sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A365101
Number of distinct residues of x^n (mod n^4), x=0..n^4-1.
[ "1", "4", "21", "18", "101", "30", "295", "130", "487", "153", "1211", "170", "2029", "444", "1919", "1025", "4625", "732", "6499", "442", "1881", "1818", "11639", "1290", "12501", "3045", "13123", "2516", "23549", "1530", "28831", "8193", "23009", "6939", "29795", "4148", "49285", "9750", "12863", "3354", "67241", "1500", "77659", "10302", "49187", "17460", "101615" ]
[ "nonn" ]
13
1
2
[ "A023105", "A046631", "A195637", "A365099", "A365100", "A365101", "A365102", "A365103", "A365104" ]
null
Albert Mukovskiy, Aug 21 2023
2023-08-24T02:42:22
oeisdata/seq/A365/A365101.seq
8215bcd0c6f82407411e6b2e6a3f28a0
A365102
Number of distinct residues of x^n (mod n^5), x=0..n^5-1.
[ "1", "7", "57", "70", "501", "140", "2059", "1029", "4377", "1255", "13311", "1820", "26365", "5150", "27555", "16386", "78609", "10940", "123463", "8190", "37785", "33280", "267675", "28700", "312501", "65915", "354295", "66950", "682893", "35140", "893731", "262145", "732105", "196525", "1031559", "142220", "1823509", "308660" ]
[ "nonn" ]
23
1
2
[ "A195637", "A365099", "A365100", "A365101", "A365102", "A365103", "A365104" ]
null
Albert Mukovskiy, Aug 22 2023
2023-09-10T15:28:53
oeisdata/seq/A365/A365102.seq
5b0d159c638c247b39b36941683a2fa8
A365103
Number of distinct quartic residues x^4 (mod 4^n), x=0..4^n-1.
[ "1", "2", "2", "6", "18", "70", "274", "1094", "4370", "17478", "69906", "279622", "1118482", "4473926", "17895698", "71582790", "286331154", "1145324614", "4581298450", "18325193798", "73300775186", "293203100742", "1172812402962", "4691249611846", "18764998447378" ]
[ "nonn" ]
51
0
2
[ "A023105", "A046631", "A195637", "A319281", "A364811", "A365103", "A365104" ]
null
Albert Mukovskiy, Aug 24 2023
2024-02-21T10:47:24
oeisdata/seq/A365/A365103.seq
6732a72e4552bfcd0d1330c7581175cf
A365104
Number of distinct quintic residues x^5 (mod 5^n), x=0..5^n-1.
[ "1", "5", "5", "21", "101", "501", "2505", "12505", "62521", "312601", "1563001", "7815005", "39075005", "195375021", "976875101", "4884375501", "24421877505", "122109387505", "610546937521", "3052734687601", "15263673438001", "76318367190005", "381591835950005", "1907959179750021", "9539795898750101", "47698979493750501", "238494897468752505", "1192474487343762505", "5962372436718812521", "29811862183594062601" ]
[ "nonn", "easy" ]
57
0
2
[ "A023105", "A046631", "A195637", "A365099", "A365100", "A365101", "A365102", "A365104" ]
null
Albert Mukovskiy, Aug 24 2023
2024-02-20T10:30:45
oeisdata/seq/A365/A365104.seq
5f07467fdcaf9f2c2da016b340b3fe1d
A365105
Continued fraction expansion of 1/(2+3/(4+5/(6+7/(...)))) = A113014.
[ "0", "2", "1", "1", "1", "2", "1", "2", "10", "2", "2", "66", "1", "1", "13", "66", "9", "5", "8", "1", "9", "1", "1", "1", "5", "2", "2", "3", "1", "1", "1", "16", "99", "6", "1", "5", "1", "2", "1", "55", "2", "2", "1", "1", "6", "4", "1", "1", "1", "40", "1", "1", "1", "6", "14", "7", "9", "1", "1", "2", "3", "2", "2", "2", "1", "1", "2", "7", "12", "1", "2", "2", "1", "4", "2", "4", "2", "1", "3", "2", "1", "10", "7", "1", "4", "1", "119", "1", "1", "1", "3", "5", "2", "12", "1" ]
[ "nonn", "cofr" ]
15
0
2
[ "A113014", "A365105", "A365116" ]
null
Rok Cestnik, Aug 21 2023
2023-08-22T07:56:55
oeisdata/seq/A365/A365105.seq
139f6a665b465c25b55e5cedce570b9d
A365106
Sum_{n>=0} a(n) * x^n / n!^2 = exp( Sum_{n>=1} prime(n) * x^n / n!^2 ).
[ "1", "2", "11", "107", "1577", "32201", "860460", "28921567", "1187475909", "58232016701", "3350187053856", "222857979706305", "16935374386652282", "1455271176236200143", "140181486948923188907", "15023106134895469195114", "1779460642743292348315607", "231607462899834684300774917", "32954119475274480307491604062", "5102159139278049158548905019487" ]
[ "nonn" ]
4
0
2
[ "A007446", "A023998", "A365106" ]
null
Ilya Gutkovskiy, Aug 21 2023
2023-08-24T10:33:59
oeisdata/seq/A365/A365106.seq
6c14cf92a8feb05ebf4e8a7f8efd03fd
A365107
Sum_{n>=0} a(n) * x^n / n!^2 = exp( Sum_{n>=1} x^prime(n) / prime(n)!^2 ).
[ "1", "0", "1", "1", "18", "101", "1550", "22492", "424536", "10283064", "272319552", "8959493401", "328044534576", "13799304374077", "657306569855728", "34694458662034731", "2048559070407831424", "132868259271772801185", "9463476338179250300352", "736376651361995115417850", "62178423492630241909006224", "5689134205956573233701281462" ]
[ "nonn" ]
4
0
5
[ "A023998", "A190476", "A365107" ]
null
Ilya Gutkovskiy, Aug 21 2023
2023-08-24T10:34:07
oeisdata/seq/A365/A365107.seq
994ec2c27c49cb8ef9b75ae4cc14a494
A365108
a(n) is the smallest integer value of (p^n - q^n)/n for all choices of integers p > q >= 0.
[ "1", "2", "9", "4", "625", "672", "117649", "32", "2187", "5941760", "25937424601", "1397760", "23298085122481", "308548739072", "29192926025390625", "4096", "48661191875666868481", "3817734144", "104127350297911241532841", "174339220", "209430786243", "24639156314201655345152", "907846434775996175406740561329" ]
[ "nonn" ]
50
1
2
[ "A000169", "A020725", "A055860", "A365108" ]
null
Felix Huber, Aug 21 2023
2024-04-04T11:10:36
oeisdata/seq/A365/A365108.seq
c86724c0d7ceb170b91f3da877fc7158
A365109
G.f. satisfies A(x) = 1 + x / (1 + x*A(x))^2.
[ "1", "1", "-2", "1", "6", "-18", "8", "89", "-266", "62", "1684", "-4710", "-220", "35648", "-91236", "-34871", "803302", "-1856874", "-1448844", "18809694", "-38816620", "-48910700", "451491680", "-820626294", "-1522994404", "11015923292", "-17319046712", "-45512957516", "271664145264", "-359911736252", "-1327355044924" ]
[ "sign" ]
10
0
3
[ "A007440", "A365085", "A365109", "A365110", "A365111", "A365112" ]
null
Seiichi Manyama, Aug 22 2023
2023-08-22T07:56:59
oeisdata/seq/A365/A365109.seq
6d40f8d7007acfe242b87da72a5322a8
A365110
G.f. satisfies A(x) = 1 + x / (1 + x*A(x))^3.
[ "1", "1", "-3", "3", "11", "-54", "66", "297", "-1575", "1980", "10300", "-55392", "68352", "403583", "-2153685", "2551845", "16999045", "-89142087", "99986901", "750955382", "-3850437018", "4041467331", "34310059311", "-171533033904", "166630375248", "1607168518073", "-7821913867611", "6950050797297" ]
[ "sign" ]
9
0
3
[ "A007440", "A365086", "A365109", "A365110", "A365111", "A365112" ]
null
Seiichi Manyama, Aug 22 2023
2023-08-22T07:57:21
oeisdata/seq/A365/A365110.seq
29f0d9a99c943f7b8a21731ed3c00764
A365111
G.f. satisfies A(x) = 1 + x / (1 + x*A(x))^4.
[ "1", "1", "-4", "6", "16", "-119", "240", "630", "-5656", "13044", "31568", "-323102", "816172", "1772553", "-20373748", "55339784", "105991968", "-1366239119", "3950894080", "6570520544", "-95534073488", "292319792622", "414994066768", "-6884779019086", "22198354364212", "26341578132594", "-507524582140912" ]
[ "sign" ]
9
0
3
[ "A007440", "A365087", "A365109", "A365110", "A365111", "A365112" ]
null
Seiichi Manyama, Aug 22 2023
2023-08-22T07:57:17
oeisdata/seq/A365/A365111.seq
2f654a9c12c1ef8c8e94032eae570d8b
A365112
G.f. satisfies A(x) = 1 + x / (1 + x*A(x))^5.
[ "1", "1", "-5", "10", "20", "-220", "624", "940", "-15220", "52090", "49310", "-1254070", "4951430", "2039640", "-113088840", "505430700", "-42379684", "-10748423405", "53899438385", "-29300595085", "-1054751754795", "5914944193114", "-5760460624890", "-105478270711140", "661900612108440", "-914408777470140" ]
[ "sign" ]
9
0
3
[ "A007440", "A365088", "A365109", "A365110", "A365111", "A365112" ]
null
Seiichi Manyama, Aug 22 2023
2023-08-22T07:57:03
oeisdata/seq/A365/A365112.seq
244125d8de350beb94a88afbb2ec2fef
A365113
G.f. satisfies A(x) = 1 + x / (1 - x*A(x))^3.
