sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A364601
Numbers m such that, if k is the number of digits of m, then for some r > 1, the sum of the k-th powers of the digits of m^r is equal to m.
[ "1", "7", "8", "9", "180", "205", "38998", "45994", "89080", "726191", "5540343", "7491889", "8690141", "167535050", "749387107", "9945245922" ]
[ "nonn", "base", "fini", "more" ]
58
1
2
[ "A005188", "A065999", "A066003", "A066004", "A364601" ]
null
René-Louis Clerc, Jul 29 2023
2024-04-24T14:54:17
oeisdata/seq/A364/A364601.seq
a297892007b92d6c054b2de3d42086d7
A364602
Triangle T(n,k) with rows of length 2*n-1, generated by T(1,1)=0, T(n,1)=T(n-1,1)+2, T(n,2)=4*(n-1)-1, and for k>=3, T(n,k)=4*T(n-1,k-2)+1.
[ "0", "2", "3", "1", "4", "7", "9", "13", "5", "6", "11", "17", "29", "37", "53", "21", "8", "15", "25", "45", "69", "117", "149", "213", "85", "10", "19", "33", "61", "101", "181", "277", "469", "597", "853", "341", "12", "23", "41", "77", "133", "245", "405", "725", "1109", "1877", "2389", "3413", "1365", "14", "27", "49", "93", "165", "309", "533", "981", "1621", "2901" ]
[ "nonn", "tabf" ]
82
1
2
[ "A002450", "A007310", "A071797", "A087445", "A096773", "A255138", "A257480", "A364602" ]
null
Ruud H.G. van Tol, Jul 29 2023
2023-09-06T21:09:40
oeisdata/seq/A364/A364602.seq
f12f8790229ba4f64c3fd947b86a3be4
A364603
Lexicographically earliest sequence where after the m-th appearance of term z, it is banned from re-appearing in the next m*z terms.
[ "1", "2", "1", "3", "2", "1", "4", "3", "5", "1", "2", "4", "6", "7", "1", "3", "5", "2", "8", "6", "1", "4", "7", "9", "10", "3", "2", "1", "5", "8", "11", "12", "6", "9", "4", "1", "10", "2", "3", "7", "13", "14", "11", "15", "1", "5", "8", "12", "16", "17", "2", "4", "6", "9", "1", "3", "13", "10", "14", "15", "18", "7", "19", "20", "21", "1", "2", "5", "11", "16", "17", "8", "4", "12", "3", "22", "23", "1", "6", "18", "24", "9", "19", "2", "13", "20", "21", "14" ]
[ "nonn", "look" ]
24
1
2
[ "A364448", "A364449", "A364603", "A364604" ]
null
Rok Cestnik, Jul 29 2023
2023-08-14T02:01:03
oeisdata/seq/A364/A364603.seq
da3b6fa516069f0dfd97575432047d06
A364604
Lexicographically earliest sequence, where after every appearance, a term is banned from re-appearing for twice as long as last time; first appearance bans it for 1 term.
[ "1", "2", "1", "2", "3", "1", "2", "3", "4", "5", "1", "2", "3", "4", "5", "6", "4", "3", "5", "1", "2", "4", "6", "5", "7", "6", "3", "7", "8", "9", "4", "6", "5", "7", "8", "9", "1", "2", "7", "8", "6", "9", "10", "3", "8", "10", "9", "4", "7", "5", "10", "11", "12", "8", "11", "9", "10", "6", "11", "12", "13", "14", "12", "11", "13", "7", "10", "12", "13", "1", "2", "8", "9", "11", "13", "14", "3", "12", "14", "15", "4", "15", "5", "10", "13", "14", "15", "16" ]
[ "nonn" ]
15
1
2
[ "A364448", "A364449", "A364603", "A364604" ]
null
Rok Cestnik, Jul 29 2023
2023-08-10T07:11:43
oeisdata/seq/A364/A364604.seq
7451930278f28c672d2c275b0db3783e
A364605
Number of 6-cycles in the n-Lucas cube graph.
[ "0", "0", "0", "0", "5", "44", "147", "464", "1236", "3100", "7293", "16472", "35919", "76216", "158040", "321472", "643229", "1268868", "2472147", "4764120", "9092300", "17202636", "32294277", "60199088", "111498175", "205306192", "376014960", "685273120", "1243205205", "2245893340", "4041415347", "7245914176", "12947137412" ]
[ "nonn", "easy" ]
32
1
5
[ "A245961", "A364605" ]
null
Eric W. Weisstein, Jul 30 2023
2025-06-21T01:57:00
oeisdata/seq/A364/A364605.seq
07d8876b7e9cf03f634d154efd87ac9e
A364606
Numbers k such that the average digit of 2^k is an integer.
[ "0", "1", "2", "3", "6", "13", "16", "26", "46", "51", "56", "73", "122", "141", "166", "313", "383" ]
[ "nonn", "base" ]
17
1
3
[ "A000079", "A001370", "A034887", "A061383", "A364606" ]
null
Jon E. Schoenfield, Jul 29 2023
2023-07-31T10:43:14
oeisdata/seq/A364/A364606.seq
72bef69ffbe6c829ddbe80308576d866
A364607
Denominations of a 4-coin system that returns the fewest coins in change on average.
[ "1", "5", "18", "25" ]
[ "nonn", "full", "fini" ]
41
1
2
[ "A208953", "A339333", "A364607", "A366013" ]
null
Thomas Young, Aug 06 2023
2023-10-03T03:49:10
oeisdata/seq/A364/A364607.seq
cb478b2c685da551fae72bcd10d1542b
A364608
Smallest k such that there are as many 0's as 1's in the binary representation of (2*n+1)^k, or -1 if no such k exists.
[ "2", "4", "2", "1", "4", "2", "2", "21", "8", "5", "10", "2", "4", "2", "2", "61", "1", "1", "34", "1", "18", "12", "6", "1", "63", "11", "49", "2", "496", "2", "2", "58", "24", "12", "11", "40", "7", "43", "59", "3", "3", "53", "31", "54", "15", "7", "59", "30", "5", "185", "2", "5", "97", "28", "10", "2", "6", "4", "42", "2", "27", "2", "2", "15", "3", "72", "1", "7", "1", "1", "15", "37", "1", "1", "129" ]
[ "nonn", "base" ]
42
1
1
[ "A031443", "A364608" ]
null
Pontus von Brömssen, Jul 30 2023
2023-08-02T13:45:21
oeisdata/seq/A364/A364608.seq
2eba7aec55d6c1756eda67c5bfeff26b
A364609
a(n) = greatest integer k such that 1/n + 1/(n + 1) + ... + 1/k < sqrt(2).
[ "1", "5", "9", "13", "18", "22", "26", "30", "34", "38", "42", "46", "50", "55", "59", "63", "67", "71", "75", "79", "83", "87", "92", "96", "100", "104", "108", "112", "116", "120", "124", "129", "133", "137", "141", "145", "149", "153", "157", "161", "166", "170", "174", "178", "182", "186", "190", "194", "198", "203", "207", "211", "215", "219", "223", "227", "231" ]
[ "nonn" ]
19
1
2
[ "A001620", "A136616", "A357923", "A363993", "A364609" ]
null
Clark Kimberling, Sep 06 2023
2023-09-08T07:09:22
oeisdata/seq/A364/A364609.seq
83136e458140dd79384f716e4bf5c4b4
A364610
Centered pentagonal numbers which are products of three distinct primes.
[ "1266", "1626", "2806", "3706", "4731", "6126", "7426", "7701", "9766", "10726", "13506", "15801", "18706", "19581", "25251", "26266", "26781", "31641", "35106", "36906", "40006", "50766", "52926", "56626", "57381", "62806", "69306", "71826", "74391", "76126", "85101", "90726", "93606", "95551", "96531", "99501", "106606", "108681", "109726", "117181", "121551", "123766" ]
[ "nonn" ]
23
1
1
[ "A005891", "A007304", "A364610" ]
null
Massimo Kofler, Sep 07 2023
2025-03-10T12:26:22
oeisdata/seq/A364/A364610.seq
3df4b1585f13d2068203d23dbf02621c
A364611
For p = 5 and n > 0, write n = p^m + k, m >= 0, with maximal p^m <= n, with 0 <= k < p^(m+1) - p^m, then for n such that k=0, a(n)=n, and for n such that k > 0, a(n) is the smallest q*a(k), prime q != p, that is not already a term.
[ "1", "2", "4", "8", "5", "3", "6", "12", "16", "10", "9", "18", "24", "32", "20", "27", "36", "48", "64", "40", "54", "72", "96", "128", "25", "7", "14", "28", "56", "15", "21", "42", "84", "112", "30", "63", "126", "168", "224", "60", "81", "108", "144", "192", "80", "162", "216", "288", "256", "50", "49", "98", "196", "392", "45", "147", "294", "252", "336", "90", "189", "378", "504" ]
[ "nonn" ]
37
1
2
[ "A005940", "A356867", "A364611", "A364628" ]
null
Michael De Vlieger, Sep 16 2023
2023-09-17T01:36:11
oeisdata/seq/A364/A364611.seq
1e19ab415a0a03c2c5ec606c300b224b
A364612
a(n) = number of partitions of n whose difference multiset has at least one duplicate; see Comments.
