sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-19 00:40:46
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A365001
|
Primes from which it is not possible to reach a (different) Mersenne prime by toggling a single bit per step while still remaining prime at every step.
|
[
"73",
"89",
"127",
"173",
"191",
"233",
"239",
"251",
"257",
"277",
"337",
"349",
"373",
"431",
"443",
"491",
"557",
"653",
"683",
"701",
"733",
"761",
"769",
"773",
"787",
"853",
"907",
"911",
"971",
"1019",
"1093",
"1109",
"1117",
"1193",
"1201",
"1237",
"1297",
"1301",
"1303",
"1361",
"1367",
"1373",
"1381",
"1399",
"1429",
"1453",
"1489",
"1493"
] |
[
"nonn",
"base"
] | 21 | 1 | 1 |
[
"A065092",
"A065111",
"A365001"
] | null |
Sean A. Irvine, Aug 15 2023
| 2025-01-05T19:51:42 |
oeisdata/seq/A365/A365001.seq
|
34b5a724217c7427d575d0c1db994b25
|
A365002
|
Number of ways to write n as a nonnegative linear combination of a strict integer partition.
|
[
"1",
"1",
"2",
"4",
"8",
"10",
"26",
"32",
"63",
"84",
"157",
"207",
"383",
"477",
"768",
"1108",
"1710",
"2261",
"3536",
"4605",
"6869",
"9339",
"13343",
"17653",
"25785",
"33463",
"46752",
"61549",
"85614",
"110861",
"153719",
"197345",
"268623",
"346845",
"463513",
"593363",
"797082",
"1011403",
"1335625",
"1703143",
"2232161",
"2820539"
] |
[
"nonn"
] | 22 | 0 | 3 |
[
"A000009",
"A000041",
"A006951",
"A008284",
"A008289",
"A066328",
"A116861",
"A364272",
"A364350",
"A364839",
"A364907",
"A364910",
"A364911",
"A364912",
"A364913",
"A364916",
"A365002",
"A365004"
] | null |
Gus Wiseman, Aug 22 2023
| 2024-01-11T16:22:39 |
oeisdata/seq/A365/A365002.seq
|
40b1925dd3cf26cf909ea37d295c1e41
|
A365003
|
Heinz numbers of integer partitions where the sum of all parts is twice the sum of distinct parts.
|
[
"1",
"4",
"9",
"25",
"36",
"48",
"49",
"100",
"121",
"160",
"169",
"196",
"225",
"289",
"361",
"441",
"448",
"484",
"529",
"567",
"676",
"750",
"810",
"841",
"900",
"961",
"1080",
"1089",
"1156",
"1200",
"1225",
"1369",
"1408",
"1440",
"1444",
"1521",
"1681",
"1764",
"1849",
"1920",
"2116",
"2209",
"2268",
"2352",
"2601",
"2809",
"3024",
"3025",
"3159"
] |
[
"nonn"
] | 8 | 1 | 2 |
[
"A000009",
"A000041",
"A001221",
"A001222",
"A056239",
"A066328",
"A112798",
"A116861",
"A304038",
"A320340",
"A323092",
"A364350",
"A364839",
"A364906",
"A364907",
"A364910",
"A364911",
"A364916",
"A365003"
] | null |
Gus Wiseman, Aug 23 2023
| 2023-08-24T10:03:05 |
oeisdata/seq/A365/A365003.seq
|
f7bef2d3c84365c7878150fcb1ed7999
|
A365004
|
Array read by antidiagonals downwards where A(n,k) is the number of ways to write n as a nonnegative linear combination of an integer partition of k.
|
[
"1",
"1",
"0",
"2",
"1",
"0",
"3",
"2",
"1",
"0",
"5",
"4",
"4",
"1",
"0",
"7",
"7",
"8",
"4",
"1",
"0",
"11",
"12",
"17",
"13",
"6",
"1",
"0",
"15",
"19",
"30",
"28",
"18",
"6",
"1",
"0",
"22",
"30",
"53",
"58",
"50",
"24",
"8",
"1",
"0",
"30",
"45",
"86",
"109",
"108",
"70",
"33",
"8",
"1",
"0",
"42",
"67",
"139",
"194",
"223",
"179",
"107",
"40",
"10",
"1",
"0",
"56",
"97",
"213",
"328",
"420",
"394",
"286",
"143",
"50",
"10",
"1",
"0"
] |
[
"nonn",
"tabl"
] | 15 | 0 | 4 |
[
"A000007",
"A000009",
"A000012",
"A000041",
"A000070",
"A006951",
"A008284",
"A008289",
"A052928",
"A066328",
"A108917",
"A116861",
"A237113",
"A364272",
"A364350",
"A364839",
"A364907",
"A364910",
"A364911",
"A364912",
"A364913",
"A364915",
"A365002",
"A365004"
] | null |
Gus Wiseman, Aug 23 2023
| 2024-01-28T20:41:21 |
oeisdata/seq/A365/A365004.seq
|
3bd1e776cc8f78398166d8bfc1256a91
|
A365005
|
Number of ways to write 2 as a nonnegative linear combination of a strict integer partition of n.
|
[
"0",
"1",
"1",
"2",
"1",
"2",
"4",
"4",
"5",
"6",
"9",
"10",
"13",
"15",
"19",
"23",
"28",
"33",
"40",
"47",
"56",
"67",
"78",
"92",
"108",
"126",
"146",
"171",
"198",
"229",
"264",
"305",
"350",
"403",
"460",
"527",
"603",
"687",
"781",
"889",
"1009",
"1144",
"1295",
"1464",
"1653",
"1866",
"2101",
"2364",
"2659",
"2984",
"3347",
"3752",
"4200",
"4696",
"5248",
"5858"
] |
[
"nonn"
] | 7 | 0 | 4 |
[
"A000009",
"A000041",
"A008284",
"A008289",
"A096765",
"A116861",
"A137719",
"A237113",
"A323092",
"A364272",
"A364350",
"A364839",
"A364907",
"A364910",
"A364913",
"A364914",
"A364915",
"A364916",
"A365002",
"A365004",
"A365005"
] | null |
Gus Wiseman, Aug 26 2023
| 2023-08-26T18:17:11 |
oeisdata/seq/A365/A365005.seq
|
e8ad0e213f2c08f19056e568af45efa2
|
A365006
|
Number of strict integer partitions of n such that no part can be written as a (strictly) positive linear combination of the others.
|
[
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"3",
"2",
"4",
"4",
"8",
"4",
"11",
"9",
"16",
"14",
"25",
"20",
"37",
"31",
"49",
"47",
"73",
"64",
"101",
"96",
"135",
"133",
"190",
"181",
"256",
"253",
"336",
"342",
"453",
"452",
"596",
"609",
"771",
"803",
"1014",
"1041",
"1309",
"1362",
"1674",
"1760",
"2151",
"2249",
"2736",
"2884",
"3449",
"3661",
"4366",
"4615",
"5486",
"5825"
] |
[
"nonn"
] | 19 | 0 | 6 |
[
"A000009",
"A000041",
"A008284",
"A008289",
"A116861",
"A124506",
"A151897",
"A236912",
"A237113",
"A237667",
"A275972",
"A363226",
"A364272",
"A364349",
"A364350",
"A364533",
"A364839",
"A364912",
"A364913",
"A364915",
"A364916",
"A365004",
"A365006",
"A365043",
"A365044",
"A365068",
"A365072"
] | null |
Gus Wiseman, Aug 31 2023
| 2023-09-20T18:16:31 |
oeisdata/seq/A365/A365006.seq
|
25bae1eb7e02c7c2e7d44ee92498b382
|
A365007
|
a(n) = Sum_{d|n} (-1)^(n/d-1) * binomial(d+1,2).
|
[
"1",
"2",
"7",
"6",
"16",
"17",
"29",
"22",
"52",
"42",
"67",
"57",
"92",
"79",
"142",
"86",
"154",
"143",
"191",
"146",
"266",
"189",
"277",
"217",
"341",
"262",
"430",
"279",
"436",
"402",
"497",
"342",
"634",
"444",
"674",
"507",
"704",
"553",
"878",
"562",
"862",
"766",
"947",
"677",
"1222",
"807",
"1129",
"857",
"1254",
"992",
"1486",
"942",
"1432",
"1250",
"1622",
"1079"
] |
[
"nonn",
"look"
] | 17 | 1 | 2 |
[
"A000593",
"A007437",
"A365007",
"A366395",
"A366813",
"A366814"
] | null |
Seiichi Manyama, Oct 24 2023
| 2023-10-25T18:21:39 |
oeisdata/seq/A365/A365007.seq
|
d22be6119294adc988cea5473ac0eb07
|
A365008
|
Solutions k to the Diophantine equation k^5 = Sum_{i=1..6} y_i^5 with positive y_i.
|
[
"12",
"24",
"30",
"32",
"36",
"48",
"60",
"64",
"67",
"72",
"78",
"84",
"90",
"96",
"99",
"106",
"108",
"112",
"113",
"119",
"120",
"128",
"132",
"134",
"135",
"139",
"144",
"145",
"147",
"150",
"156",
"160",
"161",
"168",
"172",
"178",
"180",
"189",
"190",
"192",
"197",
"198",
"201",
"202",
"204",
"205",
"210",
"212",
"214",
"216",
"222",
"223",
"224",
"225",
"226",
"227",
"228",
"234"
] |
[
"nonn"
] | 46 | 1 | 1 | null | null |
R. J. Mathar, Aug 16 2023
| 2025-04-18T17:45:09 |
oeisdata/seq/A365/A365008.seq
|
4e761b4f86a1acb93f059cda69885483
|
A365009
|
Semiprimes that are the concatenation of two or more semiprimes.
|
[
"46",
"49",
"69",
"94",
"106",
"146",
"159",
"214",
"219",
"226",
"254",
"259",
"334",
"339",
"346",
"386",
"394",
"415",
"422",
"446",
"451",
"458",
"466",
"469",
"482",
"485",
"493",
"514",
"519",
"554",
"559",
"579",
"586",
"589",
"614",
"622",
"626",
"629",
"633",
"634",
"635",
"649",
"655",
"662",
"669",
"674",
"685",
"687",
"694",
"695",
"699",
"746",
"749",
"779",
"866",
"869",
"879",
"914",
"921",
"922"
] |
[
"base",
"nonn"
] | 15 | 1 | 1 |
[
"A001238",
"A001358",
"A019549",
"A107342",
"A365009"
] | null |
Zak Seidov and Robert Israel, Aug 15 2023
| 2023-08-24T10:16:48 |
oeisdata/seq/A365/A365009.seq
|
dd95c8e305e511be8991cbc14624ea61
|
A365010
|
E.g.f. satisfies A(x) = 1 + x*exp(-x)*A(x)^3.
|
[
"1",
"1",
"4",
"39",
"596",
"12365",
"324714",
"10329655",
"386190328",
"16597810233",
"806356830230",
"43700423019011",
"2613919719004692",
"171053575111641157",
"12156558707970920866",
"932424974682447304815",
"76772968644326739801584",
"6754080601542663692950769"
] |
[
"nonn"
] | 14 | 0 | 3 |
[
"A001764",
"A295239",
"A302397",
"A364983",
"A365010",
"A365011"
] | null |
Seiichi Manyama, Aug 15 2023
| 2023-08-16T12:03:33 |
oeisdata/seq/A365/A365010.seq
|
1070942a30ba740d892e9b8fa7b726e1
|
A365011
|
E.g.f. satisfies A(x) = 1 + x*exp(-x)*A(x)^4.
|
[
"1",
"1",
"6",
"87",
"1964",
"60325",
"2349114",
"110922091",
"6159510552",
"393373489257",
"28407518470070",
"2289019332293551",
"203608076603605860",
"19816972252710998989",
"2094926215725519979698",
"239037380421621120397395",
"29281119335188021375533104",
"3832665229749097186190010193"
] |
[
"nonn"
] | 8 | 0 | 3 |
[
"A002293",
"A295239",
"A302397",
"A364987",
"A365010",
"A365011"
] | null |
Seiichi Manyama, Aug 15 2023
| 2023-08-16T08:19:58 |
oeisdata/seq/A365/A365011.seq
|
25951f06909aca3b74753ff025617190
|
A365012
|
E.g.f. satisfies A(x) = exp( x*A(x)/(1 - x * A(x)^2) ).