[ "1", "1", "3", "9", "31", "114", "438", "1739", "7077", "29364", "123756", "528324", "2279868", "9928679", "43580301", "192601419", "856317717", "3827501985", "17188943523", "77521747638", "350959738842", "1594390493067", "7266093316649", "33209221327752", "152182572790008", "699083290518817", "3218624408121555" ]
[ "nonn" ]
9
0
3
[ "A000108", "A161797", "A365110", "A365113", "A365114", "A365115" ]
null
Seiichi Manyama, Aug 22 2023
2023-08-22T07:57:31
oeisdata/seq/A365/A365113.seq
3281ee6e3241145012f0a747e982bc0c
A365114
G.f. satisfies A(x) = 1 + x / (1 - x*A(x))^4.
[ "1", "1", "4", "14", "56", "241", "1080", "4998", "23704", "114588", "562552", "2797138", "14057140", "71288385", "364360204", "1874960408", "9706035408", "50510552881", "264096980192", "1386676113360", "7308650513232", "38654087828310", "205076534841112", "1091144400876394", "5820924498941668" ]
[ "nonn" ]
9
0
3
[ "A000108", "A321798", "A365111", "A365113", "A365114", "A365115" ]
null
Seiichi Manyama, Aug 22 2023
2023-08-22T07:57:12
oeisdata/seq/A365/A365114.seq
4348f1f8b989d2788672f1f58c7b0058
A365115
G.f. satisfies A(x) = 1 + x / (1 - x*A(x))^5.
[ "1", "1", "5", "20", "90", "440", "2236", "11720", "62960", "344690", "1916170", "10787762", "61380770", "352410760", "2039099640", "11878519460", "69608606348", "410056995475", "2426936098575", "14424334077975", "86055337016695", "515170271387970", "3093724519080210", "18631778892165080" ]
[ "nonn" ]
10
0
3
[ "A000108", "A321799", "A365112", "A365113", "A365114", "A365115" ]
null
Seiichi Manyama, Aug 22 2023
2023-08-22T07:57:08
oeisdata/seq/A365/A365115.seq
b76eac332eab7c1053602783c7b0cef1
A365116
Greedy Egyptian fraction expansion of 1/(2+3/(4+5/(6+7/(...)))) = A113014.
[ "3", "22", "1060", "1471180", "4470565318951", "21387196871513452925199541", "508406155285302398938678134812723800438323137635884", "293206664431782985993415302840424364324000216460330294129310314248712028637333711113413230006858255456" ]
[ "nonn" ]
12
1
1
[ "A113014", "A365105", "A365116" ]
null
Rok Cestnik, Aug 22 2023
2023-08-22T08:39:37
oeisdata/seq/A365/A365116.seq
714610da5b0486833e2fae77f61139e3
A365117
a(1) = 1. Thereafter a(n) is the least novel multiple m of the smallest prime which does not divide a(n-1) and such that m is coprime to a(n-1).
[ "1", "2", "3", "4", "9", "8", "15", "14", "27", "10", "21", "16", "33", "20", "39", "22", "45", "26", "51", "28", "57", "32", "63", "34", "69", "38", "75", "44", "81", "40", "87", "46", "93", "50", "99", "52", "105", "58", "111", "56", "117", "62", "123", "64", "129", "68", "135", "74", "141", "70", "153", "76", "147", "80", "159", "82", "165", "86", "171", "88", "177", "92", "183", "94" ]
[ "nonn" ]
19
1
2
[ "A047228", "A351495", "A365117" ]
null
David James Sycamore, Aug 22 2023
2023-08-24T10:20:53
oeisdata/seq/A365/A365117.seq
7f567549b60d0e09dd53f6c8f95037a2
A365118
G.f. satisfies A(x) = (1 + x / (1 - x*A(x)))^2.
[ "1", "2", "3", "8", "23", "72", "237", "808", "2830", "10118", "36779", "135510", "504935", "1899494", "7204238", "27517766", "105761937", "408715018", "1587169591", "6190357852", "24238696551", "95244997612", "375469654543", "1484519159122", "5885302251250", "23389997790804", "93172394487012" ]
[ "nonn" ]
11
0
2
[ "A001006", "A161634", "A365118", "A365119", "A378801" ]
null
Seiichi Manyama, Aug 22 2023
2024-12-09T11:17:41
oeisdata/seq/A365/A365118.seq
77ccfb729beda699cf6d440be1c87be8
A365119
G.f. satisfies A(x) = (1 + x / (1 - x*A(x)))^3.
[ "1", "3", "6", "19", "69", "267", "1093", "4629", "20142", "89473", "404076", "1849746", "8563558", "40025574", "188612388", "895115942", "4274453904", "20523807009", "99025615998", "479874362583", "2334582421497", "11398055887003", "55828060595832", "274254002718255", "1350907899813921", "6670789629569022" ]
[ "nonn" ]
7
0
2
[ "A001006", "A365118", "A365119" ]
null
Seiichi Manyama, Aug 22 2023
2023-08-22T14:15:02
oeisdata/seq/A365/A365119.seq
9450578e17bab0e53cca8d70bb8d2108
A365120
G.f. A(x) satisfies A(x) = (1 + x / (1 - x*A(x))^2)^2.
[ "1", "2", "5", "18", "70", "294", "1291", "5864", "27314", "129766", "626367", "3063096", "15143562", "75563924", "380062186", "1924840480", "9807649900", "50241194250", "258597717591", "1336730670244", "6936403057274", "36119232561000", "188677598254078", "988464846388710", "5192270327405662" ]
[ "nonn" ]
14
0
2
[ "A000108", "A006013", "A365118", "A365120", "A365121", "A365123", "A367236" ]
null
Seiichi Manyama, Aug 22 2023
2024-12-06T06:58:54
oeisdata/seq/A365/A365120.seq
201215676957c24885b501b3f7327ca4
A365121
G.f. A(x) satisfies A(x) = (1 + x / (1 - x*A(x))^2)^3.
[ "1", "3", "9", "40", "192", "993", "5375", "30081", "172650", "1010640", "6010530", "36214656", "220590082", "1356131892", "8403647454", "52436122717", "329170499604", "2077465903503", "13173914483799", "83897445169341", "536355204428412", "3440875097256529", "22144300030907667" ]
[ "nonn" ]
13
0
2
[ "A000108", "A365119", "A365120", "A365121", "A365122", "A367242" ]
null
Seiichi Manyama, Aug 22 2023
2024-12-06T06:59:38
oeisdata/seq/A365/A365121.seq
8e5d8f5a40ed416eeec95695742aae01
A365122
G.f. A(x) satisfies A(x) = (1 + x / (1 - x*A(x))^3)^3.
[ "1", "3", "12", "64", "372", "2319", "15105", "101649", "701073", "4929657", "35207220", "254690517", "1862325262", "13742311074", "102204992352", "765328009950", "5765316776550", "43661497944861", "332217854059362", "2538540859615095", "19471592691620310", "149871698475060433", "1157188723053901449" ]
[ "nonn" ]
12
0
2
[ "A006013", "A365113", "A365119", "A365121", "A365122", "A371616" ]
null
Seiichi Manyama, Aug 22 2023
2024-12-06T06:59:34
oeisdata/seq/A365/A365122.seq
1cf1d82d812184be5a7d10d64e4d637c
A365123
G.f. satisfies A(x) = (1 + x / (1 - x*A(x))^4)^2.
[ "1", "2", "9", "44", "244", "1438", "8858", "56340", "367160", "2438934", "16453015", "112411836", "776258588", "5409237100", "37988571802", "268606426836", "1910584687932", "13661702623498", "98148312810335", "708092115326436", "5127976641997944", "37264674894021280", "271650189521574734" ]
[ "nonn" ]
10
0
2
[ "A006632", "A365114", "A365123", "A365124" ]
null
Seiichi Manyama, Aug 22 2023
2023-08-22T13:18:45
oeisdata/seq/A365/A365123.seq
e799c2f15c20336db4efffc0bac1bdce
A365124
G.f. satisfies A(x) = (1 + x / (1 - x*A(x))^4)^4.
[ "1", "4", "22", "156", "1209", "10020", "86724", "775044", "7096652", "66232980", "627749066", "6025752664", "58459917618", "572315274540", "5646713239840", "56091780016288", "560513824012020", "5630664768126388", "56829055796539462", "575981263878482204", "5859952654335118851" ]
[ "nonn" ]
8
0
2
[ "A006632", "A365114", "A365123", "A365124" ]
null
Seiichi Manyama, Aug 22 2023
2023-08-22T13:18:33
oeisdata/seq/A365/A365124.seq
c255f42ca43e600ef510e472af912245
A365125
Put a positive charge at 0 and a negative charge at 1, then keep adding alternating charges at points of zero potential; this is the decimal expansion of the limit.
[ "6", "8", "7", "8", "4", "1", "8", "1", "0", "3", "2", "8", "3", "8", "9", "2", "6", "3", "2", "7", "1", "3", "4", "4", "0", "4", "4", "0", "9", "8", "8", "3", "3", "4", "8", "6", "1", "1", "5", "8", "3", "9", "7", "9", "4", "8", "7", "6", "6", "8", "9", "5", "4", "1", "1", "7", "4", "7", "5", "8", "6", "6", "9", "4", "4", "1", "0", "7", "8", "5", "2", "8", "1", "7", "2", "1", "2", "4", "7", "5", "3", "8", "9", "1", "0", "8", "7", "9", "1", "2", "6", "5", "7", "8", "9", "7", "8", "5", "3", "6" ]
[ "nonn", "cons" ]
31
0
1
null
null
Rok Cestnik, Aug 22 2023
2023-09-20T07:46:51
oeisdata/seq/A365/A365125.seq
095f823a807a943aac349e813ca22bf0
A365126
Number of representations of n as the sum of a prime number and a fourth power of a nonnegative integer.
