sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A365001
Primes from which it is not possible to reach a (different) Mersenne prime by toggling a single bit per step while still remaining prime at every step.
[ "73", "89", "127", "173", "191", "233", "239", "251", "257", "277", "337", "349", "373", "431", "443", "491", "557", "653", "683", "701", "733", "761", "769", "773", "787", "853", "907", "911", "971", "1019", "1093", "1109", "1117", "1193", "1201", "1237", "1297", "1301", "1303", "1361", "1367", "1373", "1381", "1399", "1429", "1453", "1489", "1493" ]
[ "nonn", "base" ]
21
1
1
[ "A065092", "A065111", "A365001" ]
null
Sean A. Irvine, Aug 15 2023
2025-01-05T19:51:42
oeisdata/seq/A365/A365001.seq
34b5a724217c7427d575d0c1db994b25
A365002
Number of ways to write n as a nonnegative linear combination of a strict integer partition.
[ "1", "1", "2", "4", "8", "10", "26", "32", "63", "84", "157", "207", "383", "477", "768", "1108", "1710", "2261", "3536", "4605", "6869", "9339", "13343", "17653", "25785", "33463", "46752", "61549", "85614", "110861", "153719", "197345", "268623", "346845", "463513", "593363", "797082", "1011403", "1335625", "1703143", "2232161", "2820539" ]
[ "nonn" ]
22
0
3
[ "A000009", "A000041", "A006951", "A008284", "A008289", "A066328", "A116861", "A364272", "A364350", "A364839", "A364907", "A364910", "A364911", "A364912", "A364913", "A364916", "A365002", "A365004" ]
null
Gus Wiseman, Aug 22 2023
2024-01-11T16:22:39
oeisdata/seq/A365/A365002.seq
40b1925dd3cf26cf909ea37d295c1e41
A365003
Heinz numbers of integer partitions where the sum of all parts is twice the sum of distinct parts.
[ "1", "4", "9", "25", "36", "48", "49", "100", "121", "160", "169", "196", "225", "289", "361", "441", "448", "484", "529", "567", "676", "750", "810", "841", "900", "961", "1080", "1089", "1156", "1200", "1225", "1369", "1408", "1440", "1444", "1521", "1681", "1764", "1849", "1920", "2116", "2209", "2268", "2352", "2601", "2809", "3024", "3025", "3159" ]
[ "nonn" ]
8
1
2
[ "A000009", "A000041", "A001221", "A001222", "A056239", "A066328", "A112798", "A116861", "A304038", "A320340", "A323092", "A364350", "A364839", "A364906", "A364907", "A364910", "A364911", "A364916", "A365003" ]
null
Gus Wiseman, Aug 23 2023
2023-08-24T10:03:05
oeisdata/seq/A365/A365003.seq
f7bef2d3c84365c7878150fcb1ed7999
A365004
Array read by antidiagonals downwards where A(n,k) is the number of ways to write n as a nonnegative linear combination of an integer partition of k.
[ "1", "1", "0", "2", "1", "0", "3", "2", "1", "0", "5", "4", "4", "1", "0", "7", "7", "8", "4", "1", "0", "11", "12", "17", "13", "6", "1", "0", "15", "19", "30", "28", "18", "6", "1", "0", "22", "30", "53", "58", "50", "24", "8", "1", "0", "30", "45", "86", "109", "108", "70", "33", "8", "1", "0", "42", "67", "139", "194", "223", "179", "107", "40", "10", "1", "0", "56", "97", "213", "328", "420", "394", "286", "143", "50", "10", "1", "0" ]
[ "nonn", "tabl" ]
15
0
4
[ "A000007", "A000009", "A000012", "A000041", "A000070", "A006951", "A008284", "A008289", "A052928", "A066328", "A108917", "A116861", "A237113", "A364272", "A364350", "A364839", "A364907", "A364910", "A364911", "A364912", "A364913", "A364915", "A365002", "A365004" ]
null
Gus Wiseman, Aug 23 2023
2024-01-28T20:41:21
oeisdata/seq/A365/A365004.seq
3bd1e776cc8f78398166d8bfc1256a91
A365005
Number of ways to write 2 as a nonnegative linear combination of a strict integer partition of n.
[ "0", "1", "1", "2", "1", "2", "4", "4", "5", "6", "9", "10", "13", "15", "19", "23", "28", "33", "40", "47", "56", "67", "78", "92", "108", "126", "146", "171", "198", "229", "264", "305", "350", "403", "460", "527", "603", "687", "781", "889", "1009", "1144", "1295", "1464", "1653", "1866", "2101", "2364", "2659", "2984", "3347", "3752", "4200", "4696", "5248", "5858" ]
[ "nonn" ]
7
0
4
[ "A000009", "A000041", "A008284", "A008289", "A096765", "A116861", "A137719", "A237113", "A323092", "A364272", "A364350", "A364839", "A364907", "A364910", "A364913", "A364914", "A364915", "A364916", "A365002", "A365004", "A365005" ]
null
Gus Wiseman, Aug 26 2023
2023-08-26T18:17:11
oeisdata/seq/A365/A365005.seq
e8ad0e213f2c08f19056e568af45efa2
A365006
Number of strict integer partitions of n such that no part can be written as a (strictly) positive linear combination of the others.
[ "1", "1", "1", "1", "1", "2", "1", "3", "2", "4", "4", "8", "4", "11", "9", "16", "14", "25", "20", "37", "31", "49", "47", "73", "64", "101", "96", "135", "133", "190", "181", "256", "253", "336", "342", "453", "452", "596", "609", "771", "803", "1014", "1041", "1309", "1362", "1674", "1760", "2151", "2249", "2736", "2884", "3449", "3661", "4366", "4615", "5486", "5825" ]
[ "nonn" ]
19
0
6
[ "A000009", "A000041", "A008284", "A008289", "A116861", "A124506", "A151897", "A236912", "A237113", "A237667", "A275972", "A363226", "A364272", "A364349", "A364350", "A364533", "A364839", "A364912", "A364913", "A364915", "A364916", "A365004", "A365006", "A365043", "A365044", "A365068", "A365072" ]
null
Gus Wiseman, Aug 31 2023
2023-09-20T18:16:31
oeisdata/seq/A365/A365006.seq
25bae1eb7e02c7c2e7d44ee92498b382
A365007
a(n) = Sum_{d|n} (-1)^(n/d-1) * binomial(d+1,2).
[ "1", "2", "7", "6", "16", "17", "29", "22", "52", "42", "67", "57", "92", "79", "142", "86", "154", "143", "191", "146", "266", "189", "277", "217", "341", "262", "430", "279", "436", "402", "497", "342", "634", "444", "674", "507", "704", "553", "878", "562", "862", "766", "947", "677", "1222", "807", "1129", "857", "1254", "992", "1486", "942", "1432", "1250", "1622", "1079" ]
[ "nonn", "look" ]
17
1
2
[ "A000593", "A007437", "A365007", "A366395", "A366813", "A366814" ]
null
Seiichi Manyama, Oct 24 2023
2023-10-25T18:21:39
oeisdata/seq/A365/A365007.seq
d22be6119294adc988cea5473ac0eb07
A365008
Solutions k to the Diophantine equation k^5 = Sum_{i=1..6} y_i^5 with positive y_i.
[ "12", "24", "30", "32", "36", "48", "60", "64", "67", "72", "78", "84", "90", "96", "99", "106", "108", "112", "113", "119", "120", "128", "132", "134", "135", "139", "144", "145", "147", "150", "156", "160", "161", "168", "172", "178", "180", "189", "190", "192", "197", "198", "201", "202", "204", "205", "210", "212", "214", "216", "222", "223", "224", "225", "226", "227", "228", "234" ]
[ "nonn" ]
46
1
1
null
null
R. J. Mathar, Aug 16 2023
2025-04-18T17:45:09
oeisdata/seq/A365/A365008.seq
4e761b4f86a1acb93f059cda69885483
A365009
Semiprimes that are the concatenation of two or more semiprimes.
[ "46", "49", "69", "94", "106", "146", "159", "214", "219", "226", "254", "259", "334", "339", "346", "386", "394", "415", "422", "446", "451", "458", "466", "469", "482", "485", "493", "514", "519", "554", "559", "579", "586", "589", "614", "622", "626", "629", "633", "634", "635", "649", "655", "662", "669", "674", "685", "687", "694", "695", "699", "746", "749", "779", "866", "869", "879", "914", "921", "922" ]
[ "base", "nonn" ]
15
1
1
[ "A001238", "A001358", "A019549", "A107342", "A365009" ]
null
Zak Seidov and Robert Israel, Aug 15 2023
2023-08-24T10:16:48
oeisdata/seq/A365/A365009.seq
dd95c8e305e511be8991cbc14624ea61
A365010
E.g.f. satisfies A(x) = 1 + x*exp(-x)*A(x)^3.
[ "1", "1", "4", "39", "596", "12365", "324714", "10329655", "386190328", "16597810233", "806356830230", "43700423019011", "2613919719004692", "171053575111641157", "12156558707970920866", "932424974682447304815", "76772968644326739801584", "6754080601542663692950769" ]
[ "nonn" ]
14
0
3
[ "A001764", "A295239", "A302397", "A364983", "A365010", "A365011" ]
null
Seiichi Manyama, Aug 15 2023
2023-08-16T12:03:33
oeisdata/seq/A365/A365010.seq
1070942a30ba740d892e9b8fa7b726e1
A365011
E.g.f. satisfies A(x) = 1 + x*exp(-x)*A(x)^4.
[ "1", "1", "6", "87", "1964", "60325", "2349114", "110922091", "6159510552", "393373489257", "28407518470070", "2289019332293551", "203608076603605860", "19816972252710998989", "2094926215725519979698", "239037380421621120397395", "29281119335188021375533104", "3832665229749097186190010193" ]
[ "nonn" ]
8
0
3
[ "A002293", "A295239", "A302397", "A364987", "A365010", "A365011" ]
null
Seiichi Manyama, Aug 15 2023
2023-08-16T08:19:58
oeisdata/seq/A365/A365011.seq
25951f06909aca3b74753ff025617190
A365012
E.g.f. satisfies A(x) = exp( x*A(x)/(1 - x * A(x)^2) ).
