sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A364901
The n-volume of the unit regular n-simplex is sqrt(A364900(n))/a(n), with A364900(n) being squarefree.
[ "1", "1", "4", "12", "96", "480", "5760", "20160", "215040", "5806080", "116121600", "1277337600", "30656102400", "398529331200", "11158821273600", "83691159552000", "5356234211328000", "30351993864192000", "3278015337332736000", "62282291409321984000", "2491291656372879360000", "52317124783830466560000" ]
[ "nonn", "easy" ]
17
0
3
[ "A000188", "A020829", "A120011", "A364895", "A364900", "A364901" ]
null
Jianing Song, Aug 12 2023
2023-08-20T10:51:41
oeisdata/seq/A364/A364901.seq
9ac8deb775cadb46f0be05a7ae3205e2
A364902
Let x, y be the greatest exponents of 2, 3 respectively such that 2^x, 3^y do not exceed n and let k_2, k_3 be n - 2^x, and n - 3^y respectively. Then for n such that k_2 = 0 or k_3 = 0, a(n) = n, else a(n) is the least novel number Min{p*a(k_2), q*a(k_3)}, where p, q are primes not equal to either 2 or 3.
[ "1", "2", "3", "4", "5", "10", "15", "8", "9", "7", "14", "20", "25", "35", "50", "16", "11", "22", "21", "28", "55", "70", "75", "40", "45", "49", "27", "13", "26", "33", "44", "32", "17", "34", "39", "52", "65", "98", "100", "56", "63", "77", "80", "121", "110", "105", "140", "112", "143", "154", "147", "196", "245", "135", "91", "130", "165", "220", "160", "85", "170", "195", "260", "64", "19", "38", "51", "68" ]
[ "nonn" ]
54
1
2
[ "A005940", "A006899", "A047253", "A108906", "A356867", "A364611", "A364628", "A364902" ]
null
David James Sycamore and Michael De Vlieger Sep 21 2023
2024-07-28T09:19:10
oeisdata/seq/A364/A364902.seq
19cd1be904f2ed7ccd0ff8a637e4612f
A364903
Numbers k such that A060778(k) = 7.
[ "529983", "1890624", "4322240", "9641024", "23357888", "30636224", "34000560", "52751168", "68707520", "100340288", "114896960", "153561663", "181521728", "213890624", "244109375", "252905408", "301890624", "310852160", "348083648", "423412928", "444661568", "510759999", "511890624", "520524224", "568393280" ]
[ "nonn" ]
8
1
1
[ "A000005", "A060778", "A364890", "A364903" ]
null
Seiichi Manyama, Aug 12 2023
2023-08-12T11:11:50
oeisdata/seq/A364/A364903.seq
717ba6412be3012f8eedfc96fd441af4
A364904
a(n) = |Aut^n(C_32)|: order of the group obtained by applying G -> Aut(G) n times to the cyclic group of order 32.
[ "32", "16", "16", "64", "384", "1536", "6144" ]
[ "nonn", "hard", "more" ]
15
0
1
[ "A331921", "A364904", "A364917", "A365051" ]
null
Jianing Song, Aug 12 2023
2023-08-19T16:12:22
oeisdata/seq/A364/A364904.seq
407b937a480b9db86b1f96a1d89e2c46
A364905
Sphenic numbers with no squarefree neighbors.
[ "170", "530", "595", "638", "651", "665", "874", "962", "1015", "1209", "1495", "1551", "1695", "1749", "1826", "1855", "2035", "2255", "2365", "2431", "2451", "2465", "2526", "2674", "2717", "2726", "2737", "2739", "2751", "2755", "2782", "2849", "2874", "3115", "3145", "3178", "3363", "3367", "3451", "3619", "3655", "3689", "3835", "3905", "3970", "4015", "4017", "4047", "4085" ]
[ "nonn" ]
19
1
1
[ "A007304", "A013929", "A281192", "A364025", "A364905" ]
null
Massimo Kofler, Aug 12 2023
2023-09-06T21:13:53
oeisdata/seq/A364/A364905.seq
30325e133b97bbad5718a2764f26de9b
A364906
Number of ways to write A056239(n) as a nonnegative linear combination of the multiset of prime indices of n.
[ "1", "1", "1", "3", "1", "2", "1", "10", "3", "2", "1", "9", "1", "2", "1", "35", "1", "6", "1", "9", "2", "2", "1", "34", "3", "2", "10", "10", "1", "7", "1", "126", "1", "2", "1", "30", "1", "2", "2", "39", "1", "6", "1", "11", "3", "2", "1", "130", "3", "6", "1", "12", "1", "20", "1", "46", "2", "2", "1", "31", "1", "2", "9", "462", "2", "7", "1", "13", "1", "6", "1", "120", "1", "2", "4", "14", "1", "7", "1" ]
[ "nonn" ]
6
1
4
[ "A000012", "A001221", "A001222", "A056239", "A112798", "A116861", "A275972", "A319319", "A320340", "A364350", "A364839", "A364906", "A364910", "A364912", "A364914", "A364916", "A365002", "A365003", "A365004" ]
null
Gus Wiseman, Aug 22 2023
2023-08-24T09:30:19
oeisdata/seq/A364/A364906.seq
e545845676d73f471aadf6023583884e
A364907
Number of ways to write n as a nonnegative linear combination of an integer partition of n.
[ "1", "1", "4", "13", "50", "179", "696", "2619", "10119", "38867", "150407", "582065", "2260367", "8786919", "34225256", "133471650", "521216494", "2037608462", "7974105052", "31235316275", "122457794193", "480473181271", "1886555402750", "7412471695859", "29142658077266", "114643347181003", "451237737215201" ]
[ "nonn" ]
16
0
3
[ "A000009", "A000041", "A008284", "A008289", "A116861", "A320340", "A323092", "A364350", "A364839", "A364906", "A364907", "A364908", "A364909", "A364910", "A364911", "A364912", "A364913", "A364914", "A364915", "A364916", "A365002", "A365003", "A365004" ]
null
Gus Wiseman, Aug 18 2023
2024-01-28T20:57:15
oeisdata/seq/A364/A364907.seq
eb2da7f6b39e43e43f5a3dcc6a2cfe87
A364908
Number of ways to write n as a nonnegative linear combination of an integer composition of n.
[ "1", "1", "4", "15", "70", "314", "1542", "7428", "36860", "182911", "917188", "4612480", "23323662", "118273428", "601762636", "3069070533", "15689123386", "80356953555", "412300910566", "2118715503962", "10902791722490", "56175374185014", "289766946825180", "1496239506613985", "7733302967423382" ]
[ "nonn" ]
13
0
3
[ "A000009", "A000041", "A011782", "A032020", "A072574", "A097805", "A116861", "A364350", "A364839", "A364906", "A364907", "A364908", "A364909", "A364910", "A364911", "A364912", "A364914", "A364916", "A365002", "A365004", "A365067" ]
null
Gus Wiseman, Aug 22 2023
2024-01-28T20:57:10
oeisdata/seq/A364/A364908.seq
87b85bbd64a5af5013a18b2695429be4
A364909
Number of ways to write n as a nonnegative linear combination of a strict integer composition of n.
[ "1", "1", "1", "5", "5", "7", "51", "45", "89", "109", "709", "733", "1495", "1935", "3119", "13785", "16611", "29035", "44611", "68733", "95193", "372897", "435007", "781345", "1177181", "1866659", "2600537", "3906561", "12052631", "14610799", "25407653", "37652265", "59943351", "84060993", "128112805", "172172117", "480353257", "578740011" ]
[ "nonn" ]
13
0
4
[ "A000009", "A000041", "A008284", "A008289", "A011782", "A032020", "A072574", "A097805", "A116861", "A364350", "A364839", "A364906", "A364907", "A364908", "A364909", "A364910", "A364912", "A364914", "A364916", "A365002", "A365004" ]
null
Gus Wiseman, Aug 18 2023
2023-12-30T21:23:37
oeisdata/seq/A364/A364909.seq
360bf0da96be9a9f3407576854fe5b23
A364910
Number of integer partitions of 2n whose distinct parts sum to n.
[ "1", "1", "1", "3", "3", "4", "12", "11", "19", "23", "54", "55", "103", "115", "178", "289", "389", "507", "757", "970", "1343", "2033", "2579", "3481", "4840", "6312", "8317", "10998", "15459", "19334", "26368", "33480", "44709", "56838", "74878", "93369", "128109", "157024", "206471", "258357", "338085", "417530", "544263", "669388", "859570", "1082758", "1367068" ]
[ "nonn" ]
24
0
4
[ "A000009", "A000041", "A008284", "A008289", "A116861", "A237113", "A320340", "A323092", "A364350", "A364839", "A364906", "A364907", "A364908", "A364909", "A364910", "A364911", "A364912", "A364914", "A364916", "A365002", "A365003" ]
null
Gus Wiseman, Aug 16 2023
2023-09-14T01:12:13
oeisdata/seq/A364/A364910.seq
a3121cab80de687787d4179822493ff6
A364911
Triangle read by rows where T(n,k) is the number of integer partitions with sum <= n and with distinct parts summing to k.
[ "1", "1", "1", "1", "2", "1", "1", "3", "1", "2", "1", "4", "2", "3", "2", "1", "5", "2", "5", "3", "3", "1", "6", "3", "8", "4", "4", "4", "1", "7", "3", "11", "6", "6", "6", "5", "1", "8", "4", "14", "9", "8", "10", "7", "6", "1", "9", "4", "19", "11", "11", "14", "11", "9", "8", "1", "10", "5", "23", "14", "15", "21", "15", "14", "11", "10", "1", "11", "5", "28", "17", "19", "28", "22", "20", "17", "15", "12" ]
[ "nonn", "tabl" ]
10
0
5
[ "A000009", "A000012", "A000027", "A000041", "A000070", "A002865", "A008284", "A008289", "A008619", "A066328", "A114638", "A116608", "A116861", "A137719", "A179009", "A236912", "A237113", "A237667", "A364350", "A364839", "A364910", "A364911", "A364912", "A364913", "A364915", "A364916", "A365002", "A365004" ]
null
Gus Wiseman, Aug 27 2023
2024-01-11T22:56:54
oeisdata/seq/A364/A364911.seq
e26c25f48ac701a1cc9caf3c5dc2a5a8
A364912
Triangle read by rows where T(n,k) is the number of ways to write n as a positive linear combination of an integer partition of k.