|
[
"1",
"1",
"5",
"52",
"833",
"18116",
"498907",
"16648402",
"653034545",
"29450331928",
"1501456530131",
"85398143019014",
"5361130115439529",
"368227694339818132",
"27468201247134068891",
"2211469648218676671466",
"191131823105565504395873",
"17650493961604405811144624"
] |
[
"nonn"
] | 12 | 0 | 3 |
[
"A052873",
"A365012",
"A365013"
] | null |
Seiichi Manyama, Aug 15 2023
| 2023-08-19T06:29:06 |
oeisdata/seq/A365/A365012.seq
|
1bcb311622e2f57af1501af450296c5a
|
A365013
|
E.g.f. satisfies A(x) = exp( x*A(x)/(1 - x * A(x)^3) ).
|
[
"1",
"1",
"5",
"58",
"1061",
"26536",
"843457",
"32553424",
"1478813513",
"77304347776",
"4571222616701",
"301696674682624",
"21985118975444077",
"1753288356936334336",
"151887264799071753785",
"14203597499192539334656",
"1426051485043745729079953",
"153000280727938469281693696"
] |
[
"nonn"
] | 13 | 0 | 3 |
[
"A052873",
"A365012",
"A365013"
] | null |
Seiichi Manyama, Aug 15 2023
| 2023-08-19T06:28:58 |
oeisdata/seq/A365/A365013.seq
|
4ada350439007e25038d85f66e291779
|
A365014
|
E.g.f. satisfies A(x) = exp( x*A(x)^2/(1 - x * A(x)^3) ).
|
[
"1",
"1",
"7",
"103",
"2349",
"72961",
"2874793",
"137399487",
"7724650601",
"499542475105",
"36532938744621",
"2981405776356679",
"268605245211618637",
"26480489709604968129",
"2835590837094928349921",
"327748240537910056251151",
"40669893396736296241364817",
"5392699633877586027282801217"
] |
[
"nonn"
] | 13 | 0 | 3 |
[
"A361093",
"A361142",
"A365014"
] | null |
Seiichi Manyama, Aug 15 2023
| 2023-08-19T06:28:49 |
oeisdata/seq/A365/A365014.seq
|
83db5096227eac1015103dd4c8ae64cc
|
A365015
|
E.g.f. satisfies A(x) = exp( x*A(x)^3/(1 - x * A(x)) ).
|
[
"1",
"1",
"9",
"154",
"3997",
"140216",
"6217549",
"333774064",
"21051514425",
"1526073116032",
"125040978948241",
"11428407889500416",
"1152792683163827413",
"127215353330004610048",
"15246125111980753585365",
"1971966282368187450198016",
"273796236099258954747416689"
] |
[
"nonn"
] | 13 | 0 | 3 |
[
"A361066",
"A361094",
"A365015",
"A365016"
] | null |
Seiichi Manyama, Aug 15 2023
| 2023-08-19T06:28:41 |
oeisdata/seq/A365/A365015.seq
|
2521ab2274ecc04f04fb1c4f6d20cc46
|
A365016
|
E.g.f. satisfies A(x) = exp( x*A(x)^3/(1 - x * A(x)^2) ).
|
[
"1",
"1",
"9",
"160",
"4345",
"159796",
"7434199",
"418864426",
"27732988609",
"2110729489048",
"181587635465671",
"17426825999144926",
"1845855944285411425",
"213900244312057975348",
"26919356609721984494311",
"3656322063766897691641666",
"533110345129065969043548289"
] |
[
"nonn"
] | 12 | 0 | 3 |
[
"A212722",
"A361066",
"A361093",
"A361094",
"A361143",
"A365012",
"A365015",
"A365016"
] | null |
Seiichi Manyama, Aug 15 2023
| 2023-08-19T06:28:33 |
oeisdata/seq/A365/A365016.seq
|
16d279566b96bf728c030e611f5d00d1
|
A365017
|
a(n) is the least nonnegative integer not already in the sequence whose binary expansion is not the concatenation of any two earlier terms.
|
[
"0",
"1",
"3",
"4",
"5",
"14",
"15",
"16",
"17",
"18",
"20",
"21",
"22",
"24",
"25",
"26",
"27",
"38",
"39",
"46",
"47",
"60",
"61",
"64",
"65",
"66",
"68",
"69",
"70",
"72",
"73",
"74",
"80",
"81",
"82",
"84",
"85",
"86",
"88",
"89",
"90",
"96",
"97",
"98",
"100",
"101",
"104",
"105",
"106",
"108",
"109",
"115",
"119",
"126",
"127",
"134",
"135",
"142",
"143",
"151",
"156",
"157",
"158",
"166",
"167",
"174"
] |
[
"nonn",
"base"
] | 46 | 1 | 3 |
[
"A364871",
"A365017",
"A365018"
] | null |
Attila Kiss, Aug 16 2023
| 2023-11-05T15:00:13 |
oeisdata/seq/A365/A365017.seq
|
1ea16a9d611a4e2544a11dca96ad2d2b
|
A365018
|
a(n) is the least positive integer not already in the sequence whose binary expansion is not the concatenation of any two earlier terms.
|
[
"1",
"2",
"3",
"4",
"8",
"10",
"13",
"15",
"16",
"22",
"23",
"25",
"30",
"32",
"36",
"37",
"38",
"39",
"41",
"44",
"46",
"49",
"50",
"52",
"53",
"59",
"60",
"64",
"69",
"70",
"71",
"76",
"78",
"81",
"82",
"85",
"88",
"92",
"97",
"98",
"104",
"106",
"109",
"111",
"115",
"120",
"125",
"127",
"128",
"133",
"134",
"135",
"136",
"137",
"140",
"142",
"145",
"148",
"149",
"152",
"156",
"161",
"162",
"170",
"176",
"182"
] |
[
"nonn",
"base"
] | 51 | 1 | 2 |
[
"A190896",
"A364871",
"A365018"
] | null |
Attila Kiss, Aug 16 2023
| 2023-11-05T15:00:07 |
oeisdata/seq/A365/A365018.seq
|
9104b0e9b8f903eee682883d91a19358
|
A365019
|
Triangular numbers that for some k >= 0 are also the sum of the first k perfect powers.
|
[
"0",
"1",
"159284476"
] |
[
"nonn",
"bref",
"hard",
"more"
] | 5 | 1 | 3 |
[
"A000217",
"A001597",
"A066527",
"A076408",
"A298270",
"A365019"
] | null |
Ilya Gutkovskiy, Aug 16 2023
| 2023-08-24T10:33:51 |
oeisdata/seq/A365/A365019.seq
|
717f16b6611bd72e9744068f5a24cc7a
|
A365020
|
Solutions k to the Diophantine equation k^5 = Sum_{i=1..7} y_i^5 with positive y_i.
|
[
"23",
"26",
"30",
"34",
"35",
"38",
"40",
"41",
"42",
"46",
"49",
"51",
"52",
"53",
"54",
"55",
"56",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"64",
"67",
"68",
"69",
"70",
"71",
"72",
"73",
"74",
"75",
"76",
"78",
"79",
"80",
"81",
"82",
"83",
"84",
"85",
"86",
"87",
"88",
"89",
"90",
"91",
"92",
"93",
"94",
"95",
"96",
"97",
"98",
"99",
"100",
"101",
"102",
"103",
"104",
"105"
] |
[
"nonn"
] | 33 | 1 | 1 | null | null |
R. J. Mathar, Aug 16 2023
| 2025-04-18T17:45:27 |
oeisdata/seq/A365/A365020.seq
|
f1763d481726ea3bd6c935ed997feaf4
|
A365021
|
a(n) is the largest prime of the form P+1 where P divides prime(n)# and p# denotes the product of all primes <= p.
|
[
"3",
"7",
"31",
"211",
"2311",
"6007",
"102103",
"3233231",
"17160991",
"2156564411",
"200560490131",
"1060105447831",
"27659114866111",
"568815710072611",
"87841397512641631",
"4655594068170006391",
"147904642319554818391",
"6899316550553351234311",
"374205788146679383613291",
"24258296962030389607278931"
] |
[
"nonn"
] | 16 | 1 | 1 |
[
"A002110",
"A006862",
"A365021"
] | null |
Alain Rocchelli, Aug 16 2023
| 2023-08-29T11:51:54 |
oeisdata/seq/A365/A365021.seq
|
d648606768ef8a9d2b8316a6f072023c
|
A365022
|
The lesser of twin Carmichael numbers: a pair of consecutive Carmichael numbers (A002997) without a non-prime-power weak Carmichael number (A087442) between them.
|
[
"2465",
"62745",
"512461",
"656601",
"658801",
"838201",
"1033669",
"2100901",
"4903921",
"5968873",
"6049681",
"8341201",
"8719309",
"9439201",
"9582145",
"9585541",
"11119105",
"11921001",
"12261061",
"15829633",
"17236801",
"26921089",
"35571601",
"36121345",
"38624041",
"41341321",
"43286881",
"43584481",
"45877861"
] |
[
"nonn"
] | 9 | 1 | 1 |
[
"A000961",
"A002997",
"A087442",
"A225498",
"A365022",
"A365023",
"A365024"
] | null |
Amiram Eldar, Aug 17 2023
| 2023-08-24T03:12:37 |
oeisdata/seq/A365/A365022.seq
|
86214fa6f909a31020e2924a8891e984
|
A365023
|
The greater of twin Carmichael numbers: a pair of consecutive Carmichael numbers (A002997) without a non-prime-power weak Carmichael number (A087442) between them.
|
[
"2821",
"63973",
"530881",
"658801",
"670033",
"852841",
"1050985",
"2113921",
"4909177",
"6049681",
"6054985",
"8355841",
"8719921",
"9494101",
"9585541",
"9613297",
"11205601",
"11972017",
"12262321",
"15888313",
"17316001",
"26932081",
"35703361",
"36765901",
"38637361",
"41471521",
"43331401",
"43620409",
"45890209"
] |
[
"nonn"
] | 7 | 1 | 1 |
[
"A000961",
"A002997",
"A087442",
"A225498",
"A365022",
"A365023",
"A365024"
] | null |
Amiram Eldar, Aug 17 2023
| 2023-08-24T03:12:21 |
oeisdata/seq/A365/A365023.seq
|
9aa43e06ee7ef94e6f59f56212c5b2f3
|
A365024
|
Starts of runs of 3 consecutive Carmichael numbers (A002997) without a non-prime-power weak Carmichael number (A087442) between any two consecutive members.
|
[
"656601",
"5968873",
"9582145",
"45877861",
"67653433",
"84311569",
"171454321",
"171679561",
"193708801",
"193910977",
"230630401",
"357277921",
"367804801",
"393122521",
"393513121",
"393716701",
"395044651",
"557160241",
"703995733",
"710382401",
"775368901",
"832060801",
"833608321",
"834244501",
"939947009"
] |
[
"nonn"
] | 12 | 1 | 1 |
[
"A000961",
"A002997",
"A087442",
"A225498",
"A365022",
"A365023",
"A365024"
] | null |
Amiram Eldar, Aug 17 2023
| 2025-04-27T00:45:16 |
oeisdata/seq/A365/A365024.seq
|
dd70b9b1e1d4e1bcdcb48d35467aac3b
|
A365025
|
Square array read by antidiagonals: T(n, k) := (k/2)!/k! * ((2*n+1)*k)! * ((2*n+1/2)*k)! / ( (n*k)!^2 * ((n+1/2)*k)!^2 ) for n, k >= 0.
|
[
"1",
"1",
"1",
"1",
"10",
"1",
"1",
"126",
"300",
"1",
"1",
"1716",
"79380",
"11440",
"1",
"1",
"24310",
"20612592",
"65523780",
"485100",
"1",
"1",
"352716",
"5318784900",
"328206021000",
"60634147860",
"21841260",
"1",
"1",
"5200300",
"1368494343216",
"1552041334596844",
"5876083665270000",
"59774707082376",
"1022041020",
"1"
] |
[
"nonn",
"tabl",
"easy"
] | 30 | 0 | 5 |
[
"A275652",
"A276098",
"A364506",
"A364509",
"A364513",
"A364518",
"A365025",
"A365026",
"A365027"
] | null |
Peter Bala, Aug 17 2023
| 2023-08-25T17:21:08 |
oeisdata/seq/A365/A365025.seq
|
3cf7b34aaa51a6c5fffd59255676c63b
|
A365026
|
a(n) = (5*n)!*(9*n/2)!*(n/2)! / ((2*n)!^2 * (5*n/2)!^2 * n!).