[ "1", "1", "5", "52", "833", "18116", "498907", "16648402", "653034545", "29450331928", "1501456530131", "85398143019014", "5361130115439529", "368227694339818132", "27468201247134068891", "2211469648218676671466", "191131823105565504395873", "17650493961604405811144624" ]
[ "nonn" ]
12
0
3
[ "A052873", "A365012", "A365013" ]
null
Seiichi Manyama, Aug 15 2023
2023-08-19T06:29:06
oeisdata/seq/A365/A365012.seq
1bcb311622e2f57af1501af450296c5a
A365013
E.g.f. satisfies A(x) = exp( x*A(x)/(1 - x * A(x)^3) ).
[ "1", "1", "5", "58", "1061", "26536", "843457", "32553424", "1478813513", "77304347776", "4571222616701", "301696674682624", "21985118975444077", "1753288356936334336", "151887264799071753785", "14203597499192539334656", "1426051485043745729079953", "153000280727938469281693696" ]
[ "nonn" ]
13
0
3
[ "A052873", "A365012", "A365013" ]
null
Seiichi Manyama, Aug 15 2023
2023-08-19T06:28:58
oeisdata/seq/A365/A365013.seq
4ada350439007e25038d85f66e291779
A365014
E.g.f. satisfies A(x) = exp( x*A(x)^2/(1 - x * A(x)^3) ).
[ "1", "1", "7", "103", "2349", "72961", "2874793", "137399487", "7724650601", "499542475105", "36532938744621", "2981405776356679", "268605245211618637", "26480489709604968129", "2835590837094928349921", "327748240537910056251151", "40669893396736296241364817", "5392699633877586027282801217" ]
[ "nonn" ]
13
0
3
[ "A361093", "A361142", "A365014" ]
null
Seiichi Manyama, Aug 15 2023
2023-08-19T06:28:49
oeisdata/seq/A365/A365014.seq
83db5096227eac1015103dd4c8ae64cc
A365015
E.g.f. satisfies A(x) = exp( x*A(x)^3/(1 - x * A(x)) ).
[ "1", "1", "9", "154", "3997", "140216", "6217549", "333774064", "21051514425", "1526073116032", "125040978948241", "11428407889500416", "1152792683163827413", "127215353330004610048", "15246125111980753585365", "1971966282368187450198016", "273796236099258954747416689" ]
[ "nonn" ]
13
0
3
[ "A361066", "A361094", "A365015", "A365016" ]
null
Seiichi Manyama, Aug 15 2023
2023-08-19T06:28:41
oeisdata/seq/A365/A365015.seq
2521ab2274ecc04f04fb1c4f6d20cc46
A365016
E.g.f. satisfies A(x) = exp( x*A(x)^3/(1 - x * A(x)^2) ).
[ "1", "1", "9", "160", "4345", "159796", "7434199", "418864426", "27732988609", "2110729489048", "181587635465671", "17426825999144926", "1845855944285411425", "213900244312057975348", "26919356609721984494311", "3656322063766897691641666", "533110345129065969043548289" ]
[ "nonn" ]
12
0
3
[ "A212722", "A361066", "A361093", "A361094", "A361143", "A365012", "A365015", "A365016" ]
null
Seiichi Manyama, Aug 15 2023
2023-08-19T06:28:33
oeisdata/seq/A365/A365016.seq
16d279566b96bf728c030e611f5d00d1
A365017
a(n) is the least nonnegative integer not already in the sequence whose binary expansion is not the concatenation of any two earlier terms.
[ "0", "1", "3", "4", "5", "14", "15", "16", "17", "18", "20", "21", "22", "24", "25", "26", "27", "38", "39", "46", "47", "60", "61", "64", "65", "66", "68", "69", "70", "72", "73", "74", "80", "81", "82", "84", "85", "86", "88", "89", "90", "96", "97", "98", "100", "101", "104", "105", "106", "108", "109", "115", "119", "126", "127", "134", "135", "142", "143", "151", "156", "157", "158", "166", "167", "174" ]
[ "nonn", "base" ]
46
1
3
[ "A364871", "A365017", "A365018" ]
null
Attila Kiss, Aug 16 2023
2023-11-05T15:00:13
oeisdata/seq/A365/A365017.seq
1ea16a9d611a4e2544a11dca96ad2d2b
A365018
a(n) is the least positive integer not already in the sequence whose binary expansion is not the concatenation of any two earlier terms.
[ "1", "2", "3", "4", "8", "10", "13", "15", "16", "22", "23", "25", "30", "32", "36", "37", "38", "39", "41", "44", "46", "49", "50", "52", "53", "59", "60", "64", "69", "70", "71", "76", "78", "81", "82", "85", "88", "92", "97", "98", "104", "106", "109", "111", "115", "120", "125", "127", "128", "133", "134", "135", "136", "137", "140", "142", "145", "148", "149", "152", "156", "161", "162", "170", "176", "182" ]
[ "nonn", "base" ]
51
1
2
[ "A190896", "A364871", "A365018" ]
null
Attila Kiss, Aug 16 2023
2023-11-05T15:00:07
oeisdata/seq/A365/A365018.seq
9104b0e9b8f903eee682883d91a19358
A365019
Triangular numbers that for some k >= 0 are also the sum of the first k perfect powers.
[ "0", "1", "159284476" ]
[ "nonn", "bref", "hard", "more" ]
5
1
3
[ "A000217", "A001597", "A066527", "A076408", "A298270", "A365019" ]
null
Ilya Gutkovskiy, Aug 16 2023
2023-08-24T10:33:51
oeisdata/seq/A365/A365019.seq
717f16b6611bd72e9744068f5a24cc7a
A365020
Solutions k to the Diophantine equation k^5 = Sum_{i=1..7} y_i^5 with positive y_i.
[ "23", "26", "30", "34", "35", "38", "40", "41", "42", "46", "49", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "67", "68", "69", "70", "71", "72", "73", "74", "75", "76", "78", "79", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99", "100", "101", "102", "103", "104", "105" ]
[ "nonn" ]
33
1
1
null
null
R. J. Mathar, Aug 16 2023
2025-04-18T17:45:27
oeisdata/seq/A365/A365020.seq
f1763d481726ea3bd6c935ed997feaf4
A365021
a(n) is the largest prime of the form P+1 where P divides prime(n)# and p# denotes the product of all primes <= p.
[ "3", "7", "31", "211", "2311", "6007", "102103", "3233231", "17160991", "2156564411", "200560490131", "1060105447831", "27659114866111", "568815710072611", "87841397512641631", "4655594068170006391", "147904642319554818391", "6899316550553351234311", "374205788146679383613291", "24258296962030389607278931" ]
[ "nonn" ]
16
1
1
[ "A002110", "A006862", "A365021" ]
null
Alain Rocchelli, Aug 16 2023
2023-08-29T11:51:54
oeisdata/seq/A365/A365021.seq
d648606768ef8a9d2b8316a6f072023c
A365022
The lesser of twin Carmichael numbers: a pair of consecutive Carmichael numbers (A002997) without a non-prime-power weak Carmichael number (A087442) between them.
[ "2465", "62745", "512461", "656601", "658801", "838201", "1033669", "2100901", "4903921", "5968873", "6049681", "8341201", "8719309", "9439201", "9582145", "9585541", "11119105", "11921001", "12261061", "15829633", "17236801", "26921089", "35571601", "36121345", "38624041", "41341321", "43286881", "43584481", "45877861" ]
[ "nonn" ]
9
1
1
[ "A000961", "A002997", "A087442", "A225498", "A365022", "A365023", "A365024" ]
null
Amiram Eldar, Aug 17 2023
2023-08-24T03:12:37
oeisdata/seq/A365/A365022.seq
86214fa6f909a31020e2924a8891e984
A365023
The greater of twin Carmichael numbers: a pair of consecutive Carmichael numbers (A002997) without a non-prime-power weak Carmichael number (A087442) between them.
[ "2821", "63973", "530881", "658801", "670033", "852841", "1050985", "2113921", "4909177", "6049681", "6054985", "8355841", "8719921", "9494101", "9585541", "9613297", "11205601", "11972017", "12262321", "15888313", "17316001", "26932081", "35703361", "36765901", "38637361", "41471521", "43331401", "43620409", "45890209" ]
[ "nonn" ]
7
1
1
[ "A000961", "A002997", "A087442", "A225498", "A365022", "A365023", "A365024" ]
null
Amiram Eldar, Aug 17 2023
2023-08-24T03:12:21
oeisdata/seq/A365/A365023.seq
9aa43e06ee7ef94e6f59f56212c5b2f3
A365024
Starts of runs of 3 consecutive Carmichael numbers (A002997) without a non-prime-power weak Carmichael number (A087442) between any two consecutive members.
[ "656601", "5968873", "9582145", "45877861", "67653433", "84311569", "171454321", "171679561", "193708801", "193910977", "230630401", "357277921", "367804801", "393122521", "393513121", "393716701", "395044651", "557160241", "703995733", "710382401", "775368901", "832060801", "833608321", "834244501", "939947009" ]
[ "nonn" ]
12
1
1
[ "A000961", "A002997", "A087442", "A225498", "A365022", "A365023", "A365024" ]
null
Amiram Eldar, Aug 17 2023
2025-04-27T00:45:16
oeisdata/seq/A365/A365024.seq
dd70b9b1e1d4e1bcdcb48d35467aac3b
A365025
Square array read by antidiagonals: T(n, k) := (k/2)!/k! * ((2*n+1)*k)! * ((2*n+1/2)*k)! / ( (n*k)!^2 * ((n+1/2)*k)!^2 ) for n, k >= 0.
[ "1", "1", "1", "1", "10", "1", "1", "126", "300", "1", "1", "1716", "79380", "11440", "1", "1", "24310", "20612592", "65523780", "485100", "1", "1", "352716", "5318784900", "328206021000", "60634147860", "21841260", "1", "1", "5200300", "1368494343216", "1552041334596844", "5876083665270000", "59774707082376", "1022041020", "1" ]
[ "nonn", "tabl", "easy" ]
30
0
5
[ "A275652", "A276098", "A364506", "A364509", "A364513", "A364518", "A365025", "A365026", "A365027" ]
null
Peter Bala, Aug 17 2023
2023-08-25T17:21:08
oeisdata/seq/A365/A365025.seq
3cf7b34aaa51a6c5fffd59255676c63b
A365026
a(n) = (5*n)!*(9*n/2)!*(n/2)! / ((2*n)!^2 * (5*n/2)!^2 * n!).