[ "0", "0", "0", "1", "2", "4", "7", "10", "15", "24", "32", "45", "66", "86", "117", "158", "206", "268", "357", "452", "583", "745", "948", "1188", "1507", "1874", "2348", "2908", "3604", "4428", "5472", "6675", "8169", "9939", "12096", "14622", "17713", "21322", "25687", "30808", "36924", "44107", "52701", "62697", "74572", "88457", "104850", "123934" ]
[ "nonn" ]
10
0
5
[ "A000041", "A363994", "A364612" ]
null
Clark Kimberling, Sep 08 2023
2023-09-18T02:08:37
oeisdata/seq/A364/A364612.seq
789f474ea090ab5bf2628a8c275563d7
A364613
a(n) = number of partitions of n whose sum multiset is free of duplicates; see Comments.
[ "1", "1", "2", "2", "3", "3", "5", "5", "7", "8", "10", "12", "15", "18", "20", "26", "29", "36", "38", "50", "53", "67", "69", "89", "95", "115", "122", "151", "161", "195", "201", "247", "266", "312", "330", "386", "419", "487", "520", "600", "641", "742", "793", "901", "979", "1088", "1186", "1331", "1454", "1605", "1730", "1925", "2102", "2311", "2525", "2741", "3001" ]
[ "nonn" ]
17
0
3
[ "A000041", "A236912", "A325877", "A363994", "A364613" ]
null
Clark Kimberling, Sep 17 2023
2023-09-22T05:23:12
oeisdata/seq/A364/A364613.seq
040171f51a1d442f85037bc618a5a158
A364614
Numbers not divisible by any prime of the form 3*k - 1.
[ "1", "3", "7", "9", "13", "19", "21", "27", "31", "37", "39", "43", "49", "57", "61", "63", "67", "73", "79", "81", "91", "93", "97", "103", "109", "111", "117", "127", "129", "133", "139", "147", "151", "157", "163", "169", "171", "181", "183", "189", "193", "199", "201", "211", "217", "219", "223", "229", "237", "241", "243", "247", "259", "271", "273", "277", "279" ]
[ "nonn" ]
7
1
2
[ "A003627", "A215800", "A364614", "A364832" ]
null
Clark Kimberling, Aug 09 2023
2023-09-13T22:50:27
oeisdata/seq/A364/A364614.seq
5c4d8b7da2c7db28651886a72bd63f85
A364615
Numbers k such that the average of the decimal digits of 2^k is closer to 9/2 (the expected average for random digits) than for any smaller power of 2.
[ "0", "1", "2", "8", "14", "20", "29", "47", "62", "80", "113", "134", "182", "206", "281", "287", "299", "326", "419", "500", "560", "620", "638", "674", "833", "911", "1271", "1289", "1376", "1418", "1583", "1670", "1814", "2273", "2753", "3365", "3794", "4127", "4160", "4202", "4280", "4292", "4538", "4553", "4646", "4805", "4952", "4979", "5105", "5276" ]
[ "nonn", "base" ]
7
1
3
[ "A000079", "A001370", "A034887", "A364606", "A364615" ]
null
Pontus von Brömssen and Jon E. Schoenfield, Jul 29 2023
2023-08-02T13:46:22
oeisdata/seq/A364/A364615.seq
3e561abb03e561bef675d5f33f18adb5
A364616
Number of tilings of a 6 X n rectangle using dominoes and trominoes (of any shape).
[ "1", "2", "108", "3540", "115958", "3927233", "128441094", "4263997124", "141186107223", "4671227129777", "154679198549385", "5119908497703914", "169488865440883593", "5610718094136694973", "185732776135043052107", "6148417237267189975927", "203533740825252409802705", "6737670699036802296758849" ]
[ "nonn" ]
12
0
2
[ "A364457", "A364616" ]
null
Alois P. Heinz, Jul 29 2023
2025-04-05T09:19:09
oeisdata/seq/A364/A364616.seq
59e2b13d9aa16085011d0b647fd67e55
A364617
Number of tilings of a 7 X n rectangle using dominoes and trominoes (of any shape).
[ "1", "3", "280", "17300", "1075397", "68846551", "4263997124", "267855152858", "16785795917908", "1051116421516975", "65871551452359237", "4126577980480405170", "258538236543240798654", "16197912784372244064693", "1014813990592495583029006", "63579642939479330198729573", "3983348112669764700919476270" ]
[ "nonn" ]
15
0
2
[ "A364457", "A364617" ]
null
Alois P. Heinz, Jul 29 2023
2025-04-07T07:46:23
oeisdata/seq/A364/A364617.seq
9af7652c9d189867945ea4703f8ce015
A364618
Decimal expansion of Sum_{k>=0} erfc(k), where erfc(x) is the complementary error function.
[ "1", "1", "6", "1", "9", "9", "9", "0", "4", "7", "9", "4", "7", "1", "2", "6", "3", "6", "3", "5", "3", "2", "3", "0", "8", "3", "2", "2", "4", "5", "5", "7", "9", "7", "1", "7", "1", "1", "6", "6", "3", "4", "3", "5", "0", "6", "2", "2", "5", "8", "6", "8", "0", "3", "1", "2", "1", "6", "8", "2", "6", "3", "3", "2", "4", "1", "5", "9", "4", "1", "7", "5", "5", "0", "4", "9", "4", "0", "0", "2", "3", "8", "6", "4", "7", "8", "1", "3", "2", "8", "3", "6", "2", "6", "2", "8", "9", "3", "3", "5", "1", "8", "4", "4", "7" ]
[ "nonn", "cons" ]
17
1
3
[ "A099287", "A364618" ]
null
Amiram Eldar, Jul 30 2023
2024-10-11T07:09:48
oeisdata/seq/A364/A364618.seq
aab1621d3e8f4914ca3cf6baa3853ee8
A364619
Number of 4-cycles in the n-Pell graph.
[ "0", "0", "1", "8", "40", "164", "601", "2048", "6632", "20680", "62633", "185352", "538272", "1538892", "4341905", "12112960", "33464240", "91666192", "249215921", "673049800", "1806888568", "4824913652", "12821690281", "33922774464", "89391291480", "234694621656", "614106591769", "1601882815304", "4166439039664" ]
[ "nonn" ]
14
0
4
null
null
Eric W. Weisstein, Jul 30 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364619.seq
4c7ed390587826663c1c481244627a42
A364620
G.f. satisfies A(x) = 1/(1-x)^2 + x*A(x)^3.
[ "1", "3", "12", "67", "449", "3315", "25963", "211685", "1777410", "15263446", "133427406", "1183336278", "10620959908", "96292118665", "880540044576", "8112042293581", "75218203558241", "701439747294225", "6574348389693202", "61897799517155325", "585138783209680944", "5551797662571097495" ]
[ "nonn" ]
7
0
2
[ "A086616", "A364620", "A364621" ]
null
Seiichi Manyama, Jul 30 2023
2023-07-30T09:20:00
oeisdata/seq/A364/A364620.seq
69173f17b64150b89b0330b2e8b1cc7d
A364621
G.f. satisfies A(x) = 1/(1-x)^2 + x*A(x)^4.
[ "1", "3", "15", "118", "1125", "11805", "131431", "1524090", "18208749", "222570985", "2770129627", "34985756752", "447243818573", "5775955923428", "75245253495035", "987627627396792", "13048147674230169", "173382031819242855", "2315662483861709467", "31068798980975635130", "418552735866147739185" ]
[ "nonn" ]
7
0
2
[ "A086616", "A364620", "A364621" ]
null
Seiichi Manyama, Jul 30 2023
2023-07-30T09:22:00
oeisdata/seq/A364/A364621.seq
225eb2a663bd1cbed1bac7320e4c11e5
A364622
G.f. satisfies A(x) = 1/(1-x)^2 + x^2*A(x)^4.
[ "1", "2", "4", "12", "45", "182", "779", "3480", "16005", "75234", "359893", "1746268", "8573477", "42511646", "212587561", "1070897000", "5429174465", "27679933778", "141829437174", "729972918876", "3772160853821", "19563615260102", "101797930474515", "531293155760840", "2780515192595481", "14588670579665882" ]
[ "nonn" ]
9
0
2
[ "A086615", "A086631", "A364622" ]
null
Seiichi Manyama, Jul 30 2023
2024-01-20T14:44:56
oeisdata/seq/A364/A364622.seq
9561d4a7dca553c12425731e11f64517
A364623
G.f. satisfies A(x) = 1/(1-x)^3 + x*A(x)^3.
[ "1", "4", "18", "112", "847", "7086", "62974", "583002", "5560323", "54249583", "538873135", "5431177821", "55402340842", "570899082760", "5933922697380", "62138800690564", "654949976467593", "6942859160218698", "73972792893687427", "791722414873487767", "8508265804914763731" ]
[ "nonn" ]
13
0
2
[ "A001764", "A162481", "A199475", "A364620", "A364623", "A364624", "A364629" ]
null
Seiichi Manyama, Jul 30 2023
2023-10-03T09:00:04
oeisdata/seq/A364/A364623.seq
deff0b2dc1f448fe2ec117c18644b002
A364624
G.f. satisfies A(x) = 1/(1-x)^3 + x*A(x)^4.
[ "1", "4", "22", "194", "2103", "25129", "318816", "4214724", "57419725", "800461033", "11363418314", "163708299724", "2387365301187", "35173224652637", "522752043513952", "7827979832083872", "117992516684761733", "1788819120580964014", "27258417705055812586", "417270970443908301926" ]
[ "nonn" ]
7
0
2
[ "A162481", "A364623", "A364624" ]
null
Seiichi Manyama, Jul 30 2023
2023-07-30T09:56:51
oeisdata/seq/A364/A364624.seq
b8e8fe6107b20a7eedb760c081a5564a
A364625
G.f. satisfies A(x) = 1/(1-x)^3 + x^2*A(x)^2.
