sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A362801
Numbers whose set of divisors can be partitioned into disjoint parts, all of length > 1 and having integer harmonic mean.
[ "6", "12", "18", "24", "28", "30", "40", "42", "45", "48", "54", "56", "60", "66", "72", "78", "84", "90", "96", "102", "108", "112", "114", "120", "126", "132", "135", "138", "140", "144", "150", "156", "162", "168", "174", "180", "186", "192", "196", "198", "200", "204", "210", "216", "220", "222", "224", "225", "228", "234", "240", "246", "252", "258", "264", "270", "276" ]
[ "nonn" ]
11
1
1
[ "A001599", "A348715", "A362801", "A362802", "A362803" ]
null
Amiram Eldar, May 04 2023
2023-05-05T01:40:09
oeisdata/seq/A362/A362801.seq
a7711853f1e5644227e44b601e976a3a
A362802
a(n) is the number of ways in which the set of divisors of n can be partitioned into disjoint parts, all of length > 1 and with integer harmonic mean.
[ "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "4", "0", "0", "0", "1", "0", "3", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "1", "0", "0", "15", "0", "0", "0", "0", "0", "3", "0", "1", "0", "0", "0", "175", "0", "0", "0", "0", "0", "2", "0", "0", "0", "0", "0", "78", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "188", "0" ]
[ "nonn" ]
9
1
24
[ "A339453", "A339665", "A362801", "A362802", "A362803" ]
null
Amiram Eldar, May 04 2023
2023-05-05T01:41:30
oeisdata/seq/A362/A362802.seq
d0cb4fa71eac8158b20ccb15f32c48cf
A362803
Indices of records in A362802.
[ "1", "6", "24", "48", "60", "84" ]
[ "nonn", "hard", "more" ]
6
1
2
[ "A348716", "A349179", "A362801", "A362802", "A362803" ]
null
Amiram Eldar, May 04 2023
2023-05-05T01:41:47
oeisdata/seq/A362/A362803.seq
a3dfc940a176d1204f94b4acce86c6d6
A362804
Numbers k such that the set of divisors {d | k, BitOr(k, d) = k} has an integer harmonic mean.
[ "1", "2", "4", "6", "8", "12", "16", "24", "28", "30", "32", "45", "48", "56", "60", "64", "90", "96", "112", "120", "128", "180", "192", "224", "240", "256", "360", "384", "448", "480", "496", "512", "720", "768", "896", "960", "992", "1024", "1440", "1536", "1792", "1920", "1984", "2048", "2880", "3072", "3584", "3840", "3968", "4096", "5760", "6144", "7168", "7680" ]
[ "nonn", "base" ]
9
1
2
[ "A000043", "A000079", "A000396", "A001599", "A005009", "A006086", "A007283", "A063947", "A110286", "A246600", "A246601", "A286325", "A319745", "A362804", "A362805" ]
null
Amiram Eldar, May 04 2023
2023-05-04T14:57:57
oeisdata/seq/A362/A362804.seq
b29b3f4828ac35dca94df33c6dd54558
A362805
Primitive terms of A362804: terms k of A362804 such that k/2 is not a term of A362804.
[ "1", "6", "28", "30", "45", "496", "8128", "16380", "57720", "65472", "235246", "683520", "33550336", "50426880", "60945408", "105553910", "131297280", "3052879872", "8589869056" ]
[ "nonn", "base", "more" ]
5
1
2
[ "A000396", "A362804", "A362805" ]
null
Amiram Eldar, May 04 2023
2023-05-05T01:41:58
oeisdata/seq/A362/A362805.seq
6b32284ee3b40e08a399f6fdde6c7191
A362806
Number of numbers k, 1 <= k <= n, such that mu(k) = mu(n-k+1).
[ "1", "0", "1", "2", "1", "4", "3", "2", "3", "2", "5", "4", "3", "4", "11", "2", "5", "2", "11", "6", "9", "2", "13", "6", "7", "6", "13", "6", "9", "6", "17", "8", "13", "8", "27", "8", "5", "8", "21", "10", "11", "12", "23", "14", "9", "12", "29", "18", "13", "2", "27", "16", "21", "10", "27", "12", "17", "14", "35", "24", "11", "12", "29", "16", "23", "14", "33", "16", "23", "16", "53", "26", "19", "16", "35", "24", "25", "22" ]
[ "nonn", "easy" ]
6
1
4
[ "A008683", "A362806" ]
null
Wesley Ivan Hurt, May 04 2023
2023-05-12T15:22:54
oeisdata/seq/A362/A362806.seq
85a5797772b2def21d8a7ea0ef97f95c
A362807
Number of (non-null) connected induced subgraphs in the n-flower graph.
[ "12", "100", "1588", "15978", "179972", "1809558", "18324824", "181378366", "1782805552", "17363990448", "168057761164", "1617180377184", "15486675862236", "147673946969116", "1402890497740544", "13283057055815430", "125395241075209800", "1180599951439852770", "11088548750458808244", "103918533147459728842" ]
[ "nonn", "easy" ]
16
1
1
[ "A362793", "A362807" ]
null
Eric W. Weisstein, May 04 2023
2025-05-24T19:00:56
oeisdata/seq/A362/A362807.seq
fd6694af28a7610d885366413dd9ec85
A362808
Number of minimal vertex cuts in the n X n torus grid graph.
[ "18", "260", "8060" ]
[ "nonn", "bref", "more" ]
5
3
1
null
null
Eric W. Weisstein, May 04 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362808.seq
d42bb1ab3b6d451d7ccd388e8a3dfbf8
A362809
Numbers k for which the area of the first part of the symmetric representation of sigma(k) equals sigma(k)/3 and its width is 1.
[ "15", "207", "1023", "2975", "5950", "19359", "147455", "294910", "1207359", "5017599", "2170814463" ]
[ "nonn", "hard", "more" ]
44
1
1
[ "A063906", "A068156", "A235791", "A237048", "A237591", "A237593", "A249223", "A251820", "A362809" ]
null
Hartmut F. W. Hoft, May 04 2023
2024-03-21T21:12:00
oeisdata/seq/A362/A362809.seq
4213e619a51f829c63a530659836d307
A362810
Define G(n, k) to be the n-th derivative of Gamma(x) at k. a(n)=floor(min(G(2n, x))), where min(f) is the local minimum of f in [0,oo).
[ "0", "0", "1", "6", "30", "173", "1138", "8386", "67951", "596745", "5618916", "56249658", "594648335", "6602123630", "76631632344", "926329705808", "11623455427764", "150970962492188", "2024773236657401", "27980260971851306", "397645587914766071", "5801999753304428181", "86784442260270596447", "1328924296505789704631", "20807559990139289975657", "332753116291423840918784" ]
[ "nonn" ]
19
0
4
[ "A030171", "A362810" ]
null
Jodi Spitz, May 04 2023
2023-11-18T03:18:36
oeisdata/seq/A362/A362810.seq
bb5b6ba921162ec7dae8dea15df68db3
A362811
Sphenic numbers (product of 3 distinct primes) sandwiched between two semiprimes (product of 2 primes).
[ "186", "266", "290", "322", "470", "518", "534", "582", "590", "670", "754", "790", "814", "894", "994", "1146", "1158", "1166", "1338", "1370", "1390", "1562", "1686", "1798", "1842", "1958", "2118", "2158", "2230", "2318", "2454", "2482", "2514", "2570", "2630", "2758", "2786", "2810", "2922", "2930", "2994", "3154", "3206", "3262", "3278", "3378", "3454", "3522", "3562" ]
[ "nonn", "easy" ]
21
1
1
[ "A001358", "A007304", "A171179", "A362811" ]
null
Alexandru Petrescu, May 04 2023
2023-06-15T10:35:53
oeisdata/seq/A362/A362811.seq
098ab9ae48911c786c07a718695679c7
A362812
Number of minimal total dominating sets in the n-double cone graph.
[ "15", "24", "35", "93", "63", "32", "162", "645", "506", "649", "1547", "2429", "4654", "10032", "14195", "20772", "43719", "83561", "134731", "234300", "414782", "707329", "1276950", "2313493", "3932343", "6765257", "12110458", "21381436", "37295511", "65610064", "114854155", "200533989", "353703319", "623201368" ]
[ "nonn" ]
9
3
1
[ "A300738", "A362750", "A362812" ]
null
Eric W. Weisstein, May 04 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362812.seq
95bfabb736d14d3da0a3192e4c3c9bf7
A362813
Number of numbers that occur more than once in column n of McGarvey's array (A007062).
[ "0", "2", "3", "4", "6", "6", "7", "9", "11", "12", "14", "13", "14", "16", "15", "17", "21", "20", "22", "25", "24", "25", "29", "26", "26", "31", "29", "31", "36", "33", "33", "40", "37", "36", "44", "41", "39", "48", "42", "44", "50", "44", "48", "53", "49", "49", "56", "54", "53", "62", "55", "56", "69", "61", "59", "66", "61", "66", "73", "65", "64", "75", "71", "70", "80", "72", "71" ]
[ "nonn" ]
7
1
2
[ "A007062", "A309977", "A362813" ]
null
Clark Kimberling, May 04 2023
2023-05-20T15:48:37
oeisdata/seq/A362/A362813.seq
c2720acdb86e48e10965b0b27c452ce7
A362814
Rectangular array read by descending antidiagonals; row n shows the numbers whose prime factorization p(1)^e(1)*p(2)^e(2)*... has n = max{e(k)}.
