sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A362701
Expansion of e.g.f. 1/(1 + LambertW(-x * exp(x^3/6))).
[ "1", "1", "4", "27", "260", "3205", "48276", "859453", "17656696", "411139233", "10700380520", "307819026031", "9698757574716", "332170854765373", "12286858280098780", "488160559069250985", "20732661511284180656", "937357753835195873857", "44948438093966732331984" ]
[ "nonn" ]
9
0
3
[ "A072034", "A362700", "A362701", "A362705" ]
null
Seiichi Manyama, Apr 30 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362701.seq
40f446cd6972088c281f4c0d628a31db
A362702
Expansion of e.g.f. 1/(1 + LambertW(-x^2 * exp(x))).
[ "1", "0", "2", "6", "60", "500", "6150", "81522", "1300376", "23024808", "459915210", "10104914270", "243652575012", "6378414900156", "180405368976014", "5478759958122570", "177868544365861680", "6146407749811022672", "225262698504062963346", "8727083181657584963766" ]
[ "nonn", "easy" ]
19
0
3
[ "A072034", "A216507", "A362347", "A362702", "A362703" ]
null
Seiichi Manyama, Apr 30 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362702.seq
5e0b7766b2717f3607583e431a88369f
A362703
Expansion of e.g.f. 1/(1 + LambertW(-x^3 * exp(x))).
[ "1", "0", "0", "6", "24", "60", "1560", "20370", "161616", "2601144", "53827920", "829605150", "14894289960", "360575394036", "8234733389064", "188800085076330", "5145737430116640", "148419618327231600", "4278452209330445856", "134018446273097264694", "4529883358179857555640" ]
[ "nonn", "easy" ]
20
0
4
[ "A072034", "A292889", "A362348", "A362699", "A362702", "A362703" ]
null
Seiichi Manyama, Apr 30 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362703.seq
a77b3299b07718a631826dd10bc5bd59
A362704
Expansion of e.g.f. 1/(1 + LambertW(-x^2/2 * exp(x))).
[ "1", "0", "1", "3", "18", "130", "1140", "11886", "142408", "1934640", "29357100", "492249340", "9038206056", "180352513848", "3886286296984", "89937276717120", "2224716791224320", "58577968147130176", "1635780290409117648", "48286974141713673072", "1502385897082471446880" ]
[ "nonn", "easy" ]
12
0
4
[ "A072034", "A362350", "A362704", "A362705" ]
null
Seiichi Manyama, Apr 30 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362704.seq
a6ba316509da1be20a877ac0c2080de7
A362705
Expansion of e.g.f. 1/(1 + LambertW(-x^3/6 * exp(x))).
[ "1", "0", "0", "1", "4", "10", "60", "595", "4536", "34524", "361320", "4333725", "51214460", "651628406", "9448719644", "146868322055", "2376666773040", "41077757951000", "762599081332176", "14918668387075449", "305774990501285940", "6602482711971622210", "149921553418087172260", "3557552268845721893131" ]
[ "nonn", "easy" ]
11
0
5
[ "A072034", "A362351", "A362704", "A362705" ]
null
Seiichi Manyama, Apr 30 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362705.seq
5f847229e067f90fbe4392f0a0881e29
A362706
Number of squares formed by first n vertices of the infinite-dimensional hypercube.
[ "0", "0", "0", "1", "1", "2", "3", "6", "6", "7", "9", "13", "16", "21", "27", "36", "36", "37", "40", "45", "50", "57", "66", "78", "85", "94", "106", "121", "136", "154", "175", "200", "200", "201", "205", "211", "219", "229", "242", "258", "271", "286", "305", "327", "351", "378", "409", "444", "463", "484", "510", "539", "571", "606", "646", "690", "729", "771", "819" ]
[ "nonn" ]
26
1
6
[ "A051602", "A115990", "A345340", "A362706" ]
null
Hugo van der Sanden, Jun 22 2023
2023-07-09T08:34:00
oeisdata/seq/A362/A362706.seq
82db11fdedc2edff18d736d60a7a4a92
A362707
a(n) = Sum_{d|n, phi(d)|sigma(d)} (n-d).
[ "0", "1", "2", "5", "4", "12", "6", "13", "14", "17", "10", "36", "12", "25", "26", "29", "16", "60", "18", "37", "38", "41", "22", "96", "24", "49", "50", "67", "28", "123", "30", "61", "62", "65", "34", "156", "36", "73", "74", "77", "40", "184", "42", "85", "116", "89", "46", "216", "48", "97", "98", "101", "52", "204", "54", "151", "110", "113", "58", "351", "60", "121", "122", "125", "64", "252", "66", "133" ]
[ "nonn", "easy" ]
6
1
3
[ "A000005", "A000010", "A020492", "A351112", "A351113", "A351114", "A362707" ]
null
Wesley Ivan Hurt, Apr 30 2023
2023-05-02T23:54:22
oeisdata/seq/A362/A362707.seq
e78e24d23c500c18412f4450476b9bf3
A362708
a(n) is the number of almost unitary polyominoes of size n. An almost unitary polyomino is one in which all but 1 of its perimeter walls have length 1.
[ "0", "0", "0", "1", "0", "0", "2", "2", "1", "6", "9", "11", "21", "49", "69", "117", "249", "427" ]
[ "nonn", "hard", "more" ]
10
1
7
[ "A245660", "A362708", "A362709" ]
null
John Mason, Apr 30 2023
2023-05-01T10:01:46
oeisdata/seq/A362/A362708.seq
232d485211eb757dc0721b6ef6951313
A362709
a(n) is the number of almost almost unitary polyominoes of size n. An almost almost unitary polyomino is one in which all but 2 of its perimeter walls have length 1.
[ "0", "1", "2", "2", "4", "12", "15", "29", "58", "116", "199", "403", "790", "1509", "2857", "5700", "10941", "21032" ]
[ "nonn", "hard", "more" ]
11
1
3
[ "A245660", "A362708", "A362709" ]
null
John Mason, Apr 30 2023
2023-05-01T10:01:42
oeisdata/seq/A362/A362709.seq
2d95778429a49ccbf2e035018f6dcf84
A362710
Numbers m such that the decimal expansion of 1/m contains no digit 0, ignoring leading and trailing 0's.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "12", "14", "15", "16", "18", "20", "22", "24", "25", "26", "28", "30", "32", "35", "36", "40", "44", "45", "50", "54", "55", "56", "60", "64", "65", "66", "70", "72", "74", "75", "80", "82", "88", "90", "100", "104", "108", "112", "120", "125", "128", "132", "140", "144", "148", "150", "160", "175", "176", "180", "200", "216", "220", "224", "225", "240", "250", "252", "260", "264" ]
[ "nonn", "base" ]
25
1
2
[ "A352154", "A362579", "A362710" ]
null
Robert Israel, Apr 30 2023
2024-04-23T03:30:56
oeisdata/seq/A362/A362710.seq
46e7847be4c118ad0a56d297d6eed59f
A362711
a(n) is the hafnian of the 2n X 2n symmetric matrix defined by M[i, j] = min(i, j)*(2*n + 1) - i*j.
[ "1", "1", "17", "1177", "210249", "76961257", "50203153993", "53127675356625", "85252003916011889", "197131843368693693937", "631233222450168374457057" ]
[ "nonn", "hard", "more" ]
28
0
3
[ "A000272", "A000292", "A002415", "A003983", "A003991", "A005993", "A106314", "A107985", "A362679", "A362711" ]
null
Stefano Spezia, Apr 30 2023
2023-10-15T09:27:03
oeisdata/seq/A362/A362711.seq
913bc8a747eb0e18f6a05a91b21f87a6
A362712
Number of n-colorings of the Goldner-Harary graph.
[ "0", "0", "0", "0", "24", "15360", "787320", "13762560", "131250000", "846526464", "4150656720", "16609443840", "56821671720", "171600000000", "468159796104", "1173850030080", "2740855222560", "6021219348480", "12547912500000", "24970939858944", "47714180896440", "87939285396480", "156928122498840" ]
[ "nonn", "easy" ]
13
0
5
null
null
Alois P. Heinz, Apr 30 2023
2023-04-30T14:09:31
oeisdata/seq/A362/A362712.seq
12c044c8512e206eb00eda12e6dea020
A362713
Expansion of e.g.f. x*2F1([3/4, 3/4], [3/2], 4*x^2)/2F1([1/4, 1/4], [1/2], 4*x^2), odd powers only.
[ "1", "6", "256", "28560", "6071040", "2098483200", "1071889920000", "758870167910400", "711206089850880000", "852336059876720640000", "1271438437097485762560000", "2310211006286602237378560000", "5023141810386294125321256960000", "12877606625796048169971744768000000", "38439740210093310755176533983232000000" ]
[ "nonn" ]
15
0
2
[ "A317615", "A362713", "A362714", "A362715" ]
null
Stefano Spezia, Apr 30 2023
2023-05-05T01:34:27
oeisdata/seq/A362/A362713.seq
49cdab79db894b3d0f32e9039fb1e33d
A362714
a(0) = 1 and a(n) = 2^(n-1)*Product_{j=1..n} (4*j - 3)^2 - Sum_{m=1..n-1} binomial(2*n, 2*m)*a(m)*a(n-m)/2 for n > 0.
