sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A362501
Number of vertex cuts in the n-alkane graph.
[ "11", "169", "1699", "14989", "125495", "1026273", "8299403", "66752053", "535443679", "4289258377", "34336902707", "274786564317", "2198657885063", "17590724562481", "140731642427611", "1125876523131781", "9007105719897647", "72057219898554585", "576459255745930115", "4611680032197414445" ]
[ "nonn", "easy" ]
30
1
1
null
null
Eric W. Weisstein, Apr 23 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362501.seq
c60c897badd19c95086c56fbae558a51
A362502
Least k > 0 such that (floor(sqrt(n*k)) + 1)^2 mod n is a square.
[ "1", "1", "1", "1", "1", "2", "3", "1", "3", "4", "5", "1", "7", "8", "1", "1", "9", "4", "11", "2", "1", "14", "15", "1", "8", "16", "1", "3", "19", "2", "21", "1", "3", "24", "1", "2", "25", "26", "3", "1", "29", "2", "31", "6", "1", "34", "35", "1", "15", "4", "3", "7", "39", "4", "1", "2", "3", "44", "45", "1", "47", "48", "1", "2", "1", "4", "51", "10", "5", "2", "55", "1", "57", "58", "5", "12", "1", "6", "63", "1", "5", "64", "65", "1", "3", "68" ]
[ "nonn" ]
36
1
6
null
null
Darío Clavijo, Apr 22 2023
2023-05-29T00:08:27
oeisdata/seq/A362/A362502.seq
0b1baecc8085a4f69cb60d985fec3905
A362503
a(n) is the number of k such that n - A000045(k) is a square.
[ "1", "3", "3", "2", "2", "3", "2", "1", "1", "3", "2", "1", "2", "1", "2", "0", "1", "4", "1", "1", "0", "2", "2", "0", "1", "2", "2", "1", "1", "1", "2", "0", "0", "1", "1", "1", "1", "3", "3", "1", "0", "1", "0", "1", "1", "0", "1", "0", "0", "2", "3", "1", "1", "0", "1", "1", "1", "2", "0", "2", "0", "0", "1", "0", "2", "2", "1", "1", "0", "1", "2", "1", "1", "0", "0", "0", "0", "1", "0", "0", "1", "1", "2", "2", "1", "1", "1", "0", "0", "2", "1", "1", "0", "1", "1", "0", "0", "0", "2" ]
[ "nonn" ]
12
0
2
[ "A108852", "A362409", "A362434", "A362503" ]
null
Robert Israel, Apr 22 2023
2023-04-24T01:37:04
oeisdata/seq/A362/A362503.seq
8269e19876f1334bd75179b209e21851
A362504
Number of paths across a regular hexagonal grid with side length n.
[ "1", "11", "291", "8547", "259123", "7997355", "250062515", "7900153283", "251686581987", "8073549437643", "260453164773827", "8441983967058723", "274715571055249171", "8969873019615172459", "293727992832116083539", "9642550297656399476611", "317240324217012764748739" ]
[ "nonn", "walk" ]
17
1
2
null
null
Alexandra S. Kim, Apr 21 2023
2023-07-27T12:15:49
oeisdata/seq/A362/A362504.seq
484a846d9cc87746dd41fb4fc0a90bb2
A362505
Nonnegative numbers of the form x*y where x and y have the same set of decimal digits.
[ "0", "1", "4", "9", "11", "16", "25", "36", "44", "49", "64", "81", "99", "100", "111", "121", "144", "169", "176", "196", "225", "252", "256", "275", "289", "324", "361", "396", "400", "403", "441", "444", "484", "529", "539", "574", "576", "625", "676", "704", "729", "736", "765", "784", "841", "891", "900", "961", "976", "999", "1000", "1008", "1010", "1024" ]
[ "nonn", "base" ]
6
1
3
[ "A000290", "A002275", "A086066", "A330898", "A362505", "A362506" ]
null
Rémy Sigrist, Apr 23 2023
2023-04-24T01:31:39
oeisdata/seq/A362/A362505.seq
d997acb29fe2c0db1c8201751d1d7d61
A362506
a(n) is the least x >= 0 such that A362505(n) = x * y for some y with the same set of decimal digits as x.
[ "0", "1", "2", "3", "1", "4", "5", "6", "2", "7", "8", "9", "3", "10", "1", "11", "12", "13", "4", "14", "15", "12", "16", "5", "17", "18", "19", "6", "20", "13", "21", "2", "22", "23", "7", "14", "24", "25", "26", "8", "27", "23", "15", "28", "29", "9", "30", "31", "16", "3", "10", "24", "10", "32", "33", "10", "1", "34", "17", "11", "35", "36", "25", "12", "37", "38", "12", "18", "34", "12", "13" ]
[ "nonn", "base" ]
10
1
3
[ "A362505", "A362506" ]
null
Rémy Sigrist, Apr 23 2023
2023-04-24T13:09:48
oeisdata/seq/A362/A362506.seq
fce6fce62df82e9f8aa15fb607840da3
A362507
Squarefree semiprimes (products of two distinct primes) between sphenic numbers (products of three distinct primes).
[ "1546", "2066", "2234", "2554", "3334", "3566", "3814", "4586", "4894", "4946", "5422", "5594", "6098", "6602", "6694", "6746", "7286", "7346", "7706", "7846", "7886", "8042", "8114", "8438", "8986", "9094", "9806", "10154", "10294", "10786", "10834", "10886", "11038", "11138", "11246", "11846", "12094", "13406", "13714", "13894", "13982", "14002", "14054" ]
[ "nonn" ]
11
1
1
[ "A006881", "A007304", "A362507" ]
null
Massimo Kofler, Apr 23 2023
2023-08-12T14:55:31
oeisdata/seq/A362/A362507.seq
4d90db151efa93e8e8b1315431ee6c48
A362508
Number of vertex cuts in the n-Andrásfai graph.
[ "0", "10", "82", "484", "2520", "12274", "57400", "261510", "1170884", "5179458", "22707520", "98852670", "427804988", "1841950010", "7894607160" ]
[ "nonn", "more" ]
13
1
2
[ "A287995", "A362508" ]
null
Eric W. Weisstein, Apr 23 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362508.seq
b51a130900d6fc37a5c4f920e25a2690
A362509
Number of vertex cuts in the n X n black bishop graph.
[ "0", "0", "9", "87", "2940", "67392", "6075837", "442152975", "133476737988" ]
[ "nonn", "more" ]
9
1
3
[ "A290719", "A362509" ]
null
Eric W. Weisstein, Apr 23 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362509.seq
2d1d9dda2af96e95404106a4c707675b
A362510
Number of odd chordless cycles of length > 4 in the halved cube graph Q_n/2.
[ "0", "0", "0", "0", "192", "2304", "4779648", "526144997376" ]
[ "nonn", "more" ]
14
1
5
[ "A361186", "A362510" ]
null
Eric W. Weisstein, Apr 23 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362510.seq
7fed0ec079dc0ae2f51a3736a1ae5de1
A362511
Number of odd chordless cycles of length > 4 in the n X n king graph.
[ "0", "0", "0", "4", "92", "2352", "78356", "3517880", "252618880", "41306486504", "16825895352172", "11961395191780756", "12807426535283959680", "21661306839167581507840", "64202942607525533084738044", "369420376954069022684270628192", "4240620859184086817492965752551468", "89842928236108967759116580894597660652" ]
[ "nonn" ]
10
1
4
[ "A361171", "A362511" ]
null
Eric W. Weisstein, Apr 23 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362511.seq
715dc24d0315a0efcf5e7da48d834120
A362512
Number of odd chordless cycles of length > 4 in the n-Mycielski graph.
[ "0", "0", "1", "31", "646", "17277", "2354454" ]
[ "nonn", "more" ]
9
1
4
[ "A361183", "A362512" ]
null
Eric W. Weisstein, Apr 23 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362512.seq
d9ecbc18f15a883998a1498ff6b0c515
A362513
Number of odd chordless cycles of length > 4 in the n X n queen graph.
[ "0", "0", "0", "24", "600", "10160", "120288", "1685760", "28099984" ]
[ "nonn", "more" ]
9
1
4
[ "A361184", "A362513" ]
null
Eric W. Weisstein, Apr 23 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362513.seq
a821e9c30cb50307650e67b6a71e2966
A362514
Number of odd chordless cycles of length >4 in the n-triangular grid graph.