[ "1", "126", "79380", "65523780", "60634147860", "59774707082376", "61346313465418800", "64736852770959042240", "69724035322703253191700", "76277370761329867481375100", "84482032811073922526904281880", "94508142285721995026811874069200", "106599928449546340546215262030974000" ]
[ "nonn", "easy" ]
19
0
2
[ "A275652", "A365025", "A365026", "A365027" ]
null
Peter Bala, Aug 17 2023
2023-10-05T08:37:18
oeisdata/seq/A365/A365026.seq
b62df3549e397751dcf54e6b2f02422d
A365027
a(n) = (7*n)!*(13*n/2)!*(n/2)! / ((3*n)!^2 * (7*n/2)!^2 * n!).
[ "1", "1716", "20612592", "328206021000", "5876083665270000", "112210544802995673216", "2232092469681027490937400", "45670179632369542491712236480", "953926390279492216468973361270000", "20241460048032081192591594667805420400", "434878619369192244460121948456800558766592" ]
[ "nonn", "easy" ]
17
0
2
[ "A275652", "A365025", "A365026", "A365027" ]
null
Peter Bala, Aug 18 2023
2023-10-05T08:37:13
oeisdata/seq/A365/A365027.seq
029f04998ee1cdbe699e8711bd145849
A365028
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n,k)*binomial(n+k-1,n)* binomial(3*n+k-1,n).
[ "1", "3", "33", "462", "7185", "118503", "2029650", "35690868", "639948177", "11647493715", "214523842533", "3989404547076", "74784662259762", "1411371612900018", "26789659159105260", "511034151538808712", "9790719515677254033", "188293669308690649515", "3633506906803796715585" ]
[ "nonn", "easy" ]
20
0
2
[ "A000984", "A002894", "A365028" ]
null
Peter Bala, Sep 21 2023
2023-10-07T07:02:00
oeisdata/seq/A365/A365028.seq
b8f0742294db4d2b4c4f85534e39b6f4
A365029
a(n) = Sum_{k = 0..n} binomial(n+k-1, k)^2 * binomial(2*k-1, n).
[ "1", "0", "28", "1035", "44876", "2104500", "104056597", "5342503859", "282118965580", "15225746918238", "836111285393528", "46569126655126867", "2624469492691484309", "149381829558924820091", "8575171411278263451149", "495882491862054255448035", "28860386333798348100899148", "1689200944709783371200111774" ]
[ "nonn", "easy" ]
10
0
3
null
null
Peter Bala, Aug 27 2023
2023-10-06T10:30:51
oeisdata/seq/A365/A365029.seq
414162db5c9ae656f508f765c5eaf315
A365030
E.g.f. satisfies A(x) = exp(x * (1 + x * A(x))^3).
[ "1", "1", "7", "55", "709", "11761", "243181", "6054763", "175803097", "5847578785", "219175994521", "9144024668131", "420340277237365", "21111584238219697", "1150333949592549541", "67589878866533749531", "4260172601206280708401", "286737199114729515029569" ]
[ "nonn" ]
15
0
3
[ "A125500", "A363744", "A364938", "A365030" ]
null
Seiichi Manyama, Aug 17 2023
2023-08-19T06:28:15
oeisdata/seq/A365/A365030.seq
79b00dfa84629198ce7c7173f66bee36
A365031
E.g.f. satisfies A(x) = exp(x * A(x) * (1 + x * A(x))^2).
[ "1", "1", "7", "70", "1085", "22176", "569107", "17583616", "636085305", "26383168000", "1234691104031", "64368785424384", "3699873561469813", "232476344504965120", "15853643565560296875", "1166213594266747273216", "92052000392983157418353", "7760655405804462332903424" ]
[ "nonn" ]
24
0
3
[ "A088695", "A364939", "A365031", "A365032" ]
null
Seiichi Manyama, Aug 17 2023
2024-12-01T10:51:40
oeisdata/seq/A365/A365031.seq
3edbb61ff7e9c37f39a2ff098beabf0d
A365032
E.g.f. satisfies A(x) = exp(x * A(x) * (1 + x * A(x))^3).
[ "1", "1", "9", "106", "1949", "47376", "1443757", "53003392", "2278044729", "112267072000", "6242682602321", "386708915902464", "26411820455554261", "1971959747016534016", "159794005364013403125", "13967707431203856449536", "1310083060716906045342833", "131245686122586065682628608" ]
[ "nonn" ]
19
0
3
[ "A088695", "A364940", "A365031", "A365032" ]
null
Seiichi Manyama, Aug 17 2023
2024-12-01T10:51:47
oeisdata/seq/A365/A365032.seq
bb4c1da4bc9a3b30ed4d76cbb8444756
A365033
E.g.f. satisfies A(x) = exp(x * A(x)^2 * (1 + x * A(x))^2).
[ "1", "1", "9", "127", "2769", "80861", "2976733", "132394011", "6909143265", "414041227417", "28025981914581", "2115049310887679", "176095675272002929", "16035108243371426613", "1585349332849711046829", "169128107565128349122851", "19365426435579375683158977", "2368882573995841615546652081" ]
[ "nonn" ]
10
0
3
[ "A363357", "A364941", "A365033", "A365034" ]
null
Seiichi Manyama, Aug 17 2023
2023-08-18T08:26:47
oeisdata/seq/A365/A365033.seq
caf8fa9c3b0442388063a6842f0d427c
A365034
E.g.f. satisfies A(x) = exp(x * A(x)^2 * (1 + x * A(x))^3).
[ "1", "1", "11", "175", "4317", "142561", "5929513", "297901899", "17557448681", "1188110627137", "90804918357261", "7737033497254579", "727253150819898541", "74760871323339663489", "8344094871249960257009", "1004872166403751985971291", "129883465213311163328142417" ]
[ "nonn" ]
11
0
3
[ "A363357", "A364942", "A365033", "A365034" ]
null
Seiichi Manyama, Aug 17 2023
2023-08-18T08:26:43
oeisdata/seq/A365/A365034.seq
8e34692c14918a215d7ff65b8d94a114
A365035
E.g.f. satisfies A(x) = exp(x * (1 + x/A(x))).
[ "1", "1", "3", "1", "-11", "61", "301", "-6299", "7561", "903673", "-9019079", "-145636919", "4305630781", "7516191541", "-2037845181371", "22442805921901", "944219385367441", "-29922880660473359", "-288352494154313999", "32071808922904896913", "-273044292430852251899" ]
[ "sign" ]
13
0
3
[ "A125500", "A143768", "A361090", "A363354", "A363529", "A365035", "A365036", "A365037" ]
null
Seiichi Manyama, Aug 17 2023
2025-02-16T08:34:06
oeisdata/seq/A365/A365035.seq
2743b3b20027fd88e4bbbe5225b003ce
A365036
E.g.f. satisfies A(x) = exp(x * (1 + x/A(x)^2)).
[ "1", "1", "3", "-5", "-23", "521", "-1829", "-71021", "1319697", "5905297", "-683965709", "8664974891", "311864420473", "-13981842414695", "6694007756619", "16448800124183491", "-448649039951220959", "-13236887251789967071", "1210629233913421852387", "-12065049302884271631269" ]
[ "sign" ]
13
0
3
[ "A125500", "A143768", "A361091", "A363354", "A363529", "A365035", "A365036", "A365037" ]
null
Seiichi Manyama, Aug 17 2023
2025-02-16T08:34:06
oeisdata/seq/A365/A365036.seq
ef44e180c8653e173a6e8ba52b64256b
A365037
E.g.f. satisfies A(x) = exp(x * (1 + x/A(x)^3)).
[ "1", "1", "3", "-11", "-11", "1341", "-14339", "-168923", "8905065", "-85313735", "-4604578919", "197455645641", "-273728455571", "-267002430142187", "9427821270512373", "178475402982086701", "-28273343910563670959", "713736314833387866225", "51907546734507018043057" ]
[ "sign" ]
11
0
3
[ "A125500", "A143768", "A361092", "A363354", "A363529", "A365035", "A365036", "A365037" ]
null
Seiichi Manyama, Aug 17 2023
2025-02-16T08:34:06
oeisdata/seq/A365/A365037.seq
a8e0f1c727a4c513f2909bbb19220d6d
A365038
E.g.f. satisfies A(x) = exp(x * (1 + x)/A(x)).
[ "1", "1", "1", "-2", "9", "-44", "175", "246", "-21007", "396712", "-5576769", "57840850", "-151112951", "-14137899060", "539212013327", "-13335393617714", "239914650459105", "-1990873438067504", "-76974185162417921", "5220283004540970282", "-194958036625254566599", "5226632355735840377140" ]
[ "sign", "easy" ]
12
0
4
[ "A361067", "A362771", "A362773", "A363478", "A365038", "A365039", "A365040" ]
null
Seiichi Manyama, Aug 18 2023
2025-02-16T08:34:06
oeisdata/seq/A365/A365038.seq
815879ca36318acbd062149363ea6cd6
A365039
E.g.f. satisfies A(x) = exp(x * (1 + x)/A(x)^2).
[ "1", "1", "-1", "7", "-79", "1201", "-22961", "530167", "-14372191", "447825889", "-15776617249", "620209389031", "-26918670325295", "1278598424153233", "-65973615445792081", "3674793950748867031", "-219773335672937703871", "14046128883828030510529", "-955409650156763223984449" ]
[ "sign", "easy" ]
11
0
4
[ "A361068", "A362771", "A362773", "A363478", "A365038", "A365039", "A365040" ]
null
Seiichi Manyama, Aug 18 2023
2025-02-16T08:34:06
oeisdata/seq/A365/A365039.seq
e0da6de1a8fe4b9948139bfdb2849dd6
A365040
E.g.f. satisfies A(x) = exp(x * (1 + x)/A(x)^3).
[ "1", "1", "-3", "34", "-623", "15636", "-499277", "19382686", "-886663647", "46716323752", "-2786249779829", "185574001203834", "-13652735530485647", "1099602989008154476", "-96230900016000250269", "9092834662610587023286", "-922622745817066477888703", "100054409045940667152740304" ]
[ "sign", "easy" ]
12
0
3
[ "A361069", "A362771", "A362773", "A363478", "A365038", "A365039", "A365040" ]
null
Seiichi Manyama, Aug 18 2023
2025-02-16T08:34:06
oeisdata/seq/A365/A365040.seq
09e7a5694b1050336f3dc927934f63f2
A365041
Primitive solutions of A365008.