[ "2", "3", "4", "5", "9", "8", "6", "12", "24", "16", "7", "18", "27", "48", "32", "10", "20", "40", "80", "96", "64", "11", "25", "54", "81", "160", "192", "128", "13", "28", "56", "112", "224", "320", "384", "256", "14", "36", "72", "144", "243", "448", "640", "768", "512", "15", "44", "88", "162", "288", "576", "896", "1280", "1536", "1024", "17", "45", "104", "176", "352" ]
[ "nonn", "tabl" ]
8
1
1
[ "A000040", "A005117", "A051903", "A362814" ]
null
Clark Kimberling, May 04 2023
2023-05-20T15:48:52
oeisdata/seq/A362/A362814.seq
508db44b8d5c87e2d0fd123eb66d9734
A362815
Start with 2. Then, numbers are added to the sequence if they do not form any arithmetic progression p with numbers in the sequence such that length(p) > min(p).
[ "2", "3", "5", "6", "7", "11", "13", "14", "16", "17", "18", "19", "21", "22", "23", "25", "28", "29", "31", "37", "38", "39", "41", "43", "46", "47", "50", "51", "52", "53", "55", "58", "59", "61", "62", "64", "66", "67", "68", "70", "71", "73", "75", "77", "79", "82", "83", "85", "86", "88", "89", "93", "94", "96", "97", "99", "101", "103", "106", "107", "109", "110", "113", "115" ]
[ "nonn" ]
21
1
1
[ "A362815", "A362816", "A363011" ]
null
Samuel Harkness, May 04 2023
2024-09-28T07:39:17
oeisdata/seq/A362/A362815.seq
aa7d611d857c6482f693538a4c9bf69e
A362816
Lexicographically earliest sequence such that nowhere is a term a(n) contained in an arithmetic progression of length greater than a(n).
[ "2", "2", "3", "2", "2", "3", "3", "3", "5", "2", "2", "3", "2", "2", "3", "3", "3", "5", "3", "5", "5", "5", "3", "3", "3", "5", "5", "2", "2", "3", "2", "2", "5", "5", "3", "3", "2", "2", "3", "2", "2", "5", "3", "3", "5", "3", "5", "5", "3", "3", "5", "5", "3", "5", "5", "5", "6", "5", "3", "5", "5", "6", "5", "3", "3", "3", "5", "3", "5", "5", "5", "3", "3", "3", "5", "5", "5", "6", "5", "5", "3", "2", "2", "5", "2", "2", "6" ]
[ "nonn" ]
34
1
1
[ "A003278", "A090822", "A281579", "A362815", "A362816", "A363011" ]
null
Samuel Harkness, May 04 2023
2024-09-28T07:39:13
oeisdata/seq/A362/A362816.seq
882815937668be670358fb2ebd11ca4e
A362817
Irregular triangle read by rows: T(n,k) (n>=1, k>=1) is the number of edges of the k-th polygon (or part), from left to right, of the symmetric representation of sigma(n).
[ "4", "6", "4", "4", "10", "4", "4", "12", "4", "4", "14", "4", "6", "4", "8", "8", "4", "4", "18", "4", "4", "8", "8", "4", "12", "4", "22", "4", "4", "22", "4", "4", "22", "4", "8", "8", "4", "8", "8", "4", "4", "26", "4", "10", "4", "8", "8", "4", "8", "8", "4", "28", "4", "4", "30", "4", "4", "30" ]
[ "nonn", "tabf", "more" ]
41
1
1
[ "A000079", "A000203", "A000396", "A003056", "A065091", "A174973", "A196020", "A235791", "A236104", "A237270", "A237271", "A237591", "A237593", "A238443", "A244363", "A245092", "A262626", "A274919", "A348705", "A362817", "A362818" ]
null
Omar E. Pol, May 04 2023
2023-08-02T14:34:08
oeisdata/seq/A362/A362817.seq
60f887797e77ae696455a06a29300706
A362818
Total number of edges of all polygons (or parts) of the symmetric representation of sigma(n).
[ "4", "6", "8", "10", "8", "12", "8", "14", "14", "16", "8", "18", "8", "16", "20", "22", "8", "22", "8", "22", "24", "16", "8", "26", "18", "16", "24", "28", "8", "30", "8", "30" ]
[ "nonn", "more" ]
29
1
1
[ "A000079", "A000203", "A000396", "A003056", "A065091", "A174973", "A196020", "A235791", "A236104", "A237270", "A237271", "A237591", "A237593", "A238443", "A244363", "A245092", "A262626", "A274919", "A348705", "A362817", "A362818" ]
null
Omar E. Pol, May 04 2023
2023-08-02T14:34:27
oeisdata/seq/A362/A362818.seq
d47ee92f0f7bdf8e0d960d5ef8bb9c22
A362819
Number of ordered pairs of involutions on [n] that commute.
[ "1", "1", "4", "10", "52", "196", "1216", "5944", "42400", "250912", "2008576", "13815616", "122074624", "950640640", "9158267392", "79258479616", "824644235776", "7823203807744", "87245790791680", "897748312609792", "10665239974537216", "118040852776093696", "1486172381689544704", "17572063073426206720", "233446797379437248512" ]
[ "nonn" ]
15
0
3
[ "A000085", "A000898", "A053529", "A181162", "A362819", "A362820", "A362824", "A362825" ]
null
Andrew Howroyd, May 05 2023
2023-05-08T15:33:17
oeisdata/seq/A362/A362819.seq
7d73034acdd57ad8f1434f5d270ffed6
A362820
Number of ordered pairs of derangements on [n] that commute.
[ "1", "0", "1", "4", "33", "136", "1825", "10956", "163009", "1575568", "23894721", "280090900", "5410068961", "73066199064", "1483125027553", "25872759745756", "561027082980225", "10796395534986016", "266457543316023169", "5743345672152317988", "152031229968147150241", "3717043193920429157800", "104377807879737865769121" ]
[ "nonn" ]
12
0
4
[ "A000166", "A053529", "A362819", "A362820" ]
null
Andrew Howroyd, May 05 2023
2023-05-28T22:20:58
oeisdata/seq/A362/A362820.seq
6e5b16a4198830304fb3e34acf2c64c5
A362821
Number of labeled right involutory Płonka magmas with n elements.
[ "1", "1", "2", "10", "70", "916", "16636", "494824", "20486432", "1320568624", "119526633136", "16466317431136", "3210471529800448", "940911157770908416", "392559353168479443584", "244017910517578226511616", "216775189886094655708439296", "284778404550532041821957456896", "536018349047631899870416803595264" ]
[ "nonn" ]
12
0
3
[ "A361720", "A362643", "A362821", "A362822", "A362824" ]
null
Andrew Howroyd, May 08 2023
2025-05-08T19:41:11
oeisdata/seq/A362/A362821.seq
3c2c09a0505fed555ceb14d3e27bcc48
A362822
Number of nonisomorphic magmas with n elements satisfying the identities (xy)y = x and (xy)z = (xz)y.
[ "1", "1", "3", "6", "68", "254", "14310", "112762", "43419892" ]
[ "nonn", "more" ]
6
0
3
[ "A001329", "A361720", "A362382", "A362642", "A362822", "A362823" ]
null
Andrew Howroyd, May 06 2023
2023-05-08T15:39:50
oeisdata/seq/A362/A362822.seq
70438a9817f42a4f3b5143dcb044b080
A362823
Number of labeled magmas with n elements satisfying the identities (xy)y = x and (xy)z = (xz)y.
[ "1", "1", "4", "22", "976", "19376", "7680016", "430723168", "1489656111616", "214815786486400", "6364561150037368576", "2241692646969785651456", "566719960584895502028138496", "471612192582034433034750951424", "1008512943343839231897776246546624512", "1936475539456937172034340659334701398016" ]
[ "nonn" ]
11
0
3
[ "A362383", "A362643", "A362821", "A362822", "A362823", "A362824" ]
null
Andrew Howroyd, May 06 2023
2023-05-08T15:33:32
oeisdata/seq/A362/A362823.seq
1f4eb761e03340d25d176a2537b5c74a
A362824
Array read by antidiagonals: T(n,k) is the number of k-tuples of involutions on [n] that pairwise commute.
[ "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "4", "4", "1", "1", "1", "8", "10", "10", "1", "1", "1", "16", "22", "52", "26", "1", "1", "1", "32", "46", "232", "196", "76", "1", "1", "1", "64", "94", "976", "1016", "1216", "232", "1", "1", "1", "128", "190", "4000", "4576", "12496", "5944", "764", "1", "1", "1", "256", "382", "16192", "19376", "111376", "73648", "42400", "2620", "1" ]
[ "nonn", "tabl" ]
8
0
9
[ "A000012", "A000079", "A000085", "A022166", "A033484", "A362648", "A362819", "A362823", "A362824", "A362825" ]
null
Andrew Howroyd, May 06 2023
2023-05-08T15:32:28
oeisdata/seq/A362/A362824.seq
4b2b3587e8711cb145e728cf50865117
A362825
Number of ordered triples of involutions on [n] that pairwise commute.
[ "1", "1", "8", "22", "232", "1016", "12496", "73648", "1032032", "7586272", "118141696", "1033672256", "17668427008", "178649596672", "3313667912192", "37898019913216", "756948065453056", "9640771045925888", "205935949714235392", "2885307792776353792", "65568056040976818176" ]
[ "nonn" ]
7
0
3
[ "A362819", "A362824", "A362825" ]
null
Andrew Howroyd, May 06 2023
2023-05-08T15:33:02
oeisdata/seq/A362/A362825.seq
485eb6c01525736566a9cd6708f8c17c
A362826
Array read by antidiagonals: T(n,k) is the number of k-tuples of permutations of [n] which commute, divided by n!, n >= 0, k >= 1.
[ "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "4", "3", "1", "1", "1", "8", "8", "5", "1", "1", "1", "16", "21", "21", "7", "1", "1", "1", "32", "56", "84", "39", "11", "1", "1", "1", "64", "153", "331", "206", "92", "15", "1", "1", "1", "128", "428", "1300", "1087", "717", "170", "22", "1", "1", "1", "256", "1221", "5111", "5832", "5512", "1810", "360", "30", "1" ]
[ "nonn", "tabl" ]
13
0
9
[ "A000012", "A000041", "A061256", "A160870", "A226313", "A362826", "A362827", "A362903" ]
null
Andrew Howroyd, May 09 2023
2023-05-30T14:10:38
oeisdata/seq/A362/A362826.seq
b62e458953b76418172c0ede73711e23
A362827
Array read by antidiagonals: T(n,k) is the number of k-tuples of permutations of [n] that pairwise commute.
