sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A364801
The number of iterations that n requires to reach a fixed point under the map x -> A022290(x).
[ "0", "0", "0", "0", "1", "2", "3", "4", "3", "4", "5", "4", "4", "5", "6", "5", "4", "5", "6", "5", "5", "5", "6", "7", "6", "7", "6", "5", "5", "6", "7", "6", "6", "7", "6", "5", "5", "6", "7", "6", "7", "6", "6", "6", "6", "7", "8", "7", "6", "7", "8", "7", "7", "8", "7", "6", "7", "6", "6", "7", "7", "8", "7", "7", "6", "7", "8", "7", "7", "8", "7", "6", "7", "6", "6", "7", "7", "8", "7", "7", "7", "8", "7", "7", "7", "8", "7" ]
[ "nonn", "base", "easy" ]
13
0
6
[ "A003434", "A022290", "A364800", "A364801" ]
null
Amiram Eldar, Aug 08 2023
2023-08-10T12:23:56
oeisdata/seq/A364/A364801.seq
a22038c108774c410cf754607e25bb8d
A364802
Smallest number that reaches 1 after n iterations of the map x -> A356874(x).
[ "1", "2", "3", "5", "11", "29", "117", "879", "15279", "963957", "392158939", "2059426052079" ]
[ "nonn", "base", "more" ]
12
0
2
[ "A007755", "A356874", "A364800", "A364802", "A364803" ]
null
Amiram Eldar, Aug 08 2023
2023-08-26T04:49:10
oeisdata/seq/A364/A364802.seq
0aea04b31239be888fd1cb2f67dc2f14
A364803
Smallest number that reaches a fixed point after n iterations of the map x -> A022290(x).
[ "0", "4", "5", "6", "7", "10", "14", "23", "46", "117", "442", "3006", "47983", "2839934", "918486751", "3769839124330" ]
[ "nonn", "base", "more" ]
10
0
2
[ "A007755", "A022290", "A364801", "A364802", "A364803" ]
null
Amiram Eldar, Aug 08 2023
2023-08-25T12:44:53
oeisdata/seq/A364/A364803.seq
34577207589a8df76e2d45342d3d0cde
A364804
a(n) is the smallest number k such that the number of prime divisors (counted with multiplicity) of the n numbers from k through k+n-1 are in nondescending order.
[ "1", "1", "1", "1", "121", "121", "2521", "2521", "162121", "460801", "23553169", "23553169", "244068841", "913535283" ]
[ "nonn", "more" ]
15
1
5
[ "A001222", "A075046", "A286288", "A364804", "A364805" ]
null
Ilya Gutkovskiy, Aug 08 2023
2023-08-14T16:59:20
oeisdata/seq/A364/A364804.seq
12ec3f0f2138e1f38bfecd171ddce4fe
A364805
a(n) is the smallest number k such that the number of distinct prime divisors of the n numbers from k through k+n-1 are in nondescending order.
[ "1", "1", "1", "1", "1", "1", "141", "141", "211", "211", "82321", "82321", "526093", "526093", "526093", "526093", "127890361", "127890361" ]
[ "nonn", "more" ]
13
1
7
[ "A001221", "A075046", "A286287", "A364804", "A364805" ]
null
Ilya Gutkovskiy, Aug 08 2023
2023-08-14T15:00:02
oeisdata/seq/A364/A364805.seq
b4687b4cf8640993a98fac0983203756
A364806
Decimal expansion of 1/(Re((-sqrt(2))^^9) - 1), where ^^ indicates tetration.
[ "2", "0", "0", "2", "3", "3", "2", "6", "1", "1", "1", "6", "7", "5", "5", "7", "8", "4", "2", "6", "6", "7", "9", "7", "2", "0", "7", "1", "0", "8", "3", "0", "2", "9", "9", "7", "8", "1", "4", "5", "9", "3", "2", "6", "6", "8", "2", "9", "3", "4", "5", "1", "5", "3", "3", "2", "6", "3", "3", "5", "4", "8", "9", "9", "3", "7", "4", "8", "6", "4", "3", "0", "3", "6", "2", "1", "4", "6", "3", "7", "0", "7", "8", "4", "1", "1", "9" ]
[ "easy", "cons", "nonn", "less" ]
52
45
1
[ "A002193", "A198094", "A359187", "A364711", "A364806", "A365937" ]
null
Marco Ripà and Thomas Scheuerle, Aug 08 2023
2024-01-09T10:26:58
oeisdata/seq/A364/A364806.seq
a4dc56f7ca02e39203c4f46340caec69
A364807
Numbers k such that abs(k - Sum_{m=2..k} pi(prime(k)/m)) is a prime number, where pi(k) is number of primes <= k.
[ "2", "3", "5", "6", "8", "9", "18", "19", "21", "26", "29", "34", "48", "50", "56", "63", "69", "79", "84", "87", "95", "97", "99", "101", "110", "111", "132", "134", "139", "149", "151", "157", "160", "163", "164", "168", "171", "187", "201", "204", "209", "220", "222", "226", "227", "231", "244", "250", "256", "258", "268", "276", "282", "290", "292", "294", "296", "306" ]
[ "nonn", "easy" ]
101
0
1
[ "A000720", "A104272", "A364807" ]
null
Saish S. Kambali, Aug 08 2023
2023-09-07T19:56:01
oeisdata/seq/A364/A364807.seq
872b5c2d950788fd44322a79ea95d6fe
A364808
a(n) = sum of minimal runlengths of all the partitions of n.
[ "1", "3", "5", "9", "11", "20", "22", "36", "44", "63", "74", "114", "128", "180", "224", "298", "355", "485", "573", "760", "922", "1174", "1419", "1836", "2189", "2756", "3341", "4160", "4988", "6217", "7412", "9131", "10941", "13326", "15916", "19379", "22988", "27770", "33017", "39662", "46919", "56223", "66308", "79047", "93187", "110512" ]
[ "nonn" ]
17
1
2
[ "A000041", "A264397", "A364808" ]
null
Clark Kimberling, Sep 10 2023
2023-09-17T20:12:39
oeisdata/seq/A364/A364808.seq
948471253f72004790d9d2f09eca3ee0
A364809
Number of partitions of n with at most five part sizes.
[ "1", "1", "2", "3", "5", "7", "11", "15", "22", "30", "42", "56", "77", "101", "135", "176", "231", "297", "385", "490", "627", "791", "1000", "1250", "1565", "1938", "2400", "2945", "3615", "4395", "5342", "6439", "7755", "9268", "11069", "13127", "15537", "18286", "21484", "25095", "29275", "33968", "39344", "45362", "52193", "59836", "68441", "78014", "88724", "100622", "113828" ]
[ "nonn" ]
23
0
3
[ "A116608", "A265250", "A309058", "A364793", "A364809", "A365631" ]
null
Seiichi Manyama, Sep 14 2023
2023-09-14T12:37:52
oeisdata/seq/A364/A364809.seq
ee95b4da0836febeec66fe490dacf991
A364810
a(n) = greatest number in row n of the array in A225485.
[ "1", "1", "1", "2", "3", "4", "8", "9", "12", "17", "26", "27", "44", "53", "76", "98", "128", "168", "212", "273", "344", "429", "525", "662", "796", "981", "1182", "1442", "1709", "2096", "2663", "3406", "4315", "5426", "6784", "8417", "10466", "12824", "15721", "19104", "23267", "27981", "33856", "40515", "48508", "57826", "68982", "81493", "96869" ]
[ "nonn" ]
18
1
4
[ "A000041", "A225485", "A225486", "A325245", "A364810" ]
null
Clark Kimberling, Sep 14 2023
2023-09-17T18:50:54
oeisdata/seq/A364/A364810.seq
3bef96da6ce96d6f451ade1b450ca5fe
A364811
Number of distinct residues x^4 (mod 2^n), x=0..2^n-1.
[ "1", "2", "2", "2", "2", "4", "6", "10", "18", "36", "70", "138", "274", "548", "1094", "2186", "4370", "8740", "17478", "34954", "69906", "139812", "279622", "559242", "1118482", "2236964", "4473926" ]
[ "nonn", "more" ]
27
0
2
[ "A023105", "A046630", "A319281", "A364811", "A365103" ]
null
Albert Mukovskiy, Sep 14 2023
2023-09-17T18:29:50
oeisdata/seq/A364/A364811.seq
24b4ac0b925e080431850a9ef900ed0c
A364812
Triangle of generalized binomial coefficients T(n,k) = ff(n)/(ff(k)*ff(n-k)) where ff(n) = A363838(n), the generalized factorial.
[ "1", "1", "1", "1", "2", "1", "1", "3", "3", "1", "1", "16", "24", "16", "1", "1", "5", "40", "40", "5", "1", "1", "36", "90", "480", "90", "36", "1", "1", "7", "126", "210", "210", "126", "7", "1", "1", "256", "896", "10752", "3360", "10752", "896", "256", "1", "1", "81", "10368", "24192", "54432", "54432", "24192", "10368", "81", "1", "1", "100", "4050", "345600", "151200", "1088640", "151200", "345600", "4050", "100", "1" ]
[ "nonn", "tabl" ]
12
0
5
[ "A007318", "A363838", "A364812" ]
null
Michel Marcus, Oct 21 2023
2023-10-22T01:25:32
oeisdata/seq/A364/A364812.seq
e37bbeb5687c307bfacff94eecdb1dd9
A364813
a(n) = Product_{k=2..n} k^ord(n, k) where ord(n, k) = 0 if k does not divide n, otherwise ord(n, k) = e where e is such that k^e divides n but k^(e + 1) does not.
[ "1", "2", "3", "16", "5", "36", "7", "256", "81", "100", "11", "3456", "13", "196", "225", "32768", "17", "17496", "19", "16000", "441", "484", "23", "1327104", "625", "676", "6561", "43904", "29", "810000", "31", "2097152", "1089", "1156", "1225", "362797056", "37", "1444", "1521", "10240000", "41", "3111696", "43", "170368", "273375", "2116", "47", "8153726976", "2401", "625000" ]
[ "nonn" ]
26
1
2
[ "A000027", "A005451", "A363838", "A364813", "A381885" ]
null
Michel Marcus, Oct 21 2023
2025-04-02T04:11:33
oeisdata/seq/A364/A364813.seq
6df7c791e402c8ad2441730ad077e960
A364814
Numbers k whose largest divisor <= sqrt(k) is a power of 2, listing only the first such number with any given prime signature.