[ "1", "3", "7", "16", "38", "95", "249", "678", "1901", "5451", "15906", "47066", "140868", "425657", "1296665", "3977684", "12276617", "38094013", "118768915", "371875752", "1168843808", "3686549845", "11664123048", "37011249678", "117750111763", "375529083267", "1200327617200", "3844662925222", "12338289374046" ]
[ "nonn" ]
9
0
2
[ "A000108", "A086615", "A162481", "A360045", "A364625", "A364626", "A364627" ]
null
Seiichi Manyama, Jul 30 2023
2023-07-30T09:56:39
oeisdata/seq/A364/A364625.seq
ac89fd60f85e1abe959bd746578099aa
A364626
G.f. satisfies A(x) = 1/(1-x)^3 + x^2*A(x)^3.
[ "1", "3", "7", "19", "63", "231", "895", "3615", "15055", "64111", "277791", "1220767", "5427775", "24371199", "110350335", "503289727", "2309992959", "10661634303", "49452179455", "230391918591", "1077644520703", "5058766156543", "23824929459711", "112541456498175", "533063457631231", "2531252417738751" ]
[ "nonn" ]
8
0
2
[ "A086631", "A364625", "A364626", "A364627" ]
null
Seiichi Manyama, Jul 30 2023
2023-07-30T09:56:36
oeisdata/seq/A364/A364626.seq
7e74954990491d069dd393bc05e7a2be
A364627
G.f. satisfies A(x) = 1/(1-x)^3 + x^2*A(x)^4.
[ "1", "3", "7", "22", "97", "469", "2339", "12148", "65295", "358979", "2006977", "11380702", "65311575", "378574425", "2213092750", "13032826536", "77244242937", "460413902079", "2758088752351", "16596379614234", "100269075879881", "607996092039949", "3698873710967989", "22570809986322440" ]
[ "nonn" ]
8
0
2
[ "A364622", "A364625", "A364626", "A364627" ]
null
Seiichi Manyama, Jul 30 2023
2023-07-30T09:56:32
oeisdata/seq/A364/A364627.seq
bd7c79f30a3a71cb087523019406245d
A364628
For p = 7 and n > 0, write n = p^m + k, m >= 0, with maximal p^m <= n, with 0 <= k < p^(m+1) - p^m, then for n such that k=0, a(n)=n, and for n such that k > 0, a(n) is the smallest q*a(k), prime q != p, that is not already a term.
[ "1", "2", "4", "8", "16", "32", "7", "3", "6", "12", "24", "48", "64", "14", "9", "18", "36", "72", "96", "128", "28", "27", "54", "108", "144", "192", "256", "56", "81", "162", "216", "288", "384", "512", "112", "243", "324", "432", "576", "768", "1024", "224", "486", "648", "864", "1152", "1536", "2048", "49", "5", "10", "20", "40", "80", "160", "21", "15", "30", "60", "120" ]
[ "nonn" ]
25
1
2
[ "A005940", "A356867", "A364611", "A364628" ]
null
Michael De Vlieger, Sep 16 2023
2023-09-17T01:36:22
oeisdata/seq/A364/A364628.seq
d50ddda1b463387e8479cdce898c75a3
A364629
G.f. satisfies A(x) = (1+x*A(x)^3)/(1-x)^2.
[ "1", "3", "14", "94", "735", "6239", "55888", "520028", "4977321", "48689260", "484623552", "4892304686", "49971163021", "515496741918", "5363023614620", "56204877993184", "592811175777029", "6287909183751105", "67029933733468729", "717749621979800340", "7716543390041275964" ]
[ "nonn" ]
7
0
2
[ "A162477", "A364620", "A364629", "A364630" ]
null
Seiichi Manyama, Jul 30 2023
2023-07-30T09:20:12
oeisdata/seq/A364/A364629.seq
246510b92fe253847d2262cd2fc15355
A364630
G.f. satisfies A(x) = (1+x*A(x)^4)/(1-x)^2.
[ "1", "3", "17", "153", "1621", "18732", "229103", "2915498", "38204497", "512027945", "6985933889", "96705749625", "1354868839933", "19175008086962", "273731258980839", "3936883123412972", "56991044183321197", "829750943505927435", "12142121554514962205", "178488780583916045949" ]
[ "nonn" ]
8
0
2
[ "A162477", "A364629", "A364630" ]
null
Seiichi Manyama, Jul 30 2023
2023-07-30T09:20:08
oeisdata/seq/A364/A364630.seq
1557cdb1036011a566ae49534c7c80e4
A364631
a(n) is the number of iterations of phi(psi(x)) starting at x = n and terminating when psi(phi(x)) = x (n is counted), -1 otherwise.
[ "1", "1", "2", "2", "2", "3", "3", "3", "3", "4", "3", "4", "4", "4", "4", "4", "4", "5", "4", "5", "5", "5", "4", "5", "4", "5", "5", "5", "4", "6", "5", "5", "5", "6", "5", "6", "6", "5", "6", "6", "5", "6", "6", "6", "6", "6", "5", "6", "6", "6", "6", "6", "6", "7", "6", "6", "6", "6", "5", "7", "7", "6", "6", "6", "6", "7", "6", "7", "6", "7", "6", "7", "7", "7", "6", "6", "6", "7", "6", "7", "7", "7", "6", "7", "7", "7", "6", "7" ]
[ "nonn" ]
49
1
3
[ "A000010", "A001615", "A003434", "A364631" ]
null
Torlach Rush, Jul 30 2023
2023-08-14T14:17:34
oeisdata/seq/A364/A364631.seq
16d33eb82d9d872333b8d5144a8f2350
A364632
Number of tilings of an 8 X n rectangle using dominoes and trominoes (of any shape).
[ "1", "4", "727", "84479", "9935791", "1204757533", "141186107223", "16785795917908", "1990875917805852", "235938457227641114", "27983642750014402471", "3317789294005871444981", "393402890773982287366724", "46647231741875687157655718", "5531042470843072944881265311", "655831959035571795593459804091" ]
[ "nonn" ]
18
0
2
[ "A364457", "A364632" ]
null
Alois P. Heinz, Jul 30 2023
2025-04-06T20:46:46
oeisdata/seq/A364/A364632.seq
1deb697ad85a629b305a3508d4075517
A364633
a(n) is the smallest nonnegative number k such that prime(n) + k is divisible by n + 1.
[ "0", "0", "3", "3", "1", "1", "7", "8", "7", "4", "5", "2", "1", "2", "1", "15", "13", "15", "13", "13", "15", "13", "13", "11", "7", "7", "9", "9", "11", "11", "1", "1", "33", "1", "31", "34", "33", "32", "33", "32", "31", "34", "29", "32", "33", "36", "29", "22", "23", "26", "27", "26", "29", "24", "23", "22", "21", "24", "23", "24", "27", "22", "13", "14", "17", "18", "9", "8", "3", "6", "7", "6", "3", "2", "1", "2", "1" ]
[ "nonn", "look" ]
39
1
3
[ "A068901", "A364633" ]
null
Andres Cicuttin, Jul 30 2023
2023-09-05T12:21:50
oeisdata/seq/A364/A364633.seq
668b82f13cf9fae5b124263346c8b475
A364634
a(n) = n * LegendreP(n, 3).
[ "0", "3", "26", "189", "1284", "8415", "53934", "340473", "2125832", "13163067", "80974530", "495513909", "3019151628", "18329137047", "110933875542", "669635727345", "4032883785744", "24239190315123", "145427707041642", "871139168383917", "5210876275948820", "31129900498786383", "185755111545655806" ]
[ "nonn" ]
4
0
2
[ "A364361", "A364634" ]
null
Peter Luschny, Jul 30 2023
2023-07-30T16:34:49
oeisdata/seq/A364/A364634.seq
246e608dafa9641303bad4ebf61bd729
A364635
a(n) is the largest prime p such that p/PrimePi(p) < n.
[ "7", "31", "113", "359", "1129", "3089", "8467", "24281", "64717", "175141", "481447", "1304713", "3524621", "9560081", "25874773", "70119967", "189969349", "514282961", "1394199299", "3779856617", "10246936393", "27788573801", "75370126379", "204475055189", "554805820519", "1505578026059", "4086199303001", "11091501632977" ]
[ "nonn" ]
14
2
1
[ "A000720", "A038625", "A062743", "A102281", "A364635" ]
null
Jon E. Schoenfield, Sep 09 2023
2023-09-10T15:29:56
oeisdata/seq/A364/A364635.seq
440039e559db75ebe51e295c9e6bb8cf
A364636
a(n) = ((1 - sqrt(2))^n + (1 + sqrt(2))^n)*n/2.
[ "0", "1", "6", "21", "68", "205", "594", "1673", "4616", "12537", "33630", "89309", "235212", "615173", "1599402", "4137105", "10653712", "27327857", "69856182", "178017061", "452390740", "1146776253", "2900399106", "7320463897", "18441561624", "46376946025", "116442406158", "291929022189", "730881930716", "1827523107829" ]
[ "nonn", "easy" ]
14
0
3
[ "A093967", "A364553", "A364636" ]
null
Peter Luschny, Jul 30 2023
2023-07-31T08:06:28
oeisdata/seq/A364/A364636.seq
d7f2f1734c5720938e09bcf4a92906b1
A364637
a(n) is the least k > 1 that can be represented as a sum of one or more distinct positive m-th powers for 1 <= m <= n.
