sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A365201
Even semiprimes that are the exact average of four consecutive odd semiprimes.
[ "74", "146", "194", "218", "302", "482", "586", "734", "746", "842", "914", "1042", "1138", "1262", "1346", "1438", "1574", "1646", "1654", "1838", "1874", "1894", "1906", "1942", "2026", "2186", "2206", "2458", "2462", "2762", "2906", "2962", "2974", "3098", "3106", "3202", "3218", "3826", "4198", "4274", "4286", "4322", "4414", "4502", "4534", "4622", "4666", "4754", "4934", "4946" ]
[ "nonn" ]
24
1
1
[ "A046315", "A100484", "A365200", "A365201", "A365202" ]
null
Elmo R. Oliveira, Aug 25 2023
2023-09-25T07:29:05
oeisdata/seq/A365/A365201.seq
12a1fe39d4755e9816f61e47a16e4dee
A365202
Even semiprimes that are the exact average of six consecutive odd semiprimes.
[ "146", "194", "302", "478", "482", "614", "706", "1006", "1438", "1966", "1994", "2186", "2206", "2426", "2462", "2594", "2614", "3098", "3274", "3518", "3742", "3986", "4282", "4406", "4594", "4702", "5354", "5606", "6038", "6178", "6218", "6238", "6442", "6626", "6782", "7262", "7642", "7646", "7886", "8254", "9098", "9194", "9298", "9346", "9442", "9574", "9938" ]
[ "nonn" ]
24
1
1
[ "A046315", "A100484", "A365200", "A365201", "A365202" ]
null
Elmo R. Oliveira, Aug 25 2023
2023-09-25T07:29:28
oeisdata/seq/A365/A365202.seq
22e683dd6c15307233e95f8c4ae164e5
A365203
a(1) = 1; a(n) = a(n - 1) + n if a(n - 1) < n, a(n) = n^2 if a(n - 1) = n, a(n) = a(n - 1)/n if a(n - 1) > n and a(n - 1) == 0 (mod n), otherwise a(n) = a(n - 1) - n.
[ "1", "3", "9", "5", "25", "19", "12", "4", "13", "3", "14", "2", "15", "1", "16", "256", "239", "221", "202", "182", "161", "139", "116", "92", "67", "41", "14", "42", "13", "43", "12", "44", "11", "45", "10", "46", "9", "47", "8", "48", "7", "49", "6", "50", "5", "51", "4", "52", "3", "53", "2", "54", "1", "55", "3025", "2969", "2912", "2854", "2795", "2735", "2674", "2612", "2549" ]
[ "easy", "nonn" ]
42
1
2
[ "A000290", "A046901", "A365203" ]
null
Felix Huber, Aug 26 2023
2025-04-30T12:23:05
oeisdata/seq/A365/A365203.seq
9155572ee93cfef3e7410401623b6988
A365204
Centered icositetrachoral numbers.
[ "1", "145", "1009", "3745", "10081", "22321", "43345", "76609", "126145", "196561", "293041", "421345", "587809", "799345", "1063441", "1388161", "1782145", "2254609", "2815345", "3474721", "4243681", "5133745", "6157009", "7326145", "8654401", "10155601", "11844145", "13735009", "15843745", "18186481" ]
[ "nonn", "easy" ]
10
1
2
[ "A362863", "A365204", "A365205", "A365206" ]
null
Léo Cymrot Cymbalista, Aug 25 2023
2023-09-25T07:30:09
oeisdata/seq/A365/A365204.seq
4dc6d1817d17926331ec6d85a5c8ad3e
A365205
Centered pentachoral numbers.
[ "1", "21", "121", "421", "1101", "2401", "4621", "8121", "13321", "20701", "30801", "44221", "61621", "83721", "111301", "145201", "186321", "235621", "294121", "362901", "443101", "535921", "642621", "764521", "903001", "1059501", "1235521", "1432621", "1652421", "1896601", "2166901", "2465121", "2793121", "3152821" ]
[ "nonn", "easy" ]
9
1
2
[ "A005448", "A005898", "A362863", "A365204", "A365205", "A365206" ]
null
Léo Cymrot Cymbalista, Aug 25 2023
2023-09-25T07:30:34
oeisdata/seq/A365/A365205.seq
6112152fd6d6446469095b8f4e8efc0f
A365206
Centered octachoral numbers.
[ "1", "49", "337", "1249", "3361", "7441", "14449", "25537", "42049", "65521", "97681", "140449", "195937", "266449", "354481", "462721", "594049", "751537", "938449", "1158241", "1414561", "1711249", "2052337", "2442049", "2884801", "3385201", "3948049", "4578337", "5281249", "6062161", "6926641", "7880449", "8929537" ]
[ "nonn", "easy" ]
8
1
2
[ "A001844", "A005917", "A362863", "A365204", "A365205", "A365206" ]
null
Léo Cymrot Cymbalista, Aug 25 2023
2023-09-25T07:30:45
oeisdata/seq/A365/A365206.seq
75121da74e443cc3cc691fe2ce4dc20a
A365207
The number of divisors d of n such that gcd(d, n/d) is a power of 2 (A000079).
[ "1", "2", "2", "3", "2", "4", "2", "4", "2", "4", "2", "6", "2", "4", "4", "5", "2", "4", "2", "6", "4", "4", "2", "8", "2", "4", "2", "6", "2", "8", "2", "6", "4", "4", "4", "6", "2", "4", "4", "8", "2", "8", "2", "6", "4", "4", "2", "10", "2", "4", "4", "6", "2", "4", "4", "8", "4", "4", "2", "12", "2", "4", "4", "7", "4", "8", "2", "6", "4", "8", "2", "8", "2", "4", "4", "6", "4", "8", "2", "10", "2", "4", "2", "12", "4", "4" ]
[ "nonn", "easy", "mult" ]
9
1
2
[ "A000005", "A000079", "A000265", "A001620", "A007814", "A013661", "A034444", "A038838", "A042968", "A073002", "A107749", "A122132", "A365207" ]
null
Amiram Eldar, Aug 26 2023
2023-08-27T02:00:39
oeisdata/seq/A365/A365207.seq
81782632e8b1712020b833cfa603e64f
A365208
The number of divisors d of n such that gcd(d, n/d) is a 3-smooth number (A003586).
[ "1", "2", "2", "3", "2", "4", "2", "4", "3", "4", "2", "6", "2", "4", "4", "5", "2", "6", "2", "6", "4", "4", "2", "8", "2", "4", "4", "6", "2", "8", "2", "6", "4", "4", "4", "9", "2", "4", "4", "8", "2", "8", "2", "6", "6", "4", "2", "10", "2", "4", "4", "6", "2", "8", "4", "8", "4", "4", "2", "12", "2", "4", "6", "7", "4", "8", "2", "6", "4", "8", "2", "12", "2", "4", "4", "6", "4", "8", "2", "10", "5", "4", "2", "12", "4", "4" ]
[ "nonn", "easy", "mult" ]
8
1
2
[ "A000005", "A001620", "A003586", "A013661", "A034444", "A065330", "A065331", "A073002", "A365208", "A365209" ]
null
Amiram Eldar, Aug 26 2023
2023-08-27T01:46:40
oeisdata/seq/A365/A365208.seq
36471b67626a747a77672270c78a8d37
A365209
The sum of divisors d of n such that gcd(d, n/d) is a 3-smooth number (A003586).
[ "1", "3", "4", "7", "6", "12", "8", "15", "13", "18", "12", "28", "14", "24", "24", "31", "18", "39", "20", "42", "32", "36", "24", "60", "26", "42", "40", "56", "30", "72", "32", "63", "48", "54", "48", "91", "38", "60", "56", "90", "42", "96", "44", "84", "78", "72", "48", "124", "50", "78", "72", "98", "54", "120", "72", "120", "80", "90", "60", "168", "62", "96", "104", "127", "84", "144" ]
[ "nonn", "easy", "mult" ]
8
1
2
[ "A000203", "A002117", "A003586", "A013661", "A034448", "A065330", "A065331", "A306633", "A365208", "A365209" ]
null
Amiram Eldar, Aug 26 2023
2023-08-27T01:46:07
oeisdata/seq/A365/A365209.seq
863bc4b5964a09d6a9f8c85429c74822
A365210
The number of divisors d of n such that gcd(d, n/d) is a 5-rough number (A007310).
[ "1", "2", "2", "2", "2", "4", "2", "2", "2", "4", "2", "4", "2", "4", "4", "2", "2", "4", "2", "4", "4", "4", "2", "4", "3", "4", "2", "4", "2", "8", "2", "2", "4", "4", "4", "4", "2", "4", "4", "4", "2", "8", "2", "4", "4", "4", "2", "4", "3", "6", "4", "4", "2", "4", "4", "4", "4", "4", "2", "8", "2", "4", "4", "2", "4", "8", "2", "4", "4", "8", "2", "4", "2", "4", "6", "4", "4", "8", "2", "4", "2", "4", "2", "8", "4", "4", "4" ]
[ "nonn", "easy", "mult" ]
8
1
2
[ "A000005", "A001620", "A007310", "A013661", "A035218", "A065330", "A065331", "A069733", "A073002", "A365210", "A365211" ]
null
Amiram Eldar, Aug 26 2023
2023-08-27T01:46:22
oeisdata/seq/A365/A365210.seq
93e6675eb626e6c6aa26a528b1b71c0c
A365211
The sum of divisors d of n such that gcd(d, n/d) is a 5-rough number (A007310).
[ "1", "3", "4", "5", "6", "12", "8", "9", "10", "18", "12", "20", "14", "24", "24", "17", "18", "30", "20", "30", "32", "36", "24", "36", "31", "42", "28", "40", "30", "72", "32", "33", "48", "54", "48", "50", "38", "60", "56", "54", "42", "96", "44", "60", "60", "72", "48", "68", "57", "93", "72", "70", "54", "84", "72", "72", "80", "90", "60", "120", "62", "96", "80", "65", "84", "144", "68" ]
[ "nonn", "easy", "mult" ]
7
1
2
[ "A000203", "A007310", "A034448", "A065330", "A065331", "A069184", "A186099", "A365210", "A365211" ]
null
Amiram Eldar, Aug 26 2023
2023-08-27T01:45:52
oeisdata/seq/A365/A365211.seq
dd26566c853ea08cb685fb44eac852a9
A365212
Triangle T(n, k), n >= 0, k = 0..n, read by rows: let's consider a triangle of initially empty glasses of equal volume, G(n, k), n >= 0, k = 0..n; when water is poured into one of the glasses, say G(n, k), it flows into that glass until it's full, and then the excess overflows equally into G(n+1, k) and G(n+1, k+1); let V(n, k) be the minimum volume of water to be poured into G(0, 0) so as to fill G(n, k) completely; T(n, k) is the numerator of V(n, k) / V(0, 0).