[ "1", "2", "4", "6", "8", "16", "20", "24", "32", "64", "72", "80", "96", "128", "256", "288", "320", "336", "384", "512", "1024", "1056", "1152", "1280", "1344", "1536", "2048", "4096", "4224", "4608", "4800", "5120", "5376", "6144", "8192", "16384", "16896", "17280", "18432", "18816", "19200", "20480", "21504", "24576", "32768", "65536", "67584", "69120", "69888" ]
[ "nonn" ]
31
1
2
[ "A025487", "A212171", "A364814", "A365406" ]
null
David A. Corneth, Oct 21 2023
2024-12-27T00:57:25
oeisdata/seq/A364/A364814.seq
8e4c6c6655652001c51747c66903e380
A364815
Number of minors in the n-antiprism graph.
[ "152", "1876", "24266", "294795", "3419037" ]
[ "nonn", "more" ]
18
3
1
null
null
Eric W. Weisstein, Oct 21 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364815.seq
d3a2711e56e3d21e10c31807502efe1a
A364816
Number of labeled forests of rooted Greg hypertrees with n white vertices.
[ "1", "4", "38", "587", "12607", "347158", "11668113", "463118041", "21199488803", "1099465138203", "63715991036964", "4080500855334901", "286178278238641752", "21813909692571410084", "1795659553423061982001", "158754024731440581761116", "15002712207593790179795284", "1509215071938528737864389367", "161017605699030302902310357883" ]
[ "nonn", "easy" ]
18
1
2
[ "A005264", "A052888", "A364816" ]
null
Paul Laubie, Oct 21 2023
2023-11-07T04:32:55
oeisdata/seq/A364/A364816.seq
48374b3f0d86827c4ea725fb84fe4f3f
A364817
Triangle read by rows: T(n,k) = number of permutations p of [n] such that max(|p(p(i)) - i|)=k (n>=1, 0<=k<=n-1).
[ "1", "2", "0", "4", "0", "2", "10", "2", "6", "6", "26", "6", "22", "36", "30", "76", "24", "92", "144", "216", "168", "232", "80", "334", "640", "1150", "1524", "1080", "764", "312", "1328", "2984", "5516", "9712", "11784", "7920", "2620", "1152", "5234", "13296", "27668", "55750", "90240", "101400", "65520", "9496", "4616", "21780", "62124", "144564", "306272", "601756", "909312", "964080", "604800" ]
[ "nonn", "tabl" ]
20
1
2
[ "A000085", "A000142", "A130152", "A175925", "A364817", "A364819" ]
null
Seiichi Manyama, Oct 21 2023
2023-10-22T06:44:26
oeisdata/seq/A364/A364817.seq
df5b21b71b25e911b8e33ca9dc3ef5c7
A364818
Number of distinct prime divisors of A000129(n) (Pell numbers).
[ "0", "1", "1", "2", "1", "3", "1", "3", "2", "3", "1", "5", "1", "3", "3", "4", "2", "5", "2", "6", "3", "4", "2", "7", "3", "4", "4", "6", "1", "7", "3", "5", "3", "5", "3", "9", "3", "4", "4", "9", "1", "7", "2", "8", "6", "5", "2", "10", "3", "6", "5", "7", "1", "8", "5", "8", "5", "3", "1", "13", "3", "6", "6", "8", "6", "8", "2", "9", "4", "8", "3", "13", "2", "7", "8", "9", "5", "10", "4", "12", "7", "5", "2", "14", "7" ]
[ "nonn" ]
16
1
4
[ "A000129", "A001221", "A272040", "A363829", "A363831", "A363833", "A364818" ]
null
Tyler Busby, Oct 21 2023
2023-10-21T23:23:00
oeisdata/seq/A364/A364818.seq
5caee1fa9a4e9413cf0bccca0878e4de
A364819
Number of permutations p of [n] such that max(|p(p(i)) - i|)=1.
[ "0", "0", "2", "6", "24", "80", "312", "1152", "4616", "18384", "77280", "328352", "1451712", "6527616", "30299504", "143322000", "696359232", "3448656512", "17483842176", "90301959744", "476270369600", "2557007766912", "13991998520832", "77867819879936", "441003737739264", "2537848321044480", "14843836828748672" ]
[ "nonn" ]
12
2
3
[ "A000085", "A364817", "A364819" ]
null
Seiichi Manyama, Oct 21 2023
2023-10-21T11:34:34
oeisdata/seq/A364/A364819.seq
9d393d94b471e991f58fbef322d6bfcc
A364820
a(n) is the smallest prime factor of the n-th Pell number A000129(n).
[ "2", "5", "2", "29", "2", "13", "2", "5", "2", "5741", "2", "33461", "2", "5", "2", "137", "2", "37", "2", "5", "2", "229", "2", "29", "2", "5", "2", "44560482149", "2", "61", "2", "5", "2", "13", "2", "593", "2", "5", "2", "1746860020068409", "2", "11437", "2", "5", "2", "3761", "2", "13", "2", "5", "2", "68480406462161287469", "2", "29", "2", "5", "2" ]
[ "nonn" ]
15
2
1
[ "A020639", "A060383", "A246556", "A264137", "A280104", "A364820" ]
null
Sean A. Irvine, Oct 21 2023
2023-10-21T17:11:55
oeisdata/seq/A364/A364820.seq
bdd7e260f3f19d1784a22ce181e41ca8
A364821
Decimal expansion of the unique value of x such that Gamma(x + i*sqrt(1-x^2)) is an imaginary number and -1 < x < 1.
[ "1", "4", "9", "9", "6", "5", "9", "7", "4", "6", "0", "6", "4", "9", "1", "0", "8", "9", "8", "5", "3", "0", "9", "7", "0", "5", "3", "6", "6", "4", "1", "4", "5", "7", "3", "6", "6", "8", "7", "4", "1", "8", "4", "1", "0", "2", "3", "9", "9", "6", "9", "7", "4", "2", "9", "1", "1", "7", "8", "3", "1", "4", "7", "5", "5", "9", "8", "7", "2", "4", "7", "9", "7", "8", "9", "3", "9", "0", "2", "7", "0", "7", "3", "4", "1", "4", "6", "4", "6", "4", "2", "5", "3", "6", "5", "3", "0", "0", "8", "1", "0", "3", "6", "5", "8", "3" ]
[ "nonn", "cons" ]
13
0
2
[ "A090986", "A212877", "A212878", "A212879", "A212880", "A364355", "A364356", "A364821", "A365317", "A365318", "A366345" ]
null
Artur Jasinski, Oct 07 2023
2023-10-08T09:19:18
oeisdata/seq/A364/A364821.seq
8cacbaa680c594ca7c154b17525b9732
A364822
Expansion of e.g.f. cosh(x) / (1 - 2*sinh(x)).
[ "1", "2", "9", "56", "465", "4832", "60249", "876416", "14570145", "272502272", "5662834089", "129446475776", "3228012339825", "87205172928512", "2537079010567929", "79084060649947136", "2629496833837277505", "92893490657046167552", "3474733464040954877769", "137195165161622584426496", "5702069567580948171751185" ]
[ "nonn" ]
23
0
2
[ "A000556", "A000557", "A005923", "A332257", "A341724", "A364822" ]
null
Mélika Tebni, Nov 07 2023
2023-11-08T16:44:12
oeisdata/seq/A364/A364822.seq
2389fdab8e58921a4b461b331f40a63c
A364823
Triangle read by rows: T(n,k) = number of possible positions for four connected discs in the game "Connect Four" played on a board with n columns and k rows, 4 <= k <= n.
[ "10", "17", "28", "24", "39", "54", "31", "50", "69", "88", "38", "61", "84", "107", "130", "45", "72", "99", "126", "153", "180", "52", "83", "114", "145", "176", "207", "238", "59", "94", "129", "164", "199", "234", "269", "304", "66", "105", "144", "183", "222", "261", "300", "339", "378", "73", "116", "159", "202", "245", "288", "331", "374", "417", "460" ]
[ "nonn", "tabl", "easy" ]
51
4
1
[ "A013582", "A059193", "A090224", "A212693", "A364823" ]
null
Felix Huber, Aug 09 2023
2023-10-08T09:24:37
oeisdata/seq/A364/A364823.seq
5d0d46dcf0eb6d2b6f0cac1a6c64ccaf
A364824
Index of prime(n) in A067836, or -1 if prime(n) does not occur in it.
[ "1", "2", "3", "4", "6", "5", "7", "8", "9", "12", "13", "10", "19", "14", "20", "16", "26", "42", "18", "25", "11", "15", "17", "43", "118", "33", "24", "31", "29", "212", "40", "68", "30", "98", "22", "45", "34", "109", "28", "39", "21", "23", "46", "143", "27", "35", "37", "55", "47", "123", "58", "90", "132", "32", "139", "91", "41", "44", "38", "52", "36", "77", "54", "48", "53", "83", "51" ]
[ "nonn" ]
11
1
2
[ "A062894", "A067836", "A364824" ]
null
Bert Dobbelaere, Aug 09 2023
2023-10-15T11:59:17
oeisdata/seq/A364/A364824.seq
d86a0a21e1b9d937ba286b73cc9b224c
A364825
G.f. satisfies A(x) = 1 - x*A(x)^3 * (1 - 3*A(x)).
[ "1", "2", "18", "222", "3166", "49098", "804138", "13686198", "239671590", "4290463698", "78160665666", "1444298971662", "27005948771886", "510024567278234", "9714561608833242", "186403770207998310", "3599812021110287862", "69914211761486437026", "1364692279095996581490" ]
[ "nonn" ]
23
0
2
[ "A025192", "A107841", "A144097", "A235347", "A243659", "A364825", "A364826", "A364827" ]
null
Seiichi Manyama, Aug 09 2023
2023-08-10T04:49:02
oeisdata/seq/A364/A364825.seq
57f4ce7726aaed7a36a4fd6ae26d89e3
A364826
G.f. satisfies A(x) = 1 - x*A(x)^4 * (1 - 3*A(x)).