[ "2", "4", "9", "881", "7809", "134067", "12939267", "2029992385", "122120396036" ]
[ "nonn", "more", "hard" ]
13
1
1
[ "A001661", "A030052", "A364637" ]
null
David A. Corneth and Peter Munn, Jul 30 2023
2023-08-01T11:15:55
oeisdata/seq/A364/A364637.seq
8ef0681874cbe1a9464733d803348474
A364638
Number of tilings of a 9 X n rectangle using dominoes and trominoes (of any shape).
[ "1", "5", "1875", "411963", "91795006", "21062468900", "4671227129777", "1051116421516975", "235938457227641114", "52918918728713551244", "11878705076408687696978", "2665431732701413911595239", "598150296697458294727127430", "134230850702665615645367175811", "30122246289517237819939951946581" ]
[ "nonn" ]
15
0
2
[ "A364457", "A364638" ]
null
Alois P. Heinz, Jul 30 2023
2025-04-06T20:26:18
oeisdata/seq/A364/A364638.seq
c9df6039c16e131bb4909179f9341d26
A364639
Irregular triangle read by rows: T(n,k) = A237591(n,k) - A237591(n-1,k).
[ "1", "1", "0", "1", "1", "0", "0", "1", "1", "-1", "1", "0", "1", "0", "1", "0", "0", "0", "0", "1", "1", "0", "-1", "1", "0", "1", "0", "0", "1", "-1", "1", "0", "0", "1", "0", "0", "1", "0", "-1", "1", "0", "0", "1", "-1", "1", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "-1", "0", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "-1", "1", "0", "0", "1", "0", "-1", "1", "1", "0", "-1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "-1", "1", "0", "0", "0", "0", "1", "0", "-1", "1", "0" ]
[ "sign", "tabf" ]
77
1
null
[ "A000012", "A000079", "A000217", "A000396", "A002378", "A003056", "A008588", "A063221", "A065091", "A091999", "A097806", "A100484", "A135528", "A196020", "A235791", "A236104", "A237048", "A237591", "A237593", "A245092", "A249351", "A262626", "A286000", "A286001", "A299765", "A347529", "A360022", "A362866", "A364414", "A364639", "A364746", "A365081" ]
null
Omar E. Pol, Jul 30 2023
2024-09-06T20:19:24
oeisdata/seq/A364/A364639.seq
f2ba7f8dcabcca6fd01d3d068e8d66e0
A364640
Number of tilings of a 10 X n rectangle using dominoes and trominoes (of any shape).
[ "1", "7", "4832", "2011408", "848550447", "368521437132", "154679198549385", "65871551452359237", "27983642750014402471", "11878705076408687696978", "5046393600526600826576990", "2143056706386201138428021036", "910185960619655990533522509279", "386568166093787098350944666459955" ]
[ "nonn" ]
16
0
2
[ "A364457", "A364640" ]
null
Alois P. Heinz, Jul 30 2023
2025-04-05T17:07:25
oeisdata/seq/A364/A364640.seq
3ae0431c4d11a144b7ac5415465656a9
A364641
G.f. satisfies A(x) = 1/(1 - 2*x) - x*A(x)^3.
[ "1", "1", "1", "2", "3", "5", "10", "16", "31", "59", "101", "206", "376", "692", "1408", "2528", "4943", "9767", "17755", "35950", "68659", "129029", "262758", "490832", "958948", "1920580", "3581020", "7203080", "14054600", "26665160", "54195040", "103450560", "201749935", "406617695", "769870535", "1539785150", "3042812185" ]
[ "nonn" ]
22
0
4
[ "A001405", "A349253", "A349255", "A349533", "A364641", "A364645", "A364646", "A364647" ]
null
Seiichi Manyama, Jul 31 2023
2023-08-01T09:33:28
oeisdata/seq/A364/A364641.seq
f417dc7ecb3d77b3ea2a40829dcb229a
A364642
a(n) is the number of iterations of psi(phi(x)) starting at x = n and terminating when psi(phi(x)) = x (n is counted), -1 otherwise.
[ "1", "2", "1", "2", "3", "2", "4", "3", "4", "3", "5", "3", "5", "4", "4", "4", "5", "4", "6", "4", "5", "5", "6", "4", "6", "5", "6", "5", "6", "4", "7", "5", "6", "5", "6", "5", "7", "6", "6", "5", "7", "5", "7", "6", "6", "6", "7", "5", "7", "6", "6", "6", "7", "6", "7", "6", "7", "6", "7", "5", "8", "7", "7", "6", "7", "6", "8", "6", "7", "6", "8", "6", "8", "7", "7", "7", "8", "6", "8", "6", "8", "7", "8", "6", "7", "7", "7", "7" ]
[ "nonn" ]
34
1
2
[ "A000010", "A001615", "A003434", "A364631", "A364642" ]
null
Torlach Rush, Jul 30 2023
2023-09-13T23:13:42
oeisdata/seq/A364/A364642.seq
5d7a7bdedfa7b56a1751b92a505c3a54
A364643
Number of separable elements of the Weyl group of type D_n.
[ "1", "2", "4", "22", "102", "474", "2250", "10910", "53886", "270322", "1373970", "7061542", "36639702", "191677386", "1009942362", "5354887470", "28550730222", "152979375842", "823329316386", "4448856020534", "24126427982406", "131270003806906", "716377546590186", "3920251765198782", "21507301494123102", "118269635529457874" ]
[ "nonn" ]
29
0
2
[ "A006318", "A364643" ]
null
Fern Gossow, Jul 30 2023
2024-03-25T10:27:14
oeisdata/seq/A364/A364643.seq
a3572050ecbe9116712777add1a922b7
A364644
Numbers k such that floor(10^k/7) is prime.
[ "7", "25", "355", "823" ]
[ "nonn", "more", "hard" ]
13
1
1
[ "A090519", "A364644" ]
null
Robert Israel, Jul 31 2023
2024-01-27T15:56:58
oeisdata/seq/A364/A364644.seq
78831ad2dccb1ee33bc9ade6a90778b1
A364645
G.f. satisfies A(x) = 1/(1 - 3*x) - x*A(x)^3.
[ "1", "2", "3", "6", "19", "51", "114", "312", "981", "2616", "6564", "19647", "59922", "159056", "430302", "1329996", "3926217", "10498968", "30052851", "93244764", "267690168", "729649143", "2173840338", "6663260223", "18768583674", "52570016676", "160362713250", "481809941520", "1346473504182", "3886164785178" ]
[ "nonn" ]
15
0
2
[ "A005773", "A349254", "A349256", "A349534", "A364641", "A364645", "A364646", "A364647" ]
null
Seiichi Manyama, Jul 31 2023
2023-08-02T09:38:58
oeisdata/seq/A364/A364645.seq
d4a32be42239ea5515e0d71c93108a38
A364646
G.f. satisfies A(x) = 1/(1 - 4*x) - x*A(x)^3.
[ "1", "3", "7", "16", "55", "235", "856", "2664", "9055", "37417", "151431", "533452", "1825972", "7141860", "29778280", "113688592", "400940751", "1499506693", "6185139781", "24862774872", "91529003839", "334939413067", "1338383383444", "5510330536000", "21217042841668", "77850045234108", "300471644949940" ]
[ "nonn" ]
8
0
2
[ "A001700", "A349535", "A364641", "A364645", "A364646", "A364647" ]
null
Seiichi Manyama, Jul 31 2023
2023-07-31T10:08:20
oeisdata/seq/A364/A364646.seq
04d4097f119519eb3842ff63abd4b63e
A364647
G.f. satisfies A(x) = 1/(1 - 5*x) - x*A(x)^3.
[ "1", "4", "13", "38", "135", "677", "3538", "15868", "63313", "268430", "1348190", "7038185", "33328258", "144159428", "642323050", "3213846836", "16700677289", "80935833050", "363843867265", "1660048399600", "8276473557820", "42830085070355", "210286731046320", "967456811687945", "4476690297795850" ]
[ "nonn" ]
8
0
2
[ "A026378", "A364641", "A364645", "A364646", "A364647" ]
null
Seiichi Manyama, Jul 31 2023
2023-07-31T10:08:24
oeisdata/seq/A364/A364647.seq
6f6271814e925a5558d80c4d0039a16b
A364648
Starting position of the first occurrence of the longest monochromatic arithmetic progression of difference n in the Fibonacci infinite word (A003849).
[ "2", "3", "20", "16", "11", "20", "0", "143", "2", "11", "54", "8", "32", "2", "11", "7", "70", "3", "7", "0", "986", "10", "3", "7", "16", "11", "2", "87", "376", "2", "3", "2", "21", "87", "2", "3", "7", "16", "3", "7", "0", "20", "23", "11", "20", "8", "11", "2", "11", "20", "36", "11", "7", "0", "6764", "31", "3", "376", "84", "11", "54", "0", "20", "2", "3", "2", "42", "87", "2", "3", "54", "304" ]
[ "nonn" ]
44
1
1
[ "A003849", "A339949", "A364648" ]
null
Gandhar Joshi, Jul 31 2023
2025-02-07T16:08:51
oeisdata/seq/A364/A364648.seq
1aaf441db25392335681b148839a7e20
A364649
Maximal number of pairwise non-orthogonal 1-dimensional subspaces over F_3^n.
[ "1", "2", "5", "7", "11", "18", "28", "45", "82" ]
[ "nonn", "more" ]
10
1
2
null
null
Benjamin Sambale, Jul 31 2023
2023-09-01T04:46:26
oeisdata/seq/A364/A364649.seq
2c826dcc2c187833b0209497bfaa3a5e
A364650
Number of powers of 3 whose binary representation contains exactly n 1's.