[ "1", "0", "1", "0", "1", "2", "0", "1", "2", "3", "0", "1", "4", "4", "5", "0", "1", "4", "8", "7", "7", "0", "1", "6", "13", "17", "12", "11", "0", "1", "6", "18", "28", "30", "19", "15", "0", "1", "8", "24", "50", "58", "53", "30", "22" ]
[ "nonn", "tabl" ]
13
0
6
[ "A000007", "A000009", "A000012", "A000041", "A000070", "A006951", "A008284", "A008289", "A052928", "A116861", "A237113", "A364272", "A364350", "A364839", "A364907", "A364910", "A364911", "A364912", "A364913", "A364914", "A364915", "A365002", "A365004" ]
null
Gus Wiseman, Aug 20 2023
2024-12-13T09:41:51
oeisdata/seq/A364/A364912.seq
9247f1de90c2b57c47d169b6fca53ab8
A364913
Number of integer partitions of n having a part that can be written as a nonnegative linear combination of the other (possibly equal) parts.
[ "0", "0", "1", "2", "4", "5", "10", "12", "20", "27", "39", "51", "74", "95", "130", "169", "225", "288", "378", "479", "617", "778", "990", "1239", "1560", "1938", "2419", "2986", "3696", "4538", "5575", "6810", "8319", "10102", "12274", "14834", "17932", "21587", "25963", "31120", "37275", "44513", "53097", "63181", "75092", "89030", "105460", "124647" ]
[ "nonn" ]
7
0
4
[ "A000009", "A000041", "A008284", "A008289", "A085489", "A116861", "A151897", "A236912", "A237113", "A237667", "A275972", "A326083", "A364272", "A364346", "A364350", "A364670", "A364839", "A364913", "A364914", "A364915", "A364916", "A365006", "A365068" ]
null
Gus Wiseman, Aug 20 2023
2023-10-24T10:45:29
oeisdata/seq/A364/A364913.seq
dc41449c7bfbdf1dd5b23d382297bdb8
A364914
Number of subsets of {1..n} such that some element can be written as a nonnegative linear combination of the others.
[ "0", "0", "1", "3", "9", "20", "48", "101", "219", "454", "944", "1917", "3925", "7915", "16004", "32188", "64751", "129822", "260489", "521672", "1045060", "2091808", "4187047", "8377255", "16762285", "33531228", "67077485", "134170217", "268371678", "536772231", "1073611321", "2147282291", "4294697258", "8589527163", "17179321094" ]
[ "nonn" ]
23
0
4
[ "A007865", "A011782", "A085489", "A088809", "A093971", "A103580", "A116861", "A124506", "A151897", "A237113", "A237668", "A308546", "A324736", "A326020", "A326080", "A326083", "A364272", "A364349", "A364350", "A364534", "A364756", "A364839", "A364913", "A364914", "A365043", "A365044", "A365046" ]
null
Gus Wiseman, Aug 17 2023
2024-12-13T09:39:31
oeisdata/seq/A364/A364914.seq
adb9c574ade3982afc22fd8a5485c10f
A364915
Number of integer partitions of n such that no distinct part can be written as a nonnegative linear combination of other distinct parts.
[ "1", "1", "2", "2", "3", "3", "4", "5", "6", "7", "8", "12", "10", "16", "16", "19", "21", "29", "25", "37", "35", "44", "46", "60", "55", "75", "71", "90", "90", "114", "110", "140", "138", "167", "163", "217", "201", "248", "241", "298", "303", "359", "355", "425", "422", "520", "496", "594", "603", "715", "706", "834", "826", "968", "972", "1153", "1147", "1334", "1315", "1530" ]
[ "nonn" ]
22
0
3
[ "A000009", "A000041", "A007865", "A008284", "A008289", "A085489", "A093971", "A108917", "A116861", "A151897", "A236912", "A237113", "A237667", "A323092", "A326083", "A364272", "A364350", "A364533", "A364839", "A364910", "A364911", "A364912", "A364913", "A364914", "A364915", "A364916", "A365006", "A365068", "A365072" ]
null
Gus Wiseman, Aug 22 2023
2023-09-25T18:22:18
oeisdata/seq/A364/A364915.seq
a0e989d8c87e70f5f1d58a7202c31da6
A364916
Array read by antidiagonals downwards where A(n,k) is the number of ways to write n as a nonnegative linear combination of the parts of a strict integer partition of k.
[ "1", "1", "0", "1", "1", "0", "2", "0", "1", "0", "2", "1", "1", "1", "0", "3", "1", "2", "0", "1", "0", "4", "1", "1", "3", "1", "1", "0", "5", "2", "2", "2", "3", "0", "1", "0", "6", "2", "4", "2", "3", "3", "1", "1", "0", "8", "3", "4", "4", "3", "2", "5", "0", "1", "0", "10", "3", "5", "4", "7", "4", "3", "4", "1", "1", "0", "12", "5", "6", "6", "7", "7", "4", "3", "5", "0", "1", "0", "15", "5", "9", "7", "8", "6", "12", "3", "4", "6", "1", "1", "0" ]
[ "nonn", "tabl" ]
17
0
7
[ "A000007", "A000009", "A000012", "A000035", "A000041", "A007865", "A008284", "A008289", "A066328", "A085489", "A096765", "A108917", "A116861", "A137719", "A237113", "A323092", "A364272", "A364350", "A364533", "A364670", "A364839", "A364907", "A364910", "A364911", "A364912", "A364913", "A364916", "A365002", "A365004", "A365005" ]
null
Gus Wiseman, Aug 17 2023
2024-07-09T19:41:38
oeisdata/seq/A364/A364916.seq
0ab0d601aa7d8474d7a96f4c885e41ce
A364917
For each n, if the sequence defined by G_0 = C_n, G_k = Aut(G_{k-1}) for k >= 1 stabilizes, then a(n) is the order of G_k for sufficiently large k; otherwise a(n) = 0. Here C_n is the cyclic group of order n.
[ "1", "1", "1", "1", "1", "1", "1", "6", "1", "1", "1", "6", "6", "1", "8", "8", "8", "1", "1", "8", "12", "1", "1", "336", "8", "6", "1", "12", "12", "8", "8" ]
[ "nonn", "hard", "more" ]
28
1
8
[ "A117729", "A331921", "A364917" ]
null
Jianing Song, Aug 12 2023
2023-08-16T22:15:54
oeisdata/seq/A364/A364917.seq
db502ee0fc0e7871287ea25503197148
A364918
a(1) = 1; for n >= 2, a(n) = a(n - GCD(n - 1, a(n - 1))) + GCD(n, a(n - 1)).
[ "1", "2", "2", "4", "2", "4", "3", "4", "3", "4", "4", "8", "4", "6", "7", "8", "4", "6", "5", "10", "5", "6", "6", "12", "5", "6", "8", "12", "6", "12", "6", "8", "6", "8", "7", "7", "8", "10", "9", "9", "10", "12", "9", "10", "14", "16", "15", "18", "10", "20", "11", "12", "11", "12", "11", "15", "18", "13", "14", "16", "19", "20", "20", "24", "19", "20", "20", "24", "22", "24", "23", "24", "11", "12", "14", "16", "12" ]
[ "nonn" ]
21
1
2
[ "A001462", "A004001", "A005185", "A364918", "A369772" ]
null
Ctibor O. Zizka, Feb 06 2024
2024-02-06T16:23:07
oeisdata/seq/A364/A364918.seq
365c96e45bae4add7c5f4cd3477d1a7e
A364919
a(0) = 1; a(n) is the smallest number m not already in the sequence such that rad(m) divides A019565(n).
[ "1", "2", "3", "4", "5", "8", "9", "6", "7", "14", "21", "12", "25", "10", "15", "16", "11", "22", "27", "18", "55", "20", "33", "24", "49", "28", "63", "32", "35", "40", "45", "30", "13", "26", "39", "36", "65", "50", "75", "48", "91", "52", "81", "42", "125", "56", "105", "54", "121", "44", "99", "64", "143", "80", "117", "60", "77", "88", "147", "66", "169", "70", "135", "72", "17", "34" ]
[ "nonn" ]
13
0
2
[ "A005117", "A007947", "A019565", "A289280", "A364919" ]
null
Michael De Vlieger, Aug 30 2023
2023-09-03T10:43:59
oeisdata/seq/A364/A364919.seq
28cd9e28a046c0113f523e8c3d68122a
A364920
a(n) is the least prime p > prime(n) such that p * prime(n)# + 1 is prime, where q# denotes the product of all primes <= q.
[ "3", "5", "7", "11", "19", "29", "29", "31", "31", "31", "61", "59", "71", "53", "61", "149", "109", "101", "197", "113", "113", "139", "179", "131", "233", "127", "137", "113", "191", "223", "191", "151", "241", "311", "167", "199", "167", "191", "401", "227", "277", "197", "257", "263", "233", "277", "389", "251", "263", "373", "499", "503", "311", "487", "433", "283" ]
[ "nonn" ]
16
1
1
[ "A002110", "A364920" ]
null
Alain Rocchelli, Aug 12 2023
2023-09-16T17:06:25
oeisdata/seq/A364/A364920.seq
6329ecc38b1a7aeba2dd9f8f467b1fcc
A364921
Number of conjugacy classes of subgroups of the group GL(2, Z_n) of invertible 2 X 2 matrices mod n.
[ "1", "4", "16", "62", "48", "109", "84", "2265", "324", "345", "114", "5359", "217", "636", "2540", "27908", "218", "2872", "272", "20933", "4089", "756", "169", "780487", "892", "1813", "3015", "30562", "349", "31419", "510", "191856", "5096", "1743", "14139", "115902", "685", "2156", "13191", "3764246", "662", "51063", "600", "38346", "56222", "1130", "271" ]
[ "nonn" ]
7
1
2
[ "A000252", "A066514", "A364921" ]
null
Robin Visser, Aug 12 2023
2023-08-13T22:40:33
oeisdata/seq/A364/A364921.seq
1a058e8b69b678e9b080a0bc6b5063ab
A364922
a(n) is the square of the side length of a simplex whose n-dimensional inner hypervolume is equal to its (n-1)-dimensional surface hypervolume. As a result, the sequence starts at n=2.
[ "48", "216", "640", "1500", "3024", "5488", "9216", "14580", "22000", "31944", "44928", "61516", "82320", "108000", "139264", "176868", "221616", "274360", "336000", "407484", "489808", "584016", "691200", "812500", "949104", "1102248", "1273216", "1463340", "1674000", "1906624", "2162688", "2443716", "2751280", "3087000" ]
[ "easy", "nonn" ]
70
2
1
[ "A019582", "A179824", "A364922" ]
null
Matt Moir, Apr 13 2024
2024-08-27T13:53:59
oeisdata/seq/A364/A364922.seq
68ae1024ad933d41a9ee21e336157e0e
A364923
G.f. satisfies A(x) = 1 + x*A(x)^4 / (1 - 2*x*A(x)^3).
