sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A364701
Pseudoprimes corresponding to a Perrin-like primality test.
[ "1531398", "114009582", "940084647", "4206644978", "7962908038", "20293639091", "41947594698" ]
[ "nonn", "more" ]
27
1
1
[ "A001608", "A013998", "A018187", "A362923", "A364701" ]
null
Robert Dougherty-Bliss, Aug 03 2023
2024-03-05T16:46:54
oeisdata/seq/A364/A364701.seq
f92fb94c28e0cf5b62699eb2aa6777d4
A364702
Numbers k in A361098 that are not divisible by A007947(k)^2.
[ "48", "50", "54", "75", "80", "96", "98", "112", "135", "147", "160", "162", "189", "192", "224", "240", "242", "245", "250", "252", "270", "294", "300", "320", "336", "338", "350", "352", "360", "363", "375", "378", "384", "396", "405", "416", "448", "450", "468", "480", "486", "490", "504", "507", "525", "528", "540", "550", "560", "567", "578", "588", "594", "600" ]
[ "nonn" ]
7
1
1
[ "A001221", "A001222", "A001694", "A007947", "A053669", "A119288", "A126706", "A286708", "A361098", "A364702" ]
null
Michael De Vlieger, Aug 03 2023
2023-08-05T21:33:01
oeisdata/seq/A364/A364702.seq
f7d6afafc1b684908883061e55f96ecb
A364703
Numerators of coefficients in expansion of sqrt( 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + ... ).
[ "1", "1", "7", "17", "139", "263", "995", "1969", "32371", "66635", "268121", "527959", "4146719", "8259235", "33398491", "67666673", "2171753923", "4309377779", "17069564957", "34059684283", "274173644357", "552586858969", "2214430477093", "4407001803383", "70069816438007", "139923827220319", "562011390816205", "1129932221061107" ]
[ "nonn", "frac" ]
6
0
3
[ "A001790", "A046161", "A261419", "A261420", "A364703" ]
null
Ilya Gutkovskiy, Aug 03 2023
2023-08-05T21:25:15
oeisdata/seq/A364/A364703.seq
1e368a0579f858ee42eb096186a00a39
A364704
Smallest initial number k of n consecutive numbers satisfying sigma(k) < sigma(k+1) < ... < sigma(k+n-1).
[ "1", "1", "1", "1", "36721681", "36721681" ]
[ "nonn", "more", "hard" ]
15
1
5
[ "A000203", "A028965", "A053224", "A075028", "A285893", "A364659", "A364662", "A364680", "A364704" ]
null
Seiichi Manyama, Aug 03 2023
2023-08-04T08:17:43
oeisdata/seq/A364/A364704.seq
1e0e3ebe7724f87b46644e654703b50f
A364705
Expansion of 1/(1 - 4*x - x^2 + x^3).
[ "1", "4", "17", "71", "297", "1242", "5194", "21721", "90836", "379871", "1588599", "6643431", "27782452", "116184640", "485877581", "2031912512", "8497342989", "35535406887", "148607058025", "621466295998", "2598936835130", "10868606578493", "45451896853104", "190077257155779", "794892318897727", "3324194635893583" ]
[ "nonn" ]
13
0
2
[ "A124807", "A126393", "A364705" ]
null
G. C. Greubel, Aug 04 2023
2025-03-27T23:27:36
oeisdata/seq/A364/A364705.seq
dc176c2e2faf0bdb15b5af911c587c74
A364706
a(n) is the least number k such that the k-th difference between consecutive practical numbers, A179651(k), equals 2*n, or -1 if no such k exists.
[ "2", "5", "16", "33", "85", "46", "331", "188", "171", "300", "1986", "962", "3321", "968", "2316", "6514", "9974", "3219", "12162", "3831", "4588", "20585", "30099", "22005", "30465", "33485", "28874", "35901", "136396", "48483", "120127", "34145", "140589", "233364", "126080", "185421", "607164", "279989", "359002", "327768", "609867", "354143" ]
[ "nonn" ]
11
1
1
[ "A005153", "A179651", "A330870", "A364706", "A364707" ]
null
Amiram Eldar, Aug 04 2023
2023-08-04T10:14:26
oeisdata/seq/A364/A364706.seq
5024bd56945da56d280c0a477221f0ec
A364707
a(n) is the least practical number A005153(k) such that A005153(k+1) - A005153(k) = 2*n, or -1 if no such number exists.
[ "2", "8", "42", "112", "368", "180", "1806", "936", "840", "1600", "14168", "6216", "25120", "6272", "16770", "52668", "83720", "24240", "103840", "29440", "35910", "184140", "278334", "197912", "282150", "313040", "266112", "337840", "1438722", "468540", "1254016", "319808", "1486584", "2566432", "1321376", "2003688", "7163646", "3121328" ]
[ "nonn" ]
9
1
1
[ "A005153", "A179651", "A330870", "A364706", "A364707" ]
null
Amiram Eldar, Aug 04 2023
2023-08-04T10:13:48
oeisdata/seq/A364/A364707.seq
d1d8cac727c6c4b987cc8d1940917e60
A364708
Triangle of coefficient of the series reversion in t of the power series (exp(log(1+t*x)/x)-1)*exp(-t) as an e.g.f.
[ "1", "1", "1", "2", "6", "1", "6", "35", "22", "1", "24", "225", "310", "65", "1", "120", "1624", "3885", "1975", "171", "1", "720", "13132", "47929", "45080", "10367", "420", "1", "5040", "118124", "606060", "909489", "409416", "48034", "988", "1", "40320", "1172700", "7995455", "17445645", "13033398", "3152520", "204423", "2259", "1", "362880", "12753576", "110917400", "330281930", "369520305", "153751773", "21587950", "819120", "5065", "1" ]
[ "nonn", "tabl", "easy" ]
38
1
4
[ "A000142", "A000169", "A079510", "A364708" ]
null
Paul Laubie, Oct 20 2023
2024-02-03T10:13:37
oeisdata/seq/A364/A364708.seq
eaee66dfd6dd27ec776ce94afb5380e0
A364709
Triangle read by rows: T(n,k) is the number of forests of labeled rooted hypertrees with n vertices and weight k, 0 <= k < n.
[ "1", "2", "1", "9", "9", "1", "64", "96", "28", "1", "625", "1250", "625", "75", "1", "7776", "19440", "14040", "3240", "186", "1", "117649", "352947", "336140", "120050", "14749", "441", "1", "2097152", "7340032", "8716288", "4300800", "870912", "61824", "1016", "1", "43046721", "172186884", "245525742", "156243654", "45605511", "5664330", "245025", "2295", "1" ]
[ "nonn", "tabl", "easy" ]
27
1
2
[ "A000169", "A052888", "A081131", "A111492", "A364709" ]
null
Paul Laubie, Oct 20 2023
2024-01-01T19:44:23
oeisdata/seq/A364/A364709.seq
36e40467a5e41980119aa3438ebf713f
A364710
Products of primorials that are neither squarefree nor prime powers.
[ "12", "24", "36", "48", "60", "72", "96", "120", "144", "180", "192", "216", "240", "288", "360", "384", "420", "432", "480", "576", "720", "768", "840", "864", "900", "960", "1080", "1152", "1260", "1296", "1440", "1536", "1680", "1728", "1800", "1920", "2160", "2304", "2520", "2592", "2880", "3072", "3360", "3456", "3600", "3840", "4320", "4608", "4620" ]
[ "nonn", "easy" ]
21
1
1
[ "A000079", "A002110", "A002182", "A025487", "A126706", "A364710" ]
null
Michael De Vlieger, Dec 12 2023
2023-12-16T05:43:34
oeisdata/seq/A364/A364710.seq
dd95da5c7f0851b2f197c8e1268d96bf
A364711
Decimal expansion of (negative of) the real part of (-sqrt(2))^^10, where ^^ indicates tetration or hyper-4 (e.g., 2^^4 = 2^(2^(2^2))).
[ "1", "4", "1", "4", "2", "1", "3", "5", "6", "2", "3", "7", "3", "0", "9", "5", "0", "4", "8", "8", "0", "1", "6", "8", "8", "7", "2", "4", "2", "0", "9", "6", "9", "8", "0", "7", "8", "5", "6", "9", "6", "7", "1", "8", "7", "1", "1", "0", "1", "0", "6", "6", "5", "8", "7", "0", "9", "4", "9", "3", "4", "9", "9", "6", "1", "1", "2", "2", "4", "0", "3", "1", "4", "5", "7", "4", "9", "7", "1", "7", "9", "7", "9", "9", "8", "8", "0" ]
[ "easy", "cons", "nonn" ]
20
1
2
[ "A002193", "A359187", "A364711", "A364806", "A365937" ]
null
Marco Ripà, Oct 20 2023
2024-01-10T16:34:00
oeisdata/seq/A364/A364711.seq
c4a4ea5d5d3dfa8547083d321f27c6f9
A364712
Number of families of non-toric log del Pezzo surfaces of Picard number one with Gorenstein index = n that admit an effective action of a one-dimensional torus.
[ "13", "10", "36", "25", "80", "37", "100", "56", "109", "71", "176", "85", "158", "105", "200", "102", "226", "102", "241", "178", "253", "150", "312", "176", "269", "149", "336", "224", "395", "192", "309", "216", "381", "207", "592", "230", "336", "239", "497", "312", "481", "266", "405", "348", "526", "270", "549", "317", "497", "277", "570", "354", "532", "334" ]
[ "nonn" ]
18
1
1
[ "A145581", "A145582", "A364712" ]
null
Justus Springer, Aug 04 2023
2024-04-11T10:27:32
oeisdata/seq/A364/A364712.seq
2561257f806314cfe30d418d20b92025
A364713
a(n) is the numerator of coefficient of x^n in expansion of (1 + x)^(1/n).
