | 787b26b0ed12ca8431f8f01693f5dbdf |
A357582 | a(n) = A061300(n+1)/A061300(n). | [
"1",
"2",
"6",
"30",
"154",
"1105",
"4788",
"20677",
"216931",
"858925",
"7105392",
"5546059",
"2018025900",
"1480452337",
"3238556831",
"107972737",
"18425956230000",
"4683032671",
"14053747110612300",
"160436746661",
"33809725025123",
"15260431896321667",
"1583855315457687090000"
] | [
"nonn",
"hard"
] | 38 | 0 | 2 | [
"A061300",
"A357582"
] | null | J. Lowell, Oct 04 2022 | 2023-09-12T08:32:46 | oeisdata/seq/A357/A357582.seq | 233f795f96d6eb895fa5fd5d9789470a |
A357583 | Triangle read by rows. Convolution triangle of the Bell numbers. | [
"1",
"0",
"1",
"0",
"2",
"1",
"0",
"5",
"4",
"1",
"0",
"15",
"14",
"6",
"1",
"0",
"52",
"50",
"27",
"8",
"1",
"0",
"203",
"189",
"113",
"44",
"10",
"1",
"0",
"877",
"764",
"471",
"212",
"65",
"12",
"1",
"0",
"4140",
"3311",
"2013",
"974",
"355",
"90",
"14",
"1",
"0",
"21147",
"15378",
"8951",
"4440",
"1790",
"550",
"119",
"16",
"1",
"0",
"115975",
"76418",
"41745",
"20526",
"8727",
"3027",
"805",
"152",
"18",
"1"
] | [
"nonn",
"tabl"
] | 10 | 0 | 5 | [
"A000110",
"A007311",
"A129247",
"A357583",
"A357584"
] | null | Peter Luschny, Oct 05 2022 | 2025-04-06T14:53:35 | oeisdata/seq/A357/A357583.seq | e4a20bf0c14b8856118f428f72886778 |
A357584 | Central terms of the convolution triangle of the Bell numbers (A357583). | [
"1",
"2",
"14",
"113",
"974",
"8727",
"80261",
"752411",
"7159478",
"68959643",
"671110819",
"6590605628",
"65253543377",
"650982447403",
"6541146713073",
"66186244142493",
"674352479717766",
"6919081221705819",
"71506844832390551",
"744627411078964199",
"7816971178681880479",
"82780294061365989320"
] | [
"nonn"
] | 3 | 0 | 2 | [
"A357583",
"A357584"
] | null | Peter Luschny, Oct 05 2022 | 2022-10-05T17:43:32 | oeisdata/seq/A357/A357584.seq | beeb9273426b37e59ffae15e3b33e14b |
A357585 | Triangle read by rows. Inverse of the convolution triangle of A108524, the number of ordered rooted trees with n generators. | [
"1",
"0",
"1",
"0",
"2",
"1",
"0",
"7",
"4",
"1",
"0",
"32",
"18",
"6",
"1",
"0",
"166",
"92",
"33",
"8",
"1",
"0",
"926",
"509",
"188",
"52",
"10",
"1",
"0",
"5419",
"2964",
"1113",
"328",
"75",
"12",
"1",
"0",
"32816",
"17890",
"6792",
"2078",
"520",
"102",
"14",
"1",
"0",
"203902",
"110896",
"42436",
"13312",
"3520",
"772",
"133",
"16",
"1"
] | [
"nonn",
"tabl"
] | 8 | 0 | 5 | [
"A047891",
"A105475",
"A108524",
"A357585"
] | null | Peter Luschny, Oct 08 2022 | 2022-10-08T07:44:07 | oeisdata/seq/A357/A357585.seq | c9cfaeeb1bb0266094306a664bba5b0b |
A357586 | Triangle read by rows. Convolution triangle of A002467 (number of permutations with fixed points). | [
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"4",
"2",
"1",
"0",
"15",
"9",
"3",
"1",
"0",
"76",
"38",
"15",
"4",
"1",
"0",
"455",
"198",
"70",
"22",
"5",
"1",
"0",
"3186",
"1182",
"378",
"112",
"30",
"6",
"1",
"0",
"25487",
"8115",
"2274",
"629",
"165",
"39",
"7",
"1",
"0",