[ "1", "1", "6", "48", "442", "4419", "46626", "511032", "5761650", "66394596", "778518552", "9258850440", "111417705702", "1354135251538", "16598001854700", "204945037918800", "2546849778687138", "31828936270676172", "399777371427582024", "5043824569861127808", "63892650400004356776" ]
[ "nonn" ]
14
0
3
[ "A007564", "A243659", "A364923", "A364924" ]
null
Seiichi Manyama, Aug 12 2023
2024-04-13T03:15:31
oeisdata/seq/A364/A364923.seq
fa7792283f544dfbc3894f135bd39341
A364924
G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 - 2*x*A(x)^4).
[ "1", "1", "7", "67", "743", "8970", "114445", "1517976", "20722023", "289224355", "4108588558", "59207805442", "863439906413", "12718638581368", "188960182480440", "2828238875318256", "42605850936335463", "645497106959662857", "9829072480785776101", "150345303724987825021" ]
[ "nonn" ]
13
0
3
[ "A007564", "A243667", "A364923", "A364924" ]
null
Seiichi Manyama, Aug 12 2023
2024-04-13T03:15:50
oeisdata/seq/A364/A364924.seq
60b6b5d75df10851cbcfd22df0457f8b
A364925
If the Sylow 2-subgroup of the multiplicative group modulo n is isomorphic to the direct product of (C_(2^i))^(e_i) for 1 <= i <= k, where C_m denotes the cyclic group of order m, then a(n) = Product_{i=1..k} prime(i)^(e_i).
[ "1", "1", "2", "2", "3", "2", "2", "4", "2", "3", "2", "4", "3", "2", "6", "6", "7", "2", "2", "6", "4", "2", "2", "8", "3", "3", "2", "4", "3", "6", "2", "10", "4", "7", "6", "4", "3", "2", "6", "12", "5", "4", "2", "4", "6", "2", "2", "12", "2", "3", "14", "6", "3", "2", "6", "8", "4", "3", "2", "12", "3", "2", "4", "14", "9", "4", "2", "14", "4", "6", "2", "8", "5", "3", "6", "4", "4", "6", "2", "18", "2", "5", "2", "8", "21", "2", "6", "8", "5", "6" ]
[ "nonn", "easy", "mult" ]
21
1
3
[ "A000010", "A000040", "A007814", "A364925" ]
null
Jianing Song, Aug 13 2023
2023-08-30T02:15:43
oeisdata/seq/A364/A364925.seq
bac579cc6ab53ff7f5ab2ddad55e1b60
A364926
Prime powers (A000961) q such that 2*q+1 is a prime.
[ "1", "2", "3", "5", "8", "9", "11", "23", "29", "41", "53", "81", "83", "89", "113", "125", "128", "131", "173", "179", "191", "233", "239", "243", "251", "281", "293", "359", "419", "431", "443", "491", "509", "593", "641", "653", "659", "683", "719", "729", "743", "761", "809", "911", "953", "1013", "1019", "1031", "1049", "1103", "1223", "1229", "1289", "1331", "1409", "1439", "1451", "1481", "1499" ]
[ "nonn", "easy" ]
9
1
2
[ "A000961", "A005384", "A048184", "A364926" ]
null
Jianing Song, Aug 13 2023
2023-08-13T09:32:49
oeisdata/seq/A364/A364926.seq
9cfa06e5f35d91bc75904836fe7663f6
A364927
List of free polyplets in binary code (as defined in A246521), ordered first by number of bits, then by value of the binary code.
[ "1", "3", "6", "7", "11", "14", "25", "56", "15", "23", "27", "29", "30", "46", "57", "58", "75", "78", "89", "92", "120", "166", "177", "178", "198", "209", "240", "390", "452", "960", "31", "47", "59", "62", "79", "91", "93", "94", "110", "121", "122", "124", "143", "167", "174", "179", "181", "182", "185", "186", "188", "199", "206", "211", "213", "230", "241", "242" ]
[ "nonn", "tabf" ]
18
1
2
[ "A030222", "A246521", "A364927" ]
null
Pontus von Brömssen, Aug 13 2023
2023-12-07T14:53:22
oeisdata/seq/A364/A364927.seq
0c48715e03ac71c21562384b175eb9b6
A364928
List of free corner-connected polyominoes in binary code (as defined in A246521), ordered first by number of bits, then by value of the binary code.
[ "1", "6", "25", "56", "57", "198", "390", "452", "960", "454", "962", "2105", "3097", "3128", "4153", "7185", "10296", "14353", "15392", "31744", "65988", "966", "3129", "6201", "7193", "7217", "7224", "10297", "11320", "14361", "14392", "15377", "15400", "15408", "31752", "31760", "65990", "66498", "66500", "98502", "98756", "99264" ]
[ "nonn", "tabf" ]
14
1
2
[ "A000105", "A246521", "A364928" ]
null
Pontus von Brömssen, Aug 13 2023
2023-08-26T03:06:10
oeisdata/seq/A364/A364928.seq
629bcca8e6348d9f6a6e20c46a5f2591
A364929
a(0) = 0; for n > 0, if n appears in the sequence then a(n) is the product of the indices of all previous appearances of n. Otherwise a(n) = a(n-1) - n if nonnegative and not already in the sequence, otherwise a(n) = a(n-1) + n.
[ "0", "1", "3", "2", "6", "11", "4", "11", "19", "10", "9", "35", "23", "36", "22", "7", "23", "40", "58", "8", "28", "49", "14", "192", "168", "143", "117", "90", "20", "49", "79", "48", "16", "49", "15", "11", "13", "50", "12", "51", "17", "58", "100", "57", "101", "56", "102", "55", "31", "20097", "37", "39", "91", "38", "92", "47", "45", "43", "738", "679", "619", "558", "496", "433", "369" ]
[ "nonn" ]
112
0
3
[ "A005132", "A340612", "A362373", "A364929" ]
null
Kelvin Voskuijl, Dec 05 2023
2024-01-31T11:33:00
oeisdata/seq/A364/A364929.seq
42e840cb6ffd6a4dfe0719cf37cfc9c0
A364930
Products of primorials that are squareful but not prime powers.
[ "36", "72", "144", "216", "288", "432", "576", "864", "900", "1152", "1296", "1728", "1800", "2304", "2592", "3456", "3600", "4608", "5184", "5400", "6912", "7200", "7776", "9216", "10368", "10800", "13824", "14400", "15552", "18432", "20736", "21600", "27000", "27648", "28800", "31104", "32400", "36864", "41472", "43200", "44100", "46656", "54000" ]
[ "nonn", "easy" ]
35
1
1
[ "A000079", "A001694", "A002110", "A025487", "A126706", "A286708", "A332785", "A364710", "A364930" ]
null
Michael De Vlieger, Dec 12 2023
2023-12-16T05:43:35
oeisdata/seq/A364/A364930.seq
ca9982e1cbb267e71c9b33d851807f3d
A364931
Decimal expansion of the solution to 1 / (1 + e^(-x)) = x.
[ "6", "5", "9", "0", "4", "6", "0", "6", "8", "4", "0", "7", "4", "0", "6", "6", "6", "0", "9", "8", "4", "3", "8", "6", "4", "9", "5", "9", "2", "8", "8", "6", "7", "5", "5", "1", "6", "9", "8", "0", "9", "0", "3", "3", "0", "3", "5", "7", "1", "1", "5", "1", "8", "8", "4", "8", "9", "2", "9", "4", "6", "3", "0", "8", "0", "4", "2", "2", "4", "1", "1", "3", "0", "4", "2", "4", "2", "9", "7", "5", "7", "5", "7", "9", "0", "3", "4", "7", "3", "5", "6", "4", "8", "2", "8", "2", "0", "1", "0", "5" ]
[ "nonn", "cons" ]
11
0
1
null
null
Michal Paulovic, Aug 13 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364931.seq
a26604364065814b77fa907a24403ccf
A364932
a(n) = phi(psi(n)).
[ "1", "2", "2", "2", "2", "4", "4", "4", "4", "6", "4", "8", "6", "8", "8", "8", "6", "12", "8", "12", "16", "12", "8", "16", "8", "12", "12", "16", "8", "24", "16", "16", "16", "18", "16", "24", "18", "16", "24", "24", "12", "32", "20", "24", "24", "24", "16", "32", "24", "24", "24", "24", "18", "36", "24", "32", "32", "24", "16", "48", "30", "32", "32", "32", "24", "48", "32", "36", "32", "48", "24" ]
[ "nonn", "look" ]
21
1
2
[ "A000010", "A001615", "A293713", "A364631", "A364932" ]
null
Torlach Rush, Aug 13 2023
2024-02-13T14:33:18
oeisdata/seq/A364/A364932.seq
940e97df8696e834cde0f8187ab432b6
A364933
a(n) = Sum_{k=1..n} A191898(n,k)*[A191904(n,k) = A191898(n,k)].
[ "0", "-1", "-1", "0", "-1", "-2", "-1", "2", "3", "-2", "-1", "0", "-1", "-2", "1", "6", "-1", "2", "-1", "2", "3", "-2", "-1", "4", "15", "-2", "15", "4", "-1", "0", "-1", "14", "7", "-2", "13", "8", "-1", "-2", "9", "10", "-1", "2", "-1", "8", "17", "-2", "-1", "12", "35", "14", "13", "10", "-1", "14", "25", "16", "15", "-2", "-1", "8", "-1", "-2", "27", "30", "31", "6", "-1", "14", "19", "12" ]
[ "sign" ]
9
1
6
[ "A008472", "A057859", "A191898", "A191904", "A364933" ]
null
Mats Granvik, Aug 13 2023
2023-09-13T23:11:54
oeisdata/seq/A364/A364933.seq
6481f528153c4272f80ee7fa82f07886
A364934
a(n+1) = 1 + number of previous terms that share a factor > 1 with a(n); a(1) = 2.