[ "0", "0", "0", "1", "13", "115", "959", "8876", "101123", "1519504", "31138405", "871560677", "32897263307", "1657411773700", "111113100638331", "9929019852558612", "1185818207579540160", "189496976724420953109", "40497113442395855810240", "11561238705271610991734848" ]
[ "nonn" ]
10
1
5
[ "A297671", "A362514" ]
null
Eric W. Weisstein, Apr 23 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362514.seq
8f24c1fe4fcb23e634323ce702225c78
A362515
Number of vertex cuts in the n-Fibonacci cube graph.
[ "0", "1", "10", "138", "5518", "1549272", "13182879778" ]
[ "nonn", "more" ]
9
1
3
[ "A000045", "A292066", "A362515" ]
null
Eric W. Weisstein, Apr 23 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362515.seq
54d7666003e3f39eaafffaa9de85ac68
A362516
Number of vertex cuts in the n-gear graph.
[ "1", "5", "51", "293", "1383", "6017", "25315", "104941", "431775", "1768377", "7218555", "29388325", "119381239", "484031537", "1959295251", "7919693789", "31972642767", "128937189161", "519476334379", "2091181293589", "8412008183079", "33816433653921", "135865503379395", "545598121631437", "2190000348372223" ]
[ "nonn", "easy" ]
21
1
2
[ "A286188", "A362516" ]
null
Eric W. Weisstein, Apr 23 2023
2025-03-27T02:23:40
oeisdata/seq/A362/A362516.seq
045fc9bf1e32fcd3496d1ecba44bd2c6
A362517
Number of vertex cuts in the n X n grid graph.
[ "0", "2", "293", "54029", "31252554", "66987393994", "558077003446645", "18395727255104656873", "2415871083397827261386598", "1267366225909683571167215895590", "2658305260824415112030141755123193237", "22300450681634123362049304128770788322086749", "748286719216207999401963616395813243234643176461730" ]
[ "nonn" ]
9
1
2
[ "A059525", "A362517" ]
null
Eric W. Weisstein, Apr 23 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362517.seq
bdbb9fe0000765d0cce842cf0737f854
A362518
Number of vertex cuts in the n-helm graph.
[ "1", "12", "71", "354", "1617", "7020", "29563", "122214", "499493", "2026848", "8186895", "32969754", "132508729", "531842196", "2132610467", "8545773774", "34228238925", "137046552264", "548583066679", "2195514451074", "8785586531681", "35152894560252", "140643143849931", "562667104454454", "2250951652660597" ]
[ "nonn", "easy" ]
12
1
2
[ "A286184", "A362518" ]
null
Eric W. Weisstein, Apr 23 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362518.seq
dcd73bbedbd2a02b14f5981fb9a9ff2a
A362519
Number of vertex cuts in the hypercube graph Q_n.
[ "0", "0", "2", "88", "28242", "1770149360" ]
[ "nonn", "more" ]
9
0
3
[ "A290758", "A362519" ]
null
Eric W. Weisstein, Apr 23 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362519.seq
8343be5bf63769bfaef385d228fa6a2b
A362520
Number of vertex cuts in the n-triangular grid graph.
[ "0", "0", "16", "531", "22737", "1681647", "233613750", "62845739144", "33198078319112", "34686509192360823", "71978712930766793223" ]
[ "nonn", "more" ]
8
0
3
[ "A288722", "A362520" ]
null
Eric W. Weisstein, Apr 23 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362520.seq
8165850e412af5071dfd7723f3a470be
A362521
Number of vertex cuts in the n-web graph.
[ "1", "30", "323", "3110", "27777", "237498", "1977439", "16202990", "131490509", "1060894002", "8529819531", "68439823942", "548461371993", "4392080943978", "35156984457463", "281349668446430", "2251228221924645", "18011798305060578", "144103388698943651", "1152868080218482102", "9223130638279472433" ]
[ "nonn" ]
15
1
2
[ "A286187", "A362521" ]
null
Eric W. Weisstein, Apr 23 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362521.seq
4e2f09b13ec5f0e684b10f8a0019cb47
A362522
a(n) = n! * Sum_{k=0..floor(n/2)} (k+1)^(k-1) / (k! * (n-2*k)!).
[ "1", "1", "3", "7", "49", "201", "2491", "14743", "266337", "2055889", "49051891", "466650471", "13873711633", "156839920537", "5591748678699", "73222243463671", "3046762637864641", "45346835284775073", "2158148557098011107", "35980450963558606279", "1928292118820446611441" ]
[ "nonn", "easy" ]
17
0
3
[ "A088957", "A089461", "A362347", "A362522", "A362523" ]
null
Seiichi Manyama, Apr 23 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362522.seq
b24e69e3c3bf8e03d0a07d8d1302f676
A362523
a(n) = n! * Sum_{k=0..floor(n/3)} (k+1)^(k-1) / (k! * (n-3*k)!).
[ "1", "1", "1", "7", "25", "61", "1201", "7771", "30577", "1058905", "9904321", "53722351", "2708688841", "33126146197", "228967340785", "15262865820931", "230517745701601", "1936173471789361", "161021598306402817", "2894434429492525015", "28614958982310290041" ]
[ "nonn", "easy" ]
15
0
4
[ "A088957", "A089464", "A362348", "A362522", "A362523" ]
null
Seiichi Manyama, Apr 23 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362523.seq
d1c1ea0a2f3582a3208eb5b0659bec92
A362524
a(n) = n! * Sum_{k=0..floor(n/2)} (k+1)^(k-1) / (2^k * k! * (n-2*k)!).
[ "1", "1", "2", "4", "16", "56", "391", "2017", "20504", "139456", "1867681", "15751451", "262263442", "2638794094", "52589415971", "614628436801", "14274125637256", "190012483804952", "5041005195499849", "75288391385094811", "2246914521052963166", "37204717212894726706", "1233884675800841217847" ]
[ "nonn", "easy" ]
14
0
3
[ "A088957", "A362350", "A362522", "A362524", "A362525" ]
null
Seiichi Manyama, Apr 23 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362524.seq
f6e3c65b824294004e3fe4501584b463
A362525
a(n) = n! * Sum_{k=0..floor(n/3)} (k+1)^(k-1) / (6^k * k! * (n-3*k)!).
[ "1", "1", "1", "2", "5", "11", "51", "246", "897", "7085", "51221", "260426", "2938541", "28279967", "184234415", "2714662406", "32614422401", "259026339161", "4721237878537", "67998862785970", "637019875964341", "13852253151455251", "232584488748665131", "2510358957337412182", "63466995535914172225" ]
[ "nonn", "easy" ]
12
0
4
[ "A088957", "A362351", "A362523", "A362524", "A362525" ]
null
Seiichi Manyama, Apr 23 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362525.seq
7cfdf3da151cb703a0a1e4efb0471dd6
A362526
a(n) = 2^n*(n + 2) + (n - 7)*n/2 - 2.
[ "1", "9", "32", "88", "217", "507", "1150", "2562", "5639", "12301", "26644", "57372", "122917", "262191", "557114", "1179718", "2490451", "5242977", "11010160", "23068800", "48234641", "100663459", "209715382", "436207818", "905969887", "1879048437", "3892314380", "8053063972", "16642998589", "34359738711" ]
[ "nonn", "easy" ]
28
1
2
null
null
Eric W. Weisstein, Apr 24 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362526.seq
a73111c0233d65d23f55d92571bb0c94
A362527
a(1) = 2 and a(n+1) is the largest prime <= a(n) + n.
[ "2", "3", "5", "7", "11", "13", "19", "23", "31", "37", "47", "53", "61", "73", "83", "97", "113", "127", "139", "157", "173", "193", "211", "233", "257", "281", "307", "331", "359", "383", "409", "439", "467", "499", "523", "557", "593", "619", "653", "691", "727", "761", "797", "839", "883", "919", "953", "997", "1039", "1087", "1129", "1171", "1223", "1259", "1307" ]
[ "nonn" ]
17
1
1
[ "A095117", "A113161", "A362527" ]
null
Ya-Ping Lu, Apr 23 2023
2023-08-29T09:45:24
oeisdata/seq/A362/A362527.seq
8c5eba5142889ba9aef4f6ba6c458ace
A362528
Numbers that can be written in at least 3 ways as the sum of a Lucas number (A000032) and a square.
[ "11", "27", "488", "683", "852", "907", "964", "1372", "1445", "3971", "5947", "6563", "8587", "40003", "70803", "111603", "116285", "129603", "133958", "291607", "465125", "1229884", "1555208", "2088027", "37442165", "89629867", "93896107", "149768645", "197712043", "287946964", "298391123" ]
[ "nonn" ]
4
1
1
[ "A000032", "A362434", "A362528" ]
null
Robert Israel, Apr 23 2023
2023-04-23T22:25:48
oeisdata/seq/A362/A362528.seq
261f1a42bc770ccf8c97571eb65f7de8
A362529
Decimal expansion of the 2019 SI system unit kg in eV/c^2.