[ "1", "2", "1", "1", "1", "3", "0", "1", "1", "1", "2", "0", "1", "3", "1", "1", "2", "1", "1", "1", "0", "1" ]
[ "nonn", "base", "more" ]
4
1
2
[ "A011754", "A364650" ]
null
Pontus von Brömssen, Jul 31 2023
2023-08-02T13:50:36
oeisdata/seq/A364/A364650.seq
ee8940d8aeaac7e0323213b247987835
A364651
Number of 6-cycles in the n-Pell graph.
[ "0", "0", "0", "20", "206", "1282", "6302", "26942", "104948", "382444", "1325444", "4417024", "14263474", "44884286", "138222194", "417923290", "1243857480", "3651728760", "10592838440", "30403009612", "86440264694", "243689593114", "681776739174", "1894276352726", "5230101132028", "14357448589988" ]
[ "nonn", "easy" ]
20
0
4
[ "A290031", "A364619", "A364651" ]
null
Eric W. Weisstein, Jul 31 2023
2025-06-12T21:38:10
oeisdata/seq/A364/A364651.seq
f22b824390967c151287ad2e5c7a9873
A364652
Lower independence number of the n-Lucas cube graph.
[ "1", "1", "1", "3", "4", "5", "8", "11", "17", "24", "35" ]
[ "nonn", "more", "hard" ]
11
1
4
null
null
Eric W. Weisstein, Jul 31 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364652.seq
25dfce1e70eece5fb3d7f5f05e073689
A364653
Domination number of the n-Lucas cube graph.
[ "1", "1", "1", "3", "4", "5", "7", "11", "16", "23", "35" ]
[ "nonn", "more", "hard" ]
5
1
4
null
null
Eric W. Weisstein, Jul 31 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364653.seq
1fd7f15bdadc2818ed97583cb923d6ef
A364654
Numbers which are the sum or difference of two seventh powers.
[ "0", "1", "2", "127", "128", "129", "256", "2059", "2186", "2187", "2188", "2315", "4374", "14197", "16256", "16383", "16384", "16385", "16512", "18571", "32768", "61741", "75938", "77997", "78124", "78125", "78126", "78253", "80312", "94509", "156250", "201811", "263552", "277749", "279808", "279935", "279936", "279937", "280064", "282123", "296320" ]
[ "nonn" ]
15
1
3
[ "A001015", "A247099", "A364654" ]
null
Geoffrey Caveney, Jul 31 2023
2023-09-03T10:25:04
oeisdata/seq/A364/A364654.seq
0ca58c318a16941245ecdf734e9bb8e3
A364655
Circuit rank and corank of the n-Pell graph.
[ "0", "0", "1", "7", "30", "106", "339", "1021", "2956", "8324", "22965", "62371", "167306", "444302", "1170151", "3060409", "7956824", "20581576", "53000873", "135952639", "347525686", "885612402", "2250586811", "5705067061", "14429119332", "36418383564", "91744440541", "230719450651", "579286267938", "1452310024726" ]
[ "nonn" ]
9
0
4
null
null
Eric W. Weisstein, Jul 31 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364655.seq
37b47c6181ccd2d7f459dd2371372009
A364656
Number of strict interval closure operators on a set of n elements.
[ "1", "1", "4", "45", "2062", "589602", "1553173541" ]
[ "nonn", "hard", "more" ]
32
0
3
[ "A334255", "A356544", "A358144", "A358152", "A364656" ]
null
Tian Vlasic, Jul 31 2023
2024-05-14T07:06:22
oeisdata/seq/A364/A364656.seq
51654311e1f50145793a3d8f403133be
A364657
Numbers k such that sigma(k) > sigma(k+1) > sigma(k+2).
[ "44", "45", "104", "105", "116", "117", "164", "165", "224", "225", "272", "273", "296", "297", "315", "344", "345", "356", "357", "405", "464", "465", "512", "513", "525", "560", "561", "584", "585", "620", "621", "693", "704", "705", "765", "776", "777", "824", "825", "836", "837", "860", "861", "884", "885", "945", "1004", "1005", "1112", "1113", "1125", "1155" ]
[ "nonn", "easy" ]
12
1
1
[ "A050944", "A053226", "A364657", "A364659" ]
null
Seiichi Manyama, Aug 01 2023
2023-08-01T11:16:04
oeisdata/seq/A364/A364657.seq
7c86e8709cadaa411e30ea953ae9bda0
A364658
Numerators of coefficients in expansion of (1 + x)^(2/3).
[ "1", "2", "-1", "4", "-7", "14", "-91", "208", "-494", "10868", "-27170", "69160", "-535990", "1401820", "-3704810", "29638480", "-79653415", "215532770", "-5280552865", "14452039420", "-39743108405", "329300041070", "-913059204785", "2540686482880", "-21278249294120", "59579098023536", "-167279775219928", "12713262916714528" ]
[ "sign", "frac" ]
10
0
2
[ "A002596", "A067622", "A067623", "A127974", "A161200", "A364658", "A364661" ]
null
Ilya Gutkovskiy, Aug 01 2023
2023-08-02T07:05:56
oeisdata/seq/A364/A364658.seq
a22e0dd00c1a5d7c1cbe7c370334ee1e
A364659
Numbers k such that sigma(k) < sigma(k+1) < sigma(k+2).
[ "1", "2", "61", "62", "73", "74", "133", "134", "145", "146", "193", "194", "253", "254", "313", "397", "398", "403", "457", "458", "481", "482", "493", "494", "523", "553", "554", "565", "566", "613", "614", "625", "626", "661", "662", "673", "674", "691", "733", "734", "757", "758", "763", "793", "794", "817", "818", "853", "854", "913", "914", "943", "973", "974", "997", "998" ]
[ "nonn", "easy" ]
11
1
2
[ "A053224", "A364657", "A364659", "A364662" ]
null
Seiichi Manyama, Aug 01 2023
2023-08-01T11:16:09
oeisdata/seq/A364/A364659.seq
aa7c33212618005abf7347609c8b34b0
A364660
Numerators of coefficients in expansion of (1 + x)^(1/4).
[ "1", "1", "-3", "7", "-77", "231", "-1463", "4807", "-129789", "447051", "-3129357", "11094993", "-159028233", "574948227", "-4188908511", "15359331207", "-906200541213", "3358272593907", "-25000473754641", "93422822977869", "-1401342344668035", "5271716439465465", "-39777496770512145", "150462705175415505", "-4564035390320936985" ]
[ "sign", "frac" ]
13
0
3
[ "A002596", "A004130", "A008545", "A067622", "A088802", "A123854", "A364660", "A364661" ]
null
Ilya Gutkovskiy, Aug 01 2023
2023-08-02T07:07:12
oeisdata/seq/A364/A364660.seq
89aadbeee20892268f648d8e1de69509
A364661
Numerators of coefficients in expansion of (1 + x)^(3/4).
[ "1", "3", "-3", "5", "-45", "117", "-663", "1989", "-49725", "160225", "-1057485", "3556995", "-48612265", "168273225", "-1177912575", "4161957765", "-237231592605", "851242773465", "-6147864475025", "22326455198775", "-325966245902115", "1195209568307755", "-8801088639357105", "32525762362841475", "-964930950097630425" ]
[ "sign", "frac" ]
9
0
2
[ "A002596", "A067002", "A088802", "A123854", "A364658", "A364660", "A364661" ]
null
Ilya Gutkovskiy, Aug 01 2023
2023-08-02T07:05:25
oeisdata/seq/A364/A364661.seq
25349c8bdbe80afb48be025d018de766
A364662
Numbers k such that sigma(k) < sigma(k+1) < sigma(k+2) < sigma(k+3).
[ "1", "61", "73", "133", "145", "193", "253", "397", "457", "481", "493", "553", "565", "613", "625", "661", "673", "733", "757", "793", "817", "853", "913", "973", "997", "1033", "1093", "1213", "1237", "1285", "1321", "1453", "1513", "1537", "1645", "1657", "1681", "1813", "1825", "1873", "1933", "2077", "2113", "2173", "2233", "2245", "2293", "2413", "2497", "2533", "2581", "2593", "2653", "2713" ]
[ "nonn", "easy" ]
13
1
2
[ "A050944", "A053224", "A364659", "A364662" ]
null
Seiichi Manyama, Aug 01 2023
2023-08-01T11:16:00
oeisdata/seq/A364/A364662.seq
c4bee40c67eefd5ba760d4aaa2141db4
A364663
a(n+1) = a(|n-a(n)*a(n-1)|)+1; a(0) = 0.
[ "0", "1", "2", "1", "2", "3", "2", "1", "4", "3", "2", "3", "4", "1", "4", "3", "2", "3", "4", "3", "2", "5", "4", "3", "4", "5", "4", "3", "4", "3", "4", "5", "4", "5", "2", "5", "6", "3", "4", "5", "4", "3", "4", "5", "4", "5", "6", "3", "4", "7", "6", "5", "6", "5", "4", "3", "6", "5", "4", "5", "6", "5", "6", "5", "6", "3", "4", "5", "4", "5", "8", "5", "6", "5", "6", "5", "6", "7", "6", "7", "4", "7", "6", "5", "6", "5", "4", "5", "6", "5", "6", "7", "8", "7", "4", "5", "6" ]
[ "nonn" ]
11
0
3
[ "A003056", "A004001", "A005185", "A007660", "A339929", "A340134", "A340224", "A364197", "A364663" ]
null
Rok Cestnik, Aug 01 2023
2023-08-11T10:03:10
oeisdata/seq/A364/A364663.seq
4f77ac183887cb432ba805c70310e5ed
A364664
Lexicographically earliest permutation of the positive integers such that the successive cumulative sums reproduce the sequence itself, digit by digit.