[ "0", "1", "2", "1", "1", "1", "1", "1", "0", "0", "1", "1", "1", "1", "0", "0", "1", "2", "2", "1", "1", "0", "2", "1", "0", "0", "1", "0", "2", "1", "1", "1", "1", "0", "1", "0", "1", "1", "1", "0", "1", "1", "1", "1", "1", "0", "2", "1", "0", "0", "0", "0", "2", "1", "0", "0", "1", "0", "2", "1", "1", "1", "1", "0", "0", "0", "1", "1", "1", "0", "1", "1", "1", "1", "1", "0", "1", "0", "1", "1", "0", "0", "3", "2", "0", "1", "1", "1", "2", "1", "0", "1", "0", "1", "1", "0", "1", "2", "1", "1", "1", "1", "1", "2", "1", "0", "1", "1", "1", "2", "0", "1", "2", "1", "0", "0", "1", "1", "1" ]
[ "nonn" ]
23
1
3
[ "A002471", "A302354", "A365126", "A365127", "A365166", "A365167" ]
null
Ilya Gutkovskiy, Aug 24 2023
2023-08-30T21:27:00
oeisdata/seq/A365/A365126.seq
8b2d597d350be3424467f067e01d07b4
A365127
Numbers that are the sum of a prime number and a fourth power of a nonnegative integer.
[ "2", "3", "4", "5", "6", "7", "8", "11", "12", "13", "14", "17", "18", "19", "20", "21", "23", "24", "27", "29", "30", "31", "32", "33", "35", "37", "38", "39", "41", "42", "43", "44", "45", "47", "48", "53", "54", "57", "59", "60", "61", "62", "63", "67", "68", "69", "71", "72", "73", "74", "75", "77", "79", "80", "83", "84", "86", "87", "88", "89", "90", "92", "94", "95", "97", "98", "99", "100" ]
[ "nonn" ]
25
1
1
[ "A014089", "A307646", "A365126", "A365127", "A365166", "A365168" ]
null
Ilya Gutkovskiy, Aug 24 2023
2023-08-30T21:27:16
oeisdata/seq/A365/A365127.seq
d229edbfa29b707ee32d14d4f46aed01
A365128
G.f. satisfies A(x) = (1 + x*A(x)*(1 + x*A(x)))^3.
[ "1", "3", "15", "88", "567", "3876", "27607", "202653", "1522365", "11647038", "90435804", "710855544", "5645365576", "45228648078", "365109237801", "2966862631856", "24248879149005", "199213507774365", "1644138419038500", "13625326165675698", "113336685917785332", "945931091151789808" ]
[ "nonn" ]
17
0
2
[ "A001006", "A019497", "A143927", "A255673", "A365128" ]
null
Seiichi Manyama, Aug 23 2023
2024-09-20T12:27:47
oeisdata/seq/A365/A365128.seq
a39d13ae4edec2a35aa170975b5c947d
A365129
G.f. satisfies A(x) = (1 + x*A(x)*(1 + x*A(x))^2)^2.
[ "1", "2", "9", "44", "240", "1386", "8346", "51802", "329086", "2129330", "13984095", "92974510", "624568680", "4232731050", "28904102829", "198688337014", "1373763563150", "9547516671684", "66660156446189", "467342635522698", "3288691828900768", "23220922841177476", "164465227646878689" ]
[ "nonn" ]
10
0
2
[ "A000108", "A161634", "A365129", "A365130", "A365133" ]
null
Seiichi Manyama, Aug 23 2023
2023-08-23T08:34:29
oeisdata/seq/A365/A365129.seq
d163b49224423143ef4f44f5fd7817d7
A365130
G.f. satisfies A(x) = (1 + x*A(x)*(1 + x*A(x))^2)^3.
[ "1", "3", "18", "124", "945", "7650", "64592", "562419", "5013645", "45530725", "419735784", "3917714430", "36949853641", "351597275136", "3371317098546", "32542166997655", "315962469096855", "3083729075615055", "30236064140642514", "297698542934231016", "2942082095638037148" ]
[ "nonn" ]
9
0
2
[ "A137953", "A161634", "A365129", "A365130" ]
null
Seiichi Manyama, Aug 23 2023
2023-08-23T08:34:25
oeisdata/seq/A365/A365130.seq
71a21e95be72e815687906bcbde0725d
A365131
G.f. satisfies A(x) = (1 + x*A(x)*(1 + x*A(x))^3)^2.
[ "1", "2", "11", "62", "395", "2662", "18720", "135738", "1007607", "7619456", "58488028", "454556544", "3569655975", "28282204680", "225796917864", "1814732935968", "14670580718486", "119215212413412", "973246346463636", "7978384233270126", "65649676250344747", "542031604244083664" ]
[ "nonn" ]
9
0
2
[ "A137952", "A364742", "A365131", "A365132" ]
null
Seiichi Manyama, Aug 23 2023
2023-08-23T08:34:21
oeisdata/seq/A365/A365131.seq
748ca37a29f7d3d7ba0c7e5c8912b487
A365132
G.f. satisfies A(x) = (1 + x*A(x)*(1 + x*A(x))^3)^3.
[ "1", "3", "21", "163", "1410", "12954", "124197", "1228269", "12438504", "128338224", "1344328020", "14258394921", "152820980120", "1652596758738", "18008899150278", "197566103218974", "2180167982738235", "24183969704272350", "269513577777159816", "3016075156973165367", "33879382051847177781" ]
[ "nonn" ]
9
0
2
[ "A001764", "A364742", "A365131", "A365132" ]
null
Seiichi Manyama, Aug 23 2023
2023-08-23T08:34:17
oeisdata/seq/A365/A365132.seq
72f81956833e5a812a6db8b593afe0ac
A365133
G.f. satisfies A(x) = (1 + x*A(x)/(1 - x*A(x))^2)^2.
[ "1", "2", "9", "48", "284", "1792", "11816", "80446", "561186", "3990398", "28815594", "210746538", "1557834174", "11620294376", "87357498949", "661194915408", "5034368831334", "38534430714502", "296341243824737", "2288568585083816", "17741278361562738", "138006870242288796", "1076905750814353045" ]
[ "nonn" ]
9
0
2
[ "A109081", "A365120", "A365133", "A365134" ]
null
Seiichi Manyama, Aug 23 2023
2023-08-23T08:36:18
oeisdata/seq/A365/A365133.seq
c0c3c24d20c9ccca72e30c7c7bb57be6
A365134
G.f. satisfies A(x) = (1 + x*A(x)/(1 - x*A(x))^2)^3.
[ "1", "3", "18", "130", "1041", "8889", "79310", "730593", "6895575", "66337179", "648087750", "6412437474", "64125877361", "647102364990", "6581050832082", "67384499298690", "694077333315363", "7186898222178342", "74767377019254450", "781105293655408554", "8191332027277068543" ]
[ "nonn" ]
8
0
2
[ "A109081", "A365121", "A365133", "A365134" ]
null
Seiichi Manyama, Aug 23 2023
2023-08-23T08:36:14
oeisdata/seq/A365/A365134.seq
c28c0a0123326fed1d36285ecd2cd972
A365135
G.f. satisfies A(x) = (1 + x*A(x)/(1 - x*A(x))^3)^2.
[ "1", "2", "11", "68", "467", "3418", "26133", "206264", "1667908", "13746476", "115050074", "975180582", "8354044986", "72215867960", "629139381448", "5518236646614", "48689379017014", "431868759238498", "3848616161600778", "34441553184113542", "309390614528633311", "2788841905397090626" ]
[ "nonn" ]
8
0
2
[ "A006013", "A161797", "A365135", "A365136" ]
null
Seiichi Manyama, Aug 23 2023
2023-08-23T08:34:41
oeisdata/seq/A365/A365135.seq
947939fe05551d5f9ef627a75cd2b59d
A365136
G.f. satisfies A(x) = (1 + x*A(x)/(1 - x*A(x))^3)^3.
[ "1", "3", "21", "172", "1563", "15141", "153240", "1601160", "17140686", "187026210", "2072333697", "23255417925", "263757940688", "3018654757212", "34817822871933", "404324843585061", "4723248984803013", "55467143334798210", "654435356605769574", "7753961433310798095", "92220463998917459652" ]
[ "nonn" ]
11
0
2
[ "A161797", "A365122", "A365135", "A365136" ]
null
Seiichi Manyama, Aug 23 2023
2023-08-23T08:34:37
oeisdata/seq/A365/A365136.seq
fb634ace64811c3658ca696bceee3d31
A365137
a(n) is the number of n-digit numbers that contain '22' in their decimal representation.
[ "0", "0", "1", "18", "261", "3411", "42048", "499131", "5770611", "65427678", "730784601", "8065910511", "88170256008", "956125498671", "10298661792111", "110293085617038", "1175325726682341", "12470569310694411", "131813055336390768", "1388552621823766611", "14583291094441416411", "152746593446386647198" ]
[ "nonn", "base", "easy" ]
25
0
4
[ "A057092", "A255372", "A365137" ]
null
Felix Huber, Aug 23 2023
2023-08-24T10:14:09
oeisdata/seq/A365/A365137.seq
1f8d85f05906cd4451ef05371b78a1d6
A365138
Genus of the quotient of the modular curve X_1(n) by the Fricke involution.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "2", "1", "3", "1", "2", "3", "5", "2", "6", "4", "6", "5", "10", "4", "12", "8", "10", "10", "11", "8", "20", "13", "15", "12", "24", "12", "28", "17", "20", "22", "33", "18", "34", "23", "31", "27", "45", "25", "39", "29", "42", "39", "56", "28", "62", "44", "47", "46", "59", "39", "77", "51", "65", "48", "85", "48", "93", "66", "71", "67", "89", "60", "109" ]
[ "nonn" ]
13
1
17
[ "A000003", "A001617", "A029937", "A276183", "A365138" ]
null
David Jao, Aug 23 2023
2023-09-22T05:37:40
oeisdata/seq/A365/A365138.seq
1ccad3122b09b785f07e850b5a55ca8d
A365139
List of free polycubes in binary code (see comments), ordered first by the number of cells, then by the value of the binary code.