[ "1", "1", "47", "7395", "2453425", "1399055625", "1221037941375", "1513229875486875", "2526879997358510625", "5469272714829657020625", "14892997153152592003359375", "49826568404835717359311321875", "200913471834337931507493300140625", "960945974809003219596852282787265625", "5378917217051713436481068409370884609375" ]
[ "nonn" ]
13
0
3
[ "A317651", "A362713", "A362714", "A362715" ]
null
Stefano Spezia, Apr 30 2023
2023-05-03T09:24:19
oeisdata/seq/A362/A362714.seq
dafd42fa1d2e262b42c79e1410e42ee9
A362715
Triangle read by rows: T(n, k) = 2^(n-k)*(2*n)!/(2*k)! * [x^(2*n)] U[x]^(2*k), where U(x) = x*2F1([3/4, 3/4], [3/2], 4*x^2)/2F1([1/4, 1/4], [1/2], 4*x^2).
[ "1", "0", "1", "0", "48", "1", "0", "7584", "240", "1", "0", "2515968", "97664", "672", "1", "0", "1432498176", "63221760", "560448", "1440", "1", "0", "1247557386240", "60299053056", "628024320", "2141568", "2640", "1", "0", "1542446268088320", "79885647249408", "933093697536", "3819239424", "6374368", "4368", "1" ]
[ "nonn", "tabl" ]
10
0
5
[ "A317651", "A362713", "A362714", "A362715" ]
null
Stefano Spezia, Apr 30 2023
2023-05-01T10:02:25
oeisdata/seq/A362/A362715.seq
75a8c30ae033245a98d1fdacbebf28e4
A362716
Sum of the bits of the "integer part" of the base-phi representation of n.
[ "0", "1", "1", "1", "2", "1", "2", "1", "2", "2", "2", "3", "1", "2", "2", "3", "2", "3", "1", "2", "2", "2", "3", "2", "3", "2", "3", "3", "3", "4", "1", "2", "2", "3", "2", "3", "2", "3", "3", "3", "4", "2", "3", "3", "4", "3", "4", "1", "2", "2", "2", "3", "2", "3", "2", "3", "3", "3", "4", "2", "3", "3", "4", "3", "4", "2", "3", "3", "3", "4", "3", "4", "3", "4", "4", "4", "5", "1", "2", "2", "3", "2", "3", "2", "3", "3", "3" ]
[ "nonn" ]
20
0
5
[ "A055778", "A362716" ]
null
Jeffrey Shallit, Apr 30 2023
2023-05-05T01:34:00
oeisdata/seq/A362/A362716.seq
fa094724d6d94060fc6443a2ccfba2b7
A362717
Number of ways to write a + b + c = d + e = f with {a,b,c,d,e,f} a subset of [n] of size 6 and a < b < c and d < e.
[ "0", "0", "0", "0", "0", "0", "0", "0", "1", "4", "10", "20", "36", "60", "93", "141", "200", "280", "379", "505", "653", "842", "1057", "1321", "1622", "1982", "2384", "2864", "3390", "4006", "4684", "5464", "6311", "7286", "8334", "9524", "10806", "12246", "13785", "15513", "17346", "19386", "21555", "23949", "26479", "29272", "32209", "35429", "38820" ]
[ "nonn", "easy" ]
32
0
10
[ "A004526", "A362717" ]
null
Ingólfur Gíslason, Apr 30 2023
2023-08-13T15:50:29
oeisdata/seq/A362/A362717.seq
99a24d5caa2b1a5bf3dffe45a71cbf35
A362718
Expansion of e.g.f. cos(x)*exp(x^2/2) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!.
[ "1", "0", "-2", "-16", "-132", "-1216", "-12440", "-138048", "-1601264", "-18108928", "-161934624", "404007680", "92590134208", "4221314202624", "159324751301248", "5730872535686144", "205239818509082880", "7450322829180649472", "276342876017093172736", "10509280308463090102272" ]
[ "sign" ]
6
0
3
[ "A001464", "A362718" ]
null
Michael Somos, Apr 30 2023
2023-05-06T05:05:41
oeisdata/seq/A362/A362718.seq
55e8354c65bab3144952c157e8687ee4
A362719
Number of numbers k, 1 <= k <= n, such that phi(k) = phi(n-k+1).
[ "1", "2", "1", "0", "1", "2", "1", "2", "3", "0", "1", "2", "1", "2", "3", "2", "3", "0", "3", "2", "3", "2", "1", "2", "1", "2", "1", "0", "1", "2", "3", "2", "3", "2", "3", "0", "1", "4", "3", "2", "1", "0", "3", "2", "5", "2", "1", "6", "3", "2", "1", "0", "5", "2", "1", "6", "3", "0", "1", "0", "3", "2", "3", "4", "3", "0", "3", "4", "3", "0", "3", "2", "5", "2", "1", "4", "3", "0", "5", "2", "3", "2", "3", "0", "1", "4", "3", "0", "1", "6", "7", "2", "7", "2", "3" ]
[ "nonn", "easy" ]
16
1
2
[ "A000010", "A362719" ]
null
Wesley Ivan Hurt, Apr 30 2023
2023-05-02T23:55:55
oeisdata/seq/A362/A362719.seq
ba442c6a9f06d8dbd7f8f1d3ccda817e
A362720
a(n) is the smallest k > 0 such that b(n) = b(n-1) + A007504(k) is prime, with b(0) = 1.
[ "1", "1", "1", "3", "1", "3", "1", "3", "1", "3", "41", "3", "1", "5", "1", "3", "1", "11", "33", "3", "57", "17", "7", "17", "5", "17", "9", "17", "9", "1", "9", "1", "3", "1", "5", "1", "5", "17", "9", "17", "5", "17", "5", "65", "11", "17", "3", "33", "9", "33", "7", "35", "7", "33", "9", "1", "5", "1", "3", "1", "9", "17", "5", "1", "5", "41", "21", "33", "9", "1", "3", "33", "21", "1", "9", "33", "3" ]
[ "nonn", "easy" ]
16
1
4
[ "A007504", "A362720" ]
null
Bill McEachen, Apr 30 2023
2024-11-25T15:19:54
oeisdata/seq/A362/A362720.seq
bc0ddaa0584c071ca51d5638816ceb08
A362721
Number of numbers k, 1 <= k <= n, such that pi(k) = pi(n-k+1).
[ "1", "0", "1", "0", "1", "2", "1", "0", "1", "2", "1", "0", "1", "2", "3", "4", "3", "2", "1", "0", "1", "2", "1", "0", "1", "2", "3", "4", "3", "2", "1", "0", "1", "2", "1", "0", "1", "2", "3", "4", "3", "2", "1", "0", "1", "2", "3", "4", "5", "6", "5", "4", "3", "2", "1", "0", "1", "2", "1", "0", "1", "2", "3", "4", "5", "6", "5", "4", "3", "2", "1", "0", "1", "2", "3", "4", "3", "2", "1", "0", "1", "2", "1", "0", "1", "2", "3", "4", "3", "2", "1", "0", "1", "2", "3" ]
[ "nonn", "easy" ]
9
1
6
[ "A000720", "A362721" ]
null
Wesley Ivan Hurt, Apr 30 2023
2023-05-02T23:57:49
oeisdata/seq/A362/A362721.seq
f7484393bbb99d514ce7f8a251da484d
A362722
a(n) = [x^n] ( E(x)/E(-x) )^n where E(x) = exp( Sum_{k >= 1} A005258(k)*x^k/k ).
[ "1", "6", "72", "1266", "23232", "445506", "8740728", "174366114", "3519799296", "71696570010", "1470795168072", "30344633110710", "628994746308288", "13089254107521234", "273292588355096760", "5722454505166750266", "120119862431845048320", "2526922404360157374738", "53260275108329790626952" ]
[ "nonn", "easy" ]
9
0
2
[ "A005258", "A362722", "A362723", "A362733" ]
null
Peter Bala, May 01 2023
2023-05-11T10:25:28
oeisdata/seq/A362/A362722.seq
8f4ef0f0c624a5daf4c6783ecbd98c1e
A362723
a(n) = [x^n] ( E(x)/E(-x) )^n where E(x)= exp( Sum_{k >= 1} A005259(k)*x^k/k ).
[ "1", "10", "200", "7390", "260800", "10263010", "407520920", "16758685030", "697767370240", "29525605934410", "1261570539980200", "54419751094210270", "2364396136291654720", "103393259758470870770", "4545671563318715532280", "200804420082143353690390", "8907295723280072012247040", "396570344897237949249382010" ]
[ "nonn", "easy" ]
9
0
2
[ "A005259", "A267220", "A362722", "A362723", "A362733" ]
null
Peter Bala, May 01 2023
2023-05-11T10:25:34
oeisdata/seq/A362/A362723.seq
523ef253912f6de649a8c3a3a6d99b14
A362724
a(n) = [x^n] E(x)^n, where E(x) = exp( Sum_{k >= 1} A005258(k)*x^k/k ).
[ "1", "3", "37", "525", "7925", "123878", "1980199", "32150030", "527984245", "8747075100", "145917510662", "2447835093498", "41253740275559", "697956867712705", "11847510103853090", "201678623730755525", "3441648250114203253", "58859380176953941937", "1008553120517397082420", "17311102730697482426850" ]
[ "nonn", "easy" ]
9
0
2
[ "A005258", "A362722", "A362724", "A362733" ]
null
Peter Bala, May 02 2023
2023-05-11T10:25:37
oeisdata/seq/A362/A362724.seq
1c35596c68f51073074ac5db71aacbf8
A362725
a(n) = [x^n] E(x)^n, where E(x) = exp( Sum_{k >= 1} A005259(k)*x^k/k ).
