sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
sequencelengths 1
348
| keywords
sequencelengths 1
8
| score
int64 1
2.31k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
sequencelengths 1
128
⌀ | former_ids
sequencelengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-28 00:58:08
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A378101 | Decimal expansion of e^(Pi^2/(6*log(2))). | [
"1",
"0",
"7",
"3",
"1",
"0",
"1",
"5",
"7",
"9",
"4",
"8",
"2",
"3",
"0",
"8",
"5",
"8",
"0",
"3",
"9",
"2",
"2",
"3",
"0",
"7",
"9",
"9",
"9",
"6",
"6",
"5",
"4",
"0",
"6",
"0",
"3",
"7",
"8",
"1",
"9",
"6",
"8",
"4",
"9",
"6",
"8",
"4",
"4",
"8",
"9",
"0",
"5",
"7",
"9",
"0",
"0",
"5",
"8",
"0",
"8",
"2",
"4",
"8",
"4",
"5",
"8",
"1",
"9",
"8",
"4",
"2",
"9",
"1",
"3",
"3",
"9",
"2",
"6",
"2",
"7",
"9",
"9",
"9",
"3",
"0",
"4",
"5",
"4",
"0",
"7",
"7",
"7",
"3",
"9",
"1",
"2",
"9",
"4",
"9"
] | [
"nonn",
"cons"
] | 5 | 2 | 3 | [
"A001113",
"A002162",
"A002388",
"A013661",
"A378101",
"A378102"
] | null | Stefano Spezia, Nov 16 2024 | 2024-11-17T07:11:59 | oeisdata/seq/A378/A378101.seq | 066e01d7b1949fae95a01e3cd718293d |
A378102 | Decimal expansion of e^(-Pi^2/(6*log(2))). | [
"0",
"9",
"3",
"1",
"8",
"7",
"8",
"2",
"2",
"9",
"5",
"3",
"5",
"7",
"5",
"8",
"7",
"3",
"3",
"6",
"2",
"3",
"2",
"8",
"0",
"5",
"9",
"9",
"5",
"3",
"5",
"2",
"4",
"9",
"6",
"6",
"8",
"3",
"9",
"0",
"9",
"4",
"8",
"7",
"4",
"0",
"8",
"2",
"2",
"4",
"7",
"8",
"5",
"0",
"6",
"7",
"4",
"8",
"1",
"6",
"4",
"7",
"2",
"0",
"7",
"2",
"0",
"2",
"7",
"6",
"2",
"0",
"2",
"3",
"6",
"7",
"8",
"7",
"1",
"3",
"0",
"6",
"0",
"6",
"3",
"8",
"9",
"0",
"6",
"5",
"6",
"8",
"4",
"9",
"7",
"1",
"7",
"1",
"3",
"1",
"4"
] | [
"nonn",
"cons"
] | 6 | 0 | 2 | [
"A001113",
"A002162",
"A002388",
"A013661",
"A378101",
"A378102"
] | null | Stefano Spezia, Nov 16 2024 | 2025-04-03T04:07:55 | oeisdata/seq/A378/A378102.seq | 224a672fb0e8a6c62b38868283144bf9 |
A378103 | Triangle read by rows: T(n,k) is the number of n-node connected unsensed planar maps with an external face and k triangular internal faces, n >= 3, 1 <= k <= 2*n - 5. | [
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"2",
"1",
"0",
"0",
"2",
"4",
"4",
"5",
"4",
"0",
"0",
"2",
"6",
"10",
"14",
"14",
"18",
"16",
"0",
"0",
"0",
"7",
"18",
"35",
"49",
"63",
"69",
"88",
"78",
"0",
"0",
"0",
"5",
"28",
"74",
"131",
"204",
"274",
"345",
"396",
"489",
"457",
"0",
"0",
"0",
"0",
"26",
"126",
"304",
"574",
"893",
"1290",
"1708",
"2137",
"2503",
"3071",
"2938",
"0",
"0",
"0",
"0",
"13",
"159",
"582",
"1396",
"2613",
"4274",
"6270",
"8709",
"11433",
"14227",
"16905",
"20667",
"20118"
] | [
"nonn",
"tabf"
] | 15 | 3 | 8 | [
"A001651",
"A002713",
"A003094",
"A005500",
"A005501",
"A169808",
"A377785",
"A378103",
"A378336",
"A378340"