[ "5", "6", "0", "9", "5", "8", "8", "6", "0", "3", "8", "0", "4", "4", "5", "1", "9", "3", "7", "8", "5", "0", "4", "4", "3", "0", "2", "4", "2", "4", "8", "9", "7", "3", "0", "3", "8", "0", "1", "2", "7", "3", "6", "3", "6", "5", "9", "9", "5", "4", "6", "1", "1", "4", "7", "1", "3", "8", "4", "1", "2", "2", "0", "5", "8", "0", "4", "2", "6", "9", "6", "4", "3", "3", "4", "3", "2", "0", "7", "0", "6", "3", "6", "4", "7", "6", "4" ]
[ "cons", "nonn", "easy" ]
9
36
1
[ "A003676", "A003678", "A081823", "A254181", "A322580", "A342486", "A360750", "A362529" ]
null
Marco Ripà, Apr 24 2023
2023-06-18T13:13:15
oeisdata/seq/A362/A362529.seq
1bf254d1b4a80ccf4cfe000e12d95446
A362530
Decimal expansion of the conventional value of Josephson constant (K_{J-90}) in Hz/V.
[ "4", "8", "3", "5", "9", "7", "9" ]
[ "cons", "nonn", "fini", "full" ]
14
15
1
[ "A248508", "A248510", "A361006", "A361010", "A361011", "A361352", "A362000", "A362530" ]
null
Marco Ripà, Apr 24 2023
2023-06-18T13:17:35
oeisdata/seq/A362/A362530.seq
34e6525bf327cb0bdec6096d00dbd415
A362531
The smallest integer m such that m mod 2k >= k for k = 1, 2, 3, ..., n.
[ "1", "3", "3", "15", "15", "47", "95", "95", "287", "335", "1199", "1199", "1295", "2015", "2879", "2879", "2879", "2879", "2879", "2879", "2879", "43199", "211679", "211679", "211679", "211679", "211679", "211679", "211679", "211679", "3084479", "3084479", "3084479", "3084479", "3084479", "3084479", "302702399", "469909439" ]
[ "nonn" ]
26
1
2
[ "A053664", "A362531" ]
null
Tomohiro Yamada, Apr 24 2023
2023-06-22T06:03:42
oeisdata/seq/A362/A362531.seq
af0969e98824a836dc4434401c09e799
A362532
The smallest positive integer m such that m mod 2k < k for k = 1, 2, 3, ..., n.
[ "2", "4", "8", "8", "24", "24", "72", "144", "144", "144", "384", "384", "2160", "2160", "2160", "6720", "54240", "57600", "131040", "131040", "131040", "131040", "612000", "612000", "612000", "612000", "612000", "776160", "776160", "776160", "6219360", "23184000", "28627200", "28627200", "28627200", "28627200", "28627200" ]
[ "nonn" ]
28
1
1
[ "A053664", "A362532" ]
null
Tomohiro Yamada, Apr 24 2023
2023-05-08T10:19:47
oeisdata/seq/A362/A362532.seq
6c28260a5299dc3e8e8bde2a88c5ee96
A362533
Decimal expansion of lim_{n->oo} ( Sum_{k=2..n} 1/(k * log(k) * log log(k)) - log log log(n) ).
[ "2", "6", "9", "5", "7", "4" ]
[ "nonn", "cons", "more" ]
9
1
1
[ "A001620", "A361972", "A362533" ]
null
Bernard Schott, Apr 24 2023
2023-04-28T22:38:12
oeisdata/seq/A362/A362533.seq
8f7aa8cc79e5e21914896670cbddb2ba
A362534
Numerators of the ratio of the symmetry-constrained bound to the adiabatic bound on polarization transfer in AXn spin-1/2 systems.
[ "1", "1", "6", "6", "15", "15", "140", "140", "315", "315", "1386", "1386", "3003", "3003", "51480", "51480", "109395", "109395", "92378", "92378", "969969", "969969", "2704156", "2704156", "16900975", "16900975", "70204050", "70204050", "145422675", "145422675", "4808643120", "4808643120", "9917826435", "9917826435", "40838108850", "40838108850" ]
[ "nonn", "frac" ]
24
1
3
[ "A001803", "A086116", "A120778", "A141244", "A362534" ]
null
Mohamed Sabba, Apr 24 2023
2023-06-11T12:13:51
oeisdata/seq/A362/A362534.seq
b90f86b910cedeeb524cd1bc390d36e5
A362535
Smallest prime ending with all base-n digits in consecutive order.
[ "5", "59", "283", "3319", "95177", "6611219", "17119607", "1168314911", "100123456789", "3426593164037", "142731293952659", "304978405943587", "333425956286418337", "9635899740880849409", "535037563666793483759", "42192484763476168476011", "39482554816041508293677", "39574499346711396207137369" ]
[ "nonn", "base" ]
23
2
1
[ "A023811", "A362535" ]
null
Pedro A. B. A. Vinhas, Apr 24 2023
2023-05-28T15:40:32
oeisdata/seq/A362/A362535.seq
9c29838b4c0c7b0d4aec8b97372baa13
A362536
Number of chordless cycles of length >= 4 in the n X n antelope graph.
[ "0", "0", "0", "0", "0", "0", "3", "4456", "9048819" ]
[ "nonn", "more" ]
9
1
7
null
null
Eric W. Weisstein, Apr 24 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362536.seq
6fcefc628a88bc11d21600f83092d172
A362537
Number of chordless cycles of length >=4 in the n-diagonal intersection graph.
[ "0", "1", "17", "166", "50684", "2395992" ]
[ "nonn", "more" ]
8
3
3
[ "A362537", "A371340" ]
null
Eric W. Weisstein, Apr 24 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362537.seq
f5b15eb6962906afed25f45039808e00
A362538
Number of chordless cycles of length >=4 in the n X n camel graph.
[ "0", "0", "0", "2", "33", "234", "1287", "5534", "34280", "263072", "3812134", "81665592" ]
[ "nonn", "more" ]
5
1
4
null
null
Eric W. Weisstein, Apr 24 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362538.seq
979d1ddf503a40858cd27fbad198400b
A362539
Number of chordless cycles of length >=4 in the n X n zebra graph.
[ "0", "0", "0", "0", "2", "510", "89513", "5384392" ]
[ "nonn", "more" ]
11
1
5
null
null
Eric W. Weisstein, Apr 24 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362539.seq
f4f99ae5b45c16b8eaa2ed22e43814a1
A362540
Number of chordless cycles of length >= 4 in the n-flower graph.
[ "3", "23", "63", "127", "273", "583", "1287", "2975", "6993", "16535", "39525", "95071", "229029", "552199", "1332375", "3215807", "7762611", "18739607", "45240309", "109217983", "263673699", "636563527", "1536798717", "3710157407", "8957109801", "21624374039", "52205854257", "126036078751", "304278008331", "734592089095" ]
[ "nonn", "easy" ]
24
2
1
[ "A362540", "A362545" ]
null
Eric W. Weisstein, Apr 24 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362540.seq
38130bf3483481d4c20bc2d1971462bd
A362541
Number of chordless cycles of length >=4 in the n X n giraffe graph.
[ "0", "0", "0", "0", "1", "64", "10362", "3514896" ]
[ "nonn", "more" ]
7
1
6
null
null
Eric W. Weisstein, Apr 24 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362541.seq
337b9d8b55202c17863552c33b3a34dd
A362542
Number of chordless cycles of length >=4 in the n-Goldberg graph.
[ "167", "617", "2028", "7755", "31790", "127921", "519144", "2156929", "9033368", "37912247", "159883298", "677172001", "2874325792", "12218015649", "52002840492", "221537338251", "944295735054", "4026601604297", "17174885851616", "73271037438905", "312626187952376", "1334000464514567", "5692623856528338" ]
[ "nonn", "easy" ]
29
3
1
[ "A362542", "A362546" ]
null
Eric W. Weisstein, Apr 24 2023
2025-05-27T14:59:10
oeisdata/seq/A362/A362542.seq
35673d0f93cada56a5642a0986981bab
A362543
Number of chordless cycles of length >= 4 in the tetrahedral (Johnson) graph.
[ "1134", "39651", "5171088", "2660896170", "4613923014804" ]
[ "nonn", "more" ]
16
6
1
[ "A297670", "A362543", "A362547" ]
null
Eric W. Weisstein, Apr 24 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362543.seq
d85c5a5fc0ceb29c65225db4c21d613a
A362544
Number of odd chordless cycles of length >=5 in the n-diagonal intersection graph.