[ "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "4", "6", "1", "1", "1", "8", "18", "24", "1", "1", "1", "16", "48", "120", "120", "1", "1", "1", "32", "126", "504", "840", "720", "1", "1", "1", "64", "336", "2016", "4680", "7920", "5040", "1", "1", "1", "128", "918", "7944", "24720", "66240", "75600", "40320", "1", "1", "1", "256", "2568", "31200", "130440", "516240", "856800", "887040", "362880", "1" ]
[ "nonn", "tabl" ]
11
0
9
[ "A000012", "A000142", "A053529", "A072169", "A362824", "A362826", "A362827", "A362828" ]
null
Andrew Howroyd, May 08 2023
2023-05-09T15:36:28
oeisdata/seq/A362/A362827.seq
5f9c2a27bf5484497de33db734e27a66
A362828
Number of n-tuples of permutations of [n] that pairwise commute.
[ "1", "1", "4", "48", "2016", "130440", "30672720", "11608682400", "12055770800640", "24154259257215360", "117792549941415955200", "1161512734993746635808000", "25629823970496421449477580800", "1215203193235691517749414518195200", "123585796012441765074167804498857267200" ]
[ "nonn" ]
9
0
3
[ "A362823", "A362827", "A362828" ]
null
Andrew Howroyd, May 08 2023
2023-05-09T15:36:32
oeisdata/seq/A362/A362828.seq
348ba60437fcd854a84a1be2aea37279
A362829
Positions in lexicographic order of odd partitions of sufficiently large numbers.
[ "1", "3", "7", "10", "15", "20", "27", "30", "39", "41", "51", "56", "69", "72", "75", "93", "95", "101", "123", "128", "132", "134", "160", "163", "166", "172", "176", "212", "214", "220", "227", "229", "273", "278", "282", "284", "291", "297", "353", "356", "359", "365", "369", "379", "382", "384", "453", "455", "461", "468", "470", "481", "483", "490", "579", "584" ]
[ "nonn" ]
61
1
2
[ "A000009", "A000041", "A087897", "A362829" ]
null
Richard Peterson, Aug 01 2023
2023-09-18T06:18:08
oeisdata/seq/A362/A362829.seq
ebf9b78cd69bab5c1ca4af327a2415db
A362830
Number of bases b with 2 <= b < n such that n written in base b is a strictly increasing sequence of digits.
[ "0", "0", "0", "0", "1", "1", "2", "2", "3", "3", "5", "4", "6", "6", "7", "7", "9", "8", "11", "10", "11", "12", "14", "12", "15", "15", "17", "16", "19", "17", "20", "19", "21", "22", "23", "21", "25", "26", "27", "25", "29", "27", "30", "30", "30", "32", "34", "31", "35", "34", "37", "37", "40", "37", "40", "39", "41", "43", "45", "40", "46", "46", "46", "46", "49", "48", "52", "51", "54", "51" ]
[ "nonn", "base" ]
26
1
7
null
null
Matthew R. Maas, May 04 2023
2023-08-02T09:18:55
oeisdata/seq/A362/A362830.seq
26939d92f846eddada9ad192dd0b2871
A362831
Number of partitions of n into two distinct parts (s,t) such that pi(s) = pi(t).
[ "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "1", "2", "1", "1", "0", "0", "0", "1", "0", "0", "0", "1", "1", "2", "1", "1", "0", "0", "0", "1", "0", "0", "0", "1", "1", "2", "1", "1", "0", "0", "0", "1", "1", "2", "2", "3", "2", "2", "1", "1", "0", "0", "0", "1", "0", "0", "0", "1", "1", "2", "2", "3", "2", "2", "1", "1", "0", "0", "0", "1", "1", "2", "1", "1", "0", "0", "0", "1", "0", "0", "0", "1", "1", "2", "1" ]
[ "nonn", "easy" ]
16
1
17
[ "A000720", "A362721", "A362831" ]
null
Wesley Ivan Hurt, May 04 2023
2023-05-15T19:19:31
oeisdata/seq/A362/A362831.seq
3343e559847e46ad16e352463fa6b839
A362832
Number of partitions of n into two distinct parts (s,t) such that phi(s) = phi(t).
[ "0", "0", "1", "0", "0", "0", "1", "0", "1", "1", "0", "0", "1", "0", "1", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "0", "1", "0", "0", "0", "1", "1", "1", "1", "1", "1", "0", "0", "2", "1", "1", "0", "0", "1", "1", "2", "1", "0", "3", "1", "1", "0", "0", "2", "1", "0", "3", "1", "0", "0", "0", "1", "1", "1", "2", "1", "0", "1", "2", "1", "0", "1", "1", "2", "1", "0", "2", "1", "0", "2", "1", "1", "1", "1", "0", "0", "2", "1", "0", "0", "3" ]
[ "nonn", "easy" ]
15
1
39
[ "A000010", "A362719", "A362832" ]
null
Wesley Ivan Hurt, May 04 2023
2023-05-15T19:20:19
oeisdata/seq/A362/A362832.seq
3894f4f12ea2ca7c81711b93c795e157
A362833
Number of partitions of n into two distinct parts (s,t) such that mu(s) = mu(t).
[ "0", "0", "0", "0", "1", "0", "2", "1", "1", "1", "1", "2", "2", "1", "2", "5", "1", "2", "1", "5", "3", "4", "1", "6", "3", "3", "3", "6", "3", "4", "3", "8", "4", "6", "4", "13", "4", "2", "4", "10", "5", "5", "6", "11", "7", "4", "6", "14", "9", "6", "1", "13", "8", "10", "5", "13", "6", "8", "7", "17", "12", "5", "6", "14", "8", "11", "7", "16", "8", "11", "8", "26", "13", "9", "8", "17", "12", "12", "11", "18", "11", "7", "13" ]
[ "nonn", "easy" ]
13
1
7
[ "A008683", "A362806", "A362833" ]
null
Wesley Ivan Hurt, May 04 2023
2023-05-15T19:20:54
oeisdata/seq/A362/A362833.seq
2b9d77a63ea72b3b458ad516c6bf66d1
A362834
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = (-1)^n * n! * Sum_{j=0..floor(n/2)} k^j * Stirling1(n-j,j)/(n-j)!.
[ "1", "1", "0", "1", "0", "0", "1", "0", "2", "0", "1", "0", "4", "3", "0", "1", "0", "6", "6", "20", "0", "1", "0", "8", "9", "64", "90", "0", "1", "0", "10", "12", "132", "300", "594", "0", "1", "0", "12", "15", "224", "630", "2568", "4200", "0", "1", "0", "14", "18", "340", "1080", "6642", "20160", "34544", "0", "1", "0", "16", "21", "480", "1650", "13536", "55440", "193856", "316008", "0" ]
[ "nonn", "tabl" ]
21
0
9
[ "A000007", "A053489", "A053490", "A066166", "A318615", "A361652", "A362834" ]
null
Seiichi Manyama, May 05 2023
2023-05-05T12:24:37
oeisdata/seq/A362/A362834.seq
1756100ac3f0794b137cd0c05483c5d1
A362835
Expansion of e.g.f. 1/(1 + LambertW(x * log(1-x))).
[ "1", "0", "2", "3", "56", "270", "4704", "43260", "814736", "11356632", "240848640", "4492204200", "108396245088", "2513538490320", "68878522931568", "1896787592514360", "58622475066067200", "1860520458522196800", "64297710768900261888", "2303738717704104464640" ]
[ "nonn" ]
13
0
3
[ "A318615", "A362835", "A362836" ]
null
Seiichi Manyama, May 05 2023
2023-05-05T12:25:53
oeisdata/seq/A362/A362835.seq
1d40ebf1361c7528a36f0e07c155baee
A362836
Expansion of e.g.f. 1/(1 + LambertW(-x * (exp(x) - 1))).
[ "1", "0", "2", "3", "52", "245", "4086", "36547", "663832", "8984313", "184262770", "3334315391", "77900601780", "1751855308645", "46508427942718", "1241853335819475", "37195023972070576", "1144511291020453361", "38337497638919397738", "1331709923436162817447" ]
[ "nonn" ]
14
0
3
[ "A290158", "A362835", "A362836" ]
null
Seiichi Manyama, May 05 2023
2025-05-19T05:06:36
oeisdata/seq/A362/A362836.seq
9c3cb46dc09a3ee32898c32b17f44d07
A362837
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = (-1)^n * n! * Sum_{j=0..floor(n/2)} k^(n-j) * Stirling1(n-j,j)/(n-j)!.
[ "1", "1", "0", "1", "0", "0", "1", "0", "2", "0", "1", "0", "4", "3", "0", "1", "0", "6", "12", "20", "0", "1", "0", "8", "27", "112", "90", "0", "1", "0", "10", "48", "324", "960", "594", "0", "1", "0", "12", "75", "704", "4050", "10848", "4200", "0", "1", "0", "14", "108", "1300", "11520", "64962", "141120", "34544", "0", "1", "0", "16", "147", "2160", "26250", "239616", "1224720", "2122496", "316008", "0" ]
[ "nonn", "tabl" ]
17
0
9
[ "A000007", "A053491", "A066166", "A351735", "A362834", "A362837", "A362838" ]
null
Seiichi Manyama, May 05 2023
2023-05-05T12:23:54
oeisdata/seq/A362/A362837.seq
00babdbe7543e2a22517ac82539ee1a7
A362838
a(n) = (-1)^n * n! * Sum_{k=0..floor(n/2)} n^(n-k) * Stirling1(n-k,k)/(n-k)!.