[ "12", "30", "32", "67", "78", "99", "106", "112", "113", "119", "135", "139", "145", "147", "156", "161", "172", "178", "189", "190", "197", "202", "205", "210", "214", "222", "223", "225", "227", "228", "234", "235", "236", "237", "241", "242", "243", "249", "251", "252", "257", "258", "260", "268", "272", "273", "277", "278", "280", "286", "287", "294", "295" ]
[ "nonn" ]
27
1
1
[ "A365008", "A365041" ]
null
Chai Wah Wu, Aug 18 2023
2023-08-24T09:29:43
oeisdata/seq/A365/A365041.seq
b5fcada6a90739b1fb4595038a520468
A365042
Number of subsets of {1..n} containing n such that some element can be written as a positive linear combination of the others.
[ "0", "0", "1", "2", "4", "5", "9", "11", "17", "21", "29", "36", "50", "60", "78", "95", "123", "147", "185", "221", "274", "325", "399", "472", "574", "672", "810", "945", "1131", "1316", "1557", "1812", "2137", "2462", "2892", "3322", "3881", "4460", "5176", "5916", "6846", "7817", "8993", "10250", "11765", "13333", "15280", "17308", "19731", "22306" ]
[ "nonn" ]
15
0
4
[ "A007865", "A085489", "A088314", "A088809", "A093971", "A124506", "A151897", "A237113", "A237668", "A288728", "A308546", "A324736", "A326020", "A326080", "A326083", "A364272", "A364350", "A364534", "A364755", "A364756", "A364839", "A364913", "A364914", "A365042", "A365043", "A365044", "A365045", "A365046", "A365069", "A365070" ]
null
Gus Wiseman, Aug 23 2023
2024-12-13T09:37:37
oeisdata/seq/A365/A365042.seq
6034662af92a31ea3622c2640eacd370
A365043
Number of subsets of {1..n} whose greatest element can be written as a (strictly) positive linear combination of the others.
[ "0", "0", "1", "3", "7", "12", "21", "32", "49", "70", "99", "135", "185", "245", "323", "418", "541", "688", "873", "1094", "1368", "1693", "2092", "2564", "3138", "3810", "4620", "5565", "6696", "8012", "9569", "11381", "13518", "15980", "18872", "22194", "26075", "30535", "35711", "41627", "48473", "56290", "65283", "75533", "87298", "100631", "115911", "133219" ]
[ "nonn" ]
19
0
4
[ "A007865", "A085489", "A088809", "A093971", "A124506", "A151897", "A237113", "A237668", "A288728", "A308546", "A324736", "A326020", "A326080", "A326083", "A364272", "A364350", "A364534", "A364755", "A364756", "A364839", "A364913", "A364914", "A365042", "A365043", "A365044", "A365045", "A365046", "A365069", "A365070" ]
null
Gus Wiseman, Aug 25 2023
2025-04-28T15:10:58
oeisdata/seq/A365/A365043.seq
73f48c12495617d501733b50b4dece77
A365044
Number of subsets of {1..n} whose greatest element cannot be written as a (strictly) positive linear combination of the others.
[ "1", "2", "3", "5", "9", "20", "43", "96", "207", "442", "925", "1913", "3911", "7947", "16061", "32350", "64995", "130384", "261271", "523194", "1047208", "2095459", "4192212", "8386044", "16774078", "33550622", "67104244", "134212163", "268428760", "536862900", "1073732255", "2147472267", "4294953778", "8589918612", "17179850312" ]
[ "nonn" ]
24
0
2
[ "A006951", "A007865", "A085489", "A088809", "A093971", "A124506", "A151897", "A237113", "A237668", "A288728", "A308546", "A324736", "A326020", "A326080", "A326083", "A341507", "A364272", "A364349", "A364350", "A364534", "A364755", "A364756", "A364839", "A364913", "A364914", "A365042", "A365043", "A365044", "A365045", "A365046", "A365069", "A365070", "A365071" ]
null
Gus Wiseman, Aug 26 2023
2024-12-13T09:37:45
oeisdata/seq/A365/A365044.seq
20034d430080c1ea6428c29a2bdf5a5d
A365045
Number of subsets of {1..n} containing n such that no element can be written as a positive linear combination of the others.
[ "0", "1", "1", "2", "4", "11", "23", "53", "111", "235", "483", "988", "1998", "4036", "8114", "16289", "32645", "65389", "130887", "261923", "524014", "1048251", "2096753", "4193832", "8388034", "16776544", "33553622", "67107919", "134216597", "268434140", "536869355", "1073740012", "2147481511", "4294964834", "8589931700" ]
[ "nonn" ]
17
0
4
[ "A007865", "A070880", "A085489", "A088809", "A093971", "A124506", "A151897", "A237113", "A237668", "A288728", "A308546", "A324736", "A326020", "A326080", "A326083", "A341507", "A364272", "A364349", "A364350", "A364534", "A364755", "A364756", "A364839", "A364913", "A364914", "A365042", "A365043", "A365044", "A365045", "A365046", "A365069", "A365070", "A365071" ]
null
Gus Wiseman, Aug 24 2023
2024-12-13T09:37:26
oeisdata/seq/A365/A365045.seq
06f4e29d2b9342a38efe8a37f9b78d95
A365046
Number of subsets of {1..n} containing n such that some element can be written as a nonnegative linear combination of the others.
[ "0", "0", "1", "2", "6", "11", "28", "53", "118", "235", "490", "973", "2008", "3990", "8089", "16184", "32563", "65071", "130667", "261183", "523388", "1046748", "2095239", "4190208", "8385030", "16768943", "33546257", "67092732", "134201461", "268400553", "536839090", "1073670970", "2147414967", "4294829905", "8589793931" ]
[ "nonn" ]
8
0
4
[ "A007865", "A085489", "A088809", "A093971", "A124506", "A151897", "A237113", "A237668", "A288728", "A308546", "A324736", "A326020", "A326080", "A326083", "A364272", "A364350", "A364534", "A364755", "A364756", "A364839", "A364913", "A364914", "A365042", "A365043", "A365044", "A365045", "A365046", "A365069", "A365070" ]
null
Gus Wiseman, Aug 24 2023
2024-12-13T09:39:24
oeisdata/seq/A365/A365046.seq
a218a5500a7b8e694b9d647aed98a69f
A365047
a(n) is the number of three-term geometric progressions, with rational ratio > 0, formed by the terms a(n-1), a(n-1-k) and a(n-1-2*k), where k >= 1 and n - 1 - 2*k >= 0.
[ "0", "0", "0", "1", "0", "1", "0", "1", "1", "0", "0", "1", "2", "0", "0", "2", "0", "3", "0", "4", "2", "0", "0", "4", "1", "0", "1", "0", "2", "1", "0", "3", "0", "5", "0", "4", "1", "0", "2", "0", "2", "0", "5", "0", "4", "1", "3", "0", "4", "1", "1", "1", "2", "1", "4", "2", "0", "4", "1", "0", "3", "0", "3", "0", "2", "2", "1", "4", "0", "5", "0", "3", "0", "6", "0", "3", "1", "3", "0", "5", "0", "6", "0", "5", "0", "6", "0", "6", "0", "8", "0", "8", "0", "9", "1", "2", "1", "1", "2" ]
[ "nonn" ]
28
0
13
[ "A051336", "A078651", "A132345", "A308638", "A365047", "A365677", "A366907" ]
null
Scott R. Shannon, Oct 21 2023
2024-03-02T13:32:59
oeisdata/seq/A365/A365047.seq
c6924f9d8e7f06a2f5b6e8ee00f274db
A365048
a(n) is the number of steps required for the n-th odd prime number to reach 3 when iterating the following hailstone map: If P+1 == 0 (mod 6), then the next number = smallest prime >= P + (P-1)/2; otherwise the next number = largest prime <= (P+1)/2.
[ "0", "2", "1", "6", "2", "5", "2", "4", "4", "3", "3", "5", "3", "8", "5", "13", "4", "4", "7", "4", "4", "6", "12", "9", "6", "9", "6", "6", "14", "5", "8", "11", "5", "8", "5", "5", "5", "16", "13", "13", "13", "13", "10", "7", "10", "10", "7", "15", "15", "15", "12", "15", "15", "12", "12", "12", "9", "6", "12", "6", "12", "6", "17", "6", "14", "6", "17", "14", "14", "11", "11", "14", "14", "14", "8", "11", "11", "14", "11", "8", "11", "16" ]
[ "nonn" ]
36
1
2
[ "A007528", "A065091", "A365048" ]
null
Najeem Ziauddin, Oct 21 2023
2023-11-13T17:54:34
oeisdata/seq/A365/A365048.seq
d3155fc722dcbf22a10c496a05612a81
A365049
a(n) is the number of distinct parallelograms with integer sides and area n, and where at least one height is an integer.
[ "1", "1", "2", "3", "2", "4", "2", "5", "5", "4", "2", "10", "2", "4", "8", "9", "2", "9", "2", "10", "8", "4", "2", "20", "5", "4", "8", "10", "2", "16", "2", "13", "8", "4", "8", "23", "2", "4", "8", "20", "2", "16", "2", "10", "18", "4", "2", "34", "5", "9", "8", "10", "2", "16", "8", "20", "8", "4", "2", "40", "2", "4", "18", "19", "8", "16", "2", "10", "8", "16", "2", "45", "2", "4", "18", "10", "8", "16", "2", "34", "13" ]
[ "nonn" ]
22
1
3
[ "A000005", "A027750", "A046079", "A214602", "A224931", "A365049" ]
null
Felix Huber, Aug 18 2023
2023-08-21T12:01:27
oeisdata/seq/A365/A365049.seq
98922b6842b0a4ba531bbb612f045d45
A365050
Slowest increasing sequence of primes such that a(n - 1) + a(n) and a(n - 1)^2 + a(n)^2 are both semiprimes, with a(1)=2.
[ "2", "19", "1459", "1699", "3079", "3259", "5419", "5479", "6079", "6679", "7219", "8059", "8719", "11299", "12619", "13219", "13399", "15559", "15679", "18919", "24379", "25219", "26839", "34819", "38239", "39019", "39799", "40459", "40759", "42019", "43399", "44119", "47059", "47779", "54559", "55339", "57139", "60259", "65479", "65599", "68659", "69859", "72559", "77659", "78439" ]
[ "nonn" ]
14
1
1
[ "A001358", "A365050" ]
null
Zak Seidov and Robert Israel, Aug 18 2023
2023-08-24T10:17:09
oeisdata/seq/A365/A365050.seq
27ccd7557303de7b15278962fc4ca9df
A365051
a(n) = |Aut^n(C_40)|: order of the group obtained by applying G -> Aut(G) n times to the cyclic group of order 40.