[ "2", "2", "3", "2", "4", "5", "2", "6", "8", "8", "9", "4", "10", "12", "14", "13", "2", "14", "15", "8", "16", "17", "2", "18", "22", "20", "23", "2", "22", "23", "3", "8", "24", "29", "2", "26", "28", "28", "29", "3", "10", "32", "31", "2", "32", "33", "13", "4", "34", "36", "42", "43", "2", "38", "39", "17", "4", "40", "43", "3", "15", "21", "21", "22", "43", "4", "43", "5", "9", "19", "3", "20", "48", "58", "48", "60", "63", "28", "52", "53", "2", "51", "28" ]
[ "nonn" ]
35
1
1
[ "A016035", "A124056", "A364934" ]
null
Rok Cestnik, Aug 15 2023
2023-08-19T00:13:36
oeisdata/seq/A364/A364934.seq
7476fc8a7c0453ce55941eb472428930
A364935
a(1) = 1 and thereafter a(n) = sum of digits of the number from concatenation of a(n-1) on the left with leftmost digit of a(n-1) + k and concatenation on the right with rightmost digit of a(n-1) + k, where k is the number of times a(n-1) has appeared in the sequence.
[ "1", "5", "17", "18", "20", "6", "20", "8", "26", "18", "13", "10", "4", "14", "12", "8", "10", "6", "22", "10", "8", "12", "10", "10", "12", "12", "14", "14", "16", "16", "18", "15", "14", "18", "17", "20", "10", "14", "20", "12", "16", "20", "14", "13", "12", "18", "19", "13", "14", "15", "16", "13", "16", "15", "18", "21", "8", "14", "17", "13", "18", "23", "12", "20", "16", "17", "15", "20", "18", "25", "16", "19", "15", "13" ]
[ "base", "easy", "look", "nonn" ]
37
1
2
null
null
Jarrod G. Sage, Sep 15 2023
2024-03-31T19:04:59
oeisdata/seq/A364/A364935.seq
190004a34974ab739a9dbe9f3d122b13
A364936
a(n) = minimum number of variables with n possible states in a system such that its solution requires the processing of a transcomputational number of bits.
[ "309", "195", "155", "134", "120", "111", "103", "98", "93", "90", "87", "84", "82", "80", "78", "76", "75", "73", "72", "71", "70", "69", "68", "67", "66", "65", "65", "64", "63", "63", "62", "62", "61", "61", "60", "60", "59", "59", "59", "58", "58", "57", "57", "57", "56", "56", "56", "56", "55", "55" ]
[ "nonn", "easy" ]
8
2
1
null
null
Nicholas Leonard, Aug 13 2023
2023-09-03T11:21:41
oeisdata/seq/A364/A364936.seq
2c3c57eb3f417cbadf49ca685c36f778
A364937
a(n) is the least prime p such that p - prime(n) and p + prime(n) are triprimes.
[ "173", "47", "13", "37", "19", "31", "59", "31", "43", "37", "61", "79", "61", "71", "67", "61", "71", "103", "97", "83", "101", "107", "103", "97", "139", "167", "179", "137", "127", "131", "139", "151", "149", "151", "167", "181", "199", "191", "269", "181", "191", "193", "211", "211", "239", "211", "223", "251", "271", "241", "241", "269", "283", "353", "277", "271", "313", "347", "401", "293", "313", "311", "409" ]
[ "nonn" ]
6
1
1
[ "A014612", "A364937" ]
null
Zak Seidov and Robert Israel, Aug 13 2023
2023-08-24T10:16:05
oeisdata/seq/A364/A364937.seq
a0e6c4f320034f990e64704c06e217b1
A364938
E.g.f. satisfies A(x) = exp( x / (1 - x*A(x))^3 ).
[ "1", "1", "7", "73", "1141", "23821", "623341", "19650793", "725478601", "30714824377", "1467394945561", "78103975313101", "4583805610661245", "294093243091237669", "20479664124384110101", "1538423857251845781841", "124007828871708989798161", "10676865465119963987425009" ]
[ "nonn" ]
14
0
3
[ "A161630", "A161635", "A364938", "A364940", "A364942", "A364981" ]
null
Seiichi Manyama, Aug 14 2023
2023-11-18T05:16:23
oeisdata/seq/A364/A364938.seq
a1fd9ee929d277a541775814a44885d7
A364939
E.g.f. satisfies A(x) = exp( x*A(x) / (1 - x*A(x))^2 ).
[ "1", "1", "7", "82", "1421", "32856", "953107", "33316816", "1364109273", "64057409920", "3394727354591", "200445915043584", "13050860745456613", "928976320999078912", "71773343988758253675", "5982029183718123513856", "535011546414154955711153", "51110145581257562326401024" ]
[ "nonn" ]
20
0
3
[ "A052873", "A082579", "A364939", "A364940" ]
null
Seiichi Manyama, Aug 14 2023
2024-12-01T10:51:25
oeisdata/seq/A364/A364939.seq
c576dabb4d58b36f939be63b2bf50e92
A364940
E.g.f. satisfies A(x) = exp( x*A(x) / (1 - x*A(x))^3 ).
[ "1", "1", "9", "124", "2525", "68616", "2338357", "96004672", "4616135001", "254542038400", "15839013320801", "1098078537291264", "83940831427695541", "7014958697801657344", "636298582947212386125", "62261039244978489081856", "6537251350698278868150833", "733159568772947522820538368" ]
[ "nonn" ]
17
0
3
[ "A052873", "A091695", "A364939", "A364940" ]
null
Seiichi Manyama, Aug 14 2023
2024-12-01T10:51:15
oeisdata/seq/A364/A364940.seq
df263f85d4bed587f4092a368c76de30
A364941
E.g.f. satisfies A(x) = exp( x*A(x)^2 / (1 - x*A(x))^2 ).
[ "1", "1", "9", "139", "3201", "98861", "3842653", "180342471", "9926870145", "627296384665", "44766115252821", "3561306199330859", "312531347680052449", "29994317717748851013", "3125271184480991706189", "351360521075659460743471", "42395667639523579933634817", "5464885215245368415146646321" ]
[ "nonn" ]
11
0
3
[ "A361142", "A364941", "A364942" ]
null
Seiichi Manyama, Aug 14 2023
2023-11-18T05:50:10
oeisdata/seq/A364/A364941.seq
3d8fb47aca52b99df10249712d4ba667
A364942
E.g.f. satisfies A(x) = exp( x*A(x)^2 / (1 - x*A(x))^3 ).
[ "1", "1", "11", "193", "5037", "176221", "7755433", "411995529", "25665442841", "1835264297881", "148192928581581", "13338664928207389", "1324344628799752981", "143792046846092303829", "16949599953405295395521", "2155710634160924802161041", "294250014166281073851809457" ]
[ "nonn" ]
8
0
3
[ "A361142", "A364941", "A364942" ]
null
Seiichi Manyama, Aug 14 2023
2023-08-14T08:28:05
oeisdata/seq/A364/A364942.seq
4b013d56f19380b862b24fa6ad6e48dd
A364943
Number of chordless cycles (of length >=4) in the complement of the n-polygon diagonal intersection graph.
[ "0", "0", "42", "408", "3094", "7144", "37881", "70020", "246466", "272100", "1118117", "1456056", "3982905", "4720608", "11925058", "9252873" ]
[ "nonn", "more" ]
24
3
3
null
null
Eric W. Weisstein, Aug 15 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364943.seq
99ba2332a1d6e3cf892bad86f98fd1ce
A364944
Order of Aut^4(C_n) = Aut(Aut(Aut(Aut(C_n)))), where C_n is the cyclic group of order n.
[ "1", "1", "1", "1", "1", "1", "1", "6", "1", "1", "1", "6", "6", "1", "8", "8", "8", "1", "1", "8", "12", "1", "2", "336", "8", "6", "1", "12", "12", "8", "8", "384", "144", "8", "384", "12", "12", "1", "384", "4608", "1152", "12", "12", "144", "384", "2", "4", "4608", "12", "8", "1536", "384", "64", "1", "2359296", "336", "144", "12", "12", "4608", "1152", "8", "13824", "1536", "36864", "144", "24" ]
[ "nonn", "hard" ]
22
1
8
[ "A000010", "A258615", "A364129", "A364917", "A364944" ]
null
Jianing Song, Aug 14 2023
2023-08-22T21:19:21
oeisdata/seq/A364/A364944.seq
4d7d13b1521a89b3227ac842a5c70404
A364945
Decimal expansion of 1-Catalan.
[ "0", "8", "4", "0", "3", "4", "4", "0", "5", "8", "2", "2", "7", "8", "0", "9", "8", "4", "9", "4", "5", "3", "9", "6", "4", "8", "5", "0", "6", "7", "6", "1", "5", "8", "8", "9", "2", "2", "5", "8", "5", "0", "6", "2", "5", "7", "1", "8", "3", "2", "7", "8", "6", "5", "7", "3", "3", "5", "0", "1", "8", "8", "0", "3", "7", "8", "2", "3", "6", "9", "8", "0", "2", "2", "3", "7", "4", "5", "2", "3", "0", "5", "2", "0", "6", "4", "3", "4", "8" ]
[ "nonn", "cons" ]
23
0
2
[ "A006752", "A364945" ]
null
R. J. Mathar, Aug 14 2023
2024-11-15T06:59:15
oeisdata/seq/A364/A364945.seq
e9c18d7ac47a80bd53b1f61acbecff3c
A364946
Sixth Lie-Betti number of a path graph on n vertices.
[ "0", "0", "0", "4", "33", "140", "424", "1039", "2213", "4262", "7606", "12786", "20482", "31532", "46952", "67957", "95983", "132710", "180086", "240352", "316068", "410140", "525848", "666875", "837337", "1041814", "1285382", "1573646", "1912774", "2309532", "2771320", "3306209", "3922979", "4631158", "5441062" ]
[ "nonn", "easy" ]
18
1
4
[ "A088459", "A360571", "A361230", "A362007", "A364579", "A364946" ]
null
Samuel J. Bevins, Aug 14 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364946.seq
5e16beaaca5d8f3ba73015a31bf5cfc8
A364947
Prime powers that are equal to the sum of the first k prime powers (including 1) for some k.
[ "1", "3", "79", "163", "499", "947", "1279", "5297", "6689", "9629", "10853", "17467", "21001", "23887", "25411", "29761", "32089", "33289", "47947", "49429", "55633", "80687", "84697", "96157", "116719", "119159", "126641", "131783", "136991", "153371", "156227", "167861", "182969", "215249", "243161", "257921", "280897", "288853" ]
[ "nonn" ]
9
1
2
[ "A000961", "A013918", "A013921", "A013932", "A024918", "A364797", "A364947" ]
null
Ilya Gutkovskiy, Aug 14 2023
2025-06-20T03:27:51
oeisdata/seq/A364/A364947.seq
6f513dbbd7eae6327424cb91a12fbdca
A364948
Perfect powers that are equal to the sum of the first k perfect powers > 1 for some k.