[ "1", "3", "7", "19", "15", "23", "39", "43", "51", "54", "1043", "31", "47", "55", "59", "87", "118", "173", "179", "182", "199", "230", "1047", "1075", "1078", "2071", "2075", "2149", "2150", "2164", "2214", "2218", "6182", "1049619", "63", "95", "119", "175", "183", "190", "207", "215", "231", "237", "238", "246", "423", "430", "438", "1055", "1079", "1083" ]
[ "nonn", "tabf" ]
7
1
2
[ "A038119", "A144625", "A246521", "A365139", "A365140", "A365141" ]
null
Pontus von Brömssen, Aug 23 2023
2023-08-27T10:10:25
oeisdata/seq/A365/A365139.seq
ff4c6bb8dfca0240274fd91ee68bbd5e
A365140
List of free 4-dimensional polyhypercubes in binary code (see A365139), ordered first by the number of cells, then by the value of the binary code.
[ "1", "3", "7", "35", "15", "39", "71", "75", "99", "102", "32803", "31", "47", "79", "91", "103", "107", "167", "230", "333", "355", "358", "391", "454", "2567", "32807", "32867", "32870", "65575", "65579", "65733", "65734", "65764", "65862", "65866", "196678", "34359771171", "63", "95", "111", "123", "175", "231", "335", "343", "349", "359", "366", "371" ]
[ "nonn", "tabf" ]
4
1
2
[ "A068870", "A246521", "A365139", "A365140", "A365141" ]
null
Pontus von Brömssen, Aug 23 2023
2023-08-27T10:10:36
oeisdata/seq/A365/A365140.seq
dbe8b0db13a3d2d5f8411b26556ca30d
A365141
List of free 5-dimensional polyominoes in binary code (see A365139), ordered first by the number of cells, then by the value of the binary code.
[ "1", "3", "7", "67", "15", "71", "135", "139", "195", "198", "2097219", "31", "79", "143", "155", "199", "203", "327", "454", "653", "707", "710", "775", "902", "5127", "2097223", "2097347", "2097350", "4194375", "4194379", "4194693", "4194694", "4194756", "4194950", "4194954", "12583046", "72057594040025155", "63", "95", "159", "187", "207" ]
[ "nonn", "tabf" ]
4
1
2
[ "A049430", "A246521", "A365139", "A365140", "A365141" ]
null
Pontus von Brömssen, Aug 23 2023
2023-08-27T10:10:53
oeisdata/seq/A365/A365141.seq
94d9aaef37a6abaedb94b2fac8eb6902
A365142
List of free polyominoes in arbitrary dimension given by an integer code (see comments), ordered first by the number of cells, then by the value of the code.
[ "1", "3", "7", "11", "15", "23", "39", "43", "46", "51", "139", "31", "47", "55", "59", "87", "115", "143", "171", "174", "271", "302", "555", "558", "565", "775", "806", "2063", "2075", "2341", "2342", "2348", "2598", "2610", "24583", "32907", "133158", "63", "95", "119", "123", "159", "175", "187", "287", "303", "399", "430", "559", "567", "574", "615", "619" ]
[ "nonn", "tabf" ]
5
1
2
[ "A005519", "A365139", "A365142", "A365143" ]
null
Pontus von Brömssen, Aug 25 2023
2023-08-27T10:11:04
oeisdata/seq/A365/A365142.seq
0c1a7bd522e6de3239c9a23edd9503a4
A365143
Proper dimension of the polyomino with code A365142(n).
[ "0", "1", "2", "1", "2", "3", "2", "2", "2", "3", "1", "3", "2", "3", "3", "4", "4", "2", "2", "2", "2", "2", "3", "3", "3", "3", "3", "2", "3", "2", "2", "2", "3", "3", "4", "1", "2", "3", "4", "4", "4", "3", "2", "3", "3", "2", "2", "2", "3", "3", "3", "4", "4", "4", "3", "3", "3", "3", "3", "3", "3", "3", "4", "5", "5", "5", "3", "2", "3", "3", "4", "4", "4", "2", "3", "2", "2", "2", "2", "2", "2", "2", "3", "2", "3", "3", "3" ]
[ "nonn", "tabf" ]
6
1
3
[ "A000720", "A005519", "A049430", "A061395", "A133457", "A365142", "A365143" ]
null
Pontus von Brömssen, Aug 25 2023
2023-08-27T10:11:17
oeisdata/seq/A365/A365143.seq
cad1e930288d802fa068470366e5cad3
A365144
Numbers having each digit once and whose 4th power has each digit four times.
[ "5702631489", "7264103985", "7602314895", "7824061395", "8105793624", "8174035962", "8304269175", "8904623175", "8923670541", "9451360827", "9785261403", "9804753612", "9846032571" ]
[ "nonn", "base", "fini", "full" ]
5
1
1
[ "A050278", "A114260", "A199630", "A199631", "A199633", "A365144" ]
null
T. D. Noe, Nov 09 2011
2023-08-23T13:22:17
oeisdata/seq/A365/A365144.seq
ce354b9f4acb42fa1ceb82b989a3c998
A365145
Lexicographically least increasing sequence of triprimes (A014612) whose first differences are triprimes.
[ "8", "20", "28", "70", "78", "98", "110", "130", "138", "165", "195", "207", "273", "285", "363", "426", "434", "442", "470", "498", "506", "518", "530", "548", "556", "574", "582", "590", "598", "606", "618", "638", "646", "654", "682", "710", "722", "730", "742", "754", "762", "782", "790", "834", "854", "874", "892", "942", "962", "970", "978", "986", "994", "1002", "1010", "1022", "1030", "1038", "1058" ]
[ "nonn" ]
6
1
1
[ "A001359", "A014612", "A175588", "A365145" ]
null
Zak Seidov and Robert Israel, Aug 23 2023
2023-08-24T10:17:18
oeisdata/seq/A365/A365145.seq
83fdf561660ef5029c8aa4a9853aa6a7
A365146
G.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x)) )^2.
[ "1", "2", "11", "76", "591", "4938", "43297", "393006", "3661500", "34813530", "336447364", "3295264162", "32636826276", "326310118860", "3289090885545", "33386999310460", "341000875306393", "3501847259286514", "36136109243651145", "374513918968721080", "3896634418483676797" ]
[ "nonn" ]
12
0
2
[ "A001003", "A365146", "A365147" ]
null
Seiichi Manyama, Aug 23 2023
2023-08-24T07:49:38
oeisdata/seq/A365/A365146.seq
705dcae2e321ab45850bb75ff4ed031c
A365147
G.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x)) )^3.
[ "1", "3", "24", "244", "2802", "34629", "449509", "6043716", "83433402", "1175735326", "16843576440", "244578817557", "3591620791296", "53247623771787", "795901064582970", "11981065741802125", "181478799047422047", "2763977213867989929", "42301686984305340008" ]
[ "nonn" ]
13
0
2
[ "A001003", "A365146", "A365147" ]
null
Seiichi Manyama, Aug 23 2023
2023-08-24T07:49:42
oeisdata/seq/A365/A365147.seq
fa9be2c341d888bc15fdfb02a7cb7a4b
A365148
G.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x))^2 )^2.
[ "1", "2", "13", "102", "898", "8484", "84061", "861918", "9068950", "97366812", "1062425010", "11747773372", "131350499044", "1482494173128", "16867912278237", "193273940978574", "2228186999313678", "25827663921909228", "300825086742672934", "3519001122784601524", "41325186203051759324" ]
[ "nonn" ]
14
0
2
[ "A011270", "A365120", "A365133", "A365148", "A365149" ]
null
Seiichi Manyama, Aug 23 2023
2023-08-24T07:50:19
oeisdata/seq/A365/A365148.seq
2234b73ad89ecfcfdc8bd45c6e0a159b
A365149
G.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x))^2 )^3.
[ "1", "3", "27", "301", "3780", "51030", "723170", "10611594", "159845946", "2457515235", "38406398016", "608330707740", "9744053489754", "157564967282709", "2568706865998272", "42173100349112852", "696692754641035014", "11572241797209975966", "193153224033985241217" ]
[ "nonn" ]
15
0
2
[ "A011270", "A365121", "A365134", "A365148", "A365149" ]
null
Seiichi Manyama, Aug 23 2023
2023-08-24T07:49:46
oeisdata/seq/A365/A365149.seq
20049df641830931f24d36753e68d37c
A365150
G.f. satisfies A(x) = 1 + x*A(x)^2 / (1 - x*A(x))^3.
[ "1", "1", "5", "26", "150", "925", "5967", "39772", "271758", "1893431", "13400897", "96078789", "696333585", "5093266409", "37549674939", "278739057687", "2081637677823", "15628794649931", "117897848681271", "893167062280029", "6792410218680749", "51835002735642287", "396821349652564273" ]
[ "nonn" ]
21
0
3
[ "A001003", "A011270", "A052529", "A365150", "A365151", "A365152" ]
null
Seiichi Manyama, Aug 23 2023
2024-12-02T09:50:32
oeisdata/seq/A365/A365150.seq
d35f9e9dada3e727e49adb6e628f3694
A365151
G.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x))^3 )^2.
[ "1", "2", "15", "130", "1263", "13158", "143704", "1623766", "18824931", "222670678", "2676674916", "32604377358", "401567277063", "4992440157784", "62569729324806", "789679959184598", "10027614784648750", "128024712530277906", "1642407060905790817", "21161202394988206098" ]
[ "nonn" ]
13
0
2
[ "A365150", "A365151", "A365152" ]
null
Seiichi Manyama, Aug 23 2023
2023-08-24T07:49:54
oeisdata/seq/A365/A365151.seq
4e9f3ba042d4311a777e605565a6ab26
A365152
G.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x))^3 )^3.