[ "40", "16", "192", "1152", "4608", "18432" ]
[ "nonn", "hard", "more" ]
10
0
1
[ "A331921", "A364904", "A364917", "A365051" ]
null
Jianing Song, Aug 18 2023
2023-08-19T16:12:37
oeisdata/seq/A365/A365051.seq
454309d139eb5ea4db33d15ee51752bd
A365052
Decimal expansion of continued fraction [1; 4, 9, 16, 25, ... n^2, ... ].
[ "1", "2", "4", "3", "2", "8", "8", "4", "7", "8", "3", "9", "9", "7", "1", "5", "6", "4", "4", "0", "8", "2", "4", "9", "6", "5", "4", "5", "3", "9", "4", "4", "2", "9", "4", "9", "9", "2", "3", "1", "2", "0", "0", "2", "6", "1", "1", "9", "7", "4", "4", "6", "8", "8", "5", "0", "6", "6", "4", "9", "7", "4", "5", "9", "8", "8", "1", "6", "3", "0", "3", "2", "2", "3", "3", "8", "2", "5", "3", "4", "2", "1", "4", "5", "9", "6", "4", "9", "8", "1", "5", "6", "1", "2", "1", "8", "5", "5", "9", "5" ]
[ "nonn", "cons" ]
21
1
2
[ "A036245", "A036246", "A052119", "A060997", "A073824", "A226771", "A365052" ]
null
Rok Cestnik, Aug 18 2023
2023-08-20T10:48:25
oeisdata/seq/A365/A365052.seq
48f91861b5b8c4e00fb27d46e3484935
A365053
E.g.f. satisfies A(x) = exp( x * (1+x/2) * A(x) ).
[ "1", "1", "4", "25", "230", "2786", "42112", "764296", "16209916", "393678856", "10777609556", "328466815964", "11031378197776", "404830360798072", "16118917055902312", "692126238230304616", "31882272572881781648", "1568365865590875789824", "82061348851406564851312" ]
[ "nonn", "easy" ]
18
0
3
[ "A091485", "A143740", "A365053", "A365054", "A365055", "A365056" ]
null
Seiichi Manyama, Aug 19 2023
2025-02-16T08:34:06
oeisdata/seq/A365/A365053.seq
dc59b2d004b7a640695ee7c91292d75b
A365054
E.g.f. satisfies A(x) = exp( x * (1+x/2) * A(x)^2 ).
[ "1", "1", "6", "64", "1038", "22666", "624448", "20801628", "813473468", "36543076444", "1854702411336", "104970490358944", "6555275229438664", "447773277245296536", "33211911279540910400", "2658266282912883209296", "228375288313274403201552", "20961681963345040127314192" ]
[ "nonn" ]
19
0
3
[ "A362474", "A362773", "A365053", "A365054", "A365055", "A365056" ]
null
Seiichi Manyama, Aug 19 2023
2025-02-16T08:34:06
oeisdata/seq/A365/A365054.seq
9f763fdc45c1aa0f909a3f027f425701
A365055
E.g.f. satisfies A(x) = exp( x * (1+x/2) * A(x)^3 ).
[ "1", "1", "8", "121", "2818", "89006", "3559504", "172489948", "9825889532", "643567980808", "47654835126436", "3936868360416476", "358990055621209984", "35816155847478234424", "3880967272702222156952", "453886307361640406266456", "56985342864303337121933584", "7644651551838264804179619200" ]
[ "nonn" ]
17
0
3
[ "A363478", "A365053", "A365054", "A365055", "A365056" ]
null
Seiichi Manyama, Aug 19 2023
2025-02-16T08:34:06
oeisdata/seq/A365/A365055.seq
1169df629fd244c729773bba188f044f
A365056
E.g.f. satisfies A(x) = exp( x * (1+x/2)/A(x) ).
[ "1", "1", "0", "1", "-6", "46", "-440", "5076", "-68740", "1070056", "-18835164", "369994780", "-8025080096", "190501729848", "-4912802070280", "136775150153656", "-4088669684755440", "130620500241909376", "-4441243727496127184", "160132524268963159440", "-6102784264210449418144" ]
[ "sign" ]
18
0
5
[ "A365038", "A365053", "A365054", "A365055", "A365056" ]
null
Seiichi Manyama, Aug 19 2023
2025-02-16T08:34:06
oeisdata/seq/A365/A365056.seq
3d9df45b51aa7377c84fe1ba74ee46d7
A365057
E.g.f. satisfies A(x) = exp(x * A(x)^2 * (1 + x/2 * A(x)^2)).
[ "1", "1", "6", "70", "1242", "29766", "901108", "33007500", "1419955260", "70189326748", "3920638941576", "244244850932424", "16790688671875000", "1262666306235233160", "103110586277262570672", "9086730135842989237456", "859557307380692050631952", "86872483166310571406250000" ]
[ "nonn" ]
8
0
3
[ "A091485", "A363358", "A365057", "A365058" ]
null
Seiichi Manyama, Aug 19 2023
2023-08-19T19:05:12
oeisdata/seq/A365/A365057.seq
bbdc010212b8b6634633ff1401b22ee1
A365058
E.g.f. satisfies A(x) = exp(x * A(x)^3 * (1 + x/2 * A(x)^3)).
[ "1", "1", "8", "130", "3250", "110336", "4744984", "247321096", "15155937500", "1067967873280", "85084447796416", "7562971176299936", "742055168686622872", "79662784245760000000", "9288538211005096189280", "1168938868353871429273216", "157924822350438542185141264" ]
[ "nonn" ]
8
0
3
[ "A091485", "A363479", "A365057", "A365058" ]
null
Seiichi Manyama, Aug 19 2023
2023-08-19T19:05:07
oeisdata/seq/A365/A365058.seq
fa78efe02450e7a3479dc4a6df62671b
A365059
a(1) = 2; for n > 2, a(n) is the smallest positive number that has not yet appeared that is a multiple of A008472(a(n-1)), the sum of the distinct primes dividing a(n-1).
[ "2", "4", "6", "5", "10", "7", "14", "9", "3", "12", "15", "8", "16", "18", "20", "21", "30", "40", "28", "27", "24", "25", "35", "36", "45", "32", "22", "13", "26", "60", "50", "42", "48", "55", "64", "34", "19", "38", "63", "70", "56", "54", "65", "72", "75", "80", "49", "77", "90", "100", "84", "96", "85", "44", "39", "112", "81", "33", "98", "99", "126", "108", "95", "120", "110", "144", "105", "135", "88", "52", "150", "130", "140" ]
[ "nonn" ]
9
1
1
[ "A008472", "A300813", "A365059", "A365060" ]
null
Scott R. Shannon, Aug 19 2023
2023-09-18T09:01:35
oeisdata/seq/A365/A365059.seq
500d16b7b5d4684f20e80c0da9fddaab
A365060
a(1) = 2; for n > 2, a(n) is the smallest positive number that has not yet appeared that has a common factor with A008472(a(n-1)), the sum of the distinct primes dividing a(n-1).
[ "2", "4", "6", "5", "10", "7", "14", "3", "9", "12", "15", "8", "16", "18", "20", "21", "22", "13", "26", "24", "25", "30", "28", "27", "33", "32", "34", "19", "38", "35", "36", "40", "42", "39", "44", "52", "45", "46", "50", "49", "56", "48", "55", "54", "60", "58", "31", "62", "11", "66", "64", "68", "57", "70", "63", "65", "51", "72", "75", "74", "69", "76", "77", "78", "80", "84", "81", "87", "82", "43", "86", "85", "88", "91", "90", "92", "95" ]
[ "nonn" ]
8
1
1
[ "A008472", "A300813", "A365059", "A365060" ]
null
Scott R. Shannon, Aug 19 2023
2023-09-18T09:01:29
oeisdata/seq/A365/A365060.seq
9a56305670102c77fbc1c7ec5a7a9697
A365061
a(n) is the number of endofunctions on an n-set where there is a single element with a preimage of maximum cardinality.
[ "1", "2", "21", "196", "2105", "27636", "451003", "8938056", "207358929", "5451691060", "158802143621", "5051104945272", "173783789845861", "6424902913267216", "253983495283150095", "10692693172088104336", "477787129703211313697", "22591854186020941025268", "1127404525137567577764013" ]
[ "nonn" ]
43
1
2
[ "A000035", "A000312", "A351118", "A365061" ]
null
Aaron O. Schweiger, Aug 19 2023
2023-09-22T16:11:42
oeisdata/seq/A365/A365061.seq
6e4d037626c9d9d93661a5999c729bbc
A365062
Enumeration of | Sort_n(123,321) |.
[ "1", "1", "2", "4", "7", "14", "28", "56", "112", "224", "448", "896", "1792", "3584", "7168", "14336", "28672", "57344", "114688", "229376", "458752", "917504", "1835008", "3670016", "7340032", "14680064", "29360128", "58720256", "117440512", "234881024", "469762048", "939524096", "1879048192", "3758096384", "7516192768", "15032385536" ]
[ "nonn", "easy" ]
41
0
3
[ "A000079", "A005009", "A365062" ]
null
Michael De Vlieger, Aug 23 2023
2023-08-25T08:50:57
oeisdata/seq/A365/A365062.seq
14fcc07a6fcd1fe55cdf72f84a8a261c
A365063
Least k such that k*A000668(n)*A000668(n+2) + 1 is prime, where A000668(n) is the n-th Mersenne prime.
[ "4", "4", "6", "34", "4", "18", "4", "10", "34", "60", "208", "442", "976", "1548", "1918", "1726", "3828", "210", "17940", "34254", "1852", "19986", "7728", "22186", "9966" ]
[ "nonn", "more" ]
14
1
1
[ "A000668", "A098917", "A365063", "A365064", "A365065" ]
null
J.W.L. (Jan) Eerland, Aug 19 2023
2023-09-29T19:12:59
oeisdata/seq/A365/A365063.seq
ad2187c4c3c59b73bb8f25e64b03f09b
A365064
Least k such that k*A000668(n)*A000668(n+3) + 1 is prime, where A000668(n) is the n-th Mersenne prime.