|
[
"1",
"126",
"79380",
"65523780",
"60634147860",
"59774707082376",
"61346313465418800",
"64736852770959042240",
"69724035322703253191700",
"76277370761329867481375100",
"84482032811073922526904281880",
"94508142285721995026811874069200",
"106599928449546340546215262030974000"
] |
[
"nonn",
"easy"
] | 19 | 0 | 2 |
[
"A275652",
"A365025",
"A365026",
"A365027"
] | null |
Peter Bala, Aug 17 2023
| 2023-10-05T08:37:18 |
oeisdata/seq/A365/A365026.seq
|
b62df3549e397751dcf54e6b2f02422d
|
A365027
|
a(n) = (7*n)!*(13*n/2)!*(n/2)! / ((3*n)!^2 * (7*n/2)!^2 * n!).
|
[
"1",
"1716",
"20612592",
"328206021000",
"5876083665270000",
"112210544802995673216",
"2232092469681027490937400",
"45670179632369542491712236480",
"953926390279492216468973361270000",
"20241460048032081192591594667805420400",
"434878619369192244460121948456800558766592"
] |
[
"nonn",
"easy"
] | 17 | 0 | 2 |
[
"A275652",
"A365025",
"A365026",
"A365027"
] | null |
Peter Bala, Aug 18 2023
| 2023-10-05T08:37:13 |
oeisdata/seq/A365/A365027.seq
|
029f04998ee1cdbe699e8711bd145849
|
A365028
|
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n,k)*binomial(n+k-1,n)* binomial(3*n+k-1,n).
|
[
"1",
"3",
"33",
"462",
"7185",
"118503",
"2029650",
"35690868",
"639948177",
"11647493715",
"214523842533",
"3989404547076",
"74784662259762",
"1411371612900018",
"26789659159105260",
"511034151538808712",
"9790719515677254033",
"188293669308690649515",
"3633506906803796715585"
] |
[
"nonn",
"easy"
] | 20 | 0 | 2 |
[
"A000984",
"A002894",
"A365028"
] | null |
Peter Bala, Sep 21 2023
| 2023-10-07T07:02:00 |
oeisdata/seq/A365/A365028.seq
|
b8f0742294db4d2b4c4f85534e39b6f4
|
A365029
|
a(n) = Sum_{k = 0..n} binomial(n+k-1, k)^2 * binomial(2*k-1, n).
|
[
"1",
"0",
"28",
"1035",
"44876",
"2104500",
"104056597",
"5342503859",
"282118965580",
"15225746918238",
"836111285393528",
"46569126655126867",
"2624469492691484309",
"149381829558924820091",
"8575171411278263451149",
"495882491862054255448035",
"28860386333798348100899148",
"1689200944709783371200111774"
] |
[
"nonn",
"easy"
] | 10 | 0 | 3 | null | null |
Peter Bala, Aug 27 2023
| 2023-10-06T10:30:51 |
oeisdata/seq/A365/A365029.seq
|
414162db5c9ae656f508f765c5eaf315
|
A365030
|
E.g.f. satisfies A(x) = exp(x * (1 + x * A(x))^3).
|
[
"1",
"1",
"7",
"55",
"709",
"11761",
"243181",
"6054763",
"175803097",
"5847578785",
"219175994521",
"9144024668131",
"420340277237365",
"21111584238219697",
"1150333949592549541",
"67589878866533749531",
"4260172601206280708401",
"286737199114729515029569"
] |
[
"nonn"
] | 15 | 0 | 3 |
[
"A125500",
"A363744",
"A364938",
"A365030"
] | null |
Seiichi Manyama, Aug 17 2023
| 2023-08-19T06:28:15 |
oeisdata/seq/A365/A365030.seq
|
79b00dfa84629198ce7c7173f66bee36
|
A365031
|
E.g.f. satisfies A(x) = exp(x * A(x) * (1 + x * A(x))^2).
|
[
"1",
"1",
"7",
"70",
"1085",
"22176",
"569107",
"17583616",
"636085305",
"26383168000",
"1234691104031",
"64368785424384",
"3699873561469813",
"232476344504965120",
"15853643565560296875",
"1166213594266747273216",
"92052000392983157418353",
"7760655405804462332903424"
] |
[
"nonn"
] | 24 | 0 | 3 |
[
"A088695",
"A364939",
"A365031",
"A365032"
] | null |
Seiichi Manyama, Aug 17 2023
| 2024-12-01T10:51:40 |
oeisdata/seq/A365/A365031.seq
|
3edbb61ff7e9c37f39a2ff098beabf0d
|
A365032
|
E.g.f. satisfies A(x) = exp(x * A(x) * (1 + x * A(x))^3).
|
[
"1",
"1",
"9",
"106",
"1949",
"47376",
"1443757",
"53003392",
"2278044729",
"112267072000",
"6242682602321",
"386708915902464",
"26411820455554261",
"1971959747016534016",
"159794005364013403125",
"13967707431203856449536",
"1310083060716906045342833",
"131245686122586065682628608"
] |
[
"nonn"
] | 19 | 0 | 3 |
[
"A088695",
"A364940",
"A365031",
"A365032"
] | null |
Seiichi Manyama, Aug 17 2023
| 2024-12-01T10:51:47 |
oeisdata/seq/A365/A365032.seq
|
bb4c1da4bc9a3b30ed4d76cbb8444756
|
A365033
|
E.g.f. satisfies A(x) = exp(x * A(x)^2 * (1 + x * A(x))^2).
|
[
"1",
"1",
"9",
"127",
"2769",
"80861",
"2976733",
"132394011",
"6909143265",
"414041227417",
"28025981914581",
"2115049310887679",
"176095675272002929",
"16035108243371426613",
"1585349332849711046829",
"169128107565128349122851",
"19365426435579375683158977",
"2368882573995841615546652081"
] |
[
"nonn"
] | 10 | 0 | 3 |
[
"A363357",
"A364941",
"A365033",
"A365034"
] | null |
Seiichi Manyama, Aug 17 2023
| 2023-08-18T08:26:47 |
oeisdata/seq/A365/A365033.seq
|
caf8fa9c3b0442388063a6842f0d427c
|
A365034
|
E.g.f. satisfies A(x) = exp(x * A(x)^2 * (1 + x * A(x))^3).
|
[
"1",
"1",
"11",
"175",
"4317",
"142561",
"5929513",
"297901899",
"17557448681",
"1188110627137",
"90804918357261",
"7737033497254579",
"727253150819898541",
"74760871323339663489",
"8344094871249960257009",
"1004872166403751985971291",
"129883465213311163328142417"
] |
[
"nonn"
] | 11 | 0 | 3 |
[
"A363357",
"A364942",
"A365033",
"A365034"
] | null |
Seiichi Manyama, Aug 17 2023
| 2023-08-18T08:26:43 |
oeisdata/seq/A365/A365034.seq
|
8e34692c14918a215d7ff65b8d94a114
|
A365035
|
E.g.f. satisfies A(x) = exp(x * (1 + x/A(x))).
|
[
"1",
"1",
"3",
"1",
"-11",
"61",
"301",
"-6299",
"7561",
"903673",
"-9019079",
"-145636919",
"4305630781",
"7516191541",
"-2037845181371",
"22442805921901",
"944219385367441",
"-29922880660473359",
"-288352494154313999",
"32071808922904896913",
"-273044292430852251899"
] |
[
"sign"
] | 13 | 0 | 3 |
[
"A125500",
"A143768",
"A361090",
"A363354",
"A363529",
"A365035",
"A365036",
"A365037"
] | null |
Seiichi Manyama, Aug 17 2023
| 2025-02-16T08:34:06 |
oeisdata/seq/A365/A365035.seq
|
2743b3b20027fd88e4bbbe5225b003ce
|
A365036
|
E.g.f. satisfies A(x) = exp(x * (1 + x/A(x)^2)).
|
[
"1",
"1",
"3",
"-5",
"-23",
"521",
"-1829",
"-71021",
"1319697",
"5905297",
"-683965709",
"8664974891",
"311864420473",
"-13981842414695",
"6694007756619",
"16448800124183491",
"-448649039951220959",
"-13236887251789967071",
"1210629233913421852387",
"-12065049302884271631269"
] |
[
"sign"
] | 13 | 0 | 3 |
[
"A125500",
"A143768",
"A361091",
"A363354",
"A363529",
"A365035",
"A365036",
"A365037"
] | null |
Seiichi Manyama, Aug 17 2023
| 2025-02-16T08:34:06 |
oeisdata/seq/A365/A365036.seq
|
ef44e180c8653e173a6e8ba52b64256b
|
A365037
|
E.g.f. satisfies A(x) = exp(x * (1 + x/A(x)^3)).
|
[
"1",
"1",
"3",
"-11",
"-11",
"1341",
"-14339",
"-168923",
"8905065",
"-85313735",
"-4604578919",
"197455645641",
"-273728455571",
"-267002430142187",
"9427821270512373",
"178475402982086701",
"-28273343910563670959",
"713736314833387866225",
"51907546734507018043057"
] |
[
"sign"
] | 11 | 0 | 3 |
[
"A125500",
"A143768",
"A361092",
"A363354",
"A363529",
"A365035",
"A365036",
"A365037"
] | null |
Seiichi Manyama, Aug 17 2023
| 2025-02-16T08:34:06 |
oeisdata/seq/A365/A365037.seq
|
a8e0f1c727a4c513f2909bbb19220d6d
|
A365038
|
E.g.f. satisfies A(x) = exp(x * (1 + x)/A(x)).
|
[
"1",
"1",
"1",
"-2",
"9",
"-44",
"175",
"246",
"-21007",
"396712",
"-5576769",
"57840850",
"-151112951",
"-14137899060",
"539212013327",
"-13335393617714",
"239914650459105",
"-1990873438067504",
"-76974185162417921",
"5220283004540970282",
"-194958036625254566599",
"5226632355735840377140"
] |
[
"sign",
"easy"
] | 12 | 0 | 4 |
[
"A361067",
"A362771",
"A362773",
"A363478",
"A365038",
"A365039",
"A365040"
] | null |
Seiichi Manyama, Aug 18 2023
| 2025-02-16T08:34:06 |
oeisdata/seq/A365/A365038.seq
|
815879ca36318acbd062149363ea6cd6
|
A365039
|
E.g.f. satisfies A(x) = exp(x * (1 + x)/A(x)^2).
|
[
"1",
"1",
"-1",
"7",
"-79",
"1201",
"-22961",
"530167",
"-14372191",
"447825889",
"-15776617249",
"620209389031",
"-26918670325295",
"1278598424153233",
"-65973615445792081",
"3674793950748867031",
"-219773335672937703871",
"14046128883828030510529",
"-955409650156763223984449"
] |
[
"sign",
"easy"
] | 11 | 0 | 4 |
[
"A361068",
"A362771",
"A362773",
"A363478",
"A365038",
"A365039",
"A365040"
] | null |
Seiichi Manyama, Aug 18 2023
| 2025-02-16T08:34:06 |
oeisdata/seq/A365/A365039.seq
|
e0da6de1a8fe4b9948139bfdb2849dd6
|
A365040
|
E.g.f. satisfies A(x) = exp(x * (1 + x)/A(x)^3).
|
[
"1",
"1",
"-3",
"34",
"-623",
"15636",
"-499277",
"19382686",
"-886663647",
"46716323752",
"-2786249779829",
"185574001203834",
"-13652735530485647",
"1099602989008154476",
"-96230900016000250269",
"9092834662610587023286",
"-922622745817066477888703",
"100054409045940667152740304"
] |
[
"sign",
"easy"
] | 12 | 0 | 3 |
[
"A361069",
"A362771",
"A362773",
"A363478",
"A365038",
"A365039",
"A365040"
] | null |
Seiichi Manyama, Aug 18 2023
| 2025-02-16T08:34:06 |
oeisdata/seq/A365/A365040.seq
|
09e7a5694b1050336f3dc927934f63f2
|
A365041
|
Primitive solutions of A365008.