[ "4", "121", "2548735225" ]
[ "nonn", "bref", "hard", "more" ]
4
1
1
[ "A001597", "A013918", "A013921", "A013932", "A364948" ]
null
Ilya Gutkovskiy, Aug 14 2023
2023-08-24T10:33:42
oeisdata/seq/A364/A364948.seq
03702933d1d34cc4e0fe68e5af042ab2
A364949
a(n) = gcd(A348717(n), A348717(A163511(n))).
[ "1", "2", "2", "4", "2", "6", "2", "8", "4", "2", "2", "12", "2", "2", "2", "16", "2", "18", "2", "4", "2", "2", "2", "24", "4", "2", "2", "4", "2", "2", "2", "32", "2", "2", "2", "36", "2", "2", "2", "8", "2", "6", "2", "4", "2", "2", "2", "48", "4", "10", "2", "4", "2", "2", "2", "8", "2", "2", "2", "4", "2", "2", "2", "64", "2", "6", "2", "4", "2", "10", "2", "72", "2", "2", "18", "4", "2", "2", "2", "16", "8", "2", "2", "12", "2", "2", "2", "8", "2", "6", "10", "4", "2", "2", "2", "96", "2", "2", "4", "20" ]
[ "nonn" ]
16
1
2
[ "A163511", "A348717", "A364255", "A364297", "A364949" ]
null
Antti Karttunen, Aug 16 2023
2023-09-06T06:58:42
oeisdata/seq/A364/A364949.seq
9fb525ba662a2a636ccaa2dbc3fe7e46
A364950
Lexicographically earliest infinite sequence such that a(i) = a(j) => A025480(i) = A025480(j) and A348717(i) = A348717(j) for all i, j >= 1.
[ "1", "2", "3", "4", "2", "5", "3", "6", "4", "7", "2", "8", "9", "10", "11", "12", "13", "14", "15", "16", "7", "17", "2", "18", "19", "20", "21", "22", "23", "24", "3", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "2", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "23", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "13", "62", "63", "64", "14", "65", "66", "67", "15", "68", "69", "70", "34", "71" ]
[ "nonn" ]
10
1
2
[ "A003602", "A025480", "A246277", "A348717", "A364949", "A364950", "A364951" ]
null
Antti Karttunen, Aug 17 2023
2023-08-17T19:26:06
oeisdata/seq/A364/A364950.seq
4e3e9c70d2e8815e9380be832a06c0ec
A364951
Lexicographically earliest infinite sequence such that a(i) = a(j) => A025480(i) = A025480(j) and A046523(i) = A046523(j) for all i, j >= 1.
[ "1", "2", "3", "4", "2", "5", "3", "6", "4", "7", "2", "8", "9", "10", "11", "12", "13", "14", "15", "16", "7", "17", "2", "18", "19", "20", "21", "22", "23", "24", "3", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "2", "40", "41", "42", "43", "44", "45", "46", "5", "47", "48", "49", "23", "50", "51", "52", "53", "54", "55", "56", "57", "58", "27", "59", "13", "60", "61", "62", "14", "63", "31", "64", "15", "65", "66", "67", "34", "68" ]
[ "nonn" ]
10
1
2
[ "A003602", "A025480", "A046523", "A101296", "A364950", "A364951" ]
null
Antti Karttunen, Aug 17 2023
2023-08-17T19:26:11
oeisdata/seq/A364/A364951.seq
dcebe8175cdfe1b4ec88a06f679c7104
A364952
Dirichlet inverse of A364557, which is Möbius transform of A005941.
[ "1", "-1", "-2", "-1", "-4", "2", "-8", "-1", "0", "4", "-16", "2", "-32", "8", "12", "-1", "-64", "0", "-128", "4", "24", "16", "-256", "2", "8", "32", "0", "8", "-512", "-12", "-1024", "-1", "48", "64", "56", "0", "-2048", "128", "96", "4", "-4096", "-24", "-8192", "16", "-8", "256", "-16384", "2", "48", "-8", "192", "32", "-32768", "0", "112", "8", "384", "512", "-65536", "-12", "-131072", "1024", "-16", "-1", "224", "-48", "-262144", "64", "768" ]
[ "sign" ]
11
1
3
[ "A000079", "A000720", "A005941", "A364557", "A364574", "A364952", "A364953" ]
null
Antti Karttunen, Aug 29 2023
2023-08-30T13:03:41
oeisdata/seq/A364/A364952.seq
13d7d089c7f01ba1c46ec2d83a42c68d
A364953
a(n) = A364952(A005940(1+n)), where A364952 is Dirichlet inverse of A364557, which is Möbius transform of A005941 [the inverse permutation of A005940].
[ "1", "-1", "-2", "-1", "-4", "2", "0", "-1", "-8", "4", "12", "2", "8", "0", "0", "-1", "-16", "8", "24", "4", "56", "-12", "-8", "2", "48", "-8", "-40", "0", "-16", "0", "0", "-1", "-32", "16", "48", "8", "112", "-24", "-16", "4", "240", "-56", "-232", "-12", "-208", "8", "0", "2", "224", "-48", "-208", "-8", "-528", "40", "64", "0", "-288", "16", "112", "0", "32", "0", "0", "-1", "-64", "32", "96", "16", "224", "-48", "-32", "8", "480", "-112", "-464", "-24" ]
[ "sign" ]
10
0
3
[ "A005940", "A005941", "A364557", "A364567", "A364575", "A364952", "A364953" ]
null
Antti Karttunen, Aug 29 2023
2023-08-30T13:03:57
oeisdata/seq/A364/A364953.seq
bbb37dddcb9434a4073f568c757bba53
A364954
The length of the common prefix in the binary expansions of A156552(n) and A156552(A163511(n)).
[ "0", "1", "2", "2", "1", "3", "3", "3", "2", "1", "1", "4", "2", "3", "2", "4", "1", "2", "1", "1", "1", "1", "1", "5", "1", "2", "1", "3", "3", "2", "5", "5", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "6", "1", "1", "2", "2", "2", "1", "2", "3", "3", "3", "3", "2", "4", "5", "3", "6", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "7", "2", "1", "2", "1", "2", "2", "2", "2", "5" ]
[ "nonn" ]
8
1
3
[ "A156552", "A163511", "A364569", "A364954", "A364955" ]
null
Antti Karttunen, Sep 02 2023
2023-09-02T16:59:53
oeisdata/seq/A364/A364954.seq
5347d2bfb5de3f70ba37691025de7b0c
A364955
a(n) = A252464(n) - A364954(n), where A364954(n) is the length of the common prefix in the binary expansions of A156552(n) and A156552(A163511(n)).
[ "0", "0", "0", "0", "2", "0", "1", "0", "1", "3", "4", "0", "4", "2", "2", "0", "6", "2", "7", "4", "4", "5", "8", "0", "3", "5", "3", "3", "7", "3", "6", "0", "5", "7", "4", "3", "11", "8", "6", "5", "12", "5", "13", "6", "4", "9", "14", "0", "4", "4", "6", "6", "14", "4", "4", "4", "6", "8", "14", "4", "14", "7", "3", "0", "6", "6", "18", "8", "9", "5", "19", "4", "20", "12", "3", "9", "5", "7", "21", "6", "3", "13", "22", "6", "7", "14", "10", "7", "23", "5", "6", "10", "11", "15", "8", "0", "23", "5", "5", "5" ]
[ "nonn" ]
9
1
5
[ "A156552", "A163511", "A364570", "A364954", "A364955", "A364956" ]
null
Antti Karttunen, Sep 02 2023
2023-09-02T16:59:56
oeisdata/seq/A364/A364955.seq
a040d7e75f1a525020e7a721fe095a04
A364956
Numbers k such that A163511(k) is either k itself or its descendant in Doudna-tree, A005940 (or equally, in A163511-tree).
[ "1", "2", "3", "4", "6", "8", "12", "16", "24", "32", "48", "64", "96", "128", "192", "256", "384", "512", "768", "1024", "1536", "2048", "3072", "4096", "6144", "8192", "12288", "16384", "24576", "32768", "49152", "65536", "98304", "131072", "196608", "262144", "341887", "393216", "524288", "683774", "786432", "1048576", "1572864", "2097152", "2495625", "3145728", "4194304", "4991250", "6291456" ]
[ "nonn" ]
16
1
2
[ "A005940", "A029744", "A156552", "A163511", "A252464", "A364954", "A364955", "A364956", "A364960" ]
null
Antti Karttunen, Sep 02 2023
2023-11-30T12:38:29
oeisdata/seq/A364/A364956.seq
201f56d46e6e6c1a33836b4840af2c1c
A364957
Dirichlet inverse of A365463.
[ "1", "-2", "-3", "3", "-1", "6", "-1", "-12", "0", "3", "-1", "-9", "-1", "2", "3", "35", "-1", "0", "-1", "-10", "3", "3", "-1", "36", "-24", "2", "0", "-3", "-1", "-9", "-1", "-82", "3", "2", "-5", "0", "-1", "2", "3", "37", "-1", "-6", "-1", "-10", "0", "3", "-1", "-105", "0", "46", "3", "-6", "-1", "0", "-9", "18", "3", "3", "-1", "30", "-1", "2", "0", "226", "-3", "-9", "-1", "-6", "3", "12", "-1", "0", "-1", "2", "72", "-3", "1", "-6", "-1", "-127", "0", "3", "-1", "9", "-3", "2", "3" ]
[ "sign" ]
9
1
2
[ "A356867", "A364257", "A364957", "A365463" ]
null
Antti Karttunen, Sep 16 2023
2023-09-16T19:09:39
oeisdata/seq/A364/A364957.seq
dcdcd5e32758c94265020984fbb296fa
A364958
Fixed points of A356867, where A356867 is Sycamore's Doudna variant D(3).
[ "1", "2", "3", "6", "8", "9", "18", "24", "27", "54", "72", "81", "91", "162", "216", "243", "273", "486", "648", "729", "819", "1458", "1944", "2187", "2457", "4374", "5832", "6561", "7371", "13122", "17496", "19683", "22113", "39366", "52488", "59049", "66339", "118098", "157464", "177147", "199017", "354294", "472392", "531441", "597051", "1062882", "1417176", "1594323", "1791153", "3188646", "4251528", "4782969" ]
[ "nonn" ]
14
1
2
[ "A356867", "A364958", "A365390", "A365462" ]
null
David James Sycamore and Antti Karttunen, Sep 15 2023
2025-07-02T20:30:36
oeisdata/seq/A364/A364958.seq
2d839a769efb0a3010103d13fa0473eb
A364959
Odd numbers k such that A348717(k) = A348717(A005940(k)).