[ "91", "10", "1", "102", "20", "4", "2", "24", "22", "8", "230", "25", "42", "7", "6", "28", "45", "14", "5", "3", "9", "58", "15", "88", "59", "46", "226", "67", "68", "16", "86", "689", "69", "87", "56", "77", "18", "599", "189", "64", "11", "90", "12", "57", "13", "251", "34", "114", "27", "21", "162", "185", "227", "223", "282", "40", "52", "423", "30", "2232", "113", "275", "32", "863", "37", "63", "38", "83", "44", "53" ]
[ "base", "nonn" ]
26
1
1
[ "A309151", "A364664" ]
null
Eric Angelini, Aug 01 2023
2023-08-05T13:01:36
oeisdata/seq/A364/A364664.seq
efa69936712793f277fbcba00d20d7db
A364665
Lower independence number of the n-triangular honeycomb obtuse knight graph.
[ "1", "3", "6", "4", "5", "5", "6", "7", "9", "12", "13", "14", "15", "16", "19", "22", "24", "26", "28", "30", "32", "34", "38", "41", "44" ]
[ "nonn", "more" ]
32
1
2
null
null
Eric W. Weisstein, Aug 01 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364665.seq
ded453aefd3bc8967259be7069f086e1
A364666
Lower independence number of the n X n X n grid graph.
[ "1", "2", "6", "16", "26", "43", "66" ]
[ "nonn", "more" ]
14
1
2
null
null
Eric W. Weisstein, Aug 01 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364666.seq
057f1c216ed52420677406fa96e47b79
A364667
Lower independence number of the n-diagonal intersection graph.
[ "1", "1", "2", "4", "10", "12", "30", "36", "74", "60" ]
[ "nonn", "more" ]
13
3
3
null
null
Eric W. Weisstein, Aug 01 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364667.seq
5a49cc8602583919c1931cb035b3bf4c
A364668
Domination and lower independence number of the n-Goldberg graph.
[ "0", "3", "5", "7", "9", "11", "14", "16", "18", "20", "22", "25", "27", "29", "31", "33", "36", "38", "40", "42", "44", "47", "49", "51", "53", "55", "58", "60", "62", "64", "66", "69", "71", "73", "75", "77", "80", "82", "84", "86", "88", "91", "93", "95", "97", "99", "102", "104", "106", "108", "110", "113", "115", "117", "119", "121", "124", "126", "128", "130", "132" ]
[ "nonn", "easy" ]
13
0
2
[ "A364668", "A382431" ]
null
Eric W. Weisstein, Aug 01 2023
2025-05-25T16:06:44
oeisdata/seq/A364/A364668.seq
14b045ebed7a569e3a5d9d4591c22fae
A364669
Lower independence number of the hypercube graph Q_n.
[ "1", "1", "2", "2", "4", "8", "12", "16", "32" ]
[ "nonn", "more" ]
5
0
3
null
null
Eric W. Weisstein, Aug 01 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364669.seq
8fec539bee483c92d40cbd5ed062eb68
A364670
Number of strict integer partitions of n with a part equal to the sum of two distinct others. A variation of sum-full strict partitions.
[ "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "3", "1", "4", "3", "7", "6", "10", "10", "14", "16", "24", "25", "34", "39", "48", "59", "71", "81", "103", "120", "136", "166", "194", "226", "260", "312", "353", "419", "473", "557", "636", "742", "824", "974", "1097", "1266", "1418", "1646", "1837", "2124", "2356", "2717", "3029", "3469", "3830", "4383", "4884", "5547" ]
[ "nonn" ]
8
0
11
[ "A000009", "A000041", "A007865", "A008284", "A008289", "A025065", "A085489", "A088809", "A093971", "A108917", "A111133", "A151897", "A236912", "A237113", "A237667", "A237668", "A240861", "A275972", "A299702", "A320340", "A323092", "A325862", "A363225", "A363226", "A364272", "A364346", "A364349", "A364350", "A364532", "A364533", "A364534", "A364670" ]
null
Gus Wiseman, Aug 03 2023
2023-08-05T06:24:01
oeisdata/seq/A364/A364670.seq
5dd5cae37612c1870c4c73e77a1443c1
A364671
Number of subsets of {1..n} containing all of their own first differences.
[ "1", "2", "4", "6", "10", "14", "23", "34", "58", "96", "171", "302", "565", "1041", "1969", "3719", "7105", "13544", "25999", "49852", "95949", "184658", "356129", "687068", "1327540", "2566295", "4966449", "9617306", "18640098", "36150918", "70166056", "136272548", "264844111", "515036040", "1002211421", "1951345157", "3801569113" ]
[ "nonn" ]
12
0
2
[ "A007862", "A054519", "A151897", "A196723", "A237667", "A237668", "A325325", "A326083", "A363225", "A363260", "A364345", "A364463", "A364464", "A364466", "A364467", "A364536", "A364537", "A364671", "A364672", "A364673", "A364674", "A364675", "A364752", "A364753" ]
null
Gus Wiseman, Aug 04 2023
2023-09-06T20:30:49
oeisdata/seq/A364/A364671.seq
6934149eb4df0daad1b603ffc4f5b098
A364672
Number of subsets of {1..n} not containing all of their own first differences.
[ "0", "0", "0", "2", "6", "18", "41", "94", "198", "416", "853", "1746", "3531", "7151", "14415", "29049", "58431", "117528", "236145", "474436", "952627", "1912494", "3838175", "7701540", "15449676", "30988137", "62142415", "124600422", "249795358", "500719994", "1003575768", "2011211100", "4030123185", "8074898552", "16177657763", "32408393211", "64917907623" ]
[ "nonn" ]
12
0
4
[ "A007862", "A054519", "A151897", "A237667", "A325325", "A326083", "A363225", "A363260", "A364345", "A364463", "A364464", "A364466", "A364467", "A364536", "A364537", "A364671", "A364672", "A364673", "A364674", "A364675", "A364752", "A364753" ]
null
Gus Wiseman, Aug 05 2023
2024-01-28T02:41:12
oeisdata/seq/A364/A364672.seq
8c58932c3cb6f49d31dcf6729b5fb69f
A364673
Number of (necessarily strict) integer partitions of n containing all of their own first differences.
[ "1", "1", "1", "2", "1", "1", "3", "2", "1", "2", "2", "2", "5", "2", "2", "4", "2", "3", "6", "4", "4", "8", "4", "4", "10", "8", "7", "8", "13", "9", "15", "12", "13", "17", "20", "15", "31", "24", "27", "32", "33", "32", "50", "42", "45", "53", "61", "61", "85", "76", "86", "101", "108", "118", "137", "141", "147", "179", "184", "196", "222", "244", "257", "295", "324", "348", "380", "433" ]
[ "nonn" ]
15
0
4
[ "A000009", "A000041", "A002865", "A007862", "A008284", "A008289", "A025065", "A196723", "A229816", "A236912", "A237113", "A237667", "A320347", "A325325", "A363225", "A363260", "A364272", "A364345", "A364463", "A364464", "A364467", "A364536", "A364537", "A364671", "A364672", "A364673", "A364674", "A364675", "A370386" ]
null
Gus Wiseman, Aug 03 2023
2024-03-09T19:18:48
oeisdata/seq/A364/A364673.seq
6e48ef7b8fc262c0b07e77bb5bdeac3b
A364674
Number of integer partitions of n containing all of their own nonzero first differences.
[ "1", "1", "2", "3", "4", "4", "8", "7", "11", "13", "17", "18", "32", "30", "44", "54", "70", "78", "114", "125", "171", "205", "257", "302", "408", "464", "592", "711", "892", "1042", "1330", "1543", "1925", "2279", "2787", "3291", "4061", "4727", "5753", "6792", "8197", "9583", "11593", "13505", "16198", "18965", "22548", "26290", "31340", "36363", "43046" ]
[ "nonn" ]
9
0
3
[ "A000009", "A000041", "A002865", "A007862", "A008284", "A008289", "A025065", "A229816", "A236912", "A237113", "A237667", "A320347", "A325325", "A326083", "A363225", "A363260", "A364272", "A364463", "A364464", "A364466", "A364467", "A364536", "A364537", "A364671", "A364672", "A364673", "A364674", "A364675" ]
null
Gus Wiseman, Aug 04 2023
2023-08-06T08:17:52
oeisdata/seq/A364/A364674.seq
91920b119f2940369b8a1661c4d7869c
A364675
Number of integer partitions of n whose nonzero first differences are a submultiset of the parts.
[ "1", "1", "2", "3", "4", "4", "7", "7", "10", "12", "15", "15", "26", "25", "35", "45", "55", "60", "86", "94", "126", "150", "186", "216", "288", "328", "407", "493", "610", "699", "896", "1030", "1269", "1500", "1816", "2130", "2620", "3029", "3654", "4300", "5165", "5984", "7222", "8368", "9976", "11637", "13771", "15960", "18978", "21896", "25815", "29915" ]
[ "nonn" ]
8
0
3
[ "A000009", "A000041", "A002865", "A007862", "A008284", "A008289", "A101925", "A108917", "A154402", "A229816", "A236912", "A237113", "A237667", "A237668", "A320347", "A325325", "A342337", "A363225", "A363260", "A364272", "A364345", "A364463", "A364464", "A364466", "A364467", "A364536", "A364537", "A364671", "A364672", "A364673", "A364675" ]
null
Gus Wiseman, Aug 04 2023
2023-08-10T07:11:48
oeisdata/seq/A364/A364675.seq
3b9cb9366ec4f9c1faf46ffebe8c493f
A364676
Lower independence number of the n-cube connected cycle graph.