[ "1", "2", "22", "338", "6038", "117570", "2420758", "51833106", "1142472150", "25749801986", "590737764118", "13748997055826", "323842714201622", "7704914865207362", "184899022770465558", "4470200057557410834", "108776308617293352534", "2662072268791363675650" ]
[ "nonn" ]
18
0
2
[ "A025192", "A107841", "A235347", "A243667", "A260332", "A364825", "A364826", "A364827" ]
null
Seiichi Manyama, Aug 09 2023
2023-08-09T16:58:33
oeisdata/seq/A364/A364826.seq
f079240ed795d63031a646e7f2d2df98
A364827
G.f. satisfies A(x) = 1 - x*A(x)^5 * (1 - 3*A(x)).
[ "1", "2", "26", "478", "10254", "240122", "5950530", "153417542", "4072868742", "110585691634", "3056671795946", "85722961493742", "2433127206219582", "69763483031049066", "2017643094336224914", "58789801741123032918", "1724199860717303739062", "50858327392484088101346" ]
[ "nonn" ]
17
0
2
[ "A025192", "A107841", "A235347", "A243668", "A363006", "A364825", "A364826", "A364827" ]
null
Seiichi Manyama, Aug 09 2023
2023-08-09T16:57:19
oeisdata/seq/A364/A364827.seq
9eb284bcd18924a7ee47124f132b85d3
A364828
a(n) is the number of regions inside a circle after inscribing (always starting from the same point), for each divisor d_i of n greater than 1, a regular d_i-gon.
[ "1", "2", "4", "6", "6", "12", "8", "14", "13", "18", "12", "36", "14", "24", "28", "30", "18", "46", "20", "52", "36", "36", "24", "88", "31", "42", "40", "66", "30", "114", "32", "62", "52", "54", "56", "140", "38", "60", "60", "128", "42", "144", "44", "94", "102", "72", "48", "196", "57", "104", "76", "108", "54", "152", "80", "162", "84", "90", "60", "360", "62", "96", "132", "126" ]
[ "nonn" ]
16
1
2
[ "A006533", "A006600", "A364828", "A364829", "A364830", "A364838" ]
null
Paolo Xausa, Aug 09 2023
2023-08-12T00:40:13
oeisdata/seq/A364/A364828.seq
3937470c36c9f6d0f75355d58b3afaea
A364829
a(n) is the number of regions inside a regular n-gon after inscribing (always starting from the same point), for each proper divisor d_i of n greater than 1, a regular d_i-gon.
[ "0", "0", "1", "2", "1", "6", "1", "6", "4", "8", "1", "24", "1", "10", "13", "14", "1", "28", "1", "32", "15", "14", "1", "64", "6", "16", "13", "38", "1", "84", "1", "30", "19", "20", "21", "104", "1", "22", "21", "88", "1", "102", "1", "50", "57", "26", "1", "148", "8", "54", "25", "56", "1", "98", "25", "106", "27", "32", "1", "300", "1", "34", "69", "62", "27", "134", "1", "68", "31", "144" ]
[ "nonn" ]
14
1
4
[ "A006600", "A007678", "A364828", "A364829", "A364830", "A364838" ]
null
Paolo Xausa, Aug 09 2023
2023-08-12T00:41:01
oeisdata/seq/A364/A364829.seq
e0cfb7b079435cacff977cc658f123a5
A364830
a(n) is the number of line intersections (not coinciding with a vertex) inside a regular n-gon after inscribing (always starting from the same point), for each proper divisor d_i of n greater than 1, a regular d_i-gon.
[ "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "9", "0", "1", "4", "0", "0", "8", "0", "11", "4", "1", "0", "29", "0", "1", "0", "11", "0", "43", "0", "0", "4", "1", "8", "50", "0", "1", "4", "39", "0", "49", "0", "11", "24", "1", "0", "73", "0", "12", "4", "11", "0", "33", "8", "43", "4", "1", "0", "193", "0", "1", "28", "0", "8", "57", "0", "11", "4", "71", "0", "164", "0", "1", "28", "11", "12", "61" ]
[ "nonn" ]
17
1
12
[ "A006561", "A007569", "A032741", "A364828", "A364829", "A364830", "A364838" ]
null
Paolo Xausa, Aug 09 2023
2023-08-12T00:41:43
oeisdata/seq/A364/A364830.seq
144703077b14722c2f553c417e2b2eff
A364831
Primes whose digits are prime and in nonincreasing order.
[ "2", "3", "5", "7", "53", "73", "733", "773", "5333", "7333", "7753", "55333", "75533", "75553", "77773", "733333", "755333", "775553", "7553333", "7555333", "7775533", "7777753", "55555333", "55555553", "77755553", "555553333", "755555533", "773333333", "777555553", "777773333", "777775333", "777775553", "777777773" ]
[ "nonn", "base" ]
18
1
1
[ "A009996", "A019546", "A028867", "A177061", "A364831" ]
null
James C. McMahon, Aug 09 2023
2023-09-11T11:40:32
oeisdata/seq/A364/A364831.seq
e8da62254d38616c54d81d577766be54
A364832
Rectangular array, read by descending antidiagonals, in which row n lists numbers m such that w(s,m) = n-1 (see comments for definition of w).
[ "1", "3", "2", "7", "6", "4", "9", "14", "12", "5", "13", "18", "28", "15", "8", "19", "26", "36", "35", "24", "10", "21", "38", "52", "45", "56", "30", "11", "27", "42", "76", "65", "72", "70", "33", "16", "31", "54", "84", "95", "104", "90", "77", "48", "17", "37", "62", "108", "105", "152", "130", "99", "112", "51", "20", "39", "74", "124", "135", "168", "190", "143", "144", "119" ]
[ "nonn", "tabl" ]
15
1
2
[ "A000040", "A003627", "A004612", "A343430", "A346414", "A364808", "A364832" ]
null
Clark Kimberling, Aug 09 2023
2023-09-17T11:01:58
oeisdata/seq/A364/A364832.seq
176fa1df37ccc33bde346cf14a68425e
A364833
G.f. satisfies A(x) = 1 + x*A(x)^2/(1 - x^3*A(x)^3).
[ "1", "1", "2", "5", "15", "49", "168", "595", "2160", "7997", "30083", "114660", "441840", "1718531", "6737820", "26600784", "105659970", "421949492", "1693120779", "6823018035", "27602090087", "112053680381", "456343848121", "1863893501065", "7633232165286", "31337360839387", "128944120202510" ]
[ "nonn" ]
23
0
3
[ "A001003", "A049124", "A112806", "A218251", "A219537", "A364161", "A364833", "A365247" ]
null
Seiichi Manyama, Aug 28 2023
2024-09-28T14:47:36
oeisdata/seq/A364/A364833.seq
c713b5e784e2a3586037052e52a6731d
A364834
Sum of positive integers <= n which are multiples of 2 or 5.
[ "0", "2", "2", "6", "11", "17", "17", "25", "25", "35", "35", "47", "47", "61", "76", "92", "92", "110", "110", "130", "130", "152", "152", "176", "201", "227", "227", "255", "255", "285", "285", "317", "317", "351", "386", "422", "422", "460", "460", "500", "500", "542", "542", "586", "631", "677", "677", "725", "725", "775", "775", "827", "827", "881", "936" ]
[ "nonn", "easy" ]
61
1
2
[ "A065502", "A126592", "A364834" ]
null
Darío Clavijo, Aug 09 2023
2023-08-17T11:06:22
oeisdata/seq/A364/A364834.seq
f258b4eff7058ba78e7d737a9cd0870b
A364835
a(1) = 1; a(n+1) = (number of times a(n)+1 has appeared) - (number of times a(n) has appeared).
[ "1", "-1", "-1", "-2", "1", "-2", "0", "1", "-3", "1", "-4", "0", "2", "-1", "-1", "-2", "1", "-4", "-1", "-3", "1", "-5", "1", "-6", "0", "4", "-1", "-3", "0", "3", "0", "2", "-1", "-2", "3", "-1", "-3", "0", "1", "-6", "-1", "-3", "-1", "-4", "2", "-1", "-5", "1", "-6", "-1", "-6", "-2", "7", "-1", "-7", "3", "-2", "7", "-2", "6", "1", "-7", "2", "-1", "-8", "1", "-7", "1", "-8", "1", "-9", "1", "-10", "0", "7", "-3", "1", "-11", "0" ]
[ "sign", "easy", "look" ]
43
1
4
[ "A329934", "A330004", "A364835" ]
null
Rok Cestnik, Aug 28 2023
2023-09-01T14:06:15
oeisdata/seq/A364/A364835.seq
579b350b4bcf3e289edf9e63c55877fb
A364836
a(n) is the least positive integer that can be expressed as the sum of two distinct nonzero decimal palindromes in exactly n ways.
[ "1", "3", "5", "7", "9", "110", "353", "363", "373", "383", "393", "524", "474", "484", "565", "494", "575", "615", "585", "837", "595", "716", "686", "1342", "777", "696", "1332", "787", "878", "918", "797", "888", "979", "32212", "12892", "898", "989", "1009", "11220", "54544", "999", "30902", "11110", "43423", "42623", "28982", "1100", "11000", "35753", "36663" ]
[ "nonn", "base" ]
25
0
2
[ "A002113", "A115336", "A341155", "A364836" ]
null
Ilya Gutkovskiy, Aug 28 2023
2023-08-31T12:01:58
oeisdata/seq/A364/A364836.seq
4cf95b85b2fe91e69e6087f363d97431
A364837
Initial digit of 2^(2^n) = A001146(n).
[ "2", "4", "1", "2", "6", "4", "1", "3", "1", "1", "1", "3", "1", "1", "1", "1", "2", "4", "1", "2", "6", "4", "2", "4", "1", "3", "1", "1", "1", "2", "4", "1", "3", "9", "9", "8", "7", "5", "2", "8", "8", "6", "4", "1", "3", "9", "9", "9", "9", "9", "8", "7", "5", "2", "8", "7", "6", "3", "1", "2", "5", "3", "1", "1", "1", "3", "1", "1", "3", "9", "8", "7", "5", "3", "1", "1", "1", "3", "1", "2", "4", "2", "5", "2", "6", "4", "1", "2" ]
[ "nonn", "base" ]
63
0
1
[ "A000030", "A001146", "A362004", "A364789", "A364837", "A364855" ]
null
Marco Ripà, Aug 10 2023
2024-01-14T20:33:33
oeisdata/seq/A364/A364837.seq
d5566a61693ea092dbe56ab67df251a3
A364838
a(n) is the number of line intersections (including vertices) inside a regular n-gon after inscribing (always starting from the same point), for each proper divisor d_i of n greater than 1, a regular d_i-gon.