[ "1", "-1", "5", "-77", "399", "-124729", "81549", "-23960365", "283583443", "-478398640447", "19740912828", "-11911591259019739", "18262332208600", "-4514446693068714225", "142267808222130386191", "-1912831808055538077885", "39773048560156838355", "-43025628065750129034887540875", "86435429204640847578555" ]
[ "sign", "frac" ]
12
1
3
[ "A002596", "A067622", "A145921", "A344745", "A364660", "A364713" ]
null
Ilya Gutkovskiy, Aug 04 2023
2023-08-05T06:25:59
oeisdata/seq/A364/A364713.seq
665cf43db2b6fccd7ba52acb4fe8002d
A364714
Least positive integer whose average digit in base b equals (b-1)/2 (the expected value for random digits) for 2 <= b <= n.
[ "2", "38", "141", "3468", "36990", "36990" ]
[ "nonn", "base", "more", "hard" ]
32
2
1
[ "A031443", "A144798", "A144799", "A144800", "A144801", "A144812", "A364714" ]
null
Pontus von Brömssen, Aug 04 2023
2024-05-20T10:30:19
oeisdata/seq/A364/A364714.seq
a9c241b89ccd9e4ffdb099b3c00067c7
A364715
Numbers k such that d(k) < d(k+1) < d(k+2), where d(n) is the number of divisors of n.
[ "61", "62", "73", "163", "187", "193", "194", "206", "254", "274", "277", "278", "283", "313", "355", "361", "362", "397", "398", "403", "421", "422", "427", "454", "457", "458", "482", "493", "523", "538", "583", "613", "614", "661", "673", "691", "733", "746", "757", "758", "763", "823", "853", "866", "889", "926", "934", "943", "955", "997", "998", "1003", "1027" ]
[ "nonn", "easy" ]
10
1
1
[ "A000005", "A074775", "A075028", "A364659", "A364715", "A364716", "A364717", "A364718" ]
null
Seiichi Manyama, Aug 04 2023
2023-08-04T08:16:13
oeisdata/seq/A364/A364715.seq
8794c89f6d6604f3dd828f660aed9ab4
A364716
Numbers k such that d(k) < d(k+1) < d(k+2) < d(k+3), where d(n) is the number of divisors of n.
[ "61", "193", "277", "361", "397", "421", "457", "613", "757", "997", "1213", "1237", "1453", "1657", "1867", "1873", "1933", "2137", "2347", "2593", "2797", "2917", "3013", "3183", "3217", "3361", "3427", "3481", "3517", "3697", "3721", "3805", "4057", "4083", "4177", "4261", "4603", "4621", "4717", "4771", "4813", "4957", "5029", "5041", "5101", "5107", "5223" ]
[ "nonn" ]
9
1
1
[ "A000005", "A074775", "A075028", "A364662", "A364715", "A364716", "A364717", "A364719" ]
null
Seiichi Manyama, Aug 04 2023
2023-08-04T08:16:01
oeisdata/seq/A364/A364716.seq
47b4cd961ec34b369663151c423376e0
A364717
Numbers k such that d(k) < d(k+1) < d(k+2) < d(k+3) < d(k+4), where d(n) is the number of divisors of n.
[ "11371", "11372", "35521", "38281", "45613", "48121", "50821", "50822", "52321", "52322", "54421", "54422", "59341", "59342", "71821", "79621", "86873", "87181", "117841", "125737", "127852", "130021", "130022", "132051", "132206", "133396", "151082", "153221", "173221", "180001", "184973", "186481", "195541", "195542", "196171", "196172" ]
[ "nonn" ]
7
1
1
[ "A000005", "A074775", "A075028", "A364715", "A364716", "A364717", "A364720" ]
null
Seiichi Manyama, Aug 04 2023
2023-08-04T08:15:47
oeisdata/seq/A364/A364717.seq
803ad50c04666d904593476942a3deff
A364718
Numbers k such that d(k) > d(k+1) > d(k+2), where d(n) is the number of divisors of n.
[ "45", "80", "81", "105", "165", "224", "225", "260", "261", "272", "315", "324", "345", "357", "384", "405", "435", "440", "441", "464", "465", "476", "477", "495", "512", "555", "560", "561", "567", "585", "594", "595", "620", "624", "627", "650", "651", "675", "704", "714", "715", "795", "800", "825", "836", "837", "855", "860", "861", "884", "885", "891", "896", "915" ]
[ "nonn", "easy" ]
13
1
1
[ "A000005", "A074827", "A075029", "A364657", "A364718", "A364719", "A364720" ]
null
Seiichi Manyama, Aug 04 2023
2023-08-04T10:01:08
oeisdata/seq/A364/A364718.seq
d635c697d3a4760d2b13054b6a46cacc
A364719
Numbers k such that d(k) > d(k+1) > d(k+2) > d(k+3), where d(n) is the number of divisors of n.
[ "80", "224", "260", "440", "464", "476", "560", "594", "650", "714", "836", "860", "884", "980", "1016", "1088", "1184", "1280", "1376", "1520", "1700", "1862", "1904", "2024", "2060", "2096", "2444", "2450", "2816", "2870", "2960", "2996", "3020", "3024", "3164", "3200", "3320", "3380", "3450", "3620", "3800", "3944", "3968", "4004", "4130", "4136", "4250" ]
[ "nonn", "easy" ]
19
1
1
[ "A000005", "A050944", "A074827", "A075029", "A364718", "A364719", "A364720" ]
null
Seiichi Manyama, Aug 04 2023
2024-03-11T13:41:03
oeisdata/seq/A364/A364719.seq
3986a587f92c18dfefc87680c9f08f44
A364720
Numbers k such that d(k) > d(k+1) > d(k+2) > d(k+3) > d(k+4), where d(n) is the number of divisors of n.
[ "28974", "28975", "39150", "39444", "39445", "44863", "60775", "64015", "68875", "71995", "75174", "79135", "79848", "79849", "91195", "103615", "113904", "113905", "118825", "126294", "141955", "143143", "148974", "149823", "150955", "154375", "160734", "160735", "160974", "161343", "167824", "171925", "177330", "181194", "181195" ]
[ "nonn", "easy" ]
18
1
1
[ "A000005", "A074827", "A075029", "A364718", "A364719", "A364720" ]
null
Seiichi Manyama, Aug 04 2023
2024-03-30T13:33:30
oeisdata/seq/A364/A364720.seq
8e9757591f51b0b94e50af2973532565
A364721
Number of ways that n can be expressed as a sum of consecutive integers from 0 up to at most n, where any of the terms in the sum can be negated, and the partial sum from 0 is always between 0 and n inclusive.
[ "1", "1", "0", "1", "1", "0", "1", "1", "1", "2", "2", "2", "2", "3", "2", "4", "5", "4", "6", "9", "10", "13", "15", "16", "20", "25", "28", "36", "46", "52", "65", "76", "95", "123", "138", "186", "221", "275", "322", "388", "507", "619", "739", "976", "1127", "1395", "1677", "2002", "2631", "3247", "3883", "5226", "6056", "7464", "9084", "10907", "14150", "17823", "21509", "28615", "33509", "41433", "51044" ]
[ "nonn" ]
23
0
10
null
null
Stelio Passaris, Aug 04 2023
2023-10-01T16:03:18
oeisdata/seq/A364/A364721.seq
956629b759ce4b5b62f95a8bd41a3c92
A364722
Numbers k that divide 1 + 2^m + 4^m for some m.
[ "1", "3", "7", "13", "19", "21", "37", "39", "49", "57", "61", "67", "73", "79", "91", "97", "103", "109", "111", "139", "147", "151", "163", "169", "181", "183", "193", "199", "201", "211", "219", "237", "241", "271", "273", "291", "307", "309", "313", "327", "331", "337", "343", "349", "361", "367", "373", "379", "409", "417", "421", "427", "433", "453", "463", "469", "487", "489", "507", "523", "541", "543", "547" ]
[ "nonn" ]
15
1
2
[ "A034017", "A364722", "A364724" ]
null
Robert Israel, Aug 04 2023
2024-05-02T14:29:19
oeisdata/seq/A364/A364722.seq
ffff45081644aa04897d33b09402430e
A364723
G.f. satisfies A(x) = 1 + x*A(x) / (1 - x*A(x)^4).
[ "1", "1", "2", "8", "38", "196", "1073", "6120", "35968", "216304", "1324676", "8232981", "51796538", "329229344", "2111031444", "13638557196", "88695018723", "580153216512", "3814285704000", "25192499164320", "167075960048996", "1112162062296061", "7428213584196010", "49766086788057256" ]
[ "nonn" ]
22
0
3
[ "A000108", "A106228", "A300048", "A364723", "A364734", "A364739" ]
null
Seiichi Manyama, Aug 05 2023
2023-08-07T07:46:06
oeisdata/seq/A364/A364723.seq
c1c10898e521af4210eda2bd306de980
A364724
a(n) is the least k such that 1^k + 2^k + 4^k is divisible by A364722(n).
[ "0", "0", "1", "4", "6", "2", "12", "4", "7", "6", "20", "22", "3", "13", "4", "16", "17", "12", "12", "46", "14", "5", "54", "52", "60", "20", "32", "33", "22", "70", "6", "26", "8", "45", "4", "16", "34", "34", "52", "12", "10", "7", "49", "116", "114", "61", "124", "126", "68", "46", "140", "20", "24", "10", "77", "22", "81", "54", "52", "174", "180", "60", "182", "13", "38", "48", "32", "66", "101", "204", "206", "15", "70", "28", "220" ]
[ "nonn", "look" ]
12
1
4
[ "A001576", "A364722", "A364724" ]
null
Robert Israel, Aug 04 2023
2024-05-02T14:29:33
oeisdata/seq/A364/A364724.seq
8cab3be971adcfda4df6473badf40a48
A364725
Starting with a plane on which two parallel lines and two additional lines have been drawn such that the four lines form two non-congruent triangles, a(n) is the total number of lines on the plane after the n-th step, where each step consists of drawing lines that connect every intersection of two lines.