[ "1", "0", "4", "27", "704", "26250", "1573344", "137145120", "16494166016", "2622125642472", "532936224000000", "134858889573071400", "41584752648545107968", "15351240982641183631440", "6684412762278362097401856", "3390180844777789569609375000", "1981175610959755697378851553280" ]
[ "nonn" ]
11
0
3
[ "A362837", "A362838" ]
null
Seiichi Manyama, May 05 2023
2023-05-05T12:23:39
oeisdata/seq/A362/A362838.seq
bf190bf92cf766562c55d9fd6c25ca21
A362839
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/2)} k^(n-j) * Stirling2(n-j,j)/(n-j)!.
[ "1", "1", "0", "1", "0", "0", "1", "0", "2", "0", "1", "0", "4", "3", "0", "1", "0", "6", "12", "16", "0", "1", "0", "8", "27", "80", "65", "0", "1", "0", "10", "48", "216", "560", "336", "0", "1", "0", "12", "75", "448", "2025", "4512", "1897", "0", "1", "0", "14", "108", "800", "5120", "21708", "40768", "11824", "0", "1", "0", "16", "147", "1296", "10625", "67584", "260253", "407808", "80145", "0" ]
[ "nonn", "tabl" ]
17
0
9
[ "A000007", "A052506", "A351736", "A351737", "A356806", "A362652", "A362839" ]
null
Seiichi Manyama, May 05 2023
2023-05-05T12:23:18
oeisdata/seq/A362/A362839.seq
e19ec775b5554d551ee1c6b04f0e2c3f
A362840
a(n) is the smallest number x between 1 and n-1 for which the number 1/x achieves the longest cycle of repeating digits in its expansion in base n.
[ "2", "3", "3", "5", "5", "5", "7", "7", "9", "7", "11", "9", "13", "11", "11", "11", "13", "17", "19", "19", "17", "17", "23", "23", "25", "23", "19", "23", "29", "29", "23", "31", "29", "23", "29", "23", "37", "29", "19", "37", "31", "31", "17", "43", "41", "43", "47", "37", "47", "47", "41", "49", "53", "53", "47", "53", "49", "47", "59", "47", "61", "59", "59", "47", "61", "61", "67", "59", "61", "59" ]
[ "nonn", "base" ]
38
3
1
[ "A051626", "A362840", "A362865" ]
null
Itamar Zamir, May 05 2023
2023-05-12T12:21:12
oeisdata/seq/A362/A362840.seq
fd161ed3aab45a85b9f8cf9be85d4289
A362841
Numbers with at least one 5 in their prime signature.
[ "32", "96", "160", "224", "243", "288", "352", "416", "480", "486", "544", "608", "672", "736", "800", "864", "928", "972", "992", "1056", "1120", "1184", "1215", "1248", "1312", "1376", "1440", "1504", "1568", "1632", "1696", "1701", "1760", "1824", "1888", "1944", "1952", "2016", "2080", "2144", "2208", "2272", "2336", "2400", "2430", "2464", "2528", "2592", "2656", "2673", "2720", "2784", "2848", "2912", "2976" ]
[ "nonn" ]
18
1
1
[ "A038109", "A050997", "A174312", "A176297", "A178740", "A179646", "A179667", "A179671", "A362841" ]
null
R. J. Mathar, May 05 2023
2023-05-05T12:19:35
oeisdata/seq/A362/A362841.seq
38a134c04f82f7378c2bc1eea5f34e51
A362842
a(1) = 1; a(2) = 2; for n > 2, a(n) is the smallest positive number that has not yet appeared that shares a factor with a(n-1) when both a(n-1) and a(n) are read as numbers in bases from one more than the maximum digit in a(n-1) and a(n), up to base 10.
[ "1", "2", "4", "6", "3", "9", "12", "24", "8", "20", "10", "30", "33", "11", "22", "26", "13", "39", "15", "48", "28", "14", "49", "7", "70", "16", "38", "19", "57", "69", "18", "56", "76", "36", "60", "40", "42", "21", "63", "66", "44", "46", "23", "92", "32", "64", "62", "31", "93", "27", "90", "5", "50", "55", "77", "84", "35", "80", "68", "17", "119", "34", "94", "47", "329", "91", "52", "96", "45", "95", "25", "190", "54", "98", "58", "29" ]
[ "nonn", "base" ]
16
1
2
[ "A004053", "A064413", "A337687", "A348086", "A352763", "A354087", "A362842" ]
null
Scott R. Shannon, May 05 2023
2023-05-07T08:29:56
oeisdata/seq/A362/A362842.seq
aa0ad99ca39370a14699c2d90266b9bc
A362843
Numbers that are equal to the sum of their digits raised to consecutive odd numbered powers (1,3,5,7,...).
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "463", "3943", "371915027434113" ]
[ "nonn", "base", "more" ]
34
1
3
[ "A032799", "A154160", "A208130", "A362843" ]
null
Wolfe Padawer, May 05 2023
2025-05-23T10:19:19
oeisdata/seq/A362/A362843.seq
33207b3d69cb4e678c0fbb7c6c5becad
A362844
a(n) is the largest k < A360768(n) such that rad(k) = rad(A360768(n)) and n mod k != 0, where rad(n) = A007947(n).
[ "12", "18", "24", "36", "40", "48", "54", "45", "50", "60", "72", "56", "80", "96", "98", "90", "84", "75", "108", "63", "120", "100", "144", "126", "150", "147", "162", "112", "132", "160", "192", "196", "135", "156", "180", "176", "175", "200", "168", "198", "240", "216", "252", "270", "204", "234", "250", "288", "294", "208", "228", "280", "242", "300", "297", "225", "336", "324", "224", "264", "320", "375", "306", "276" ]
[ "nonn" ]
8
1
1
[ "A007947", "A126706", "A360768", "A362041", "A362844" ]
null
Michael De Vlieger, May 19 2023
2023-05-20T15:05:09
oeisdata/seq/A362/A362844.seq
79a03ecfba73fbaadd25dbec63e41352
A362845
Number of divisors of 7*n-2 of form 7*k+1.
[ "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "2", "1", "2", "1", "1", "1", "1", "2", "2", "1", "1", "1", "3", "1", "1", "1", "2", "2", "1", "1", "1", "1", "2", "1", "3", "1", "1", "3", "1", "1", "1", "1", "3", "1", "1", "1", "2", "2", "1", "1", "2", "1", "3", "1", "1", "1", "2", "2", "3", "1", "1", "1", "2", "1", "1", "1", "2", "3", "1", "1", "2", "1", "2", "1", "2", "2", "1", "2", "2", "1", "1", "1", "5", "1", "1", "1", "1", "2", "1", "1", "2", "1", "2", "1", "3", "1", "1" ]
[ "nonn" ]
33
1
6
[ "A279061", "A362845", "A363807" ]
null
Seiichi Manyama, Jun 24 2023
2023-06-25T10:39:33
oeisdata/seq/A362/A362845.seq
709a29f8812dc60e94af4921bf050e0b
A362846
a(n) = Sum_{k=0..n-1} Gamma(n + k) / Gamma(n - k) for n > 0, a(0) = 1. Row sums of A362787.
[ "1", "1", "3", "31", "853", "45741", "4012711", "520795003", "93651619881", "22275111534553", "6768744159489931", "2557808459478878871", "1176328664895760953853", "646871036386631296664581", "419117251302784557222893103", "315981471063390925577186307571", "274248897723749542494288034278481" ]
[ "nonn" ]
9
0
3
[ "A362787", "A362846" ]
null
Peter Luschny, May 05 2023
2023-05-05T07:47:08
oeisdata/seq/A362/A362846.seq
10c32945cb5b2533b5f9769ef639556c
A362847
Triangle read by rows, T(n, k) = 4^k * Gamma(n + k + 1/2) / Gamma(n - k + 1/2).
[ "1", "1", "3", "1", "15", "105", "1", "35", "945", "10395", "1", "63", "3465", "135135", "2027025", "1", "99", "9009", "675675", "34459425", "654729075", "1", "143", "19305", "2297295", "218243025", "13749310575", "316234143225", "1", "195", "36465", "6235515", "916620705", "105411381075", "7905853580625", "213458046676875" ]
[ "nonn", "tabl" ]
13
0
3
[ "A000466", "A101485", "A362847", "A362848" ]
null
Peter Luschny, May 05 2023
2023-10-09T14:30:10
oeisdata/seq/A362/A362847.seq
0d4f40b78e6f0e0d8e4638f853fe59e6
A362848
a(n) = Sum_{k=0..n} 4^k * Gamma(n + k + 1/2) / Gamma(n - k + 1/2). Row sums of A362847.
[ "1", "4", "121", "11376", "2165689", "689873284", "330204013569", "221470234531456", "198160750081637521", "228040136335670652324", "328106086348844570538409", "577082259304437657893671984", "1218130815379359944856599793801", "3039062974890293661892991548863076" ]
[ "nonn" ]
14
0
2
[ "A362847", "A362848" ]
null
Peter Luschny, May 05 2023
2023-10-09T14:30:14
oeisdata/seq/A362/A362848.seq
02a6a9dd8b54731ea7c64b3fa72c641a
A362849
Triangle read by rows, T(n, k) = A243664(n) * binomial(n, k).
[ "1", "1", "1", "21", "42", "21", "1849", "5547", "5547", "1849", "426405", "1705620", "2558430", "1705620", "426405", "203374081", "1016870405", "2033740810", "2033740810", "1016870405", "203374081", "173959321557", "1043755929342", "2609389823355", "3479186431140", "2609389823355", "1043755929342", "173959321557" ]
[ "nonn", "tabl" ]
6
0
4
[ "A055372", "A243664", "A278073", "A362585", "A362586", "A362849" ]
null
Peter Luschny, May 05 2023
2023-05-10T11:50:15
oeisdata/seq/A362/A362849.seq
130f502d305decfd5eaa624123f49d02
A362850
Positions of records in A194943.