[ "1", "3", "3", "7", "5", "7", "15", "25", "25", "15", "31", "41", "11", "41", "31", "63", "22", "77", "77", "22", "63", "127", "183", "109", "93", "109", "183", "127", "255", "311", "31", "403", "403", "31", "311", "255", "511", "105", "226", "779", "467", "779", "226", "105", "511", "1023", "1269", "1853", "2253", "100", "100", "2253", "1853", "1269", "1023" ]
[ "nonn", "frac", "tabl" ]
10
0
2
[ "A365212", "A365213" ]
null
Rémy Sigrist, Aug 26 2023
2024-09-03T15:03:36
oeisdata/seq/A365/A365212.seq
eb38223cea4a2c6b933de1536396c10c
A365213
Triangle T(n, k), n >= 0, k = 0..n, read by rows: let's consider a triangle of initially empty glasses of equal volume, G(n, k), n >= 0, k = 0..n; when water is poured into one of the glasses, say G(n, k), it flows into that glass until it's full, and then the excess overflows equally into G(n+1, k) and G(n+1, k+1); let V(n, k) be the minimum volume of water to be poured into G(0, 0) so as to fill G(n, k) completely; T(n, k) is the denominator of V(n, k) / V(0, 0).
[ "1", "1", "1", "1", "1", "1", "1", "3", "3", "1", "1", "3", "1", "3", "1", "1", "1", "5", "5", "1", "1", "1", "5", "5", "5", "5", "5", "1", "1", "5", "1", "17", "17", "1", "5", "1", "1", "1", "5", "25", "17", "25", "5", "1", "1", "1", "7", "27", "55", "3", "3", "55", "27", "7", "1", "1", "2", "11", "75", "9", "25", "9", "75", "11", "2", "1", "1", "9", "35", "55", "50", "215", "215", "50", "55", "35", "9", "1" ]
[ "nonn", "frac", "tabl" ]
5
0
8
[ "A365212", "A365213" ]
null
Rémy Sigrist, Aug 26 2023
2023-08-30T09:20:09
oeisdata/seq/A365/A365213.seq
47d0abd6a46d0166086a29e4e61ca2af
A365214
Least k such that the binary representation of 3^k has exactly n 1's, or -1 if no such k exists.
[ "0", "1", "4", "3", "7", "5", "-1", "9", "10", "12", "13", "-1", "11", "14", "15", "24", "19", "25", "22", "21", "-1", "23" ]
[ "sign", "base", "more" ]
12
1
3
[ "A011754", "A364650", "A365214", "A365215", "A375472" ]
null
Pontus von Brömssen, Aug 26 2023
2024-08-17T16:01:18
oeisdata/seq/A365/A365214.seq
7ce4efb5eea7e27172a7bdb85409ef5b
A365215
Largest k such that the binary representation of 3^k has exactly n 1's, or -1 if no such k exists.
[ "0", "2", "4", "3", "7", "8", "-1", "9", "10", "12", "16", "-1", "11", "18", "15", "24", "20", "25", "22", "21", "-1", "23" ]
[ "sign", "base", "more" ]
13
1
2
[ "A011754", "A364650", "A365214", "A365215" ]
null
Pontus von Brömssen, Aug 26 2023
2023-08-27T10:13:56
oeisdata/seq/A365/A365215.seq
7dac86b6c32b2c6f70f59bca75e60072
A365216
Maximal k such that there exists a k-arc on the projective plane over GF(q), where q = A246655(n) is the n-th prime power > 1.
[ "4", "4", "6", "6", "8", "10", "10", "12", "14", "18", "18", "20", "24", "26", "28", "30", "32", "34", "38", "42", "44", "48", "50", "54", "60", "62", "66", "68", "72", "74", "80", "82", "84", "90", "98", "102", "104", "108", "110", "114", "122", "126", "128", "130", "132", "138", "140", "150", "152", "158", "164", "168", "170", "174", "180", "182", "192", "194", "198", "200", "212", "224", "228", "230", "234" ]
[ "nonn" ]
13
1
1
[ "A000509", "A005524", "A365216" ]
null
Robin Visser, Aug 26 2023
2023-10-23T11:47:24
oeisdata/seq/A365/A365216.seq
cb18c6571a028c249f8ec58379dcecd3
A365217
Each term is a "Go down integer" (GDI), but a(n) + a(n+1) is always a "Go up integer" (GUI). More details in the Comments section.
[ "10", "92", "20", "82", "21", "81", "31", "71", "32", "70", "42", "60", "43", "61", "41", "62", "40", "63", "50", "52", "51", "53", "54", "64", "65", "72", "30", "73", "74", "75", "80", "76", "83", "84", "85", "87", "86", "90", "93", "91", "94", "95", "97", "96", "98", "100", "902", "110", "892", "120", "882", "130", "872", "140", "862", "150", "852", "160", "842", "170", "832", "180", "822" ]
[ "base", "nonn" ]
21
1
1
[ "A336611", "A365217" ]
null
Eric Angelini, Aug 26 2023
2024-12-21T18:04:45
oeisdata/seq/A365/A365217.seq
778932c96785bea4542e8c6c5efb3505
A365218
G.f. satisfies A(x) = 1 + x*A(x)^6 / (1 + x*A(x)^6).
[ "1", "1", "5", "34", "265", "2232", "19766", "181300", "1706737", "16392049", "159959240", "1581278838", "15800619070", "159321921844", "1618981274136", "16562211506496", "170426473666497", "1762771226922775", "18316562635133813", "191104193378725552", "2001224271292820200" ]
[ "nonn" ]
20
0
3
[ "A002296", "A291534", "A364864", "A364865", "A364866", "A365218" ]
null
Seiichi Manyama, Aug 26 2023
2023-08-26T18:17:21
oeisdata/seq/A365/A365218.seq
bd9d294b27da04a3d777c5fd9447a3ba
A365219
Each term is a "Go up integer" (GUI), but a(n) + a(n+1) is always a "Go down integer" (GDI). More details in the Comments section.
[ "12", "18", "13", "17", "14", "16", "15", "25", "26", "24", "19", "23", "27", "34", "28", "35", "29", "36", "37", "38", "45", "39", "46", "47", "48", "49", "152", "58", "102", "68", "112", "78", "122", "79", "132", "69", "142", "59", "162", "89", "172", "108", "103", "57", "113", "67", "123", "107", "104", "56", "114", "106", "105", "115", "116", "124", "117", "133", "118", "143", "127", "134", "126", "125", "135", "136", "144", "137", "153", "128" ]
[ "base", "nonn" ]
11
1
1
[ "A365217", "A365219" ]
null
Eric Angelini, Aug 26 2023
2024-12-21T18:26:51
oeisdata/seq/A365/A365219.seq
e2f1a6832bb15f92067c5efe6ffcee8a
A365220
Each term is a "Go flat integer" (GFI), but a(n) + a(n+1) is always a "Go up integer" (GUI). More details in the Comments section.
[ "1", "11", "2", "22", "3", "9", "4", "8", "5", "7", "6", "33", "99", "44", "88", "55", "77", "66", "101", "1001", "111", "898", "121", "888", "131", "878", "141", "868", "151", "858", "161", "848", "171", "838", "181", "828", "191", "818", "404", "808", "414", "595", "424", "585", "434", "575", "444", "565", "454", "555", "464", "545", "474", "535", "484", "525", "494", "515", "707", "505", "717", "292", "727", "282", "737", "272", "747", "262" ]
[ "base", "nonn" ]
13
1
2
[ "A365217", "A365219", "A365220" ]
null
Eric Angelini, Aug 26 2023
2024-12-21T18:06:00
oeisdata/seq/A365/A365220.seq
d915db3d3102eda1c2a88d9a83c8b4b3
A365221
Each term is a "Go flat integer" (GFI), but a(n) + a(n+1) is always a "Go down integer" (GDI). More details in the Comments section.
[ "1", "9", "11", "99", "101", "909", "2", "8", "22", "88", "3", "7", "33", "77", "4", "6", "44", "66", "5", "55", "505", "515", "191", "111", "292", "121", "181", "131", "171", "141", "161", "151", "252", "262", "242", "272", "232", "282", "222", "383", "323", "393", "212", "494", "313", "595", "333", "373", "343", "363", "353", "454", "464", "444", "474", "434", "484", "424", "606", "404", "616", "414", "626", "4004", "636", "4014", "646", "4024" ]
[ "base", "nonn" ]
15
1
2
[ "A365217", "A365219", "A365220", "A365221" ]
null
Eric Angelini, Aug 26 2023
2024-12-21T18:06:50
oeisdata/seq/A365/A365221.seq
786fee73a8baaae35ed1e4c2a2ca5c3d
A365222
a(n) is the least semiprime such that a(n) - n and a(n) + n are the previous and the next semiprimes.
[ "34", "185", "262", "407", "314", "371", "194", "2271", "6218", "4237", "109898", "110645", "53602", "169773", "112298", "163985", "284738", "48529", "1033378", "1781833", "570502", "1963091", "12527458", "6051613", "30377422", "19549343", "66761746", "7926901", "363311378", "5861227", "676386278", "136503631", "72622874", "51204973", "375025874" ]
[ "nonn" ]
6
1
1
[ "A001358", "A213025", "A365222" ]
null
Zak Seidov and Robert Israel, Aug 26 2023
2023-08-27T02:04:23
oeisdata/seq/A365/A365222.seq
f3e764c412f0ed4870e6a4d12bae0625
A365223
G.f. satisfies A(x) = 1 + x*A(x)^3 / (1 + x*A(x)^4).
[ "1", "1", "2", "3", "-3", "-50", "-244", "-714", "-530", "8522", "63548", "259473", "535647", "-1321437", "-19094684", "-103022071", "-322370363", "-142186810", "5537336460", "41081448638", "170484444654", "332739198585", "-1241023311708", "-15677607031084", "-83737193010368", "-255608722098225", "-12706843586158" ]
[ "sign" ]
8
0
3
[ "A000108", "A106228", "A127897", "A364864", "A365223", "A365224", "A365226" ]
null
Seiichi Manyama, Aug 27 2023
2023-08-27T04:38:02
oeisdata/seq/A365/A365223.seq
5e5c646c98a5445657792c15e21a0e25
A365224
G.f. satisfies A(x) = 1 + x*A(x)^4 / (1 + x*A(x)^5).