[ "4", "6", "7", "11", "69", "176404" ]
[ "nonn", "hard", "more" ]
51
1
1
[ "A050534", "A364725", "A365553" ]
null
Colin Linzer, Aug 04 2023
2023-11-07T05:02:42
oeisdata/seq/A364/A364725.seq
dcc1e71ecea89b33ecd54134cc6e3f32
A364726
Admirable numbers with more divisors than any smaller admirable number.
[ "12", "24", "84", "120", "672", "24384", "43065", "78975", "81081", "261261", "523776", "9124731", "13398021", "69087249", "91963648", "459818240", "39142675143", "51001180160" ]
[ "nonn", "more" ]
10
1
1
[ "A000005", "A000043", "A000396", "A002182", "A109745", "A111592", "A136404", "A165772", "A335008", "A335317", "A348198", "A359963", "A359964", "A364726" ]
null
Amiram Eldar, Aug 05 2023
2025-04-27T03:23:26
oeisdata/seq/A364/A364726.seq
8a8f2c0ae8f21b819a0fc0836c4a8ff9
A364727
Numbers k such that k and k+1 are both admirable numbers (A111592).
[ "29691198404", "478012798575", "2789405835075", "22929723392715" ]
[ "nonn", "hard", "more" ]
14
1
1
[ "A096399", "A109729", "A109730", "A111592", "A364727" ]
null
Amiram Eldar, Aug 05 2023
2025-04-27T03:23:21
oeisdata/seq/A364/A364727.seq
8a69f3d439fe7271fd43487796de989a
A364728
Numbers that are not the sum of admirable numbers (not necessarily distinct).
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "13", "14", "15", "16", "17", "18", "19", "21", "22", "23", "25", "26", "27", "28", "29", "31", "33", "34", "35", "37", "38", "39", "41", "43", "45", "46", "47", "48", "49", "51", "53", "55", "57", "58", "59", "61", "63", "65", "67", "69", "71", "73", "75", "77", "79", "81", "83", "85", "87", "89", "91", "93", "95", "97", "99", "101" ]
[ "nonn", "fini", "full" ]
8
1
2
[ "A053460", "A111592", "A283550", "A364728" ]
null
Amiram Eldar, Aug 05 2023
2023-08-05T13:17:01
oeisdata/seq/A364/A364728.seq
ef9de176896ee8640d3062a857b299cb
A364729
Complement of A364443.
[ "15", "23", "45", "53", "66", "78", "136", "144", "162", "184", "191", "208", "261", "265", "269", "310", "337", "458", "476", "539", "550", "557", "594", "614", "667", "681", "766", "772", "785", "806", "808", "863", "870", "879", "896", "910", "923", "927", "942", "975", "992", "1012", "1013", "1050", "1053", "1066", "1071", "1154", "1193", "1223", "1254", "1271" ]
[ "nonn" ]
7
1
1
[ "A363762", "A364445", "A364729", "A364730", "A364731", "A364732" ]
null
Hugo Pfoertner, Aug 06 2023
2023-09-06T08:09:20
oeisdata/seq/A364/A364729.seq
34ae2ad0217bae30baa6319fefdeba3a
A364730
a(n) is the number of occurrences of n in A364443.
[ "1", "2", "2", "1", "3", "2", "2", "2", "2", "2", "3", "2", "1", "5", "2", "0", "5", "1", "1", "4", "2", "4", "3", "0", "3", "3", "2", "3", "2", "4", "2", "2", "3", "2", "2", "4", "4", "1", "1", "3", "2", "4", "4", "2", "3", "0", "5", "3", "1", "2", "5", "1", "5", "0", "4", "3", "2", "2", "5", "2", "3", "1", "4", "3", "1", "4", "0", "6", "3", "3", "2", "2", "3", "1", "3", "1", "9", "2", "0", "2", "5", "3", "4", "1", "3", "2", "4", "3" ]
[ "nonn" ]
7
0
2
[ "A077773", "A363522", "A364729", "A364730", "A364731", "A364732" ]
null
Hugo Pfoertner, Aug 06 2023
2023-09-06T08:09:25
oeisdata/seq/A364/A364730.seq
61b3842ca8336baadc8e53103a2d23ee
A364731
a(n) is the index of the first occurrence of n in A364443, or -1 if n doesn't occur.
[ "0", "1", "3", "5", "6", "8", "10", "14", "13", "17", "20", "19", "25", "24", "29", "-1", "31", "36", "38", "40", "39", "44", "46", "-1", "51", "52", "61", "57", "62", "60", "67", "71", "70", "72", "76", "77", "79", "92", "94", "86", "90", "91", "95", "99", "105", "-1", "108", "104", "118", "116", "114", "124", "122", "-1", "123", "130", "135", "134", "141", "138", "140", "160", "148" ]
[ "sign" ]
6
0
3
[ "A077773", "A363763", "A364729", "A364730", "A364731", "A364732" ]
null
Hugo Pfoertner, Aug 06 2023
2023-09-06T08:09:30
oeisdata/seq/A364/A364731.seq
55958b79846fe31973ef4a076790c78d
A364732
a(n) is the index of the last occurrence of n in A364443, or -1 if n doesn't occur.
[ "0", "2", "4", "5", "9", "11", "12", "16", "15", "18", "23", "22", "25", "30", "34", "-1", "37", "36", "38", "43", "45", "53", "50", "-1", "56", "59", "63", "64", "68", "69", "75", "73", "78", "80", "88", "85", "87", "92", "94", "96", "101", "107", "102", "103", "113", "-1", "119", "112", "118", "117", "128", "124", "137", "-1", "136", "139", "146", "144", "151", "153", "147", "160" ]
[ "sign" ]
6
0
2
[ "A077773", "A364341", "A364729", "A364730", "A364731", "A364732" ]
null
Hugo Pfoertner, Aug 06 2023
2023-09-06T08:09:37
oeisdata/seq/A364/A364732.seq
5e613bc27d8e95573284b069e384011b
A364733
Letters of the English alphabet represented by flag semaphores encoding the positions z of the 2 flags by a two-digit decimal number z = 10*x + y, 1 <= x < y <= 8.
[ "12", "13", "14", "15", "16", "17", "18", "23", "24", "57", "25", "26", "27", "28", "34", "35", "36", "37", "38", "45", "46", "58", "67", "68", "47", "78" ]
[ "nonn", "base", "fini", "full" ]
5
1
1
null
null
Hugo Pfoertner, Sep 05 2023
2023-09-05T20:16:57
oeisdata/seq/A364/A364733.seq
c810fbdae6f7aa72dc9ec475cfe6be23
A364734
G.f. satisfies A(x) = 1 + x*A(x) / (1 - x*A(x)^5).
[ "1", "1", "2", "9", "48", "276", "1687", "10750", "70597", "474478", "3247844", "22563904", "158693152", "1127661358", "8083795761", "58390722901", "424562043703", "3104994695198", "22825260066996", "168564068029385", "1249985066423749", "9303815610715531", "69483859839881494", "520527161650519576" ]
[ "nonn" ]
13
0
3
[ "A000108", "A106228", "A300048", "A364723", "A364734", "A364740" ]
null
Seiichi Manyama, Aug 05 2023
2023-08-05T13:12:01
oeisdata/seq/A364/A364734.seq
1f3ec92ef323d8e0783004ea1f6fef8b
A364735
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x*A(x)^2).
[ "1", "1", "0", "-2", "-1", "8", "10", "-37", "-84", "168", "660", "-624", "-4950", "583", "35464", "23166", "-240513", "-359008", "1511640", "3898100", "-8387664", "-36522256", "35444728", "311764768", "-25659766", "-2466384737", "-1793133360", "18077558170", "28951038285", "-120750295320", "-330486900870" ]
[ "sign" ]
10
0
4
[ "A106228", "A364735", "A364736", "A364737", "A364738" ]
null
Seiichi Manyama, Aug 05 2023
2023-08-05T13:11:52
oeisdata/seq/A364/A364735.seq
8ebcc4baf8b6383a7aaa37c1d8feba03
A364736
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x*A(x)^3).
[ "1", "1", "0", "-3", "-3", "17", "45", "-90", "-546", "130", "5832", "7074", "-53625", "-159214", "374517", "2419131", "-728364", "-30011530", "-37519884", "307731042", "940757526", "-2343385995", "-15421126275", "5164279686", "203045257272", "255851517115", "-2186669342070", "-6760669947375", "17391580425180" ]
[ "sign" ]
11
0
4
[ "A300048", "A364735", "A364736", "A364737", "A364738" ]
null
Seiichi Manyama, Aug 05 2023
2023-08-05T13:12:10
oeisdata/seq/A364/A364736.seq
a40bf7ecd4d5cf90a883a9baae6ee8c4
A364737
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x*A(x)^4).
[ "1", "1", "0", "-4", "-6", "28", "119", "-116", "-1820", "-2128", "22212", "79877", "-172700", "-1652728", "-857428", "25387284", "71506309", "-268817888", "-1838702048", "449975584", "33164610276", "68575577309", "-429542625096", "-2221814345660", "2539462697398", "46048818685880", "61721413191310" ]
[ "sign" ]
11
0
4
[ "A364735", "A364736", "A364737", "A364738" ]
null
Seiichi Manyama, Aug 05 2023
2023-08-05T13:12:19
oeisdata/seq/A364/A364737.seq
66a375b071d488ac1fcc0d685b3bb1f9
A364738
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x*A(x)^5).
[ "1", "1", "0", "-5", "-10", "40", "245", "-26", "-4375", "-11410", "53040", "377850", "-12320", "-7988194", "-23011625", "106662595", "824671575", "64095550", "-18490968680", "-57052839001", "254513058375", "2098532784575", "419490572800", "-48205987947600", "-157458581103395", "666628546612606", "5824573247731250" ]
[ "sign" ]
11
0
4
[ "A364734", "A364735", "A364736", "A364737", "A364738" ]
null
Seiichi Manyama, Aug 05 2023
2023-08-05T13:12:30
oeisdata/seq/A364/A364738.seq
d3ae6f000bd983589ab19c45a2e4280a
A364739
G.f. satisfies A(x) = 1 + x*A(x)^2 / (1 - x*A(x)^4).