] | null | Ya-Ping Lu, Nov 16 2024 | 2024-11-25T20:44:47 | oeisdata/seq/A378/A378103.seq | 02df39193c58383d12a2d7a2dc64490c |
A378104 | Positive integers that are digitally balanced in more than one integer base b >= 2. | [
"135",
"141",
"147",
"156",
"177",
"180",
"198",
"201",
"210",
"216",
"225",
"228",
"572",
"678",
"684",
"714",
"722",
"738",
"2110",
"2170",
"2230",
"2382",
"2410",
"2638",
"2702",
"2710",
"2758",
"2830",
"2886",
"8287",
"8351",
"8367",
"8375",
"8399",
"8415",
"8429",
"8435",
"8479",
"8527",
"8539",
"8551",
"8563",
"8569",
"8591",
"8605",
"8615",
"8619",
"8630"
] | [
"nonn",
"base"
] | 16 | 1 | 1 | [
"A049364",
"A065963",
"A378000",
"A378073",
"A378104"
] | null | Paolo Xausa, Nov 16 2024 | 2024-11-21T05:23:10 | oeisdata/seq/A378/A378104.seq | ac76c235324621624e722be893c3e018 |
A378105 | Number of non-colorable strings of length n considered by the alternating coloring function. | [
"1",
"2",
"2",
"4",
"4",
"8",
"12",
"24",
"44",
"88",
"172",
"344",
"684",
"1368",
"2732",
"5464",
"10924",
"21848",
"43692",
"87384",
"174764",
"349528",
"699052",
"1398104",
"2796204",
"5592408",
"11184812",
"22369624",
"44739244",
"89478488",
"178956972",
"357913944",
"715827884",
"1431655768",
"2863311532",
"5726623064",
"11453246124",
"22906492248",
"45812984492"
] | [
"nonn",
"easy"
] | 24 | 0 | 2 | [
"A001045",
"A005578",
"A378105"
] | null | Jonathan Garbe, Nov 16 2024 | 2025-01-29T12:45:23 | oeisdata/seq/A378/A378105.seq | f6e44fe18828e6a870ff872816f90ef5 |
A378106 | Lexicographically earliest sequence of distinct positive integers such that among two consecutive terms, the least term divides a positive number whose decimal expansion appears in that of the other term. | [
"1",
"2",
"4",
"8",
"16",
"3",
"6",
"12",
"24",
"48",
"96",
"9",
"18",
"36",
"72",
"7",
"14",
"28",
"56",
"5",
"10",
"20",
"40",
"80",
"160",
"15",
"30",
"60",
"120",
"240",
"480",
"32",
"64",
"128",
"256",
"25",
"50",
"100",
"200",
"400",
"800",
"1600",
"75",
"150",
"300",
"600",
"1200",
"2400",
"4800",
"192",
"19",
"38",
"76",
"152",
"13",
"26",
"52",
"104",
"208",
"416",
"41"
] | [
"nonn",
"base"
] | 7 | 1 | 2 | [
"A342072",
"A378106",
"A378107"
] | null | Rémy Sigrist, Nov 16 2024 | 2024-11-17T13:07:40 | oeisdata/seq/A378/A378106.seq | a6a9f7cd46adfbe01f43a0cab0a333e4 |
A378107 | Lexicographically earliest sequence of distinct positive integers such that for any n > 0, either a(n+1) is a multiple of a(n) or the decimal expansion of a(n+1) appears in that of a(n). | [
"1",
"2",
"4",
"8",
"16",
"6",
"12",
"24",
"48",
"96",
"9",
"18",
"36",
"3",
"15",
"5",
"10",
"20",
"40",
"80",
"160",
"60",
"120",
"240",
"480",
"960",
"1920",
"19",
"38",
"76",
"7",
"14",
"28",
"56",
"112",
"11",
"22",
"44",
"88",
"176",
"17",
"34",
"68",
"136",
"13",
"26",
"52",
"104",
"208",
"416",
"41",
"82",
"164",
"64",
"128",