[ "0", "0", "2", "72", "25085", "1191832" ]
[ "nonn", "more" ]
5
3
3
null
null
Eric W. Weisstein, Apr 24 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362544.seq
c7c431ebbd29248bf3628b8d5e0459ea
A362545
Number of odd chordless cycles of length >4 in the (2n+1)-flower snark.
[ "1", "13", "81", "477", "2785", "16237", "94641", "551613", "3215041", "18738637", "109216785", "636562077", "3710155681", "21624372013", "126036076401", "734592086397", "4281516441985", "24954506565517", "145445522951121", "847718631141213", "4940866263896161", "28797478952235757", "167844007449518385", "978266565744874557", "5701755387019728961", "33232265756373499213" ]
[ "nonn" ]
15
0
2
[ "A002203", "A362545" ]
null
Eric W. Weisstein, Apr 24 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362545.seq
885c18b8b82ecc6916bbab2444f11e69
A362546
Number of odd chordless cycles of length >=5 in the n-Goldberg graph.
[ "78", "296", "991", "3828", "15807", "63792", "259255", "1077860", "4515523", "18953864", "79937235", "338577316", "1437145747", "6108973856", "26001352815", "110768535036", "472147600567", "2013300270136", "8587441864815", "36635516602300", "156313089749627", "667000223816592", "2846311911402811" ]
[ "nonn", "easy" ]
22
3
1
[ "A362542", "A362546" ]
null
Eric W. Weisstein, Apr 24 2023
2025-05-27T12:25:54
oeisdata/seq/A362/A362546.seq
c796e2d8253bc90f30d30a57ba84984e
A362547
Number of odd chordless cycles of length >=5 in the n-tetrahedral (Johnson) graph.
[ "144", "23796", "2266368", "1349587080", "2312684548704" ]
[ "nonn", "more" ]
13
6
1
[ "A303505", "A362543", "A362547" ]
null
Eric W. Weisstein, Apr 24 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362547.seq
daf320eb2d9dce456d2f465dc19a898e
A362548
Number of partitions of n with at least three parts larger than 1.
[ "0", "0", "0", "0", "0", "0", "1", "2", "5", "9", "16", "25", "40", "58", "85", "119", "166", "224", "303", "399", "526", "681", "880", "1122", "1430", "1801", "2266", "2827", "3521", "4354", "5378", "6601", "8092", "9870", "12020", "14576", "17652", "21294", "25653", "30804", "36937", "44162", "52732", "62798", "74690", "88627", "105028", "124201", "146696", "172924", "203600", "239292", "280912" ]
[ "nonn" ]
21
0
8
[ "A000041", "A033638", "A119907", "A362548" ]
null
Wouter Meeussen, Apr 24 2023
2023-04-27T16:35:20
oeisdata/seq/A362/A362548.seq
a63563a8c06680101ae36047b5f78c57
A362549
Number of partitions of [n] whose blocks can be ordered such that the i-th block (except possibly the last) has at least i elements and no block j > i has an element smaller than the i-th smallest element of block i.
[ "1", "1", "2", "4", "9", "23", "64", "187", "566", "1777", "5820", "19944", "71343", "264719", "1011292", "3953381", "15756609", "63945484", "264384828", "1115246518", "4806957739", "21189601861", "95516470253", "439777682222", "2064164172616", "9853934668051", "47736608806520", "234235866539512", "1162618720397931" ]
[ "nonn" ]
32
0
3
[ "A000110", "A007476", "A092920", "A210540", "A362549", "A362635", "A362637", "A362893" ]
null
Alois P. Heinz, Apr 24 2023
2023-05-15T16:06:43
oeisdata/seq/A362/A362549.seq
d90ad2e0d26c92d01f9280e93062ea3a
A362550
Number of even nontotients less than 10^n.
[ "0", "13", "210", "2627", "29747", "319817", "3365629", "34962092", "360152096", "3688820638" ]
[ "nonn", "more" ]
43
1
2
[ "A002202", "A005277", "A072077", "A362550" ]
null
Robert G. Wilson v, Apr 24 2023
2023-04-29T00:26:31
oeisdata/seq/A362/A362550.seq
8e8dc5ebaa04298e093659003acaebba
A362551
a(0)=0. For each digit d in the sequence, append the smallest unused integer such that its last digit equals d.
[ "0", "10", "1", "20", "11", "2", "30", "21", "31", "12", "3", "40", "22", "41", "13", "51", "61", "32", "23", "4", "50", "42", "52", "14", "71", "81", "33", "5", "91", "6", "101", "43", "62", "72", "53", "24", "15", "60", "34", "82", "25", "92", "111", "44", "7", "121", "8", "131", "63", "73", "35", "9", "141", "16", "151", "70", "161", "54", "83", "26", "102", "17", "112", "45", "93" ]
[ "nonn", "base", "easy" ]
33
0
2
[ "A106001", "A362371", "A362551" ]
null
Gavin Lupo, Apr 24 2023
2023-05-03T09:11:39
oeisdata/seq/A362/A362551.seq
927760d3491c0c36c2e9c622349206a3
A362552
a(n) = n for n <= 2. For n > 2, a(n) is the least novel k (with rad(k) != rad(a(n-1))) such that k shares a nontrivial divisor with one of a(n-1), a(n-2), but not with the other.
[ "1", "2", "6", "3", "4", "9", "8", "10", "5", "12", "14", "7", "16", "18", "15", "22", "11", "20", "24", "21", "26", "13", "28", "30", "25", "27", "33", "44", "32", "55", "34", "17", "36", "38", "19", "40", "35", "46", "23", "42", "39", "49", "45", "48", "52", "51", "50", "56", "63", "57", "70", "58", "29", "54", "60", "65", "62", "31", "64", "66", "69", "68", "74", "37", "72", "75", "76", "81", "80", "82", "41", "78", "84", "77", "86", "43", "88", "90" ]
[ "nonn" ]
19
1
2
[ "A064413", "A098550", "A336957", "A362552" ]
null
David James Sycamore, Apr 24 2023
2025-06-21T11:51:19
oeisdata/seq/A362/A362552.seq
bc9525995455df718fbefe860965c29b
A362553
Gale CGF's: The number of basic cyclotomic generating functions of degree n with numerator multiset bigger than denominator multiset in the Gale partial order.
[ "1", "1", "3", "4", "10", "12", "27", "33", "68", "82", "154", "187", "346", "410", "714", "857", "1460", "1722", "2860", "3378", "5501" ]
[ "nonn", "more" ]
9
0
3
null
null
Sara Billey, Apr 24 2023
2023-06-04T21:12:58
oeisdata/seq/A362/A362553.seq
0bbd9ab54388cab5d78e1bc2783dcef2
A362554
The number of generators for the Gale submonoid of basic cyclotomic generating functions of degree n with numerator multiset bigger than denominator multiset in Gale order.
[ "1", "2", "1", "3", "1", "4", "1", "6", "1", "5", "1", "14", "2", "9", "4", "28", "1", "33", "14", "61" ]
[ "nonn", "more" ]
10
1
2
null
null
Sara Billey, Apr 24 2023
2023-06-04T21:13:14
oeisdata/seq/A362/A362554.seq
9c4254df5e6eeb9cbaeac76ee57e0919
A362555
Number of distinct n-digit suffixes generated by iteratively multiplying an integer by 6, where the initial integer is 1.
[ "2", "7", "28", "129", "630", "3131", "15632", "78133", "390634", "1953135", "9765636", "48828137", "244140638", "1220703139", "6103515640", "30517578141", "152587890642", "762939453143", "3814697265644", "19073486328145", "95367431640646", "476837158203147", "2384185791015648", "11920928955078149", "59604644775390650" ]
[ "nonn", "base", "easy" ]
38
1
1
[ "A104745", "A362468", "A362555", "A370557" ]
null
Gil Moses, Apr 24 2023
2024-03-02T00:03:37
oeisdata/seq/A362/A362555.seq
fa6d88d9fe3d35e6f0f1b2ef732e1cb0
A362556
Number of distinct n-digit suffixes generated by iteratively multiplying an integer by 8, where the initial integer is 1.
[ "5", "21", "101", "502", "2502", "12502", "62503", "312503", "1562503", "7812504", "39062504", "195312504", "976562505", "4882812505", "24414062505", "122070312506", "610351562506", "3051757812506", "15258789062507", "76293945312507", "381469726562507" ]
[ "nonn", "base", "easy" ]
36
1
1
[ "A001018", "A005054", "A014391", "A014392", "A362468", "A362556" ]
null
Gil Moses, Apr 24 2023
2024-03-02T14:48:10
oeisdata/seq/A362/A362556.seq
50cf09f759dd3a25d9cd67b37006639f
A362557
Start with first term 0, then add paired terms counting every preceding term up to the largest term so far and loop back to 0 after every pair has been counted.