[ "1", "5", "123", "3650", "118059", "4015380", "141175410", "5082313276", "186243853995", "6920379988871", "260030830600748", "9860709859708350", "376821110248674594", "14494688046084958080", "560708803489098556632", "21797478402692370515400", "851057798310071946207915", "33356751162583463626417872" ]
[ "nonn", "easy" ]
10
0
2
[ "A005259", "A362722", "A362725", "A362733" ]
null
Peter Bala, May 02 2023
2023-05-11T10:25:41
oeisdata/seq/A362/A362725.seq
66559d2106530c07260fa516f43c3eb6
A362726
a(n) = [x^n] E(x)^n where E(x) = exp( Sum_{k >= 1} A208675(k)*x^k/k ).
[ "1", "1", "7", "64", "647", "6901", "76120", "859216", "9863303", "114689746", "1347186307", "15954752903", "190235245976", "2281177393704", "27487043703672", "332588768198389", "4038905184944263", "49204502405466061", "601135759955624038", "7362647062772162397", "90380912127647103747" ]
[ "nonn", "easy" ]
16
0
3
[ "A208675", "A362722", "A362726", "A362733" ]
null
Peter Bala, May 02 2023
2025-03-27T02:23:51
oeisdata/seq/A362/A362726.seq
54a629ce89dfb578f671fe95e9b7a25c
A362727
a(n) = [x^n] ( E(x)/E(-x) )^n where E(x) = exp( Sum_{k >= 1} A208675(k)*x^k/k ).
[ "1", "2", "8", "110", "960", "12502", "136952", "1746558", "20951040", "267467294", "3347043208", "43051344074", "550991269824", "7146318966438", "92706899799480", "1211369977374310", "15857138035286016", "208493724775866726", "2747100161210031944", "36305149229744449050", "480750961929272288960" ]
[ "nonn", "easy" ]
14
0
2
[ "A208675", "A362722", "A362727", "A362733" ]
null
Peter Bala, May 02 2023
2025-03-27T02:23:55
oeisdata/seq/A362/A362727.seq
ea09e00c2817ab2be8d972e5eeaab5b7
A362728
a(n) = [x^n] E(x)^n where E(x) = exp( Sum_{k >= 1} A108628(k-1)*x^k/k ).
[ "1", "1", "9", "91", "985", "11101", "128475", "1515032", "18116825", "218988046", "2669804209", "32776883899", "404733925435", "5022161428571", "62578069656776", "782560813918216", "9817011145746649", "123492956278927438", "1557295053170126994", "19681186581532094418" ]
[ "nonn", "easy" ]
14
0
3
[ "A108628", "A362722", "A362728", "A362733" ]
null
Peter Bala, May 03 2023
2025-03-27T02:24:00
oeisdata/seq/A362/A362728.seq
373612167d9586e99123da61e3b815fc
A362729
a(n) = [x^n] ( E(x)/E(-x) )^n where E(x) = exp( Sum_{k >= 1} A108628(k-1)*x^k/k ).
[ "1", "2", "8", "146", "1344", "18502", "214136", "2820834", "35377152", "465110894", "6038588808", "79936149174", "1056557893440", "14094461001558", "188319357861944", "2529143690991946", "34042038343081984", "459723572413090934", "6221522287903354568", "84397945280561045302", "1147007337762078241344" ]
[ "nonn", "easy" ]
11
0
2
[ "A108628", "A362722", "A362729", "A362733" ]
null
Peter Bala, May 03 2023
2025-03-27T02:24:06
oeisdata/seq/A362/A362729.seq
392aafe8faaca0b6e90b456299005ee1
A362730
a(n) = [x^n] E(x)^n where E(x) = exp( Sum_{k >= 1} binomial(2*k,k)^2*x^k/k ).
[ "1", "4", "68", "1336", "27972", "607004", "13478072", "304083224", "6941422916", "159882680452", "3708781743068", "86526900550864", "2028273983776440", "47733938489878528", "1127187050415921304", "26694934151138897336", "633813403549444601156", "15082008687681962081088", "359592614152718921447108" ]
[ "nonn", "easy" ]
18
0
2
[ "A000984", "A002894", "A224734", "A359108", "A362722", "A362730", "A362733" ]
null
Peter Bala, May 05 2023
2025-03-27T04:08:24
oeisdata/seq/A362/A362730.seq
7ad4da80427a43c2db9604fce30a6632
A362731
a(n) = [x^n] E(x)^n where E(x) = exp( Sum_{k >= 1} A000172(k)*x^k/k ).
[ "1", "2", "18", "182", "1954", "21702", "246366", "2839846", "33105186", "389264798", "4608481918", "54862022910", "656099844526", "7876525155020", "94867757934870", "1145843922848232", "13873839714404642", "168345900709550388", "2046612356962697502", "24923311881995950740", "303974276349311203854" ]
[ "nonn", "easy" ]
11
0
2
[ "A000172", "A166990", "A362722", "A362731", "A362733" ]
null
Peter Bala, May 05 2023
2025-03-27T05:43:39
oeisdata/seq/A362/A362731.seq
3cca8a5f0eb51cdc4f41459ae1c5601a
A362732
a(n) = [x^n] E(x)^n, where E(x) = exp( Sum_{k >= 1} A006480(k)*x^k/k ).
[ "1", "6", "162", "5082", "170274", "5920506", "210808494", "7631158674", "279617726754", "10341283241130", "385275082939662", "14439312879759378", "543815325940475694", "20565700004741265900", "780470358196543271622", "29708379800729905316832", "1133811403010621704628514", "43371319655978568356324868" ]
[ "nonn", "easy" ]
27
0
2
[ "A006480", "A229451", "A362722", "A362732", "A362733" ]
null
Peter Bala, May 06 2023
2025-01-27T14:28:06
oeisdata/seq/A362/A362732.seq
399fa17409141f31b6366d05ee82ba76
A362733
a(n) = [x^n] F(x)^n, where F(x) = exp( Sum_{k >= 1} A362732(k)*x^k/k ).
[ "1", "6", "234", "10428", "492522", "24033006", "1197423396", "60530725380", "3092592004074", "159295600885794", "8258018380659234", "430335300869496072", "22521831447746893092", "1182951246247357578348", "62325193477833011143260", "3292376206935392483917428", "174323297281680647978503146", "9248680725006429075147528150" ]
[ "nonn", "easy" ]
14
0
2
[ "A006480", "A229451", "A362722", "A362732", "A362733" ]
null
Peter Bala, May 06 2023
2024-10-31T01:35:09
oeisdata/seq/A362/A362733.seq
ae48003b31289541de49e9f9e6b3517c
A362734
E.g.f. satisfies A(x) = exp(x + x * A(x)^3).
[ "1", "2", "16", "296", "8512", "333632", "16595200", "1001460224", "71094759424", "5805799829504", "536188352856064", "55259197654089728", "6287146625230962688", "782751635353947865088", "105852868748672770244608", "15451195442132410179780608", "2421355190097788960505856000" ]
[ "nonn" ]
23
0
2
[ "A349562", "A349714", "A362392", "A362472", "A362693", "A362694", "A362734", "A362735" ]
null
Seiichi Manyama, May 01 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362734.seq
02b534ecbd4e63f096b263eb7d8f360b
A362735
E.g.f. satisfies A(x) = exp(x + x / A(x)^2).
[ "1", "2", "-4", "56", "-1008", "25632", "-833600", "33067904", "-1548418816", "83597525504", "-5112566055936", "349330707068928", "-26374805535322112", "2180554321981349888", "-195926186031705505792", "19010400989418574020608", "-1980997069982960384409600", "220651645970702249702326272" ]
[ "sign" ]
19
0
2
[ "A349562", "A349720", "A362693", "A362694", "A362734", "A362735" ]
null
Seiichi Manyama, May 01 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362735.seq
18c12fe7c9595023d1aa8f89e88cf8d9
A362736
E.g.f. satisfies A(x) = exp(x^2 + x / A(x)).
[ "1", "1", "1", "4", "-3", "96", "-755", "10368", "-147623", "2492416", "-47137959", "996741120", "-23260103339", "594198429696", "-16492683271259", "494278721929216", "-15908038836914895", "547238863907586048", "-20038031401448021327", "778147549666716155904", "-31943565308583934360019" ]
[ "sign" ]
16
0
4
[ "A362690", "A362693", "A362736", "A362737" ]
null
Seiichi Manyama, May 01 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362736.seq
b3940aa7b1aced4c461c4b0c472bb03f
A362737
E.g.f. satisfies A(x) = exp(x^3 + x / A(x)).
[ "1", "1", "-1", "10", "-27", "316", "-3725", "63666", "-1177687", "25196536", "-607345209", "16391726110", "-488872392371", "15968546353332", "-566886190710853", "21733419523383946", "-894910999976666415", "39390009619800983536", "-1845602126785662907121", "91714859182521808208694" ]
[ "sign" ]
15
0
4
[ "A362691", "A362693", "A362736", "A362737" ]
null
Seiichi Manyama, May 01 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362737.seq
c93d0fad095d819e33c5da24b3f4f6b9
A362738
a(n) is the least nonnegative integer solution for y such that x > 1 is an integer in the equation n^y*x^n = n^(x^(1/n)).
[ "0", "0", "192", "3000", "46440", "823200", "16776704", "387419760", "9999999000", "285311669280", "8916100446528", "302875106590056", "11112006825555272", "437893890380856000", "18446744073709547520", "827240261886336759264", "39346408075296537569592", "1978419655660313589117120", "104857599999999999999992000" ]
[ "nonn", "easy" ]
23
2
3
[ "A000312", "A058126", "A073084", "A362738" ]
null
Thomas Scheuerle, May 01 2023
2023-08-06T14:12:14
oeisdata/seq/A362/A362738.seq
2791128101a236f1db7075f1f7fbe126
A362739
The smallest integer with three (not necessarily distinct) divisors that add to n.