|
[
"12",
"30",
"32",
"67",
"78",
"99",
"106",
"112",
"113",
"119",
"135",
"139",
"145",
"147",
"156",
"161",
"172",
"178",
"189",
"190",
"197",
"202",
"205",
"210",
"214",
"222",
"223",
"225",
"227",
"228",
"234",
"235",
"236",
"237",
"241",
"242",
"243",
"249",
"251",
"252",
"257",
"258",
"260",
"268",
"272",
"273",
"277",
"278",
"280",
"286",
"287",
"294",
"295"
] |
[
"nonn"
] | 27 | 1 | 1 |
[
"A365008",
"A365041"
] | null |
Chai Wah Wu, Aug 18 2023
| 2023-08-24T09:29:43 |
oeisdata/seq/A365/A365041.seq
|
b5fcada6a90739b1fb4595038a520468
|
A365042
|
Number of subsets of {1..n} containing n such that some element can be written as a positive linear combination of the others.
|
[
"0",
"0",
"1",
"2",
"4",
"5",
"9",
"11",
"17",
"21",
"29",
"36",
"50",
"60",
"78",
"95",
"123",
"147",
"185",
"221",
"274",
"325",
"399",
"472",
"574",
"672",
"810",
"945",
"1131",
"1316",
"1557",
"1812",
"2137",
"2462",
"2892",
"3322",
"3881",
"4460",
"5176",
"5916",
"6846",
"7817",
"8993",
"10250",
"11765",
"13333",
"15280",
"17308",
"19731",
"22306"
] |
[
"nonn"
] | 15 | 0 | 4 |
[
"A007865",
"A085489",
"A088314",
"A088809",
"A093971",
"A124506",
"A151897",
"A237113",
"A237668",
"A288728",
"A308546",
"A324736",
"A326020",
"A326080",
"A326083",
"A364272",
"A364350",
"A364534",
"A364755",
"A364756",
"A364839",
"A364913",
"A364914",
"A365042",
"A365043",
"A365044",
"A365045",
"A365046",
"A365069",
"A365070"
] | null |
Gus Wiseman, Aug 23 2023
| 2024-12-13T09:37:37 |
oeisdata/seq/A365/A365042.seq
|
6034662af92a31ea3622c2640eacd370
|
A365043
|
Number of subsets of {1..n} whose greatest element can be written as a (strictly) positive linear combination of the others.
|
[
"0",
"0",
"1",
"3",
"7",
"12",
"21",
"32",
"49",
"70",
"99",
"135",
"185",
"245",
"323",
"418",
"541",
"688",
"873",
"1094",
"1368",
"1693",
"2092",
"2564",
"3138",
"3810",
"4620",
"5565",
"6696",
"8012",
"9569",
"11381",
"13518",
"15980",
"18872",
"22194",
"26075",
"30535",
"35711",
"41627",
"48473",
"56290",
"65283",
"75533",
"87298",
"100631",
"115911",
"133219"
] |
[
"nonn"
] | 19 | 0 | 4 |
[
"A007865",
"A085489",
"A088809",
"A093971",
"A124506",
"A151897",
"A237113",
"A237668",
"A288728",
"A308546",
"A324736",
"A326020",
"A326080",
"A326083",
"A364272",
"A364350",
"A364534",
"A364755",
"A364756",
"A364839",
"A364913",
"A364914",
"A365042",
"A365043",
"A365044",
"A365045",
"A365046",
"A365069",
"A365070"
] | null |
Gus Wiseman, Aug 25 2023
| 2025-04-28T15:10:58 |
oeisdata/seq/A365/A365043.seq
|
73f48c12495617d501733b50b4dece77
|
A365044
|
Number of subsets of {1..n} whose greatest element cannot be written as a (strictly) positive linear combination of the others.
|
[
"1",
"2",
"3",
"5",
"9",
"20",
"43",
"96",
"207",
"442",
"925",
"1913",
"3911",
"7947",
"16061",
"32350",
"64995",
"130384",
"261271",
"523194",
"1047208",
"2095459",
"4192212",
"8386044",
"16774078",
"33550622",
"67104244",
"134212163",
"268428760",
"536862900",
"1073732255",
"2147472267",
"4294953778",
"8589918612",
"17179850312"
] |
[
"nonn"
] | 24 | 0 | 2 |
[
"A006951",
"A007865",
"A085489",
"A088809",
"A093971",
"A124506",
"A151897",
"A237113",
"A237668",
"A288728",
"A308546",
"A324736",
"A326020",
"A326080",
"A326083",
"A341507",
"A364272",
"A364349",
"A364350",
"A364534",
"A364755",
"A364756",
"A364839",
"A364913",
"A364914",
"A365042",
"A365043",
"A365044",
"A365045",
"A365046",
"A365069",
"A365070",
"A365071"
] | null |
Gus Wiseman, Aug 26 2023
| 2024-12-13T09:37:45 |
oeisdata/seq/A365/A365044.seq
|
20034d430080c1ea6428c29a2bdf5a5d
|
A365045
|
Number of subsets of {1..n} containing n such that no element can be written as a positive linear combination of the others.
|
[
"0",
"1",
"1",
"2",
"4",
"11",
"23",
"53",
"111",
"235",
"483",
"988",
"1998",
"4036",
"8114",
"16289",
"32645",
"65389",
"130887",
"261923",
"524014",
"1048251",
"2096753",
"4193832",
"8388034",
"16776544",
"33553622",
"67107919",
"134216597",
"268434140",
"536869355",
"1073740012",
"2147481511",
"4294964834",
"8589931700"
] |
[
"nonn"
] | 17 | 0 | 4 |
[
"A007865",
"A070880",
"A085489",
"A088809",
"A093971",
"A124506",
"A151897",
"A237113",
"A237668",
"A288728",
"A308546",
"A324736",
"A326020",
"A326080",
"A326083",
"A341507",
"A364272",
"A364349",
"A364350",
"A364534",
"A364755",
"A364756",
"A364839",
"A364913",
"A364914",
"A365042",
"A365043",
"A365044",
"A365045",
"A365046",
"A365069",
"A365070",
"A365071"
] | null |
Gus Wiseman, Aug 24 2023
| 2024-12-13T09:37:26 |
oeisdata/seq/A365/A365045.seq
|
06f4e29d2b9342a38efe8a37f9b78d95
|
A365046
|
Number of subsets of {1..n} containing n such that some element can be written as a nonnegative linear combination of the others.
|
[
"0",
"0",
"1",
"2",
"6",
"11",
"28",
"53",
"118",
"235",
"490",
"973",
"2008",
"3990",
"8089",
"16184",
"32563",
"65071",
"130667",
"261183",
"523388",
"1046748",
"2095239",
"4190208",
"8385030",
"16768943",
"33546257",
"67092732",
"134201461",
"268400553",
"536839090",
"1073670970",
"2147414967",
"4294829905",
"8589793931"
] |
[
"nonn"
] | 8 | 0 | 4 |
[
"A007865",
"A085489",
"A088809",
"A093971",
"A124506",
"A151897",
"A237113",
"A237668",
"A288728",
"A308546",
"A324736",
"A326020",
"A326080",
"A326083",
"A364272",
"A364350",
"A364534",
"A364755",
"A364756",
"A364839",
"A364913",
"A364914",
"A365042",
"A365043",
"A365044",
"A365045",
"A365046",
"A365069",
"A365070"
] | null |
Gus Wiseman, Aug 24 2023
| 2024-12-13T09:39:24 |
oeisdata/seq/A365/A365046.seq
|
a218a5500a7b8e694b9d647aed98a69f
|
A365047
|
a(n) is the number of three-term geometric progressions, with rational ratio > 0, formed by the terms a(n-1), a(n-1-k) and a(n-1-2*k), where k >= 1 and n - 1 - 2*k >= 0.
|
[
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"2",
"0",
"0",
"2",
"0",
"3",
"0",
"4",
"2",
"0",
"0",
"4",
"1",
"0",
"1",
"0",
"2",
"1",
"0",
"3",
"0",
"5",
"0",
"4",
"1",
"0",
"2",
"0",
"2",
"0",
"5",
"0",
"4",
"1",
"3",
"0",
"4",
"1",
"1",
"1",
"2",
"1",
"4",
"2",
"0",
"4",
"1",
"0",
"3",
"0",
"3",
"0",
"2",
"2",
"1",
"4",
"0",
"5",
"0",
"3",
"0",
"6",
"0",
"3",
"1",
"3",
"0",
"5",
"0",
"6",
"0",
"5",
"0",
"6",
"0",
"6",
"0",
"8",
"0",
"8",
"0",
"9",
"1",
"2",
"1",
"1",
"2"
] |
[
"nonn"
] | 28 | 0 | 13 |
[
"A051336",
"A078651",
"A132345",
"A308638",
"A365047",
"A365677",
"A366907"
] | null |
Scott R. Shannon, Oct 21 2023
| 2024-03-02T13:32:59 |
oeisdata/seq/A365/A365047.seq
|
c6924f9d8e7f06a2f5b6e8ee00f274db
|
A365048
|
a(n) is the number of steps required for the n-th odd prime number to reach 3 when iterating the following hailstone map: If P+1 == 0 (mod 6), then the next number = smallest prime >= P + (P-1)/2; otherwise the next number = largest prime <= (P+1)/2.
|
[
"0",
"2",
"1",
"6",
"2",
"5",
"2",
"4",
"4",
"3",
"3",
"5",
"3",
"8",
"5",
"13",
"4",
"4",
"7",
"4",
"4",
"6",
"12",
"9",
"6",
"9",
"6",
"6",
"14",
"5",
"8",
"11",
"5",
"8",
"5",
"5",
"5",
"16",
"13",
"13",
"13",
"13",
"10",
"7",
"10",
"10",
"7",
"15",
"15",
"15",
"12",
"15",
"15",
"12",
"12",
"12",
"9",
"6",
"12",
"6",
"12",
"6",
"17",
"6",
"14",
"6",
"17",
"14",
"14",
"11",
"11",
"14",
"14",
"14",
"8",
"11",
"11",
"14",
"11",
"8",
"11",
"16"
] |
[
"nonn"
] | 36 | 1 | 2 |
[
"A007528",
"A065091",
"A365048"
] | null |
Najeem Ziauddin, Oct 21 2023
| 2023-11-13T17:54:34 |
oeisdata/seq/A365/A365048.seq
|
d3155fc722dcbf22a10c496a05612a81
|
A365049
|
a(n) is the number of distinct parallelograms with integer sides and area n, and where at least one height is an integer.
|
[
"1",
"1",
"2",
"3",
"2",
"4",
"2",
"5",
"5",
"4",
"2",
"10",
"2",
"4",
"8",
"9",
"2",
"9",
"2",
"10",
"8",
"4",
"2",
"20",
"5",
"4",
"8",
"10",
"2",
"16",
"2",
"13",
"8",
"4",
"8",
"23",
"2",
"4",
"8",
"20",
"2",
"16",
"2",
"10",
"18",
"4",
"2",
"34",
"5",
"9",
"8",
"10",
"2",
"16",
"8",
"20",
"8",
"4",
"2",
"40",
"2",
"4",
"18",
"19",
"8",
"16",
"2",
"10",
"8",
"16",
"2",
"45",
"2",
"4",
"18",
"10",
"8",
"16",
"2",
"34",
"13"
] |
[
"nonn"
] | 22 | 1 | 3 |
[
"A000005",
"A027750",
"A046079",
"A214602",
"A224931",
"A365049"
] | null |
Felix Huber, Aug 18 2023
| 2023-08-21T12:01:27 |
oeisdata/seq/A365/A365049.seq
|
98922b6842b0a4ba531bbb612f045d45
|
A365050
|
Slowest increasing sequence of primes such that a(n - 1) + a(n) and a(n - 1)^2 + a(n)^2 are both semiprimes, with a(1)=2.
|
[
"2",
"19",
"1459",
"1699",
"3079",
"3259",
"5419",
"5479",
"6079",
"6679",
"7219",
"8059",
"8719",
"11299",
"12619",
"13219",
"13399",
"15559",
"15679",
"18919",
"24379",
"25219",
"26839",
"34819",
"38239",
"39019",
"39799",
"40459",
"40759",
"42019",
"43399",
"44119",
"47059",
"47779",
"54559",
"55339",
"57139",
"60259",
"65479",
"65599",
"68659",
"69859",
"72559",
"77659",
"78439"
] |
[
"nonn"
] | 14 | 1 | 1 |
[
"A001358",
"A365050"
] | null |
Zak Seidov and Robert Israel, Aug 18 2023
| 2023-08-24T10:17:09 |
oeisdata/seq/A365/A365050.seq
|
27ccd7557303de7b15278962fc4ca9df
|
A365051
|
a(n) = |Aut^n(C_40)|: order of the group obtained by applying G -> Aut(G) n times to the cyclic group of order 40.