[ "1", "2", "3", "4", "5", "7", "7", "8", "9", "11", "11", "21", "13", "15", "19", "16", "17", "26", "19", "31", "25", "23", "23", "53", "25", "27", "27", "39", "29", "73", "31", "32", "37", "35", "43", "86", "37", "39", "43", "79", "41", "91", "43", "55", "69", "47", "47", "121", "49", "62", "55", "63", "53", "87", "63", "99", "61", "59", "59", "253", "61", "63", "91", "64", "73", "123", "67" ]
[ "nonn" ]
15
1
2
[ "A006561", "A007569", "A032741", "A364828", "A364829", "A364830", "A364838" ]
null
Paolo Xausa, Aug 09 2023
2023-08-12T00:42:18
oeisdata/seq/A364/A364838.seq
57fbf2189246462770c3df0a0eaad78f
A364839
Number of strict integer partitions of n such that some part can be written as a nonnegative linear combination of the others.
[ "0", "0", "0", "1", "1", "1", "3", "2", "4", "5", "7", "7", "12", "12", "17", "20", "26", "29", "39", "43", "54", "62", "77", "88", "107", "122", "148", "168", "200", "229", "267", "308", "360", "407", "476", "536", "623", "710", "812", "917", "1050", "1190", "1349", "1530", "1733", "1944", "2206", "2483", "2794", "3138", "3524" ]
[ "nonn" ]
14
0
7
[ "A000009", "A000041", "A008284", "A008289", "A085489", "A116861", "A151897", "A236912", "A237113", "A237667", "A275972", "A326083", "A363226", "A364272", "A364350", "A364670", "A364839", "A364913", "A364914", "A364915", "A364916", "A365002", "A365006" ]
null
Gus Wiseman, Aug 19 2023
2023-10-24T10:46:11
oeisdata/seq/A364/A364839.seq
9bc9ee8e370bb11635ebdf16ebc08664
A364840
Numbers k such that the product of the first k primes - 1 is a semiprime.
[ "4", "7", "10", "11", "14", "17", "20", "21", "25", "26", "48", "51", "55", "85", "96", "127", "149", "150", "170" ]
[ "more", "hard", "nonn" ]
9
1
1
[ "A000720", "A001358", "A057588", "A057704", "A085725", "A104876", "A364840" ]
null
Sean A. Irvine, Oct 21 2023
2023-10-21T17:11:08
oeisdata/seq/A364/A364840.seq
e76af5b1b04bc3258f5570a9f2763013
A364841
Number of subsets S of {1..n} containing no element equal to the sum of a k-multiset of elements of S, for any 2 <= k <= |S|.
[ "1", "2", "3", "6", "9", "15", "21", "34", "49", "75", "105" ]
[ "nonn", "more" ]
10
0
2
[ "A007865", "A085489", "A103580", "A151897", "A236912", "A326020", "A326080", "A326083", "A364349", "A364534", "A364841" ]
null
Gus Wiseman, Aug 15 2023
2023-10-18T04:54:16
oeisdata/seq/A364/A364841.seq
0a6fd172bcd857e9d1f6472d6926086d
A364842
Table read by antidiagonals: row n gives the Euler transform of the sequence (2,...,2,0,0,...) that contains n 2s followed by 0s.
[ "1", "1", "2", "1", "2", "3", "1", "2", "5", "4", "1", "2", "5", "8", "5", "1", "2", "5", "10", "14", "6", "1", "2", "5", "10", "18", "20", "7", "1", "2", "5", "10", "20", "30", "30", "8", "1", "2", "5", "10", "20", "34", "49", "40", "9", "1", "2", "5", "10", "20", "36", "59", "74", "55", "10", "1", "2", "5", "10", "20", "36", "63", "94", "110", "70", "11", "1", "2", "5", "10", "20", "36", "65", "104", "149", "158", "91", "12" ]
[ "nonn", "tabl" ]
20
1
3
[ "A000027", "A000712", "A006918", "A008284", "A115994", "A117485", "A117486", "A117487", "A160647", "A364842" ]
null
Peter Kagey, Nov 09 2023
2023-11-12T13:32:37
oeisdata/seq/A364/A364842.seq
d4ff46e9ea2a6be636cb2291a127501a
A364843
Integers are repeated in runs of 1, 2, 3, ... Each new integer (following a run) is given the value of its sequence index value.
[ "1", "2", "2", "4", "4", "4", "7", "7", "7", "7", "11", "11", "11", "11", "11", "16", "16", "16", "16", "16", "16", "22", "22", "22", "22", "22", "22", "22", "29", "29", "29", "29", "29", "29", "29", "29", "37", "37", "37", "37", "37", "37", "37", "37", "37", "46", "46", "46", "46", "46", "46", "46", "46", "46", "46", "56", "56", "56", "56", "56", "56", "56", "56", "56", "56", "56" ]
[ "easy", "nonn", "tabl" ]
36
1
2
[ "A000124", "A002024", "A006000", "A006528", "A364843" ]
null
Peter Woodward, Aug 10 2023
2023-09-15T16:30:23
oeisdata/seq/A364/A364843.seq
9d01df6fdfcb2b6b0cb5b05a6897970c
A364844
a(n) is the n-digit numerator of the fraction h/k with h and k coprime palindrome positive integers at which abs(h/k-Pi) is minimal.
[ "3", "22", "474", "1551", "36163", "292292", "7327237", "31311313" ]
[ "nonn", "base", "frac", "more" ]
14
1
1
[ "A000796", "A002113", "A068028", "A070252", "A355622", "A355623", "A364844", "A364845", "A364846" ]
null
Stefano Spezia, Aug 10 2023
2023-08-12T00:54:30
oeisdata/seq/A364/A364844.seq
0d6a1e105a1d69ae30e3bc3c6892739e
A364845
a(n) is the denominator of the fraction h/k with h and k coprime palindrome positive integers at which abs(h/k-Pi) is minimal, with the numerator h of n digits.
[ "1", "7", "151", "494", "11511", "93039", "2332332", "9966699" ]
[ "nonn", "base", "frac", "more" ]
10
1
2
[ "A000796", "A002113", "A068028", "A070252", "A355622", "A355623", "A364844", "A364845", "A364846" ]
null
Stefano Spezia, Aug 10 2023
2023-08-12T00:54:43
oeisdata/seq/A364/A364845.seq
7e01243a9133959453ce212dbfaf7deb
A364846
a(n) is the number of correct decimal digits of Pi obtained from the fraction A364844(n)/A364845(n).
[ "1", "3", "2", "2", "4", "4", "8", "6" ]
[ "nonn", "base", "more" ]
4
1
2
[ "A000796", "A356670", "A364844", "A364845", "A364846" ]
null
Stefano Spezia, Aug 10 2023
2023-08-12T00:54:53
oeisdata/seq/A364/A364846.seq
05ce0aa474ab1e41759fb0aa120db3b5
A364847
Number of conjugacy classes in the group SL(2, Z_n), up to conjugacy in GL(2, Z_n).
[ "1", "3", "5", "8", "7", "15", "9", "20", "17", "21", "13", "40", "15", "27", "35", "44", "19", "51", "21", "56", "45", "39", "25", "100", "37", "45", "53", "72", "31", "105", "33", "92", "65", "57", "63", "136", "39", "63", "75", "140", "43", "135", "45", "104", "119", "75", "49", "220", "65", "111", "95", "120", "55", "159", "91", "180", "105", "93", "61", "280", "63", "99", "153", "188", "105", "195", "69" ]
[ "nonn", "mult" ]
9
1
2
[ "A062354", "A065501", "A364847" ]
null
Robin Visser, Aug 10 2023
2023-08-12T01:12:49
oeisdata/seq/A364/A364847.seq
e7abd27443de314ef35a1cdd1b251347
A364848
Number of chordless cycles (of length >= 4) in the complement of the n-cube connected cycle graph.
[ "462", "4016", "27272", "162144", "894432", "4698624" ]
[ "nonn", "more" ]
8
3
1
null
null
Eric W. Weisstein, Aug 10 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364848.seq
3b0fad57460a94a0c96fc968af5a4ff0
A364849
Number of even parity alternating permutations of [1..n] starting with an odd integer.
[ "1", "1", "1", "1", "2", "6", "18", "72", "288", "1440", "7200", "43200", "259200", "1814400", "12700800", "101606400", "812851200", "7315660800", "65840947200", "658409472000", "6584094720000", "72425041920000", "796675461120000", "9560105533440000", "114721266401280000", "1491376463216640000" ]
[ "nonn" ]
15
1
5
[ "A010551", "A364849" ]
null
Frether Getachew Kebede, Aug 10 2023
2023-09-13T23:14:32
oeisdata/seq/A364/A364849.seq
c84d8d72b8ebe0fbc5adda92c7d14309
A364850
a(n) = negated numerator of A014963(n)*A023900(n)/2.
[ "-1", "1", "3", "1", "10", "-1", "21", "1", "3", "-2", "55", "-1", "78", "-3", "-4", "1", "136", "-1", "171", "-2", "-6", "-5", "253", "-1", "10", "-6", "3", "-3", "406", "4", "465", "1", "-10", "-8", "-12", "-1", "666", "-9", "-12", "-2", "820", "6", "903", "-5", "-4", "-11", "1081", "-1", "21", "-2", "-16", "-6", "1378", "-1", "-20", "-3", "-18", "-14", "1711", "4" ]
[ "frac", "sign" ]
18
1
3
[ "A014963", "A023900", "A364850" ]
null
Mats Granvik, Aug 10 2023
2024-04-11T15:56:32
oeisdata/seq/A364/A364850.seq
66fea8046d4162bfd6ad831fec7977fc
A364851
Number of paths in the n-Pell graph.