[ "1", "1", "3", "10", "30", "56", "-167", "-2813", "-21515", "-126135", "-601812", "-2179039", "-3455504", "32238155", "430944400", "3334419890", "20083350422", "97094186751", "338485665435", "274332822425", "-8491831747320", "-97735154210032", "-732963337489636", "-4341176221239330" ]
[ "sign" ]
9
0
3
[ "A001764", "A219537", "A317133", "A364758", "A364865", "A365223", "A365224", "A365226" ]
null
Seiichi Manyama, Aug 27 2023
2023-08-27T04:39:37
oeisdata/seq/A365/A365224.seq
56a991399991f5e3ea3ed9f8957f5289
A365225
G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 + x*A(x)^2).
[ "1", "1", "4", "24", "169", "1301", "10605", "89963", "785943", "7023148", "63892489", "589771350", "5509967214", "52001860377", "495048989686", "4748144843341", "45838627944500", "445072967642096", "4343508043479012", "42581707009501604", "419158119684986781", "4141270208611084284" ]
[ "nonn" ]
10
0
3
[ "A002293", "A271469", "A349361", "A364759", "A364866", "A365225", "A365226" ]
null
Seiichi Manyama, Aug 27 2023
2023-08-27T04:39:06
oeisdata/seq/A365/A365225.seq
6ee9a9a59e4323aa78f8641fec7a51ea
A365226
G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 + x*A(x)^6).
[ "1", "1", "4", "20", "107", "577", "3010", "14429", "56640", "98020", "-1297568", "-21901213", "-232421636", "-2081040375", "-16862259358", "-126674303915", "-887771735205", "-5768588276072", "-33971373570320", "-170393703586467", "-576946353425125", "1101490168511323", "47657979846612682" ]
[ "sign" ]
10
0
3
[ "A002293", "A271469", "A349361", "A364759", "A364866", "A365218", "A365225", "A365226" ]
null
Seiichi Manyama, Aug 27 2023
2023-08-27T04:38:27
oeisdata/seq/A365/A365226.seq
676198f545b56042df65381810d310f0
A365227
Numerator of Sum_{1<=j<=k<=n, gcd(j,k)=1} 1/(j*k).
[ "1", "3", "2", "7", "11", "59", "33", "737", "631", "1973", "439", "4967", "3595", "7283", "289433", "891067", "82391", "647449", "2764637", "160300109", "119168603", "1923477", "19032303", "442903921", "278705461", "1155909107", "84109239017", "255355122859", "632225777", "203232858383", "1110186816983", "81194050820693" ]
[ "nonn", "frac" ]
32
1
2
[ "A365227", "A365228" ]
null
Franz Vrabec, Aug 27 2023
2023-08-29T14:29:43
oeisdata/seq/A365/A365227.seq
f7780c864e854ccc68c3b8c4b5b7a019
A365228
Denominator of Sum_{1<=j<=k<=n, gcd(j,k)=1} 1/(j*k).
[ "1", "2", "1", "3", "4", "20", "10", "210", "168", "504", "105", "1155", "792", "1560", "60060", "180180", "16016", "123760", "510510", "29099070", "21162960", "335920", "3233230", "74364290", "45762640", "187210800", "13385572200", "40156716600", "97349616", "31054527504", "166363540200", "12033629407800", "2831442213600", "1698865328160" ]
[ "nonn", "frac" ]
23
1
2
[ "A365227", "A365228" ]
null
Franz Vrabec, Aug 28 2023
2023-08-29T10:12:30
oeisdata/seq/A365/A365228.seq
0e3dc90528030b0ae1cb40dd5aca4df7
A365229
Sum over all k of 1/k! times the number of permutations of [n] for which the difference between the longest and the shortest cycle length is k.
[ "1", "1", "2", "6", "20", "85", "382", "2219", "13624", "100293", "811914", "7594015", "74507490", "862987151", "10327793088", "139175089681", "1966790900028", "30983071424315", "496696984054286", "8925920862110603", "162253809011669330", "3228438870635420315", "65677024568975412036", "1448358661756969370985" ]
[ "nonn" ]
12
0
3
[ "A000035", "A000142", "A364967", "A365229" ]
null
Alois P. Heinz, Aug 27 2023
2023-08-28T11:37:32
oeisdata/seq/A365/A365229.seq
b6ba210465c78e985f669e0704039882
A365230
Triangle T(n, k), n > 0, k = 1..n, read by rows and filled the greedy way with distinct positive integers such that T(n, k) is a multiple of T(k, 1).
[ "1", "2", "4", "3", "6", "9", "5", "8", "12", "10", "7", "14", "15", "20", "21", "11", "16", "18", "25", "28", "22", "13", "24", "27", "30", "35", "33", "26", "17", "32", "36", "40", "42", "44", "39", "34", "19", "38", "45", "50", "49", "55", "52", "51", "57", "23", "46", "48", "60", "56", "66", "65", "68", "76", "69", "29", "54", "63", "70", "77", "88", "78", "85", "95", "92", "58" ]
[ "nonn", "tabl" ]
13
1
2
[ "A364884", "A365230", "A365231", "A365232" ]
null
Rémy Sigrist, Aug 27 2023
2023-08-31T15:52:25
oeisdata/seq/A365/A365230.seq
16ad421e054de823230cb0898e32bdc3
A365231
Inverse permutation to A365230.
[ "1", "2", "4", "3", "7", "5", "11", "8", "6", "10", "16", "9", "22", "12", "13", "17", "29", "18", "37", "14", "15", "21", "46", "23", "19", "28", "24", "20", "56", "25", "67", "30", "27", "36", "26", "31", "79", "38", "35", "32", "92", "33", "106", "34", "39", "47", "121", "48", "41", "40", "44", "43", "137", "57", "42", "50", "45", "66", "154", "49", "172", "68", "58", "80", "52", "51" ]
[ "nonn" ]
9
1
2
[ "A365230", "A365231" ]
null
Rémy Sigrist, Aug 27 2023
2023-08-31T15:52:29
oeisdata/seq/A365/A365231.seq
b4fb8f25a215dca6d7e7da582b5201ca
A365232
Triangle T(n, k), n >= 0, k = 0..n-1, read by rows and filled the greedy way with distinct nonnegative integers such that the powers of 2 in the binary expansion of T(k, 0) also appear in that of T(n, k).
[ "0", "1", "3", "2", "5", "6", "4", "7", "10", "12", "8", "9", "11", "13", "14", "15", "17", "18", "20", "24", "31", "16", "19", "22", "21", "25", "47", "23", "26", "27", "30", "28", "29", "63", "48", "58", "32", "33", "34", "36", "40", "79", "49", "59", "35", "37", "39", "38", "44", "41", "95", "50", "62", "42", "45", "43", "51", "46", "52", "56", "111", "53", "90", "54", "55", "107" ]
[ "nonn", "base", "look", "tabl" ]
13
0
3
[ "A365230", "A365232", "A365233" ]
null
Rémy Sigrist, Aug 27 2023
2023-08-31T15:50:52
oeisdata/seq/A365/A365232.seq
03b9577dcc6b668a7c6ba126b98dc06d
A365233
Inverse permutation to A365232.
[ "0", "1", "3", "2", "6", "4", "5", "7", "10", "11", "8", "12", "9", "13", "14", "15", "21", "16", "17", "22", "18", "24", "23", "27", "19", "25", "28", "29", "31", "32", "30", "20", "36", "37", "38", "44", "39", "45", "47", "46", "40", "49", "53", "55", "48", "54", "57", "26", "34", "42", "51", "56", "58", "61", "63", "64", "59", "66", "35", "43", "69", "67", "52", "33", "78", "79", "68", "80" ]
[ "nonn", "look", "base" ]
11
0
3
[ "A365232", "A365233" ]
null
Rémy Sigrist, Aug 27 2023
2023-08-31T15:51:15
oeisdata/seq/A365/A365233.seq
ebd2cb3f1cd08980bb15cb813eba32ba
A365234
Primes not in A119993.
[ "3", "17", "31", "41", "47", "67", "73", "97", "103", "109", "127", "139", "167", "191", "227", "233", "257", "283", "317", "379", "431", "439", "443", "467", "479", "523", "563", "587", "599", "607", "613", "631", "641", "709", "733", "757", "797", "821", "877", "911", "977", "991", "1009", "1021", "1039", "1049", "1087", "1097", "1123", "1187", "1201", "1217" ]
[ "nonn" ]
13
1
1
[ "A000040", "A001221", "A119993", "A365234" ]
null
Tamas Sandor Nagy, Aug 27 2023
2023-09-25T07:46:23
oeisdata/seq/A365/A365234.seq
a3918fc16227e0034b72e36e6f32c0c8
A365235
Least increasing sequence of primes such that a(n-1)^2 + a(n)^2 is semiprime, with a(1)=2.
[ "2", "19", "29", "59", "71", "79", "101", "131", "149", "151", "191", "251", "281", "331", "379", "389", "401", "449", "461", "499", "509", "521", "569", "571", "599", "641", "659", "691", "739", "761", "811", "919", "971", "991", "1009", "1019", "1129", "1151", "1259", "1321", "1409", "1511", "1531", "1559", "1579", "1601", "1621", "1669", "1699", "1811", "1901", "1931", "1979", "1999", "2081", "2141" ]
[ "nonn" ]
31
1
1
[ "A001358", "A365235" ]
null
Zak Seidov and Robert Israel, Aug 28 2023
2023-08-30T11:39:33
oeisdata/seq/A365/A365235.seq
46bae0026b7ce657783ba48723663bcf
A365236
a(n) is the least number of integer-sided squares that can be packed together with the n squares 1 X 1, 2 X 2, ..., n X n to fill out a rectangle.
[ "0", "1", "1", "3", "2", "4", "3", "3", "4" ]
[ "nonn", "more" ]
120
1
4
[ "A000290", "A005670", "A005842", "A038666", "A081287", "A365236" ]
null
Tamas Sandor Nagy and Thomas Scheuerle, Sep 25 2023
2023-10-04T12:33:42
oeisdata/seq/A365/A365236.seq
b1db4caa99600065402ac94200abc87e
A365237
Decimal expansion of 1/A033307 (decimal Champernowne constant).