[ "1", "3", "30", "361", "4887", "71064", "1084338", "17127921", "277691055", "4594624095", "77271742056", "1317037554924", "22699836814548", "394961294853852", "6928051002350154", "122384261274499665", "2175295243858562031", "38875484049230706129", "698131263508514451678" ]
[ "nonn" ]
13
0
2
[ "A365150", "A365151", "A365152" ]
null
Seiichi Manyama, Aug 23 2023
2023-08-24T07:49:57
oeisdata/seq/A365/A365152.seq
b176acc7f425a54e2db6cdcbb85ab31a
A365153
G.f. satisfies A(x) = ( 1 + x*A(x)^2*(1 + x*A(x)) )^2.
[ "1", "2", "11", "74", "563", "4604", "39524", "351322", "3205699", "29854250", "282615379", "2711494224", "26307568324", "257673017952", "2544420045432", "25303000558890", "253184833958403", "2547251287244918", "25752086767703969", "261480234091024906", "2665405840919762043" ]
[ "nonn" ]
11
0
2
[ "A001002", "A365153", "A365154" ]
null
Seiichi Manyama, Aug 23 2023
2023-08-24T07:50:01
oeisdata/seq/A365/A365153.seq
dc3acc3ff4d4f1c2fb4026c23ca01b67
A365154
G.f. satisfies A(x) = ( 1 + x*A(x)^2*(1 + x*A(x)) )^3.
[ "1", "3", "24", "241", "2739", "33513", "430777", "5736027", "78428376", "1094690208", "15533884197", "223429310925", "3250094373788", "47730565667898", "706726767511254", "10538728632234471", "158132963455869912", "2385819265581499593", "36171764848848749205", "550803320282727312804" ]
[ "nonn" ]
10
0
2
[ "A001002", "A365153", "A365154" ]
null
Seiichi Manyama, Aug 23 2023
2023-08-24T07:48:19
oeisdata/seq/A365/A365154.seq
f850bd237affa2d399fd20dbeb3036ff
A365155
G.f. satisfies A(x) = ( 1 + x*A(x)^2*(1 + x*A(x))^2 )^2.
[ "1", "2", "13", "98", "838", "7690", "74047", "738028", "7549658", "78811732", "836219773", "8991739874", "97769604542", "1073156173442", "11875174074608", "132333387616600", "1483789788291516", "16727705523572128", "189496296040063170", "2155984626357225948", "24625450759174328948" ]
[ "nonn" ]
10
0
2
[ "A214372", "A365155", "A365156" ]
null
Seiichi Manyama, Aug 23 2023
2023-08-24T07:48:23
oeisdata/seq/A365/A365155.seq
5d42dd4e84d7fa503f315c99f63cbb2b
A365156
G.f. satisfies A(x) = ( 1 + x*A(x)^2*(1 + x*A(x))^2 )^3.
[ "1", "3", "27", "295", "3648", "48513", "677450", "9797031", "145458252", "2204380144", "33960095667", "530268482913", "8373331428836", "133484219528982", "2145376940485452", "34725549386905863", "565567039020594492", "9261756210015412356", "152410211630410153468" ]
[ "nonn" ]
11
0
2
[ "A214372", "A365155", "A365156" ]
null
Seiichi Manyama, Aug 23 2023
2023-08-24T07:48:27
oeisdata/seq/A365/A365156.seq
7f59a6e2ae6ab06799b1ad4930c0ee00
A365157
G.f. satisfies A(x) = ( 1 + x*A(x)^2*(1 + x*A(x))^3 )^2.
[ "1", "2", "15", "124", "1167", "11772", "124561", "1363964", "15326826", "175739698", "2047974619", "24185317182", "288801732423", "3481242975808", "42303574158234", "517683469595912", "6374096109874427", "78909384182870688", "981600144994348111", "12263583888826309544", "153812133876403777005" ]
[ "nonn" ]
11
0
2
[ "A361305", "A365157", "A365158" ]
null
Seiichi Manyama, Aug 23 2023
2023-08-24T07:48:30
oeisdata/seq/A365/A365157.seq
db5c2cd629fff7eac158dee8e2b1e0cc
A365158
G.f. satisfies A(x) = ( 1 + x*A(x)^2*(1 + x*A(x))^3 )^3.
[ "1", "3", "30", "352", "4680", "66852", "1002420", "15562917", "248028012", "4034367018", "66704722941", "1117794312987", "18942067925094", "324048616144950", "5588890522700901", "97074537335184054", "1696556614819124517", "29812650855663860436", "526429300730659123740" ]
[ "nonn" ]
10
0
2
[ "A361305", "A365157", "A365158" ]
null
Seiichi Manyama, Aug 23 2023
2023-08-24T07:48:35
oeisdata/seq/A365/A365158.seq
692858d1f0e63f3d311c32d3939abdfc
A365159
a(n)=n for n<=3, and thereafter, a(n) is the number of locations 1..n-1 which cannot be reached starting from i=n-1, where jumps from location i to i +- a(i) are permitted (within 1..n-1). See example.
[ "1", "2", "3", "2", "2", "3", "4", "4", "3", "6", "4", "6", "8", "5", "9", "10", "11", "12", "13", "13", "11", "11", "13", "13", "15", "15", "16", "17", "18", "19", "20", "20", "21", "22", "23", "24", "25", "26", "26", "18", "26", "29", "20", "23", "24", "25", "26", "27", "28", "29", "29", "28", "31", "29", "28", "29", "30", "31", "32", "33", "34", "34", "38", "27", "39", "40", "41", "42", "42" ]
[ "nonn" ]
24
1
2
[ "A360746", "A365159" ]
null
Neal Gersh Tolunsky, Aug 23 2023
2023-09-10T09:47:22
oeisdata/seq/A365/A365159.seq
373f2505656d7ce8c2bdd4d14945031b
A365160
Least k such that A000668(n) + k is prime, where A000668(n) is the n-th Mersenne prime.
[ "2", "4", "6", "4", "18", "30", "22", "12", "16", "30", "40", "30", "888", "486", "2056", "696", "310", "718", "4692", "1600", "2788", "4290", "4326", "4150", "18088", "22096", "16342", "72816", "181720", "4200", "58416" ]
[ "nonn", "hard", "more" ]
41
1
1
[ "A000040", "A000668", "A001223", "A059305", "A074626", "A365160", "A365161" ]
null
Robert P. P. McKone, Aug 24 2023
2024-10-30T21:57:33
oeisdata/seq/A365/A365160.seq
69aa3d2210f4607cd8f9b0e866e8168d
A365161
Least k such that A000668(n) - k is prime, where A000668(n) is the n-th Mersenne prime.
[ "1", "2", "2", "14", "12", "8", "18", "18", "30", "20", "170", "24", "114", "56", "156", "2510", "1824", "12", "3980", "3630", "16902", "284", "7712", "20022", "12930", "9698", "16232", "1058", "256016", "23712", "26298" ]
[ "nonn", "hard", "more" ]
42
1
2
[ "A000040", "A000668", "A001223", "A059305", "A073715", "A365160", "A365161" ]
null
Robert P. P. McKone, Aug 24 2023
2024-10-30T22:01:15
oeisdata/seq/A365/A365161.seq
76f9b72c9ba775160ff199f3153bd67b
A365162
a(n) = A269795(n)/2.
[ "1", "0", "3", "1", "15", "12", "63", "14", "252", "240", "1023", "495", "4095", "4032", "16365", "2032", "65535", "65268", "262143", "130815", "1048509", "1047552", "4194303", "1048050", "16777200", "16773120", "67108608", "33550335", "268435455", "268418820", "1073741823", "67106816", "4294966269", "4294901760", "17179869105" ]
[ "nonn" ]
7
1
3
[ "A269795", "A365162" ]
null
Amiram Eldar, Aug 24 2023
2025-01-05T19:51:42
oeisdata/seq/A365/A365162.seq
cfe65bc5ecac5a8101054dc83fa63e53
A365163
Length of the perimeter of the regular heptagon with unit circumradius.
[ "6", "0", "7", "4", "3", "7", "2", "3", "4", "7", "6", "4", "5", "8", "1", "3", "6", "8", "6", "6", "6", "0", "7", "5", "6", "6", "5", "9", "8", "7", "7", "0", "2", "2", "5", "6", "4", "5", "3", "9", "8", "7", "0", "1", "8", "9", "0", "2", "4", "4", "3", "8", "2", "7", "0", "2", "2", "3", "6", "6", "2", "2", "4", "9", "4", "5", "0", "8", "4", "5", "5", "2", "3", "1", "4", "4", "7", "7", "7", "9", "0", "1", "2", "9", "0", "9", "7", "6", "3", "0", "4", "8" ]
[ "nonn", "cons" ]
13
1
1
[ "A010487", "A019845", "A104957", "A272487", "A365163", "A365164", "A365165" ]
null
R. J. Mathar, Aug 24 2023
2023-08-24T07:05:15
oeisdata/seq/A365/A365163.seq
62c40b75cd522a7b64c8fceeb993d8ba
A365164
Length of the perimeter of the regular octagon with unit circumradius.
[ "6", "1", "2", "2", "9", "3", "4", "9", "1", "7", "8", "4", "1", "4", "3", "6", "3", "4", "7", "6", "5", "5", "3", "5", "9", "7", "4", "4", "4", "8", "6", "3", "8", "1", "8", "6", "8", "1", "8", "1", "5", "1", "2", "9", "9", "9", "7", "7", "0", "0", "3", "2", "6", "6", "2", "9", "4", "0", "8", "1", "0", "1", "7", "0", "0", "4", "0", "7", "3", "6", "5", "4", "3", "3", "6", "1", "4", "3", "5", "0", "7", "5", "7", "9", "2", "2", "2", "0", "5", "6", "5", "4", "7", "6", "5", "3", "6", "7", "5", "4", "3", "7", "4", "7", "8", "8", "6", "1", "8" ]
[ "cons", "nonn" ]
9
1
1
[ "A010466", "A010487", "A019845", "A101464", "A365163", "A365164", "A365165" ]
null
R. J. Mathar, Aug 24 2023
2023-08-24T07:07:15
oeisdata/seq/A365/A365164.seq
24678b88bbfcbaba8a4e612a022f3471
A365165
Length of the perimeter of the regular 9-gon with unit circumradius.