[ "2", "3", "5", "7", "11", "13", "19", "31", "47", "61", "127", "139", "193", "229", "283", "337", "409", "461", "1531", "1847", "2129", "2861", "4177", "6037", "7577", "8207", "8941", "12311", "22133", "32647", "38231", "40247", "40951", "47903", "52153", "63031", "84229", "93241", "97259", "116729", "124183", "132331" ]
[ "nonn", "more" ]
12
1
1
[ "A194943", "A362850", "A362851" ]
null
R. J. Mathar, May 05 2023
2023-05-19T04:12:55
oeisdata/seq/A362/A362850.seq
0dee3e3ec87330da8c5185c88f009453
A362851
Records in A194943.
[ "1", "2", "3", "4", "6", "7", "10", "18", "20", "24", "29", "34", "36", "40", "46", "51", "58", "81", "87", "89", "103", "107", "120", "121", "135", "136", "150", "174", "181", "189", "193", "196", "203", "204", "208", "210", "225", "230", "233", "240", "244", "268" ]
[ "nonn", "more" ]
11
1
2
[ "A194943", "A362850", "A362851" ]
null
R. J. Mathar, May 05 2023
2023-05-19T04:13:04
oeisdata/seq/A362/A362851.seq
730cc5231b84a13a38249bb3be2ab7e0
A362852
The number of divisors of n that are both bi-unitary and exponential.
[ "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "mult" ]
10
1
8
[ "A000005", "A004709", "A049419", "A061704", "A188999", "A222266", "A286324", "A304327", "A307428", "A322791", "A359411", "A362852", "A362853", "A362854" ]
null
Amiram Eldar, May 05 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362852.seq
57de33fa833b4f171c7a36710f43edfe
A362853
Numbers with a record number of divisors that are both bi-unitary and exponential.
[ "1", "8", "64", "216", "1728", "27000", "46656", "110592", "216000", "2985984", "5832000", "13824000", "74088000", "373248000", "2000376000", "4741632000", "46656000000", "98611128000", "128024064000", "2662500456000", "6311112192000", "16003008000000", "93329542656000", "170400029184000", "5489031744000000" ]
[ "nonn" ]
11
1
2
[ "A025487", "A293185", "A318278", "A362852", "A362853" ]
null
Amiram Eldar, May 05 2023
2025-04-22T21:55:47
oeisdata/seq/A362/A362853.seq
41a842cc23e41cc54f43aedac738ac2d
A362854
The sum of the divisors of n that are both bi-unitary and exponential.
[ "1", "2", "3", "4", "5", "6", "7", "10", "9", "10", "11", "12", "13", "14", "15", "18", "17", "18", "19", "20", "21", "22", "23", "30", "25", "26", "30", "28", "29", "30", "31", "34", "33", "34", "35", "36", "37", "38", "39", "50", "41", "42", "43", "44", "45", "46", "47", "54", "49", "50", "51", "52", "53", "60", "55", "70", "57", "58", "59", "60", "61", "62", "63", "70", "65", "66", "67", "68" ]
[ "nonn", "mult" ]
7
1
2
[ "A002110", "A004709", "A051377", "A082020", "A115964", "A188999", "A222266", "A322791", "A361810", "A362852", "A362854" ]
null
Amiram Eldar, May 05 2023
2023-05-05T12:54:13
oeisdata/seq/A362/A362854.seq
4f7d780588f6e1d8aa7dd80c8c6e2376
A362855
a(n) = n for n <= 3; for n > 3, a(n) is the least novel multiple of k, the product of all distinct prime factors of a(n-2) that do not divide a(n-1).
[ "1", "2", "3", "4", "6", "5", "12", "10", "9", "20", "15", "8", "30", "7", "60", "14", "45", "28", "75", "42", "25", "84", "35", "18", "70", "21", "40", "63", "50", "105", "16", "210", "11", "420", "22", "315", "44", "525", "66", "140", "33", "280", "99", "350", "132", "175", "198", "245", "264", "385", "24", "770", "27", "1540", "36", "1155", "26", "2310", "13", "4620", "39", "3080", "78", "1925", "156", "2695", "234", "3465", "52", "5775" ]
[ "nonn" ]
22
1
2
[ "A002110", "A007947", "A280866", "A306237", "A362631", "A362855", "A368133", "A369825" ]
null
Michael De Vlieger and David James Sycamore, May 06 2023
2025-06-21T00:41:33
oeisdata/seq/A362/A362855.seq
be09eba09ec0bc92ccb9a8b31f37cb2f
A362856
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} (-k)^(n-j) * j^j * binomial(n,j).
[ "1", "1", "1", "1", "0", "4", "1", "-1", "3", "27", "1", "-2", "4", "17", "256", "1", "-3", "7", "7", "169", "3125", "1", "-4", "12", "-9", "120", "2079", "46656", "1", "-5", "19", "-37", "121", "1373", "31261", "823543", "1", "-6", "28", "-83", "208", "797", "21028", "554483", "16777216", "1", "-7", "39", "-153", "441", "21", "14517", "373931", "11336753", "387420489" ]
[ "sign", "tabl" ]
17
0
6
[ "A000312", "A069856", "A290158", "A362019", "A362856", "A362857", "A362858" ]
null
Seiichi Manyama, May 05 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362856.seq
e0393dfe905e148fa95ff87fc20d1e2c
A362857
Expansion of e.g.f. exp(-2*x) / (1 + LambertW(-x)).
[ "1", "-1", "4", "7", "120", "1373", "21028", "373931", "7670736", "178064281", "4615519884", "132139421423", "4141235867992", "141016013784917", "5184372688776180", "204668397165154867", "8635388122600110240", "387787185320578895537", "18467131524896950511644" ]
[ "sign" ]
16
0
3
[ "A362856", "A362857", "A362859" ]
null
Seiichi Manyama, May 05 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362857.seq
e651a4873c36d7297076dc75d944f47c
A362858
Expansion of e.g.f. exp(-3*x) / (1 + LambertW(-x)).
[ "1", "-2", "7", "-9", "121", "797", "14517", "251521", "5199313", "120881133", "3139282909", "90010844657", "2824532243001", "96284834673349", "3543187673495269", "139992580020525993", "5910844405813258273", "265606657711863337181", "12655895981349401656749" ]
[ "sign" ]
12
0
2
[ "A362856", "A362858", "A362860" ]
null
Seiichi Manyama, May 05 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362858.seq
5f49b9a52b89e9df0b1ca3ce082c6d70
A362859
Expansion of e.g.f. exp(-x) / (1 + LambertW(-2*x)).
[ "1", "1", "13", "173", "3321", "81529", "2443333", "86475493", "3529941873", "163260749681", "8437633695741", "481912844592541", "30142773978386281", "2049173019206244073", "150443505029536707381", "11862692305729094644949", "999864950902004743707873", "89709634016056661732903137" ]
[ "nonn", "easy" ]
14
0
3
[ "A062971", "A362019", "A362857", "A362859" ]
null
Seiichi Manyama, May 05 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362859.seq
b090c7dbcd73d05facd90644e8e8b952
A362860
Expansion of e.g.f. exp(-x) / (1 + LambertW(-3*x)).
[ "1", "2", "31", "629", "18025", "662639", "29752957", "1578248867", "96577834801", "6696994946543", "518978239136341", "44448540938239811", "4169223860364566857", "425060509005908328071", "46801425208023247277965", "5534686715620432932442619", "699654866766940182167273185" ]
[ "nonn", "easy" ]
13
0
2
[ "A091482", "A362019", "A362858", "A362860" ]
null
Seiichi Manyama, May 05 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362860.seq
10dcc5c86e1cf393a19e08a58c0f1835
A362861
Positive integers n such that 2*n cannot be written as a sum of distinct elements of the set {5^a + 5^b: a,b = 0,1,2,...}.
[ "2", "7", "10", "11", "12", "27", "35", "50", "51", "52", "55", "60", "135", "255" ]
[ "nonn", "more" ]
12
1
1
[ "A055235", "A055237", "A226809", "A226816", "A362743", "A362861" ]
null
Zhi-Wei Sun, May 05 2023
2023-05-16T16:12:38
oeisdata/seq/A362/A362861.seq
75fa643de50f7bf60fc1fa2a508baa71
A362862
a(n) = (-1)^n * Sum_{k=0..n} (-n*k)^k * binomial(n,k).
[ "1", "0", "13", "629", "58993", "8998399", "2035844461", "640881617123", "267995012680641", "143734541641235567", "96200314049944377901", "78599287990433271805699", "76993408916168689318057201", "89072357257840197226050646151" ]
[ "nonn" ]
11
0
3
[ "A290158", "A362019", "A362862" ]
null
Seiichi Manyama, May 06 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362862.seq
9082795b8898ea0baa8e6523affaff5a
A362863
Centered hecatonicosachoral numbers.
[ "1", "1441", "11521", "44641", "122401", "273601", "534241", "947521", "1563841", "2440801", "3643201", "5243041", "7319521", "9959041", "13255201", "17308801", "22227841", "28127521", "35130241", "43365601", "52970401", "64088641", "76871521", "91477441", "108072001", "126828001", "147925441", "171551521", "197900641" ]
[ "nonn", "easy" ]
31
1
2
[ "A005891", "A005904", "A006322", "A151989", "A362863" ]
null
Léo Cymrot Cymbalista, May 06 2023
2023-08-06T17:48:46
oeisdata/seq/A362/A362863.seq
30aa3a60a977d59b0823d151c3326cac
A362864
Numbers k that divide Sum_{i=1..k} (i - d(i)), where d(n) is the number of divisors of n (A000005).