[ "8", "1", "0", "0", "0", "0", "0", "0", "6", "7", "0", "7", "6", "0", "3", "3", "6", "1", "3", "3", "0", "7", "3", "1", "9", "6", "7", "3", "8", "3", "4", "1", "6", "7", "8", "7", "7", "5", "3", "5", "8", "3", "6", "4", "7", "3", "4", "7", "8", "5", "7", "9", "7", "2", "2", "5", "2", "5", "0", "9", "8", "1", "9", "8", "1", "0", "0", "3", "9", "9", "9", "5", "4", "5", "1", "7", "3", "6", "1", "6", "0", "6", "8", "2", "9", "7", "2", "1", "7", "3", "5", "8", "9", "5", "7", "1", "2", "2", "2", "6", "1", "7", "7", "7", "1", "6", "1" ]
[ "nonn", "cons", "base" ]
26
1
1
[ "A030167", "A031310", "A033307", "A365237", "A365238" ]
null
Kelvin Voskuijl, Aug 27 2023
2024-03-30T10:21:44
oeisdata/seq/A365/A365237.seq
74dc6a9ec083d6f39b8c3ee9ece55df7
A365238
Decimal expansion of 1/A066716 (Binary Champernowne constant).
[ "1", "1", "5", "9", "7", "6", "9", "7", "3", "2", "3", "5", "0", "6", "6", "8", "0", "7", "1", "5", "8", "6", "9", "5", "8", "1", "2", "0", "3", "3", "0", "1", "4", "8", "2", "8", "3", "3", "9", "0", "7", "4", "1", "6", "3", "1", "7", "7", "1", "5", "7", "1", "5", "9", "3", "2", "9", "7", "8", "5", "8", "2", "8", "3", "7", "5", "2", "7", "3", "7", "4", "6", "8", "9", "3", "7", "0", "1", "6", "6", "4", "7", "7", "8", "3", "2", "5", "6", "2", "1", "4", "5", "9", "5", "9", "6", "3", "1", "8", "8", "0", "1", "1", "5", "2", "1", "1" ]
[ "nonn", "cons" ]
7
1
3
[ "A066716", "A365238" ]
null
Kelvin Voskuijl, Aug 27 2023
2023-08-29T21:33:52
oeisdata/seq/A365/A365238.seq
ae14a5a40e396ff05cfa0f44c8b8aaba
A365239
Locations of records in A365196.
[ "0", "1", "9", "13", "57", "69", "81", "1005", "1485", "30045", "32865", "40845", "59565", "114345", "262185", "340725", "386925", "396825", "611325", "1211925" ]
[ "nonn", "more" ]
9
1
3
[ "A364455", "A365196", "A365239" ]
null
Robert Israel, Aug 27 2023
2023-08-28T08:28:43
oeisdata/seq/A365/A365239.seq
a3faf1b47ab1a0f60dffc59e6cae307d
A365240
Numbers k such that k + 4, k + 6, k + 9, k + 10, and k + 14 are all semiprimes, where 4, 6, 9, 10, 14 are the first 5 semiprimes.
[ "0", "2113", "2185", "2557", "2977", "3089", "5357", "6397", "7057", "8017", "10537", "11549", "12049", "15697", "15829", "16729", "17597", "17633", "18637", "20485", "21949", "22417", "23257", "30017", "31357", "32857", "33509", "33949", "36749", "37909", "38053", "38509", "44137", "46033", "47189", "49345", "51073", "52333", "54173", "58645", "58813", "59317", "59425", "62237" ]
[ "nonn" ]
8
1
2
[ "A001358", "A365240" ]
null
Zak Seidov and Robert Israel, Aug 27 2023
2023-08-28T08:28:51
oeisdata/seq/A365/A365240.seq
3725a696c4e3565d6430ee0c339e8045
A365241
a(n) is the n-th prime of the form 2*n + k where k > 0.
[ "3", "7", "13", "19", "23", "31", "41", "43", "53", "61", "67", "73", "79", "83", "97", "103", "107", "109", "127", "131", "139", "151", "157", "167", "173", "179", "191", "193", "197", "211", "227", "229", "233", "241", "251", "263", "271", "277", "281", "293", "307", "313", "317", "331", "347", "349", "353", "359", "373", "379", "389", "401", "409", "421", "433", "439" ]
[ "nonn" ]
26
1
1
[ "A000040", "A060264", "A365241" ]
null
Tamas Sandor Nagy, Aug 28 2023
2023-09-25T07:46:53
oeisdata/seq/A365/A365241.seq
eb4309a1d620443138c706ae03f37f24
A365242
Numbers k such that k+1, k-1, k/2+1, k/2-1, k/3+1 and k/3-1 are all prime.
[ "12", "540540", "928620", "960120", "9074520", "10199700", "26460000", "44186940", "46787580", "66459960", "67723740", "71901900", "94884300", "98698320", "109495260", "115796520", "126556920", "134276940", "140943600", "157861620", "196226100", "197520120", "202498380" ]
[ "nonn" ]
26
1
1
[ "A076504", "A365242" ]
null
Joshua Graham, Aug 28 2023
2023-09-25T20:00:17
oeisdata/seq/A365/A365242.seq
34561e37d4b9e204a620d058fcd15836
A365243
G.f. satisfies A(x) = 1 + x*A(x)/(1 - x^3*A(x)^2).
[ "1", "1", "1", "1", "2", "5", "11", "22", "45", "99", "226", "515", "1168", "2670", "6186", "14467", "33985", "80105", "189636", "451060", "1077225", "2580979", "6201602", "14942480", "36098349", "87417956", "212159347", "515937882", "1257048536", "3068146679", "7500995555", "18366760161", "45037590888", "110588510089" ]
[ "nonn" ]
11
0
5
[ "A101785", "A106228", "A112805", "A365243" ]
null
Seiichi Manyama, Aug 28 2023
2023-08-28T10:52:16
oeisdata/seq/A365/A365243.seq
6e1ca8a721b6c459e8c9dc7b96ee86b0
A365244
G.f. satisfies A(x) = 1 + x*A(x)/(1 - x^2*A(x)^3).
[ "1", "1", "1", "2", "6", "17", "48", "144", "449", "1422", "4568", "14893", "49139", "163665", "549570", "1858754", "6326343", "21651064", "74462327", "257219221", "892047965", "3104749126", "10841192392", "37967942203", "133333407639", "469405472729", "1656383420850", "5857371543403", "20754268304707" ]
[ "nonn" ]
15
0
4
[ "A212383", "A365244", "A365245" ]
null
Seiichi Manyama, Aug 28 2023
2023-10-25T09:28:36
oeisdata/seq/A365/A365244.seq
828a4a70f9893b1fc3ab0d3700beefdb
A365245
G.f. satisfies A(x) = 1 + x*A(x)/(1 - x^4*A(x)^3).
[ "1", "1", "1", "1", "1", "2", "6", "16", "36", "72", "139", "283", "631", "1487", "3510", "8086", "18240", "41004", "93364", "216370", "507353", "1193113", "2799681", "6556243", "15368798", "36163695", "85483537", "202768647", "481870474", "1146143965", "2728316757", "6502751833", "15525113876", "37131739582" ]
[ "nonn" ]
9
0
6
[ "A212383", "A365244", "A365245" ]
null
Seiichi Manyama, Aug 28 2023
2023-08-28T10:52:07
oeisdata/seq/A365/A365245.seq
010982a61478d45074e0b91569831a61
A365246
G.f. satisfies A(x) = 1 + x*A(x)^2/(1 - x^2*A(x)^4).
[ "1", "1", "2", "6", "22", "88", "370", "1613", "7230", "33117", "154330", "729369", "3487470", "16840346", "82007012", "402269702", "1985867630", "9858739759", "49187798158", "246506563980", "1240337033398", "6263601365616", "31734939452116", "161270637750264", "821802841072422", "4198348868249768" ]
[ "nonn" ]
10
0
3
[ "A364739", "A365246", "A365247" ]
null
Seiichi Manyama, Aug 28 2023
2023-08-28T10:52:03
oeisdata/seq/A365/A365246.seq
465f54086c9d3762065d5ad8b530b5da
A365247
G.f. satisfies A(x) = 1 + x*A(x)^2/(1 - x^3*A(x)^4).
[ "1", "1", "2", "5", "15", "50", "177", "650", "2449", "9412", "36761", "145518", "582556", "2354557", "9594898", "39378259", "162619316", "675258452", "2817643240", "11808576745", "49683880754", "209786559004", "888676860191", "3775654643360", "16084818268474", "68694452578325", "294053067958011" ]
[ "nonn" ]
10
0
3
[ "A218251", "A364161", "A364739", "A364833", "A365246", "A365247" ]
null
Seiichi Manyama, Aug 28 2023
2023-08-28T10:51:59
oeisdata/seq/A365/A365247.seq
f06a0a1d5e1e3d44bed332b235ef1fd2
A365248
Composite numbers k that are not a prime minus one, for which A214749(k) = k/2.
[ "34", "94", "118", "142", "202", "214", "246", "274", "298", "334", "394", "402", "436", "454", "514", "526", "538", "622", "628", "634", "694", "706", "712", "754", "766", "778", "802", "814", "892", "898", "922", "934", "942", "958", "1002", "1006", "1042", "1054", "1114", "1126", "1132", "1138", "1146", "1158", "1174", "1198", "1234", "1246", "1270" ]
[ "nonn" ]
24
1
1
[ "A214749", "A365248", "A365249" ]
null
Bob Andriesse, Aug 28 2023
2023-10-07T11:23:46
oeisdata/seq/A365/A365248.seq
408d2d011c5932837972149435eeff2e
A365249
Composite numbers k for which A214749(k) = (k-1)/2.
[ "25", "85", "121", "133", "145", "187", "205", "217", "221", "253", "301", "325", "361", "385", "403", "437", "445", "451", "481", "505", "529", "533", "553", "565", "625", "667", "697", "721", "745", "793", "817", "841", "865", "893", "913", "925", "973", "985", "1003", "1027", "1037", "1045", "1057", "1073", "1081", "1141", "1157", "1165", "1207", "1225" ]
[ "nonn" ]
32
1
1
[ "A214749", "A365248", "A365249" ]
null
Bob Andriesse, Aug 28 2023
2023-10-07T08:48:31
oeisdata/seq/A365/A365249.seq
553d76aa3afedb00f10b234083c7a72e
A365250
G.f. satisfies A(x) = 1 + x*A(x)^3/(1 - x^2*A(x)^6).