[ "1", "2", "2", "2", "3", "4", "3", "4", "5", "4", "6", "6", "5", "8", "8", "6", "9", "8", "7", "10", "11", "8", "10", "12", "9", "12", "14", "10", "15", "16", "11", "16", "14", "12", "18", "18", "13", "16", "20", "14", "21", "20", "15", "22", "23", "16", "21", "20", "17", "24", "26", "18", "22", "24", "19", "28", "29", "20", "30" ]
[ "nonn", "easy" ]
22
3
2
[ "A020639", "A060681", "A362739" ]
null
Kyan Cheung, May 01 2023
2023-06-22T03:34:37
oeisdata/seq/A362/A362739.seq
52a7528da704c657573c92057beacd07
A362740
Dimension of the vector space of 4-invariants on simple 01-labeled graphs on n vertices.
[ "2", "5", "11", "26", "58", "131", "283" ]
[ "hard", "more", "nonn" ]
20
1
1
[ "A000666", "A244742", "A362740" ]
null
Max Alekseyev, May 01 2023
2025-01-08T11:38:57
oeisdata/seq/A362/A362740.seq
a9c4cfb6e091d835a9d82a134702337b
A362741
Number of parking functions of size n avoiding the pattern 123.
[ "1", "1", "3", "11", "48", "232", "1207", "6631", "37998", "225182", "1371560", "8546760", "54294880", "350658336", "2297296991", "15239785151", "102218278626", "692361482818", "4730891905450", "32581995322522", "226000929559056", "1577824515023456", "11080975421752488", "78244477268207656" ]
[ "nonn", "easy" ]
33
0
3
[ "A000108", "A075427", "A362595", "A362596", "A362597", "A362741", "A362744" ]
null
Lara Pudwell, May 01 2023
2024-01-11T09:20:00
oeisdata/seq/A362/A362741.seq
456373a96aff6d45562e75476e2bedbb
A362742
Decimal expansion of Sum_{k>=1} (-1)^(k+1)*floor(sqrt(k))/k.
[ "5", "9", "1", "5", "6", "0", "7", "7", "9", "3", "4", "9", "8", "1", "7", "3", "4", "0", "2", "1", "3", "8", "4", "6", "9", "0", "3", "3", "4", "5", "3", "4", "3", "4", "6", "9", "5", "6", "2", "3", "5", "3", "8", "9", "6", "2", "5", "4", "5", "6", "7", "1", "7", "4", "6", "8", "1", "0", "7", "6", "8", "4", "5", "9", "1", "6", "5", "5", "7", "9", "8", "0", "5", "3", "0", "2", "4", "9", "5", "9", "0", "8", "3", "6", "2", "7", "0", "4", "7", "2", "9", "0", "7", "8", "7", "6", "2", "7", "6", "9", "7", "8", "3", "8", "2", "7" ]
[ "nonn", "cons" ]
28
0
1
[ "A000196", "A113024", "A362742" ]
null
Amiram Eldar, May 02 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362742.seq
af4464cdc6072758c1daacb77e312594
A362743
Positive integers which cannot be written as a sum of distinct numbers of the form 4^a + 5^b (a,b >= 0).
[ "1", "3", "4", "10", "12", "18" ]
[ "nonn", "more" ]
35
1
2
[ "A226806", "A226807", "A226808", "A226810", "A226812", "A362743", "A362861" ]
null
Zhi-Wei Sun, May 01 2023
2023-11-02T14:19:16
oeisdata/seq/A362/A362743.seq
f7ead506a25465c73bc0d8d2447622bf
A362744
Number of parking functions of size n avoiding the patterns 312 and 321.
[ "1", "1", "3", "13", "63", "324", "1736", "9589", "54223", "312369", "1826847", "10818156", "64737684", "390877456", "2378312780", "14568360645", "89766137967", "556008951667", "3459976045201", "21621154097573", "135619427912599", "853590782088272", "5389272616262656", "34123058549079788", "216621704634708868" ]
[ "nonn" ]
32
0
3
[ "A000108", "A006013", "A362595", "A362596", "A362597", "A362741", "A362744" ]
null
Lara Pudwell, May 01 2023
2024-04-13T09:15:55
oeisdata/seq/A362/A362744.seq
f64d785fd2d430a44c48da10e2257d42
A362745
Triangular array read by rows. T(n,k) is the number of ordered pairs of n-permutations with exactly k rise/falls or fall/rises, n >= 0, 0 <= k <= max{0,n-1}.
[ "1", "1", "2", "2", "10", "16", "10", "88", "200", "200", "88", "1216", "3536", "4896", "3536", "1216", "24176", "85872", "149152", "149152", "85872", "24176", "654424", "2743728", "5714472", "7176352", "5714472", "2743728", "654424", "23136128", "111842432", "270769536", "407103104", "407103104", "270769536", "111842432", "23136128" ]
[ "nonn", "tabf" ]
24
0
3
[ "A001044", "A060350", "A259465", "A362745" ]
null
Geoffrey Critzer, May 01 2023
2025-03-27T02:23:13
oeisdata/seq/A362/A362745.seq
8cff6ac31f379af6eb799b97576303d0
A362746
a(1)=a(2)=1; a(n)=The count of all occurrences in the list so far where integer a(n-1) appears adjacent to integer a(n-2).
[ "1", "1", "2", "1", "2", "2", "2", "3", "1", "1", "4", "1", "2", "3", "2", "3", "3", "2", "4", "1", "3", "2", "5", "1", "1", "6", "1", "2", "4", "2", "3", "6", "1", "3", "3", "4", "1", "4", "4", "2", "4", "4", "4", "5", "1", "2", "5", "2", "3", "7", "1", "1", "8", "1", "2", "6", "1", "4", "5", "2", "4", "5", "3", "1", "4", "6", "1", "5", "3", "2", "8", "1", "3", "5", "3", "4", "2", "6", "2", "3", "9", "1", "1", "10", "1", "2", "7" ]
[ "nonn", "easy", "look" ]
52
1
3
[ "A342585", "A355271", "A362746", "A362890" ]
null
Gavin Lupo, May 01 2023
2023-05-10T22:38:41
oeisdata/seq/A362/A362746.seq
eb397f33ac3b65a056fc40375524c84f
A362747
E.g.f. satisfies A(x) = exp(x^2/2 + x * A(x)).
[ "1", "1", "4", "22", "182", "1996", "27412", "453160", "8767516", "194438800", "4864250096", "135538060384", "4163356010728", "139784741268160", "5093269640966704", "200170986137297536", "8440841773833141008", "380153135554220691712", "18212499110682362677312" ]
[ "nonn" ]
15
0
3
[ "A143740", "A349562", "A362690", "A362747", "A362748" ]
null
Seiichi Manyama, May 02 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362747.seq
3e165ef28090da4280fe5c1278299e75
A362748
E.g.f. satisfies A(x) = exp(x^3/6 + x * A(x)).
[ "1", "1", "3", "17", "133", "1386", "18097", "284299", "5225985", "110097836", "2616190831", "69236871309", "2019833025157", "64403044165942", "2228441614038837", "83166830262851591", "3330183199746011713", "142418071427679810936", "6478769455582913796475" ]
[ "nonn" ]
14
0
3
[ "A349562", "A362381", "A362691", "A362747", "A362748" ]
null
Seiichi Manyama, May 02 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362748.seq
1d6a9c3e6645d7f382d90a0b566473c6
A362749
Run length transform of A362240.
[ "1", "1", "2", "2", "3", "1", "1", "4", "4", "1", "1", "1", "1", "2", "1", "1", "8", "2", "2", "1", "4", "3", "1", "3", "1", "5", "3", "1", "4", "1", "2", "1", "2", "2", "1", "1", "2", "4", "1", "1", "3", "1", "1", "1", "1", "1", "3", "2", "1", "2", "1", "3", "2", "1", "2", "1", "1", "2", "1", "2", "2", "2", "2", "4", "1", "1", "1", "7", "5", "1", "4", "4", "2", "1", "3", "1", "2", "1", "1", "1", "4", "3", "4", "5", "1", "1", "1", "1", "2" ]
[ "nonn" ]
13
1
3
[ "A362240", "A362749" ]
null
Neal Gersh Tolunsky, May 02 2023
2023-05-07T01:09:59
oeisdata/seq/A362/A362749.seq
a398f49f71a5784d5f7ce2d1868289b8
A362750
Number of total dominating sets in the n-double cone graph.
[ "4", "16", "79", "336", "1144", "4351", "17224", "67936", "267919", "1063216", "4233904", "16882191", "67380304", "269142736", "1075602319", "4299846976", "17192621224", "68752838911", "274965310744", "1099740514416", "4398645585679", "17593754283616", "70372850295904", "281485727082511", "1125928050595744" ]
[ "nonn", "easy" ]
24
1
1
[ "A000032", "A001638", "A056594", "A302603", "A362750" ]
null
Eric W. Weisstein, May 02 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362750.seq
22166a09384a2223ffe1a640341bc86b
A362751
Number of total dominating sets in the n-trapezohedral graph.
[ "4", "36", "121", "484", "1764", "6561", "24336", "91204", "344569", "1313316", "5044516", "19509889", "75898944", "296735076", "1164925161", "4588978564", "18128468164", "71781662241", "284767380496", "1131461944804", "4501301127129", "17925960016836", "71447900614596", "284964683524609", "1137186233284864" ]
[ "nonn", "easy" ]
19
1
1
[ "A000032", "A362751" ]
null
Eric W. Weisstein, May 02 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362751.seq
d126707138be02bc6abc3c3c26a389b7
A362752
Decimal expansion of Sum_{k>=1} (1/k - sin(1/k)).