[ "6", "1", "5", "6", "3", "6", "2", "5", "7", "9", "8", "6", "2", "0", "3", "7", "1", "9", "4", "7", "9", "3", "7", "9", "3", "0", "6", "4", "2", "8", "0", "6", "7", "2", "4", "5", "3", "7", "3", "5", "5", "0", "0", "6", "1", "5", "2", "5", "4", "8", "9", "1", "3", "1", "2", "3", "7", "0", "8", "7", "2", "9", "5", "8", "3", "2", "4", "8", "6", "5", "7", "4", "6", "6", "3", "7", "3", "9", "6", "7", "9", "2", "1", "5", "5", "4", "2", "3", "2", "8", "2", "0", "9", "3", "4", "5", "9", "8", "5", "5" ]
[ "nonn", "cons" ]
10
1
1
[ "A010487", "A019845", "A272488", "A365163", "A365164", "A365165" ]
null
R. J. Mathar, Aug 24 2023
2024-06-10T00:04:52
oeisdata/seq/A365/A365165.seq
12a63c9be0801f76c0792f4ca847a86a
A365166
Numbers that are not the sum of a prime number and a fourth power of a nonnegative integer.
[ "1", "9", "10", "15", "16", "22", "25", "26", "28", "34", "36", "40", "46", "49", "50", "51", "52", "55", "56", "58", "64", "65", "66", "70", "76", "78", "81", "82", "85", "91", "93", "96", "106", "111", "115", "116", "120", "121", "126", "130", "133", "135", "136", "141", "144", "145", "146", "156", "159", "161", "162", "166", "169", "171", "172", "175", "176", "177", "185", "186", "187", "196" ]
[ "nonn" ]
7
1
2
[ "A014090", "A045911", "A356295", "A365126", "A365127", "A365166", "A365169" ]
null
Ilya Gutkovskiy, Aug 24 2023
2023-08-30T21:27:26
oeisdata/seq/A365/A365166.seq
c9ef10cc890ee610cbeabf953d9e79ec
A365167
Number of representations of n as the sum of a prime number and a fourth power of a positive integer.
[ "0", "0", "1", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "2", "1", "1", "1", "0", "1", "1", "0", "0", "1", "0", "1", "1", "0", "1", "1", "0", "1", "0", "0", "1", "1", "0", "0", "1", "0", "1", "1", "0", "1", "1", "0", "0", "0", "0", "1", "1", "0", "0", "1", "0", "1", "1", "0", "1", "1", "0", "0", "0", "0", "1", "1", "0", "0", "1", "0", "1", "1", "0", "1", "0", "0", "1", "0", "0", "2", "2", "0", "1", "1", "1", "1", "1", "0", "1", "0", "1", "1", "0", "0", "2", "1", "1", "0", "1", "0", "2", "1", "0", "0", "1", "0", "2", "0", "1", "1", "1", "0", "0", "1", "1", "1" ]
[ "nonn" ]
8
1
18
[ "A064272", "A283760", "A365126", "A365167", "A365168", "A365169" ]
null
Ilya Gutkovskiy, Aug 24 2023
2023-08-30T21:27:36
oeisdata/seq/A365/A365167.seq
42505679df3170e6143353260996dcc5
A365168
Numbers that are the sum of a prime number and a fourth power of a positive integer.
[ "3", "4", "6", "8", "12", "14", "18", "19", "20", "21", "23", "24", "27", "29", "30", "32", "33", "35", "38", "39", "42", "44", "45", "47", "48", "53", "54", "57", "59", "60", "62", "63", "68", "69", "72", "74", "75", "77", "80", "83", "84", "86", "87", "88", "89", "90", "92", "94", "95", "98", "99", "100", "102", "104", "105", "108", "110", "112", "113", "114", "117", "118", "119", "122", "123", "124", "125" ]
[ "nonn" ]
12
1
1
[ "A058654", "A307647", "A365127", "A365167", "A365168", "A365169" ]
null
Ilya Gutkovskiy, Aug 24 2023
2024-08-29T02:41:11
oeisdata/seq/A365/A365168.seq
fe03a5c22d57fe5cd30dd11747e85bab
A365169
Numbers that are not the sum of a prime number and a fourth power of a positive integer.
[ "1", "2", "5", "7", "9", "10", "11", "13", "15", "16", "17", "22", "25", "26", "28", "31", "34", "36", "37", "40", "41", "43", "46", "49", "50", "51", "52", "55", "56", "58", "61", "64", "65", "66", "67", "70", "71", "73", "76", "78", "79", "81", "82", "85", "91", "93", "96", "97", "101", "103", "106", "107", "109", "111", "115", "116", "120", "121", "126", "127", "130", "131", "133", "135" ]
[ "nonn" ]
7
1
2
[ "A064233", "A211167", "A365166", "A365167", "A365168", "A365169" ]
null
Ilya Gutkovskiy, Aug 24 2023
2023-08-30T21:28:04
oeisdata/seq/A365/A365169.seq
d2e977c2dee773d02463d5c60de5be34
A365170
The sum of divisors d of n such that gcd(d, n/d) is squarefree.
[ "1", "3", "4", "7", "6", "12", "8", "15", "13", "18", "12", "28", "14", "24", "24", "27", "18", "39", "20", "42", "32", "36", "24", "60", "31", "42", "40", "56", "30", "72", "32", "51", "48", "54", "48", "91", "38", "60", "56", "90", "42", "96", "44", "84", "78", "72", "48", "108", "57", "93", "72", "98", "54", "120", "72", "120", "80", "90", "60", "168", "62", "96", "104", "99", "84", "144" ]
[ "nonn", "easy", "mult" ]
10
1
2
[ "A000203", "A000290", "A005117", "A034448", "A046100", "A157292", "A252505", "A365170" ]
null
Amiram Eldar, Aug 25 2023
2024-05-24T04:36:42
oeisdata/seq/A365/A365170.seq
db9ef52badb0abdaba816cdf275b89c4
A365171
The number of divisors d of n such that gcd(d, n/d) is a square.
[ "1", "2", "2", "2", "2", "4", "2", "2", "2", "4", "2", "4", "2", "4", "4", "3", "2", "4", "2", "4", "4", "4", "2", "4", "2", "4", "2", "4", "2", "8", "2", "4", "4", "4", "4", "4", "2", "4", "4", "4", "2", "8", "2", "4", "4", "4", "2", "6", "2", "4", "4", "4", "2", "4", "4", "4", "4", "4", "2", "8", "2", "4", "4", "4", "4", "8", "2", "4", "4", "8", "2", "4", "2", "4", "4", "4", "4", "8", "2", "6", "3", "4", "2", "8", "4", "4", "4" ]
[ "nonn", "easy", "mult" ]
13
1
2
[ "A000005", "A000290", "A000583", "A004524", "A005117", "A008833", "A034444", "A046101", "A046951", "A182448", "A365171", "A365172", "A365173" ]
null
Amiram Eldar, Aug 25 2023
2024-01-20T04:41:11
oeisdata/seq/A365/A365171.seq
f5cf159aaec60892976de8f8ec863141
A365172
The sum of divisors d of n such that gcd(d, n/d) is a square.
[ "1", "3", "4", "5", "6", "12", "8", "9", "10", "18", "12", "20", "14", "24", "24", "21", "18", "30", "20", "30", "32", "36", "24", "36", "26", "42", "28", "40", "30", "72", "32", "45", "48", "54", "48", "50", "38", "60", "56", "54", "42", "96", "44", "60", "60", "72", "48", "84", "50", "78", "72", "70", "54", "84", "72", "72", "80", "90", "60", "120", "62", "96", "80", "85", "84", "144", "68" ]
[ "nonn", "easy", "mult" ]
7
1
2
[ "A000203", "A005117", "A034448", "A035316", "A046101", "A365171", "A365172", "A365174" ]
null
Amiram Eldar, Aug 25 2023
2023-08-25T08:40:01
oeisdata/seq/A365/A365172.seq
8ea5c2f7623462ff7e86a3d5b1c4bbf8
A365173
The number of divisors d of n such that gcd(d, n/d) is an exponentially odd number (A268335).
[ "1", "2", "2", "3", "2", "4", "2", "4", "3", "4", "2", "6", "2", "4", "4", "4", "2", "6", "2", "6", "4", "4", "2", "8", "3", "4", "4", "6", "2", "8", "2", "4", "4", "4", "4", "9", "2", "4", "4", "8", "2", "8", "2", "6", "6", "4", "2", "8", "3", "6", "4", "6", "2", "8", "4", "8", "4", "4", "2", "12", "2", "4", "6", "5", "4", "8", "2", "6", "4", "8", "2", "12", "2", "4", "6", "6", "4", "8", "2", "8", "4", "4", "2", "12", "4", "4" ]
[ "nonn", "easy", "mult" ]
18
1
2
[ "A004524", "A005117", "A046101", "A252505", "A268335", "A325837", "A350390", "A365171", "A365173", "A365174" ]
null
Amiram Eldar, Aug 25 2023
2025-04-27T00:45:25
oeisdata/seq/A365/A365173.seq
8b2947c90fbd547e5b788f26c227bbe9
A365174
The sum of divisors d of n such that gcd(d, n/d) is an exponentially odd number (A268335).