[ "1", "1", "3", "13", "67", "379", "2271", "14158", "90875", "596506", "3985661", "27018149", "185356123", "1284502886", "8978432666", "63225825415", "448131632123", "3194452061366", "22886882317758", "164718040282975", "1190311371951321", "8633251770618136", "62825467894307447" ]
[ "nonn" ]
8
0
3
[ "A002293", "A101785", "A365246", "A365250" ]
null
Seiichi Manyama, Aug 28 2023
2023-08-29T08:57:47
oeisdata/seq/A365/A365250.seq
967673c92c663007684af9d3913e5d31
A365251
Decimal expansion of the absolute value of psi^(4)(1), the fourth derivative of the digamma function at 1.
[ "2", "4", "8", "8", "6", "2", "6", "6", "1", "2", "3", "4", "4", "0", "8", "7", "8", "2", "3", "1", "9", "5", "2", "7", "7", "1", "6", "7", "4", "9", "6", "8", "8", "2", "0", "0", "3", "3", "3", "6", "9", "9", "4", "2", "0", "6", "8", "0", "4", "5", "9", "0", "7", "4", "8", "7", "3", "8", "0", "6", "2", "4", "2", "6", "9", "6", "9", "1", "2", "8", "6", "1", "5", "4", "8", "7", "0", "7", "5", "5", "6", "2", "9", "4", "4", "1", "0", "3", "4", "5", "5", "7" ]
[ "cons", "nonn" ]
9
2
1
[ "A013661", "A013663", "A152648", "A231535", "A365251" ]
null
R. J. Mathar, Aug 29 2023
2023-08-29T13:10:35
oeisdata/seq/A365/A365251.seq
c4f81684da16a7f88218f227756c88e7
A365252
G.f. satisfies A(x) = 1 + x*A(x)*(1 + x^4*A(x)^2).
[ "1", "1", "1", "1", "1", "2", "5", "11", "21", "36", "60", "106", "205", "418", "851", "1685", "3257", "6264", "12210", "24276", "48920", "98873", "199118", "399472", "801361", "1613713", "3266772", "6640770", "13526547", "27564804", "56183565", "114612879", "234187293", "479442918", "983236998", "2018936664", "4149222198" ]
[ "nonn" ]
9
0
6
[ "A000108", "A071879", "A364552", "A365252" ]
null
Seiichi Manyama, Aug 29 2023
2023-08-29T08:52:55
oeisdata/seq/A365/A365252.seq
aaff34aa977b71fec051fe65c0fb1b9c
A365253
Number of (3+)-free binary strings of length n.
[ "1", "2", "4", "8", "14", "26", "48", "86", "156", "282", "506", "910", "1638", "2936", "5276", "9482", "17012", "30542", "54838", "98440", "176726", "317268", "569516", "1022368", "1835320", "3294596", "5914262", "10616932", "19058674", "34212776", "61416376", "110250050", "197912878", "355278872", "637770308", "1144878550" ]
[ "nonn" ]
21
0
2
[ "A028445", "A365253" ]
null
Jeffrey Shallit, Aug 29 2023
2023-08-31T12:01:42
oeisdata/seq/A365/A365253.seq
052868f51371b51cc97240bbe4199ca1
A365254
Decimal expansion of the central column (converted to base 10) of rule-30 1-D cellular automaton, when started from a single ON cell.
[ "8", "6", "2", "3", "8", "9", "7", "8", "3", "9", "4", "7", "3", "8", "4", "0", "4", "8", "6", "4", "0", "8", "0", "0", "2", "4", "6", "0", "8", "6", "7", "5", "1", "1", "2", "8", "1", "0", "8", "5", "3", "2", "9", "6", "3", "6", "2", "4", "5", "5", "0", "6", "1", "5", "2", "6", "1", "9", "5", "8", "4", "5", "2", "9", "1", "7", "9", "3", "2", "0", "2", "7", "5", "8", "9", "2", "3", "4", "7", "8", "6", "0", "0", "9", "7", "2", "5" ]
[ "nonn", "cons", "base" ]
17
0
1
[ "A051023", "A070950", "A365254" ]
null
Paolo Xausa, Aug 29 2023
2023-09-01T04:10:19
oeisdata/seq/A365/A365254.seq
b575ab578a987accf970cb391527f0e3
A365255
Decimal expansion of Product_{n>=2} cos(Pi/(2*n)).
[ "4", "2", "9", "7", "8", "0", "2", "1", "6", "4", "3", "7", "9", "9", "1", "7", "0", "6", "5", "8", "4", "7", "8", "9", "5", "1", "4", "7", "0", "6", "3", "3", "0", "4", "8", "8", "4", "9", "2", "5", "3", "7", "6", "3", "9", "7", "4", "5", "4", "8", "6", "5", "7", "1", "0", "8", "2", "7", "6", "5", "7", "3", "7", "4", "3", "6", "8", "8", "3", "3", "6", "8", "8", "4", "3", "7", "2", "9", "1", "5", "9", "5", "3", "1", "0" ]
[ "cons", "nonn" ]
8
0
1
[ "A085365", "A365255", "A365256" ]
null
R. J. Mathar, Aug 29 2023
2023-08-29T13:10:23
oeisdata/seq/A365/A365255.seq
7235122f5d0f599a50639f0a7d87457a
A365256
Decimal expansion of Product_{n>=1} cos(Pi/(2*n+1)).
[ "2", "6", "7", "4", "4", "3", "7", "7", "8", "1", "3", "8", "3", "5", "4", "4", "2", "7", "8", "7", "9", "8", "0", "3", "7", "5", "6", "1", "1", "5", "9", "2", "5", "3", "7", "2", "5", "3", "5", "1", "5", "8", "8", "0", "4", "8", "6", "9", "0", "3", "1", "0", "0", "6", "9", "4", "8", "2", "5", "9", "0", "5", "0", "3", "6", "1", "4", "5", "1", "8", "6", "1", "4", "1", "8", "9", "7", "6", "6", "1", "1", "8", "7", "8", "9", "7", "5", "3", "6", "2" ]
[ "nonn", "cons" ]
11
0
1
[ "A085365", "A365255", "A365256" ]
null
R. J. Mathar, Aug 29 2023
2024-06-10T00:03:57
oeisdata/seq/A365/A365256.seq
bb7e9a767c4ad786a3b4199ca65f1a2a
A365257
The five digits of a(n) and their four successive absolute first differences are all distinct.
[ "14928", "15829", "17958", "18259", "18694", "18695", "19372", "19375", "19627", "25917", "27391", "27398", "28149", "28749", "28947", "34928", "35917", "37289", "37916", "38926", "39157", "39578", "43829", "45829", "47289", "47916", "49318", "49681", "49687", "51869", "53719", "57391", "57398", "58926", "59318", "59681", "59687", "61973", "61974", "62983", "62985", "67958", "68149", "68749", "68947", "69157", "69578", "71952", "71953", "72691", "72698", "74619", "74982", "74986", "75193", "75196", "76859", "78259", "78694", "78695", "81394", "81395", "81539", "82941", "82943", "85179", "85629", "85971", "85976", "86749", "87269", "87593", "87596", "89372", "89375", "89627", "91647", "91735", "92658", "92834", "92851", "92854", "93518", "94182", "94186", "94768", "94782", "94786", "95281", "95287", "95867", "96278", "96815", "97158", "98273", "98274" ]
[ "base", "nonn", "fini", "full" ]
18
1
1
[ "A040114", "A100787", "A270263", "A365257", "A365258" ]
null
Eric Angelini and Giorgos Kalogeropoulos, Aug 29 2023
2023-09-03T10:48:11
oeisdata/seq/A365/A365257.seq
2aa1c63e6d5160c4e065c1eb2e8cfbb6
A365258
The four digits of a(n), their three successive absolute first differences and their two successive absolute second differences are all distinct.
[ "2983", "3892", "4197", "4917", "5298", "5928", "7194", "7398", "7914", "7938", "8139", "8295", "8329", "8397", "8925", "8937", "9238", "9318" ]
[ "base", "nonn", "fini", "full" ]
23
1
1
[ "A040114", "A100787", "A270263", "A365257", "A365258" ]
null
Eric Angelini and Giorgos Kalogeropoulos, Aug 29 2023
2023-11-23T11:25:52
oeisdata/seq/A365/A365258.seq
91189172d29899fdb6ea42233ef95118
A365259
Lexicographically earliest sequence of distinct positive numbers such that, for n > 2, a(n) shares a factor with a(n-1) and a(n+a(n)).
[ "1", "2", "4", "6", "3", "9", "12", "15", "5", "10", "8", "14", "7", "35", "21", "18", "16", "20", "22", "28", "24", "26", "30", "25", "40", "32", "34", "17", "51", "27", "33", "11", "44", "36", "38", "42", "39", "45", "48", "46", "50", "52", "66", "54", "68", "56", "49", "70", "55", "60", "57", "19", "76", "58", "29", "87", "63", "72", "62", "31", "124", "64", "74", "78", "65", "13", "91", "77", "84", "69", "114", "75", "80", "82", "41", "123" ]
[ "nonn" ]
29
1
2
[ "A027748", "A064413", "A365259", "A365453", "A366021" ]
null
Scott R. Shannon, Sep 03 2023
2024-03-23T13:51:35
oeisdata/seq/A365/A365259.seq
e84b6688633fff99507398a55669aea2
A365260
Number of steps for n to stop, according to the "multiply with zero" rules explained in A365994.
[ "2", "6", "2", "8", "8", "3", "2", "4", "2", "4", "4", "2", "2", "3", "5", "8", "7", "5", "2", "6", "2", "9", "3", "5", "2", "3", "2", "11", "4", "7", "2", "6", "2", "11", "4", "2", "4", "5", "2", "10", "3", "2", "12", "5", "2", "5", "4", "6", "2", "5", "2", "4", "3", "9", "6", "3", "3", "5", "5", "16", "2", "13", "2", "2", "10", "7", "5", "7", "2", "4", "3", "2", "5", "5", "11", "16", "7", "10", "4", "8", "2", "4", "7", "3", "10", "4", "2", "11", "3", "3", "2", "3", "2", "4", "3", "5", "2", "5", "5", "7" ]
[ "base", "nonn" ]
62
1
1
[ "A365260", "A365993", "A365994", "A366059", "A366060" ]
null
Giorgos Kalogeropoulos and Eric Angelini, Sep 25 2023
2024-12-21T17:43:06
oeisdata/seq/A365/A365260.seq
5f772865b53cfcbee91e8eb253671e10
A365261
Lexicographically latest infinite cubefree word over the alphabet {0,1}.