|
[
"40",
"16",
"192",
"1152",
"4608",
"18432"
] |
[
"nonn",
"hard",
"more"
] | 10 | 0 | 1 |
[
"A331921",
"A364904",
"A364917",
"A365051"
] | null |
Jianing Song, Aug 18 2023
| 2023-08-19T16:12:37 |
oeisdata/seq/A365/A365051.seq
|
454309d139eb5ea4db33d15ee51752bd
|
A365052
|
Decimal expansion of continued fraction [1; 4, 9, 16, 25, ... n^2, ... ].
|
[
"1",
"2",
"4",
"3",
"2",
"8",
"8",
"4",
"7",
"8",
"3",
"9",
"9",
"7",
"1",
"5",
"6",
"4",
"4",
"0",
"8",
"2",
"4",
"9",
"6",
"5",
"4",
"5",
"3",
"9",
"4",
"4",
"2",
"9",
"4",
"9",
"9",
"2",
"3",
"1",
"2",
"0",
"0",
"2",
"6",
"1",
"1",
"9",
"7",
"4",
"4",
"6",
"8",
"8",
"5",
"0",
"6",
"6",
"4",
"9",
"7",
"4",
"5",
"9",
"8",
"8",
"1",
"6",
"3",
"0",
"3",
"2",
"2",
"3",
"3",
"8",
"2",
"5",
"3",
"4",
"2",
"1",
"4",
"5",
"9",
"6",
"4",
"9",
"8",
"1",
"5",
"6",
"1",
"2",
"1",
"8",
"5",
"5",
"9",
"5"
] |
[
"nonn",
"cons"
] | 21 | 1 | 2 |
[
"A036245",
"A036246",
"A052119",
"A060997",
"A073824",
"A226771",
"A365052"
] | null |
Rok Cestnik, Aug 18 2023
| 2023-08-20T10:48:25 |
oeisdata/seq/A365/A365052.seq
|
48f91861b5b8c4e00fb27d46e3484935
|
A365053
|
E.g.f. satisfies A(x) = exp( x * (1+x/2) * A(x) ).
|
[
"1",
"1",
"4",
"25",
"230",
"2786",
"42112",
"764296",
"16209916",
"393678856",
"10777609556",
"328466815964",
"11031378197776",
"404830360798072",
"16118917055902312",
"692126238230304616",
"31882272572881781648",
"1568365865590875789824",
"82061348851406564851312"
] |
[
"nonn",
"easy"
] | 18 | 0 | 3 |
[
"A091485",
"A143740",
"A365053",
"A365054",
"A365055",
"A365056"
] | null |
Seiichi Manyama, Aug 19 2023
| 2025-02-16T08:34:06 |
oeisdata/seq/A365/A365053.seq
|
dc59b2d004b7a640695ee7c91292d75b
|
A365054
|
E.g.f. satisfies A(x) = exp( x * (1+x/2) * A(x)^2 ).
|
[
"1",
"1",
"6",
"64",
"1038",
"22666",
"624448",
"20801628",
"813473468",
"36543076444",
"1854702411336",
"104970490358944",
"6555275229438664",
"447773277245296536",
"33211911279540910400",
"2658266282912883209296",
"228375288313274403201552",
"20961681963345040127314192"
] |
[
"nonn"
] | 19 | 0 | 3 |
[
"A362474",
"A362773",
"A365053",
"A365054",
"A365055",
"A365056"
] | null |
Seiichi Manyama, Aug 19 2023
| 2025-02-16T08:34:06 |
oeisdata/seq/A365/A365054.seq
|
9f763fdc45c1aa0f909a3f027f425701
|
A365055
|
E.g.f. satisfies A(x) = exp( x * (1+x/2) * A(x)^3 ).
|
[
"1",
"1",
"8",
"121",
"2818",
"89006",
"3559504",
"172489948",
"9825889532",
"643567980808",
"47654835126436",
"3936868360416476",
"358990055621209984",
"35816155847478234424",
"3880967272702222156952",
"453886307361640406266456",
"56985342864303337121933584",
"7644651551838264804179619200"
] |
[
"nonn"
] | 17 | 0 | 3 |
[
"A363478",
"A365053",
"A365054",
"A365055",
"A365056"
] | null |
Seiichi Manyama, Aug 19 2023
| 2025-02-16T08:34:06 |
oeisdata/seq/A365/A365055.seq
|
1169df629fd244c729773bba188f044f
|
A365056
|
E.g.f. satisfies A(x) = exp( x * (1+x/2)/A(x) ).
|
[
"1",
"1",
"0",
"1",
"-6",
"46",
"-440",
"5076",
"-68740",
"1070056",
"-18835164",
"369994780",
"-8025080096",
"190501729848",
"-4912802070280",
"136775150153656",
"-4088669684755440",
"130620500241909376",
"-4441243727496127184",
"160132524268963159440",
"-6102784264210449418144"
] |
[
"sign"
] | 18 | 0 | 5 |
[
"A365038",
"A365053",
"A365054",
"A365055",
"A365056"
] | null |
Seiichi Manyama, Aug 19 2023
| 2025-02-16T08:34:06 |
oeisdata/seq/A365/A365056.seq
|
3d9df45b51aa7377c84fe1ba74ee46d7
|
A365057
|
E.g.f. satisfies A(x) = exp(x * A(x)^2 * (1 + x/2 * A(x)^2)).
|
[
"1",
"1",
"6",
"70",
"1242",
"29766",
"901108",
"33007500",
"1419955260",
"70189326748",
"3920638941576",
"244244850932424",
"16790688671875000",
"1262666306235233160",
"103110586277262570672",
"9086730135842989237456",
"859557307380692050631952",
"86872483166310571406250000"
] |
[
"nonn"
] | 8 | 0 | 3 |
[
"A091485",
"A363358",
"A365057",
"A365058"
] | null |
Seiichi Manyama, Aug 19 2023
| 2023-08-19T19:05:12 |
oeisdata/seq/A365/A365057.seq
|
bbdc010212b8b6634633ff1401b22ee1
|
A365058
|
E.g.f. satisfies A(x) = exp(x * A(x)^3 * (1 + x/2 * A(x)^3)).
|
[
"1",
"1",
"8",
"130",
"3250",
"110336",
"4744984",
"247321096",
"15155937500",
"1067967873280",
"85084447796416",
"7562971176299936",
"742055168686622872",
"79662784245760000000",
"9288538211005096189280",
"1168938868353871429273216",
"157924822350438542185141264"
] |
[
"nonn"
] | 8 | 0 | 3 |
[
"A091485",
"A363479",
"A365057",
"A365058"
] | null |
Seiichi Manyama, Aug 19 2023
| 2023-08-19T19:05:07 |
oeisdata/seq/A365/A365058.seq
|
fa78efe02450e7a3479dc4a6df62671b
|
A365059
|
a(1) = 2; for n > 2, a(n) is the smallest positive number that has not yet appeared that is a multiple of A008472(a(n-1)), the sum of the distinct primes dividing a(n-1).
|
[
"2",
"4",
"6",
"5",
"10",
"7",
"14",
"9",
"3",
"12",
"15",
"8",
"16",
"18",
"20",
"21",
"30",
"40",
"28",
"27",
"24",
"25",
"35",
"36",
"45",
"32",
"22",
"13",
"26",
"60",
"50",
"42",
"48",
"55",
"64",
"34",
"19",
"38",
"63",
"70",
"56",
"54",
"65",
"72",
"75",
"80",
"49",
"77",
"90",
"100",
"84",
"96",
"85",
"44",
"39",
"112",
"81",
"33",
"98",
"99",
"126",
"108",
"95",
"120",
"110",
"144",
"105",
"135",
"88",
"52",
"150",
"130",
"140"
] |
[
"nonn"
] | 9 | 1 | 1 |
[
"A008472",
"A300813",
"A365059",
"A365060"
] | null |
Scott R. Shannon, Aug 19 2023
| 2023-09-18T09:01:35 |
oeisdata/seq/A365/A365059.seq
|
500d16b7b5d4684f20e80c0da9fddaab
|
A365060
|
a(1) = 2; for n > 2, a(n) is the smallest positive number that has not yet appeared that has a common factor with A008472(a(n-1)), the sum of the distinct primes dividing a(n-1).
|
[
"2",
"4",
"6",
"5",
"10",
"7",
"14",
"3",
"9",
"12",
"15",
"8",
"16",
"18",
"20",
"21",
"22",
"13",
"26",
"24",
"25",
"30",
"28",
"27",
"33",
"32",
"34",
"19",
"38",
"35",
"36",
"40",
"42",
"39",
"44",
"52",
"45",
"46",
"50",
"49",
"56",
"48",
"55",
"54",
"60",
"58",
"31",
"62",
"11",
"66",
"64",
"68",
"57",
"70",
"63",
"65",
"51",
"72",
"75",
"74",
"69",
"76",
"77",
"78",
"80",
"84",
"81",
"87",
"82",
"43",
"86",
"85",
"88",
"91",
"90",
"92",
"95"
] |
[
"nonn"
] | 8 | 1 | 1 |
[
"A008472",
"A300813",
"A365059",
"A365060"
] | null |
Scott R. Shannon, Aug 19 2023
| 2023-09-18T09:01:29 |
oeisdata/seq/A365/A365060.seq
|
9a56305670102c77fbc1c7ec5a7a9697
|
A365061
|
a(n) is the number of endofunctions on an n-set where there is a single element with a preimage of maximum cardinality.
|
[
"1",
"2",
"21",
"196",
"2105",
"27636",
"451003",
"8938056",
"207358929",
"5451691060",
"158802143621",
"5051104945272",
"173783789845861",
"6424902913267216",
"253983495283150095",
"10692693172088104336",
"477787129703211313697",
"22591854186020941025268",
"1127404525137567577764013"
] |
[
"nonn"
] | 43 | 1 | 2 |
[
"A000035",
"A000312",
"A351118",
"A365061"
] | null |
Aaron O. Schweiger, Aug 19 2023
| 2023-09-22T16:11:42 |
oeisdata/seq/A365/A365061.seq
|
6e4d037626c9d9d93661a5999c729bbc
|
A365062
|
Enumeration of | Sort_n(123,321) |.
|
[
"1",
"1",
"2",
"4",
"7",
"14",
"28",
"56",
"112",
"224",
"448",
"896",
"1792",
"3584",
"7168",
"14336",
"28672",
"57344",
"114688",
"229376",
"458752",
"917504",
"1835008",
"3670016",
"7340032",
"14680064",
"29360128",
"58720256",
"117440512",
"234881024",
"469762048",
"939524096",
"1879048192",
"3758096384",
"7516192768",
"15032385536"
] |
[
"nonn",
"easy"
] | 41 | 0 | 3 |
[
"A000079",
"A005009",
"A365062"
] | null |
Michael De Vlieger, Aug 23 2023
| 2023-08-25T08:50:57 |
oeisdata/seq/A365/A365062.seq
|
14fcc07a6fcd1fe55cdf72f84a8a261c
|
A365063
|
Least k such that k*A000668(n)*A000668(n+2) + 1 is prime, where A000668(n) is the n-th Mersenne prime.
|
[
"4",
"4",
"6",
"34",
"4",
"18",
"4",
"10",
"34",
"60",
"208",
"442",
"976",
"1548",
"1918",
"1726",
"3828",
"210",
"17940",
"34254",
"1852",
"19986",
"7728",
"22186",
"9966"
] |
[
"nonn",
"more"
] | 14 | 1 | 1 |
[
"A000668",
"A098917",
"A365063",
"A365064",
"A365065"
] | null |
J.W.L. (Jan) Eerland, Aug 19 2023
| 2023-09-29T19:12:59 |
oeisdata/seq/A365/A365063.seq
|
ad2187c4c3c59b73bb8f25e64b03f09b
|
A365064
|
Least k such that k*A000668(n)*A000668(n+3) + 1 is prime, where A000668(n) is the n-th Mersenne prime.
|
[
"6",
"10",
"22",
"30",
"16",
"12",
"6",
"238",
"28",
"58",
"178",
"324",
"346",
"214",
"2664",
"4744",
"24298",
"5236",
"2526",
"3756",
"6792",
"2778",
"1872",
"59128"
] |
[
"nonn",
"more"
] | 22 | 1 | 1 |
[
"A000668",
"A098917",
"A365063",
"A365064",
"A365065"
] | null |
J.W.L. (Jan) Eerland, Aug 19 2023
| 2023-09-29T20:52:36 |
oeisdata/seq/A365/A365064.seq
|
26a5d3d7af7ff56471da5523632b746e
|
A365065
|
Least k such that k*M(n)*M(n+4) + 1 is prime, where M(n) = A000668(n).