[ "1", "19", "2352", "100327566" ]
[ "nonn", "more" ]
5
1
2
null
null
Eric W. Weisstein, Aug 10 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364851.seq
d31114b2a538af0f91b5bc69f2cdf12b
A364852
Number of paths in the n-Lucas cube graph.
[ "0", "3", "6", "60", "745", "114732", "534160102" ]
[ "nonn", "more" ]
5
1
2
null
null
Eric W. Weisstein, Aug 10 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364852.seq
2ef92a2336a15be2b391ffaa83a4e40d
A364853
Number of Hamiltonian paths in the n-Lucas cube graph.
[ "0", "1", "0", "4", "30", "0", "988008" ]
[ "nonn", "more" ]
6
1
4
null
null
Eric W. Weisstein, Aug 10 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364853.seq
c1c6ebae24270ede969ea06e1c6ba879
A364854
Number of Hamiltonian paths in the n-Pell graph.
[ "0", "1", "2", "68", "1748322" ]
[ "nonn", "more" ]
5
0
3
null
null
Eric W. Weisstein, Aug 10 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364854.seq
bb8b25e455e32024091f81140cd9c700
A364855
Initial digit of 3^(3^n) (A055777(n)).
[ "3", "2", "1", "7", "4", "8", "6", "2", "2", "1", "3", "3", "6", "2", "1", "3", "3", "4", "6", "2", "2", "1", "1", "1", "5", "1", "2", "1", "1", "7", "4", "1", "1", "4", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "2", "1", "1", "1", "7", "4", "8", "6", "2", "1", "2", "1", "3", "4", "1", "1", "1", "4", "8", "6", "2", "2", "1", "2", "2", "1", "5", "1", "6", "3", "3", "4", "1", "1", "2", "1", "5", "1", "4", "1" ]
[ "nonn", "base" ]
20
0
1
[ "A000030", "A010705", "A055777", "A364789", "A364837", "A364855" ]
null
Marco Ripà, Aug 10 2023
2023-08-12T09:45:18
oeisdata/seq/A364/A364855.seq
a789bbb856b69e506902842b2fbbd425
A364856
Triangle read by rows: T(n,k) is the number of k-dimensional faces of the n-dimensional Kunz cone, 0 <= k <= n.
[ "1", "1", "1", "1", "2", "1", "1", "4", "4", "1", "1", "8", "14", "8", "1", "1", "11", "29", "30", "12", "1", "1", "30", "114", "152", "84", "18", "1", "1", "47", "247", "468", "402", "158", "24", "1", "1", "122", "826", "1934", "2120", "1166", "306", "32", "1", "1", "225", "1981", "6018", "8703", "6593", "2616", "504", "40", "1", "1", "812", "8275", "28480", "47255", "42650", "21610", "5980", "830", "50", "1" ]
[ "nonn", "tabl" ]
27
0
5
[ "A007590", "A364856" ]
null
Emily O'Sullivan, Aug 10 2023
2023-09-17T11:03:06
oeisdata/seq/A364/A364856.seq
568573f84f15397ccc4d317b0c33a64b
A364857
a(n) = n^n/E, where E is the expected number of rolls of a fair n-sided die before obtaining 3 consecutive strictly increasing rolls.
[ "1", "15", "225", "3781", "72078", "1550016", "37259191", "991980099", "29008029501", "924873082849", "31944725060988", "1188568865803032", "47403638535874501", "2017753008682107135", "91309129890388047873", "4377769140759352823773", "221687675024545322612226" ]
[ "nonn" ]
53
3
2
[ "A000312", "A364857" ]
null
Daniel Chen, Aug 10 2023
2023-09-26T09:46:47
oeisdata/seq/A364/A364857.seq
270de614b80e00cd0ae6c377390dcf8b
A364858
a(n) = Sum_{d|n, d < n, d in S} d, where S is the set defined in A118372.
[ "0", "1", "1", "3", "1", "6", "1", "7", "4", "8", "1", "16", "1", "10", "9", "15", "1", "21", "1", "22", "11", "14", "1", "24", "6", "16", "13", "28", "1", "42", "1", "31", "15", "20", "13", "25", "1", "22", "17", "30", "1", "54", "1", "40", "33", "26", "1", "64", "8", "43", "21", "46", "1", "48", "17", "64", "23", "32", "1", "46", "1", "34", "41", "63", "19", "78", "1", "58", "27", "74", "1", "93", "1" ]
[ "nonn" ]
7
1
4
[ "A001065", "A118372", "A181487", "A294888", "A364858" ]
null
Amiram Eldar, Aug 11 2023
2023-08-12T00:48:29
oeisdata/seq/A364/A364858.seq
00829fc8e83460877690d5947579e89e
A364859
Lesser of a pair of S-amicable numbers k < m such that s(k) = m and s(m) = k, where s(k) = A364858(k).
[ "186", "1184", "2030", "6232", "10744", "66928", "522405", "643336", "5459176", "7677248", "13223490", "16137628", "25596544", "26090325", "28118032", "31772524", "34364912", "40504324", "133178325" ]
[ "nonn", "more" ]
9
1
1
[ "A000396", "A002025", "A002046", "A118372", "A364858", "A364859", "A364860" ]
null
Amiram Eldar, Aug 11 2023
2023-08-12T02:29:04
oeisdata/seq/A364/A364859.seq
b51f606c233c76f10f4db82c4ec57b8a
A364860
Greater of a pair of S-amicable numbers k < m such that s(k) = m and s(m) = k, where s(k) = A364858(k).
[ "198", "1210", "2220", "6368", "10856", "66992", "525915", "652664", "5495264", "7684672", "13727466", "16150628", "25640096", "26138475", "28128368", "33642028", "34380688", "40803868", "133471275" ]
[ "nonn", "more" ]
7
1
1
[ "A000396", "A002025", "A002046", "A118372", "A364858", "A364859", "A364860" ]
null
Amiram Eldar, Aug 11 2023
2023-08-12T02:29:08
oeisdata/seq/A364/A364860.seq
f5eb54e3f0473f22bf798d5b9ab50012
A364861
Numbers k such that k and k+1 are both S-abundant numbers (A181487).
[ "5984", "7424", "21944", "39375", "56924", "77175", "82004", "84524", "89775", "109395", "116655", "158235", "174824", "180495", "185535", "188055", "193544", "200024", "209055", "235935", "238095", "240344", "245024", "250964", "256095", "261260", "262184", "263024", "266475", "279279", "282975", "283815", "294975", "297296" ]
[ "nonn" ]
9
1
1
[ "A096399", "A096536", "A118372", "A181487", "A364861" ]
null
Amiram Eldar, Aug 11 2023
2024-01-06T19:26:26
oeisdata/seq/A364/A364861.seq
fa3b575d17f1abf0e0f877e408e0256a
A364862
S-weird numbers: S-abundant numbers (A181487) k such that no subset of the aliquot divisors of k that are in the set S sums to k, where S is the set defined in A118372.
[ "70", "836", "2704", "2744", "4030", "5530", "5810", "5830", "6230", "6790", "7070", "7192", "7210", "7490", "7630", "7910", "7912", "8890", "9170", "9272", "9590", "9730", "10430", "10570", "10792", "10990", "11410", "11690", "12110", "12530", "12670", "13370", "13510", "13790", "13930", "14770", "15610", "15890", "16030", "16310", "16730" ]
[ "nonn" ]
9
1
1
[ "A000396", "A005101", "A006037", "A118372", "A181487", "A364862" ]
null
Amiram Eldar, Aug 11 2023
2023-08-12T00:50:04
oeisdata/seq/A364/A364862.seq
60ee45e53498d8d32fa83c99304b7b22
A364863
Number of iterations of x -> x + min { k in A036301 | k > x } until an element of A036301 is reached, or -1 if this never happens, starting with n.
[ "0", "21" ]
[ "nonn", "base" ]
13
0
2
[ "A036301", "A071650", "A364863" ]
null
M. F. Hasler, Aug 11 2023
2024-12-23T14:53:46
oeisdata/seq/A364/A364863.seq
880c036783bc59b8a61c5d8bba6b7e18
A364864
G.f. A(x) satisfies A(x) = 1 + x*A(x)^3 / (1 + x*A(x)^3).
[ "1", "1", "2", "4", "6", "-1", "-58", "-304", "-1090", "-2876", "-4216", "9244", "106746", "529962", "1874628", "4669760", "4309742", "-35179252", "-277928680", "-1269921008", "-4214431912", "-9197175241", "30113526", "128659598896", "822227670866", "3453484223084", "10519017940952", "18490932535144" ]
[ "sign" ]
17
0
3
[ "A001764", "A002293", "A271469", "A291534", "A336538", "A363982", "A364736", "A364864", "A364865", "A364866", "A365218", "A378892" ]
null
Seiichi Manyama, Aug 11 2023
2024-12-11T05:36:34
oeisdata/seq/A364/A364864.seq
ea744ba34eebc51ebfd6fe662d3532d1
A364865
G.f. satisfies A(x) = 1 + x*A(x)^4 / (1 + x*A(x)^4).
[ "1", "1", "3", "11", "43", "170", "657", "2392", "7675", "17603", "-11898", "-529678", "-4783303", "-33099464", "-201744488", "-1130700432", "-5917753701", "-28985131575", "-131668554663", "-540199800203", "-1862208441834", "-4014999475540", "10784817197302", "222255824910088", "1973412557775753" ]
[ "sign" ]
10
0
3
[ "A002294", "A291534", "A336540", "A364864", "A364865", "A364866" ]
null
Seiichi Manyama, Aug 11 2023
2023-08-11T09:52:03
oeisdata/seq/A364/A364865.seq
08cdf1e9da1ef395e4910e0192bce65d
A364866
G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 + x*A(x)^5).
[ "1", "1", "4", "21", "124", "781", "5120", "34474", "236492", "1644222", "11543644", "81623504", "580104672", "4137414963", "29574658416", "211639869236", "1514729242092", "10832683182538", "77342204972120", "550791674067623", "3908735530965604", "27612614422978557", "193943797650498016" ]
[ "sign" ]
15
0
3
[ "A002295", "A291534", "A364864", "A364865", "A364866", "A365218" ]
null
Seiichi Manyama, Aug 11 2023
2023-08-26T18:17:25
oeisdata/seq/A364/A364866.seq
e9756be8133d86f0e20be277832cb163
A364867
Primes p such that the multiplicative order of 9 modulo p is (p-1)/2.