[ "1", "9", "1", "8", "9", "9", "0", "8", "5", "5", "0", "6", "2", "6", "4", "8", "2", "7", "9", "8", "1", "1", "4", "6", "0", "7", "7", "2", "2", "6", "4", "3", "9", "8", "4", "3", "4", "0", "4", "3", "0", "9", "1", "0", "2", "3", "7", "7", "5", "5", "0", "9", "5", "3", "9", "1", "1", "7", "2", "1", "2", "9", "8", "0", "9", "0", "7", "7", "4", "8", "0", "1", "2", "3", "5", "1", "3", "4", "0", "8", "1", "2", "1", "7", "0", "4", "9", "4", "4", "0", "2", "5", "4", "2", "8", "1", "6", "2", "6", "8", "1", "1", "7", "8", "5" ]
[ "nonn", "cons" ]
7
0
2
[ "A233383", "A248945", "A248946", "A249022", "A362752", "A362753" ]
null
Amiram Eldar, May 02 2023
2023-05-02T11:11:17
oeisdata/seq/A362/A362752.seq
312f8c2d83df9b9f116b63495a2e57d5
A362753
Decimal expansion of Sum_{k>=1} sin(1/k)/k.
[ "1", "4", "7", "2", "8", "2", "8", "2", "3", "1", "9", "5", "6", "1", "8", "5", "2", "9", "6", "2", "9", "4", "9", "4", "7", "3", "8", "3", "8", "2", "3", "1", "4", "5", "8", "2", "5", "3", "2", "3", "8", "6", "5", "9", "2", "7", "8", "7", "9", "3", "0", "7", "1", "7", "2", "8", "1", "9", "2", "2", "9", "3", "7", "5", "7", "2", "2", "4", "3", "3", "9", "0", "6", "1", "0", "1", "1", "5", "7", "2", "2", "0", "8", "1", "5", "1", "3", "5", "5", "0", "7", "0", "4", "1", "5", "0", "6", "8", "9", "1", "3", "3", "2", "7", "5" ]
[ "nonn", "cons" ]
10
1
2
[ "A233383", "A248945", "A248946", "A362752", "A362753" ]
null
Amiram Eldar, May 02 2023
2023-05-02T14:40:56
oeisdata/seq/A362/A362753.seq
101635b54cef35efb3c6898d6244a7da
A362754
a(1) = 1, a(2) = 6; for n > 2, a(n) is the smallest positive number that has not yet appeared that shares a factor with a(n-1) and also contains as a factor the smallest prime that is not a factor of a(n-1).
[ "1", "6", "10", "12", "15", "18", "20", "24", "30", "14", "21", "28", "36", "40", "42", "35", "50", "45", "48", "60", "56", "54", "70", "63", "66", "55", "22", "33", "44", "72", "75", "78", "65", "26", "39", "52", "84", "80", "90", "98", "96", "100", "102", "85", "34", "51", "68", "108", "105", "110", "99", "88", "114", "95", "38", "57", "76", "120", "112", "126", "130", "117", "104", "132", "135", "138", "115", "46", "69", "92", "144" ]
[ "nonn" ]
13
1
2
[ "A064413", "A337687", "A351495", "A360519", "A361606", "A362754" ]
null
Scott R. Shannon, May 02 2023
2023-05-09T09:55:05
oeisdata/seq/A362/A362754.seq
27f4433a24c4af9ccbef8ba1ec752d9f
A362755
Irregular triangle read by rows; the n-th row lists the numbers k such that if phi^e appears in the base phi expansion of k then phi^e also appears in the base phi expansion of n (where phi denotes A001622, the golden ratio).
[ "0", "0", "1", "0", "2", "0", "3", "0", "1", "3", "4", "0", "5", "0", "6", "0", "7", "0", "1", "7", "8", "0", "2", "7", "9", "0", "3", "7", "10", "0", "1", "3", "4", "7", "8", "10", "11", "0", "12", "0", "13", "0", "14", "0", "1", "14", "15", "0", "16", "0", "17", "0", "18", "0", "1", "18", "19", "0", "2", "18", "20", "0", "3", "18", "21", "0", "1", "3", "4", "18", "19", "21", "22", "0", "5", "18", "23", "0", "6", "18", "24" ]
[ "nonn", "base", "tabf" ]
11
0
5
[ "A001622", "A104605", "A214971", "A361755", "A362755" ]
null
Rémy Sigrist, May 02 2023
2023-05-08T09:36:04
oeisdata/seq/A362/A362755.seq
d49fbb8092d2bda6027ffef0e61c2ecb
A362756
Sum of the bits of the "fractional part" of the base-phi representation of n.
[ "0", "0", "1", "1", "1", "2", "1", "1", "1", "2", "2", "2", "3", "2", "2", "2", "2", "1", "1", "1", "2", "2", "2", "3", "2", "2", "2", "3", "3", "3", "4", "3", "3", "3", "3", "2", "2", "2", "3", "3", "3", "3", "2", "2", "2", "2", "1", "1", "1", "2", "2", "2", "3", "2", "2", "2", "3", "3", "3", "4", "3", "3", "3", "3", "2", "2", "2", "3", "3", "3", "4", "3", "3", "3", "4", "4", "4", "5", "4", "4", "4", "4", "3", "3", "3", "4", "4" ]
[ "nonn" ]
6
0
6
[ "A055778", "A362716", "A362756" ]
null
Jeffrey Shallit, May 02 2023
2023-05-02T12:03:00
oeisdata/seq/A362/A362756.seq
78811f818cc4519f921a5aae652243d2
A362757
The number of integers in the set f^n({0}), where f is a variant of the Collatz function that replaces any element x in the argument set with both x/2 and 3*x+1.
[ "1", "2", "3", "5", "7", "10", "15", "22", "33", "48", "72", "103", "153", "221", "326", "477", "705", "1036", "1526", "2243", "3310", "4872", "7179", "10582", "15620", "23039", "33995", "50151", "73999", "109170", "161092", "237629", "350590", "517254", "763167", "1126070", "1661607", "2451715", "3617809", "5338044", "7876246", "11621318", "17147409", "25300982", "37331656", "55082911", "81275003" ]
[ "nonn" ]
43
0
2
[ "A208127", "A275544", "A362757" ]
null
Markus Sigg, May 02 2023
2023-05-10T10:41:38
oeisdata/seq/A362/A362757.seq
07c3258152c133b3b15392b81a2a9305
A362758
Triangular numbers which are products of six distinct primes.
[ "207690", "255255", "274170", "303810", "304590", "323610", "370230", "391170", "426426", "487578", "649230", "650370", "744810", "763230", "856086", "951510", "1007490", "1186570", "1248990", "1352190", "1365378", "1376970", "1473186", "1512930", "1528626", "1567335", "1594005", "1655290", "1657110", "1747515", "1775670", "1911990", "1991010", "2003001" ]
[ "nonn" ]
25
1
1
[ "A000217", "A067885", "A362758" ]
null
Massimo Kofler, May 02 2023
2023-06-25T18:47:45
oeisdata/seq/A362/A362758.seq
9874662a2d1379d4dd603e8f618a824d
A362759
Array read by antidiagonals: T(n,k) is the number of nonisomorphic multisets of derangements of an n-set with k derangements.
[ "1", "1", "1", "1", "0", "1", "1", "0", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "2", "2", "1", "1", "0", "1", "2", "7", "2", "1", "1", "0", "1", "3", "18", "16", "4", "1", "1", "0", "1", "3", "43", "138", "84", "4", "1", "1", "0", "1", "4", "93", "1559", "4642", "403", "7", "1", "1", "0", "1", "4", "200", "14337", "295058", "211600", "3028", "8", "1", "1", "0", "1", "5", "386", "117053", "15730237", "98019999", "13511246", "25431", "12", "1" ]
[ "nonn", "tabl" ]
10
0
19
[ "A000012", "A000166", "A002865", "A320032", "A362644", "A362648", "A362759", "A362760", "A362761", "A362762" ]
null
Andrew Howroyd, May 02 2023
2023-05-03T21:37:02
oeisdata/seq/A362/A362759.seq
63875e8374c27c93ea4e463aec576221
A362760
Number of nonisomorphic unordered pairs of derangements of an n-set.
[ "1", "0", "1", "2", "7", "16", "84", "403", "3028", "25431", "250377", "2726361", "32622807", "423310642", "5921052187", "88759485250", "1419511438134", "24123164524402", "434094104795638", "8245872981392311", "164885609163058430", "3462034812141768953", "76154237902292661820", "1751339843001023621169" ]
[ "nonn" ]
6
0
4
[ "A000166", "A362645", "A362759", "A362760" ]
null
Andrew Howroyd, May 02 2023
2023-05-03T21:36:58
oeisdata/seq/A362/A362760.seq
3b6644d509e0f5646505280c38c0cb1a
A362761
Number of nonisomorphic unordered triples of derangements of an n-set.
[ "1", "0", "1", "2", "18", "138", "4642", "211600", "13511246", "1092862024", "109276859229", "13221974420985", "1903936637405380", "321762396855180477", "63065061524052355523", "14189582409276961769144", "3632522968870016652531332", "1049797035002712952582167891", "340133739324533632977813192678" ]
[ "nonn" ]
6
0
4
[ "A362646", "A362759", "A362760", "A362761" ]
null
Andrew Howroyd, May 02 2023
2023-05-03T21:36:55
oeisdata/seq/A362/A362761.seq
49d25ea4fb447cef6db745cc58202c13
A362762
Number of nonisomorphic multisets of derangements of an n-set with n derangements.