[ "0", "1", "0", "1", "1", "2", "0", "3", "1", "1", "2", "1", "3", "3", "0", "6", "1", "2", "2", "3", "3", "1", "6", "4", "0", "8", "1", "4", "2", "5", "3", "2", "4", "1", "5", "2", "6", "1", "8", "5", "0", "11", "1", "7", "2", "6", "3", "3", "4", "3", "5", "4", "6", "1", "7", "2", "8", "1", "11", "6", "0", "14", "1", "9", "2", "9", "3", "5", "4", "5", "5", "6", "6", "2", "7", "3", "8", "2", "9", "2", "11", "1", "14", "7", "0" ]
[ "nonn", "look", "easy" ]
15
1
6
[ "A055186", "A217760", "A342585", "A362557" ]
null
Robin Powell, Apr 24 2023
2023-06-24T16:52:08
oeisdata/seq/A362/A362557.seq
d3574d1eba282b8c88e254334182db3c
A362558
Number of integer partitions of n without a nonempty initial consecutive subsequence summing to n/2.
[ "1", "1", "1", "3", "2", "7", "6", "15", "11", "30", "27", "56", "44", "101", "93", "176", "149", "297", "271", "490", "432", "792", "744", "1255", "1109", "1958", "1849", "3010", "2764", "4565", "4287", "6842", "6328", "10143", "9673", "14883", "13853", "21637", "20717", "31185", "29343", "44583", "42609", "63261", "60100", "89134", "85893", "124754" ]
[ "nonn" ]
15
0
4
[ "A000009", "A000041", "A058398", "A058695", "A108917", "A169942", "A213173", "A307683", "A322439", "A325347", "A325676", "A353864", "A359893", "A359901", "A359902", "A360254", "A360672", "A360675", "A360686", "A360687", "A362051", "A362558", "A362559", "A362560" ]
null
Gus Wiseman, Apr 24 2023
2023-04-28T15:46:33
oeisdata/seq/A362/A362558.seq
3f0ff9d33f38c8b9b07f19bda5885302
A362559
Number of integer partitions of n whose weighted sum is divisible by n.
[ "1", "1", "2", "1", "2", "3", "3", "3", "5", "4", "5", "7", "8", "11", "14", "14", "18", "25", "28", "26", "42", "47", "52", "73", "77", "100", "118", "122", "158", "188", "219", "266", "313", "367", "412", "489", "578", "698", "809", "914", "1094", "1268", "1472", "1677", "1948", "2305", "2656", "3072", "3527", "4081", "4665", "5342", "6225", "7119", "8150", "9408" ]
[ "nonn" ]
18
1
3
[ "A000009", "A000041", "A001227", "A008284", "A051293", "A058398", "A067538", "A067539", "A240219", "A261079", "A264034", "A304818", "A318283", "A322439", "A326622", "A327482", "A358136", "A359361", "A359893", "A360068", "A360069", "A362051", "A362558", "A362559", "A362560" ]
null
Gus Wiseman, Apr 24 2023
2023-04-29T14:39:34
oeisdata/seq/A362/A362559.seq
3314acad78f6f18ee31acda2eb6600a4
A362560
Number of integer partitions of n whose weighted sum is not divisible by n.
[ "0", "1", "1", "4", "5", "8", "12", "19", "25", "38", "51", "70", "93", "124", "162", "217", "279", "360", "462", "601", "750", "955", "1203", "1502", "1881", "2336", "2892", "3596", "4407", "5416", "6623", "8083", "9830", "11943", "14471", "17488", "21059", "25317", "30376", "36424", "43489", "51906", "61789", "73498", "87186", "103253", "122098" ]
[ "nonn" ]
6
1
4
[ "A000009", "A000041", "A001227", "A008284", "A051293", "A058398", "A067538", "A240219", "A261079", "A264034", "A304818", "A318283", "A322439", "A326622", "A327482", "A349156", "A358136", "A359361", "A360068", "A360069", "A360241", "A362051", "A362558", "A362559", "A362560" ]
null
Gus Wiseman, Apr 28 2023
2023-04-29T14:11:45
oeisdata/seq/A362/A362560.seq
0e934a4139c20a21d0ebd19394bfaed6
A362561
Sphenic numbers k such that none of k-2, k-1, k+1 and k+2 is squarefree.
[ "170", "530", "638", "874", "962", "1826", "2526", "2674", "2726", "2782", "2874", "3178", "3970", "4490", "4526", "4654", "5930", "6026", "6254", "7138", "7174", "8074", "8126", "8426", "8723", "8958", "8974", "9926", "10286", "10526", "10610", "11222", "11494", "11674", "11710", "11998", "12338", "12626", "12770", "12986", "13574", "15238", "15274", "15326", "15826" ]
[ "nonn" ]
97
1
1
[ "A007304", "A013929", "A153215", "A362561", "A364010", "A364905" ]
null
Massimo Kofler, Sep 07 2023
2023-10-03T21:23:38
oeisdata/seq/A362/A362561.seq
d640d3fc3564f5df3b77336904c787a4
A362562
Number of non-constant integer partitions of n having a unique mode equal to the mean.
[ "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "4", "0", "3", "3", "7", "0", "12", "0", "18", "12", "9", "0", "52", "12", "14", "33", "54", "0", "121", "0", "98", "76", "31", "100", "343", "0", "45", "164", "493", "0", "548", "0", "483", "757", "88", "0", "1789", "289", "979", "645", "1290", "0", "2225", "1677", "3371", "1200", "221", "0", "10649" ]
[ "nonn" ]
7
0
13
[ "A000009", "A000041", "A008284", "A008289", "A237984", "A240219", "A325347", "A327472", "A327473", "A327476", "A359893", "A359901", "A362562", "A362608", "A363719", "A363720", "A363723", "A363724", "A363725", "A363728", "A363729", "A363731", "A363740" ]
null
Gus Wiseman, Jun 27 2023
2023-06-27T19:41:21
oeisdata/seq/A362/A362562.seq
2fdd9c3bcebac17a7f08d7cad818cccc
A362563
Triangle T(n, k) read by rows, where T(n, k) is the number of {123,132}-avoiding parking functions of size n with k active sites, for 2 <= k <= n+1.
[ "1", "1", "2", "1", "3", "4", "3", "5", "8", "8", "8", "14", "17", "20", "16", "24", "40", "49", "50", "48", "32", "75", "123", "147", "151", "136", "112", "64", "243", "393", "465", "473", "432", "352", "256", "128", "808", "1294", "1519", "1540", "1409", "1176", "880", "576", "256", "2742", "4358", "5087", "5144", "4721", "3986", "3088", "2144", "1280", "512" ]
[ "nonn", "tabl" ]
21
1
3
[ "A000079", "A000958", "A362563" ]
null
Lara Pudwell, Apr 24 2023
2023-04-26T15:39:32
oeisdata/seq/A362/A362563.seq
b801ead90f6a0f299b02c27ade1023d0
A362564
a(n) is the largest integer x such that n + 2^x is a square, or -1 if no such number exists.
[ "3", "1", "0", "5", "2", "-1", "1", "3", "4", "-1", "-1", "2", "-1", "1", "0", "7", "9", "-1", "-1", "4", "2", "-1", "1", "0", "-1", "-1", "-1", "3", "-1", "-1", "-1", "5", "8", "1", "0", "6", "-1", "-1", "-1", "-1", "7", "-1", "-1", "-1", "2", "-1", "1", "4", "5", "-1", "-1", "-1", "-1", "-1", "-1", "3", "6", "-1", "-1", "2", "-1", "1", "0", "9", "10", "-1", "-1", "11", "-1", "-1", "-1", "-1", "3", "-1", "-1", "-1", "2", "-1", "1", "6", "-1", "-1", "-1", "4", "-1" ]
[ "sign" ]
44
1
1
[ "A000079", "A000290", "A051204", "A234000", "A238454", "A247763", "A362564" ]
null
Yifan Xie, Apr 24 2023
2023-07-28T23:51:42
oeisdata/seq/A362/A362564.seq
6c4e8583dd4a06c4622b01f9a6c11414
A362565
The number of linear extensions of n fork-join DAGs of width 4.