"229384",
"63266",
"15439",
"3840",
"965",
"230",
"49",
"8",
"1",
"0",
"2293839",
"554656",
"117921",
"25966",
"6006",
"1401",
"308",
"60",
"9",
"1"
] | [
"nonn",
"tabl"
] | 6 | 0 | 8 | [
"A002467",
"A357586"
] | null | Peter Luschny, Oct 09 2022 | 2024-05-22T06:48:39 | oeisdata/seq/A357/A357586.seq | dba9a8037400296da7f30192774293ae |
A357587 | If k > 1 and k divides DedekindPsi(k) then A358015(k)/2 is a term of this sequence. | [
"1",
"4",
"3",
"8",
"12",
"16",
"9",
"24",
"32",
"36",
"48",
"27",
"64",
"72",
"96",
"108",
"128",
"144",
"81",
"192",
"216",
"256",
"288",
"324",
"384",
"432",
"243",
"512",
"576",
"648",
"768",
"864",
"972",
"1024",
"1152",
"1296",
"729",
"1536",
"1728",
"1944",
"2048",
"2304",
"2592",
"2916",
"3072",
"3456",
"3888",
"4096",
"2187",
"4608",
"5184",
"5832",
"6144"
] | [
"nonn"
] | 12 | 1 | 2 | [
"A001615",
"A003586",
"A033845",
"A357587",
"A358015"
] | null | Peter Luschny, Oct 26 2022 | 2024-03-12T14:51:24 | oeisdata/seq/A357/A357587.seq | 7297389933323be78aef555c0dfd0a4f |
A357588 | The compositional inverse of n -> n^[isprime(n)], where [b] is the Iverson bracket of b. | [
"1",
"-2",
"5",
"-11",
"6",
"146",
"-1295",
"7712",
"-36937",
"141514",
"-357676",
"-322973",
"12078666",
"-102218510",
"623243991",
"-3041134727",
"11440387382",
"-23657862864",
"-95377084665",
"1570488584608",
"-12255377466362",
"72288056416374",
"-340793435817068",
"1186234942871544",
"-1525020468715715"
] | [
"sign"
] | 7 | 1 | 2 | [
"A089026",
"A357368",
"A357588"
] | null | Peter Luschny, Oct 04 2022 | 2022-10-05T02:53:51 | oeisdata/seq/A357/A357588.seq | 7dd410aa100e8c93af7bd9e247442dd0 |
A357589 | a(n) = n - A130312(n). | [
"0",
"1",
"1",
"2",
"2",
"3",
"4",
"3",
"4",
"5",
"6",
"7",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"24",
"25",
"26",
"27",
"28",
"29",
"30",
"31",
"32",
"33",
"21",
"22",
"23",
"24",
"25",
"26",
"27",
"28",
"29",
"30",
"31",
"32",
"33",
"34",
"35",
"36"
] | [
"nonn",
"easy"
] | 21 | 1 | 4 | [
"A130312",
"A183544",
"A357589"
] | null | Mikhail Kurkov, Oct 05 2022 | 2024-06-21T15:23:42 | oeisdata/seq/A357/A357589.seq | 5e68171f419c951872a2732c3b5e84e1 |
A357590 | Triangular numbers which are products of five distinct primes. | [
"3570",
"8778",
"9870",
"12090",
"13530",
"20706",
"20910",
"21945",
"24090",
"24310",
"26565",
"33670",
"40470",
"40755",
"47586",
"54285",
"57630",
"57970",
"63546",
"66430",
"69006",
"72390",
"76245",
"87990",
"88410",
"91806",
"92235",
"94395",
"94830",
"98790",
"121278",
"130305",
"132870",
"133386",
"141778",
"148785",
"154290",
"159330",
"163878",
"167910"
] | [
"nonn"
] | 17 | 1 | 1 | [
"A000217",
"A046387",
"A068443",
"A128896",
"A333771",
"A357590"
] | null | Massimo Kofler, Oct 05 2022 | 2025-01-11T16:25:57 | oeisdata/seq/A357/A357590.seq | 241dbb9e54acbadcdde71130c1787855 |
A357591 | Expansion of e.g.f. (exp(x) - 1) * tan((exp(x) - 1)/2). | [
"0",
"0",
"1",
"3",
"8",
"25",
"99",
"476",
"2643",
"16575",
"116002",