[ "1", "3", "5", "17", "25", "45", "49", "133", "257", "65537" ]
[ "nonn", "hard", "more" ]
14
1
2
[ "A005940", "A019434", "A348717", "A364297", "A364959", "A364961", "A364962" ]
null
Antti Karttunen, Sep 02 2023
2023-09-02T21:37:44
oeisdata/seq/A364/A364959.seq
8373df9b17e50c65774def841eea3cdf
A364960
Numbers k such that A005940(k) is either k itself or its descendant in Doudna-tree, A005940.
[ "1", "2", "3", "4", "5", "6", "8", "10", "12", "16", "20", "24", "25", "32", "40", "45", "48", "49", "64", "80", "96", "128", "160", "192", "256", "320", "384", "512", "640", "768", "1024", "1280", "1536", "2048", "2560", "3072", "4096", "5120", "6144", "8192", "10240", "12288", "16384", "20480", "24576", "32768", "40131", "40960", "49152", "50575", "65536", "79625", "81920", "98304", "131072", "163840", "196608", "262144", "327680" ]
[ "nonn" ]
5
1
2
[ "A029747", "A252464", "A364569", "A364570", "A364960", "A364961" ]
null
Antti Karttunen, Aug 14 2023
2023-08-14T17:01:12
oeisdata/seq/A364/A364960.seq
4f9b10435428d06fbd3f954a8e517100
A364961
Odd numbers k such that A005940(k) is either k itself or its descendant in Doudna-tree, A005940.
[ "1", "3", "5", "25", "45", "49", "40131", "50575", "79625", "1486485", "1872507", "3403125" ]
[ "nonn", "hard", "more" ]
22
1
2
[ "A003961", "A005940", "A029747", "A156552", "A252464", "A364569", "A364570", "A364956", "A364959", "A364960", "A364961", "A364962" ]
null
Antti Karttunen, Aug 14 2023
2023-09-03T08:43:26
oeisdata/seq/A364/A364961.seq
b026729ba3e86925bbff4854cecf6eeb
A364962
Odd numbers k such that A005941(k) is either k itself or its descendant in Doudna-tree, A005940.
[ "1", "3", "5", "11", "19", "23", "31", "37", "41", "43", "47", "53", "59", "61", "71", "73", "79", "83", "85", "89", "97", "101", "103", "107", "109", "113", "127" ]
[ "nonn", "hard", "more" ]
16
1
2
[ "A005940", "A005941", "A029747", "A156552", "A252464", "A364959", "A364961", "A364962" ]
null
Antti Karttunen, Aug 14 2023
2023-09-03T08:43:30
oeisdata/seq/A364/A364962.seq
75bfba2a2ae7dd6f6195968af0459777
A364963
Odd numbers k such that k is a multiple of A163511(k).
[ "3", "16383", "536870895", "2147482623" ]
[ "nonn", "hard", "more" ]
19
1
1
[ "A083575", "A163511", "A243071", "A364495", "A364496", "A364498", "A364547", "A364963" ]
null
Antti Karttunen, Sep 02 2023
2023-09-02T11:26:32
oeisdata/seq/A364/A364963.seq
fc9e33828826d6111a1e65182169cf1e
A364964
Numbers k such that k is a multiple of A243071(k).
[ "2", "3", "4", "6", "8", "12", "16", "24", "27", "32", "48", "54", "64", "96", "108", "128", "192", "216", "256", "315", "384", "432", "512", "630", "768", "864", "1024", "1260", "1536", "1728", "2048", "2520", "3003", "3072", "3456", "4096", "5040", "6006", "6144", "6912", "8192", "10080", "12012", "12288", "13824", "16384", "20160", "24024", "24576", "27648", "32768", "40320", "42757", "48048", "49152", "55296", "65536" ]
[ "nonn" ]
6
1
1
[ "A007283", "A163511", "A364494", "A364497", "A364550", "A364964", "A364965" ]
null
Antti Karttunen, Sep 01 2023
2023-09-01T15:23:32
oeisdata/seq/A364/A364964.seq
66afc073833cd2b13ec411046d45df4c
A364965
Odd numbers k such that k is a multiple of A243071(k).
[ "3", "27", "315", "3003", "42757", "72765", "195195", "799425", "13873275", "18131225" ]
[ "nonn", "more" ]
7
1
1
[ "A163511", "A243071", "A364495", "A364498", "A364551", "A364964", "A364965" ]
null
Antti Karttunen, Sep 01 2023
2023-09-01T15:23:57
oeisdata/seq/A364/A364965.seq
e2935358745a5e5ce0fb5dbe9a28f0cc
A364966
Decimal expansion of the solution to exp(-x^2) = x.
[ "6", "5", "2", "9", "1", "8", "6", "4", "0", "4", "1", "9", "2", "0", "4", "7", "1", "5", "5", "3", "5", "0", "8", "0", "7", "6", "7", "3", "5", "3", "1", "9", "6", "3", "6", "9", "9", "2", "0", "1", "1", "6", "8", "8", "1", "1", "0", "2", "9", "9", "7", "7", "3", "0", "6", "2", "4", "9", "2", "1", "4", "9", "4", "0", "7", "5", "0", "4", "7", "2", "7", "6", "1", "9", "8", "0", "3", "8", "9", "2", "5", "5", "1", "1", "8", "2", "2", "5", "7", "1", "6", "0", "6", "8", "0", "5", "5", "9", "6", "8", "6", "8", "8", "8", "5" ]
[ "nonn", "cons" ]
13
0
1
[ "A196515", "A202498", "A299624", "A364966" ]
null
Michal Paulovic, Aug 14 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364966.seq
b8d233e838493e3b57f1c343abf88b2e
A364967
Number T(n,k) of permutations of [n] for which the difference between the longest and the shortest cycle length is k; triangle T(n,k), n>=0, 0<=k<=max(0,n-2), read by rows.
[ "1", "1", "2", "3", "3", "10", "6", "8", "25", "45", "20", "30", "176", "60", "250", "90", "144", "721", "861", "770", "1344", "504", "840", "6406", "1778", "7980", "6300", "8736", "3360", "5760", "42561", "23283", "38808", "75348", "45360", "66240", "25920", "45360", "436402", "84150", "363680", "456120", "708048", "378000", "572400", "226800", "403200" ]
[ "nonn", "tabf" ]
34
0
3
[ "A000142", "A001048", "A005225", "A126074", "A145877", "A364967", "A364971", "A365229" ]
null
Alois P. Heinz, Aug 14 2023
2023-12-08T07:11:48
oeisdata/seq/A364/A364967.seq
788c6652b0305d0416e412e67845aac5
A364968
Primitive solutions k to the Diophantine equation k^6 = Sum_{i=1..8} y_i^6 with y_i > 0.
[ "251", "431", "440", "455", "493", "499", "502", "547", "559", "581", "583", "607", "623" ]
[ "nonn", "more" ]
32
1
1
null
null
R. J. Mathar, Aug 16 2023
2025-04-18T17:45:23
oeisdata/seq/A364/A364968.seq
1c1a65032fb63f0ece41deadce0a4280
A364969
a(n) = a(a(n-1)) if n is even, a(n) is the number of times a(n-1) occurs in the sequence so far if n is odd, with a(1) = 1.
[ "1", "1", "2", "1", "3", "2", "2", "1", "4", "1", "5", "3", "2", "1", "6", "2", "5", "3", "3", "2", "6", "2", "7", "2", "8", "1", "7", "2", "9", "4", "2", "1", "8", "1", "9", "4", "3", "2", "11", "5", "3", "2", "12", "3", "7", "2", "13", "2", "14", "1", "10", "1", "11", "5", "4", "1", "12", "3", "8", "1", "13", "2", "15", "6", "3", "2", "16", "2", "17", "5", "5", "3", "10", "1", "14", "1", "15", "6", "4", "1", "16", "2" ]
[ "nonn" ]
45
1
3
null
null
Tanmaya Mohanty, Oct 23 2023
2023-12-31T00:50:05
oeisdata/seq/A364/A364969.seq
257bff722fce55b838c81c5f10d85012
A364970
a(n) = Sum_{k=1..n} binomial(floor(n/k)+2,3).
[ "1", "5", "12", "26", "42", "73", "102", "152", "204", "278", "345", "464", "556", "693", "835", "1021", "1175", "1422", "1613", "1907", "2173", "2496", "2773", "3228", "3569", "4015", "4445", "4998", "5434", "6120", "6617", "7331", "7965", "8717", "9391", "10392", "11096", "12031", "12909", "14059", "14921", "16219", "17166", "18489", "19711", "21072", "22201" ]
[ "nonn", "easy" ]
42
1
2
[ "A006218", "A007437", "A024916", "A064602", "A364970", "A365409", "A365439" ]
null
Seiichi Manyama, Oct 23 2023
2024-08-04T17:02:13
oeisdata/seq/A364/A364970.seq
9a6f59f5d361c6bb81b831740eadb829
A364971
Number T(n,k) of partitions of [n] for which the difference between the longest and the shortest block size is k; triangle T(n,k), n>=0, 0<=k<=max(0,n-2), read by rows.
[ "1", "1", "2", "2", "3", "5", "6", "4", "2", "35", "10", "5", "27", "60", "95", "15", "6", "2", "371", "315", "161", "21", "7", "142", "938", "2002", "770", "252", "28", "8", "282", "4005", "9744", "5313", "1386", "372", "36", "9", "1073", "16950", "50275", "33705", "11082", "2310", "525", "45", "10", "2", "74657", "283525", "217800", "78078", "20097", "3630", "715", "55", "11" ]
[ "nonn", "tabf" ]
32
0
3
[ "A000027", "A000110", "A038041", "A080510", "A178979", "A364967", "A364971" ]
null
Alois P. Heinz, Aug 15 2023
2023-10-27T08:23:22
oeisdata/seq/A364/A364971.seq
abf5c79c69c4cb9bb786506f7efa3ca0
A364972
Bases >= 2 in which the number of zeros needed to write the numbers 1 through k never equals k for any k.