[ "5", "7", "11", "17", "19", "23", "29", "31", "43", "47", "53", "59", "71", "79", "83", "89", "101", "107", "113", "127", "131", "137", "139", "149", "163", "167", "173", "179", "191", "197", "199", "211", "223", "227", "233", "239", "251", "257", "263", "269", "281", "283", "293", "311", "317", "331", "347", "353", "359", "379", "383", "389", "401", "419", "443", "449", "461", "463", "467", "479", "487" ]
[ "nonn", "easy" ]
25
1
1
[ "A019334", "A105875", "A105881", "A211245", "A216371", "A364867" ]
null
Jianing Song, Aug 11 2023
2024-11-24T09:29:52
oeisdata/seq/A364/A364867.seq
66cae3a519ce96695ccb3e36e532689d
A364868
Numbers k such that 4*k+1 is the norm of a Gaussian prime.
[ "1", "2", "3", "4", "7", "9", "10", "12", "13", "15", "18", "22", "24", "25", "27", "28", "30", "34", "37", "39", "43", "45", "48", "49", "57", "58", "60", "64", "67", "69", "70", "73", "78", "79", "84", "87", "88", "90", "93", "97", "99", "100", "102", "105", "108", "112", "114", "115", "127", "130", "132", "135", "139", "142", "144", "148", "150", "153", "154", "160", "163", "165", "168", "169" ]
[ "nonn", "easy" ]
19
1
2
[ "A024702", "A055025", "A364868", "A364869" ]
null
Jianing Song, Aug 11 2023
2023-08-21T12:01:09
oeisdata/seq/A364/A364868.seq
687edac0d4a6d4c3e7e82888b094a71a
A364869
Numbers k such that 6*k+1 is the norm of an Eisenstein prime.
[ "1", "2", "3", "4", "5", "6", "7", "10", "11", "12", "13", "16", "17", "18", "20", "21", "23", "25", "26", "27", "30", "32", "33", "35", "37", "38", "40", "45", "46", "47", "48", "51", "52", "55", "56", "58", "61", "62", "63", "66", "68", "70", "72", "73", "76", "77", "81", "83", "87", "88", "90", "91", "95", "96", "100", "101", "102", "103", "105", "107", "110", "112", "115", "118", "121", "122", "123" ]
[ "nonn", "easy" ]
18
1
2
[ "A024702", "A055664", "A364868", "A364869" ]
null
Jianing Song, Aug 11 2023
2023-08-21T12:01:04
oeisdata/seq/A364/A364869.seq
11152adb127599e6e1ed2add503a87b1
A364870
Array read by ascending antidiagonals: A(n, k) = (n + k)^n, with k >= 0.
[ "1", "1", "1", "4", "2", "1", "27", "9", "3", "1", "256", "64", "16", "4", "1", "3125", "625", "125", "25", "5", "1", "46656", "7776", "1296", "216", "36", "6", "1", "823543", "117649", "16807", "2401", "343", "49", "7", "1", "16777216", "2097152", "262144", "32768", "4096", "512", "64", "8", "1", "387420489", "43046721", "4782969", "531441", "59049", "6561", "729", "81", "9", "1" ]
[ "nonn", "easy", "tabl" ]
10
0
4
[ "A000012", "A000169", "A000272", "A000312", "A007830", "A008785", "A008786", "A008787", "A031973", "A052746", "A052750", "A062971", "A079901", "A085527", "A085528", "A085532", "A099753", "A364870" ]
null
Stefano Spezia, Aug 11 2023
2023-08-12T00:55:05
oeisdata/seq/A364/A364870.seq
5855e353d6411b723cc5d33f061dfe4e
A364871
a(n) = B(n) - A(n), where A(1) = 0, B(1) = 1, and sequences A and B are the lexicographically earliest sequences that start with their respective first terms and contain no term whose binary expansion is the concatenation of any two earlier terms in that sequence.
[ "1", "1", "0", "0", "3", "-4", "-2", "-1", "-1", "4", "3", "4", "8", "8", "11", "11", "11", "1", "2", "-2", "-1", "-11", "-11", "-12", "-12", "-7", "-8", "-5", "-1", "-2", "-2", "2", "-2", "0", "0", "1", "3", "6", "9", "9", "14", "10", "12", "13", "15", "19", "21", "22", "22", "25", "25", "20", "17", "11", "13", "8", "10", "6", "6", "1", "0", "4", "4", "4", "9", "8", "8", "1", "1", "1", "1", "-6", "-12", "-11", "-15", "-21", "-18", "-20" ]
[ "sign", "base", "look" ]
33
1
5
[ "A364871", "A365017", "A365018" ]
null
Attila Kiss, Aug 11 2023
2023-11-01T22:00:53
oeisdata/seq/A364/A364871.seq
7abf80602955bc651db57b252e37b716
A364872
Lexicographically earliest continued fraction which is its own unit fraction series.
[ "2", "1", "2", "2", "5", "95", "137447", "19092121105", "1456654254113777258001", "8728918703159963392919895262580124849062181" ]
[ "nonn", "cofr" ]
17
0
1
[ "A364872", "A364873" ]
null
Rok Cestnik, Aug 11 2023
2023-08-13T03:33:30
oeisdata/seq/A364/A364872.seq
bfca35af98fb95f4c999d79cf7a813c0
A364873
Decimal expansion of the lexicographically earliest continued fraction which equals its own sum of reciprocals.
[ "2", "7", "1", "0", "5", "3", "3", "5", "9", "1", "3", "7", "3", "5", "1", "0", "7", "8", "7", "3", "3", "8", "6", "4", "5", "6", "6", "2", "0", "4", "8", "1", "7", "0", "1", "1", "1", "5", "1", "8", "3", "3", "4", "9", "9", "3", "0", "7", "0", "4", "4", "7", "6", "3", "7", "9", "4", "3", "4", "3", "9", "0", "9", "5", "0", "8", "3", "0", "4", "7", "0", "0", "0", "8", "2", "0", "7", "6", "8", "6", "1", "8", "7", "3", "1", "3", "1", "8", "2", "2", "1", "9", "6", "8", "7", "2", "2" ]
[ "nonn", "cons" ]
24
1
1
[ "A364872", "A364873" ]
null
Rok Cestnik, Aug 11 2023
2023-08-17T09:10:38
oeisdata/seq/A364/A364873.seq
a0629bbc6e42719b4dae07754223dad0
A364874
A packing coloring for the one-way infinite path using only the first 8 prime numbers.
[ "2", "3", "5", "2", "7", "3", "2", "11", "5", "2", "3", "13", "2", "7", "3", "2", "5", "17", "2", "3", "11", "2", "5", "3", "2", "7", "13", "2", "3", "5", "2", "19", "3", "2", "7", "5", "2", "3", "11", "2", "13", "3", "2", "5", "7", "2", "3", "17", "2", "5", "3", "2", "7", "11", "2", "3", "5", "2", "13", "3", "2", "7", "5", "2", "3", "11", "2", "17", "3", "2", "5", "7", "2", "3", "13", "2", "5", "3", "2", "7", "11", "2", "3", "5", "2", "17", "3", "2" ]
[ "easy", "nonn" ]
8
1
1
null
null
Kenneth A. Dennison, Aug 11 2023
2023-09-14T00:55:36
oeisdata/seq/A364/A364874.seq
01088e9ddfe33ebea183ed691d4f8e74
A364875
The slowest increasing sequence of triprimes with alternating parity.
[ "8", "27", "28", "45", "50", "63", "66", "75", "76", "99", "102", "105", "110", "117", "124", "125", "130", "147", "148", "153", "154", "165", "170", "171", "172", "175", "182", "195", "212", "231", "236", "245", "246", "255", "258", "261", "266", "273", "282", "285", "286", "325", "332", "333", "338", "343", "354", "357", "366", "369", "370", "385", "388", "399", "402", "423", "426", "429", "430", "435", "436", "455" ]
[ "nonn" ]
9
1
1
[ "A014612", "A254923", "A364875" ]
null
Zak Seidov and Robert Israel, Aug 11 2023
2023-08-12T00:44:13
oeisdata/seq/A364/A364875.seq
24ad5060470dbeebc746cb896443c706
A364876
Number of chordless cycles (of length >= 4) in the complement of the n-middle layer graph.
[ "3", "255", "8050", "185535", "3757446", "71633562" ]
[ "nonn", "more" ]
11
1
1
null
null
Eric W. Weisstein, Aug 11 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364876.seq
bc0d8ec499a33b534e054e37651f160f
A364877
Numbers k such that 2*pi(k) + k is a prime number.
[ "3", "5", "9", "17", "21", "23", "25", "31", "37", "41", "43", "45", "49", "57", "61", "65", "69", "85", "89", "91", "99", "103", "107", "109", "113", "119", "121", "129", "133", "135", "143", "151", "155", "159", "163", "165", "177", "185", "187", "191", "193", "195", "201", "213", "217", "219", "231", "235", "241", "243", "247", "251", "257", "267", "269", "273", "279" ]
[ "nonn", "easy" ]
40
1
1
[ "A000720", "A231232", "A364877" ]
null
Saish S. Kambali, Aug 11 2023
2023-10-16T23:26:19
oeisdata/seq/A364/A364877.seq
6c1f926900688db9ea84c182b6022728
A364878
Triangle read by rows: T(n,k), 0 <= k <= n, is the smallest number that has n distinct prime factors, k of which are unique.
[ "1", "4", "2", "36", "12", "6", "900", "180", "60", "30", "44100", "6300", "1260", "420", "210", "5336100", "485100", "69300", "13860", "4620", "2310", "901800900", "69369300", "6306300", "900900", "180180", "60060", "30030", "260620460100", "15330615300", "1179278100", "107207100", "15315300", "3063060", "1021020", "510510" ]
[ "nonn", "tabl" ]
21
0
2
[ "A002110", "A025487", "A061742", "A088860", "A126706", "A228593", "A364878" ]
null
Jon E. Schoenfield, Aug 11 2023
2023-08-13T02:46:49
oeisdata/seq/A364/A364878.seq
cc7434a4d198197ddfea562c1d5ea4fb
A364879
a(n) is the smallest number k such that (sum of composites <= k) / (sum of primes <= k) >= n.