[ "1", "1", "3", "14", "78", "477", "3094", "20905", "145547", "1036891", "7522335", "55382045", "412740298", "3107671807", "23604165913", "180641336755", "1391555475647", "10781886600707", "83968131035849", "656931982467460", "5160714860765430", "40692065290732340", "321937030883130021" ]
[ "nonn" ]
24
0
3
[ "A001003", "A001764", "A219537", "A364739", "A364740" ]
null
Seiichi Manyama, Aug 05 2023
2024-03-03T13:46:49
oeisdata/seq/A364/A364739.seq
c1db23b5023fa5c12e92b2923c76aa9b
A364740
G.f. satisfies A(x) = 1 + x*A(x)^2 / (1 - x*A(x)^5).
[ "1", "1", "3", "15", "91", "607", "4298", "31720", "241321", "1879097", "14903013", "119965086", "977623639", "8049579047", "66864689674", "559650696185", "4715304229460", "39960204165865", "340395043021399", "2912963919210012", "25031055321749916", "215894227588453950", "1868403327770467149" ]
[ "nonn" ]
12
0
3
[ "A001003", "A001764", "A219537", "A364739", "A364740" ]
null
Seiichi Manyama, Aug 05 2023
2023-08-05T13:12:52
oeisdata/seq/A364/A364740.seq
c6e020ad721ffdcb5badbd9cbc071977
A364741
Number of edge covers in the n-double cone graph.
[ "0", "8", "160", "2009", "25872", "328208", "4165357", "52837520", "670238112", "8501756249", "107841947320", "1367938389320", "17351831692125", "220102059219128", "2791919445762040", "35414544563765129", "449221401563485632", "5698220042111151488", "72279974941308391117", "916846794068851162400", "11629888423130623254672" ]
[ "nonn", "easy" ]
22
0
2
[ "A000032", "A206776", "A297047", "A364741" ]
null
Eric W. Weisstein, Aug 05 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364741.seq
2b83ad088c92b8ac8d340188eabd77a4
A364742
G.f. satisfies A(x) = 1 / (1 - x*(1 + x*A(x))^3).
[ "1", "1", "4", "13", "50", "201", "841", "3627", "15993", "71803", "327082", "1508002", "7023446", "32995626", "156173668", "744029238", "3565030063", "17169013899", "83061503584", "403483653745", "1967217524551", "9623463731721", "47220968518786", "232354408276613", "1146254897566224", "5668118931395946" ]
[ "nonn" ]
12
0
3
[ "A001006", "A161634", "A364742", "A364743", "A364744" ]
null
Seiichi Manyama, Aug 05 2023
2023-08-05T10:32:36
oeisdata/seq/A364/A364742.seq
6cd4b8bdec959eeb651f3d82afb8f331
A364743
G.f. satisfies A(x) = 1 / (1 - x*(1 + x*A(x))^4).
[ "1", "1", "5", "19", "85", "402", "1971", "9976", "51633", "272131", "1455486", "7879664", "43096967", "237777710", "1321792096", "7396125088", "41624735353", "235461758085", "1338049873395", "7634930866465", "43726638130854", "251273386911443", "1448362622788376", "8371936106228253" ]
[ "nonn" ]
13
0
3
[ "A001006", "A161634", "A364742", "A364743", "A364744" ]
null
Seiichi Manyama, Aug 05 2023
2023-08-05T10:32:33
oeisdata/seq/A364/A364743.seq
d02c4418eff4dfcf2b21ba897e4601e5
A364744
G.f. satisfies A(x) = 1 / (1 - x*(1 + x*A(x))^5).
[ "1", "1", "6", "26", "131", "706", "3932", "22618", "133099", "797545", "4850296", "29859028", "185712831", "1165227025", "7366475715", "46877977451", "300049605259", "1930395961235", "12476394685445", "80968876247330", "527424073700966", "3447190219684125", "22599794010813360" ]
[ "nonn" ]
13
0
3
[ "A001006", "A161634", "A364742", "A364743", "A364744" ]
null
Seiichi Manyama, Aug 05 2023
2023-08-05T10:32:29
oeisdata/seq/A364/A364744.seq
4ab1cc3759ed649eaea961b1526a2c8e
A364745
Number of edge covers in the n-Lucas cube graph.
[ "0", "1", "1", "63", "5613", "139828792", "7683625491104568", "1522430530919920917130311465408" ]
[ "nonn", "more" ]
7
1
4
[ "A297051", "A364745", "A377653" ]
null
Eric W. Weisstein, Aug 05 2023
2024-12-09T19:45:40
oeisdata/seq/A364/A364745.seq
a23f4e4007597c56ebf3c5abb76b5d81
A364746
Irregular triangle read by rows T(n,k), n >= 1, 1 <= k <= A002378(n), which is mentioned in the conjecture of A364639 (see Comments lines for definition).
[ "1", "0", "0", "1", "-1", "1", "0", "0", "0", "0", "1", "-1", "0", "1", "0", "-1", "1", "0", "0", "0", "0", "0", "0", "1", "-1", "0", "0", "1", "0", "-1", "0", "1", "0", "0", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "-1", "0", "0", "0", "1", "0", "-1", "0", "0", "1", "0", "0", "-1", "0", "1", "0", "0", "0", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "-1", "0", "0", "0", "0", "1", "0", "-1", "0", "0", "0", "1", "0", "0", "-1", "0", "0", "1", "0", "0", "0", "-1", "0", "1" ]
[ "sign", "tabf" ]
34
1
null
[ "A000004", "A000007", "A000012", "A002061", "A002378", "A196020", "A235791", "A236104", "A237591", "A237593", "A364639", "A364746" ]
null
Omar E. Pol, Aug 05 2023
2023-09-03T10:54:23
oeisdata/seq/A364/A364746.seq
f581f894ea44175129ac080af9c2ef23
A364747
G.f. A(x) satisfies A(x) = 1 + x*A(x)^4 / (1 - x*A(x)).
[ "1", "1", "5", "32", "234", "1854", "15490", "134380", "1198944", "10931761", "101412677", "954155059", "9083120975", "87326765375", "846709605539", "8269910074087", "81291388929027", "803592049667495", "7983612883739843", "79671910265120574", "798283229227457304", "8027625597750959053" ]
[ "nonn" ]
20
0
3
[ "A000108", "A001003", "A002294", "A108447", "A243659", "A364747", "A364748", "A364765", "A364792", "A378691", "A378692" ]
null
Seiichi Manyama, Aug 05 2023
2024-12-05T07:27:24
oeisdata/seq/A364/A364747.seq
ff4c4921cd47d6253b84a35f17224415
A364748
G.f. A(x) satisfies A(x) = 1 + x*A(x)^5 / (1 - x*A(x)).
[ "1", "1", "6", "47", "424", "4159", "43097", "464197", "5145475", "58313310", "672598269", "7869856070", "93183973405", "1114471042413", "13443614108307", "163372291277764", "1998239045199623", "24580340878055298", "303893356012560280", "3774099648814193998", "47061518776483143441" ]
[ "nonn" ]
23
0
3
[ "A000108", "A001003", "A002295", "A108447", "A243667", "A364747", "A364748", "A365192", "A365193", "A365194", "A378691", "A378692" ]
null
Seiichi Manyama, Aug 05 2023
2024-12-05T07:14:37
oeisdata/seq/A364/A364748.seq
47fb960263482d26f0969792678ab776
A364749
a(1) = 1. Thereafter, if a(n-1) is a novel term a(n) = a(a(n-1)), otherwise a(n) is the number of times a(n-1) has been repeated.
[ "1", "1", "1", "2", "1", "3", "1", "4", "2", "1", "5", "1", "6", "3", "1", "7", "1", "8", "4", "1", "9", "2", "2", "3", "2", "4", "2", "5", "1", "10", "1", "11", "5", "2", "6", "1", "12", "1", "13", "6", "2", "7", "1", "14", "3", "3", "4", "3", "5", "3", "6", "3", "7", "2", "8", "1", "15", "1", "16", "7", "3", "8", "2", "9", "1", "17", "1", "18", "8", "3", "9", "2", "10", "1", "19", "4", "4", "5", "4", "6", "4", "7", "4", "8", "4", "9", "3", "10" ]
[ "nonn" ]
16
1
4
[ "A000027", "A346175", "A364749" ]
null
David James Sycamore, Aug 05 2023
2023-08-08T01:43:04
oeisdata/seq/A364/A364749.seq
3b9f566ebac9b593ffd9150e1164f0c4
A364750
Integers k such that A000010(k) <= A008480(k).
[ "1", "2", "6", "3326400", "4989600", "6652800", "9979200", "11793600", "19958400", "21621600", "23284800", "23587200", "25945920", "29937600", "33264000", "34927200", "35380800", "39916800", "43243200", "46569600", "47174400", "49896000", "51891840", "58968000", "59875200", "64864800", "66528000", "69854400", "70761600", "76204800", "77837760", "79833600" ]
[ "nonn" ]
11
1
2
[ "A000010", "A008480", "A364750" ]
null
Michel Marcus, Aug 05 2023
2023-08-07T02:11:37
oeisdata/seq/A364/A364750.seq
210e2d1aa939e882a874ed32b87ca368
A364751
Minimum sum of digits for any number of length n digits in fractional base 4/3.