"256",
"25",
"50",
"100",
"200",
"400",
"800"
] | [
"nonn",
"base"
] | 9 | 1 | 2 | [
"A342072",
"A378106",
"A378107"
] | null | Rémy Sigrist, Nov 16 2024 | 2024-11-18T08:31:21 | oeisdata/seq/A378/A378107.seq | 2d67b7c2bf8db585d62cec5695c99a3a |
A378108 | Primes p such that neither p-1 nor p+1 are in A126706. | [
"2",
"3",
"5",
"7",
"31",
"257",
"131071",
"618970019642690137449562111",
"162259276829213363391578010288127"
] | [
"nonn",
"hard",
"more"
] | 30 | 1 | 1 | [
"A000040",
"A000079",
"A126706",
"A141453",
"A303554",
"A378108"
] | null | Michael De Vlieger, Nov 26 2024 | 2024-11-27T18:34:27 | oeisdata/seq/A378/A378108.seq | 35a980fa169ebca9cf94be081278ac3f |
A378109 | Cogrowth sequence of the 18-element group S3 X C3 = <S,T,U | S^3, T^2, U^3, (ST)^2, [S,U], [T,U]>. | [
"1",
"0",
"1",
"2",
"3",
"15",
"32",
"126",
"351",
"1094",
"3321",
"9801",
"29768",
"88452",
"266085",
"797162",
"2390391",
"7175547",
"21516800",
"64573362",
"193700403",
"581130734",
"1743421725",
"5230147077",
"15690706952",
"47071500840",
"141215033961",
"423644304722",
"1270932117003",
"3812799539655"
] | [
"nonn",
"easy"
] | 6 | 0 | 4 | [
"A001045",
"A095364",
"A378031",
"A378109",
"A378110",
"C3",
"C6",
"D9",
"S3"
] | null | Sean A. Irvine, Nov 16 2024 | 2024-11-16T16:08:38 | oeisdata/seq/A378/A378109.seq | 9b18ab683c8f75099201c035904d04b9 |
A378110 | Cogrowth sequence of the 18-element group S3:C3 = <S,T,U | S^3, T^3, U^2, (SU)^2, (TU)^2, [S,T]>. | [
"1",
"0",
"1",
"2",
"5",
"10",
"53",
"98",
"397",
"1058",
"3341",
"9658",
"30053",
"87386",
"267877",
"793682",
"2397437",
"7162066",
"21552125",
"64506026",
"193839445",
"580889738",
"1743836117",
"5229312706",
"15692323949",
"47067796610",
"141222563821",
"423628907162",
"1270962692165",
"3812740639930"
] | [
"nonn",
"easy"
] | 4 | 0 | 4 | [
"A001045",
"A095364",
"A378031",
"A378109",
"A378110",
"C3",
"C6",
"D9",
"S3"
] | null | Sean A. Irvine, Nov 16 2024 | 2024-11-16T16:08:44 | oeisdata/seq/A378/A378110.seq | e2e2579e0f4697c6f6146195d266bfd8 |
A378111 | a(n) is the least prime p such that there are exactly n squarefree numbers strictly between p and the next prime, or -1 if there is no such p. | [
"2",
"5",
"13",
"31",
"89",
"139",
"113",
"199",
"211",
"317",
"1759",
"1381",
"1951",
"887",
"4523",
"2179",
"2477",
"4831",
"5351",
"4297",
"1327",
"9973",
"14107",
"19333",
"16141",
"20809",
"15683",
"37907",
"28229",
"58831",
"31907",
"19609",
"25471",
"40289",
"114493",
"43331",
"44293",
"34061",
"191353",
"31397",
"107377",
"134513",
"186481",
"448451",
"175141",
"332317",
"188029"
] | [
"nonn"
] | 35 | 0 | 1 | [
"A000040",
"A005117",
"A061398",
"A377430",
"A378111"
] | null | Robert Israel, Nov 29 2024 | 2024-12-01T17:57:02 | oeisdata/seq/A378/A378111.seq | 49ba7b8816b1c9156f87ff76032dd391 |