|
[
"20",
"18",
"4",
"22",
"112",
"28",
"28",
"52",
"28",
"616",
"1288",
"1342",
"9988",
"214",
"7666",
"3328",
"21658",
"18988",
"6868",
"22824",
"10746",
"3388",
"59256"
] |
[
"nonn",
"more"
] | 22 | 1 | 1 |
[
"A000668",
"A098917",
"A365063",
"A365064",
"A365065"
] | null |
J.W.L. (Jan) Eerland, Aug 19 2023
| 2024-01-01T09:14:33 |
oeisdata/seq/A365/A365065.seq
|
8606146ef9e23ffcbc73007abfc27225
|
A365066
|
Decimal expansion of the constant 1/0! - 1/1! + 1/2! + 1/3! - 1/4! + 1/5! + 1/6! - 1/7! + ...
|
[
"6",
"3",
"4",
"5",
"5",
"1",
"1",
"1",
"8",
"2",
"6",
"1",
"2",
"2",
"5",
"5",
"4",
"2",
"7",
"5",
"7",
"6",
"1",
"4",
"2",
"4",
"1",
"3",
"0",
"9",
"6",
"0",
"7",
"7",
"2",
"2",
"3",
"6",
"3",
"0",
"7",
"9",
"9",
"5",
"0",
"2",
"5",
"1",
"6",
"3",
"2",
"6",
"5",
"5",
"8",
"7",
"5",
"4",
"8",
"9",
"1",
"1",
"6",
"8",
"7",
"6",
"9",
"7",
"3",
"1",
"4",
"8",
"0",
"3",
"1",
"3",
"9",
"9",
"5",
"3",
"5",
"3",
"8",
"5",
"6",
"5",
"6",
"8",
"3",
"0",
"6",
"6",
"4",
"9",
"6",
"5",
"1",
"1",
"6",
"9",
"8",
"9",
"8",
"2",
"7"
] |
[
"nonn",
"cons"
] | 17 | 0 | 1 |
[
"A143820",
"A365066"
] | null |
Peter McNair, Aug 19 2023
| 2025-03-27T23:27:32 |
oeisdata/seq/A365/A365066.seq
|
686cbb3f12c53470fc589871c4003865
|
A365067
|
Irregular triangle read by rows where T(n,k) is the number of integer partitions of n whose odd parts sum to k, for k ranging from mod(n,2) to n in steps of 2.
|
[
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"2",
"2",
"2",
"3",
"3",
"2",
"2",
"4",
"3",
"4",
"3",
"5",
"5",
"3",
"4",
"4",
"6",
"5",
"6",
"6",
"5",
"8",
"7",
"5",
"6",
"8",
"6",
"10",
"7",
"10",
"9",
"10",
"8",
"12",
"11",
"7",
"10",
"12",
"12",
"10",
"15",
"11",
"14",
"15",
"15",
"16",
"12",
"18",
"15",
"11",
"14",
"20",
"18",
"20",
"15",
"22",
"15",
"22",
"21",
"25",
"24",
"24",
"18",
"27"
] |
[
"nonn",
"tabf"
] | 11 | 0 | 6 |
[
"A000009",
"A000041",
"A035363",
"A045931",
"A053253",
"A066208",
"A066967",
"A086543",
"A113685",
"A113686",
"A119620",
"A130780",
"A171966",
"A174713",
"A239261",
"A241638",
"A268335",
"A325698",
"A346697",
"A346698",
"A365067",
"A366322",
"A366528",
"A366531",
"A366533"
] | null |
Gus Wiseman, Oct 16 2023
| 2023-10-23T21:43:23 |
oeisdata/seq/A365/A365067.seq
|
6e5d8c930bf467d6b9ccdd9ff2a82e4c
|
A365068
|
Number of integer partitions of n with some part that can be written as a nonnegative linear combination of the other distinct parts.
|
[
"0",
"0",
"0",
"1",
"2",
"4",
"7",
"10",
"16",
"23",
"34",
"44",
"67",
"85",
"119",
"157",
"210",
"268",
"360",
"453",
"592",
"748",
"956",
"1195",
"1520",
"1883",
"2365",
"2920",
"3628",
"4451",
"5494",
"6702",
"8211",
"9976",
"12147",
"14666",
"17776",
"21389",
"25774",
"30887",
"37035",
"44224",
"52819",
"62836",
"74753",
"88614",
"105062",
"124160"
] |
[
"nonn"
] | 16 | 0 | 5 |
[
"A000009",
"A000041",
"A008284",
"A008289",
"A108917",
"A116861",
"A151897",
"A236912",
"A237113",
"A237667",
"A237668",
"A320340",
"A323092",
"A326083",
"A364272",
"A364350",
"A364839",
"A364910",
"A364911",
"A364912",
"A364913",
"A364914",
"A364915",
"A364916",
"A365006",
"A365068"
] | null |
Gus Wiseman, Aug 27 2023
| 2023-12-30T21:23:13 |
oeisdata/seq/A365/A365068.seq
|
5760b3fb3da432425c572e7c95edf694
|
A365069
|
Number of subsets of {1..n} containing n and some element equal to the sum of two or more distinct other elements. A variation of non-binary sum-full subsets without re-usable elements.
|
[
"0",
"0",
"0",
"1",
"2",
"7",
"17",
"41",
"88",
"201",
"418",
"892",
"1838",
"3798",
"7716",
"15740"
] |
[
"nonn"
] | 11 | 0 | 5 |
[
"A007865",
"A050291",
"A085489",
"A088809",
"A093971",
"A108917",
"A116861",
"A124506",
"A151897",
"A236912",
"A237113",
"A237668",
"A288728",
"A326080",
"A326083",
"A363226",
"A364272",
"A364346",
"A364348",
"A364349",
"A364350",
"A364532",
"A364534",
"A364670",
"A364755",
"A364756",
"A364839",
"A364913",
"A364914",
"A364916",
"A365046",
"A365069",
"A365070",
"A365071"
] | null |
Gus Wiseman, Aug 26 2023
| 2024-12-13T09:37:33 |
oeisdata/seq/A365/A365069.seq
|
c9671fd1db09556a9ee323a3816eff18
|
A365070
|
Number of subsets of {1..n} containing n and some element equal to the sum of two other (possibly equal) elements.
|
[
"0",
"0",
"1",
"1",
"5",
"9",
"24",
"46",
"109",
"209",
"469",
"922",
"1932",
"3858",
"7952",
"15831",
"32214",
"64351",
"129813",
"259566",
"521681",
"1042703",
"2091626",
"4182470",
"8376007",
"16752524",
"33530042",
"67055129",
"134165194",
"268328011",
"536763582",
"1073523097",
"2147268041",
"4294505929",
"8589506814",
"17178978145"
] |
[
"nonn"
] | 17 | 0 | 5 |
[
"A007865",
"A050291",
"A051026",
"A085489",
"A088809",
"A093971",
"A116861",
"A124506",
"A151897",
"A236912",
"A237113",
"A237668",
"A288728",
"A326080",
"A326083",
"A363225",
"A363226",
"A364349",
"A364350",
"A364533",
"A364670",
"A364755",
"A364756",
"A364839",
"A364913",
"A364914",
"A364916",
"A365006",
"A365046",
"A365070"
] | null |
Gus Wiseman, Aug 24 2023
| 2024-12-13T09:37:41 |
oeisdata/seq/A365/A365070.seq
|
d7a823ed45a8ab83262237b4ae99b304
|
A365071
|
Number of subsets of {1..n} containing n such that no element is a sum of distinct other elements. A variation of non-binary sum-free subsets without re-usable elements.
|
[
"0",
"1",
"2",
"3",
"6",
"9",
"15",
"23",
"40",
"55",
"94",
"132",
"210",
"298",
"476",
"644",
"1038",
"1406",
"2149",
"2965",
"4584",
"6077",
"9426",
"12648",
"19067",
"25739",
"38958",
"51514",
"78459",
"104265",
"155436",
"208329",
"312791",
"411886",
"620780",
"823785",
"1224414",
"1631815",
"2437015",
"3217077",
"4822991"
] |
[
"nonn"
] | 14 | 0 | 3 |
[
"A007865",
"A050291",
"A085489",
"A088809",
"A093971",
"A095944",
"A103580",
"A108917",
"A124506",
"A151897",
"A236912",
"A237113",
"A237668",
"A275972",
"A288728",
"A324741",
"A326080",
"A326083",
"A326117",
"A341507",
"A364272",
"A364349",
"A364350",
"A364532",
"A364533",
"A364534",
"A364755",
"A364756",
"A364839",
"A364913",
"A364914",
"A365046",
"A365069",
"A365070",
"A365071"
] | null |
Gus Wiseman, Aug 26 2023
| 2024-12-13T09:37:29 |
oeisdata/seq/A365/A365071.seq
|
5c138af47cde20d824c0137b94973261
|
A365072
|
Number of integer partitions of n such that no distinct part can be written as a (strictly) positive linear combination of the other distinct parts.
|
[
"1",
"1",
"2",
"2",
"3",
"3",
"4",
"5",
"6",
"8",
"9",
"17",
"15",
"31",
"34",
"53",
"65",
"109",
"117",
"196",
"224",
"328",
"405",
"586",
"673",
"968",
"1163",
"1555",
"1889",
"2531",
"2986",
"3969",
"4744",
"6073",
"7333",
"9317",
"11053",
"14011",
"16710",
"20702",
"24714",
"30549",
"36127",
"44413",
"52561",
"63786",
"75583",
"91377",
"107436",
"129463"
] |
[
"nonn"
] | 14 | 0 | 3 |
[
"A000009",
"A000041",
"A008284",
"A008289",
"A085489",
"A108917",
"A116861",
"A151897",
"A236912",
"A237667",
"A325862",
"A364272",
"A364350",
"A364839",
"A364910",
"A364911",
"A364912",
"A364913",
"A364915",
"A364916",
"A365006",
"A365043",
"A365044",
"A365068",
"A365072"
] | null |
Gus Wiseman, Aug 31 2023
| 2023-09-20T18:12:33 |
oeisdata/seq/A365/A365072.seq
|
c5572e0e653e3bcac70554dfb9ea72cb
|
A365073
|
Number of subsets of {1..n} that can be linearly combined using nonnegative coefficients to obtain n.
|
[
"1",
"1",
"3",
"6",
"14",
"26",
"60",
"112",
"244",
"480",
"992",
"1944",
"4048",
"7936",
"16176",
"32320",
"65088",
"129504",
"261248",
"520448",
"1046208",
"2090240",
"4186624",
"8365696",
"16766464",
"33503744",
"67064064",
"134113280",
"268347392",
"536546816",
"1073575936",
"2146703360",
"4294425600",
"8588476416",
"17178349568"
] |
[
"nonn"
] | 20 | 0 | 3 |
[
"A007865",
"A088314",
"A088809",
"A093971",
"A124506",
"A131577",
"A151897",
"A179822",
"A237668",
"A308546",
"A326020",
"A326080",
"A326083",
"A364350",
"A364534",
"A364839",
"A364914",
"A365043",
"A365046",
"A365073",
"A365311",
"A365314",
"A365315",
"A365320",
"A365321",
"A365322",
"A365379",
"A365380",
"A365381",
"A365542"
] | null |
Gus Wiseman, Sep 01 2023
| 2024-12-13T09:42:16 |
oeisdata/seq/A365/A365073.seq
|
6e896cd6772328b56c458c3bf78223a3
|
A365074
|
Numbers k such that k! - k^2 - 1 is prime.
|
[
"4",
"6",
"14",
"126",
"184",
"634",
"1354",
"1550",
"6710"
] |
[
"nonn",
"hard",
"more"
] | 29 | 1 | 1 |
[
"A073443",
"A365074"
] | null |
Darío Clavijo, Sep 12 2023
| 2025-06-16T23:48:54 |
oeisdata/seq/A365/A365074.seq
|
57427aeb52b2049b674400ddf784ed9c
|
A365075
|
Decimal expansion of the initial irrational number of Cantor's diagonal argument: the k-th decimal digit of this constant is equal to the k-th decimal digit of A182972(k)/A182973(k).