[ "6", "10", "22", "30", "16", "12", "6", "238", "28", "58", "178", "324", "346", "214", "2664", "4744", "24298", "5236", "2526", "3756", "6792", "2778", "1872", "59128" ]
[ "nonn", "more" ]
22
1
1
[ "A000668", "A098917", "A365063", "A365064", "A365065" ]
null
J.W.L. (Jan) Eerland, Aug 19 2023
2023-09-29T20:52:36
oeisdata/seq/A365/A365064.seq
26a5d3d7af7ff56471da5523632b746e
A365065
Least k such that k*M(n)*M(n+4) + 1 is prime, where M(n) = A000668(n).
[ "20", "18", "4", "22", "112", "28", "28", "52", "28", "616", "1288", "1342", "9988", "214", "7666", "3328", "21658", "18988", "6868", "22824", "10746", "3388", "59256" ]
[ "nonn", "more" ]
22
1
1
[ "A000668", "A098917", "A365063", "A365064", "A365065" ]
null
J.W.L. (Jan) Eerland, Aug 19 2023
2024-01-01T09:14:33
oeisdata/seq/A365/A365065.seq
8606146ef9e23ffcbc73007abfc27225
A365066
Decimal expansion of the constant 1/0! - 1/1! + 1/2! + 1/3! - 1/4! + 1/5! + 1/6! - 1/7! + ...
[ "6", "3", "4", "5", "5", "1", "1", "1", "8", "2", "6", "1", "2", "2", "5", "5", "4", "2", "7", "5", "7", "6", "1", "4", "2", "4", "1", "3", "0", "9", "6", "0", "7", "7", "2", "2", "3", "6", "3", "0", "7", "9", "9", "5", "0", "2", "5", "1", "6", "3", "2", "6", "5", "5", "8", "7", "5", "4", "8", "9", "1", "1", "6", "8", "7", "6", "9", "7", "3", "1", "4", "8", "0", "3", "1", "3", "9", "9", "5", "3", "5", "3", "8", "5", "6", "5", "6", "8", "3", "0", "6", "6", "4", "9", "6", "5", "1", "1", "6", "9", "8", "9", "8", "2", "7" ]
[ "nonn", "cons" ]
17
0
1
[ "A143820", "A365066" ]
null
Peter McNair, Aug 19 2023
2025-03-27T23:27:32
oeisdata/seq/A365/A365066.seq
686cbb3f12c53470fc589871c4003865
A365067
Irregular triangle read by rows where T(n,k) is the number of integer partitions of n whose odd parts sum to k, for k ranging from mod(n,2) to n in steps of 2.
[ "1", "1", "1", "1", "1", "2", "2", "1", "2", "2", "2", "3", "3", "2", "2", "4", "3", "4", "3", "5", "5", "3", "4", "4", "6", "5", "6", "6", "5", "8", "7", "5", "6", "8", "6", "10", "7", "10", "9", "10", "8", "12", "11", "7", "10", "12", "12", "10", "15", "11", "14", "15", "15", "16", "12", "18", "15", "11", "14", "20", "18", "20", "15", "22", "15", "22", "21", "25", "24", "24", "18", "27" ]
[ "nonn", "tabf" ]
11
0
6
[ "A000009", "A000041", "A035363", "A045931", "A053253", "A066208", "A066967", "A086543", "A113685", "A113686", "A119620", "A130780", "A171966", "A174713", "A239261", "A241638", "A268335", "A325698", "A346697", "A346698", "A365067", "A366322", "A366528", "A366531", "A366533" ]
null
Gus Wiseman, Oct 16 2023
2023-10-23T21:43:23
oeisdata/seq/A365/A365067.seq
6e5d8c930bf467d6b9ccdd9ff2a82e4c
A365068
Number of integer partitions of n with some part that can be written as a nonnegative linear combination of the other distinct parts.
[ "0", "0", "0", "1", "2", "4", "7", "10", "16", "23", "34", "44", "67", "85", "119", "157", "210", "268", "360", "453", "592", "748", "956", "1195", "1520", "1883", "2365", "2920", "3628", "4451", "5494", "6702", "8211", "9976", "12147", "14666", "17776", "21389", "25774", "30887", "37035", "44224", "52819", "62836", "74753", "88614", "105062", "124160" ]
[ "nonn" ]
16
0
5
[ "A000009", "A000041", "A008284", "A008289", "A108917", "A116861", "A151897", "A236912", "A237113", "A237667", "A237668", "A320340", "A323092", "A326083", "A364272", "A364350", "A364839", "A364910", "A364911", "A364912", "A364913", "A364914", "A364915", "A364916", "A365006", "A365068" ]
null
Gus Wiseman, Aug 27 2023
2023-12-30T21:23:13
oeisdata/seq/A365/A365068.seq
5760b3fb3da432425c572e7c95edf694
A365069
Number of subsets of {1..n} containing n and some element equal to the sum of two or more distinct other elements. A variation of non-binary sum-full subsets without re-usable elements.
[ "0", "0", "0", "1", "2", "7", "17", "41", "88", "201", "418", "892", "1838", "3798", "7716", "15740" ]
[ "nonn" ]
11
0
5
[ "A007865", "A050291", "A085489", "A088809", "A093971", "A108917", "A116861", "A124506", "A151897", "A236912", "A237113", "A237668", "A288728", "A326080", "A326083", "A363226", "A364272", "A364346", "A364348", "A364349", "A364350", "A364532", "A364534", "A364670", "A364755", "A364756", "A364839", "A364913", "A364914", "A364916", "A365046", "A365069", "A365070", "A365071" ]
null
Gus Wiseman, Aug 26 2023
2024-12-13T09:37:33
oeisdata/seq/A365/A365069.seq
c9671fd1db09556a9ee323a3816eff18
A365070
Number of subsets of {1..n} containing n and some element equal to the sum of two other (possibly equal) elements.
[ "0", "0", "1", "1", "5", "9", "24", "46", "109", "209", "469", "922", "1932", "3858", "7952", "15831", "32214", "64351", "129813", "259566", "521681", "1042703", "2091626", "4182470", "8376007", "16752524", "33530042", "67055129", "134165194", "268328011", "536763582", "1073523097", "2147268041", "4294505929", "8589506814", "17178978145" ]
[ "nonn" ]
17
0
5
[ "A007865", "A050291", "A051026", "A085489", "A088809", "A093971", "A116861", "A124506", "A151897", "A236912", "A237113", "A237668", "A288728", "A326080", "A326083", "A363225", "A363226", "A364349", "A364350", "A364533", "A364670", "A364755", "A364756", "A364839", "A364913", "A364914", "A364916", "A365006", "A365046", "A365070" ]
null
Gus Wiseman, Aug 24 2023
2024-12-13T09:37:41
oeisdata/seq/A365/A365070.seq
d7a823ed45a8ab83262237b4ae99b304
A365071
Number of subsets of {1..n} containing n such that no element is a sum of distinct other elements. A variation of non-binary sum-free subsets without re-usable elements.
[ "0", "1", "2", "3", "6", "9", "15", "23", "40", "55", "94", "132", "210", "298", "476", "644", "1038", "1406", "2149", "2965", "4584", "6077", "9426", "12648", "19067", "25739", "38958", "51514", "78459", "104265", "155436", "208329", "312791", "411886", "620780", "823785", "1224414", "1631815", "2437015", "3217077", "4822991" ]
[ "nonn" ]
14
0
3
[ "A007865", "A050291", "A085489", "A088809", "A093971", "A095944", "A103580", "A108917", "A124506", "A151897", "A236912", "A237113", "A237668", "A275972", "A288728", "A324741", "A326080", "A326083", "A326117", "A341507", "A364272", "A364349", "A364350", "A364532", "A364533", "A364534", "A364755", "A364756", "A364839", "A364913", "A364914", "A365046", "A365069", "A365070", "A365071" ]
null
Gus Wiseman, Aug 26 2023
2024-12-13T09:37:29
oeisdata/seq/A365/A365071.seq
5c138af47cde20d824c0137b94973261
A365072
Number of integer partitions of n such that no distinct part can be written as a (strictly) positive linear combination of the other distinct parts.
[ "1", "1", "2", "2", "3", "3", "4", "5", "6", "8", "9", "17", "15", "31", "34", "53", "65", "109", "117", "196", "224", "328", "405", "586", "673", "968", "1163", "1555", "1889", "2531", "2986", "3969", "4744", "6073", "7333", "9317", "11053", "14011", "16710", "20702", "24714", "30549", "36127", "44413", "52561", "63786", "75583", "91377", "107436", "129463" ]
[ "nonn" ]
14
0
3
[ "A000009", "A000041", "A008284", "A008289", "A085489", "A108917", "A116861", "A151897", "A236912", "A237667", "A325862", "A364272", "A364350", "A364839", "A364910", "A364911", "A364912", "A364913", "A364915", "A364916", "A365006", "A365043", "A365044", "A365068", "A365072" ]
null
Gus Wiseman, Aug 31 2023
2023-09-20T18:12:33
oeisdata/seq/A365/A365072.seq
c5572e0e653e3bcac70554dfb9ea72cb
A365073
Number of subsets of {1..n} that can be linearly combined using nonnegative coefficients to obtain n.
[ "1", "1", "3", "6", "14", "26", "60", "112", "244", "480", "992", "1944", "4048", "7936", "16176", "32320", "65088", "129504", "261248", "520448", "1046208", "2090240", "4186624", "8365696", "16766464", "33503744", "67064064", "134113280", "268347392", "536546816", "1073575936", "2146703360", "4294425600", "8588476416", "17178349568" ]
[ "nonn" ]
20
0
3
[ "A007865", "A088314", "A088809", "A093971", "A124506", "A131577", "A151897", "A179822", "A237668", "A308546", "A326020", "A326080", "A326083", "A364350", "A364534", "A364839", "A364914", "A365043", "A365046", "A365073", "A365311", "A365314", "A365315", "A365320", "A365321", "A365322", "A365379", "A365380", "A365381", "A365542" ]
null
Gus Wiseman, Sep 01 2023
2024-12-13T09:42:16
oeisdata/seq/A365/A365073.seq
6e896cd6772328b56c458c3bf78223a3
A365074
Numbers k such that k! - k^2 - 1 is prime.
[ "4", "6", "14", "126", "184", "634", "1354", "1550", "6710" ]
[ "nonn", "hard", "more" ]
29
1
1
[ "A073443", "A365074" ]
null
Darío Clavijo, Sep 12 2023
2025-06-16T23:48:54
oeisdata/seq/A365/A365074.seq
57427aeb52b2049b674400ddf784ed9c
A365075
Decimal expansion of the initial irrational number of Cantor's diagonal argument: the k-th decimal digit of this constant is equal to the k-th decimal digit of A182972(k)/A182973(k).