[ "1", "2", "5", "8", "15", "24", "26", "47", "121", "204", "347", "562", "4204", "6937", "6947", "31108", "379097", "379131", "379133", "2801205", "12554202", "20698345", "56264197", "13767391064", "37423648626", "37423648726", "61701166395", "276525443156", "276525443176", "455913379395", "455913379831", "751674084802" ]
[ "nonn" ]
46
1
2
[ "A000005", "A000217", "A006218", "A049820", "A050226", "A161664", "A362864" ]
null
Ctibor O. Zizka, May 06 2023
2023-05-28T11:17:26
oeisdata/seq/A362/A362864.seq
7195e35629568853eff89a8e6dce26f0
A362865
a(n) is the length of the longest possible cycle of repeating digits in the digits expansion of 1/x, in base n, among all numbers x between 1 and n-1.
[ "1", "1", "2", "1", "4", "4", "3", "6", "6", "6", "10", "6", "12", "5", "10", "10", "12", "16", "18", "18", "16", "16", "11", "11", "20", "22", "18", "22", "28", "28", "22", "30", "14", "11", "28", "22", "36", "28", "18", "36", "30", "30", "16", "42", "40", "42", "23", "36", "23", "46", "40", "42", "52", "52", "46", "52", "42", "46", "58", "46", "60", "29", "58", "46", "60", "60", "66", "58", "60" ]
[ "nonn", "base" ]
29
3
3
[ "A051626", "A362840", "A362865" ]
null
Itamar Zamir, May 06 2023
2023-05-12T12:21:07
oeisdata/seq/A362/A362865.seq
68f45dbc6dbbfc9088317648e2a5e733
A362866
Numbers k with the property that the parts of the symmetric representation of sigma(k) are two octagons.
[ "10", "14", "22", "26", "34", "38", "46", "58", "62", "74", "82", "86", "94", "106", "118", "122", "134", "142", "146", "158", "166", "178", "194", "202", "206", "214", "218", "226", "254", "262", "274", "278", "298", "302", "314", "326", "334", "346", "358", "362", "382", "386", "394", "398", "422", "446", "454", "458", "466", "478", "482", "502", "514", "526" ]
[ "nonn" ]
79
1
1
[ "A000203", "A001747", "A063221", "A065091", "A091999", "A100484", "A196020", "A235791", "A236104", "A237048", "A237270", "A237271", "A237591", "A237593", "A239929", "A241008", "A245092", "A246955", "A249223", "A249351", "A262626", "A362866", "A364414", "A364639", "A365081" ]
null
Omar E. Pol, May 06 2023
2023-09-03T10:52:20
oeisdata/seq/A362/A362866.seq
fffec24a1c781f1e60173863c264b79b
A362867
Irregular triangle read by rows; the n-th row is the n-th permutation of 0 to infinity, in reversed colexicographic ordering, terminating when the rest of the row equals k.
[ "0", "1", "0", "0", "2", "1", "2", "0", "1", "1", "2", "0", "2", "1", "0", "0", "1", "3", "2", "1", "0", "3", "2", "0", "3", "1", "2", "3", "0", "1", "2", "1", "3", "0", "2", "3", "1", "0", "2", "0", "2", "3", "1", "2", "0", "3", "1", "0", "3", "2", "1", "3", "0", "2", "1", "2", "3", "0", "1", "3", "2", "0", "1", "1", "2", "3", "0", "2", "1", "3", "0", "1", "3", "2", "0", "3", "1", "2", "0", "2", "3", "1", "0", "3", "2", "1", "0" ]
[ "nonn", "tabf" ]
26
0
5
[ "A055089", "A084558", "A353962", "A362867" ]
null
Davis Smith, May 06 2023
2023-07-15T06:09:32
oeisdata/seq/A362/A362867.seq
04b81c5f121454ea2e8bf254cdc6f47a
A362868
Triangle read by rows: T(n,k) is the number of connected simple graphs G of order n with the property that k is the order of the largest quotient graph G/~ that is a complete graph. 1 <= k <= n.
[ "1", "0", "1", "0", "1", "1", "0", "1", "4", "1", "0", "1", "12", "7", "1", "0", "1", "23", "75", "12", "1", "0", "1", "24", "481", "329", "17", "1" ]
[ "nonn", "tabl", "hard", "more" ]
19
1
9
[ "A001349", "A362868" ]
null
Peter Kagey, May 06 2023
2024-04-02T14:34:53
oeisdata/seq/A362/A362868.seq
211ef7f2f56326bb149833c966c90f2a
A362869
a(n) is equal to the number of cells in one octant of the octagon of unit squares with side equal n.
[ "1", "2", "8", "11", "22", "27", "43", "50", "71", "80", "106", "117", "148", "161", "197", "212", "253", "270", "316", "335", "386", "407", "463", "486", "547", "572", "638", "665", "736", "765", "841", "872", "953", "986", "1072", "1107", "1198", "1235", "1331", "1370", "1471", "1512", "1618", "1661", "1772", "1817", "1933", "1980", "2101", "2150", "2276" ]
[ "nonn", "easy" ]
59
1
2
[ "A000217", "A002620", "A362869" ]
null
Anatoliy A. Abramov, May 07 2023
2023-10-16T06:08:17
oeisdata/seq/A362/A362869.seq
40a2d3c2e2ec1eedbcf5c0fc279e4e53
A362870
a(n) = sigma_29(n), the sum of the 29th powers of the divisors of n.
[ "1", "536870913", "68630377364884", "288230376688582657", "186264514923095703126", "36845653355419807219092", "3219905755813179726837608", "154742505198902911050973185", "4710128697246313465298968573", "100000000186264514923632574038", "1586309297171491574414436704892" ]
[ "nonn", "easy", "mult" ]
45
1
2
[ "A000203", "A001160", "A013957", "A013961", "A013965", "A013969", "A016825", "A075180", "A082771", "A281959", "A358625", "A362870" ]
null
Vaclav Kotesovec, May 07 2023
2025-01-15T03:00:17
oeisdata/seq/A362/A362870.seq
c1cbb4752cf3024289143b465e111af2
A362871
Leading digit of 6^n.
[ "1", "6", "3", "2", "1", "7", "4", "2", "1", "1", "6", "3", "2", "1", "7", "4", "2", "1", "1", "6", "3", "2", "1", "7", "4", "2", "1", "1", "6", "3", "2", "1", "7", "4", "2", "1", "1", "6", "3", "2", "1", "8", "4", "2", "1", "1", "6", "3", "2", "1", "8", "4", "2", "1", "1", "6", "3", "2", "1", "8", "4", "2", "1", "1", "6", "3", "2", "1", "8", "4", "2", "1", "1", "6", "3", "2", "1", "8", "4", "2", "1", "1", "6", "3", "2", "1", "8", "5", "3", "1", "1", "6", "3", "2", "1", "8", "5", "3", "1", "1", "6" ]
[ "nonn", "base", "easy" ]
34
0
2
[ "A000030", "A000400", "A008567", "A008952", "A060956", "A111395", "A362871", "A363093", "A363249", "A364185" ]
null
Seiichi Manyama, Jul 15 2023
2023-07-15T14:02:38
oeisdata/seq/A362/A362871.seq
5b4bc7e347058800c022da2decf35604
A362872
Length of the "fractional part" of the phi-representation of n.
[ "0", "0", "2", "2", "2", "4", "4", "4", "4", "4", "4", "4", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "10", "10", "10", "10", "10", "10", "10" ]
[ "nonn" ]
7
0
3
[ "A341722", "A362692", "A362872" ]
null
Jeffrey Shallit, May 07 2023
2025-01-05T19:51:42
oeisdata/seq/A362/A362872.seq
3508b8b806bb997bd9cb136952a750ad
A362873
a(n) is the number of points with integer coordinates that are inside an equilateral triangle inscribed in a circle of radius n, the location of the triangle in the Oxy coordinate plane is described in the comments.
[ "1", "4", "12", "17", "33", "42", "64", "77", "105", "122", "158", "177", "219", "242", "292", "319", "375", "406", "470", "503", "573", "610", "688", "729", "813", "856", "948", "995", "1093", "1144", "1248", "1303", "1415", "1472", "1592", "1653", "1779", "1844", "1976", "2045", "2185", "2256", "2402", "2477", "2631", "2710", "2870", "2951", "3119", "3204", "3378", "3467", "3649" ]
[ "nonn" ]
23
1
2
[ "A183143", "A194106", "A362873" ]
null
Nicolay Avilov, May 07 2023
2023-07-15T06:30:51
oeisdata/seq/A362/A362873.seq
ecdf36dbed64787b54499b2b718369d9
A362874
Number of strongly magic quad squares that can be formed using cards from Quads-2^n deck.
[ "322560", "19998720", "839946240", "30478049280", "1036253675520", "34162943754240", "1109482268590080", "35765515020533760", "1148704188306554880", "36825972627862978560", "1179511064637886955520", "37761640503165258301440", "1208649138156256509296640", "38681199166714368680263680" ]
[ "nonn", "easy" ]
31
4
1
[ "A308436", "A361495", "A361613", "A362874", "A362963", "A362964" ]
null
Tanya Khovanova and MIT PRIMES STEP senior group, May 07 2023
2023-08-09T17:28:54
oeisdata/seq/A362/A362874.seq
85bc1325aa36dad3662832e0ae3d5016
A362875
Theta series of 15-dimensional lattice Kappa_15.
[ "1", "0", "1746", "21456", "147150", "607536", "2036334", "5410800", "13282866", "27563184", "56679732", "102040272", "184563384", "302221728", "504866340", "763016400", "1202127174", "1728479808", "2575653198", "3561176016", "5127122304", "6797385072", "9531403128", "12329627616", "16701654486", "21199654080" ]
[ "nonn" ]
21
0
3
[ "A029897", "A047628", "A362875", "A362876", "A362877", "A362878", "A362879", "A362880" ]
null
Andy Huchala, May 07 2023
2023-05-13T01:58:00
oeisdata/seq/A362/A362875.seq
9564bfa155ed0eb026e3175642b3abd9
A362876
Theta series of 16-dimensional lattice Kappa_16.