[ "1", "0", "1", "2", "43", "14337", "706921410", "2997923196044931", "1444144328636895497029515", "102283439767915808465814602082093471", "1365131086334878921752089363480972733171373474663", "4296984259821021241778301305720225516826609689764873566360067437" ]
[ "nonn" ]
5
0
4
[ "A362647", "A362759", "A362762" ]
null
Andrew Howroyd, May 03 2023
2023-05-03T21:36:47
oeisdata/seq/A362/A362762.seq
ca0bf63e66f17993d467bb6e0f881c7d
A362763
Array read by antidiagonals: T(n,k) is the number of nonisomorphic k-sets of permutations of an n-set.
[ "1", "1", "1", "0", "1", "1", "0", "0", "2", "1", "0", "0", "1", "3", "1", "0", "0", "0", "5", "5", "1", "0", "0", "0", "6", "23", "7", "1", "0", "0", "0", "5", "116", "89", "11", "1", "0", "0", "0", "3", "521", "2494", "484", "15", "1", "0", "0", "0", "1", "1931", "69366", "87984", "2904", "22", "1", "0", "0", "0", "0", "5906", "1592714", "15456557", "4250015", "22002", "30", "1" ]
[ "nonn", "tabl" ]
15
0
9
[ "A000012", "A000041", "A362644", "A362763", "A362764", "A362765", "A362766" ]
null
Andrew Howroyd, May 03 2023
2025-04-09T11:22:09
oeisdata/seq/A362/A362763.seq
9931ef5ccb2a08264c1fca2041e74b1b
A362764
Number of nonisomorphic 2-sets of permutations of an n-set.
[ "0", "1", "5", "23", "89", "484", "2904", "22002", "190555", "1876337", "20445337", "244087420", "3161870208", "44155439706", "661065427533", "10561205778825", "179324080364960", "3224650449785185", "61218223893368714", "1223523447160283853", "25679025453032962132", "564657001202726477313" ]
[ "nonn" ]
6
1
3
[ "A000041", "A362645", "A362763", "A362764", "A362765" ]
null
Andrew Howroyd, May 03 2023
2023-05-03T21:36:36
oeisdata/seq/A362/A362764.seq
e5b529f3cdda20eff2912e7943cec957
A362765
Number of nonisomorphic 3-sets of permutations of an n-set.
[ "0", "0", "6", "116", "2494", "87984", "4250015", "271412031", "21965480315", "2195837248568", "265649147125826", "38249422194113490", "6463715127098722285", "1266831272477388372744", "285028258253204630333567", "72965650731125156284328720", "21086743012582217859035501699" ]
[ "nonn" ]
7
1
3
[ "A362646", "A362763", "A362764", "A362765" ]
null
Andrew Howroyd, May 03 2023
2023-05-03T21:36:32
oeisdata/seq/A362/A362765.seq
8f9822e2981c697ffb3da571232c79cf
A362766
Number of nonisomorphic sets of permutations of an n-set.
[ "2", "2", "4", "24", "711936", "11076899964874307395625695676727296" ]
[ "nonn" ]
5
0
1
[ "A050923", "A362763", "A362766" ]
null
Andrew Howroyd, May 03 2023
2023-05-03T21:36:27
oeisdata/seq/A362/A362766.seq
c052025fc5fa8e55a5eae3cbb303aebc
A362767
Number of multisets of permutations with a combined total of n moved points spanning an initial interval of positive integers.
[ "1", "0", "1", "2", "16", "94", "836", "8062", "92434", "1187780", "17103983", "271660992", "4722454300", "89127765656", "1814841101699", "39650794527652", "925141689393748", "22957155125457704", "603681013763369997", "16767920412944383544", "490550926763623941996", "15076432260424342403648", "485630804356929583800760" ]
[ "nonn" ]
13
0
4
[ "A000166", "A362767", "A362768" ]
null
Andrew Howroyd, May 04 2023
2023-05-06T11:12:53
oeisdata/seq/A362/A362767.seq
7968717d34fec58be81a8b1829fac111
A362768
Number of sets of permutations with a combined total of n moved points spanning an initial interval of positive integers.
[ "1", "0", "1", "2", "15", "94", "821", "8012", "91801", "1182490", "17040786", "270878540", "4711273549", "88953035734", "1811836965167", "39594694946864", "924009544908293", "22932616681816514", "603112519409366616", "16753903215777293000", "490184464040864555114", "15066307342227139730694", "485336046152698264379265" ]
[ "nonn" ]
12
0
4
[ "A000166", "A362767", "A362768" ]
null
Andrew Howroyd, May 04 2023
2023-05-06T11:12:50
oeisdata/seq/A362/A362768.seq
9c91c84e0076d6c17a34e7ee7ce283a5
A362769
Minimum number of digits required to represent n only using digits present in n.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "6", "7", "4", "4", "4", "3", "5", "5", "4", "3", "5", "6", "6", "4", "3", "2", "4", "4", "4", "4", "3", "4", "3", "4", "4", "4", "2", "4", "4", "4", "5", "5", "5", "4", "5", "3", "4", "5", "3", "4", "3", "4", "4", "4", "4", "4", "4", "4", "4", "4", "5", "5", "3", "4", "3", "4", "4", "5", "5", "4", "5", "5", "5", "4", "4", "4", "6", "6", "4", "4", "4", "4", "4", "5", "5", "4", "5", "5", "5", "3", "3", "4", "4", "4", "4", "4", "4", "4", "4", "4", "8", "9" ]
[ "nonn", "base" ]
33
1
10
[ "A043537", "A362769" ]
null
Oskar Macholl, Valentin Miakinen, and Walter Robinson, May 02 2023
2023-10-16T23:48:45
oeisdata/seq/A362/A362769.seq
ba4d8fa2edc655e42fbcd9b94e3aa2db
A362770
a(n) is the least prime p that ends an increasing sequence x(1), ..., x(n) = p of primes such that x(i) + x(i+1) + 1 is prime for 1 <= i <= n-1.
[ "2", "7", "11", "17", "19", "23", "29", "31", "41", "47", "53", "59", "67", "71", "79", "83", "89", "101", "107", "113", "127", "139", "157", "167", "179", "191", "197", "199", "227", "229", "233", "257", "263", "277", "293", "307", "311", "331", "353", "367", "383", "389", "397", "431", "443", "457", "461", "467", "479", "487", "499", "509", "521", "541", "569", "593", "599", "601", "617", "619", "647", "653", "661" ]
[ "nonn" ]
12
1
1
[ "A112786", "A362629", "A362770" ]
null
Robert Israel, May 02 2023
2023-05-04T06:06:55
oeisdata/seq/A362/A362770.seq
5479c61d88093b83019afaa1631335a4
A362771
E.g.f. satisfies A(x) = exp( x * (1+x) * A(x) ).
[ "1", "1", "5", "34", "353", "4756", "80107", "1617358", "38145473", "1029745576", "31326858611", "1060716408874", "39571357618465", "1612919873514028", "71321521181852411", "3400790769764598886", "173950205958460627073", "9501239617356541012432", "551961456374529522954595" ]
[ "nonn" ]
18
0
3
[ "A052868", "A125500", "A362771" ]
null
Seiichi Manyama, May 02 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362771.seq
63e3b28abafb47ff6f3cff8af407b845
A362772
E.g.f. satisfies A(x) = exp( x * (1+x)^2 * A(x) ).
[ "1", "1", "7", "58", "725", "11816", "239047", "5794972", "163861609", "5299694704", "193052158091", "7823764856084", "349236133422013", "17028109232138824", "900544754206010383", "51348494205747851116", "3140366001277974883793", "205067625446428300157408" ]
[ "nonn" ]
12
0
3
[ "A000272", "A362771", "A362772" ]
null
Seiichi Manyama, May 02 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362772.seq
b58250538c825f59d52f64bcb0abb2d0
A362773
E.g.f. satisfies A(x) = exp( x * (1+x) * A(x)^2 ).
[ "1", "1", "7", "79", "1377", "32161", "947623", "33746511", "1410518273", "67714577857", "3672410420871", "222082390164559", "14817864737168353", "1081393797641087841", "85691459902207874471", "7327398378967991154511", "672511583942513406768897", "65943097191889528063033729" ]
[ "nonn" ]
15
0
3
[ "A047974", "A361065", "A362771", "A362773" ]
null
Seiichi Manyama, May 02 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362773.seq
7673d69d8b7b5035d05af568d339aa82
A362774
E.g.f. satisfies A(x) = exp( x * (1+x)^2 * A(x)^2 ).
[ "1", "1", "9", "115", "2265", "59701", "1981513", "79441167", "3736418801", "201790517833", "12309193580841", "837132560820139", "62809405894333321", "5154060532188515325", "459202970647825870313", "44146740571635016905991", "4555272678073789024849377", "502153774773932684443210513" ]
[ "nonn" ]
15
0
3
[ "A052750", "A360547", "A361278", "A362772", "A362774", "A362776" ]
null
Seiichi Manyama, May 02 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362774.seq
1acd73264b8ddcee211905d25e02d57c
A362775
E.g.f. satisfies A(x) = exp( x/(1-x)^2 * A(x) ).
[ "1", "1", "7", "70", "965", "17216", "379207", "9969772", "305154313", "10668593008", "419714689931", "18358646058644", "884070662867053", "46486344447041032", "2650567497877525423", "162908800485532424236", "10737607698626311094033", "755571950776792829919968" ]
[ "nonn" ]
16
0
3
[ "A052868", "A082579", "A361065", "A362775", "A362776" ]
null
Seiichi Manyama, May 02 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362775.seq
502040c5ea428aa6eb93f04918de3038
A362776
E.g.f. satisfies A(x) = exp( x/(1-x)^2 * A(x)^2 ).