[ "5", "3", "0", "6", "0", "6", "0", "0", "2", "0", "0", "4", "0", "1", "8", "0", "2", "0", "5", "3", "0", "2", "3", "8", "0", "4", "0", "1", "2", "7", "5", "7", "3", "6", "0", "6", "2", "5", "7", "0", "3", "5", "3", "6", "5", "0", "8", "7", "3", "3", "5", "6", "0", "6", "8", "6", "3", "2", "0", "1", "2", "3", "8", "0", "9", "3", "0", "1", "9", "6", "6", "4", "6", "9", "5", "2", "0", "6", "7", "2", "0", "3", "5", "0", "6", "9", "2", "0", "5" ]
[ "nonn", "base", "cons", "easy" ]
27
0
1
[ "A182972", "A182973", "A365075" ]
null
Stefano Spezia, Aug 20 2023
2023-09-01T04:12:02
oeisdata/seq/A365/A365075.seq
387f6f28a84439fe5cea0efe1a307d81
A365076
Number of length-n binary words x such that the infinite word xxxx... is balanced.
[ "2", "4", "8", "12", "22", "22", "44", "44", "62", "64", "112", "78", "158", "130", "148", "172", "274", "184", "344", "232", "302", "334", "508", "302", "522", "472", "548", "474", "814", "442", "932", "684", "778", "820", "904", "672", "1334", "1030", "1100", "904", "1642", "904", "1808", "1222", "1282", "1522", "2164", "1198", "2102", "1564", "1912", "1728" ]
[ "nonn" ]
20
1
1
[ "A057660", "A057661", "A365076" ]
null
Jeffrey Shallit, Aug 20 2023
2024-08-05T01:56:47
oeisdata/seq/A365/A365076.seq
d32535271261d13a60488d68c90adffb
A365077
Continued fraction of A363679 (sum of reciprocals of triangular polygorials).
[ "2", "2", "1", "1", "7", "7", "15", "1", "8", "1", "2", "10", "1", "1", "2", "35", "1", "1", "2", "1", "1", "4", "6", "2", "3", "2", "3", "7", "3", "2", "4", "3", "2", "3", "1", "1", "8", "1", "2", "2", "4", "1", "2", "3", "1", "1", "1", "1", "5", "1", "38", "10", "35", "4", "4", "5", "1", "4", "1", "3", "2", "1", "67", "1", "1", "1", "1", "1", "12", "1", "8", "8", "5", "1", "3", "1", "2", "2", "6", "15", "9", "9", "1", "5", "2", "38", "5", "4", "1", "2", "1", "1", "3", "1", "123", "1", "1", "1", "1", "8" ]
[ "cofr", "nonn" ]
33
1
1
[ "A003417", "A070913", "A363679", "A365077" ]
null
Kelvin Voskuijl, Aug 20 2023
2023-08-22T08:00:19
oeisdata/seq/A365/A365077.seq
da521df1b77d621a5a8f28586da338fc
A365078
a(n) is the least divisor (d) of prime(n)# such that prime(n)# / d + 1 is prime where p# denotes the product of all primes <= p.
[ "1", "1", "1", "1", "1", "5", "5", "3", "13", "3", "1", "7", "11", "23", "7", "7", "13", "17", "21", "23", "47", "29", "5", "55", "85", "31", "21", "31", "11", "21", "23", "5", "57", "21", "97", "67", "11", "7", "41", "43", "29", "39", "11", "15", "89", "21", "11", "83", "47", "43", "85", "85", "17", "17", "11", "127", "177", "167", "15", "23", "21", "17", "67", "149", "113", "15", "131", "47", "61", "95", "53", "115", "31", "79", "1" ]
[ "nonn" ]
12
1
6
[ "A002110", "A365021", "A365078" ]
null
Alain Rocchelli, Aug 20 2023
2023-09-27T13:43:08
oeisdata/seq/A365/A365078.seq
816f71e2ebaa040aed5c5fd5abe72500
A365079
G.f. satisfies A(x) = 1 + x*A(x)*(1 + x^4*A(x)^3).
[ "1", "1", "1", "1", "1", "2", "6", "16", "36", "71", "131", "247", "511", "1156", "2696", "6172", "13664", "29563", "63871", "140341", "315185", "717962", "1639822", "3728276", "8432696", "19047924", "43166420", "98378502", "225355290", "517683270", "1190034046", "2735049866", "6287002806", "14467864356", "33355524916" ]
[ "nonn" ]
27
0
6
[ "A127902", "A186996", "A215340", "A365079" ]
null
Seiichi Manyama, Aug 29 2023
2023-08-29T08:52:50
oeisdata/seq/A365/A365079.seq
3a664d47664c0f4e3b14b6d66c6d3c7c
A365080
Inverse permutation to A364885.
[ "0", "1", "3", "2", "6", "4", "9", "5", "10", "7", "13", "8", "27", "14", "54", "20", "15", "11", "18", "12", "34", "19", "64", "26", "65", "35", "104", "44", "405", "119", "1539", "230", "21", "16", "24", "17", "42", "25", "75", "33", "76", "43", "118", "53", "433", "134", "1594", "251", "135", "77", "189", "90", "629", "209", "2144", "377", "2210", "665", "5564", "1034" ]
[ "nonn", "base" ]
7
0
3
[ "A000217", "A006893", "A364885", "A365080" ]
null
Rémy Sigrist, Aug 20 2023
2023-08-26T08:57:23
oeisdata/seq/A365/A365080.seq
a2ad9454ca9425a423f9dcaabccf9e90
A365081
Numbers k with the property that the symmetric representation of sigma(k) has four parts and its second part is an octagon of width 1 and one of the vertices of the octagon is also the central vertex of the first valley of the largest Dyck path of the diagram.
[ "21", "27", "33", "39", "51", "57", "69", "87", "93", "111", "123", "129", "141", "159", "177", "183", "201", "213", "219", "237", "249", "267", "291", "303", "309", "321", "327", "339", "381" ]
[ "nonn", "more" ]
32
1
1
[ "A016945", "A033676", "A161345", "A196020", "A235791", "A236104", "A237270", "A237271", "A237591", "A237593", "A240062", "A245092", "A249351", "A262626", "A264102", "A280107", "A364414", "A364639", "A365081" ]
null
Omar E. Pol, Aug 20 2023
2023-09-05T09:37:52
oeisdata/seq/A365/A365081.seq
85c2648445df58253b2109defa5a72f7
A365082
Prime powers (A246655) q such that -2 is a nonzero square in the finite field F_q.
[ "3", "9", "11", "17", "19", "25", "27", "41", "43", "49", "59", "67", "73", "81", "83", "89", "97", "107", "113", "121", "131", "137", "139", "163", "169", "179", "193", "211", "227", "233", "241", "243", "251", "257", "281", "283", "289", "307", "313", "331", "337", "347", "353", "361", "379", "401", "409", "419", "433", "443", "449", "457", "467", "491", "499", "521", "523", "529" ]
[ "nonn", "easy" ]
39
1
1
[ "A033200", "A085759", "A365082", "A365313", "A366526" ]
null
Jianing Song, Oct 22 2023
2023-10-28T11:35:12
oeisdata/seq/A365/A365082.seq
07b23a60609bf8fd20c7f411fe4d2dd2
A365083
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x)^4.
[ "1", "1", "-3", "3", "5", "-22", "27", "28", "-163", "235", "134", "-1188", "1983", "408", "-8504", "16320", "-1551", "-59659", "131507", "-46683", "-408806", "1040147", "-612380", "-2721835", "8088003", "-6523626", "-17457420", "61883839", "-62900496", "-106248240", "466069760", "-571001695", "-595520019", "3454539427" ]
[ "sign", "easy" ]
11
0
3
[ "A055991", "A106510", "A127896", "A365083", "A365084" ]
null
Seiichi Manyama, Aug 21 2023
2023-08-21T08:23:07
oeisdata/seq/A365/A365083.seq
e438d482a14ef16fc805e4fa183f2bee
A365084
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x)^5.
[ "1", "1", "-4", "6", "6", "-49", "95", "24", "-592", "1417", "-414", "-6809", "20142", "-14831", "-73353", "274761", "-311105", "-715647", "3607624", "-5463428", "-5785294", "45588556", "-87189477", "-25565196", "552659892", "-1305250324", "340413165", "6379267117", "-18606431142", "13202513476", "69064770845" ]
[ "sign", "easy" ]
14
0
3
[ "A079675", "A106510", "A127896", "A365083", "A365084" ]
null
Seiichi Manyama, Aug 21 2023
2023-08-21T08:23:02
oeisdata/seq/A365/A365084.seq
e5d5a0a82956e1e0962641a3482327b8
A365085
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x*A(x))^2.
[ "1", "1", "-1", "-2", "5", "6", "-30", "-13", "189", "-56", "-1188", "1266", "7194", "-14377", "-40183", "135278", "188773", "-1151800", "-503880", "9109076", "-3419924", "-67220176", "80390824", "458183898", "-998680470", "-2794491329", "10156144385", "13919066170", "-92250872385", "-36047778330", "769826420850", "-339940775445" ]
[ "sign" ]
11
0
4
[ "A090192", "A106510", "A364735", "A365085", "A365086", "A365087", "A365088" ]
null
Seiichi Manyama, Aug 21 2023
2023-08-21T08:23:23
oeisdata/seq/A365/A365085.seq
b172325473c3af487b740109043a055e
A365086
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x*A(x))^3.
[ "1", "1", "-2", "-2", "15", "-4", "-122", "204", "903", "-3374", "-4635", "43539", "-13233", "-475123", "873392", "4244591", "-16906773", "-24952174", "244162840", "-74520792", "-2901715074", "5483226036", "27740164293", "-112969486284", "-172903931727", "1714556657881", "-513739179725", "-21235809823325" ]
[ "sign" ]
10
0
3
[ "A090192", "A127896", "A161797", "A364736", "A365085", "A365086", "A365087", "A365088" ]
null
Seiichi Manyama, Aug 21 2023
2023-08-21T08:23:19
oeisdata/seq/A365/A365086.seq
bd02d2141630c5ba03c941668060b7b2
A365087
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x*A(x))^4.