[ "1", "0", "2772", "42624", "335052", "1545984", "5698860", "16297344", "42785244", "94440960", "204094296", "385391232", "730053060", "1240934400", "2151268128", "3374469504", "5476016700", "8115545088", "12477938100", "17677480320", "26111897640", "35570481408", "50909418000", "67336722432", "93433877268" ]
[ "nonn" ]
17
0
3
[ "A029897", "A047628", "A362875", "A362876", "A362877", "A362878", "A362879", "A362880" ]
null
Andy Huchala, May 07 2023
2023-05-10T05:19:04
oeisdata/seq/A362/A362876.seq
b1d2d5d15c2dfa7e218839054274816c
A362877
Theta series of 17-dimensional lattice Kappa_17.
[ "1", "0", "4266", "81792", "737862", "3809280", "15406210", "47505792", "133390290", "312588288", "711232812", "1408787328", "2789963820", "4931371008", "8870944884", "14417119872", "24144502662", "36878456832", "58393537998", "84926534016" ]
[ "nonn" ]
15
0
3
[ "A029897", "A047628", "A362875", "A362876", "A362877", "A362878", "A362879", "A362880" ]
null
Andy Huchala, May 07 2023
2023-05-10T05:19:38
oeisdata/seq/A362/A362877.seq
8fc90b98f1eafede6663aa07dece65d2
A362878
Theta series of 18-dimensional lattice Kappa_18.
[ "1", "0", "6480", "157680", "1596510", "9488016", "40681440", "140492880", "406046520", "1047312720", "2426695200", "5208293520", "10421250750", "19873356480", "35716191840", "62355291696", "104234541390", "169488573120", "267064691760", "413777075760", "619573504896", "920235334320", "1331744781600" ]
[ "nonn" ]
16
0
3
[ "A029897", "A047628", "A362875", "A362876", "A362877", "A362878", "A362879", "A362880" ]
null
Andy Huchala, May 08 2023
2023-05-13T01:57:14
oeisdata/seq/A362/A362878.seq
8fac384229d0fac55929763b200121de
A362879
Theta series of 19-dimensional lattice Kappa_19.
[ "1", "0", "9396", "284528", "3309660", "21996036", "103632480", "384538752", "1195104618", "3253783500", "7971340896", "17905302720", "37530681590", "74139276672", "139067432280", "250102136592", "433070833500", "724358442744", "1178016364548", "1866143480400", "2883345017508", "4367172766500" ]
[ "nonn" ]
24
0
3
[ "A029897", "A047628", "A362875", "A362876", "A362877", "A362878", "A362879", "A362880" ]
null
Andy Huchala, May 08 2023
2023-05-13T01:57:04
oeisdata/seq/A362/A362879.seq
83c3e29bb9fd280dafd90bfe3d40d54f
A362880
Theta series of 20-dimensional lattice Kappa_20.
[ "1", "0", "15390", "575160", "7712820", "57281580", "296150580", "1184012640", "3944197800", "11364334080", "29395745478", "69157229760", "151652810580", "311116423500", "607158951120", "1127694969072", "2020055770530", "3478103852940", "5829999042420", "9467119804680", "15046034533560" ]
[ "nonn" ]
15
0
3
[ "A029897", "A047628", "A362875", "A362876", "A362877", "A362878", "A362879", "A362880" ]
null
Andy Huchala, May 08 2023
2023-05-13T01:56:41
oeisdata/seq/A362/A362880.seq
7eca6d674d40f1f24a202eceed877ea7
A362881
a(n) is the length of the longest arithmetic progression ending at a(n-1); a(1)=1.
[ "1", "1", "2", "2", "2", "3", "3", "3", "3", "4", "4", "4", "3", "2", "3", "2", "3", "3", "3", "4", "3", "5", "4", "3", "4", "3", "3", "5", "3", "3", "6", "3", "3", "7", "4", "3", "8", "5", "3", "9", "6", "4", "3", "3", "3", "7", "3", "3", "4", "3", "4", "3", "4", "3", "6", "3", "5", "3", "6", "2", "3", "4", "3", "7", "3", "5", "3", "4", "3", "5", "3", "6", "4", "3", "4", "3", "6", "3", "6", "4", "3", "5", "3", "5", "3", "4", "3" ]
[ "nonn" ]
43
1
3
[ "A308638", "A362881", "A362909" ]
null
Samuel Harkness, May 07 2023
2024-01-06T10:19:16
oeisdata/seq/A362/A362881.seq
156a1a35d1dd523de3ddc98d347d7c3a
A362882
Number of even numbers generated by adding two distinct odd primes <= prime(n+1).
[ "0", "1", "3", "6", "8", "11", "14", "17", "20", "25", "28", "33", "37", "40", "44", "47", "53", "57", "62", "66", "70", "75", "79", "85", "89", "93", "98", "102", "106", "113", "117", "122", "129", "134", "140", "145", "150", "157", "161", "166", "172", "176", "181", "186", "191", "196", "202", "210", "214", "221", "225", "230", "236", "241", "245", "248", "256", "264" ]
[ "nonn" ]
28
1
3
[ "A083060", "A362882" ]
null
Kshitij Thakkar and Gargee Girdhari, May 07 2023
2023-05-15T21:50:10
oeisdata/seq/A362/A362882.seq
5431012a224ae5042f598c0b10b5fdc4
A362883
a(n) = A055498(n) - A055500(n).
[ "-1", "0", "0", "0", "0", "4", "6", "12", "24", "42", "68", "122", "208", "336", "552", "904", "1464", "2378", "3848", "6232", "10090", "16338", "26446", "42802", "69252", "112072", "181332", "293412", "474762", "768190", "1242960", "2011162", "3254150", "5265324", "8519478", "13784866", "22304378", "36089262", "58393658", "94482964", "152876664" ]
[ "sign" ]
46
0
6
[ "A001622", "A055498", "A055500", "A362883" ]
null
Philip Baciaz, May 07 2023
2024-05-19T02:33:22
oeisdata/seq/A362/A362883.seq
2eccd28991dd87519b5fffbc8de76a61
A362884
a(n) = (a(n-1)*a(n-2)*a(n-3)+64)/(4*a(n-4)) with a(0) = a(2) = a(3) = 2 and a(1) = 16.
[ "2", "16", "2", "2", "16", "2", "16", "72", "37", "5336", "222112", "152263946", "1219335473828432", "1932041718420459629645062", "403742785702569426305018937234491996105486", "1561663327784579146423924791055619905538560428937482474084426146608982032" ]
[ "nonn" ]
17
0
1
[ "A276175", "A362884" ]
null
Max Alekseyev, May 07 2023
2025-03-27T05:43:36
oeisdata/seq/A362/A362884.seq
efd7df0cb46af3ca4db342c28cfa1b64
A362885
Array read by ascending antidiagonals: A(n, k) = (1 + 2*n)*k^n.
[ "1", "0", "1", "0", "3", "1", "0", "5", "6", "1", "0", "7", "20", "9", "1", "0", "9", "56", "45", "12", "1", "0", "11", "144", "189", "80", "15", "1", "0", "13", "352", "729", "448", "125", "18", "1", "0", "15", "832", "2673", "2304", "875", "180", "21", "1", "0", "17", "1920", "9477", "11264", "5625", "1512", "245", "24", "1", "0", "19", "4352", "32805", "53248", "34375", "11664", "2401", "320", "27", "1" ]
[ "nonn", "tabl" ]
8
0
5
[ "A000007", "A000012", "A004248", "A005408", "A008585", "A014480", "A033429", "A058962", "A124647", "A155988", "A171220", "A176043", "A199299", "A199300", "A199301", "A244727", "A362885", "A362886" ]
null
Stefano Spezia, May 08 2023
2023-05-20T16:08:42
oeisdata/seq/A362/A362885.seq
2873aee90c5aee7f2e1ba0ee7a83f8c5
A362886
Antidiagonal sums of A362885.
[ "1", "1", "4", "12", "37", "123", "440", "1686", "6901", "30085", "139212", "681336", "3515397", "19064135", "108370384", "644142962", "3994439189", "25789465377", "173033812804", "1204425693988", "8683782562597", "64757730613875", "498827437211176", "3964154812486062", "32463601480302005", "273670283527555869" ]
[ "nonn" ]
4
0
3
[ "A362885", "A362886" ]
null
Stefano Spezia, May 08 2023
2023-05-20T16:08:55
oeisdata/seq/A362/A362886.seq
aa47319edb7e23770452b61dfaa221cc
A362887
a(0) = 0; for n>=1, a(n) is the smallest number whose Hamming distance from a(n-1) is prime(n).
[ "0", "3", "4", "27", "100", "1947", "6244", "124827", "399460", "7989147", "528881764", "1618601883", "135820351588", "2063202903963", "6732890118244", "134004598237083", "8873194656503908", "567587557646919579", "1738255451566774372", "145835697138109638555", "2215347544296712968292" ]
[ "nonn", "base" ]
15
0
2
[ "A000040", "A000975", "A362887" ]
null
Zachary G. Graham, May 08 2023
2023-05-23T11:35:16
oeisdata/seq/A362/A362887.seq
e57ffa7cdc6d436a2688fdd55a5dcb15
A362888
a(1) = 1, a(n) = (3*k + 1)*(6*k + 1)*(8*k + 1), where k = Product_{i=1..n-1} a(i).
[ "1", "252", "2310152797", "28410981127871160285705816883937448685" ]
[ "nonn" ]
6
1
2
[ "A002412", "A360826", "A362888" ]
null
Ivan N. Ianakiev, May 08 2023
2023-05-20T16:09:38
oeisdata/seq/A362/A362888.seq
9e3bab7106414c03ef9451de1545f33c
A362889
a(n) = n for n <= 2. Let i = a(n-2), j = a(n-1), q = gpd(i*j) = prime(s), and k = product of all distinct primes < q which do not divide i*j. For n > 2 a(n) is the least novel multiple of either k (if k is not the empty product), or of prime(s+1) if it is.