[ "1", "24", "532224", "237124952064", "765985681152147456", "10915755547826792536473600", "510278911920303453316871670988800", "64243535333922263307871175411271676723200", "18920767554543625469992819764324607588052867481600" ]
[ "nonn" ]
10
0
2
[ "A357297", "A362565" ]
null
José E. Solsona, Apr 24 2023
2023-05-15T08:43:16
oeisdata/seq/A362/A362565.seq
9c8025ef12d1c1f65e913e94ccf33728
A362566
a(n) is the area of the smallest rectangle that the Harter-Heighway Dragon Curve will fit in after n doublings, starting with a segment of length 1.
[ "0", "1", "2", "6", "15", "42", "77", "180", "345", "806", "1457", "3276", "5985", "13462", "24257", "54060", "97665", "217686", "391937", "871596", "1570305", "3492182", "6286337", "13972140", "25155585", "55911766", "100642817", "223660716", "402612225", "894735702", "1610530817", "3578997420", "6442287105", "14316361046" ]
[ "nonn", "easy" ]
29
0
3
[ "A014577", "A341029", "A362566" ]
null
Nicolay Avilov, Apr 25 2023
2023-05-04T06:40:14
oeisdata/seq/A362/A362566.seq
fd0ecfa2fc96a9eb400077805c11e5ed
A362567
Number of rational solutions to the S-unit equation x + y = 1, where S = {prime(i): 1 <= i <= n}.
[ "0", "3", "21", "99", "375", "1137", "3267", "8595", "21891", "52965", "120087", "267843", "572145", "1194483", "2476743", "5037825", "9980691" ]
[ "nonn", "more" ]
16
0
2
[ "A002071", "A361661", "A362567", "A362593" ]
null
Robin Visser, Apr 25 2023
2025-06-18T00:58:26
oeisdata/seq/A362/A362567.seq
e8193cc21a0228dd555dac4300dd512f
A362568
E.g.f. satisfies A(x) = exp(x/A(x)^x).
[ "1", "1", "1", "-5", "-23", "121", "1321", "-7349", "-148175", "853777", "27840241", "-163354949", "-7934320679", "46820981065", "3203091569497", "-18833438286389", "-1742847946697759", "10137524365568161", "1230956201929018465", "-7042544858204663813", "-1095864481054115534519" ]
[ "sign" ]
15
0
4
[ "A177885", "A361777", "A362568", "A362569" ]
null
Seiichi Manyama, Apr 25 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362568.seq
61c16807ef0fedc10eac4986ecd00ce1
A362569
E.g.f. satisfies A(x) = exp(x/A(x)^(x^2)).
[ "1", "1", "1", "1", "-23", "-119", "-359", "6721", "78961", "450577", "-7867439", "-160506719", "-1421049959", "23995634521", "745945175977", "9197488067041", "-152057966904479", "-6667968305775839", "-107047941299543519", "1740437689443523777", "102311231044267813321", "2043217889363061489961" ]
[ "sign" ]
16
0
5
[ "A177885", "A362568", "A362569", "A362571" ]
null
Seiichi Manyama, Apr 25 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362569.seq
95deddbd848bcbd4f7fb87e200c9eb00
A362570
a(n) is the number of isogeny classes of elliptic curves over the finite field of order prime(n).
[ "5", "7", "9", "11", "13", "15", "17", "17", "19", "21", "23", "25", "25", "27", "27", "29", "31", "31", "33", "33", "35", "35", "37", "37", "39", "41", "41", "41", "41", "43", "45", "45", "47", "47", "49", "49", "51", "51", "51", "53", "53", "53", "55", "55", "57", "57", "59", "59", "61", "61", "61", "61", "63", "63", "65", "65", "65", "65", "67", "67", "67", "69", "71", "71", "71", "71", "73", "73", "75", "75", "75", "75", "77" ]
[ "nonn" ]
29
1
1
[ "A247485", "A362198", "A362201", "A362243", "A362570", "A364681" ]
null
Robin Visser, Apr 25 2023
2023-10-23T08:30:29
oeisdata/seq/A362/A362570.seq
e23f99199a5b0ef2b42a9b7ec63fd533
A362571
E.g.f. satisfies A(x) = exp(x * A(x)^(x^2)).
[ "1", "1", "1", "1", "25", "121", "361", "8401", "82321", "456625", "11496241", "172149121", "1452983401", "40947003241", "823437038425", "9491714865361", "300842942443681", "7568303382376801", "111494036396244961", "3957438528527140225", "119206427681076135481", "2147109997071581380441" ]
[ "nonn" ]
20
0
5
[ "A000272", "A361777", "A362569", "A362571", "A362573" ]
null
Seiichi Manyama, Apr 25 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362571.seq
437a4fde68d6270362659d04910b1eb2
A362572
E.g.f. satisfies A(x) = exp(x * A(x)^(x/2)).
[ "1", "1", "1", "4", "13", "76", "421", "3361", "26209", "267688", "2689201", "33579811", "412800961", "6103089994", "88754687113", "1517513934301", "25487131948321", "495009722435176", "9430633148123809", "205154208873930763", "4371962638221712801", "105330237499426955926" ]
[ "nonn" ]
18
0
4
[ "A000272", "A361777", "A362572", "A362573" ]
null
Seiichi Manyama, Apr 25 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362572.seq
6732587c70b96545e23a84da48773e78
A362573
E.g.f. satisfies A(x) = exp(x * A(x)^(x^2/6)).
[ "1", "1", "1", "1", "5", "21", "61", "351", "2521", "13105", "96041", "933021", "7098301", "65348141", "787190405", "7896243811", "88712631281", "1269172794401", "15784837036561", "210688183375705", "3486485630182581", "51674172769168741", "801474314335394701", "15059801657898920231", "258815184609843935305" ]
[ "nonn" ]
21
0
5
[ "A000272", "A362571", "A362572", "A362573" ]
null
Seiichi Manyama, Apr 25 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362573.seq
a1be0a065a17e9a2e4f11c9995c3d517
A362574
Number of vertex cuts in the n X n queen graph.
[ "0", "0", "16", "720", "76268", "24883487" ]
[ "nonn", "more" ]
12
1
3
[ "A285765", "A362574" ]
null
Eric W. Weisstein, Apr 25 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362574.seq
ad45ffbaa602bb7524b2c639de4330ae
A362575
Number of vertex cuts in the n X n rook graph.
[ "0", "2", "114", "9602", "2103570", "1465969442", "3767396928834", "38267690721261122", "1543992652549401346770", "246181774152151716764436962", "154911195038079578918382192282114", "384894219829087015520536416987293088002", "3779926606713983438336679626484814602924257490" ]
[ "nonn" ]
12
1
2
[ "A286189", "A362575", "A362576" ]
null
Eric W. Weisstein, Apr 25 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362575.seq
ed137f392313c48cabd9df75d4714fef
A362576
Number of vertex cuts in the n X n rook complement graph.
[ "0", "9", "114", "908", "5985", "35505", "196602", "1036992", "5277357", "26134385", "126677826", "603492444", "2834183937", "13150592889", "60391598610", "274863240992", "1241212143357", "5566202141193", "24807561785514", "109950785325900", "484883791129185", "2128652665933409", "9306262365861834" ]
[ "nonn" ]
12
1
2
[ "A291593", "A362575", "A362576" ]
null
Eric W. Weisstein, Apr 25 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362576.seq
4f354186b771b5bfee4d94462da3d447
A362577
Number of vertex cuts in the n-trapezohedral graph.
[ "5", "15", "88", "435", "1957", "8394", "35273", "146795", "607492", "2503687", "10282873", "42103670", "171925709", "700339023", "2846710048", "11549292123", "46778169517", "189188288130", "764162167025", "3083079787091", "12426568931356", "50042249662927", "201366368701441", "809732016511598", "3254128933657397" ]
[ "nonn", "easy" ]
17
1
1
[ "A005248", "A206776", "A362577" ]
null
Eric W. Weisstein, Apr 25 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362577.seq
5d1778d70afcca777600bea2b49283ac
A362578
Prime numbers followed by two consecutive numbers which are products of four distinct primes (or tetraprimes).
[ "8293", "16553", "17389", "18289", "22153", "26893", "29209", "33409", "35509", "36293", "39233", "39829", "40493", "41809", "45589", "48109", "58393", "59629", "59753", "59981", "60493", "60913", "64013", "64921", "65713", "66169", "69221", "71329", "74093", "75577", "75853", "77689", "77933", "79393", "79609", "82913", "84533", "85853", "87589", "87701", "88681" ]
[ "nonn" ]
16
1
1
[ "A000040", "A046386", "A140078", "A361796", "A362578" ]
null
Massimo Kofler, Apr 25 2023
2023-06-19T10:45:41
oeisdata/seq/A362/A362578.seq
8451e78857dbfcbd266e280021d90965
A362579
Numbers k such that the decimal expansion of 1/k does not contain the digit 5.