[ "1", "1", "-3", "-1", "29", "-44", "-265", "1114", "1369", "-19076", "20388", "250977", "-875281", "-2116594", "19136754", "-7765108", "-306092007", "830209808", "3388957208", "-22266676364", "-8185922076", "413223401045", "-814031607979", "-5513566634947", "27558060911119", "35395095404776" ]
[ "sign" ]
12
0
3
[ "A090192", "A321798", "A364737", "A365083", "A365085", "A365086", "A365087", "A365088" ]
null
Seiichi Manyama, Aug 21 2023
2023-08-21T08:23:15
oeisdata/seq/A365/A365087.seq
0b3440deaef7f40f2aef88e2dd3cd932
A365088
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x*A(x))^5.
[ "1", "1", "-4", "1", "46", "-129", "-405", "3319", "-1617", "-59258", "199541", "642170", "-6038395", "3886091", "119884973", "-440626784", "-1367688245", "14055527190", "-11043763380", "-290488387366", "1137260033731", "3336325340735", "-36966844508130", "34098313310315", "776097820004580" ]
[ "sign" ]
11
0
3
[ "A090192", "A321799", "A364738", "A365084", "A365085", "A365086", "A365087", "A365088" ]
null
Seiichi Manyama, Aug 21 2023
2023-08-21T08:23:11
oeisdata/seq/A365/A365088.seq
7f192bb4c6a218a3473b1a1c8ae2e38a
A365089
The Thue-Morse sequence along the sequence of cubes.
[ "0", "1", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "1", "1", "0", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "1", "0", "0", "1", "1", "1", "1", "0", "0", "0", "0", "0", "1", "1", "0", "1", "0", "0", "1", "0", "0", "1", "0", "1", "1", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "1", "0", "0", "1", "1", "0", "1", "1", "0", "1", "0", "1", "1", "1" ]
[ "easy", "nonn" ]
28
0
null
[ "A000578", "A010060", "A228039", "A365089" ]
null
Lukas Spiegelhofer, Aug 21 2023
2023-08-22T14:14:45
oeisdata/seq/A365/A365089.seq
8c91e0b088c9144f83dd7c29a0feff1c
A365090
Total domination number of the n-Lucas cube graph.
[ "2", "2", "3", "4", "7", "9", "13", "19", "27", "41", "58" ]
[ "nonn", "more" ]
7
2
1
null
null
Eric W. Weisstein, Aug 21 2023
2025-02-16T08:34:06
oeisdata/seq/A365/A365090.seq
4c72cc55d32174813aa01c5717f04381
A365091
Total domination number of the n-Pell graph.
[ "2", "2", "4", "9", "16", "34" ]
[ "nonn", "more" ]
5
1
1
null
null
Eric W. Weisstein, Aug 21 2023
2025-02-16T08:34:06
oeisdata/seq/A365/A365091.seq
0e69390dc81ca0e9c7283bc555769edc
A365092
Write out the canonical factorization of n and factorize the exponents in the factorization, the exponents in the factorizations of the exponents, ... until there are only prime numbers left. Replace each p in the factorization by (p-1)+1 and factorize each p-1 by the same process if p-1 > 1. Continue this process until there are only 1s left. a(n) is the number of 1s used.
[ "0", "2", "3", "4", "5", "5", "6", "5", "5", "7", "8", "7", "8", "8", "8", "6", "7", "7", "8", "9", "9", "10", "11", "8", "7", "10", "6", "10", "11", "10", "11", "7", "11", "9", "11", "9", "10", "10", "11", "10", "11", "11", "12", "12", "10", "13", "14", "9", "8", "9", "10", "12", "13", "8", "13", "11", "11", "13", "14", "12", "13", "13", "11", "7", "13", "13", "14", "11", "14", "13", "14", "10", "11", "12", "10", "12" ]
[ "nonn" ]
21
1
2
[ "A001144", "A185102", "A365092", "A365093" ]
null
Jianing Song, Aug 21 2023
2023-08-24T02:42:18
oeisdata/seq/A365/A365092.seq
99707fc0e14d8842638c51b3b7af28cd
A365093
Smallest k such that A365092(k) = n.
[ "2", "3", "4", "5", "7", "10", "11", "20", "22", "23", "43", "46", "47", "92", "94", "139", "188", "235", "283", "461", "517", "659", "941", "1081", "1319", "2027", "2447", "2879", "4139", "5758", "8278", "10343", "13301", "20117", "26179", "30337", "44227", "56281", "61993", "95197", "115009", "135313", "194533", "270626", "366683", "481199", "606743", "811879" ]
[ "nonn", "hard" ]
20
2
1
[ "A365092", "A365093" ]
null
Jianing Song, Aug 21 2023
2023-08-25T11:49:52
oeisdata/seq/A365/A365093.seq
0700a50fa0d5ba6a15017a7375a7b4ec
A365094
Triangle read by rows: T(n,k) is the number of n-sided cycles with the property that one makes k turns to the right while following its edges.
[ "1", "0", "0", "1", "1", "0", "4", "0", "1", "2", "5", "5", "5", "5", "2", "9", "12", "21", "36", "21", "12", "9", "31", "49", "147", "133", "133", "147", "49", "31", "128", "328", "652", "792", "1240", "792", "652", "328", "128", "708", "1719", "3717", "6735", "7281", "7281", "6735", "3717", "1719", "708", "4015", "10320", "28585", "43780", "58120", "73240", "58120", "43780", "28585", "10320", "4015" ]
[ "nonn", "tabf" ]
21
3
7
[ "A000142", "A008292", "A295264", "A342968", "A365094" ]
null
Ludovic Schwob, Aug 21 2023
2024-04-03T03:26:26
oeisdata/seq/A365/A365094.seq
a865fdc8004c9c7bca94c3a14ff2b42c
A365095
Expansion of g.f. A(x) satisfying [x^(n-1)] (1 + (n-1)*x*A(x)^2)^n / A(x)^n = 0 for n > 1.
[ "1", "1", "4", "27", "256", "3118", "46114", "797049", "15671350", "343712542", "8287906284", "217309849772", "6143454613682", "186012988954448", "5999891924386246", "205262374717093101", "7420869162700453174", "282640364822610119566", "11310634300879858185320", "474456517209788353301282", "20818983374432724237753352" ]
[ "nonn" ]
11
0
3
[ "A303063", "A365095" ]
null
Paul D. Hanna, Sep 03 2023
2023-09-04T06:05:06
oeisdata/seq/A365/A365095.seq
8d97259157b94da067085d139c380e21
A365096
Array G(M,S), where M are the permutations of the first K integers and S is the size of a list of distinct items, (k = 1, 2, ..., S >= k) to be read by antidiagonals (see definition in Comments).
[ "1", "1", "1", "1", "2", "2", "1", "2", "2", "1", "1", "4", "4", "3", "2", "1", "4", "4", "4", "2", "2", "1", "3", "3", "4", "2", "2", "3", "1", "3", "3", "6", "4", "4", "3", "3", "1", "6", "6", "2", "6", "4", "4", "4", "2", "1", "6", "6", "2", "6", "6", "6", "4", "2", "1", "1", "10", "10", "6", "4", "4", "6", "6", "4", "4", "2", "1", "10", "10", "5", "4", "4", "4", "2", "6", "6", "3", "2", "1", "12" ]
[ "nonn", "tabl" ]
34
1
5
[ "A000012", "A024222", "A105272", "A118960", "A120280", "A120363", "A120654", "A365096" ]
null
Donald 'Paddy' McCarthy, Aug 21 2023
2023-09-25T07:37:21
oeisdata/seq/A365/A365096.seq
5768b03c6e087d1ccd6251e4285dc859
A365097
Smallest k > 1 such that the total number of digits "1" required to write the numbers 1..k in base n is equal to k.
[ "2", "4", "25", "181", "421", "3930", "8177", "102772", "199981", "3179142", "5971945", "143610511", "210826981", "4754446846", "8589934561", "222195898593", "396718580701", "13494919482970", "20479999999961", "764527028941797", "1168636602822613", "41826814261329722", "73040694872113105", "2855533828630999398" ]
[ "nonn", "base" ]
61
2
1
[ "A014778", "A094798", "A226238", "A365097" ]
null
Andrew Pope, Aug 21 2023
2023-10-01T07:58:23
oeisdata/seq/A365/A365097.seq
a34fa8db6f51e0f27787c2e543d686f4
A365098
Primes p such that Sum_{k=1..p-1} q^2_p(k) == 0 (mod p), with q_p(k) a Fermat quotient.
[ "2", "11", "971" ]
[ "nonn", "hard", "more", "bref" ]
22
1
1
[ "A007540", "A197632", "A365098" ]
null
Felix Fröhlich, Aug 21 2023
2024-05-06T01:47:44
oeisdata/seq/A365/A365098.seq
3201940d7db7eaa6452b8f635525cc73
A365099
Number of distinct residues of x^n (mod n^2), x=0..n^2-1.
[ "1", "2", "3", "2", "5", "4", "7", "3", "7", "6", "11", "4", "13", "8", "15", "5", "17", "8", "19", "4", "9", "12", "23", "6", "21", "14", "19", "8", "29", "12", "31", "9", "33", "18", "35", "8", "37", "20", "15", "6", "41", "8", "43", "12", "35", "24", "47", "10", "43", "22", "51", "8", "53", "20", "15", "12", "21", "30", "59", "8", "61", "32", "21", "17", "65", "24", "67", "10", "69", "24", "71", "12", "73", "38", "63" ]
[ "nonn" ]
14
1
2
[ "A023105", "A046631", "A195637", "A365099", "A365100", "A365101", "A365102", "A365103" ]
null
Albert Mukovskiy, Aug 21 2023
2023-08-22T07:57:27
oeisdata/seq/A365/A365099.seq
fd19303853308e9d441e4795e2e8e355
A365100
Number of distinct residues of x^n (mod n^3), x=0..n^3-1.
[ "1", "3", "7", "6", "21", "8", "43", "18", "55", "22", "111", "20", "157", "44", "147", "65", "273", "56", "343", "30", "105", "112", "507", "68", "501", "158", "487", "110", "813", "88", "931", "257", "777", "274", "903", "140", "1333", "344", "371", "102", "1641", "64", "1807", "280", "1155", "508", "2163", "260", "2059", "502", "1911", "200", "2757", "488", "483", "374", "805", "814" ]
[ "nonn" ]
11
1
2
[ "A023105", "A046631", "A195637", "A365099", "A365100", "A365101", "A365102", "A365103", "A365104" ]
null
Albert Mukovskiy, Aug 21 2023
2023-08-23T20:19:08
oeisdata/seq/A365/A365100.seq
bdb09158dcb356083c17cbfb4240a6ec