[ "6", "16", "47", "96", "224", "512", "1152", "2560" ]
[ "nonn", "more" ]
13
3
1
null
null
Eric W. Weisstein, Aug 01 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364676.seq
89185e385e3962e7793b139b9e3ae439
A364677
Domination and lower independence number of the n-middle layer graph.
[ "2", "6", "14", "50", "132" ]
[ "nonn", "more" ]
9
1
1
null
null
Eric W. Weisstein, Aug 02 2023
2025-03-10T11:02:49
oeisdata/seq/A364/A364677.seq
00fe31a6667481e0603cd4fbb997cb33
A364678
Maximum number of primes between consecutive multiples of n, as permitted by divisibility considerations.
[ "0", "1", "1", "2", "2", "2", "2", "3", "3", "4", "4", "4", "4", "4", "4", "5", "5", "6", "6", "6", "5", "7", "7", "6", "7", "7", "7", "7", "8", "7", "8", "9", "8", "10", "8", "10", "10", "10", "11", "11", "11", "10", "11", "11", "11", "12", "12", "12", "12", "13", "12", "13", "14", "13", "13", "14", "14", "15", "15", "14", "15", "15", "15", "16", "15", "15", "16", "16", "17", "16", "17", "18", "18", "18", "18", "18", "17", "19", "19", "19", "19", "20", "20", "19", "19", "20", "21", "21" ]
[ "nonn" ]
47
1
4
[ "A000010", "A005097", "A007811", "A023193", "A056956", "A123985", "A123986", "A144769", "A309871", "A364678" ]
null
Brian Kehrig, Aug 24 2023
2025-04-27T03:23:30
oeisdata/seq/A364/A364678.seq
1807f9e564bdcb632aa407e2e07b2026
A364679
Least increasing sequence of semiprimes with alternating parity such that a(n-1) + a(n) is a semiprime, with a(1)=4.
[ "4", "21", "34", "35", "58", "65", "94", "111", "142", "145", "146", "155", "166", "169", "202", "205", "206", "209", "218", "219", "226", "247", "254", "265", "278", "287", "302", "309", "314", "319", "362", "391", "394", "395", "398", "415", "454", "469", "482", "497", "514", "527", "554", "565", "626", "629", "634", "679", "706", "731", "734", "763", "766", "771", "794", "849", "862", "865", "866", "869", "926" ]
[ "nonn" ]
60
1
1
[ "A001358", "A254923", "A364679" ]
null
Zak Seidov and Robert Israel, Sep 04 2023
2023-09-05T19:14:54
oeisdata/seq/A364/A364679.seq
1de1d5be62396f9a551095f477e4fe4a
A364680
Smallest initial number k of n consecutive numbers satisfying sigma(k) > sigma(k+1) > ... > sigma(k+n-1).
[ "1", "4", "44", "44", "20021154", "20021154" ]
[ "nonn", "more" ]
10
1
2
[ "A000203", "A050944", "A050945", "A053226", "A075029", "A364657", "A364680" ]
null
Seiichi Manyama, Aug 02 2023
2023-08-02T11:45:35
oeisdata/seq/A364/A364680.seq
a7be8fa4973b147b2df062d6fcb3948f
A364681
a(n) is the number of isogeny classes of elliptic curves over GF(q), where q = A246655(n) is the n-th prime power > 1.
[ "5", "7", "9", "9", "11", "9", "13", "13", "15", "13", "17", "17", "19", "20", "17", "21", "23", "15", "25", "25", "27", "27", "27", "29", "31", "31", "21", "33", "33", "35", "35", "29", "37", "37", "39", "41", "41", "41", "41", "43", "45", "37", "45", "25", "45", "47", "47", "49", "49", "51", "51", "51", "50", "53", "53", "53", "55", "55", "57", "57", "59", "59", "61", "61", "61", "61", "63", "45", "63", "37", "65", "65" ]
[ "nonn" ]
14
1
1
[ "A005523", "A362570", "A364681" ]
null
Robin Visser, Aug 02 2023
2023-08-04T15:47:55
oeisdata/seq/A364/A364681.seq
6410e3af343f73d51a00ba806adbc720
A364682
Number of iterations of the "x -> sum of squares of digits of x" map (A003132) for n to converge to either 0, 1 or the 8-cycle (37,58,89,145,42,20,4,16).
[ "1", "1", "2", "6", "1", "5", "10", "6", "6", "5", "2", "3", "6", "3", "7", "4", "1", "6", "4", "5", "1", "6", "7", "4", "2", "4", "3", "7", "4", "3", "6", "3", "4", "5", "5", "6", "9", "1", "3", "6", "2", "7", "1", "5", "5", "8", "5", "4", "7", "5", "5", "4", "4", "6", "8", "6", "3", "5", "1", "3", "10", "2", "3", "9", "5", "3", "8", "3", "3", "6", "6", "6", "7", "2", "4", "5", "3", "3", "5", "4", "6", "4", "4", "3", "7", "2" ]
[ "nonn" ]
15
0
3
[ "A003132", "A007770", "A039943", "A099645", "A193995", "A364682" ]
null
Chai Wah Wu, Aug 02 2023
2023-08-03T04:18:33
oeisdata/seq/A364/A364682.seq
3f457e7b07cc41d73bc3ed125a1e442c
A364683
a(n) is the least k such that 1 + 2^k + 3^k is divisible by n, or -1 if there is no such k.
[ "0", "1", "0", "3", "-1", "1", "2", "-1", "3", "-1", "9", "3", "-1", "2", "-1", "-1", "9", "3", "-1", "-1", "-1", "9", "5", "-1", "-1", "-1", "9", "-1", "-1", "-1", "16", "-1", "9", "9", "-1", "3", "12", "-1", "-1", "-1", "18", "-1", "-1", "9", "-1", "5", "-1", "-1", "4", "-1", "9", "-1", "-1", "9", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "16", "-1", "-1", "-1", "9", "-1", "9", "5", "-1", "-1", "-1", "19", "12", "-1", "-1", "-1", "-1", "33", "-1", "27" ]
[ "sign", "look" ]
6
1
4
[ "A001550", "A364683" ]
null
Robert Israel, Aug 02 2023
2023-08-02T13:48:40
oeisdata/seq/A364/A364683.seq
dad0688b49e21f155de7b7bdc7a5952d
A364684
Number of achiral triangular polyominoes with 6n cells and sixfold rotational symmetry.
[ "1", "1", "1", "1", "3", "4", "7", "9", "16", "22", "46", "63", "121", "167", "455", "912", "1263", "2535", "3514", "7099", "9873", "20043", "27956", "56807", "79397", "161736", "226559", "462482", "649100", "1327165", "1865833", "3820605", "5379507", "11028753", "15550459", "31913892", "45057416", "92557088", "130837407", "268988726" ]
[ "nonn" ]
10
1
5
[ "A000577", "A001420", "A006534", "A030223", "A030224", "A364684" ]
null
Robert A. Russell, Aug 02 2023
2023-08-04T02:58:43
oeisdata/seq/A364/A364684.seq
0c9a88dcae9a1547b7d8280fd7bab484
A364685
The number of binary sequences of length n for which all patterns {0,1},{0,0},{1,0},{1,1} appear for the first time. In particular, three of the patterns will have appeared at least once before the (n-1)st digit in the sequence and the remaining pattern appears for the first and only time at positions {n-1,n} in the sequence.
[ "4", "10", "18", "30", "48", "76", "120", "190", "302", "482", "772", "1240", "1996", "3218", "5194", "8390", "13560", "21924", "35456", "57350", "92774", "150090", "242828", "392880", "635668", "1028506", "1664130", "2692590", "4356672", "7049212", "11405832", "18454990", "29860766", "48315698", "78176404", "126492040", "204668380" ]
[ "nonn", "easy" ]
26
5
1
[ "A000045", "A242206", "A364685" ]
null
Evan Fisher and Ruiqi (Violet) Cai, Aug 02 2023
2023-08-05T21:27:47
oeisdata/seq/A364/A364685.seq
7b9fc7dbea4e42ea001759959fbe6838
A364686
a(n) is the number of parity self-conjugate partitions of n.
[ "1", "0", "1", "1", "1", "1", "1", "4", "2", "2", "2", "7", "5", "3", "4", "11", "11", "5", "10", "17", "18", "8", "17", "29", "30", "16", "28", "46", "45", "28", "42", "77", "69", "48", "65", "119", "103", "77", "97", "182", "157", "118", "149", "267", "236", "176", "222", "389", "353", "258", "335", "551", "515", "373", "494", "785", "746", "534", "718", "1099", "1061", "764", "1021", "1538", "1494" ]
[ "nonn" ]
20
1
8
[ "A000700", "A110654", "A364686" ]
null
Eric Gottlieb, Aug 02 2023
2024-01-18T20:21:39
oeisdata/seq/A364/A364686.seq
9ae88605005bc2ecd2aebd36a5d0069d
A364687
Number of chordless cycles (of length >= 4) in the n-folded cube graph.
[ "0", "0", "0", "252", "1920", "16240", "103936", "584640", "3056640", "15265536" ]
[ "nonn", "more" ]
42
2
4
null
null
Eric W. Weisstein, Aug 16 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364687.seq
67a20ed896000c676f6a619cfb7bd3e2
A364688
Number of 8-cycles in the hypercube graph Q_n.