[ "1", "1", "9", "127", "2601", "70981", "2433673", "100697787", "4886085137", "272168650441", "17121437245161", "1200717094233559", "92892754255837561", "7859587210132504653", "721996671783802854377", "71564871858940414914451", "7613407794191946986893857", "865285095267929315207801233" ]
[ "nonn" ]
13
0
3
[ "A082579", "A361065", "A362775", "A362776" ]
null
Seiichi Manyama, May 02 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362776.seq
e9198789f0e7fa21398c1a980142690b
A362777
Triangular array read by rows: T(n,k) = n!*k + 1, n >= 1, 1 <= k <= n.
[ "2", "3", "5", "7", "13", "19", "25", "49", "73", "97", "121", "241", "361", "481", "601", "721", "1441", "2161", "2881", "3601", "4321", "5041", "10081", "15121", "20161", "25201", "30241", "35281", "40321", "80641", "120961", "161281", "201601", "241921", "282241", "322561", "362881", "725761", "1088641", "1451521", "1814401", "2177281", "2540161", "2903041", "3265921" ]
[ "tabl", "nonn" ]
11
1
1
[ "A038507", "A188914", "A362777", "A362778", "A362779" ]
null
Joe B. Stephen, May 03 2023
2023-06-25T01:02:30
oeisdata/seq/A362/A362777.seq
52b27719b9b606547c9cfb84e47a76b6
A362778
Triangular array read by rows: T(n,k) is the least prime factor of n!*k + 1, n >= 1, 1 <= k <= n.
[ "2", "3", "5", "7", "13", "19", "5", "7", "73", "97", "11", "241", "19", "13", "601", "7", "11", "2161", "43", "13", "29", "71", "17", "15121", "20161", "11", "30241", "35281", "61", "11", "73", "161281", "449", "241921", "282241", "47", "19", "293", "1088641", "1451521", "23", "2177281", "13", "2903041", "17", "11", "13", "10886401", "233", "18144001", "17", "101", "29030401", "32659201", "43" ]
[ "tabl", "nonn" ]
10
1
1
[ "A051301", "A362777", "A362778", "A362779" ]
null
Joe B. Stephen, May 03 2023
2023-06-25T01:02:57
oeisdata/seq/A362/A362778.seq
e512725c2884ae553e7c9f47c2803f14
A362779
Triangular array read by rows: T(n,k) is the greatest prime factor of n!*k + 1, n >= 1, 1 <= k <= n.
[ "2", "3", "5", "7", "13", "19", "5", "7", "73", "97", "11", "241", "19", "37", "601", "103", "131", "2161", "67", "277", "149", "71", "593", "15121", "20161", "79", "30241", "35281", "661", "7331", "1657", "161281", "449", "241921", "282241", "6863", "269", "2477", "1088641", "1451521", "78887", "2177281", "5281", "2903041", "192113", "329891", "29383", "10886401", "62297", "18144001", "2243", "251501", "29030401", "32659201", "843907" ]
[ "tabl", "nonn" ]
12
1
1
[ "A002583", "A362777", "A362778", "A362779" ]
null
Joe B. Stephen, May 03 2023
2023-06-25T01:03:19
oeisdata/seq/A362/A362779.seq
1077d2573db1c8840805ca15627f7757
A362780
Numbers n having some (possibly non-canonical) base-phi representation x.y, where y is the reverse of x.
[ "0", "2", "6", "14", "36", "38", "94", "96", "100", "246", "248", "252", "260", "644", "646", "650", "658", "680", "682", "1686", "1688", "1692", "1700", "1722", "1724", "1780", "1782", "1786", "4414", "4416", "4420", "4428", "4450", "4452", "4508", "4510", "4514", "4660", "4662", "4666", "4674", "11556", "11558", "11562", "11570", "11592", "11594" ]
[ "nonn", "base" ]
12
1
2
[ "A330672", "A362780" ]
null
Jeffrey Shallit, May 03 2023
2023-05-05T07:48:27
oeisdata/seq/A362/A362780.seq
86925f009058e00db9baeff71bcf0259
A362781
Natural numbers n for which some base-phi representation of n is anti-palindromic.
[ "0", "1", "3", "4", "5", "6", "8", "11", "13", "14", "15", "16", "21", "23", "29", "31", "33", "35", "37", "39", "41", "43", "45", "53", "55", "61", "63", "76", "78", "80", "86", "88", "89", "91", "97", "99", "100", "102", "108", "110", "111", "113", "119", "121", "136", "138", "144", "146", "158", "160", "166", "168", "199", "201", "203", "209", "211", "223", "225", "230", "231" ]
[ "nonn", "base" ]
14
1
3
[ "A105424", "A341722", "A362781" ]
null
Jeffrey Shallit, May 03 2023
2023-05-05T01:36:24
oeisdata/seq/A362/A362781.seq
bf5e527ff51d161575bc32bb6700c57f
A362782
a(n) is the smallest number k whose symmetric representation of sigma(k) shares sections of its border with those of n other numbers.
[ "1", "2", "4", "6", "12", "24", "36", "60", "96", "120", "330", "360", "600", "630", "1170", "1344", "4760", "2530", "4500", "5292", "6120", "9360", "4200", "23343", "17136" ]
[ "nonn", "more" ]
12
1
2
[ "A235791", "A237270", "A237271", "A237591", "A237593", "A362782" ]
null
Hartmut F. W. Hoft, May 03 2023
2023-06-11T11:39:10
oeisdata/seq/A362/A362782.seq
f49a2835c2eb1126bf125f29d211007e
A362783
Square array A(n,k) = (n^(2*k + 1) + 1)/(n + 1), n >= 0, k >= 0, read by antidiagonals.
[ "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "11", "7", "1", "1", "1", "43", "61", "13", "1", "1", "1", "171", "547", "205", "21", "1", "1", "1", "683", "4921", "3277", "521", "31", "1", "1", "1", "2731", "44287", "52429", "13021", "1111", "43", "1", "1", "1", "10923", "398581", "838861", "325521", "39991", "2101", "57", "1", "1", "1", "43691", "3587227", "13421773", "8138021", "1439671" ]
[ "nonn", "tabl" ]
23
0
9
[ "A000012", "A002061", "A007583", "A060884", "A060888", "A066443", "A179897", "A299960", "A362783" ]
null
Juri-Stepan Gerasimov, May 03 2023
2024-01-20T15:50:04
oeisdata/seq/A362/A362783.seq
8192ab69fb1041dcfb42b03693cd0284
A362784
Least positive integer k with k primitive practical and k*n practical.
[ "1", "1", "2", "1", "6", "1", "6", "1", "2", "2", "6", "1", "6", "2", "2", "1", "20", "1", "20", "1", "2", "6", "20", "1", "6", "6", "2", "1", "20", "1", "20", "1", "2", "6", "6", "1", "20", "6", "2", "1", "20", "1", "20", "2", "2", "6", "28", "1", "6", "2", "6", "2", "28", "1", "6", "1", "6", "6", "30", "1", "30", "20", "2", "1", "6", "1", "30", "6", "6", "2", "30", "1", "30", "20", "2", "6", "6", "1", "42", "1", "2", "20", "42", "1", "6", "20", "6", "1", "42", "1", "6", "6", "6", "20", "6", "1", "42", "2", "2", "1" ]
[ "nonn" ]
6
1
3
[ "A005153", "A210445", "A267124", "A362784" ]
null
Frank M Jackson, May 03 2023
2023-05-20T14:43:49
oeisdata/seq/A362/A362784.seq
dc920f69b13496ee173ad579faf0fcd1
A362785
Size of the support of the Kaplan-Meier product-limit estimator indexed by sample size n.
[ "2", "3", "5", "8", "15", "25", "49", "83", "134", "205", "409", "681", "1361", "2307", "3597", "5088", "10175", "16711", "33421", "55211", "76889", "115397", "230793", "383753", "536994", "820907", "1189517", "1597245", "3194489", "5137823", "10275645", "16487301", "22679853", "33790243", "48842489", "60737510", "121475019", "204647341", "303830465", "391169317" ]
[ "nonn" ]
21
1
1
null
null
Yuxin Qin, May 03 2023
2023-10-25T09:03:21
oeisdata/seq/A362/A362785.seq
85f6a22ae7a01f0de433ef28c9f4aaa9
A362786
Number of unordered triples of disjoint self-avoiding paths with nodes that cover all vertices of a convex n-gon.
[ "0", "0", "0", "5", "63", "476", "2772", "13680", "60060", "241472", "906048", "3214848", "10890880", "35481600", "111794176", "342171648", "1021031424", "2979102720", "8520171520", "23934468096", "66156625920", "180198047744", "484304486400", "1285790105600", "3375480176640", "8769899593728", "22567515586560", "57557594931200" ]
[ "nonn" ]
11
3
4
[ "A308914", "A359404", "A362786" ]
null
Ivaylo Kortezov, May 04 2023
2023-06-25T16:55:38
oeisdata/seq/A362/A362786.seq
fa996a5f44a786afd6f334e0e32f6fc9
A362787
Triangle read by rows, T(n, k) = (-1)^k * RisingFactorial(n, k) * FallingFactorial(k - n, k).