[ "2", "6", "10", "28", "126", "520", "1394", "4440", "11765", "35702", "98202", "271718", "736814", "2012631", "5478367", "14867499", "40448112", "109944053", "298170203", "810416222", "2200884471", "5980529528" ]
[ "nonn", "more" ]
18
0
1
[ "A000040", "A002808", "A007504", "A034387", "A053767", "A101256", "A364879" ]
null
Jon E. Schoenfield, Sep 10 2023
2023-09-11T01:47:14
oeisdata/seq/A364/A364879.seq
4c460e1af3a7aeb458415c9f73535bee
A364880
a(0) = 0. If a(n-1) is a novel term, a(n) = a(a(n-1)); otherwise a(n) is the number of distinct terms occurring prior to a(n-1) which are <= a(n-1).
[ "0", "0", "1", "0", "1", "2", "1", "2", "3", "0", "1", "2", "3", "4", "1", "2", "3", "4", "5", "2", "3", "4", "5", "6", "1", "2", "3", "4", "5", "6", "7", "2", "3", "4", "5", "6", "7", "8", "3", "4", "5", "6", "7", "8", "9", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "3", "4", "5", "6", "7", "8", "9" ]
[ "nonn", "easy", "tabf" ]
21
0
6
[ "A000027", "A002262", "A364880" ]
null
David James Sycamore, Aug 11 2023
2023-08-23T08:45:53
oeisdata/seq/A364/A364880.seq
58d901d83f0bfd14ce5b6b46a17a3c2d
A364881
First significant digit of the decimal expansion of n/(2^n).
[ "5", "5", "3", "2", "1", "9", "5", "3", "1", "9", "5", "2", "1", "8", "4", "2", "1", "6", "3", "1", "1", "5", "2", "1", "7", "3", "2", "1", "5", "2", "1", "7", "3", "1", "1", "5", "2", "1", "7", "3", "1", "9", "4", "2", "1", "6", "3", "1", "8", "4", "2", "1", "5", "2", "1", "7", "3", "2", "1", "5", "2", "1", "6", "3", "1", "8", "4", "2", "1", "5", "3", "1", "7", "3", "1", "1", "5", "2", "1", "6", "3", "1", "8", "4", "2", "1", "5" ]
[ "easy", "nonn", "base" ]
50
1
1
[ "A000030", "A000079", "A000799", "A036291", "A111395", "A364881" ]
null
Ejder Aysun, Aug 10 2023
2023-08-24T10:14:30
oeisdata/seq/A364/A364881.seq
84b85fb308e02f960657a3638ec1f4c2
A364882
a(1)=1 and thereafter a(n) is the number of locations 1..n-1 which are visited last in a single path beginning at some location s, in which one proceeds from location i to i +- a(i) (within 1..n-1) until no further unvisited location is available.
[ "1", "1", "2", "3", "3", "3", "3", "4", "6", "6", "7", "7", "7", "7", "7", "7", "9", "9", "9", "11", "11", "11", "14", "15", "15", "15", "15", "17", "18", "18", "18", "19", "19", "25", "25", "25", "25", "26", "26", "26", "26", "26", "27", "27", "27", "28", "28", "28", "28", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "29", "30", "30", "30", "30", "30", "30", "40", "40" ]
[ "nonn" ]
30
1
3
[ "A360593", "A360744", "A364392", "A364882" ]
null
Neal Gersh Tolunsky, Aug 11 2023
2023-08-27T04:37:13
oeisdata/seq/A364/A364882.seq
08de375ffe9f1822bd2c11f0f2fb6ee8
A364883
Consider the Fermat quotient for base n: Fq(n,k) = (n^(p - 1) - 1)/p, where p = prime(k), for k >= 1. a(n) is the least k >= 1 such that Fq(n,j) is divisible by n^2 - 1 for all j >= k.
[ "3", "3", "4", "4", "5", "5", "5", "4", "6", "6", "7", "7", "7", "5", "8", "8", "9", "9", "9", "6", "10", "10", "10", "7", "7", "7", "11", "11", "12", "12", "12", "8", "8", "8", "13", "13", "13", "9", "14", "14", "15", "15", "15", "10", "16", "16", "16", "5", "8", "8", "17", "17", "17", "6", "9", "11", "18", "18", "19", "19", "19", "12", "7", "7", "20", "20", "20", "10", "21", "21", "22", "22", "22", "13", "9", "9", "23", "23", "23" ]
[ "nonn" ]
30
2
1
[ "A007663", "A096060", "A146211", "A180511", "A364883" ]
null
Robert G. Wilson v, Aug 17 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364883.seq
1d1cea5de4988d874021628b69fc675b
A364884
Triangle T(n, k), n > 0, k = 1..n, read by rows; T(1, 1) = 1, and for n > 1, k = 1..n, T(n, k) is the least unseen multiple of the k-th term of the flattened sequence .
[ "1", "2", "4", "3", "6", "8", "5", "10", "12", "9", "7", "14", "16", "15", "18", "11", "20", "24", "21", "30", "32", "13", "22", "28", "27", "36", "40", "25", "17", "26", "44", "33", "42", "48", "35", "50", "19", "34", "52", "39", "54", "56", "45", "60", "72", "23", "38", "64", "51", "66", "80", "55", "70", "84", "63", "29", "46", "68", "57", "78", "88", "65", "90", "96", "81", "49" ]
[ "nonn", "tabl" ]
14
1
2
[ "A361748", "A364884", "A364885", "A364887" ]
null
Rémy Sigrist, Aug 12 2023
2023-08-27T14:37:39
oeisdata/seq/A364/A364884.seq
12938ebe45eac5622ec584531ad2226a
A364885
Triangle T(n, k), n >= 0, k = 0..n, read by rows; T(0, 0) = 0, and for any n > 0, k = 0..n, T(n, k) is the least number obtained by turning a 0 into a 1 in the binary expansion of the k-th term of the (0-based) flattened sequence.
[ "0", "1", "3", "2", "5", "7", "4", "9", "11", "6", "8", "17", "19", "10", "13", "16", "33", "35", "18", "21", "15", "32", "65", "67", "34", "37", "23", "12", "64", "129", "131", "66", "69", "39", "20", "25", "128", "257", "259", "130", "133", "71", "36", "41", "27", "256", "513", "515", "258", "261", "135", "68", "73", "43", "14", "512", "1025", "1027", "514", "517", "263", "132", "137", "75", "22", "24" ]
[ "nonn", "base", "tabl" ]
9
0
3
[ "A000120", "A057945", "A364884", "A364885", "A365080" ]
null
Rémy Sigrist, Aug 12 2023
2023-08-26T08:57:09
oeisdata/seq/A364/A364885.seq
1a8ef310a8ccbe1b1d2da9dcccc146a5
A364886
Number of n X n (-1, 1)-matrices which have only eigenvalues with strictly negative real part (which implies that the matrix has all nonzero eigenvalues).
[ "1", "2", "20", "640", "97824", "47545088" ]
[ "nonn", "more" ]
26
1
2
[ "A056990", "A083058", "A085506", "A086510", "A087488", "A098148", "A207259", "A219736", "A271570", "A271588", "A296605", "A306002", "A306791", "A306792", "A306793", "A306794", "A306795", "A326928", "A346209", "A346210", "A364886" ]
null
Thomas Scheuerle, Aug 12 2023
2023-10-18T09:21:51
oeisdata/seq/A364/A364886.seq
ce30d22a8655972fce2a6cfc9d91a63f
A364887
Inverse permutation to A364884.
[ "1", "2", "4", "3", "7", "5", "11", "6", "10", "8", "16", "9", "22", "12", "14", "13", "29", "15", "37", "17", "19", "23", "46", "18", "28", "30", "25", "24", "56", "20", "67", "21", "32", "38", "35", "26", "79", "47", "40", "27", "92", "33", "106", "31", "43", "57", "121", "34", "66", "36", "49", "39", "137", "41", "52", "42", "59", "68", "154", "44", "172", "80", "55", "48", "62", "50" ]
[ "nonn" ]
6
1
2
[ "A364884", "A364887" ]
null
Rémy Sigrist, Aug 12 2023
2023-08-20T12:13:30
oeisdata/seq/A364/A364887.seq
516524f78507724f3dfd957e60783998
A364888
Number of minimum vertex cuts in the n-Lucas cube graph.
[ "0", "1", "1", "1", "5", "3", "14", "8", "3", "25", "11" ]
[ "nonn", "more" ]
10
1
5
null
null
Eric W. Weisstein, Aug 12 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364888.seq
ed26d27fe39345238fafcffb603a2f03
A364889
Number of minimum vertex cuts in the n-Fibonacci cube graph.
[ "0", "1", "1", "8", "3", "1", "9", "4", "1", "14", "5" ]
[ "nonn", "more" ]
7
1
4
null
null
Eric W. Weisstein, Aug 12 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364889.seq
cfe338b8c3f3433fa3faad5f869bd32c
A364890
Least number k such that A060778(k) = n.
[ "1", "2", "49", "14", "80", "44", "529983", "104", "16640", "2511", "8212890624", "735", "1019423412224", "29888", "600624", "2295", "54020648488730624", "6075", "3018417549254328320", "5264", "123200", "24151040", "3264402128528250685620224", "5984", "1753599375", "689278976", "2310399", "156735", "27965083137654166225393025024", "180224", "11404289746101879774056466612224", "21735", "170853262335", "2035980763136", "207593229375", "223244" ]
[ "nonn" ]
24
1
2
[ "A000005", "A058074", "A060778", "A084307", "A364890", "A364903" ]
null
Seiichi Manyama, Aug 12 2023
2024-02-18T23:36:38
oeisdata/seq/A364/A364890.seq
f01a54fcaf7013470e47ba0c839b3252
A364891
Triangle read by rows: T(n,k) = (-1)^(k-1)*Sum_{j=0..k-1} (-1)^j*(p(n - j*(2*j + 1)) - p(n - (j + 1)*(2*j + 1))), where p(n) = A000041(n) is the number of partitions of n, and 1 <= k <= n.