[ "0", "3", "5", "6", "6", "8", "8", "9", "10", "10", "11", "11", "11", "11", "13", "14", "16", "17", "17", "17", "18", "19", "21", "22", "22", "23", "24", "26", "26", "26", "27", "28", "29", "29", "29", "29", "29", "29", "31", "33", "34", "35", "36", "37", "38", "38", "38", "39", "39", "41", "41", "42", "42", "43", "43", "45", "45", "46", "46", "48", "50", "50", "52", "52", "52", "52", "53", "55" ]
[ "nonn", "base" ]
29
1
2
[ "A024631", "A244041", "A363758", "A364751", "A364779" ]
null
Kevin Ryde, Sep 07 2023
2023-12-17T03:14:42
oeisdata/seq/A364/A364751.seq
3bb7fd96e82da41c81e389eb19a48622
A364752
Number of subsets of {1..n} containing n and all first differences.
[ "1", "1", "2", "2", "4", "4", "9", "11", "24", "38", "75", "131", "263", "476", "928", "1750", "3386", "6439", "12455", "23853", "46097", "88709", "171471", "330939", "640472", "1238755", "2400154", "4650857", "9022792", "17510820", "34015138", "66106492", "128571563", "250191929", "487175381", "949133736", "1850223956", "3608650389" ]
[ "nonn" ]
11
0
3
[ "A054519", "A151897", "A196723", "A237668", "A325325", "A326083", "A363225", "A364345", "A364463", "A364464", "A364466", "A364537", "A364671", "A364672", "A364673", "A364674", "A364675", "A364752", "A364753" ]
null
Gus Wiseman, Aug 06 2023
2023-08-06T17:50:09
oeisdata/seq/A364/A364752.seq
093aa39e230ff7f4224d59627ea0acd1
A364753
Number of subsets of {1..n} containing n but not containing all first differences.
[ "0", "0", "0", "2", "4", "12", "23", "53", "104", "218", "437", "893", "1785", "3620", "7264", "14634", "29382", "59097", "118617", "238291", "478191", "959867", "1925681", "3863365", "7748136", "15538461", "31154278", "62458007", "125194936", "250924636", "502855774", "1007635332", "2018912085", "4044775367", "8102759211", "16230735448", "32509514412", "65110826347" ]
[ "nonn" ]
10
0
4
[ "A054519", "A151897", "A196723", "A237668", "A325325", "A326083", "A364345", "A364463", "A364464", "A364466", "A364537", "A364671", "A364672", "A364673", "A364674", "A364675", "A364752", "A364753" ]
null
Gus Wiseman, Aug 06 2023
2023-08-07T11:32:47
oeisdata/seq/A364/A364753.seq
af7fc70d7195bc11c5b6a12bbf55e834
A364754
Smallest nonnegative integer not expressible by the addition and subtraction of fewer than n Lucas numbers.
[ "0", "1", "5", "23", "99", "421", "1785", "7563", "32039", "135721", "574925", "2435423", "10316619", "43701901", "185124225", "784198803", "3321919439", "14071876561", "59609425685", "252509579303", "1069647742899", "4531100550901", "19194049946505", "81307300336923", "344423251294199", "1459000305513721", "6180424473349085" ]
[ "nonn", "easy" ]
22
0
3
[ "A000032", "A001076", "A004146", "A364754", "A365907" ]
null
Mike Speciner, Oct 20 2023
2023-12-31T00:47:09
oeisdata/seq/A364/A364754.seq
ca1f6b51c7dba13a33444a8f4eb574fd
A364755
Number of subsets of {1..n} containing n but not containing the sum of any two distinct elements.
[ "0", "1", "2", "3", "6", "9", "15", "24", "41", "60", "99", "149", "236", "355", "552", "817", "1275", "1870", "2788", "4167", "6243", "9098", "13433", "19718", "28771", "42137", "60652", "88603", "127555", "185200", "261781", "382931", "541022", "783862", "1096608", "1595829", "2217467", "3223064", "4441073", "6465800", "8893694" ]
[ "nonn" ]
10
0
3
[ "A007865", "A050291", "A054519", "A085489", "A088809", "A093971", "A151897", "A236912", "A288728", "A326020", "A326080", "A326083", "A364272", "A364349", "A364533", "A364534", "A364755", "A364756" ]
null
Gus Wiseman, Aug 11 2023
2024-01-13T16:46:03
oeisdata/seq/A364/A364755.seq
fbf1f42318eecbdba2a04de5964a5559
A364756
Number of subsets of {1..n} containing n and some element equal to the sum of two distinct others.
[ "0", "0", "0", "1", "2", "7", "17", "40", "87", "196", "413", "875", "1812", "3741", "7640", "15567", "31493", "63666", "128284", "257977", "518045", "1039478", "2083719", "4174586", "8359837", "16735079", "33493780", "67020261", "134090173", "268250256", "536609131", "1073358893", "2146942626", "4294183434", "8588837984", "17178273355" ]
[ "nonn" ]
10
0
5
[ "A000079", "A007865", "A050291", "A051026", "A085489", "A088809", "A093971", "A103580", "A151897", "A236912", "A288728", "A326080", "A326083", "A364272", "A364534", "A364755", "A364756" ]
null
Gus Wiseman, Aug 11 2023
2024-01-13T16:46:38
oeisdata/seq/A364/A364756.seq
fa44b1a7fbb0f02504331433b2924d3b
A364757
The pyramidal array T(r,g,b) = (r+g+b)/((g+b)*(r+b))*C(r+g,b-1)*C(g+b,r)*C(r+b,g), where 1 <= b <= ceiling((r+g+b)/2) and 0 <= r,g <= floor((r+g+b)/2). Read first over the layers corresponding to fixed sum r+g+b, then over the diagonals corresponding to fixed b.
[ "1", "1", "1", "3", "1", "1", "2", "2", "1", "8", "1", "5", "15", "15", "1", "5", "1", "3", "3", "8", "54", "8", "1", "27", "27", "1", "7", "70", "70", "42", "168", "42", "1", "14", "14", "1", "4", "4", "30", "192", "30", "20", "400", "400", "20", "1", "64", "200", "64", "1", "9", "210", "210", "405", "1500", "405", "90", "900", "900", "90", "1", "30", "81", "30", "1", "5", "5", "80", "500", "80", "147", "2625", "2625", "147", "40", "1750", "5000", "1750", "40", "1", "125", "875", "875", "125", "1" ]
[ "nonn", "tabf" ]
20
1
4
[ "A000108", "A108759", "A278880", "A364757" ]
null
Robert Muth, Aug 05 2023
2025-04-13T07:11:34
oeisdata/seq/A364/A364757.seq
fbf3fa7ddbe589a21a7687a828570f6d
A364758
G.f. A(x) satisfies A(x) = 1 + x*A(x)^4 / (1 + x*A(x)).
[ "1", "1", "3", "14", "76", "450", "2818", "18352", "123028", "843345", "5884227", "41650479", "298352365", "2158751879", "15754446893", "115830820439", "857147952469", "6379136387303", "47715901304501", "358529599468636", "2704884469806606", "20481615947325089", "155605509972859999", "1185779099027494848" ]
[ "nonn" ]
22
0
3
[ "A001764", "A090192", "A106228", "A219537", "A300048", "A364747", "A364758", "A364759", "A364865", "A365224", "A378889", "A378919" ]
null
Seiichi Manyama, Aug 05 2023
2024-12-11T08:45:34
oeisdata/seq/A364/A364758.seq
e46f455dcb237a8808981f4cb2f7bcf0
A364759
G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 + x*A(x)).
[ "1", "1", "4", "25", "182", "1447", "12175", "106575", "960579", "8854622", "83089537", "791063172", "7622317663", "74191096721", "728389554533", "7204640725610", "71727367291455", "718195853746770", "7227785937663908", "73069500402699226", "741712341691454837", "7556704348506425398" ]
[ "nonn" ]
7
0
3
[ "A090192", "A106228", "A364748", "A364758", "A364759" ]
null
Seiichi Manyama, Aug 05 2023
2023-08-06T11:04:22
oeisdata/seq/A364/A364759.seq
702629b03b0018902b855698767513e6
A364760
G.f. satisfies A(x) = 1 / (1 + x*(1 + x*A(x))^2).
[ "1", "-1", "-1", "4", "1", "-21", "14", "111", "-195", "-529", "1837", "1792", "-14772", "2300", "105431", "-126697", "-657427", "1650427", "3285795", "-16211352", "-8308737", "135770125", "-79748628", "-990431659", "1700106664", "6098396204", "-20258923714", "-27342511804", "193913175511", "12018867589" ]
[ "sign" ]
7
0
4
[ "A007440", "A161634", "A364760", "A364761", "A364762", "A364763" ]
null
Seiichi Manyama, Aug 05 2023
2023-08-06T11:04:14
oeisdata/seq/A364/A364760.seq
4870b681150fd5f84ce5edd1db97b2cc
A364761
G.f. satisfies A(x) = 1 / (1 + x*(1 + x*A(x))^3).
[ "1", "-1", "-2", "5", "12", "-41", "-89", "391", "733", "-4051", "-6320", "44120", "54990", "-496406", "-465932", "5710408", "3637847", "-66714699", "-22683218", "787957397", "35371351", "-9376925921", "2356626520", "112147043475", "-61910867756", "-1345231820826", "1158452138826", "16156200619772" ]
[ "sign" ]
8
0
3
[ "A007440", "A364742", "A364760", "A364761", "A364762", "A364763" ]
null
Seiichi Manyama, Aug 05 2023
2023-08-06T11:04:05
oeisdata/seq/A364/A364761.seq
a5192cd0f5c86c1f5a6de4cab81a91e9
A364762
G.f. satisfies A(x) = 1 / (1 + x*(1 + x*A(x))^4).
[ "1", "-1", "-3", "5", "29", "-42", "-349", "384", "4705", "-3307", "-67530", "19392", "1006479", "140594", "-15356600", "-8897336", "237691865", "246737931", "-3708348277", "-5655844305", "58027927950", "119178376245", "-906834380800", "-2396063640645", "14094956420555", "46748815762429", "-216921227330074" ]
[ "sign" ]
15
0
3
[ "A007440", "A364743", "A364760", "A364761", "A364762", "A364763" ]
null
Seiichi Manyama, Aug 05 2023
2023-10-25T09:28:49
oeisdata/seq/A364/A364762.seq
15da8493ebced042bf8062d4b1984696
A364763
G.f. satisfies A(x) = 1 / (1 + x*(1 + x*A(x))^5).