|
[
"5",
"3",
"0",
"6",
"0",
"6",
"0",
"0",
"2",
"0",
"0",
"4",
"0",
"1",
"8",
"0",
"2",
"0",
"5",
"3",
"0",
"2",
"3",
"8",
"0",
"4",
"0",
"1",
"2",
"7",
"5",
"7",
"3",
"6",
"0",
"6",
"2",
"5",
"7",
"0",
"3",
"5",
"3",
"6",
"5",
"0",
"8",
"7",
"3",
"3",
"5",
"6",
"0",
"6",
"8",
"6",
"3",
"2",
"0",
"1",
"2",
"3",
"8",
"0",
"9",
"3",
"0",
"1",
"9",
"6",
"6",
"4",
"6",
"9",
"5",
"2",
"0",
"6",
"7",
"2",
"0",
"3",
"5",
"0",
"6",
"9",
"2",
"0",
"5"
] |
[
"nonn",
"base",
"cons",
"easy"
] | 27 | 0 | 1 |
[
"A182972",
"A182973",
"A365075"
] | null |
Stefano Spezia, Aug 20 2023
| 2023-09-01T04:12:02 |
oeisdata/seq/A365/A365075.seq
|
387f6f28a84439fe5cea0efe1a307d81
|
A365076
|
Number of length-n binary words x such that the infinite word xxxx... is balanced.
|
[
"2",
"4",
"8",
"12",
"22",
"22",
"44",
"44",
"62",
"64",
"112",
"78",
"158",
"130",
"148",
"172",
"274",
"184",
"344",
"232",
"302",
"334",
"508",
"302",
"522",
"472",
"548",
"474",
"814",
"442",
"932",
"684",
"778",
"820",
"904",
"672",
"1334",
"1030",
"1100",
"904",
"1642",
"904",
"1808",
"1222",
"1282",
"1522",
"2164",
"1198",
"2102",
"1564",
"1912",
"1728"
] |
[
"nonn"
] | 20 | 1 | 1 |
[
"A057660",
"A057661",
"A365076"
] | null |
Jeffrey Shallit, Aug 20 2023
| 2024-08-05T01:56:47 |
oeisdata/seq/A365/A365076.seq
|
d32535271261d13a60488d68c90adffb
|
A365077
|
Continued fraction of A363679 (sum of reciprocals of triangular polygorials).
|
[
"2",
"2",
"1",
"1",
"7",
"7",
"15",
"1",
"8",
"1",
"2",
"10",
"1",
"1",
"2",
"35",
"1",
"1",
"2",
"1",
"1",
"4",
"6",
"2",
"3",
"2",
"3",
"7",
"3",
"2",
"4",
"3",
"2",
"3",
"1",
"1",
"8",
"1",
"2",
"2",
"4",
"1",
"2",
"3",
"1",
"1",
"1",
"1",
"5",
"1",
"38",
"10",
"35",
"4",
"4",
"5",
"1",
"4",
"1",
"3",
"2",
"1",
"67",
"1",
"1",
"1",
"1",
"1",
"12",
"1",
"8",
"8",
"5",
"1",
"3",
"1",
"2",
"2",
"6",
"15",
"9",
"9",
"1",
"5",
"2",
"38",
"5",
"4",
"1",
"2",
"1",
"1",
"3",
"1",
"123",
"1",
"1",
"1",
"1",
"8"
] |
[
"cofr",
"nonn"
] | 33 | 1 | 1 |
[
"A003417",
"A070913",
"A363679",
"A365077"
] | null |
Kelvin Voskuijl, Aug 20 2023
| 2023-08-22T08:00:19 |
oeisdata/seq/A365/A365077.seq
|
da521df1b77d621a5a8f28586da338fc
|
A365078
|
a(n) is the least divisor (d) of prime(n)# such that prime(n)# / d + 1 is prime where p# denotes the product of all primes <= p.
|
[
"1",
"1",
"1",
"1",
"1",
"5",
"5",
"3",
"13",
"3",
"1",
"7",
"11",
"23",
"7",
"7",
"13",
"17",
"21",
"23",
"47",
"29",
"5",
"55",
"85",
"31",
"21",
"31",
"11",
"21",
"23",
"5",
"57",
"21",
"97",
"67",
"11",
"7",
"41",
"43",
"29",
"39",
"11",
"15",
"89",
"21",
"11",
"83",
"47",
"43",
"85",
"85",
"17",
"17",
"11",
"127",
"177",
"167",
"15",
"23",
"21",
"17",
"67",
"149",
"113",
"15",
"131",
"47",
"61",
"95",
"53",
"115",
"31",
"79",
"1"
] |
[
"nonn"
] | 12 | 1 | 6 |
[
"A002110",
"A365021",
"A365078"
] | null |
Alain Rocchelli, Aug 20 2023
| 2023-09-27T13:43:08 |
oeisdata/seq/A365/A365078.seq
|
816f71e2ebaa040aed5c5fd5abe72500
|
A365079
|
G.f. satisfies A(x) = 1 + x*A(x)*(1 + x^4*A(x)^3).
|
[
"1",
"1",
"1",
"1",
"1",
"2",
"6",
"16",
"36",
"71",
"131",
"247",
"511",
"1156",
"2696",
"6172",
"13664",
"29563",
"63871",
"140341",
"315185",
"717962",
"1639822",
"3728276",
"8432696",
"19047924",
"43166420",
"98378502",
"225355290",
"517683270",
"1190034046",
"2735049866",
"6287002806",
"14467864356",
"33355524916"
] |
[
"nonn"
] | 27 | 0 | 6 |
[
"A127902",
"A186996",
"A215340",
"A365079"
] | null |
Seiichi Manyama, Aug 29 2023
| 2023-08-29T08:52:50 |
oeisdata/seq/A365/A365079.seq
|
3a664d47664c0f4e3b14b6d66c6d3c7c
|
A365080
|
Inverse permutation to A364885.
|
[
"0",
"1",
"3",
"2",
"6",
"4",
"9",
"5",
"10",
"7",
"13",
"8",
"27",
"14",
"54",
"20",
"15",
"11",
"18",
"12",
"34",
"19",
"64",
"26",
"65",
"35",
"104",
"44",
"405",
"119",
"1539",
"230",
"21",
"16",
"24",
"17",
"42",
"25",
"75",
"33",
"76",
"43",
"118",
"53",
"433",
"134",
"1594",
"251",
"135",
"77",
"189",
"90",
"629",
"209",
"2144",
"377",
"2210",
"665",
"5564",
"1034"
] |
[
"nonn",
"base"
] | 7 | 0 | 3 |
[
"A000217",
"A006893",
"A364885",
"A365080"
] | null |
Rémy Sigrist, Aug 20 2023
| 2023-08-26T08:57:23 |
oeisdata/seq/A365/A365080.seq
|
a2ad9454ca9425a423f9dcaabccf9e90
|
A365081
|
Numbers k with the property that the symmetric representation of sigma(k) has four parts and its second part is an octagon of width 1 and one of the vertices of the octagon is also the central vertex of the first valley of the largest Dyck path of the diagram.
|
[
"21",
"27",
"33",
"39",
"51",
"57",
"69",
"87",
"93",
"111",
"123",
"129",
"141",
"159",
"177",
"183",
"201",
"213",
"219",
"237",
"249",
"267",
"291",
"303",
"309",
"321",
"327",
"339",
"381"
] |
[
"nonn",
"more"
] | 32 | 1 | 1 |
[
"A016945",
"A033676",
"A161345",
"A196020",
"A235791",
"A236104",
"A237270",
"A237271",
"A237591",
"A237593",
"A240062",
"A245092",
"A249351",
"A262626",
"A264102",
"A280107",
"A364414",
"A364639",
"A365081"
] | null |
Omar E. Pol, Aug 20 2023
| 2023-09-05T09:37:52 |
oeisdata/seq/A365/A365081.seq
|
85c2648445df58253b2109defa5a72f7
|
A365082
|
Prime powers (A246655) q such that -2 is a nonzero square in the finite field F_q.
|
[
"3",
"9",
"11",
"17",
"19",
"25",
"27",
"41",
"43",
"49",
"59",
"67",
"73",
"81",
"83",
"89",
"97",
"107",
"113",
"121",
"131",
"137",
"139",
"163",
"169",
"179",
"193",
"211",
"227",
"233",
"241",
"243",
"251",
"257",
"281",
"283",
"289",
"307",
"313",
"331",
"337",
"347",
"353",
"361",
"379",
"401",
"409",
"419",
"433",
"443",
"449",
"457",
"467",
"491",
"499",
"521",
"523",
"529"
] |
[
"nonn",
"easy"
] | 39 | 1 | 1 |
[
"A033200",
"A085759",
"A365082",
"A365313",
"A366526"
] | null |
Jianing Song, Oct 22 2023
| 2023-10-28T11:35:12 |
oeisdata/seq/A365/A365082.seq
|
07b23a60609bf8fd20c7f411fe4d2dd2
|
A365083
|
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x)^4.
|
[
"1",
"1",
"-3",
"3",
"5",
"-22",
"27",
"28",
"-163",
"235",
"134",
"-1188",
"1983",
"408",
"-8504",
"16320",
"-1551",
"-59659",
"131507",
"-46683",
"-408806",
"1040147",
"-612380",
"-2721835",
"8088003",
"-6523626",
"-17457420",
"61883839",
"-62900496",
"-106248240",
"466069760",
"-571001695",
"-595520019",
"3454539427"
] |
[
"sign",
"easy"
] | 11 | 0 | 3 |
[
"A055991",
"A106510",
"A127896",
"A365083",
"A365084"
] | null |
Seiichi Manyama, Aug 21 2023
| 2023-08-21T08:23:07 |
oeisdata/seq/A365/A365083.seq
|
e438d482a14ef16fc805e4fa183f2bee
|
A365084
|
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x)^5.
|
[
"1",
"1",
"-4",
"6",
"6",
"-49",
"95",
"24",
"-592",
"1417",
"-414",
"-6809",
"20142",
"-14831",
"-73353",
"274761",
"-311105",
"-715647",
"3607624",
"-5463428",
"-5785294",
"45588556",
"-87189477",
"-25565196",
"552659892",
"-1305250324",
"340413165",
"6379267117",
"-18606431142",
"13202513476",
"69064770845"
] |
[
"sign",
"easy"
] | 14 | 0 | 3 |
[
"A079675",
"A106510",
"A127896",
"A365083",
"A365084"
] | null |
Seiichi Manyama, Aug 21 2023
| 2023-08-21T08:23:02 |
oeisdata/seq/A365/A365084.seq
|
e5d5a0a82956e1e0962641a3482327b8
|
A365085
|
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x*A(x))^2.
|
[
"1",
"1",
"-1",
"-2",
"5",
"6",
"-30",
"-13",
"189",
"-56",
"-1188",
"1266",
"7194",
"-14377",
"-40183",
"135278",
"188773",
"-1151800",
"-503880",
"9109076",
"-3419924",
"-67220176",
"80390824",
"458183898",
"-998680470",
"-2794491329",
"10156144385",
"13919066170",
"-92250872385",
"-36047778330",
"769826420850",
"-339940775445"
] |
[
"sign"
] | 11 | 0 | 4 |
[
"A090192",
"A106510",
"A364735",
"A365085",
"A365086",
"A365087",
"A365088"
] | null |
Seiichi Manyama, Aug 21 2023
| 2023-08-21T08:23:23 |
oeisdata/seq/A365/A365085.seq
|
b172325473c3af487b740109043a055e
|
A365086
|
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x*A(x))^3.
|
[
"1",
"1",
"-2",
"-2",
"15",
"-4",
"-122",
"204",
"903",
"-3374",
"-4635",
"43539",
"-13233",
"-475123",
"873392",
"4244591",
"-16906773",
"-24952174",
"244162840",
"-74520792",
"-2901715074",
"5483226036",
"27740164293",
"-112969486284",
"-172903931727",
"1714556657881",
"-513739179725",
"-21235809823325"
] |
[
"sign"
] | 10 | 0 | 3 |
[
"A090192",
"A127896",
"A161797",
"A364736",
"A365085",
"A365086",
"A365087",
"A365088"
] | null |
Seiichi Manyama, Aug 21 2023
| 2023-08-21T08:23:19 |
oeisdata/seq/A365/A365086.seq
|
bd02d2141630c5ba03c941668060b7b2
|
A365087
|
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x*A(x))^4.