[ "1", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "1", "0", "0", "1", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "1", "0", "0", "1", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "0", "0", "1", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "1", "0", "0", "1", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "1", "0", "0", "1", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "0", "1", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "1", "0", "0", "1", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "1", "0", "0", "1", "1", "0", "1", "1" ]
[ "nonn" ]
4
0
null
[ "A010060", "A028445", "A269027", "A282317", "A365261" ]
null
L. Edson Jeffery, Aug 29 2023
2023-08-29T15:11:59
oeisdata/seq/A365/A365261.seq
f7783adcf087fb1fa98fb2b0de5e070e
A365262
Numbers k which never require the maximum number of steps for the Euclidean algorithm to compute gcd(k,m) for any m > k.
[ "54", "78", "96", "135", "150", "156", "164", "182", "252", "304", "336", "442", "480", "483", "525", "532", "558", "570", "582", "640", "645", "675", "740", "744", "780", "912", "918", "922", "924", "1012", "1046", "1132", "1155", "1164", "1170", "1206", "1218", "1320", "1422", "1424", "1450", "1452", "1456", "1488", "1496", "1536", "1548", "1568", "1594" ]
[ "nonn" ]
15
1
1
[ "A034883", "A051010", "A364405", "A365262" ]
null
John Metcalf, Aug 29 2023
2023-09-30T21:38:55
oeisdata/seq/A365/A365262.seq
4fb36f778f9bbdbfc92f26719e797d17
A365263
Numbers m for which A139770(m) and A140635(m) differ.
[ "16", "64", "81", "144", "192", "320", "324", "400", "448", "576", "625", "704", "729", "784", "832", "900", "960", "1024", "1088", "1216", "1296", "1344", "1458", "1472", "1600", "1728", "1764", "1856", "1936", "1984", "2025", "2112", "2240", "2304", "2368", "2401", "2496", "2500", "2624", "2704", "2752", "2880", "2916", "3008", "3072", "3136", "3264", "3392", "3520", "3600", "3645", "3648", "3776", "3904", "3969" ]
[ "nonn" ]
21
1
1
[ "A000005", "A002182", "A005179", "A007412", "A061799", "A139770", "A140635", "A365263" ]
null
Hartmut F. W. Hoft, Aug 29 2023
2025-01-25T03:14:23
oeisdata/seq/A365/A365263.seq
9512ec4769336f15d32d0c705fff585a
A365264
a(n) is the smallest positive integer k whose number of divisors is larger than that of n.
[ "2", "4", "4", "6", "4", "12", "4", "12", "6", "12", "4", "24", "4", "12", "12", "12", "4", "24", "4", "24", "12", "12", "4", "36", "6", "12", "12", "24", "4", "36", "4", "24", "12", "12", "12", "48", "4", "12", "12", "36", "4", "36", "4", "24", "24", "12", "4", "60", "6", "24", "12", "24", "4", "36", "12", "36", "12", "12", "4", "120", "4", "12", "24", "24", "12", "36", "4", "24", "12", "36", "4", "120", "4", "12", "24", "24", "12", "36", "4", "60" ]
[ "nonn" ]
12
1
1
[ "A002182", "A139770", "A140635", "A365264" ]
null
Hartmut F. W. Hoft, Aug 29 2023
2023-08-30T20:49:23
oeisdata/seq/A365/A365264.seq
ecae83cbdf3cf504efea2d552ecec407
A365265
Numbers k for which sqrt(k/2) divides k and the symmetric representation of sigma(k) consists of a single part and its width at the diagonal equals 1.
[ "2", "8", "18", "32", "128", "162", "200", "392", "512", "882", "968", "1352", "1458", "2048", "2178", "3042", "3872", "5000", "5202", "5408", "6498", "8192", "9248", "9522", "11552", "13122", "15138", "16928", "17298", "19208", "26912", "30752", "32768", "36992", "43218", "43808", "46208", "53792", "58482", "59168", "67712", "70688" ]
[ "nonn" ]
27
1
1
[ "A001105", "A003056", "A004171", "A014210", "A014234", "A071562", "A104089", "A174973", "A235791", "A237048", "A237270", "A237271", "A237593", "A238443", "A249223", "A250068", "A319796", "A320137", "A361903", "A361905", "A365265" ]
null
Hartmut F. W. Hoft, Aug 29 2023
2023-08-30T20:50:14
oeisdata/seq/A365/A365265.seq
4bff324ff1a54448e3b80015511f6e44
A365266
a(n) = Product_{k=1..n} Gamma(6*k).
[ "1", "120", "4790016000", "1703748471578689536000000", "44045334006101976766560297729172439040000000000", "389438360216723307909581902233109465138002465491175688781168640000000000000000" ]
[ "nonn" ]
15
0
2
[ "A000178", "A055462", "A168467", "A294319", "A294322", "A294326", "A306635", "A306651", "A365266" ]
null
Vaclav Kotesovec, Sep 01 2023
2023-09-01T04:07:49
oeisdata/seq/A365/A365266.seq
fda801b90ee13a5a92f1063aaa582be5
A365267
G.f. satisfies A(x) = 1 + x*A(x)^2*(1 + x^3*A(x)).
[ "1", "1", "2", "5", "15", "47", "153", "513", "1763", "6177", "21981", "79224", "288611", "1061019", "3931320", "14666135", "55041855", "207668702", "787225265", "2996851140", "11452198368", "43915195973", "168930713580", "651708006690", "2520840672423", "9774511167507", "37985839339052" ]
[ "nonn" ]
10
0
3
[ "A001002", "A063021", "A071969", "A365267", "A365268" ]
null
Seiichi Manyama, Aug 30 2023
2023-08-30T07:29:55
oeisdata/seq/A365/A365267.seq
24e622befeee1d999d73839ba4971745
A365268
G.f. satisfies A(x) = 1 + x*A(x)^2*(1 + x^3*A(x)^2).
[ "1", "1", "2", "5", "15", "48", "160", "549", "1929", "6909", "25134", "92612", "344924", "1296376", "4910656", "18728645", "71857133", "277160183", "1074085446", "4180057725", "16329796959", "64014638564", "251734985808", "992788252700", "3925688845948", "15560762343388", "61818928594952" ]
[ "nonn" ]
8
0
3
[ "A006605", "A049140", "A063021", "A365267", "A365268" ]
null
Seiichi Manyama, Aug 30 2023
2023-08-30T07:30:01
oeisdata/seq/A365/A365268.seq
6db21294311f17c6227bbf27e730454a
A365269
a(n) = Product_{k=1..n} A002720(k).
[ "1", "2", "14", "476", "99484", "153802264", "2049722772328", "268353804798726416", "386893462638663037013264", "6798536031341327693983294520096", "1595359632648441879172205168815801694176", "5432770180592069558569584672506997142250856260032" ]
[ "nonn" ]
10
0
2
[ "A002720", "A289897", "A365269" ]
null
Vaclav Kotesovec, Aug 30 2023
2023-08-31T09:50:23
oeisdata/seq/A365/A365269.seq
269cfe6a645bcda5390833e94b4e0625
A365270
Practical numbers that have middle divisors.
[ "1", "2", "4", "6", "8", "12", "16", "18", "20", "24", "28", "30", "32", "36", "40", "42", "48", "54", "56", "60", "64", "66", "72", "80", "84", "88", "90", "96", "100", "104", "108", "112", "120", "126", "128", "132", "140", "144", "150", "156", "160", "162", "168", "176", "180", "192", "196", "198", "200", "204", "208", "210", "216", "220", "224", "228", "234", "240", "252", "256" ]
[ "nonn" ]
36
1
2
[ "A005153", "A067742", "A071562", "A174973", "A236104", "A237270", "A237271", "A237591", "A237593", "A317412", "A365270" ]
null
Omar E. Pol, Aug 30 2023
2023-10-17T07:38:23
oeisdata/seq/A365/A365270.seq
48ed54f459e7c16bba46d28ded12a996
A365271
Minimum number of shaded squares needed on an n X n grid divided into rectangular regions so that more than half of the regions have more than half of their squares shaded and the area of the smallest region is more than half that of the largest region.
[ "1", "3", "4", "6", "8", "11", "14", "16", "20", "24", "28", "32", "36", "42", "48", "54", "60", "66", "72", "80", "88", "96", "104", "112", "120", "130", "140", "150", "158", "168", "180", "192", "204", "215", "226", "238", "252", "264", "277", "289", "306", "320", "336", "351" ]
[ "nonn", "more", "hard" ]
75
1
2
[ "A172477", "A341319", "A365271" ]
null
Andrew Parkinson, Aug 30 2023
2024-07-27T12:17:58
oeisdata/seq/A365/A365271.seq
c2e20b69008b7f6d9ef2c2828941228a
A365272
a(n) is the least positive integer that can be expressed as the sum of two distinct prime powers (A000961) in exactly n ways.
[ "1", "3", "5", "9", "12", "20", "30", "36", "48", "66", "72", "84", "90", "120", "144", "132", "150", "192", "180", "246", "264", "210", "252", "270", "294", "300", "330", "486", "360", "516", "522", "468", "390", "462", "420", "480", "540", "510", "570", "600", "714", "756", "936", "750", "690", "660", "630", "810", "780", "924", "870", "1296", "930", "1122", "1404", "840" ]
[ "nonn" ]
15
0
2
[ "A000961", "A087747", "A225099", "A341132", "A365272" ]
null
Ilya Gutkovskiy, Sep 07 2023
2023-09-25T09:06:23
oeisdata/seq/A365/A365272.seq
252552f381f6f10d86cf5b861775d340
A365273
Number of vertices in the Laakso graph of order n.
[ "6", "30", "174", "1038", "6222", "37326", "223950", "1343694", "8062158", "48372942", "290237646", "1741425870", "10448555214", "62691331278", "376147987662", "2256887925966", "13541327555790", "81247965334734", "487487792008398", "2924926752050382" ]
[ "nonn", "easy" ]
32
1
1
[ "A152596", "A365273" ]
null
Ken McCabe, Aug 30 2023
2023-10-16T06:08:51
oeisdata/seq/A365/A365273.seq
27a77054a1bcbfa4e553d94642bffc20
A365274
a(n) = a(n-2) + 4*a(n-4) - 2*a(n-8) - a(n-10), with a[0..9] = [1, 1, 1, 2, 3, 5, 7, 13, 18, 31].