[ "1", "-1", "-4", "4", "51", "-6", "-770", "-694", "12363", "25583", "-198824", "-701944", "3049603", "17238467", "-41348631", "-396817391", "391720363", "8689985437", "1902247845", "-181526287908", "-253530149234", "3597968506523", "9727546141524", "-66671292054788", "-291760189535999", "1116731578365699" ]
[ "sign" ]
9
0
3
[ "A007440", "A364744", "A364760", "A364761", "A364762", "A364763" ]
null
Seiichi Manyama, Aug 05 2023
2023-08-06T11:03:46
oeisdata/seq/A364/A364763.seq
75fc2a973329d4e1e8b572f79f4a74fd
A364764
G.f. satisfies A(x) = 1 + x*A(x)^2 / (1 + x*A(x)^4).
[ "1", "1", "1", "-2", "-14", "-27", "70", "625", "1457", "-3541", "-37403", "-98547", "207098", "2564079", "7448923", "-12940485", "-190014459", "-600991549", "827159379", "14802832468", "50584687754", "-52159768068", "-1193457862093", "-4384199208207", "3090291576246", "98618925147291", "388126462227091" ]
[ "sign" ]
9
0
4
[ "A291534", "A363982", "A364051", "A364739", "A364764" ]
null
Seiichi Manyama, Aug 05 2023
2023-08-06T11:03:36
oeisdata/seq/A364/A364764.seq
fa85c2b3911b9014cef9f16a73e35fb1
A364765
G.f. A(x) satisfies A(x) = 1 + x*A(x)^4 / (1 - x*A(x)^5).
[ "1", "1", "5", "36", "304", "2808", "27475", "279845", "2935987", "31511097", "344344868", "3818320487", "42855633210", "485923475563", "5557803724920", "64046876264292", "742908320701832", "8667090253409215", "101631581618367133", "1197190915359577973", "14160413911721178800" ]
[ "nonn" ]
28
0
3
[ "A001006", "A106228", "A219537", "A271469", "A349331", "A364747", "A364765", "A378952", "A378954" ]
null
Seiichi Manyama, Aug 06 2023
2024-12-25T05:34:00
oeisdata/seq/A364/A364765.seq
9db8376eeac67c7d3e48927afbe676ae
A364766
Products k of 4 distinct primes (or tetraprimes) such that none of k-2, k-1, k+1 and k+2 is squarefree.
[ "3774", "6726", "10934", "11726", "12426", "13674", "15042", "16226", "17630", "17974", "18278", "18998", "21574", "23374", "23426", "24038", "27710", "27874", "28826", "32390", "34390", "35074", "35126", "37630", "37774", "38170", "38626", "41210", "41426", "46342", "46774", "46990", "47874", "50518", "50806", "51794", "53074", "53846" ]
[ "nonn" ]
8
1
1
[ "A013929", "A046386", "A364141", "A364766" ]
null
Massimo Kofler, Aug 06 2023
2023-09-06T21:13:19
oeisdata/seq/A364/A364766.seq
cdbb78d098fc5afd08082a63f43bdb0b
A364767
The number of divisors of n that are practical numbers (A005153).
[ "1", "2", "1", "3", "1", "3", "1", "4", "1", "2", "1", "5", "1", "2", "1", "5", "1", "4", "1", "4", "1", "2", "1", "7", "1", "2", "1", "4", "1", "4", "1", "6", "1", "2", "1", "7", "1", "2", "1", "6", "1", "4", "1", "3", "1", "2", "1", "9", "1", "2", "1", "3", "1", "5", "1", "6", "1", "2", "1", "8", "1", "2", "1", "7", "1", "4", "1", "3", "1", "2", "1", "10", "1", "2", "1", "3", "1", "4", "1", "8", "1", "2", "1", "8", "1", "2", "1", "5", "1", "6", "1", "3", "1", "2", "1", "11", "1", "2", "1", "5", "1", "3", "1", "5", "1" ]
[ "nonn" ]
35
1
2
[ "A000005", "A005153", "A322860", "A364767", "A364768" ]
null
Marius A. Burtea, Aug 18 2023
2024-06-02T14:39:01
oeisdata/seq/A364/A364767.seq
f5d58ba428c2da8f6bb0454306a73d0c
A364768
The smallest number k that has exactly n of its divisors in A005153.
[ "1", "2", "4", "8", "12", "32", "24", "60", "48", "72", "96", "120", "144", "420", "384", "240", "432", "360", "576", "480", "864", "840", "1200", "720", "1728", "1800", "4080", "1920", "2400", "1440", "4752", "2160", "3960", "2520", "3600", "2880", "5280", "3360", "9504", "4320", "9240", "5760", "12240", "7200", "7920", "5040", "10800", "8640", "19800", "12600" ]
[ "nonn" ]
24
1
2
[ "A000005", "A005153", "A364767", "A364768" ]
null
Marius A. Burtea, Aug 18 2023
2024-09-13T08:07:58
oeisdata/seq/A364/A364768.seq
896dc03bc63039e15317f02730659c9c
A364769
Numbers k for which k and the arithmetic derivative k' (A003415) are practical numbers (A005153).
[ "2", "4", "8", "12", "16", "20", "28", "32", "36", "48", "64", "72", "80", "88", "96", "100", "108", "112", "128", "144", "156", "160", "176", "180", "192", "196", "200", "208", "216", "240", "252", "256", "272", "276", "288", "300", "304", "308", "320", "324", "336", "348", "352", "380", "384", "392", "396", "400", "420", "432", "448", "456", "468", "480", "496", "500" ]
[ "nonn" ]
9
1
1
[ "A003415", "A005153", "A364769" ]
null
Marius A. Burtea, Aug 18 2023
2023-09-19T17:35:07
oeisdata/seq/A364/A364769.seq
02cea89f6ad9015497f3c2a114ddb3ea
A364770
Number of conjugacy classes in the group GL(4,Z_n).
[ "1", "14", "78", "306", "620", "1092", "2394", "5808", "7164", "8680", "14630", "23868", "28548", "33516", "48360" ]
[ "nonn", "more" ]
5
1
2
[ "A062354", "A086768", "A364770" ]
null
Robin Visser, Aug 06 2023
2023-08-06T08:18:02
oeisdata/seq/A364/A364770.seq
f4c20e8fb56d194066a192f8a043b7ab
A364771
Order of the symplectic group of 4 X 4 matrices over Z_n.
[ "1", "720", "51840", "737280", "9360000", "37324800", "276595200", "754974720", "3061100160", "6739200000", "25721308800", "38220595200", "137037962880", "199148544000", "485222400000", "773094113280", "2008994088960", "2203992115200", "6114035779200", "6900940800000", "14338695168000", "18519342336000", "41348052472320" ]
[ "nonn", "mult" ]
13
1
2
[ "A011786", "A305186", "A364771" ]
null
Robin Visser, Aug 06 2023
2023-08-07T02:12:37
oeisdata/seq/A364/A364771.seq
6fa0d8539ba063e7411c82f27bbbc4bb
A364772
Square array A(n, k), n, k > 0, read and filled in the greedy way by downwards antidiagonals with distinct positive integers such that for any v > 0, the value 2*v appears in the same row as the value v, and the value 2*v + 1 appears in the same column as the value v.
[ "1", "2", "3", "4", "5", "7", "8", "6", "11", "15", "16", "10", "9", "23", "31", "32", "12", "14", "13", "47", "63", "64", "20", "18", "17", "19", "95", "127", "128", "24", "22", "25", "21", "27", "191", "255", "256", "40", "28", "26", "33", "29", "39", "383", "511", "512", "48", "36", "30", "38", "37", "35", "55", "767", "1023", "1024", "80", "44", "34", "42", "41", "51", "43", "79", "1535", "2047" ]
[ "nonn", "tabl" ]
10
1
2
[ "A364772", "A364775" ]
null
Rémy Sigrist, Aug 06 2023
2023-08-20T12:13:47
oeisdata/seq/A364/A364772.seq
551b86ae197f0294d401df37c7c0dd3b
A364773
a(n) is the periodic part on the n-th diagonal from the right of rule-30 1-D cellular automaton, when started from a single ON cell.
[ "1", "10", "10", "1100", "10110100", "10101000", "1010011101011000", "11001010101011110011010101010000", "10111010011010101101010101010000", "1010110010110101010110011001111101010011010010101010011001100000", "1010101110101100101010010110101011010010101101010110010110100000" ]
[ "nonn" ]
20
1
2
[ "A070950", "A094605", "A363343", "A364773", "A364774" ]
null
Paolo Xausa, Aug 06 2023
2025-02-16T08:34:06
oeisdata/seq/A364/A364773.seq
643e1feee3dbc4d7da7181cf6bfd0a3a
A364774
a(n) is the periodic part (converted to base 10) on the n-th diagonal from the right of rule-30 1-D cellular automaton, when started from a single ON cell.
[ "1", "2", "2", "12", "180", "168", "42840", "3400480080", "3127563600", "12444951686140307040", "12370448552746640800", "14616061688484808000", "13063440952988449472", "12291672850370833024", "11994012329620187776", "270303456443855225105637298999007589120", "84431359962367713768426673527546762857531371484724067759478650915353749433600" ]
[ "nonn", "base" ]
17
1
2
[ "A070950", "A094605", "A363343", "A364773", "A364774" ]
null
Paolo Xausa, Aug 06 2023
2023-08-28T12:02:12
oeisdata/seq/A364/A364774.seq
2873ccfcb65dbb898819f4064ad2c5ec
A364775
Inverse permutation to A364772.