[ "1", "3", "4", "7", "6", "12", "8", "15", "13", "18", "12", "28", "14", "24", "24", "27", "18", "39", "20", "42", "32", "36", "24", "60", "31", "42", "40", "56", "30", "72", "32", "51", "48", "54", "48", "91", "38", "60", "56", "90", "42", "96", "44", "84", "78", "72", "48", "108", "57", "93", "72", "98", "54", "120", "72", "120", "80", "90", "60", "168", "62", "96", "104", "107", "84", "144" ]
[ "nonn", "easy", "mult" ]
11
1
2
[ "A000203", "A002117", "A013661", "A013664", "A033634", "A034448", "A268335", "A365172", "A365173", "A365174" ]
null
Amiram Eldar, Aug 25 2023
2025-03-28T02:21:57
oeisdata/seq/A365/A365174.seq
87e6e668c0a406a2c3e29d20b15bba15
A365175
E.g.f. satisfies A(x) = 1 + x*A(x)^4*exp(x*A(x)).
[ "1", "1", "10", "189", "5476", "215145", "10701006", "644909503", "45687408712", "3721382812305", "342689189598010", "35206864089944151", "3992473080042706524", "495361299387667990537", "66752437447119717428422", "9708649781691227748131535", "1515863453268825963300368656" ]
[ "nonn" ]
12
0
3
[ "A161633", "A213644", "A364984", "A364987", "A364989", "A365175", "A365176", "A365177" ]
null
Seiichi Manyama, Aug 25 2023
2023-08-25T09:43:02
oeisdata/seq/A365/A365175.seq
9963be2bb6ffc948ae1e365a18a6df70
A365176
E.g.f. satisfies A(x) = 1 + x*A(x)^4*exp(x*A(x)^2).
[ "1", "1", "10", "195", "5836", "236925", "12177966", "758458603", "55528414264", "4674208189977", "444823048027450", "47227542351423951", "5534636939373353604", "709653811287800826421", "98825110036657191358822", "14853654178825132742729715", "2396666529204491489278153456" ]
[ "nonn" ]
8
0
3
[ "A364987", "A364989", "A365175", "A365176", "A365177" ]
null
Seiichi Manyama, Aug 25 2023
2023-08-25T09:43:11
oeisdata/seq/A365/A365176.seq
502df5759b95b3e25ac34160c856e800
A365177
E.g.f. satisfies A(x) = 1 + x*A(x)^4*exp(x*A(x)^3).
[ "1", "1", "10", "201", "6220", "261465", "13925286", "898994383", "68240292856", "5956670911041", "587896878021130", "64738492669538391", "7869297152389747284", "1046629627952327990545", "151192146681811716344878", "23573456446401808474471455", "3945806733850334447131941616" ]
[ "nonn" ]
8
0
3
[ "A364987", "A364989", "A365175", "A365176", "A365177" ]
null
Seiichi Manyama, Aug 25 2023
2023-08-25T09:43:14
oeisdata/seq/A365/A365177.seq
39f7716682bae0d1e4160b9e80355cde
A365178
G.f. satisfies A(x) = 1 + x*A(x)^4*(1 + x).
[ "1", "1", "5", "30", "210", "1595", "12791", "106574", "913562", "8004861", "71375653", "645536234", "5907683486", "54605672300", "509043322720", "4780441915832", "45182744331388", "429472919087158", "4102806757542542", "39370967793387086", "379335734835510622", "3668220243145708341" ]
[ "nonn" ]
16
0
3
[ "A002293", "A002294", "A364475", "A364987", "A365178", "A365180", "A365181", "A365182", "A365183", "A365184" ]
null
Seiichi Manyama, Aug 25 2023
2023-11-01T10:00:54
oeisdata/seq/A365/A365178.seq
cbaf322fe70971cda3a8906ccab0dcd5
A365179
a(1) = 2; for n >= 2, a(n) = p^6 if p == 2 (mod 3), p^7 if p = 3 or p == 1 (mod 3), where p = prime(n).
[ "2", "2187", "15625", "823543", "1771561", "62748517", "24137569", "893871739", "148035889", "594823321", "27512614111", "94931877133", "4750104241", "271818611107", "10779215329", "22164361129", "42180533641", "3142742836021", "6060711605323", "128100283921", "11047398519097", "19203908986159", "326940373369" ]
[ "nonn", "easy" ]
25
1
1
[ "A030516", "A092759", "A365179" ]
null
Jianing Song, Aug 25 2023
2023-08-27T04:21:18
oeisdata/seq/A365/A365179.seq
a9a67bac80f95305fa47bba1976d0cb8
A365180
G.f. satisfies A(x) = 1 + x*A(x)^4*(1 + x*A(x)).
[ "1", "1", "5", "31", "223", "1740", "14328", "122549", "1078197", "9695359", "88710199", "823247686", "7730244098", "73310150097", "701163085849", "6755544043969", "65506554804129", "638794412442172", "6260571309256152", "61632794482411367", "609197871548209907", "6043456939539775056" ]
[ "nonn" ]
9
0
3
[ "A002294", "A364747", "A365178", "A365180", "A365181", "A365182", "A365183" ]
null
Seiichi Manyama, Aug 25 2023
2023-08-25T09:43:22
oeisdata/seq/A365/A365180.seq
69592ad6140cc2fb916074eba44b900a
A365181
G.f. satisfies A(x) = 1 + x*A(x)^4*(1 + x*A(x)^2).
[ "1", "1", "5", "32", "237", "1905", "16160", "142392", "1290613", "11955947", "112697701", "1077438356", "10422562156", "101827196684", "1003312506776", "9958506719664", "99479743121349", "999370184665407", "10090067735619023", "102330789530653912", "1041997707624103589", "10648963961114066129" ]
[ "nonn" ]
8
0
3
[ "A002294", "A365178", "A365180", "A365181", "A365182", "A365183" ]
null
Seiichi Manyama, Aug 25 2023
2023-08-25T09:43:48
oeisdata/seq/A365/A365181.seq
de92b4201d5b32df8922cf1958269695
A365182
G.f. satisfies A(x) = 1 + x*A(x)^4*(1 + x*A(x)^3).
[ "1", "1", "5", "33", "252", "2091", "18319", "166750", "1561599", "14948572", "145615404", "1438752770", "14384289530", "145248707646", "1479212551278", "15175516654760", "156691764630780", "1627069871618145", "16980373299730925", "178006989972532900", "1873607777794186000" ]
[ "nonn" ]
10
0
3
[ "A002294", "A365177", "A365178", "A365180", "A365181", "A365182", "A365183" ]
null
Seiichi Manyama, Aug 25 2023
2023-08-25T09:43:18
oeisdata/seq/A365/A365182.seq
b42760cd4771bb7fbd4f7abf55be17a6
A365183
G.f. satisfies A(x) = 1 + x*A(x)^4*(1 + x*A(x)^4).
[ "1", "1", "5", "34", "268", "2299", "20838", "196326", "1903524", "18868861", "190356231", "1948055058", "20173907384", "211020478270", "2226243632838", "23660868061422", "253099278807684", "2722819049879436", "29439894433161189", "319749417998303470", "3486914150183526920" ]
[ "nonn" ]
24
0
3
[ "A002294", "A006605", "A255673", "A364989", "A365178", "A365180", "A365181", "A365182", "A365183", "A365189" ]
null
Seiichi Manyama, Aug 25 2023
2025-01-10T11:24:32
oeisdata/seq/A365/A365183.seq
6e8b9b6e1f85be461ad38b3495048663
A365184
G.f. satisfies A(x) = 1 + x*A(x)^5*(1 + x).
[ "1", "1", "6", "45", "395", "3775", "38146", "400826", "4335455", "47951065", "539823620", "6165377836", "71261299056", "831990025420", "9797505040130", "116235417614900", "1387958781395535", "16668362761081560", "201190667288072005", "2439418470063468505", "29698136499328762445" ]
[ "nonn" ]
15
0
3
[ "A002294", "A002295", "A349332", "A364475", "A365178", "A365184", "A365185", "A365186", "A365187", "A365188", "A365189" ]
null
Seiichi Manyama, Aug 25 2023
2023-11-01T10:00:58
oeisdata/seq/A365/A365184.seq
67cfcfad2c4a6e7f4412b0eb7d124404
A365185
G.f. satisfies A(x) = 1 + x*A(x)^5*(1 + x*A(x)).
[ "1", "1", "6", "46", "411", "3996", "41062", "438662", "4823133", "54221518", "620404859", "7201317005", "84590041441", "1003656037278", "12010861830069", "144804336388912", "1757106190680819", "21443109365898743", "263009775111233392", "3240530659303505547", "40088688455992604594" ]
[ "nonn" ]
9
0
3
[ "A002295", "A364748", "A365184", "A365185", "A365186", "A365187", "A365188", "A365189" ]
null
Seiichi Manyama, Aug 25 2023
2023-08-25T09:43:57
oeisdata/seq/A365/A365185.seq
1f9e8cb45409405f41fa234067470615
A365186
G.f. satisfies A(x) = 1 + x*A(x)^5*(1 + x*A(x)^2).
[ "1", "1", "6", "47", "428", "4241", "44407", "483358", "5414618", "62014112", "722870120", "8547768832", "102284029963", "1236274747490", "15070955944288", "185089043535730", "2287843817573898", "28440852786725695", "355345599519983962", "4459821165693379625", "56200963128262312342" ]
[ "nonn" ]
9
0
3
[ "A002295", "A365184", "A365185", "A365186", "A365187", "A365188", "A365189", "A365192" ]
null
Seiichi Manyama, Aug 25 2023
2023-08-25T09:44:01
oeisdata/seq/A365/A365186.seq
25626bbffe37e90e50c2e9482334ff3d
A365187
G.f. satisfies A(x) = 1 + x*A(x)^5*(1 + x*A(x)^3).