[ "1", "1", "1", "2", "3", "5", "7", "13", "18", "31", "43", "78", "108", "190", "263", "471", "652", "1156", "1600", "2853", "3949", "7019", "9715", "17299", "23944", "42592", "58952", "104926", "145230", "258403", "357659", "636490", "880976", "1567619", "2169764", "3861135", "5344256", "9509879", "13162764", "23423036", "32420177" ]
[ "nonn", "easy" ]
20
0
4
[ "A135318", "A365274", "A366143" ]
null
Greg Dresden and Ziyi Xie, Oct 01 2023
2023-10-09T20:29:32
oeisdata/seq/A365/A365274.seq
a9f33e70293d26f6fb8daceb3e1bc5a2
A365275
Number of integers k <= n that can be written as k = m^2+p^2 where p is a prime and m is a positive integer.
[ "0", "0", "0", "0", "1", "1", "1", "2", "2", "3", "3", "3", "4", "4", "4", "4", "4", "5", "5", "6", "6", "6", "6", "6", "7", "8", "8", "8", "9", "9", "9", "9", "9", "10", "10", "10", "10", "10", "10", "11", "12", "12", "12", "12", "13", "13", "13", "13", "13", "14", "14", "14", "15", "15", "15", "15", "15", "16", "16", "16", "17", "17", "17", "17", "18", "18", "18", "19", "19", "19", "19", "19", "20", "21", "21", "21", "21", "21", "21", "21" ]
[ "nonn" ]
7
1
8
[ "A361300", "A365275" ]
null
Michel Marcus, Aug 30 2023
2023-08-30T20:51:04
oeisdata/seq/A365/A365275.seq
f072d81a9c8ad70ecc063cd96c3e9f70
A365276
Sum of all prime substrings of n in base 10, including n itself and duplicate or overlapping substrings but not substrings with a leading 0.
[ "0", "0", "2", "3", "0", "5", "0", "7", "0", "0", "0", "11", "2", "16", "0", "5", "0", "24", "0", "19", "2", "2", "4", "28", "2", "7", "2", "9", "2", "31", "3", "34", "5", "6", "3", "8", "3", "47", "3", "3", "0", "41", "2", "46", "0", "5", "0", "54", "0", "0", "5", "5", "7", "61", "5", "10", "5", "12", "5", "64", "0", "61", "2", "3", "0", "5", "0", "74", "0", "0", "7", "78", "9", "83", "7", "12", "7", "14", "7", "86", "0" ]
[ "nonn", "base" ]
25
0
3
[ "A035232", "A225580", "A365276" ]
null
Wade Reece Eberly, Aug 30 2023
2023-09-29T17:56:54
oeisdata/seq/A365/A365276.seq
be6d7d57e89b78d15ac18a08e7d72d60
A365277
Numbers of the form prime(i)*prime(j)*prime(i+j).
[ "12", "30", "63", "70", "154", "165", "273", "286", "325", "442", "561", "595", "646", "741", "874", "931", "1045", "1173", "1334", "1495", "1653", "1771", "1798", "2139", "2294", "2465", "2639", "2945", "3034", "3219", "3509", "3526", "3689", "3813", "4042", "4255", "4433", "4773", "4921", "4982", "5781", "5945", "6253", "6254", "6601", "6665", "6837", "6919", "7198", "8174", "8319", "8569", "8695" ]
[ "nonn" ]
6
1
1
[ "A014612", "A364462", "A365277" ]
null
Robert Israel, Aug 30 2023
2023-08-30T20:52:28
oeisdata/seq/A365/A365277.seq
74b65416729c7b4c180fa1499071d7e0
A365278
In the binary expansion of n replace each run of k consecutive 1's by the decimal digits of A007931(k) to get the ternary expansion of a(n).
[ "0", "1", "3", "2", "9", "10", "6", "4", "27", "28", "30", "11", "18", "19", "12", "5", "81", "82", "84", "29", "90", "91", "33", "31", "54", "55", "57", "20", "36", "37", "15", "7", "243", "244", "246", "83", "252", "253", "87", "85", "270", "271", "273", "92", "99", "100", "93", "32", "162", "163", "165", "56", "171", "172", "60", "58", "108", "109", "111", "38", "45", "46", "21" ]
[ "nonn", "base" ]
21
0
3
[ "A007931", "A023416", "A032924", "A077267", "A290308", "A365278", "A365279" ]
null
Rémy Sigrist, Aug 30 2023
2023-10-17T10:54:59
oeisdata/seq/A365/A365278.seq
a057ad77523033813f4ace14b154ac7f
A365279
Inverse permutation to A365278.
[ "0", "1", "3", "2", "7", "15", "6", "31", "63", "4", "5", "11", "14", "127", "255", "30", "511", "1023", "12", "13", "27", "62", "2047", "4095", "126", "8191", "16383", "8", "9", "19", "10", "23", "47", "22", "95", "191", "28", "29", "59", "254", "32767", "65535", "510", "131071", "262143", "60", "61", "123", "1022", "524287", "1048575", "2046", "2097151", "4194303" ]
[ "nonn", "base" ]
10
0
3
[ "A023416", "A032924", "A077267", "A365278", "A365279" ]
null
Rémy Sigrist, Aug 31 2023
2023-09-03T11:33:07
oeisdata/seq/A365/A365279.seq
02d1f18d154ca20cbe41a9f88916b4b7
A365280
a(n) is the least number that starts a run of exactly n numbers that are members of A364462.
[ "12", "324", "6252", "155673", "7445148", "457137900" ]
[ "nonn", "more" ]
12
1
1
[ "A364462", "A365277", "A365280" ]
null
Robert Israel, Aug 30 2023
2023-09-02T02:39:41
oeisdata/seq/A365/A365280.seq
743de97dfdf5356e1d63271ef0386f9d
A365281
Decimal expansion of the least real solution x > 0 of Gamma(1/4 + x/2)/(Pi^x*Gamma(1/4 - x/2)) = 1.
[ "1", "8", "5", "6", "7", "7", "5", "0", "8", "4", "7", "0", "6", "9", "6", "6", "2", "0", "7", "2", "7", "9", "1", "4", "5", "8", "3", "6", "5", "6", "2", "3", "4", "4", "7", "3", "0", "3", "3", "8", "4", "2", "0", "1", "7", "3", "2", "6", "5", "8", "5", "3", "9", "8", "3", "3", "4", "7", "4", "6", "1", "7", "7", "8", "5", "4", "3", "6", "0", "0", "6", "4", "1", "7", "3", "5", "7", "9", "7", "2", "7", "1", "1", "7", "3", "1", "5", "9", "1", "4", "0", "1", "2", "1", "0", "6", "5" ]
[ "nonn", "cons" ]
14
2
2
[ "A059750", "A114720", "A257870", "A365281" ]
null
Thomas Scheuerle, Aug 31 2023
2023-09-13T22:59:58
oeisdata/seq/A365/A365281.seq
e1116818b1b6c0fa6849206ce06049ba
A365282
E.g.f. satisfies A(x) = 1 + x*A(x)*exp(x^2*A(x)).
[ "1", "1", "2", "12", "96", "900", "10800", "157080", "2634240", "50455440", "1089849600", "26157479040", "690848040960", "19924295751360", "623024501299200", "20996216063222400", "758724126031872000", "29267547577396128000", "1200407895406514995200" ]
[ "nonn" ]
12
0
3
[ "A358064", "A365282", "A365283", "A365284", "A365285" ]
null
Seiichi Manyama, Aug 31 2023
2023-08-31T07:46:19
oeisdata/seq/A365/A365282.seq
3bb61e568c849286fa2d4f96d1882856
A365283
E.g.f. satisfies A(x) = 1 + x*A(x)*exp(x^2*A(x)^2).
[ "1", "1", "2", "12", "120", "1380", "19440", "341040", "7029120", "164762640", "4355769600", "128527439040", "4181332700160", "148633442717760", "5734427199621120", "238676208285715200", "10659325532663808000", "508452777299622355200", "25800664274991135129600" ]
[ "nonn" ]
12
0
3
[ "A161633", "A358064", "A365282", "A365283", "A365284", "A365287" ]
null
Seiichi Manyama, Aug 31 2023
2023-11-08T05:06:44
oeisdata/seq/A365/A365283.seq
5a9afe0f17764fd93a558157ba7c5a4b
A365284
E.g.f. satisfies A(x) = 1 + x*A(x)*exp(x^2*A(x)^3).
[ "1", "1", "2", "12", "144", "1980", "31680", "630840", "15093120", "411883920", "12607660800", "430740858240", "16265744732160", "671629503504960", "30093198326231040", "1454898560062147200", "75503612563771392000", "4186035286381024876800", "246916968958719605145600" ]
[ "nonn" ]
12
0
3
[ "A358064", "A365282", "A365283", "A365284" ]
null
Seiichi Manyama, Aug 31 2023
2024-03-10T08:44:36
oeisdata/seq/A365/A365284.seq
c51f738728ff9bd912780a837b3e87e2
A365285
E.g.f. satisfies A(x) = 1 + x*A(x)*exp(x^3*A(x)).
[ "1", "1", "2", "6", "48", "480", "5040", "57960", "806400", "13426560", "250992000", "5102697600", "113283878400", "2760905347200", "73287883468800", "2093750122464000", "63947194517606400", "2082970788291993600", "72182922107859763200", "2651026034089585152000" ]
[ "nonn" ]
10
0
3
[ "A358065", "A365282", "A365285", "A365286", "A365287" ]
null
Seiichi Manyama, Aug 31 2023
2023-08-31T08:16:43
oeisdata/seq/A365/A365285.seq
3fc399b1a049e4f70c8ed429bf275c4b
A365286
E.g.f. satisfies A(x) = 1 + x*A(x)*exp(x^3*A(x)^2).
[ "1", "1", "2", "6", "48", "600", "7920", "108360", "1693440", "32114880", "715478400", "17616614400", "467505561600", "13438170345600", "421361740800000", "14345678194848000", "524464774215782400", "20420391682852761600", "844038690729589555200", "36981569420732192256000" ]
[ "nonn" ]
7
0
3
[ "A358065", "A365285", "A365286", "A365287" ]
null
Seiichi Manyama, Aug 31 2023
2023-08-31T08:16:47
oeisdata/seq/A365/A365286.seq
1296f08eb2554fc5ac97810894d0b8a7
A365287
E.g.f. satisfies A(x) = 1 + x*A(x)*exp(x^3*A(x)^3).