[ "3", "4", "5", "6", "7", "8", "9", "10", "12", "14", "15", "17", "18", "19", "20", "21", "22", "23", "25", "27", "30", "32", "35", "37", "38", "39", "40", "41", "43", "45", "48", "49", "53", "54", "57", "58", "59", "63", "65", "67", "68", "69", "71", "72", "73", "74", "75", "76", "77", "79", "80", "83", "85", "88", "89", "90", "93", "94", "95", "96", "98", "100" ]
[ "nonn", "more" ]
30
1
1
[ "A061217", "A364972" ]
null
Gregory Marton and Tanya Khovanova, Aug 14 2023
2023-10-06T10:31:11
oeisdata/seq/A364/A364972.seq
1be269bc711c9a5db047566853eaa7a5
A364973
a(n) = number of degree n rational curves in the complex projective plane which satisfy an order 3n-1 local tangency constraint.
[ "1", "1", "4", "26", "217", "2110", "22744", "264057", "3242395", "41596252", "552733376", "7559811021", "105919629403", "1514674166755", "22043665219240", "325734154669786", "4877954835706120", "73914684068584441", "1131820243084746628", "17494508772311055354", "272708269111411142397", "4283702718045699720655" ]
[ "nonn" ]
53
1
3
[ "A353195", "A364973" ]
null
Kyler Siegel, Aug 22 2023
2024-01-01T11:55:33
oeisdata/seq/A364/A364973.seq
28592cba04659bdaf30796ea1d955e8d
A364974
a(n) is the least positive number that can be written in exactly n ways as 3*x*y^2 - x^3 where x and y are positive integers.
[ "1", "2", "88", "704", "36234", "285714", "2285712", "18285696" ]
[ "nonn", "more" ]
13
0
2
[ "A135782", "A364974" ]
null
Robert Israel, Aug 14 2023
2023-09-16T16:45:16
oeisdata/seq/A364/A364974.seq
c95137f8460ae6889dc9396cd7e3a372
A364975
Admirable numbers (A111592) with a record gap to the next admirable number.
[ "12", "30", "42", "88", "120", "140", "186", "534", "678", "6774", "7962", "77118", "94108", "152826", "478194", "662154", "935564", "1128174", "2028198", "6934398", "7750146", "8330924", "9984738", "10030804", "22956114", "62062566", "151040622", "284791602", "732988732", "804394974", "1151476732", "9040886574", "31302713634" ]
[ "nonn" ]
8
1
1
[ "A111592", "A306953", "A330870", "A334418", "A334419", "A334883", "A363296", "A364727", "A364975" ]
null
Amiram Eldar, Aug 15 2023
2025-04-27T00:45:12
oeisdata/seq/A364/A364975.seq
d6dce9f687751aa9e4e1900f308d11e4
A364976
3-abundant numbers k such that k/(sigma(k)-3*k) is an integer.
[ "180", "240", "360", "420", "540", "600", "780", "1080", "1344", "1872", "1890", "2016", "2184", "2352", "2376", "2688", "3192", "3276", "3744", "4284", "4320", "4680", "5292", "5376", "5796", "6048", "6552", "7128", "7440", "8190", "10416", "13776", "14850", "18600", "19824", "19872", "20496", "21528", "22932", "25056", "26208", "26496", "26784" ]
[ "nonn" ]
16
1
1
[ "A000203", "A005101", "A005820", "A027687", "A055153", "A068403", "A153501", "A160320", "A218404", "A218406", "A329189", "A364976", "A364977" ]
null
Amiram Eldar, Aug 15 2023
2023-09-02T02:38:58
oeisdata/seq/A364/A364976.seq
27c9a923a88daccd79b01156a4f02241
A364977
Numbers k such that k/(3*k - sigma(k)) is a positive integer.
[ "6", "24", "28", "60", "84", "168", "252", "270", "336", "496", "630", "756", "792", "864", "924", "936", "1140", "1170", "1488", "1638", "2268", "2808", "2970", "3672", "4464", "5148", "5472", "6804", "7308", "7644", "8128", "8700", "8910", "9300", "9936", "11172", "13392", "16368", "18018", "20196", "20412", "22230", "24384", "25116", "27888", "31968" ]
[ "nonn" ]
7
1
1
[ "A000203", "A000396", "A023196", "A068403", "A271816", "A329189", "A364976", "A364977" ]
null
Amiram Eldar, Aug 15 2023
2023-08-15T02:09:01
oeisdata/seq/A364/A364977.seq
2b52767009773248e03d309e6e47ef8e
A364978
E.g.f. satisfies A(x) = 1 + x*exp(x*A(x)^2).
[ "1", "1", "2", "15", "124", "1565", "23886", "446887", "9787352", "246408633", "7010910010", "222438284651", "7788393551412", "298293192119221", "12406118302851014", "556817903190669135", "26825727269937929776", "1380790608848655193457", "75625529930102546486514" ]
[ "nonn" ]
8
0
3
[ "A161631", "A364978", "A364979" ]
null
Seiichi Manyama, Aug 15 2023
2023-08-15T07:42:01
oeisdata/seq/A364/A364978.seq
03778be30718c904e4dba524ad8fe8f7
A364979
E.g.f. satisfies A(x) = 1 + x*exp(x*A(x)^3).
[ "1", "1", "2", "21", "220", "3545", "70566", "1702267", "48438104", "1582227873", "58475787850", "2410935939731", "109728296017572", "5464423604085745", "295562179335075758", "17255009243888243115", "1081438061864539992496", "72422934220506772042817", "5161269584065131270532242" ]
[ "nonn" ]
8
0
3
[ "A161631", "A364978", "A364979" ]
null
Seiichi Manyama, Aug 15 2023
2023-08-15T07:41:57
oeisdata/seq/A364/A364979.seq
ad4a165ffb1ff509a7271dc218996663
A364980
E.g.f. satisfies A(x) = 1 + x*A(x)*exp(x*A(x)^2).
[ "1", "1", "4", "33", "412", "6945", "147846", "3807601", "115151464", "4001162913", "157096369450", "6878742553881", "332361857826780", "17566215943990753", "1008161606338206334", "62440146891413434305", "4151012174991960338896", "294834882756167048975553" ]
[ "nonn" ]
11
0
3
[ "A006153", "A161633", "A161635", "A364980", "A364981" ]
null
Seiichi Manyama, Aug 15 2023
2023-11-18T04:37:41
oeisdata/seq/A364/A364980.seq
3b71b0189d6a7144cfc742b8c813ff4e
A364981
E.g.f. satisfies A(x) = 1 + x*A(x)*exp(x*A(x)^3).
[ "1", "1", "4", "39", "580", "11685", "298566", "9248701", "336886936", "14112113049", "668422303210", "35325208755441", "2060811941835780", "131547166492534117", "9120279070776381886", "682489450793082237285", "54828316394224735284016", "4706545644403274325580593" ]
[ "nonn" ]
12
0
3
[ "A006153", "A161633", "A364938", "A364980", "A364981" ]
null
Seiichi Manyama, Aug 15 2023
2023-11-18T05:09:10
oeisdata/seq/A364/A364981.seq
ef78dc3d9d9f5415341cffdb189f2043
A364982
E.g.f. satisfies A(x) = 1 + x*A(x)^2*exp(x*A(x)^2).
[ "1", "1", "6", "69", "1204", "28345", "842406", "30282385", "1278159240", "61979238513", "3395850105610", "207490382754721", "13989267347891628", "1031687145559176457", "82618837044274734126", "7139807492658000170865", "662286433378726179463696", "65635135687587192429274849" ]
[ "nonn" ]
13
0
3
[ "A001764", "A161633", "A213644", "A295238", "A364982", "A364986", "A364989" ]
null
Seiichi Manyama, Aug 15 2023
2023-08-15T11:57:39
oeisdata/seq/A364/A364982.seq
a0637a1885baa719be5045630efad1dc
A364983
E.g.f. satisfies A(x) = 1 + x*exp(x)*A(x)^3.
[ "1", "1", "8", "111", "2332", "66125", "2368086", "102616759", "5222638856", "305436798009", "20186656927210", "1488021110087171", "121044207712073196", "10771321471267219525", "1040877104088653696606", "108549742436141933697135", "12151467262433697322437136", "1453367472748861203540942065" ]
[ "nonn" ]
16
0
3
[ "A001764", "A006153", "A295238", "A307678", "A364983", "A364984", "A364985", "A364986", "A364987" ]
null
Seiichi Manyama, Aug 15 2023
2024-11-11T13:01:02
oeisdata/seq/A364/A364983.seq
5e2e749a5a7a837802f3dfbb7e8f28de
A364984
E.g.f. satisfies A(x) = 1 + x*A(x)^3*exp(x*A(x)).
[ "1", "1", "8", "117", "2596", "77705", "2936406", "134228059", "7204913528", "444331053873", "30963240318250", "2406301353714731", "206354828717754036", "19357367027097743449", "1971809610601104110942", "216754216326949771274715", "25575749384428387961718256", "3224227609551980271408565985" ]
[ "nonn" ]
7
0
3
[ "A108447", "A364983", "A364984", "A364985", "A364986" ]
null
Seiichi Manyama, Aug 15 2023
2023-08-15T07:45:24
oeisdata/seq/A364/A364984.seq
05c2aa892eed0ef0d5ebdbf81a9c3572
A364985
E.g.f. satisfies A(x) = 1 + x*A(x)^3*exp(x*A(x)^2).
[ "1", "1", "8", "123", "2884", "91445", "3664926", "177796759", "10132646840", "663644108169", "49123993335130", "4055804550134051", "369544757016476196", "36834870020525413213", "3987179241476814768854", "465777171342934543710255", "58407238852473276959363056", "7825395596421876706944643985" ]
[ "nonn" ]
8
0
3
[ "A003168", "A364983", "A364984", "A364985", "A364986" ]
null
Seiichi Manyama, Aug 15 2023
2023-08-15T07:45:28
oeisdata/seq/A364/A364985.seq
c2720068baa0e9aa09cb863f1429ae42
A364986
E.g.f. satisfies A(x) = 1 + x*A(x)^3*exp(x*A(x)^3).
[ "1", "1", "8", "129", "3196", "107465", "4575966", "236120059", "14322901832", "998966928897", "78770826493210", "6929685905371691", "672900446143476156", "71491442785783506577", "8249400210035835040022", "1027394346436911560475915", "137360293432089585554830096" ]
[ "nonn" ]
12
0
3
[ "A002293", "A161633", "A364982", "A364983", "A364984", "A364985", "A364986", "A364989" ]
null
Seiichi Manyama, Aug 15 2023
2023-08-15T11:58:13
oeisdata/seq/A364/A364986.seq
66cb22316762f894a5f0b9f94c1f230d
A364987
E.g.f. satisfies A(x) = 1 + x*exp(x)*A(x)^4.