[ "1", "3", "5", "6", "9", "10", "11", "12", "13", "15", "21", "24", "25", "27", "30", "33", "36", "37", "41", "44", "45", "48", "50", "52", "55", "60", "72", "73", "75", "77", "84", "88", "90", "91", "96", "99", "100", "101", "110", "111", "120", "123", "125", "130", "135", "137", "143", "144", "150", "159", "165", "205", "208", "210", "216", "225", "231", "237", "239", "240", "250", "259", "264", "270", "271", "273", "275", "288" ]
[ "nonn", "base" ]
37
1
2
[ "A353441", "A362579" ]
null
Robert Israel, Apr 25 2023
2024-04-23T07:33:19
oeisdata/seq/A362/A362579.seq
a2ffbbcc76b66cb2d85f249f6d652c21
A362580
a(n) = packing chromatic number of an n X n grid.
[ "1", "3", "4", "5", "7", "8", "9", "9", "10", "11" ]
[ "nonn", "hard", "more" ]
33
1
2
[ "A335203", "A362580" ]
null
Robert C. Lyons, Apr 25 2023
2023-05-01T10:00:49
oeisdata/seq/A362/A362580.seq
90a95bfdefec3930a47a1b61805c539b
A362581
Number of alternating permutations on [2n+1] with 1 in position n+1.
[ "1", "2", "6", "80", "1750", "64512", "3438204", "253913088", "24687555750", "3062092267520", "471565937953396", "88298062293762048", "19753693667117055100", "5203824518733863321600", "1594426273578194363292600", "562191171748426920367226880", "226024705816530632892282399750" ]
[ "nonn" ]
17
0
2
[ "A000111", "A104345", "A362581" ]
null
Alois P. Heinz, Apr 25 2023
2023-04-26T07:46:07
oeisdata/seq/A362/A362581.seq
9e2b93a4a7e4f40e123ac46b0367e83c
A362582
Triangular array read by rows. T(n,k) is the number of alternating permutations of [2n+1] having exactly 2k elements to the left of 1, n >= 0, 0 <= k <= n.
[ "1", "1", "1", "5", "6", "5", "61", "75", "75", "61", "1385", "1708", "1750", "1708", "1385", "50521", "62325", "64050", "64050", "62325", "50521", "2702765", "3334386", "3427875", "3438204", "3427875", "3334386", "2702765", "199360981", "245951615", "252857605", "253708455", "253708455", "252857605", "245951615", "199360981" ]
[ "nonn", "tabl" ]
22
0
4
[ "A000111", "A000182", "A000364", "A000680", "A104345", "A362582" ]
null
Geoffrey Critzer, Apr 25 2023
2023-04-27T11:47:35
oeisdata/seq/A362/A362582.seq
019e7fab4aa709ac2be69916fa7e237b
A362583
Concatenation of ((p mod 4) - 1)/2 for the primes from 3 through prime(n), converted from binary to decimal.
[ "1", "2", "5", "11", "22", "44", "89", "179", "358", "717", "1434", "2868", "5737", "11475", "22950", "45901", "91802", "183605", "367211", "734422", "1468845", "2937691", "5875382", "11750764", "23501528", "47003057", "94006115", "188012230", "376024460", "752048921", "1504097843", "3008195686", "6016391373", "12032782746" ]
[ "nonn", "base" ]
66
2
2
[ "A100672", "A362583" ]
null
Eric Vergo, Apr 30 2023
2024-02-29T17:23:22
oeisdata/seq/A362/A362583.seq
4fc4e78a41e24791478dd07dac3684a8
A362584
Integers k > 1 such that k >= the square of the sum of their prime factors (A074373(k)).
[ "243", "256", "270", "288", "300", "320", "324", "336", "360", "375", "378", "384", "400", "405", "420", "432", "441", "448", "450", "480", "486", "490", "495", "500", "504", "512", "525", "528", "540", "550", "560", "567", "576", "585", "588", "594", "600", "616", "624", "625", "630", "640", "648", "650", "660", "672", "675", "686", "693", "700", "702", "704" ]
[ "nonn" ]
68
1
1
[ "A001414", "A074373", "A362584" ]
null
Simon R Blow, Jun 23 2023
2023-06-24T13:11:59
oeisdata/seq/A362/A362584.seq
b000f61095a5ebe0f136775487eb1084
A362585
Triangle read by rows, T(n, k) = A000670(n) * binomial(n, k).
[ "1", "1", "1", "3", "6", "3", "13", "39", "39", "13", "75", "300", "450", "300", "75", "541", "2705", "5410", "5410", "2705", "541", "4683", "28098", "70245", "93660", "70245", "28098", "4683", "47293", "331051", "993153", "1655255", "1655255", "993153", "331051", "47293", "545835", "4366680", "15283380", "30566760", "38208450", "30566760", "15283380", "4366680", "545835" ]
[ "nonn", "tabl" ]
11
0
4
[ "A000670", "A055372", "A216794", "A278073", "A362585", "A362586", "A362849" ]
null
Peter Luschny, Apr 26 2023
2023-05-10T11:50:26
oeisdata/seq/A362/A362585.seq
d25bcc914f3683af6170920e346afbfe
A362586
Triangle read by rows, T(n, k) = A094088(n) * binomial(n, k).
[ "1", "1", "1", "7", "14", "7", "121", "363", "363", "121", "3907", "15628", "23442", "15628", "3907", "202741", "1013705", "2027410", "2027410", "1013705", "202741", "15430207", "92581242", "231453105", "308604140", "231453105", "92581242", "15430207", "1619195761", "11334370327", "34003110981", "56671851635", "56671851635", "34003110981", "11334370327", "1619195761" ]
[ "nonn", "tabl" ]
13
0
4
[ "A055372", "A094088", "A278073", "A362585", "A362586", "A362587", "A362849" ]
null
Peter Luschny, Apr 26 2023
2024-04-24T11:40:17
oeisdata/seq/A362/A362586.seq
7a1a400f245ab5ad5114a139144902f0
A362587
a(n) = 2^n * A094088(n). Row sums of A362586.
[ "1", "2", "28", "968", "62512", "6487712", "987533248", "207257057408", "57359688424192", "20240182500956672", "8869195638810631168", "4725115451770644482048", "3007722163880719988764672", "2254432760608214922012434432", "1965374406868398554356767244288", "1971745067277979562424894483365888" ]
[ "nonn" ]
6
0
2
[ "A094088", "A362586", "A362587" ]
null
Peter Luschny, Apr 26 2023
2023-05-10T11:50:11
oeisdata/seq/A362/A362587.seq
76a73df76a3956e81beb680924ed16a7
A362588
Triangle read by rows, T(n, k) = RisingFactorial(n - k, k) * FallingFactorial(n, k).
[ "1", "1", "0", "1", "2", "0", "1", "6", "12", "0", "1", "12", "72", "144", "0", "1", "20", "240", "1440", "2880", "0", "1", "30", "600", "7200", "43200", "86400", "0", "1", "42", "1260", "25200", "302400", "1814400", "3628800", "0", "1", "56", "2352", "70560", "1411200", "16934400", "101606400", "203212800", "0" ]
[ "nonn", "tabl" ]
9
0
5
[ "A002378", "A010790", "A228229", "A362588" ]
null
Peter Luschny, May 05 2023
2023-05-05T07:44:34
oeisdata/seq/A362/A362588.seq
4b7c1e46f3eb42d546a14dadf436eb95
A362589
Triangular array read by rows. T(n,k) is the number of ways to form an ordered pair of n-permutations and then choose a size k subset of its common descent set, n >= 0, 0 <= k <= max{0,n-1}.
[ "1", "1", "4", "1", "36", "18", "1", "576", "432", "68", "1", "14400", "14400", "3900", "250", "1", "518400", "648000", "252000", "32400", "922", "1", "25401600", "38102400", "19404000", "3880800", "262542", "3430", "1", "1625702400", "2844979200", "1795046400", "493920000", "56664384", "2119152", "12868", "1" ]
[ "nonn", "tabf" ]
75
0
3
[ "A001044", "A102221", "A192721", "A362589" ]
null
Geoffrey Critzer, May 01 2023
2023-05-02T09:01:37
oeisdata/seq/A362/A362589.seq
b2659ba7ca472275fb025e9de5f7ced9
A362590
Decimal expansion of the conventional value of von Klitzing constant (R{K-90}) in ohms (Omega).