[ "1", "1", "6", "48", "446", "4511", "48218", "535800", "6127598", "71648868", "852668952", "10293847592", "125759270354", "1551872951050", "19314892116764", "242182938963024", "3056337851481678", "38790948190319404", "494825459824571528", "6340628082364678016", "81577931200018721464" ]
[ "nonn" ]
9
0
3
[ "A002295", "A365184", "A365185", "A365186", "A365187", "A365188", "A365189", "A365193" ]
null
Seiichi Manyama, Aug 25 2023
2023-08-25T10:00:18
oeisdata/seq/A365/A365187.seq
db656d5d76d5e5c78c9833fad8514540
A365188
G.f. satisfies A(x) = 1 + x*A(x)^5*(1 + x*A(x)^4).
[ "1", "1", "6", "49", "465", "4807", "52533", "596936", "6981798", "83497115", "1016367737", "12550853210", "156845913315", "1979870172453", "25207383853375", "323325558146400", "4174108907656633", "54195445136831670", "707225283913589280", "9270735916525207605", "122020617365557674605" ]
[ "nonn" ]
9
0
3
[ "A002295", "A243667", "A365184", "A365185", "A365186", "A365187", "A365188", "A365189" ]
null
Seiichi Manyama, Aug 25 2023
2023-08-25T09:43:52
oeisdata/seq/A365/A365188.seq
90734fb43ce441e566912b407ce80eeb
A365189
G.f. satisfies A(x) = 1 + x*A(x)^5*(1 + x*A(x)^5).
[ "1", "1", "6", "50", "485", "5130", "57391", "667777", "7999095", "97986680", "1221813880", "15456556791", "197887386913", "2559189842240", "33383097891135", "438714241508615", "5803049210371375", "77199163872173757", "1032215519193531310", "13864180990526161995", "186975433988014039830" ]
[ "nonn" ]
23
0
3
[ "A002295", "A006605", "A255673", "A365183", "A365184", "A365185", "A365186", "A365187", "A365188", "A365189" ]
null
Seiichi Manyama, Aug 25 2023
2025-01-10T11:24:36
oeisdata/seq/A365/A365189.seq
56354cb5015b09d298cf57383b4b6926
A365190
The weak Schur numbers for 2-coloring.
[ "9", "24", "52", "101", "166", "253" ]
[ "nonn", "hard", "more" ]
12
2
1
[ "A030126", "A045652", "A072842", "A118771", "A365190", "A365191" ]
null
Stefano Spezia, Aug 25 2023
2023-08-27T04:40:26
oeisdata/seq/A365/A365190.seq
a932eb08b9405566a5276459cb07d2a0
A365191
The weak Schur numbers for 3-coloring.
[ "24", "94", "259" ]
[ "nonn", "bref", "hard", "more" ]
8
2
1
[ "A030126", "A045652", "A072842", "A118771", "A365190", "A365191" ]
null
Stefano Spezia, Aug 25 2023
2023-08-27T10:30:30
oeisdata/seq/A365/A365191.seq
190fe19f7a6700ae9dd347d4a3c79d96
A365192
G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 - x*A(x)^2).
[ "1", "1", "6", "48", "443", "4445", "47107", "518835", "5880223", "68130860", "803369481", "9609294542", "116310009888", "1421951861817", "17533301767624", "217796367181117", "2722942699583650", "34236790400004432", "432649744252128084", "5492060945760586212", "69998993052214823013" ]
[ "nonn" ]
6
0
3
[ "A002295", "A243667", "A349332", "A364748", "A365186", "A365192", "A365193", "A365194" ]
null
Seiichi Manyama, Aug 25 2023
2023-08-25T10:00:53
oeisdata/seq/A365/A365192.seq
9f7a54454d013adb89bb102070578fa7
A365193
G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 - x*A(x)^3).
[ "1", "1", "6", "49", "463", "4760", "51702", "583712", "6781774", "80555066", "973813974", "11941861079", "148191437719", "1857464450449", "23481830726334", "299056887494427", "3833349330581255", "49416395972195630", "640256115370243620", "8332835556325119938", "108890550249605779116" ]
[ "nonn" ]
8
0
3
[ "A002295", "A243667", "A349332", "A364748", "A365187", "A365192", "A365193", "A365194" ]
null
Seiichi Manyama, Aug 25 2023
2023-08-25T10:00:39
oeisdata/seq/A365/A365193.seq
5fb0bc2bb0f22530ba7a780b5e38a2e9
A365194
G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 - x*A(x)^6).
[ "1", "1", "6", "52", "529", "5889", "69462", "853013", "10791018", "139659604", "1840435530", "24611295075", "333132371248", "4555465710569", "62839303262352", "873363902976309", "12218178082489873", "171918448407833112", "2431415226089290680", "34544425914499450493", "492807213597429920649" ]
[ "nonn" ]
19
0
3
[ "A002295", "A219537", "A243667", "A271469", "A349332", "A364748", "A364765", "A365192", "A365193", "A365194" ]
null
Seiichi Manyama, Aug 25 2023
2024-12-26T02:59:30
oeisdata/seq/A365/A365194.seq
47a7a05d0d56ba27885059d1cc763496
A365195
Height of the first staircase of the ziggurat of order n described in A347186.
[ "1", "2", "2", "4", "3", "6", "4", "8", "5", "9", "6", "12", "7", "12", "8", "16", "9", "18", "10", "20", "11", "18", "12", "24", "13", "21", "14", "28", "15", "30", "16", "32", "17", "27", "18", "36", "19", "30", "20", "40", "21", "42", "22", "42", "23", "36", "24", "48", "25", "39", "26", "49", "27", "54", "28", "56", "29", "45", "30", "60", "31", "48", "32", "64", "33", "66", "34", "63", "35", "54", "36", "72", "37", "57", "38", "70", "39", "77", "40", "80" ]
[ "nonn" ]
59
1
2
[ "A000079", "A000396", "A065091", "A174973", "A196020", "A235791", "A236104", "A237270", "A237271", "A237591", "A237593", "A238524", "A262626", "A279387", "A347186", "A347367", "A365195", "A365433", "A365434" ]
null
Omar E. Pol, Aug 25 2023
2023-10-22T22:58:47
oeisdata/seq/A365/A365195.seq
d84954999c2fc2c230421a50a2c34980
A365196
a(n) is the least k such that 2^k + n is not squarefree.
[ "2", "3", "1", "0", "2", "2", "1", "0", "0", "4", "1", "0", "2", "5", "1", "0", "1", "0", "1", "0", "2", "2", "1", "0", "0", "1", "0", "0", "2", "4", "1", "0", "2", "4", "1", "0", "2", "3", "1", "0", "2", "2", "1", "0", "0", "2", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "2", "6", "1", "0", "2", "1", "0", "0", "2", "4", "1", "0", "2", "8", "1", "0", "2", "1", "0", "0", "2", "2", "1", "0", "0", "18", "1", "0", "2", "5", "1", "0", "1", "0", "1", "0", "2", "5", "1", "0", "1", "0", "0", "0" ]
[ "nonn" ]
22
0
1
[ "A005117", "A365196" ]
null
Robert Israel, Aug 25 2023
2023-08-28T11:55:41
oeisdata/seq/A365/A365196.seq
3a6004bf24aa0d2c6e37a0bb35dce939
A365197
a(n) and a(n+1) have k distinct digits in common. The successive ks are the successive digits of the sequence itself.
[ "1", "10", "12", "3", "13", "103", "130", "124", "142", "2", "104", "140", "123", "132", "4", "14", "1024", "1042", "1356", "1365", "15", "51", "5", "1023", "1032", "1456", "1465", "7", "17", "107", "170", "125", "152", "1026", "1062", "1345", "1354", "16", "20", "1025", "1052", "18", "2034", "2043", "23", "102", "10234", "102345", "102354", "167", "102367", "102376" ]
[ "base", "nonn", "fini" ]
19
1
2
[ "A184992", "A365197" ]
null
Eric Angelini, Aug 25 2023
2023-09-03T10:47:06
oeisdata/seq/A365/A365197.seq
05581a7562586383d32f38282cdaa28b
A365198
Smallest k such that there exists a complete k-arc on the projective plane over GF(q), where q = A246655(n) is the n-th prime power > 1.
[ "4", "4", "6", "6", "6", "6", "6", "7", "8", "9", "10", "10", "10", "12", "12", "13", "14", "14" ]
[ "nonn", "hard", "more" ]
12
1
1
[ "A365198", "A365216" ]
null
Robin Visser, Aug 26 2023
2023-08-26T15:42:06
oeisdata/seq/A365/A365198.seq
62d8ebb19dafb2d2b2ddcd6f9a570bd7
A365199
a(n) is the index of the n-th occurrence of 1 in A365203.
[ "1", "14", "53", "109", "221", "445", "893", "1789", "3581", "7165", "14333", "28669", "84530", "295033", "830369", "1660741", "4755764", "10372048", "28287409", "56574821", "153253317", "323636916", "848150626", "2217511139", "6534867338", "20173498129", "40346996261", "120496984345" ]
[ "nonn", "hard" ]
35
1
2
[ "A365199", "A365203" ]
null
Felix Huber, Aug 26 2023
2024-01-01T11:55:28
oeisdata/seq/A365/A365199.seq
5b1eae8f7506f1af7be3022b36f00c29
A365200
Even semiprimes that are the exact average of two consecutive odd semiprimes.
[ "34", "86", "94", "122", "142", "194", "202", "214", "218", "262", "302", "314", "358", "386", "394", "422", "446", "562", "586", "626", "634", "698", "734", "838", "842", "922", "982", "1042", "1138", "1234", "1262", "1306", "1346", "1366", "1402", "1522", "1642", "1646", "1658", "1754", "1762", "1774", "1838", "1874", "1894", "1906", "1942", "1982", "2026", "2098", "2102", "2182", "2186", "2218" ]
[ "nonn" ]
27
1
1
[ "A046315", "A100484", "A365200", "A365201", "A365202" ]
null
Elmo R. Oliveira, Aug 25 2023
2023-09-25T07:28:46
oeisdata/seq/A365/A365200.seq
70b15b8c8836a9987938fba47a5310c2