[ "1", "2", "3", "5", "4", "6", "10", "7", "9", "20", "14", "12", "15", "21", "8", "25", "18", "28", "30", "11", "35", "24", "22", "70", "27", "33", "140", "13", "66", "105", "26", "44", "210", "39", "55", "42", "52", "110", "63", "65", "88", "84", "40", "77", "36", "45", "49", "16", "60", "56", "99", "50", "91", "132", "75", "98", "121", "90", "112", "143", "120" ]
[ "nonn" ]
12
1
2
[ "A002110", "A007947", "A362889" ]
null
David James Sycamore, May 08 2023
2023-06-23T07:51:11
oeisdata/seq/A362/A362889.seq
a0e1f3079d5a478c3924066668c793e8
A362890
a(1)=a(2)=1. For n>2, a(n) is the number of times that a(n-1) and a(n-2) are adjacent in the sequence thus far (in any order).
[ "1", "1", "1", "2", "1", "2", "3", "1", "1", "3", "2", "2", "1", "4", "1", "2", "5", "1", "1", "4", "3", "1", "3", "4", "2", "1", "6", "1", "2", "7", "1", "1", "5", "2", "2", "2", "3", "3", "1", "5", "3", "1", "6", "3", "1", "7", "2", "2", "4", "2", "3", "4", "3", "4", "5", "1", "4", "4", "1", "5", "5", "1", "6", "4", "1", "6", "5", "1", "7", "3", "1", "8", "1", "2", "8", "1", "3", "9", "1", "1", "6", "6", "1", "7", "4", "1" ]
[ "nonn" ]
21
1
4
[ "A362746", "A362890" ]
null
Neal Gersh Tolunsky, May 08 2023
2023-05-10T22:39:08
oeisdata/seq/A362/A362890.seq
d42a9d18f9e23426701fae4acc3f25bf
A362891
Expansion of e.g.f. 1/(1 + LambertW(x^2 * log(1-x))).
[ "1", "0", "0", "6", "12", "40", "1620", "11088", "80640", "2289600", "30471840", "374663520", "9819817920", "195106129920", "3507260492736", "95860364846400", "2466492401318400", "58909563259223040", "1775000008437557760", "54856736708999339520", "1629826915777548364800" ]
[ "nonn" ]
11
0
4
[ "A305981", "A353228", "A362835", "A362891", "A362892" ]
null
Seiichi Manyama, May 08 2023
2025-02-16T08:34:05
oeisdata/seq/A362/A362891.seq
fa28cebdc9475bbb73864e89b6777f81
A362892
Expansion of e.g.f. 1/(1 + LambertW(-x^2 * (exp(x) - 1))).
[ "1", "0", "0", "6", "12", "20", "1470", "10122", "47096", "1814472", "25119450", "226527950", "6732015972", "142901684796", "2071229736758", "57596022404130", "1589579741044080", "32832196825559312", "951335638952843826", "31043287459520549910", "838738470701197009820" ]
[ "nonn" ]
14
0
4
[ "A240989", "A282190", "A362836", "A362891", "A362892" ]
null
Seiichi Manyama, May 08 2023
2025-05-19T03:07:19
oeisdata/seq/A362/A362892.seq
80f0d3ea62f5be385a4713074e57e3aa
A362893
Number of partitions of [n] whose blocks can be ordered such that the i-th block has at least i elements and no block j > i has an element smaller than the i-th smallest element of block i.
[ "1", "1", "1", "2", "5", "12", "28", "69", "193", "614", "2103", "7359", "25660", "88914", "309502", "1102146", "4092840", "16046224", "66410789", "286905421", "1273646720", "5729762139", "25881820352", "116872997038", "527375160184", "2384407416357", "10856086444051", "50097994816979", "235937202788389" ]
[ "nonn" ]
13
0
4
[ "A000110", "A362549", "A362635", "A362893" ]
null
Alois P. Heinz, May 08 2023
2023-05-09T20:16:06
oeisdata/seq/A362/A362893.seq
f5ea8fbc367a354b092f1ee0e82d201d
A362894
Triangle read by rows: T(n,k) is the number of simple connected graphs on n unlabeled nodes having Hadwiger number k, 1 <= k <= n.
[ "1", "0", "1", "0", "1", "1", "0", "2", "3", "1", "0", "3", "12", "5", "1", "0", "6", "50", "47", "8", "1", "0", "11", "230", "448", "152", "11", "1" ]
[ "nonn", "tabl", "hard", "more" ]
27
1
8
[ "A000055", "A001349", "A024206", "A032766", "A084269", "A353212", "A362894" ]
null
Peter Kagey, May 08 2023
2025-06-18T23:17:59
oeisdata/seq/A362/A362894.seq
75f7c67ed8e1ebf797cc286fc16a9b35
A362895
a(n) is the length of the smallest orbit of the n-th natural downset
[ "1", "1", "1", "1", "1", "3", "3", "1", "1", "4", "12", "12", "6", "6", "4", "1", "1", "5", "20", "30", "30", "60", "60", "20", "10", "10", "30", "30", "10", "10", "5", "1", "1", "6", "30", "60", "60", "180", "180", "60", "60", "120", "360", "360", "180", "180", "120", "30", "15", "15", "60", "90", "90", "180", "180", "60", "20", "20", "60", "60", "15", "15", "6", "1", "1", "7" ]
[ "nonn", "easy" ]
33
0
6
[ "A000372", "A132581", "A362895" ]
null
Bruno L. O. Andreotti, May 09 2023
2023-05-20T14:43:04
oeisdata/seq/A362/A362895.seq
6a8521c1824032a0392b9884036139cc
A362896
a(0)=2. For n>0, let d = n-th digit in the sequence thus far. a(n) = a(n-1) + d if d is even. Otherwise, a(n) = a(n-1) - d.
[ "2", "4", "8", "16", "15", "21", "20", "15", "17", "16", "18", "18", "17", "12", "11", "4", "3", "9", "8", "16", "15", "23", "22", "15", "14", "16", "15", "14", "18", "15", "6", "14", "13", "19", "18", "13", "15", "12", "14", "16", "15", "10", "9", "13", "12", "18", "17", "12", "11", "15", "14", "22", "21", "16", "22", "21", "25", "24", "21", "20", "11", "10", "18", "17", "14", "13", "8", "7" ]
[ "sign", "easy", "base" ]
25
0
1
[ "A362371", "A362551", "A362896" ]
null
Gavin Lupo, May 09 2023
2023-05-17T20:45:19
oeisdata/seq/A362/A362896.seq
459a74b69d6eaeeed43c2013ed696137
A362897
Array read by antidiagonals: T(n,k) is the number of nonisomorphic multisets of endofunctions on an n-set with k endofunctions.
[ "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "7", "7", "1", "1", "1", "13", "74", "19", "1", "1", "1", "22", "638", "1474", "47", "1", "1", "1", "34", "4663", "118949", "41876", "130", "1", "1", "1", "50", "28529", "7643021", "42483668", "1540696", "343", "1", "1", "1", "70", "151600", "396979499", "33179970333", "23524514635", "68343112", "951", "1" ]
[ "nonn", "tabl" ]
7
0
9
[ "A000012", "A001372", "A002623", "A054745", "A277839", "A362644", "A362897", "A362898" ]
null
Andrew Howroyd, May 10 2023
2023-05-10T22:39:21
oeisdata/seq/A362/A362897.seq
07d0218611ef6686676a6022e31ee3d9
A362898
Number of nonisomorphic unordered triples of endofunctions on an n-set.
[ "1", "1", "13", "638", "118949", "42483668", "23524514635", "18477841853059", "19526400231564564", "26714255854638149145", "45938634690184528585855", "96990967579564469350287613", "246664446832722382952639028437", "743740463651636548809953508690270", "2623456914417867939801667337352637825" ]
[ "nonn" ]
6
0
3
[ "A001372", "A054745", "A362897", "A362898" ]
null
Andrew Howroyd, May 10 2023
2023-05-10T22:39:17
oeisdata/seq/A362/A362898.seq
0807cd451eaf544204010e272d80d537
A362899
Array read by antidiagonals: T(n,k) is the number of nonisomorphic multisets of fixed-point-free endofunctions on an n-set with k endofunctions.
[ "1", "1", "1", "1", "0", "1", "1", "0", "1", "1", "1", "0", "1", "2", "1", "1", "0", "1", "9", "6", "1", "1", "0", "1", "22", "162", "13", "1", "1", "0", "1", "63", "3935", "4527", "40", "1", "1", "0", "1", "136", "81015", "1497568", "172335", "100", "1", "1", "0", "1", "302", "1369101", "384069023", "883538845", "7861940", "291", "1", "1", "0", "1", "580", "19601383", "78954264778", "3450709120355", "725601878962", "416446379", "797", "1" ]
[ "nonn", "tabl" ]
8
0
14
[ "A000012", "A001373", "A362644", "A362759", "A362897", "A362899", "A362900", "A362901", "A362902" ]
null
Andrew Howroyd, May 10 2023
2023-05-10T22:39:01
oeisdata/seq/A362/A362899.seq
e43bafe06f6a7963c7b192c487fc6c75
A362900
Number of nonisomorphic unordered pairs of fixed-point-free endofunctions on an n-set.
[ "1", "0", "1", "9", "162", "4527", "172335", "7861940", "416446379", "25076668511", "1692214417496", "126525497074469", "10384653020019554", "928348695659951013", "89797089935616345473", "9344984104905250973209", "1041167026926648579218267", "123655975822561996200923033", "15595901625395079379351443550" ]
[ "nonn" ]
8
0
4
[ "A054745", "A362899", "A362900" ]
null
Andrew Howroyd, May 10 2023
2023-05-10T22:38:53
oeisdata/seq/A362/A362900.seq
ffefbd7258653293fc2be8c5880eb94f