[ "1", "1", "2", "6", "48", "720", "11520", "183960", "3185280", "65681280", "1637193600", "46436544000", "1423113753600", "46607434473600", "1648149184281600", "63369409495392000", "2634451417524326400", "117088187211284889600", "5518546983426135859200", "275022667579200532992000" ]
[ "nonn" ]
13
0
3
[ "A161633", "A358065", "A365283", "A365285", "A365286", "A365287" ]
null
Seiichi Manyama, Aug 31 2023
2023-11-08T05:40:08
oeisdata/seq/A365/A365287.seq
e0eca2135707f6b04f5b3b995cfe0204
A365288
a(n) is the least positive integer that can be expressed as the sum of a prime number and a square of a nonnegative integer in exactly n ways.
[ "1", "2", "3", "11", "38", "107", "83", "167", "293", "227", "398", "677", "668", "902", "908", "1238", "1487", "1448", "1748", "1592", "2273", "2672", "3167", "3947", "4457", "3632", "3713", "6047", "5843", "7052", "8123", "5792", "5297", "9602", "9092", "6368", "9908", "13268", "8153", "9833", "8777", "16112", "15923", "14528", "14852", "18233" ]
[ "nonn" ]
6
0
2
[ "A000040", "A000290", "A002471", "A064283", "A365288", "A365289", "A365291" ]
null
Ilya Gutkovskiy, Aug 31 2023
2023-09-06T20:55:30
oeisdata/seq/A365/A365288.seq
c3094e280afa8970cbb48fe573436af8
A365289
a(n) is the least positive integer that can be expressed as the sum of a prime number and a nonnegative cube in exactly n ways.
[ "1", "2", "3", "67", "829", "1787", "6654", "8941", "22193", "36277", "57139", "59455", "85377", "158435", "240074", "253628", "313407", "405925", "548802", "891845", "809384", "1317788", "1547004", "2049122", "1838349", "2516848", "3192927", "2448059", "4132313", "4349417", "4438311", "6483753", "6956437", "6175237", "9393491" ]
[ "nonn" ]
9
0
2
[ "A000040", "A000578", "A302354", "A365288", "A365289", "A365290", "A365291" ]
null
Ilya Gutkovskiy, Aug 31 2023
2023-09-07T16:07:08
oeisdata/seq/A365/A365289.seq
1ee88b1ed5a837bc240f98002b4805aa
A365290
a(n) is the least positive integer that can be expressed as the sum of a prime number and a positive cube in exactly n ways.
[ "1", "3", "30", "128", "1130", "2214", "6654", "10358", "24496", "37599", "64034", "59455", "85377", "158435", "240074", "253628", "313407", "405925", "548802", "891845", "809384", "1317788", "1547004", "2049122", "1838349", "2516848", "3192927", "2448059", "4349417", "4709007", "4438311", "6483753", "6175237", "8306209" ]
[ "nonn" ]
9
0
2
[ "A000040", "A000578", "A064283", "A283760", "A365289", "A365290", "A365292" ]
null
Ilya Gutkovskiy, Aug 31 2023
2023-09-07T16:06:59
oeisdata/seq/A365/A365290.seq
fac8d78826fe1f5239a9c29fe2674d39
A365291
a(n) is the least positive integer that can be expressed as the sum of a prime number and a fourth power of a nonnegative integer in exactly n ways.
[ "1", "2", "3", "83", "1298", "4259", "11087", "22637", "65579", "102044", "181838", "234527", "467627", "754652", "991889", "1431113", "1875902", "2271407", "4102958", "4851593", "8458148", "6826874", "10715858", "15453983", "18805058", "23502134", "27671573", "34425893", "34967159", "47158793", "54659384", "78188129", "67269347" ]
[ "nonn" ]
9
0
2
[ "A000040", "A000583", "A365126", "A365288", "A365289", "A365291", "A365292" ]
null
Ilya Gutkovskiy, Aug 31 2023
2023-09-14T01:04:15
oeisdata/seq/A365/A365291.seq
f6b78c16fccc606d3910fad4d902b63a
A365292
a(n) is the least positive integer that can be expressed as the sum of a prime number and a fourth power of a positive integer in exactly n ways.
[ "1", "3", "18", "644", "1298", "6662", "14948", "29102", "77579", "102044", "181838", "367022", "545828", "754652", "1095254", "1985807", "1875902", "2672339", "4102958", "4851593", "7444799", "6826874", "10715858", "16398674", "18805058", "23502134", "31500614", "34967159", "41824499", "47158793", "54659384", "67269347", "83885588" ]
[ "nonn" ]
11
0
2
[ "A000040", "A000583", "A064283", "A365167", "A365290", "A365291", "A365292" ]
null
Ilya Gutkovskiy, Aug 31 2023
2023-09-14T01:04:38
oeisdata/seq/A365/A365292.seq
014552bf610a75235446a8d1e6eb49e5
A365293
a(n) = n!*tetranacci(n+3).
[ "1", "1", "4", "24", "192", "1800", "20880", "282240", "4354560", "75479040", "1455148800", "30855686400", "713712384000", "17884003737600", "482619020083200", "13954193180928000", "430360865206272000", "14102295149150208000", "489295008086556672000", "17919783031425859584000" ]
[ "nonn" ]
14
0
3
[ "A000078", "A000142", "A002866", "A005442", "A276924", "A364324", "A365293" ]
null
Enrique Navarrete, Aug 31 2023
2023-09-01T04:40:43
oeisdata/seq/A365/A365293.seq
1e169a286e2d0d20d38bb59be74ed188
A365294
a(n) is the least positive integer that can be expressed as the sum of a prime number and a perfect power in exactly n ways.
[ "1", "3", "6", "11", "27", "38", "105", "128", "248", "227", "398", "572", "692", "668", "902", "908", "1172", "1448", "2288", "1748", "1592", "2483", "3167", "3932", "3902", "3737", "4457", "3632", "5843", "6443", "6233", "8048", "6992", "5297", "8678", "6368", "8888", "10688", "9908", "8153", "8777", "13163", "14222", "16463", "14528", "14948" ]
[ "nonn" ]
4
0
2
[ "A000040", "A001597", "A119748", "A196228", "A365294" ]
null
Ilya Gutkovskiy, Aug 31 2023
2023-09-06T20:56:26
oeisdata/seq/A365/A365294.seq
8988577db565ec58de81e299f434f81c
A365295
a(n) is the least positive integer that can be expressed as the sum of two distinct perfect powers (A001597) in exactly n ways.
[ "1", "5", "17", "129", "468", "1025", "2628", "12025", "32045", "27625", "138125", "430625", "204425", "160225", "2010025", "2348125", "801125", "1743625", "2082925", "4978025", "4005625", "12325625", "30525625", "73046025", "5928325", "13287625", "46437625", "45177925", "35409725", "120737825", "52073125", "66438125", "29641625", "32846125", "956974625" ]
[ "nonn" ]
42
0
2
[ "A001597", "A093195", "A362424", "A363040", "A365295" ]
null
Ilya Gutkovskiy, Aug 31 2023
2024-03-03T09:29:54
oeisdata/seq/A365/A365295.seq
4c6ebc0bffe68679fae0137bd83f2b30
A365296
The smallest coreful infinitary divisor of n.
[ "1", "2", "3", "4", "5", "6", "7", "2", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "6", "25", "26", "3", "28", "29", "30", "31", "2", "33", "34", "35", "36", "37", "38", "39", "10", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "6", "55", "14", "57", "58", "59", "60", "61", "62", "63", "4", "65", "66", "67", "68", "69" ]
[ "nonn", "easy", "mult" ]
19
1
2
[ "A006519", "A007947", "A034444", "A037445", "A077609", "A138302", "A268335", "A302792", "A339597", "A363329", "A365296" ]
null
Amiram Eldar, Aug 31 2023
2023-10-21T01:30:56
oeisdata/seq/A365/A365296.seq
23cc75af798456c48278286bc77fa93a
A365297
a(n) is the smallest number k such that k*n is a number whose prime factorization exponents are all powers of 2 (A138302).
[ "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "3", "1", "1", "1", "1", "8", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "2", "1", "1", "1", "1", "1", "1", "1", "4", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "easy", "mult" ]
7
1
8
[ "A138302", "A270419", "A356194", "A365297" ]
null
Amiram Eldar, Aug 31 2023
2023-08-31T12:17:06
oeisdata/seq/A365/A365297.seq
5875704e0e8467ad844066ed518dc2c2
A365298
a(n) is the smallest number k such that k*n is a cubefull exponentially odd number (A335988).
[ "1", "4", "9", "2", "25", "36", "49", "1", "3", "100", "121", "18", "169", "196", "225", "2", "289", "12", "361", "50", "441", "484", "529", "9", "5", "676", "1", "98", "841", "900", "961", "1", "1089", "1156", "1225", "6", "1369", "1444", "1521", "25", "1681", "1764", "1849", "242", "75", "2116", "2209", "18", "7", "20", "2601", "338", "2809", "4", "3025", "49", "3249", "3364" ]
[ "nonn", "easy", "mult" ]
7
1
2
[ "A157292", "A335988", "A356192", "A365298" ]
null
Amiram Eldar, Aug 31 2023
2023-08-31T12:17:12
oeisdata/seq/A365/A365298.seq
3d130494b4f69e9917a9f3f65a09a2b4
A365299
Expansion of e.g.f. exp(x+exp(x)-1)/(2-exp(x)).
[ "1", "3", "12", "61", "381", "2854", "25135", "255763", "2961302", "38499695", "555711129", "8820603268", "152715847805", "2864261821087", "57852085590444", "1251947417652537", "28898881499645833", "708768867850115382", "18405673844236534531", "504521729588383683391", "14557420093089617559550", "441040274672429261701475" ]
[ "nonn" ]
9
0
2
null
null
Michael De Vlieger, Aug 31 2023
2023-08-31T11:51:41
oeisdata/seq/A365/A365299.seq
8264ec8629a20829c7aa8746ed081854
A365300
a(n) is the smallest nonnegative integer such that the sum of any four ordered terms a(k), k<=n (repetitions allowed), is unique.
[ "0", "1", "5", "21", "55", "153", "368", "856", "1424", "2603", "4967", "8194", "13663", "22432", "28169", "47688", "65545", "96615", "146248", "202507", "266267", "364834", "450308", "585328", "773000", "986339", "1162748", "1472659", "1993180", "2275962", "3012656", "3552307", "4590959", "5404183", "6601787", "7893270", "9340877" ]
[ "nonn" ]
49
1
3
[ "A025582", "A051912", "A365300", "A365301", "A365302", "A365303", "A365304", "A365305", "A365515" ]
null
Kevin O'Bryant, Aug 31 2023
2024-03-28T04:13:20
oeisdata/seq/A365/A365300.seq
bffe2bbaeffd1751347deb6434f61cc4