[ "1", "1", "10", "183", "5140", "196005", "9468486", "554425963", "38171336680", "3022130473065", "270537702834250", "27021535857472431", "2979254055371578524", "359411244032212931533", "47093111659782104431438", "6660135357832421444841555", "1011181346455643980818939856" ]
[ "nonn" ]
15
0
3
[ "A002293", "A006153", "A295238", "A349331", "A364983", "A364987" ]
null
Seiichi Manyama, Aug 15 2023
2024-11-11T13:09:25
oeisdata/seq/A364/A364987.seq
4111a86a16982648dd767ca4ac19ec0f
A364988
a(n) is the sum of coreful divisors d of n such that n/d is also a coreful divisor.
[ "1", "0", "0", "2", "0", "0", "0", "6", "3", "0", "0", "0", "0", "0", "0", "14", "0", "0", "0", "0", "0", "0", "0", "0", "5", "0", "12", "0", "0", "0", "0", "30", "0", "0", "0", "6", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "7", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "62", "0", "0", "0", "0", "0", "0", "0", "18", "0", "0", "0", "0", "0", "0", "0", "0", "39", "0", "0", "0", "0" ]
[ "nonn", "mult" ]
11
1
4
[ "A000203", "A001694", "A057723", "A307958", "A361430", "A364988" ]
null
Amiram Eldar, Aug 15 2023
2023-08-15T07:44:05
oeisdata/seq/A364/A364988.seq
51955a97a35d28674ed314912578e80c
A364989
E.g.f. satisfies A(x) = 1 + x*A(x)^4*exp(x*A(x)^4).
[ "1", "1", "10", "207", "6628", "288885", "15969606", "1070760523", "84448152328", "7660906993737", "785932068816010", "89973000854464431", "11370915080258640204", "1572520778920744136029", "236212754707591898128270", "38299196311415039667233715", "6666717272317556205911393296" ]
[ "nonn" ]
8
0
3
[ "A161633", "A364982", "A364986", "A364989" ]
null
Seiichi Manyama, Aug 15 2023
2023-08-15T11:27:45
oeisdata/seq/A364/A364989.seq
6aaeca00177af7a688d627d8fa2272af
A364990
Coreful triperfect numbers: numbers k such that csigma(k) = 3*k, where csigma(k) is the sum of the coreful divisors of k (A057723).
[ "3600", "25200", "28224", "39600", "46800", "61200", "68400", "82800", "104400", "111600", "133200", "141120", "147600", "154800", "169200", "190800", "212400", "219600", "241200", "255600", "262800", "277200", "284400", "298800", "310464", "320400", "327600", "349200", "363600", "366912", "370800", "385200", "392400", "406800" ]
[ "nonn" ]
10
1
1
[ "A005820", "A007947", "A057723", "A064549", "A307958", "A364990" ]
null
Amiram Eldar, Aug 15 2023
2023-08-15T07:43:28
oeisdata/seq/A364/A364990.seq
7ea86b0b6712d890a1512b0fa7b343aa
A364991
Primitive coreful 3-abundant numbers: coreful 3-abundant numbers (A340109) that are powerful numbers (A001694).
[ "5400", "7200", "10800", "14400", "16200", "18000", "21168", "21600", "27000", "28800", "32400", "36000", "42336", "43200", "48600", "54000", "56448", "57600", "63504", "64800", "72000", "81000", "84672", "86400", "88200", "90000", "97200", "98784", "104544", "108000", "112896", "115200", "127008", "129600", "135000", "144000", "145800" ]
[ "nonn" ]
7
1
1
[ "A001694", "A340109", "A356871", "A364991" ]
null
Amiram Eldar, Aug 15 2023
2023-08-15T07:43:22
oeisdata/seq/A364/A364991.seq
976554aa7498283a470d295831d6f6eb
A364992
Number of chordless cycles (of length >=4) in the complement of the n-halved cube graph.
[ "0", "0", "0", "0", "312", "7224", "95424", "933632", "7550208", "53635968" ]
[ "nonn", "more" ]
9
1
5
null
null
Eric W. Weisstein, Aug 15 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364992.seq
d2095715de2e3d3a1f94c813948c8cfe
A364993
Number of chordless cycles (of length >=4) in the complement of the n-odd graph.
[ "0", "0", "27", "1575", "43155", "918225", "17780763" ]
[ "nonn", "more" ]
8
1
3
null
null
Eric W. Weisstein, Aug 15 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364993.seq
806790c8d1109fa1b5a1bb9bc6327664
A364994
Number of chordless cycles (of length >=4) in the complement of the n-Mycielski graph.
[ "0", "0", "1", "41", "881", "14343", "200891", "2570213", "31042141" ]
[ "nonn", "more" ]
9
1
4
null
null
Eric W. Weisstein, Aug 15 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364994.seq
661586abccd735e189a0ee9965d2168b
A364995
Length of the longest monochromatic arithmetic progressions of difference n in the Rudin-Shapiro sequence (A020985).
[ "4", "4", "5", "4", "6", "5", "9", "4", "9", "6", "15", "5", "6", "9", "10", "4", "10", "9", "12", "6", "10", "15", "13", "5", "12", "6", "12", "9", "12", "10", "19", "4", "18", "10", "13", "9", "15", "12", "22", "6", "12", "10", "15", "15", "12", "13", "9", "5", "12", "12", "15", "6", "13", "12", "13", "9", "10", "12", "9", "10", "18", "19", "33", "4", "34", "18", "10", "10", "10", "13", "12", "9" ]
[ "nonn" ]
42
1
1
[ "A020985", "A020987", "A342818", "A364995", "A380593" ]
null
Gandhar Joshi, Aug 15 2023
2025-02-13T09:04:09
oeisdata/seq/A364/A364995.seq
84df891e05f7a83f61ad899dec12eed9
A364996
Union of A360767 and A363082.
[ "12", "18", "20", "24", "28", "40", "44", "45", "52", "56", "60", "63", "68", "76", "84", "88", "90", "92", "99", "104", "116", "117", "120", "124", "126", "132", "136", "140", "148", "150", "152", "153", "156", "164", "168", "171", "172", "175", "176", "180", "184", "188", "198", "204", "207", "208", "212", "220", "228", "232", "234", "236", "244", "248", "260", "261" ]
[ "nonn" ]
12
1
1
[ "A013929", "A024619", "A126706", "A360767", "A361098", "A363082", "A364996", "A364997", "A364998", "A364999" ]
null
Michael De Vlieger, Aug 26 2023
2024-02-03T15:25:26
oeisdata/seq/A364/A364996.seq
84ca4c6c0e8db2c227a8418f284eec8e
A364997
Numbers k neither squarefree nor prime power such that rad(k)*A119288(k) > k but rad(k)*A053669(k) < k.
[ "40", "45", "56", "63", "88", "99", "104", "117", "136", "152", "153", "171", "175", "176", "184", "207", "208", "232", "248", "261", "272", "275", "279", "280", "296", "297", "304", "315", "325", "328", "333", "344", "351", "368", "369", "376", "387", "423", "424", "425", "440", "459", "464", "472", "475", "477", "488", "495", "496", "513", "520", "531", "536", "539" ]
[ "nonn" ]
10
1
1
[ "A007947", "A053669", "A119288", "A126706", "A355432", "A360432", "A360765", "A360767", "A361098", "A364997", "A364998", "A364999" ]
null
Michael De Vlieger, Aug 16 2023
2024-07-20T20:05:21
oeisdata/seq/A364/A364997.seq
584b4b92ebf06641eafa8991c7bc56d3
A364998
Numbers k neither squarefree nor prime power such that rad(k)*A119288(k) <= k but rad(k)*A053669(k) > k.
[ "18", "24", "90", "120", "126", "150", "168", "180", "198", "234", "264", "306", "312", "342", "408", "414", "456", "522", "552", "558", "630", "666", "696", "738", "744", "774", "840", "846", "888", "954", "984", "990", "1032", "1050", "1062", "1098", "1128", "1170", "1206", "1260", "1272", "1278", "1314", "1320", "1386", "1416", "1422", "1464", "1470", "1494" ]
[ "nonn" ]
10
1
1
[ "A007947", "A053669", "A119288", "A126706", "A355432", "A360432", "A360768", "A361098", "A363082", "A364997", "A364998", "A364999" ]
null
Michael De Vlieger, Aug 16 2023
2024-07-20T20:09:41
oeisdata/seq/A364/A364998.seq
58e9f5ba46c5467b0c0c23d736d059a3
A364999
Numbers k neither squarefree nor prime power such that both rad(k)*A119288(k) > k and rad(k)*A053669(k) > k.
[ "12", "20", "28", "44", "52", "60", "68", "76", "84", "92", "116", "124", "132", "140", "148", "156", "164", "172", "188", "204", "212", "220", "228", "236", "244", "260", "268", "276", "284", "292", "308", "316", "332", "340", "348", "356", "364", "372", "380", "388", "404", "412", "420", "428", "436", "444", "452", "460", "476", "492", "508", "516", "524", "532", "548" ]
[ "nonn" ]
23
1
1
[ "A007947", "A039956", "A053669", "A081770", "A088860", "A092742", "A119288", "A126706", "A355432", "A360432", "A360767", "A361098", "A363082", "A364998", "A364999" ]
null
Michael De Vlieger, Aug 16 2023
2024-04-05T20:09:35
oeisdata/seq/A364/A364999.seq
db9c32ae78e060234978083e403aba69
A365000
a(n) = n for n <= 2; for n > 2, rad(a(m)) != rad(a(n)), m < n, implies a(n+1) is the least novel k such that rad(k) | a(n), rad(a(m)) = rad(a(n)), m < n, implies a(n+1) = q*a(n), where q is the least novel prime such that gcd(q, a(n)) = 1 and rad(a(m)) != rad(q*a(n)), m < n.
[ "1", "2", "4", "12", "3", "9", "45", "5", "25", "50", "8", "56", "7", "49", "147", "21", "42", "6", "30", "10", "70", "14", "154", "11", "121", "242", "16", "208", "13", "169", "507", "27", "297", "33", "66", "18", "234", "24", "408", "17", "289", "578", "32", "608", "19", "361", "1083", "57", "114", "36", "828", "23", "529", "1058", "46", "230", "20", "220", "22", "286", "26", "130" ]
[ "nonn" ]
11
1
2
[ "A006881", "A007947", "A365000" ]
null
Michael De Vlieger and David James Sycamore, Sep 12 2023
2024-01-25T07:56:44
oeisdata/seq/A365/A365000.seq
a1fe5a236856e490e4af3be524cc5205