A378112 | Number A(n,k) of k-tuples (p_1, p_2, ..., p_k) of Dyck paths of semilength n, such that each p_i is never below p_{i-1} and the upper path p_k only touches the x-axis at its endpoints; square array A(n,k), n>=0, k>=0, read by antidiagonals. | [
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"2",
"2",
"0",
"1",
"1",
"3",
"9",
"5",
"0",
"1",
"1",
"4",
"23",
"55",
"14",
"0",
"1",
"1",
"5",
"46",
"265",
"400",
"42",
"0",
"1",
"1",
"6",
"80",
"880",
"3942",
"3266",
"132",
"0",
"1",
"1",
"7",
"127",
"2347",
"23695",
"70395",
"28999",
"429",
"0",
"1",
"1",
"8",
"189",
"5403",
"105554",
"824229",
"1445700",
"274537",
"1430",
"0"
] | [
"nonn",
"tabl"
] | 24 | 0 | 13 | [
"A000012",
"A000108",
"A001477",
"A019590",
"A078920",
"A101986",
"A120588",
"A123352",
"A355281",
"A368025",
"A378112",
"A378113",
"A378114"
] | null | Alois P. Heinz, Nov 16 2024 | 2024-11-16T19:30:34 | oeisdata/seq/A378/A378112.seq | 343ca440c05d552e78c3db52e75e7672 |
A378113 | Number of n-tuples (p_1, p_2, ..., p_n) of Dyck paths of semilength n, such that each p_i is never below p_{i-1} and the upper path p_n only touches the x-axis at its endpoints. | [
"1",
"1",
"2",
"23",
"880",
"105554",
"40446551",
"50637232553",
"209584899607676",
"2881189188022646406",
"131778113962930341491415",
"20065327661524165382215337625",
"10173706896856510992170168595911888",
"17178054578218938036671513200907244799852",
"96590987238453485101729361602126273065518820938"
] | [
"nonn"
] | 16 | 0 | 3 | [
"A000108",
"A355400",
"A378112",
"A378113"
] | null | Alois P. Heinz, Nov 16 2024 | 2024-11-21T10:22:20 | oeisdata/seq/A378/A378113.seq | ebe136530643114d5cb18eba48770611 |
A378114 | Number of 3-tuples (p_1, p_2, p_3) of Dyck paths of semilength n, such that each p_i is never below p_{i-1} and the upper path p_3 only touches the x-axis at its endpoints. | [
"1",
"1",
"3",
"23",
"265",
"3942",
"70395",
"1445700",
"33188889",
"834702890",
"22656163450",
"656075013591",
"20085981787831",
"645418018740113",
"21637970282382744",
"753157297564682541",
"27105935164769925549",
"1005184072184843625837",
"38295251586474334236780",
"1495061191885030011433707"
] | [
"nonn"
] | 14 | 0 | 3 | [
"A000108",
"A006149",
"A378112",
"A378114"
] | null | Alois P. Heinz, Nov 16 2024 | 2024-11-21T10:19:50 | oeisdata/seq/A378/A378114.seq | 9f092d559d6b1c82474f7e8bf60daeef |
A378115 | Numbers k such that (23^k + 2^k)/25 is prime. | [
"3",
"19",
"61",
"97",
"397",
"1511"
] | [
"nonn",
"hard",
"more"
] | 6 | 1 | 1 | [
"A057187",
"A057188",
"A062587",
"A062589",
"A127996",
"A127997",
"A128344",
"A204940",
"A217320",
"A225807",
"A228922",
"A229542",
"A375161",
"A375236",
"A377031",
"A377856",
"A378115"
] | null | Robert Price, Nov 16 2024 | 2025-02-16T08:34:07 | oeisdata/seq/A378/A378115.seq | d79722fc383cdfd1c864324ad64039df |