|
[
"1",
"1",
"-3",
"-1",
"29",
"-44",
"-265",
"1114",
"1369",
"-19076",
"20388",
"250977",
"-875281",
"-2116594",
"19136754",
"-7765108",
"-306092007",
"830209808",
"3388957208",
"-22266676364",
"-8185922076",
"413223401045",
"-814031607979",
"-5513566634947",
"27558060911119",
"35395095404776"
] |
[
"sign"
] | 12 | 0 | 3 |
[
"A090192",
"A321798",
"A364737",
"A365083",
"A365085",
"A365086",
"A365087",
"A365088"
] | null |
Seiichi Manyama, Aug 21 2023
| 2023-08-21T08:23:15 |
oeisdata/seq/A365/A365087.seq
|
0b3440deaef7f40f2aef88e2dd3cd932
|
A365088
|
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x*A(x))^5.
|
[
"1",
"1",
"-4",
"1",
"46",
"-129",
"-405",
"3319",
"-1617",
"-59258",
"199541",
"642170",
"-6038395",
"3886091",
"119884973",
"-440626784",
"-1367688245",
"14055527190",
"-11043763380",
"-290488387366",
"1137260033731",
"3336325340735",
"-36966844508130",
"34098313310315",
"776097820004580"
] |
[
"sign"
] | 11 | 0 | 3 |
[
"A090192",
"A321799",
"A364738",
"A365084",
"A365085",
"A365086",
"A365087",
"A365088"
] | null |
Seiichi Manyama, Aug 21 2023
| 2023-08-21T08:23:11 |
oeisdata/seq/A365/A365088.seq
|
7f192bb4c6a218a3473b1a1c8ae2e38a
|
A365089
|
The Thue-Morse sequence along the sequence of cubes.
|
[
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"1"
] |
[
"easy",
"nonn"
] | 28 | 0 | null |
[
"A000578",
"A010060",
"A228039",
"A365089"
] | null |
Lukas Spiegelhofer, Aug 21 2023
| 2023-08-22T14:14:45 |
oeisdata/seq/A365/A365089.seq
|
8c91e0b088c9144f83dd7c29a0feff1c
|
A365090
|
Total domination number of the n-Lucas cube graph.
|
[
"2",
"2",
"3",
"4",
"7",
"9",
"13",
"19",
"27",
"41",
"58"
] |
[
"nonn",
"more"
] | 7 | 2 | 1 | null | null |
Eric W. Weisstein, Aug 21 2023
| 2025-02-16T08:34:06 |
oeisdata/seq/A365/A365090.seq
|
4c72cc55d32174813aa01c5717f04381
|
A365091
|
Total domination number of the n-Pell graph.
|
[
"2",
"2",
"4",
"9",
"16",
"34"
] |
[
"nonn",
"more"
] | 5 | 1 | 1 | null | null |
Eric W. Weisstein, Aug 21 2023
| 2025-02-16T08:34:06 |
oeisdata/seq/A365/A365091.seq
|
0e69390dc81ca0e9c7283bc555769edc
|
A365092
|
Write out the canonical factorization of n and factorize the exponents in the factorization, the exponents in the factorizations of the exponents, ... until there are only prime numbers left. Replace each p in the factorization by (p-1)+1 and factorize each p-1 by the same process if p-1 > 1. Continue this process until there are only 1s left. a(n) is the number of 1s used.
|
[
"0",
"2",
"3",
"4",
"5",
"5",
"6",
"5",
"5",
"7",
"8",
"7",
"8",
"8",
"8",
"6",
"7",
"7",
"8",
"9",
"9",
"10",
"11",
"8",
"7",
"10",
"6",
"10",
"11",
"10",
"11",
"7",
"11",
"9",
"11",
"9",
"10",
"10",
"11",
"10",
"11",
"11",
"12",
"12",
"10",
"13",
"14",
"9",
"8",
"9",
"10",
"12",
"13",
"8",
"13",
"11",
"11",
"13",
"14",
"12",
"13",
"13",
"11",
"7",
"13",
"13",
"14",
"11",
"14",
"13",
"14",
"10",
"11",
"12",
"10",
"12"
] |
[
"nonn"
] | 21 | 1 | 2 |
[
"A001144",
"A185102",
"A365092",
"A365093"
] | null |
Jianing Song, Aug 21 2023
| 2023-08-24T02:42:18 |
oeisdata/seq/A365/A365092.seq
|
99707fc0e14d8842638c51b3b7af28cd
|
A365093
|
Smallest k such that A365092(k) = n.
|
[
"2",
"3",
"4",
"5",
"7",
"10",
"11",
"20",
"22",
"23",
"43",
"46",
"47",
"92",
"94",
"139",
"188",
"235",
"283",
"461",
"517",
"659",
"941",
"1081",
"1319",
"2027",
"2447",
"2879",
"4139",
"5758",
"8278",
"10343",
"13301",
"20117",
"26179",
"30337",
"44227",
"56281",
"61993",
"95197",
"115009",
"135313",
"194533",
"270626",
"366683",
"481199",
"606743",
"811879"
] |
[
"nonn",
"hard"
] | 20 | 2 | 1 |
[
"A365092",
"A365093"
] | null |
Jianing Song, Aug 21 2023
| 2023-08-25T11:49:52 |
oeisdata/seq/A365/A365093.seq
|
0700a50fa0d5ba6a15017a7375a7b4ec
|
A365094
|
Triangle read by rows: T(n,k) is the number of n-sided cycles with the property that one makes k turns to the right while following its edges.
|
[
"1",
"0",
"0",
"1",
"1",
"0",
"4",
"0",
"1",
"2",
"5",
"5",
"5",
"5",
"2",
"9",
"12",
"21",
"36",
"21",
"12",
"9",
"31",
"49",
"147",
"133",
"133",
"147",
"49",
"31",
"128",
"328",
"652",
"792",
"1240",
"792",
"652",
"328",
"128",
"708",
"1719",
"3717",
"6735",
"7281",
"7281",
"6735",
"3717",
"1719",
"708",
"4015",
"10320",
"28585",
"43780",
"58120",
"73240",
"58120",
"43780",
"28585",
"10320",
"4015"
] |
[
"nonn",
"tabf"
] | 21 | 3 | 7 |
[
"A000142",
"A008292",
"A295264",
"A342968",
"A365094"
] | null |
Ludovic Schwob, Aug 21 2023
| 2024-04-03T03:26:26 |
oeisdata/seq/A365/A365094.seq
|
a865fdc8004c9c7bca94c3a14ff2b42c
|
A365095
|
Expansion of g.f. A(x) satisfying [x^(n-1)] (1 + (n-1)*x*A(x)^2)^n / A(x)^n = 0 for n > 1.
|
[
"1",
"1",
"4",
"27",
"256",
"3118",
"46114",
"797049",
"15671350",
"343712542",
"8287906284",
"217309849772",
"6143454613682",
"186012988954448",
"5999891924386246",
"205262374717093101",
"7420869162700453174",
"282640364822610119566",
"11310634300879858185320",
"474456517209788353301282",
"20818983374432724237753352"
] |
[
"nonn"
] | 11 | 0 | 3 |
[
"A303063",
"A365095"
] | null |
Paul D. Hanna, Sep 03 2023
| 2023-09-04T06:05:06 |
oeisdata/seq/A365/A365095.seq
|
8d97259157b94da067085d139c380e21
|
A365096
|
Array G(M,S), where M are the permutations of the first K integers and S is the size of a list of distinct items, (k = 1, 2, ..., S >= k) to be read by antidiagonals (see definition in Comments).
|
[
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"2",
"2",
"1",
"1",
"4",
"4",
"3",
"2",
"1",
"4",
"4",
"4",
"2",
"2",
"1",
"3",
"3",
"4",
"2",
"2",
"3",
"1",
"3",
"3",
"6",
"4",
"4",
"3",
"3",
"1",
"6",
"6",
"2",
"6",
"4",
"4",
"4",
"2",
"1",
"6",
"6",
"2",
"6",
"6",
"6",
"4",
"2",
"1",
"1",
"10",
"10",
"6",
"4",
"4",
"6",
"6",
"4",
"4",
"2",
"1",
"10",
"10",
"5",
"4",
"4",
"4",
"2",
"6",
"6",
"3",
"2",
"1",
"12"
] |
[
"nonn",
"tabl"
] | 34 | 1 | 5 |
[
"A000012",
"A024222",
"A105272",
"A118960",
"A120280",
"A120363",
"A120654",
"A365096"
] | null |
Donald 'Paddy' McCarthy, Aug 21 2023
| 2023-09-25T07:37:21 |
oeisdata/seq/A365/A365096.seq
|
5768b03c6e087d1ccd6251e4285dc859
|
A365097
|
Smallest k > 1 such that the total number of digits "1" required to write the numbers 1..k in base n is equal to k.
|
[
"2",
"4",
"25",
"181",
"421",
"3930",
"8177",
"102772",
"199981",
"3179142",
"5971945",
"143610511",
"210826981",
"4754446846",
"8589934561",
"222195898593",
"396718580701",
"13494919482970",
"20479999999961",
"764527028941797",
"1168636602822613",
"41826814261329722",
"73040694872113105",
"2855533828630999398"
] |
[
"nonn",
"base"
] | 61 | 2 | 1 |
[
"A014778",
"A094798",
"A226238",
"A365097"
] | null |
Andrew Pope, Aug 21 2023
| 2023-10-01T07:58:23 |
oeisdata/seq/A365/A365097.seq
|
a34fa8db6f51e0f27787c2e543d686f4
|
A365098
|
Primes p such that Sum_{k=1..p-1} q^2_p(k) == 0 (mod p), with q_p(k) a Fermat quotient.
|
[
"2",
"11",
"971"
] |
[
"nonn",
"hard",
"more",
"bref"
] | 22 | 1 | 1 |
[
"A007540",
"A197632",
"A365098"
] | null |
Felix Fröhlich, Aug 21 2023
| 2024-05-06T01:47:44 |
oeisdata/seq/A365/A365098.seq
|
3201940d7db7eaa6452b8f635525cc73
|
A365099
|
Number of distinct residues of x^n (mod n^2), x=0..n^2-1.
|
[
"1",
"2",
"3",
"2",
"5",
"4",
"7",
"3",
"7",
"6",
"11",
"4",
"13",
"8",
"15",
"5",
"17",
"8",
"19",
"4",
"9",
"12",
"23",
"6",
"21",
"14",
"19",
"8",
"29",
"12",
"31",
"9",
"33",
"18",
"35",
"8",
"37",
"20",
"15",
"6",
"41",
"8",
"43",
"12",
"35",
"24",
"47",
"10",
"43",
"22",
"51",
"8",
"53",
"20",
"15",
"12",
"21",
"30",
"59",
"8",
"61",
"32",
"21",
"17",
"65",
"24",
"67",
"10",
"69",
"24",
"71",
"12",
"73",
"38",
"63"
] |
[
"nonn"
] | 14 | 1 | 2 |
[
"A023105",
"A046631",
"A195637",
"A365099",
"A365100",
"A365101",
"A365102",
"A365103"
] | null |
Albert Mukovskiy, Aug 21 2023
| 2023-08-22T07:57:27 |
oeisdata/seq/A365/A365099.seq
|
fd19303853308e9d441e4795e2e8e355
|
A365100
|
Number of distinct residues of x^n (mod n^3), x=0..n^3-1.
|
[
"1",
"3",
"7",
"6",
"21",
"8",
"43",
"18",
"55",
"22",
"111",
"20",
"157",
"44",
"147",
"65",
"273",
"56",
"343",
"30",
"105",
"112",
"507",
"68",
"501",
"158",
"487",
"110",
"813",
"88",
"931",
"257",
"777",
"274",
"903",
"140",
"1333",
"344",
"371",
"102",
"1641",
"64",
"1807",
"280",
"1155",
"508",
"2163",
"260",
"2059",
"502",
"1911",
"200",
"2757",
"488",
"483",
"374",
"805",
"814"
] |
[
"nonn"
] | 11 | 1 | 2 |
[
"A023105",
"A046631",
"A195637",
"A365099",
"A365100",
"A365101",
"A365102",
"A365103",
"A365104"
] | null |
Albert Mukovskiy, Aug 21 2023
| 2023-08-23T20:19:08 |
oeisdata/seq/A365/A365100.seq
|
bdb09158dcb356083c17cbfb4240a6ec
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.