[ "2", "5", "8", "1", "2", "8", "0", "7" ]
[ "cons", "nonn", "fini", "full" ]
14
5
1
[ "A248508", "A248510", "A361006", "A361010", "A361011", "A361352", "A362000", "A362530", "A362590" ]
null
Marco Ripà, Apr 26 2023
2023-06-18T13:18:06
oeisdata/seq/A362/A362590.seq
2db5dde76fcb0384bdc92427fa2ce401
A362591
Discriminants D of the positive Pell equation x^2 - D*y^2 = 1, whose fundamental and all higher roots produce abc-triples a+b=c (or 1 + D*y^2 = x^2) with radical R(abc) < c.
[ "2", "5", "7", "8", "12", "13", "14", "18", "20", "21", "27", "28", "29", "31", "32", "39", "41", "45", "46", "47", "48", "50", "52", "53", "54", "56", "60", "62", "63", "67", "69", "70", "72", "73", "74", "75", "77", "79", "80", "84", "85", "89", "92", "93", "96", "98", "103", "108", "109", "112", "113", "114", "116", "117", "122", "124", "125", "126", "127", "128", "135", "137", "139", "145", "147", "149", "150" ]
[ "nonn" ]
29
1
1
[ "A362591", "A362592" ]
null
Janis Kuzmanis, Apr 26 2023
2023-11-13T07:31:56
oeisdata/seq/A362/A362591.seq
8fded77255ffe7436e1194c275411157
A362592
Discriminants D of the negative Pell equation x^2 - D*y^2 = -1, whose fundamental and all higher roots produce abc-triples a+b=c (or 1 + x^2 = D*y^2) with radical R(abc) < c.
[ "41", "73", "89", "109", "125", "250", "338", "457", "610", "634", "761", "778", "925" ]
[ "nonn", "more" ]
21
1
1
[ "A362591", "A362592" ]
null
Janis Kuzmanis, Apr 26 2023
2023-11-12T05:32:56
oeisdata/seq/A362/A362592.seq
bc043cb2503cea18e78827302b0a48a2
A362593
Number of coprime positive integer S-unit solutions to a + b = c where a <= b < c, and where S = {prime(1), ..., prime(n)}.
[ "0", "1", "4", "17", "63", "190", "545", "1433", "3649", "8828", "20015", "44641", "95358", "199081", "412791", "839638", "1663449" ]
[ "nonn", "more" ]
13
0
3
[ "A002071", "A361661", "A362567", "A362593" ]
null
Robin Visser, Apr 26 2023
2025-06-17T22:24:16
oeisdata/seq/A362/A362593.seq
e64b465d61321aba933ef3b8e37477c2
A362594
Exponentially odd numbers that are neither squarefree nor prime powers.
[ "24", "40", "54", "56", "88", "96", "104", "120", "135", "136", "152", "160", "168", "184", "189", "216", "224", "232", "248", "250", "264", "270", "280", "296", "297", "312", "328", "344", "351", "352", "375", "376", "378", "384", "408", "416", "424", "440", "456", "459", "472", "480", "486", "488", "513", "520", "536", "544", "552", "568", "584", "594", "608", "616" ]
[ "nonn" ]
47
1
1
[ "A005117", "A059956", "A065463", "A097054", "A126706", "A246551", "A268335", "A301517", "A362594" ]
null
Michael De Vlieger, Sep 08 2023
2023-09-27T02:43:30
oeisdata/seq/A362/A362594.seq
dfd7b1e870490e54af3ca69e0ef3f8a2
A362595
Number of parking functions of size n avoiding the patterns 132 and 321.
[ "1", "1", "3", "12", "52", "229", "1006", "4387", "18978", "81489", "347614", "1474436", "6223328", "26156242", "109528108", "457167817", "1902808318", "7899987577", "32725812958", "135297527872", "558357811048", "2300564293942", "9465003608548", "38889193275142", "159591154157092", "654190748282074" ]
[ "nonn", "easy" ]
16
0
3
[ "A000108", "A028364", "A362595", "A362596", "A362597" ]
null
Lara Pudwell, Apr 27 2023
2024-01-11T09:16:10
oeisdata/seq/A362/A362595.seq
1d83168f101789df3928e0703e234dd8
A362596
Number of parking functions of size n avoiding the patterns 213 and 321.
[ "1", "1", "3", "13", "60", "275", "1238", "5480", "23922", "103267", "441798", "1876366", "7921488", "33275758", "139194812", "580180598", "2410827422", "9990993443", "41308185542", "170439003998", "701953309592", "2886284314298", "11850433719572", "48591008205608", "199002198798980", "814117064956430" ]
[ "nonn", "easy" ]
20
0
3
[ "A000108", "A028364", "A028365", "A362596", "A362597" ]
null
Lara Pudwell, Apr 27 2023
2024-01-11T09:10:04
oeisdata/seq/A362/A362596.seq
d8d519f847cfc22c42fd8375913d6c62
A362597
Number of parking functions of size n avoiding the patterns 213 and 312.
[ "1", "1", "3", "12", "54", "259", "1293", "6634", "34716", "184389", "990711", "5372088", "29347794", "161317671", "891313569", "4946324886", "27552980088", "153982124809", "862997075691", "4848839608228", "27304369787694", "154059320699211", "870796075968693", "4929937918315522", "27950989413184404" ]
[ "nonn", "easy" ]
16
0
3
[ "A028365", "A362596", "A362597" ]
null
Lara Pudwell, Apr 27 2023
2024-01-11T09:12:56
oeisdata/seq/A362/A362597.seq
a4cea37eb3ccfeda0e10f21fc0cc4648
A362598
a(n) is the number of 0's minus the number of 1's among the first n terms of A362240.
[ "0", "1", "0", "1", "2", "1", "0", "1", "2", "3", "2", "3", "2", "1", "0", "-1", "0", "1", "2", "3", "2", "3", "2", "3", "2", "1", "2", "1", "2", "3", "4", "5", "6", "7", "8", "9", "8", "7", "8", "9", "8", "9", "10", "11", "12", "11", "10", "9", "10", "9", "8", "7", "8", "7", "6", "5", "4", "3", "4", "5", "6", "5", "6", "7", "8", "9", "8", "9", "10", "9", "10", "11", "10", "9", "10", "9", "10", "11", "10", "9", "8", "7" ]
[ "sign" ]
10
0
5
[ "A362240", "A362598" ]
null
Rémy Sigrist, Apr 27 2023
2023-05-03T09:14:07
oeisdata/seq/A362/A362598.seq
b1fde2e8fd9aa0af23bf367ad41b2d6b
A362599
The terms of the n-th row of A076478 first appear from position a(n) in A362240.
[ "1", "2", "3", "1", "2", "5", "7", "3", "1", "4", "2", "10", "5", "12", "16", "7", "8", "3", "1", "9", "4", "11", "6", "2", "20", "10", "5", "24", "13", "12", "28", "16", "7", "33", "38", "8", "3", "43", "26", "1", "19", "9", "4", "23", "44", "11", "15", "6", "37", "2", "25", "20", "22", "10", "5", "36", "24", "46", "13", "45", "12", "53", "28", "31", "16", "32", "58", "7", "33", "42", "38", "64", "18" ]
[ "nonn" ]
11
0
2
[ "A076478", "A362240", "A362599" ]
null
Rémy Sigrist, Apr 27 2023
2023-05-03T09:14:11
oeisdata/seq/A362/A362599.seq
961df43cfffc3cadcba2d022dec7ac70
A362600
a(1) = 1, a(2) = 6, a(3) = 10; for n > 3, a(n) is the smallest positive number that has not yet appeared that shares a factor with a(n-1) and a(n-2) and also contains as factors the smallest primes that are not factors of both a(n-1) and a(n-2).
[ "1", "6", "10", "15", "12", "20", "30", "42", "35", "40", "60", "84", "70", "45", "18", "50", "75", "24", "80", "90", "105", "14", "36", "120", "140", "21", "48", "150", "210", "154", "33", "54", "110", "135", "66", "100", "165", "72", "130", "180", "126", "175", "160", "168", "195", "170", "78", "225", "190", "96", "240", "280", "63", "102", "270", "315", "28", "108", "300", "350", "147", "114", "330", "420", "77", "22" ]
[ "nonn" ]
33
1
2
[ "A053669", "A064413", "A337687", "A351495", "A360519", "A361606", "A362600", "A362754" ]
null
Scott R. Shannon, May 02 2023
2023-05-12T05:47:13
oeisdata/seq/A362/A362600.seq
8f107e2ef5610b0cb665cee4f13c3b8e