[ "0", "0", "0", "6", "696", "6720", "39840", "184800", "736512", "2644992", "8801280", "27624960", "82790400", "238977024", "668688384", "1822679040", "4858183680", "12700876800", "32647938048", "82682707968", "206650736640", "510425825280", "1247438438400", "3019527684096", "7245593051136", "17248655769600" ]
[ "nonn" ]
8
0
4
[ "A001788", "A290031", "A364688" ]
null
Eric W. Weisstein, Aug 02 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364688.seq
4bd1dcaed3dd4adb015ee0008f52c901
A364689
Prime numbers that are the exact average of ten consecutive odd semiprimes.
[ "43", "53", "73", "83", "113", "373", "449", "577", "971", "1259", "1327", "1381", "1499", "1543", "1847", "2239", "2311", "2339", "2351", "2383", "2953", "3109", "3257", "3389", "4021", "4297", "4919", "5101", "5227", "5591", "5701", "5737", "5927", "6733", "6907", "7109", "7253", "7823", "8011", "9137", "9403", "9613", "10177", "11471", "11621", "11677", "12251", "12479", "12671", "12781" ]
[ "nonn" ]
32
1
1
[ "A000040", "A046315", "A363074", "A363187", "A363188", "A364147", "A364148", "A364149", "A364320", "A364321", "A364689" ]
null
Elmo R. Oliveira, Sep 25 2023
2023-10-09T18:38:06
oeisdata/seq/A364/A364689.seq
86ef59fe313d4a9ed815b3b375fd90b3
A364690
Prime powers q such that there does not exist an elliptic curve E over GF(q) with cardinality q + 1 + floor(2*sqrt(q)).
[ "128", "2048", "2187", "16807", "32768", "131072", "524288", "1953125", "2097152", "8388608", "14348907", "48828125", "134217728", "536870912", "30517578125", "549755813888", "847288609443", "2199023255552", "19073486328125", "140737488355328", "562949953421312", "36028797018963968", "144115188075855872", "450283905890997363" ]
[ "nonn" ]
23
1
1
[ "A005523", "A246547", "A246655", "A364690" ]
null
Robin Visser, Aug 02 2023
2025-02-04T01:30:17
oeisdata/seq/A364/A364690.seq
0dfe5afe31114f2e5ee46aeb9bae8a0e
A364691
Pentagonal numbers which are the sum of the first k primes, for some k >= 0.
[ "0", "5", "13490", "3299391550", "22042432252064127", "2387505511919644051", "680588297594638712735" ]
[ "nonn", "hard", "more" ]
26
1
2
[ "A000326", "A007504", "A061890", "A066527", "A364691", "A364694", "A364696", "A366269" ]
null
Paolo Xausa, Aug 03 2023
2023-10-07T07:01:03
oeisdata/seq/A364/A364691.seq
09a984386ae81f3abe417c741a652102
A364692
Largest number that is the sum of n distinct primes in exactly n ways; 0 if no solution exists.
[ "68", "130", "42", "59", "76", "0", "0", "161", "192", "233", "227", "276", "0", "425", "480", "0", "0", "0", "752" ]
[ "nonn", "more" ]
15
2
1
[ "A344989", "A364692" ]
null
Dmitry Kamenetsky, Aug 03 2023
2023-08-06T02:37:30
oeisdata/seq/A364/A364692.seq
db7d1795c69a921a73f66efda56ee69d
A364693
Characteristic function of polygonal numbers of order greater than 2 (A090466): a(n) = 1 if n is in A090466, 0 otherwise.
[ "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "1", "0", "1", "0", "0", "1", "1", "0", "1", "0", "0", "1", "1", "0", "1", "1", "0", "1", "1", "0", "1", "0", "0", "1", "1", "1", "1", "0", "0", "1", "1", "0", "1", "0", "0", "1", "1", "0", "1", "1", "0", "1", "1", "0", "1", "1", "0", "1", "1", "0", "1", "0", "0", "1", "1", "1", "1", "0", "0", "1", "1", "0", "1", "0", "0", "1", "1", "0", "1", "0", "0", "1", "1", "0", "1", "1", "0", "1" ]
[ "nonn" ]
19
0
null
[ "A010052", "A010054", "A090466", "A255849", "A364693" ]
null
Paolo Xausa, Aug 03 2023
2023-08-07T09:48:19
oeisdata/seq/A364/A364693.seq
2b089881a26249ce8393cad61d6910dc
A364694
Polygonal numbers of order greater than 2 (A090466) which are the sum of the first k primes, for some k > 0.
[ "10", "28", "58", "100", "129", "160", "238", "328", "381", "501", "568", "639", "712", "874", "963", "1060", "1161", "1264", "1371", "1480", "1593", "1720", "1851", "2127", "2276", "2427", "2584", "2914", "3087", "3447", "3831", "4227", "4438", "4888", "5350", "5589", "5830", "6081", "6601", "6870", "8275", "10191", "10887", "11599", "12339", "12718" ]
[ "nonn" ]
16
1
1
[ "A007504", "A061890", "A066527", "A090466", "A364691", "A364694", "A364695" ]
null
Paolo Xausa, Aug 03 2023
2023-08-07T08:32:27
oeisdata/seq/A364/A364694.seq
08e3c66ac564094f7988bd56d760c6de
A364695
Positive integers k such that the sum of the first k primes is a polygonal number of order greater than 2 (A090466).
[ "3", "5", "7", "9", "10", "11", "13", "15", "16", "18", "19", "20", "21", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "34", "35", "36", "37", "39", "40", "42", "44", "46", "47", "49", "51", "52", "53", "54", "56", "57", "62", "68", "70", "72", "74", "75", "76", "77", "78", "79", "80", "82", "83", "84", "85", "86", "87", "88", "90", "91", "92", "97", "99", "103", "105", "106" ]
[ "nonn" ]
21
1
1
[ "A007504", "A033997", "A090466", "A175133", "A364693", "A364694", "A364695", "A364696" ]
null
Paolo Xausa, Aug 03 2023
2023-08-07T10:07:21
oeisdata/seq/A364/A364695.seq
831e470ca605f20b3128c216edc369e5
A364696
Nonnegative integers k such that the sum of the first k primes is a pentagonal number.
[ "0", "2", "77", "24587", "48070640", "471412484", "7471587112" ]
[ "nonn", "hard", "more" ]
18
1
2
[ "A000326", "A007504", "A033997", "A175133", "A364691", "A364695", "A364696", "A366270" ]
null
Paolo Xausa, Aug 03 2023
2023-10-07T07:01:26
oeisdata/seq/A364/A364696.seq
0c871eb9476b79003fb62fe948a9f358
A364697
Lexicographically earliest permutation of the positive integers such that the successive cumulative products reproduce the sequence itself, digit by digit.
[ "1", "11", "2", "25", "50", "27", "500", "7", "4", "2500", "3", "71", "250000", "259", "8", "750000", "10", "39", "5000000", "2598", "7500000000", "77", "9", "6", "2500000000", "5", "53", "533", "75000000001", "38", "383", "43", "75000000000000", "35", "84", "13", "103", "12", "5000000000000", "28", "67", "30", "48", "25000000000000000", "21", "504", "78", "61", "87" ]
[ "base", "nonn" ]
15
1
2
[ "A309151", "A364664", "A364697" ]
null
Eric Angelini, Aug 03 2023
2023-08-05T12:59:47
oeisdata/seq/A364/A364697.seq
5eddbde3fe9b35b48caef13dbc66baf0
A364698
Numbers k such that k! + k^2 + k - 1 is prime.
[ "1", "2", "3", "4", "5", "6", "9", "11", "13", "1045" ]
[ "nonn", "more" ]
87
1
2
[ "A066143", "A079649", "A364698" ]
null
Saish S. Kambali, Aug 03 2023
2024-07-06T01:30:59
oeisdata/seq/A364/A364698.seq
478c686ea78cc1313e13fc8077f1a717
A364699
Numbers k such that 1 + 2^k + 3^k is divisible by 2*k-1.
[ "1", "4", "9", "16", "21", "40", "45", "52", "57", "64", "69", "76", "100", "112", "117", "129", "136", "141", "177", "184", "201", "220", "225", "232", "244", "261", "285", "297", "304", "309", "316", "321", "364", "376", "381", "405", "412", "429", "441", "460", "465", "477", "484", "489", "496", "520", "525", "532", "544", "549", "597", "609", "616", "640", "645", "652", "664", "681", "700", "705", "712", "717" ]
[ "nonn" ]
11
1
2
[ "A001550", "A290402", "A364683", "A364699" ]
null
Robert Israel, Aug 02 2023
2025-06-02T15:27:01
oeisdata/seq/A364/A364699.seq
6facf09a434167390844a102e2e6d0ec
A364700
Numerators of coefficients in expansion of sqrt( Sum_{j>=1} x^prime(j) ).
[ "1", "1", "-1", "9", "-37", "183", "-565", "1081", "-25453", "96427", "-404927", "1279359", "-12561457", "33077619", "-194103389", "577222425", "-25302548477", "74326953907", "-423955653883", "1225808143651", "-14456976876619", "42661352483945", "-250437691682371", "741244373831663", "-17624677238323753", "52507307961906687", "-314022434935401067" ]
[ "sign", "frac" ]
10
1
4
[ "A000040", "A001790", "A010051", "A046161", "A073749", "A364700" ]
null
Ilya Gutkovskiy, Aug 03 2023
2023-08-05T21:24:59
oeisdata/seq/A364/A364700.seq
fe21745fc4cfa0613ad5bd5a635f0046