[ "1", "1", "0", "1", "2", "0", "1", "6", "24", "0", "1", "12", "120", "720", "0", "1", "20", "360", "5040", "40320", "0", "1", "30", "840", "20160", "362880", "3628800", "0", "1", "42", "1680", "60480", "1814400", "39916800", "479001600", "0", "1", "56", "3024", "151200", "6652800", "239500800", "6227020800", "87178291200", "0", "1", "72", "5040", "332640", "19958400", "1037836800", "43589145600", "1307674368000", "20922789888000", "0" ]
[ "nonn", "tabl" ]
8
0
5
[ "A002378", "A010050", "A362787", "A362846" ]
null
Peter Luschny, May 05 2023
2023-05-05T07:47:00
oeisdata/seq/A362/A362787.seq
4c257c42cba967452cf5544bfe93dd00
A362788
Triangle read by rows, T(n, k) = RisingFactorial(n - k, k) * Stirling2(n - k, k), for n >= 0 and 0 <= k <= n//2, where '//' denotes integer division.
[ "1", "0", "0", "1", "0", "2", "0", "3", "6", "0", "4", "36", "0", "5", "140", "60", "0", "6", "450", "720", "0", "7", "1302", "5250", "840", "0", "8", "3528", "30240", "16800", "0", "9", "9144", "151704", "196560", "15120", "0", "10", "22950", "695520", "1764000", "453600", "0", "11", "56210", "2994750", "13471920", "7761600", "332640" ]
[ "nonn", "tabf" ]
8
0
6
[ "A052512", "A362369", "A362788", "A362789" ]
null
Peter Luschny, May 04 2023
2023-05-04T08:56:36
oeisdata/seq/A362/A362788.seq
262c79857a65edbbb7b81fd8f3a48af4
A362789
Triangle read by rows. T(n, k) = FallingFactorial(n - k, k) * Stirling2(n - k, k), for n >= 0 and 0 <= k <= n//2, where '//' denotes integer division.
[ "1", "0", "0", "1", "0", "2", "0", "3", "2", "0", "4", "18", "0", "5", "84", "6", "0", "6", "300", "144", "0", "7", "930", "1500", "24", "0", "8", "2646", "10800", "1200", "0", "9", "7112", "63210", "23400", "120", "0", "10", "18360", "324576", "294000", "10800", "0", "11", "45990", "1524600", "2857680", "352800", "720", "0", "12", "112530", "6717600", "23496480", "7056000", "105840" ]
[ "nonn", "tabf" ]
7
0
6
[ "A362769", "A362788", "A362789", "A362790" ]
null
Peter Luschny, May 04 2023
2023-05-04T08:57:01
oeisdata/seq/A362/A362789.seq
e50a336ca43b43bf6847603fe7a35ddd
A362790
a(n) = Sum_{k=0..n} FallingFactorial(n - k, k) * Stirling2(n - k, k), row sums of A362789.
[ "1", "0", "1", "2", "5", "22", "95", "450", "2461", "14654", "93851", "647746", "4781801", "37488462", "310842127", "2716308194", "24929090357", "239556785086", "2404139609987", "25139451248418", "273330944247265", "3084182865509966", "36055337388402935", "436016786153035522", "5446585683469420205" ]
[ "nonn" ]
5
0
4
[ "A362789", "A362790" ]
null
Peter Luschny, May 04 2023
2023-05-04T08:56:42
oeisdata/seq/A362/A362790.seq
ba31373ae0f3d08074e8908ec4bcf23f
A362791
Triangle of numbers read by rows, T(n, k) = (n*(n-1)*(n-2))*Stirling2(k, 3), for n >= 1 and 1 <= k <= n.
[ "0", "0", "0", "0", "0", "6", "0", "0", "24", "144", "0", "0", "60", "360", "1500", "0", "0", "120", "720", "3000", "10800", "0", "0", "210", "1260", "5250", "18900", "63210", "0", "0", "336", "2016", "8400", "30240", "101136", "324576", "0", "0", "504", "3024", "12600", "45360", "151704", "486864", "1524600", "0", "0", "720", "4320", "18000", "64800", "216720", "695520", "2178000", "6717600" ]
[ "nonn", "tabl" ]
28
1
6
[ "A002024", "A068605", "A362685", "A362791" ]
null
Igor Victorovich Statsenko, May 04 2023
2025-06-21T11:22:06
oeisdata/seq/A362/A362791.seq
6c6ceb388859428373e44d4c247e0c7c
A362792
Numbers k such that 3*k and 7*k share the same set of digits.
[ "0", "45", "75", "423", "445", "450", "513", "750", "891", "1089", "1305", "2382", "2497", "4230", "4445", "4450", "4488", "4491", "4500", "4505", "4513", "4878", "5013", "5045", "5130", "5133", "5868", "7317", "7500", "7686", "8360", "8703", "8891", "8901", "8910", "8911", "8955", "8991", "9756", "9891", "10089", "10449", "10889", "10890", "10891" ]
[ "nonn", "base", "easy" ]
46
1
2
[ "A008585", "A008589", "A093140", "A362792" ]
null
Alexandru Petrescu, May 04 2023
2023-05-19T07:01:17
oeisdata/seq/A362/A362792.seq
5e87f7ea05042d6c7ed8140d0041c277
A362793
Number of vertex cuts in the n-flower graph.
[ "3", "155", "2507", "49557", "868603", "14967657", "250110631", "4113588929", "66936671183", "1082147637327", "17424128283251", "279857796333471", "4488112951508259", "71909920090958819", "1151518614109106431", "18433461016653736185", "295022509938277616055", "4721185882918205360925" ]
[ "nonn", "easy" ]
15
1
1
[ "A362793", "A362807" ]
null
Eric W. Weisstein, May 04 2023
2025-05-27T14:59:14
oeisdata/seq/A362/A362793.seq
ad1de8c75e444dc94181947aa242f58e
A362794
E.g.f. satisfies A(x) = (1+x)^(A(x)^x).
[ "1", "1", "0", "6", "0", "170", "-120", "12446", "-35336", "1832400", "-12172320", "469680552", "-5524990416", "189586178184", "-3321122831208", "111608536026360", "-2599887499382400", "90253048158627072", "-2595580675897337856", "95720854442948910720", "-3237436187047116892800" ]
[ "sign" ]
19
0
4
[ "A033917", "A349504", "A349505", "A362794", "A362795", "A362796", "A362799" ]
null
Seiichi Manyama, May 04 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362794.seq
16c77340d980e75670e55256b9fc81d4
A362795
E.g.f. satisfies A(x) = (1+x)^(A(x)^(x^2)).
[ "1", "1", "0", "0", "24", "0", "-60", "7980", "-12992", "-23184", "10320480", "-54616320", "160009344", "33740939232", "-391545030240", "3173349947040", "211401523687680", "-4586955333880320", "66611949275370240", "2068372502060292864", "-82278329345056212480", "1885659676128917982720" ]
[ "sign" ]
15
0
5
[ "A033917", "A362794", "A362795", "A362798", "A362800" ]
null
Seiichi Manyama, May 04 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362795.seq
c6a5e967e332bc3aaebddc7a5b40496d
A362796
E.g.f. satisfies A(x) = 1/(1-x)^(A(x)^x).
[ "1", "1", "2", "12", "72", "650", "6480", "80906", "1121512", "18069264", "320204160", "6348340152", "136915211664", "3230148306216", "82078412377416", "2248247450065080", "65771634671679360", "2052879248516927232", "67955959831214467584", "2381716543764159438336" ]
[ "nonn" ]
15
0
3
[ "A052813", "A362794", "A362796", "A362798", "A362799" ]
null
Seiichi Manyama, May 04 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362796.seq
1a7b8534531a815d3cc987711e12a5c0
A362797
Number of vertex cuts in the n X n torus grid graph.
[ "114", "28242", "20808130", "52897204000", "491002382171602", "17246237428303951946" ]
[ "nonn", "more" ]
10
3
1
[ "A298124", "A362797", "A362808" ]
null
Eric W. Weisstein, May 04 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362797.seq
3e25a4aba60621ecf5cab0e06610e8a2
A362798
E.g.f. satisfies A(x) = 1/(1-x)^(A(x)^(x^2)).
[ "1", "1", "2", "6", "48", "360", "2820", "31500", "393568", "5111568", "78491520", "1345893120", "24286008384", "483716087712", "10526811186528", "241867328844960", "5957816820215040", "157412355684364800", "4380674530640290560", "128826276098289179904", "4010282529115722232320" ]
[ "nonn" ]
16
0
3
[ "A052813", "A362795", "A362796", "A362798", "A362800" ]
null
Seiichi Manyama, May 04 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362798.seq
d2560394448702e69f197d89aa10a843
A362799
E.g.f. satisfies A(x) = exp( (exp(x) - 1) * A(x)^x ).
[ "1", "1", "2", "11", "63", "542", "5183", "62211", "830252", "12900381", "220566835", "4223662522", "88001471869", "2007052809465", "49309469989666", "1306455781607975", "36973887007453315", "1116728635342926570", "35775769695237122035", "1213704083311914974899" ]
[ "nonn" ]
17
0
3
[ "A000110", "A052880", "A361777", "A362794", "A362796", "A362799", "A362800" ]
null
Seiichi Manyama, May 04 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362799.seq
3dd3da5fbcd794223bbbe24820eaacbe
A362800
E.g.f. satisfies A(x) = exp( (exp(x) - 1) * A(x)^(x^2) ).
[ "1", "1", "2", "5", "39", "292", "2063", "21877", "271372", "3298155", "47855035", "805112970", "13843621861", "261388560253", "5529798475178", "122059754102345", "2863956966387107", "73150334575839340", "1961833778207602123", "55184622355007805281", "1656027290812446938492" ]
[ "nonn" ]
17
0
3
[ "A000110", "A052880", "A362571", "A362795", "A362798", "A362799", "A362800" ]
null
Seiichi Manyama, May 04 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362800.seq
76218f0900279913115ecd0659749c6e