[ "1", "2", "3", "4", "5", "8", "6", "7", "13", "12", "9", "17", "19", "18", "10", "11", "25", "24", "26", "23", "33", "31", "14", "30", "32", "40", "34", "39", "42", "49", "15", "16", "41", "59", "52", "48", "51", "50", "43", "38", "61", "60", "63", "58", "73", "70", "20", "47", "72", "82", "62", "95", "86", "84", "53", "69", "85", "97", "75", "109", "99", "71", "21", "22", "100", "83", "74" ]
[ "nonn" ]
11
1
2
[ "A364772", "A364775" ]
null
Rémy Sigrist, Aug 06 2023
2023-09-20T12:21:32
oeisdata/seq/A364/A364775.seq
20437db95b2db53361d4b31dc5959dae
A364776
Lexicographically least increasing sequence of triprimes whose first differences are semiprimes.
[ "8", "12", "18", "27", "42", "52", "66", "70", "76", "98", "102", "116", "125", "147", "153", "174", "188", "222", "231", "245", "255", "261", "275", "279", "285", "310", "316", "322", "332", "338", "363", "369", "402", "406", "410", "425", "429", "435", "470", "474", "483", "498", "507", "556", "578", "582", "596", "602", "606", "610", "645", "651", "657", "663", "678", "682", "692", "725", "747", "762", "772", "782" ]
[ "nonn" ]
8
1
1
[ "A001358", "A014612", "A364776" ]
null
Zak Seidov and Robert Israel, Aug 06 2023
2023-08-12T00:43:49
oeisdata/seq/A364/A364776.seq
4f3efa61648e8629caeeccdbb95cee6d
A364777
a(n) = (n^2)!*(n!)^2/(2*n-1)!.
[ "1", "16", "108864", "2391175987200", "615524208068689920000000", "4831082166102613213870122703257600000000", "2481336275198061145749280386508780674949224836628480000000000" ]
[ "nonn" ]
24
1
2
null
null
Sela Fried, Aug 07 2023
2023-08-08T04:33:21
oeisdata/seq/A364/A364777.seq
66ef3630906ab3dd906bcb54523f5ef4
A364778
Products of two distinct strong primes.
[ "121", "187", "289", "319", "407", "451", "493", "629", "649", "697", "737", "781", "841", "869", "1003", "1067", "1073", "1111", "1139", "1177", "1189", "1207", "1343", "1369", "1397", "1507", "1517", "1639", "1649", "1681", "1711", "1717", "1793", "1819", "1943", "1969", "2059", "2101", "2159", "2167", "2183", "2291", "2329", "2419", "2453", "2479", "2497", "2533", "2627", "2629", "2747" ]
[ "nonn" ]
10
1
1
[ "A001358", "A051634", "A363167", "A363782", "A364778" ]
null
Massimo Kofler, Aug 07 2023
2023-10-08T09:45:46
oeisdata/seq/A364/A364778.seq
998bd510c24cf16698a6c79980003d97
A364779
Largest integer with sum of digits n in fractional base 4/3.
[ "0", "1", "2", "4", "5", "8", "16", "17", "32", "44", "80", "256", "257", "344", "460", "464", "620", "1472", "1964", "2620", "2624", "3500", "6224", "8300", "11068", "11072", "26240", "34988", "46652", "262144", "262145", "349528", "349529", "466040", "621392", "828524", "1104700", "1532816", "3633344", "6459280", "6459281", "11483168", "19616912" ]
[ "nonn", "base" ]
28
0
3
[ "A024631", "A244041", "A357425", "A364779", "A364780" ]
null
Kevin Ryde, Aug 13 2023
2024-12-19T11:45:36
oeisdata/seq/A364/A364779.seq
22f933946ce8adb40c8685f3d177043b
A364780
Number of numbers with sum of digits n in fractional base 4/3.
[ "1", "1", "1", "2", "1", "2", "4", "3", "5", "6", "7", "14", "13", "15", "19", "19", "30", "39", "45", "56", "65", "75", "95", "124", "140", "174", "216", "268", "338", "417", "501", "627", "780", "974", "1203", "1454", "1825", "2266", "2769", "3427", "4268", "5188", "6433", "7930", "9671", "12000", "14738", "18265", "22642", "27961", "34528", "42523", "52325", "64425" ]
[ "nonn", "base" ]
21
0
4
[ "A024631", "A244041", "A245356", "A357425", "A364779", "A364780" ]
null
Kevin Ryde, Aug 13 2023
2024-12-19T11:45:36
oeisdata/seq/A364/A364780.seq
5c62632fa5a6b91a2f1b03c4fa789c33
A364781
Triangular array read by rows: T(n, k) is the number of zero-energy states from the partition function in the Ising model for a finite n*k square lattice with periodic boundary conditions.
[ "0", "2", "12", "0", "26", "0", "2", "100", "1346", "20524", "0", "322", "0", "272682", "0", "2", "1188", "72824", "3961300", "226137622", "13172279424", "0", "4258", "0", "58674450", "0", "777714553240", "0", "2", "15876", "3968690", "876428620", "199376325322", "46463664513012", "10990445640557042", "2627978003957146636", "0", "59138", "0", "13184352554", "0", "2799323243348702", "0", "633566123999182005386", "0" ]
[ "nonn", "tabl" ]
54
1
2
[ "A001411", "A002931", "A010566", "A241023", "A364781" ]
null
Thomas Scheuerle, Aug 07 2023
2024-02-01T02:51:58
oeisdata/seq/A364/A364781.seq
ec0f2ff4d627e1bb0d5104b0794e1fc7
A364782
Order of the general symplectic group of 6 X 6 matrices over Z_n.
[ "1", "1451520", "18341406720", "6088116142080", "1828008000000000", "26622918682214400", "3281486623259443200", "25535409887190712320", "575572777593233172480", "2653390172160000000000", "73385854415869121280000", "111664614320486586777600", "2947127504061746732912640", "4763143463393546993664000" ]
[ "nonn", "mult" ]
11
1
2
[ "A294705", "A364782", "A364783" ]
null
Robin Visser, Aug 07 2023
2023-08-08T03:22:25
oeisdata/seq/A364/A364782.seq
b98f2081320e432ba36b965faa25939a
A364783
Order of the symplectic group of 6 X 6 matrices over Z_n.
[ "1", "1451520", "9170703360", "3044058071040", "457002000000000", "13311459341107200", "546914437209907200", "6383852471797678080", "95928796265538862080", "663347543040000000000", "7338585441586912128000", "27916153580121646694400", "245593958671812227742720", "793857243898924498944000" ]
[ "nonn", "mult" ]
12
1
2
[ "A364771", "A364782", "A364783" ]
null
Robin Visser, Aug 07 2023
2023-08-08T03:22:29
oeisdata/seq/A364/A364783.seq
d67484826a9b65a3b24224c3b8472366
A364784
a(n) = n for n <= 2. Thereafter if a(n-1) is a novel term, a(n) = a(a(k)) where k is the greatest prior term < a(n-1); otherwise, a(n) = number of times a(n-1) has been repeated.
[ "1", "2", "1", "1", "2", "1", "3", "2", "2", "3", "1", "4", "1", "5", "1", "6", "2", "4", "1", "7", "1", "8", "3", "2", "5", "1", "9", "2", "6", "1", "10", "2", "7", "1", "11", "3", "3", "4", "2", "8", "1", "12", "1", "13", "4", "3", "5", "2", "9", "1", "14", "1", "15", "5", "3", "6", "2", "10", "1", "16", "1", "17", "6", "3", "7", "2", "11", "1", "18", "2", "12", "1", "19", "4", "4", "5", "4", "6", "4", "7", "3", "8", "2" ]
[ "nonn", "tabf" ]
26
1
2
[ "A000027", "A364749", "A364784" ]
null
David James Sycamore, Aug 07 2023
2025-06-21T01:56:54
oeisdata/seq/A364/A364784.seq
0abfb720a88a3bb03e6a0c6f8522948b
A364785
Primes whose binary representation has more 1-bits than its cube.
[ "445317119867", "28498383073019", "114304774692347", "7594322375176157" ]
[ "nonn", "base", "more" ]
7
1
1
[ "A000040", "A000120", "A138597", "A192085", "A363799", "A364785" ]
null
Martin Ehrenstein, Aug 07 2023
2023-08-07T11:27:49
oeisdata/seq/A364/A364785.seq
9ce1493652a32fe1e7a531132b737292
A364786
We exclude powers of 10 and numbers of the form 11...111 in which the number of 1's is a power of 10. Then a(n) is the smallest number (not excluded) whose trajectory under iteration of "x -> sum of n-th powers of digits of x" reaches 1.
[ "19", "7", "112", "11123", "1111222", "111111245666689", "1111133333333335", "1111122333333333333333333346677777777888", "22222222222222222226666668888888", "233444445555555555555555555555555555555555555555555577", "1222222222233333333333333444444444455555555555555556666666666666666666666677778888889" ]
[ "nonn", "base" ]
40
1
1
[ "A007770", "A035497", "A046519", "A364786" ]
null
Simon R Blow, Aug 07 2023
2023-09-15T04:14:29
oeisdata/seq/A364/A364786.seq
9354cbefc7bdf0c6ea34a209f82c6de0
A364787
a(n) is the stabilization index of the prime ladder [P(n,k) : k >= 0].
[ "0", "1", "3", "2", "7", "6", "17", "17", "19", "18", "13", "13", "11", "11", "47", "46", "39", "39", "59", "59", "68", "68", "71", "71", "61", "61", "60", "59", "56", "55", "49", "49", "47", "47", "334", "333", "508", "508", "488", "488", "466", "466", "423", "423", "512", "512", "488", "488", "468", "468", "450", "450", "696", "696", "652", "652", "639", "638", "613", "613" ]
[ "nonn" ]
11
0
3
[ "A000040", "A001223", "A002386", "A005250", "A364787" ]
null
Eduard Roure Perdices, Aug 07 2023
2023-08-30T11:04:23
oeisdata/seq/A364/A364787.seq
2f289cf5b0e093a859256177ae094aa9
A364788
a(0) = 0; thereafter a(n) is the number of times the last digit of a(n-1) has occurred as last digit in all terms prior to a(n-1).