[ "0", "1", "-1", "1", "0", "0", "2", "-1", "1", "-1", "2", "0", "0", "0", "0", "4", "-2", "2", "-2", "2", "-2", "4", "0", "0", "0", "0", "0", "0", "7", "-2", "2", "-2", "2", "-2", "2", "-2", "8", "0", "0", "0", "0", "0", "0", "0", "0", "12", "-2", "3", "-3", "3", "-3", "3", "-3", "3", "-3", "14", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "21", "-2", "4", "-4", "4", "-4", "4", "-4", "4", "-4", "4", "-4" ]
[ "sign", "tabl" ]
14
1
7
[ "A000041", "A002865", "A035457", "A325433", "A364891", "A364892", "A364893" ]
null
Stefano Spezia, Aug 12 2023
2023-08-27T10:28:54
oeisdata/seq/A364/A364891.seq
1ba7617566861b11ddd48bd8f4c67afb
A364892
Row sums of A364891.
[ "0", "0", "1", "1", "2", "2", "4", "5", "8", "10", "15", "19", "27", "34", "47", "59", "79", "99", "130", "162", "210", "260", "332", "410", "517", "635", "794", "970", "1202", "1463", "1799", "2180", "2664", "3214", "3904", "4693", "5669", "6789", "8163", "9740", "11658", "13865", "16527", "19592", "23267", "27496", "32538", "38343", "45223", "53142", "62488" ]
[ "nonn" ]
9
1
5
[ "A000041", "A325434", "A364891", "A364892" ]
null
Stefano Spezia, Aug 12 2023
2023-08-27T10:29:07
oeisdata/seq/A364/A364892.seq
a42015fd842748b1a452c603079cad2b
A364893
a(n) is the minimal positive value of m such that A325433(2m, 2n+1) > A364891(2m, 2n+1).
[ "11", "28", "54", "88", "129", "179", "237", "303", "376", "458", "548", "646", "752", "866", "988", "1118", "1256", "1402", "1558", "1719", "1889", "2067", "2253", "2447", "2650", "2860", "3078", "3304", "3539", "3781", "4031", "4289", "4556", "4830", "5112", "5403", "5701", "6007", "6332", "6644", "6975", "7313", "7659", "8014", "8376", "8747", "9125" ]
[ "nonn" ]
13
1
1
[ "A000041", "A325433", "A364891", "A364893", "A364894" ]
null
Stefano Spezia, Aug 12 2023
2023-08-27T10:29:19
oeisdata/seq/A364/A364893.seq
eb04fd823a4bd4f40df6be1ee4baa780
A364894
a(n) = floor(4*n^2 + 7*n - sqrt(n)*log(n)) - floor(n/3).
[ "11", "29", "54", "88", "130", "179", "237", "304", "377", "459", "550", "647", "753", "868", "989", "1119", "1258", "1403", "1558", "1720", "1890", "2068", "2254", "2448", "2650", "2861", "3078", "3305", "3539", "3781", "4031", "4290", "4555", "4830", "5112", "5402", "5701", "6007", "6321", "6643", "6974", "7311", "7658", "8012", "8374", "8745", "9123" ]
[ "nonn" ]
7
1
1
[ "A002264", "A325433", "A364891", "A364893", "A364894" ]
null
Stefano Spezia, Aug 12 2023
2023-08-27T10:29:44
oeisdata/seq/A364/A364894.seq
c1bb0c9447bc0e00177471057ed84a13
A364895
Decimal expansion of the 4-volume of the unit regular pentachoron (5-cell).
[ "0", "2", "3", "2", "9", "2", "3", "7", "4", "7", "6", "5", "6", "2", "2", "8", "0", "9", "3", "3", "7", "5", "9", "5", "5", "5", "9", "0", "4", "9", "2", "8", "4", "1", "2", "7", "4", "5", "2", "5", "0", "6", "4", "4", "1", "2", "4", "5", "9", "5", "3", "3", "9", "2", "9", "6", "1", "1", "5", "5", "1", "7", "9", "6", "3", "9", "6", "9", "2", "9", "2", "6", "3", "0", "8", "7", "2", "7", "1", "3", "4", "3", "6", "8", "9", "0", "0", "1", "5", "0", "0", "8", "7", "2", "7", "8", "9", "8", "2", "0" ]
[ "nonn", "cons" ]
16
0
2
[ "A000007", "A000038", "A020793", "A020829", "A120011", "A364895", "A364896", "A364897" ]
null
Jianing Song, Aug 12 2023
2024-06-12T16:17:17
oeisdata/seq/A364/A364895.seq
ac5c37fb2489d740f8bc7ce978f985a6
A364896
Decimal expansion of the 4-volume of the unit regular 120-cell.
[ "7", "8", "7", "8", "5", "6", "9", "8", "1", "0", "3", "4", "3", "3", "7", "9", "3", "3", "9", "9", "2", "1", "1", "6", "8", "5", "9", "1", "1", "3", "8", "8", "7", "4", "3", "6", "4", "9", "6", "4", "0", "8", "9", "8", "5", "8", "8", "1", "5", "3", "1", "4", "0", "8", "9", "0", "2", "7", "4", "5", "6", "3", "9", "5", "0", "3", "6", "0", "4", "3", "1", "3", "1", "4", "3", "6", "6", "3", "1", "1", "3", "5", "2", "1", "7", "9", "0", "5", "3", "9", "4", "7", "6", "7", "6", "0", "3", "7" ]
[ "nonn", "cons" ]
13
3
1
[ "A000007", "A000038", "A020793", "A102769", "A364895", "A364896", "A364897" ]
null
Jianing Song, Aug 12 2023
2024-06-12T17:07:06
oeisdata/seq/A364/A364896.seq
195171693900227e563d33e7f39d9f7a
A364897
Decimal expansion of the 4-volume of the unit regular 600-cell.
[ "2", "6", "4", "7", "5", "4", "2", "4", "8", "5", "9", "3", "7", "3", "6", "8", "5", "6", "0", "2", "5", "5", "7", "3", "3", "5", "4", "2", "9", "5", "7", "0", "4", "7", "6", "4", "7", "1", "5", "0", "3", "8", "6", "4", "7", "4", "7", "5", "7", "2", "0", "3", "5", "7", "7", "6", "6", "9", "3", "1", "0", "7", "7", "8", "3", "8", "1", "5", "7", "5", "5", "7", "8", "5", "2", "3", "6", "2", "8", "0", "6", "2", "1", "3", "4", "0", "0", "9", "0", "0", "5", "2", "3", "6", "7", "3", "8", "9", "2" ]
[ "nonn", "cons" ]
10
2
1
[ "A000007", "A000038", "A020793", "A102208", "A364895", "A364896", "A364897" ]
null
Jianing Song, Aug 12 2023
2024-06-12T16:17:12
oeisdata/seq/A364/A364897.seq
71d8236d0ed171020ffd0fd3981c3e92
A364898
Decimal expansion of the number of kilograms per cubic meter (kg/m^3) in 1 pound per cubic foot (lb/ft^3).
[ "1", "6", "0", "1", "8", "4", "6", "3", "3", "7", "3", "9", "6", "0", "1", "3", "9", "5", "7", "9", "6", "5", "5", "0", "7", "0", "6", "5", "4", "5", "5", "6", "5", "9", "0", "5", "3", "6", "3", "3", "6", "5", "1", "1", "5", "7", "6", "4", "9", "3", "5", "5", "2", "5", "2", "0", "4", "9", "6", "7", "0", "0", "3", "6", "9", "3", "1", "2", "0", "8", "3", "0", "3", "9", "4", "4", "7", "5", "0", "2", "0", "5", "0", "4", "4", "3", "0", "0", "4", "3", "5", "6", "4", "0", "8", "2", "4", "6", "2" ]
[ "nonn", "cons" ]
10
2
2
[ "A321984", "A364898", "A364899" ]
null
Jianing Song, Aug 12 2023
2023-09-14T16:34:35
oeisdata/seq/A364/A364898.seq
db02642ed376267e0c06ee8f8e1ed4ef
A364899
Decimal expansion of the number of grams per cubic centimeter (g/cm^3) in 1 ounce per cubic inch (oz/in^3).
[ "1", "7", "2", "9", "9", "9", "4", "0", "4", "4", "3", "8", "7", "6", "9", "5", "0", "7", "4", "6", "0", "2", "7", "4", "7", "6", "3", "0", "6", "9", "2", "1", "1", "1", "7", "7", "7", "9", "2", "4", "3", "4", "3", "2", "5", "0", "2", "6", "1", "3", "0", "3", "6", "7", "2", "2", "1", "3", "6", "4", "3", "6", "3", "9", "8", "8", "5", "7", "0", "4", "9", "6", "8", "2", "6", "0", "3", "3", "0", "2", "2", "1", "4", "4", "7", "8", "4", "4", "4", "7", "0", "4", "9", "2", "0", "9", "0", "5" ]
[ "nonn", "cons" ]
7
1
2
[ "A364898", "A364899" ]
null
Jianing Song, Aug 12 2023
2023-08-12T14:56:37
oeisdata/seq/A364/A364899.seq
420731321c7341ded9d9666bcd176cb8
A364900
The n-volume of the unit regular n-simplex is sqrt(a(n))/A364901(n), with a(n) being squarefree.
[ "1", "1", "3", "2", "5", "3", "7", "1", "1", "5", "11", "6", "13", "7", "15", "2", "17", "1", "19", "10", "21", "11", "23", "3", "1", "13", "3", "14", "29", "15", "31", "1", "33", "17", "35", "2", "37", "19", "39", "5", "41", "21", "43", "22", "5", "23", "47", "6", "1", "1", "51", "26", "53", "3", "55", "7", "57", "29", "59", "30", "61", "31", "7", "2", "65", "33", "67", "34", "69", "35", "71", "1", "73", "37", "3" ]
[ "nonn", "easy" ]
19
0
3
[ "A001333", "A007913", "A020829", "A120011", "A364895", "A364900", "A364901" ]
null
Jianing Song, Aug 12 2023
2023-08-20T10:51:37
oeisdata/seq/A364/A364900.seq
25cf586d95c154835be1efa9f4a39321