"895719",
"7554311",
"69051034",
"679913073",
"7174562327",
"80765185416",
"966076987581",
"12235992073975",
"163590477924708",
"2302288709067167",
"34021599945907915",
"526690307104399482",
"8524372522971447683",
"143963947160570293851"
] | [
"nonn"
] | 15 | 0 | 4 | [
"A001469",
"A136128",
"A357240",
"A357591"
] | null | Vaclav Kotesovec, Oct 05 2022 | 2022-10-05T10:09:18 | oeisdata/seq/A357/A357591.seq | 632710af364a1eb2e9f81ec4603e0061 |
A357592 | Number of edges of the Minkowski sum of n simplices with vertices e_(i+1), e_(i+2), e_(i+3) for i=0,...,n-1, where e_i is a standard basis vector. | [
"3",
"11",
"34",
"96",
"260",
"683",
"1757",
"4447",
"11114",
"27493"
] | [
"nonn",
"hard",
"more"
] | 8 | 1 | 1 | [
"A007070",
"A033303",
"A357592"
] | null | Alejandro H. Morales, Oct 05 2022 | 2022-11-19T14:08:00 | oeisdata/seq/A357/A357592.seq | ea123f3eea823d14452a653b580a2883 |
A357593 | Number of faces of the Minkowski sum of n simplices with vertices e_(i+1), e_(i+2), e_(i+3) for i=0,...,n-1, where e_i is a standard basis vector. | [
"8",
"26",
"88",
"298",
"1016",
"3466",
"11832",
"40394",
"137912",
"470858"
] | [
"nonn",
"hard",
"more"
] | 10 | 1 | 1 | [
"A007070",
"A033303",
"A357593"
] | null | Alejandro H. Morales, Oct 05 2022 | 2022-11-19T20:28:44 | oeisdata/seq/A357/A357593.seq | d60e8a1f369f93eb98210059b68f6fe4 |
A357594 | Expansion of e.g.f. log(1-x) * tan(log(1-x)/2). | [
"0",
"0",
"1",
"3",
"12",
"60",
"362",
"2562",
"20820",
"191088",
"1955020",
"22061380",
"272197160",
"3645227040",
"52656804440",
"816114251400",
"13508168448400",
"237805776169600",
"4436759277524400",
"87445191383773200",
"1815460566861236000",
"39600109151685600000",
"905416958295793788000"
] | [
"nonn"
] | 14 | 0 | 4 | [
"A136128",
"A357591",
"A357594"
] | null | Seiichi Manyama, Oct 05 2022 | 2022-10-05T10:09:12 | oeisdata/seq/A357/A357594.seq | 6be34a4907802b8f2620fd5019f78b77 |
A357595 | Lexicographically earliest infinite sequence of distinct positive integers such that a(n+1) is the least k != j, for which gcd(k, j) > 1; j = n + a(n). | [
"1",
"4",
"2",
"10",
"6",
"22",
"7",
"8",
"12",
"3",
"26",
"74",
"14",
"9",
"46",
"122",
"15",
"16",
"17",
"18",
"19",
"5",
"21",
"11",
"20",
"24",
"25",
"13",
"82",
"27",
"30",
"183",
"35",
"28",
"31",
"32",
"34",
"142",
"33",
"36",
"38",
"158",
"40",
"166",
"39",
"42",
"44",
"49",
"194",
"45",
"50",
"202",
"48",
"303",
"51",
"52",
"54",
"37",
"55",
"56",
"29",
"57",
"63",
"58",
"60",
"65"
] | [
"nonn"
] | 11 | 1 | 2 | [
"A347113",
"A349472",
"A357595"
] | null | David James Sycamore, Oct 05 2022 | 2022-10-21T15:12:14 | oeisdata/seq/A357/A357595.seq | 33a6b6bd95d0440e2d602c8d40b172bb |
A357596 | Number of marked chord diagrams (linear words in which each letter appears twice) with n chords, whose intersection graph is distance-hereditary. | [
"1",
"1",
"3",
"15",
"105",
"923",
"9417",
"105815",
"1267681",
"15875631",
"205301361"
] | [
"nonn",
"more"
] | 10 | 0 | 3 | [