[ "0", "0", "1", "0", "2", "0", "3", "0", "4", "0", "5", "0", "6", "0", "7", "0", "8", "0", "9", "0", "10", "11", "1", "2", "1", "3", "1", "4", "1", "5", "1", "6", "1", "7", "1", "8", "1", "9", "1", "10", "12", "2", "3", "2", "4", "2", "5", "2", "6", "2", "7", "2", "8", "2", "9", "2", "10", "13", "3", "4", "3", "5", "3", "6", "3", "7", "3", "8", "3", "9", "3", "10", "14", "4", "5", "4", "6", "4", "7", "4", "8", "4", "9", "4", "10" ]
[ "nonn", "base" ]
40
0
5
[ "A248034", "A364788" ]
null
David James Sycamore, Aug 07 2023
2025-03-24T11:40:04
oeisdata/seq/A364/A364788.seq
fbf0a5feed3d385cf2fa4678befb78fa
A364789
Initial digit of (n^n)^n (A002489(n)).
[ "1", "1", "1", "1", "4", "2", "1", "2", "6", "1", "1", "1", "2", "1", "4", "4", "1", "3", "5", "4", "2", "1", "5", "2", "1", "5", "3", "2", "3", "7", "2", "1", "1", "4", "2", "3", "9", "7", "1", "1", "1", "1", "2", "1", "5", "5", "2", "4", "3", "1", "2", "2", "1", "3", "4", "3", "2", "6", "1", "2", "2", "1", "8", "3", "1", "3", "8", "1", "3", "5", "9", "1", "2", "4", "8", "1", "3", "1", "3", "1", "5", "3", "3", "3", "5", "1", "3" ]
[ "base", "easy", "nonn" ]
58
0
5
[ "A000030", "A002489", "A229522", "A241299", "A363746", "A364789", "A364837", "A364855" ]
null
Marco Ripà, Aug 08 2023
2024-01-31T03:59:07
oeisdata/seq/A364/A364789.seq
16b2260e433261765573d3f4644fc4bf
A364790
Triangle read by rows: T(n, k) is the number of n X n symmetric Toeplitz matrices of rank k using all the integers 0, 1, 2, ..., n-1.
[ "1", "0", "2", "0", "0", "6", "0", "0", "1", "23", "0", "0", "0", "0", "120", "0", "0", "0", "0", "2", "718", "0", "0", "0", "0", "4", "31", "5005", "0", "0", "0", "0", "0", "2", "44", "40274", "0", "0", "0", "0", "0", "0", "4", "284", "362592", "0", "0", "0", "0", "0", "0", "0", "111", "769", "3627920", "0", "0", "0", "0", "0", "0", "2", "14", "244", "7056", "39909484", "0", "0", "0", "0", "0", "0", "0", "4", "64", "742", "9667", "478991123" ]
[ "nonn", "tabl" ]
13
1
3
[ "A000142", "A358323", "A358324", "A358326", "A358327", "A364790", "A364791" ]
null
Stefano Spezia, Aug 08 2023
2024-01-08T01:09:18
oeisdata/seq/A364/A364790.seq
9996f21dacb1486f3975f084b4226489
A364791
a(n) is the number of n X n nonsingular symmetric Toeplitz matrices using all the integers 0, 1, 2, ..., n-1.
[ "1", "2", "6", "23", "120", "718", "5005", "40274", "362592", "3627920", "39909484", "478991123" ]
[ "nonn", "hard", "more" ]
10
1
2
[ "A358323", "A358324", "A358326", "A358327", "A364790", "A364791" ]
null
Stefano Spezia, Aug 08 2023
2024-01-08T01:09:35
oeisdata/seq/A364/A364791.seq
0828d4ae5ac418b4536177b16a797d04
A364792
G.f. satisfies A(x) = 1 + x*A(x)^4 / (1 - x*A(x)^2).
[ "1", "1", "5", "33", "250", "2054", "17800", "160183", "1482535", "14022415", "134943095", "1317046306", "13005842030", "129708875695", "1304588594925", "13217663310305", "134775670244250", "1382019265706377", "14242560597119165", "147435736533094415", "1532365596794307010" ]
[ "nonn" ]
8
0
3
[ "A002293", "A243659", "A349331", "A364747", "A364765", "A364792" ]
null
Seiichi Manyama, Aug 08 2023
2023-08-10T04:12:02
oeisdata/seq/A364/A364792.seq
6c3fc54e460364ca71ef15721c96190a
A364793
Number of partitions of n with at most four part sizes.
[ "1", "1", "2", "3", "5", "7", "11", "15", "22", "30", "42", "56", "77", "101", "135", "175", "229", "292", "375", "470", "591", "733", "905", "1103", "1343", "1615", "1938", "2309", "2726", "3211", "3758", "4379", "5069", "5865", "6716", "7694", "8769", "9967", "11254", "12732", "14264", "16025", "17877", "19959", "22149", "24605", "27147", "30012", "33006", "36294", "39742", "43573", "47524" ]
[ "nonn" ]
20
0
3
[ "A116608", "A265250", "A309058", "A364793", "A364809", "A365630" ]
null
Seiichi Manyama, Sep 14 2023
2023-09-14T12:37:56
oeisdata/seq/A364/A364793.seq
9769f7d4ccefd5c842b8ffd1d5870978
A364794
Number of distinct binary arrays of size n X n with respect to isometric transformations.
[ "1", "2", "6", "86", "7626", "3956996", "8326366368", "69277957195904", "2287898999182608384", "301053169143557925650432", "158147142250171927345054089216", "331982638848895606930198405868158976", "2786232352655643085145552249123037486514176" ]
[ "nonn", "more" ]
37
0
2
[ "A054247", "A255016", "A364794" ]
null
Johnny Sammon, Aug 08 2023
2023-09-13T23:17:25
oeisdata/seq/A364/A364794.seq
4db5a4d8df44d65937bbb5211ff784e7
A364795
a(n) is the number of different sets of integer angles (in degrees) of an n-gon.
[ "2700", "326700", "30072240", "2310019204", "153386909107", "8992986080669", "472639425224952", "22527596153829699", "982894927341908652", "39558851030444690174", "1478190132737137934278", "51565891712505592101318", "1687373867784860474568905", "52009861116025253683005899" ]
[ "nonn" ]
34
3
1
[ "A000041", "A000096", "A008284", "A008289", "A066164", "A364795" ]
null
Felix Huber, Aug 08 2023
2023-11-08T06:52:20
oeisdata/seq/A364/A364795.seq
2091d253a47eb4fa7c0e031d4834df40
A364796
Numbers k such that the sum of the first k prime powers (not including 1) is a prime power.
[ "1", "2", "3", "6", "8", "13", "18", "20", "22", "37", "41", "43", "46", "62", "87", "89", "95", "99", "111", "115", "118", "124", "130", "146", "150", "160", "164", "168", "180", "192", "201", "205", "211", "221", "263", "283", "287", "315", "339", "352", "356", "364", "396", "398", "408", "418", "434", "442", "450", "476", "508", "512", "526", "534", "536", "548", "556", "582" ]
[ "nonn" ]
18
1
2
[ "A013916", "A013919", "A013930", "A246655", "A364796", "A364797" ]
null
Ilya Gutkovskiy, Aug 08 2023
2025-06-20T08:09:52
oeisdata/seq/A364/A364796.seq
235aa4128234454b598639e5dc4ebcb9
A364797
Prime powers that are equal to the sum of the first k prime powers (not including 1) for some k.
[ "2", "5", "9", "29", "49", "137", "281", "359", "449", "1579", "2029", "2281", "2677", "5519", "12527", "13229", "15451", "17047", "22409", "24389", "25931", "29191", "32687", "42937", "45757", "53239", "56443", "59743", "70201", "81677", "90863", "95087", "101627", "113111", "169343", "200407", "206911", "256049", "302977", "330133", "338707", "356263" ]
[ "nonn" ]
14
1
1
[ "A013918", "A013921", "A013932", "A246655", "A364796", "A364797" ]
null
Ilya Gutkovskiy, Aug 08 2023
2025-06-20T08:09:36
oeisdata/seq/A364/A364797.seq
1d3815f7979a1066f78ff4320081b324
A364798
Triangular numbers that for some k >= 1 are also the sum of the first k noncomposite numbers (1 together with the primes).
[ "1", "3", "6", "78", "448516225", "448254714630193471" ]
[ "nonn", "more" ]
9
1
2
[ "A000217", "A008578", "A014284", "A066527", "A110996", "A364798", "A364799" ]
null
Ilya Gutkovskiy, Aug 08 2023
2023-08-12T01:17:22
oeisdata/seq/A364/A364798.seq
b5e1ed1b2d1dd39cdb8378410b1340d1
A364799
Triangular numbers that for some k >= 1 are also the sum of the first k odd primes.
[ "3", "15", "1236378", "1454365", "3541791", "104856921", "2677839153", "3656187921870", "3973810409128", "1448587865213374600", "36691639282445615088081" ]
[ "nonn", "more" ]
12
1
1
[ "A000217", "A065091", "A066527", "A071148", "A364798", "A364799" ]
null
Ilya Gutkovskiy, Aug 08 2023
2023-08-23T08:35:42
oeisdata/seq/A364/A364799.seq
7301a9d15caaf89e82c1009287f48ec3
A364800
The number of iterations that n requires to reach 1 under the map x -> A356874(x).
[ "0", "1", "2", "2", "3", "3", "3", "3", "3", "3", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "5", "5", "5", "4", "4", "4", "4", "4", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5" ]
[ "nonn", "base", "easy" ]
9
1
3
[ "A003434", "A356874", "A364800", "A364801" ]
null
Amiram Eldar, Aug 08 2023
2023-08-09T02:14:33
oeisdata/seq/A364/A364800.seq
428cf925a2a627ffff9e589e92fefcdd