"A277862",
"A277869",
"A354588",
"A357596"
] | null | Christopher-Lloyd Simon, Oct 05 2022 | 2022-10-08T14:17:03 | oeisdata/seq/A357/A357596.seq | c52cd842911885139e403429dcc024f6 |
A357597 | Decimal expansion of real part of zeta'(0, 1-sqrt(2)). | [
"3",
"8",
"2",
"9",
"3",
"8",
"7",
"5",
"2",
"6",
"4",
"9",
"1",
"4",
"7",
"5",
"1",
"2",
"5",
"9",
"3",
"5",
"7",
"1",
"8",
"5",
"1",
"9",
"6",
"4",
"7",
"3",
"1",
"6",
"4",
"8",
"4",
"8",
"0",
"9",
"9",
"1",
"6",
"8",
"2",
"4",
"7",
"2",
"3",
"2",
"5",
"5",
"2",
"9",
"3",
"1",
"3",
"0",
"9",
"5",
"8",
"0",
"8",
"4",
"6",
"9",
"2",
"5",
"6",
"2",
"7",
"7",
"5",
"3",
"2",
"2",
"3",
"4",
"6",
"3",
"1",
"8",
"3",
"4",
"5",
"3",
"7",
"0",
"0",
"6",
"2",
"8",
"4",
"7",
"3",
"8",
"1",
"4",
"0",
"3",
"5",
"0",
"4",
"7",
"0"
] | [
"cons",
"nonn"
] | 70 | 0 | 1 | [
"A324995",
"A324996",
"A357597"
] | null | Artur Jasinski, Feb 25 2023 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357597.seq | 6004dd64bd247b4513abfc8d7e2f2457 |
A357598 | Expansion of e.g.f. sinh(2 * (exp(x)-1)) / 2. | [
"0",
"1",
"1",
"5",
"25",
"117",
"601",
"3509",
"22457",
"153141",
"1105561",
"8453557",
"68339833",
"581495605",
"5184047961",
"48259748533",
"468040609593",
"4719817792565",
"49396003390489",
"535526127566773",
"6004124908829177",
"69509047405180213",
"829801009239621849",
"10202835010223731893"
] | [
"nonn"
] | 27 | 0 | 4 | [
"A024429",
"A065143",
"A078944",
"A264037",
"A357572",
"A357598",
"A357599"
] | null | Seiichi Manyama, Oct 05 2022 | 2025-02-16T08:34:04 | oeisdata/seq/A357/A357598.seq | f2d0847680f7e00fde2948aeabdfd8a0 |
A357599 | Expansion of e.g.f. sinh(2 * log(1+x)) / 2. | [
"0",
"1",
"-1",
"6",
"-30",
"180",
"-1260",
"10080",
"-90720",
"907200",
"-9979200",
"119750400",
"-1556755200",
"21794572800",
"-326918592000",
"5230697472000",
"-88921857024000",
"1600593426432000",
"-30411275102208000",
"608225502044160000",
"-12772735542927360000",
"281000181944401920000"
] | [
"sign"
] | 10 | 0 | 4 | [
"A001710",
"A133799",
"A357598",
"A357599"
] | null | Seiichi Manyama, Oct 05 2022 | 2022-10-05T12:35:36 | oeisdata/seq/A357/A357599.seq | 0b0d75490ad67d4dbe21c0246791e991 |
A357600 | Largest number k such that C(-k) is the cyclic group of order n, where C(D) is the class group of the quadratic field with discriminant D; or 0 if no such k exists. | [
"163",
"427",
"907",
"1555",
"2683",
"3763",
"5923",
"5947",
"10627",
"13843",
"15667",
"17803",
"20563",
"30067",
"34483",
"31243",
"37123",
"48427",
"38707",
"58507",
"61483",
"85507",
"90787",
"111763",
"93307",
"103027",
"103387",
"126043",
"166147",
"134467",
"133387",
"164803",
"222643",
"189883",
"210907",
"217627",
"158923",
"289963",
"253507"
] | [
"nonn",
"hard"
] | 18 | 1 | 1 | [
"A038552",
"A344073",
"A357600"
] | null | Jianing Song, Oct 05 2022 | 2022-10-07T09:15:31 | oeisdata/seq/A357/A357600.seq | 0b584f4092b948371e9d9c9fe0bea7c3 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.