A378116 | Lexicographically earliest sequence of distinct positive integers such that a(a(n)) shares a factor with a(a(n)-2) while not sharing a factor with a(a(n)-1). | [
"3",
"4",
"9",
"8",
"7",
"6",
"35",
"12",
"25",
"11",
"15",
"22",
"14",
"33",
"16",
"21",
"18",
"49",
"20",
"63",
"26",
"27",
"19",
"24",
"95",
"28",
"45",
"32",
"31",
"30",
"217",
"34",
"77",
"36",
"55",
"38",
"39",
"40",
"51",
"44",
"42",
"121",
"46",
"99",
"50",
"57",
"43",
"48",
"215",
"52",
"75",
"56",
"54",
"91",
"58",
"65",
"62",
"85",
"60",
"119",
"64",
"105",
"68",
"69",
"70",
"61",
"71",
"122",
"213",
"74",
"81",
"73",
"78",
"365",
"76",
"115",
"82",
"125",
"83",
"80",
"249",
"86",
"87",
"88",
"93",
"92",
"111",
"94",
"84"
] | [
"nonn"
] | 9 | 1 | 1 | [
"A027746",
"A064413",
"A098550",
"A121053",
"A378030",
"A378098",
"A378116"
] | null | Scott R. Shannon, Nov 17 2024 | 2024-11-30T08:50:52 | oeisdata/seq/A378/A378116.seq | 02b775ed4f8339f7e7279d2971763da3 |
A378117 | Lexicographically earliest sequence of nonnegative integers a(0), a(1), ..., such that a(n) is the number of pairs of adjacent terms whose sum is n. | [
"0",
"1",
"1",
"2",
"1",
"3",
"2",
"3",
"2",
"4",
"2",
"5",
"2",
"5",
"3",
"5",
"4",
"5",
"4",
"5",
"5",
"5",
"6",
"5",
"6",
"5",
"6",
"6",
"6",
"7",
"6",
"7",
"6",
"7",
"7",
"7",
"7",
"8",
"7",
"8",
"7",
"8",
"8",
"8",
"8",
"8",
"9",
"8",
"9",
"8",
"9",
"9",
"9",
"9",
"9",
"10",
"9",
"10",
"9",
"10",
"10",
"10",
"10",
"10",
"10",
"11",
"10",
"11",
"10",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"12",
"11",
"12"
] | [
"nonn"
] | 8 | 0 | 4 | [
"A001462",
"A307707",
"A378117"
] | null | Rémy Sigrist and N. J. A. Sloane, Nov 17 2024 | 2024-11-17T06:31:41 | oeisdata/seq/A378/A378117.seq | 422f2f17649068f8ce4cd53ad7297a01 |
A378118 | a(n) is the multinomial coefficient given by the previous terms, i.e., a(n) = (a(1)+...+a(n-1))!/(a(1)!*...*a(n-1)!). | [
"1",
"1",
"2",
"12",
"21840",
"2814355154336774377799951925175856161820370339122436787831200"
] | [
"nonn"
] | 4 | 1 | 3 | null | null | Pontus von Brömssen, Nov 17 2024 | 2024-11-17T07:13:48 | oeisdata/seq/A378/A378118.seq | b9aebf3267e5ce9edf25bf38d025e94c |
A378119 | a(n) is the smallest positive k such that the digit sums of k and k + 1 are both divisible by n, or -1 if no such pair exists. | [
"1",
"19",
"-1",
"39",
"49999",
"-1",
"69999",
"79",
"-1",
"18999999999",
"2899999",
"-1",
"48999",
"5899999999999",
"-1",
"78999999999",
"8899",
"-1",
"19899999999999999999",
"298999999999",
"-1",
"49899999",
"598999999999999999999",
"-1",
"79899999999999999",
"898999",
"-1",
"19989999999999999999999999999",
"29989999999999999",
"-1"
] | [
"sign",
"base"
] | 26 | 1 | 2 | [
"A007953",
"A051885",
"A378119"
] | null | Barney Maunder-Taylor, Nov 16 2024 | 2024-12-28T15:49:24 | oeisdata/seq/A378/A378119.seq | ff6a5fcbfd232e0d16879b785ddf0445 |
A378120 | a(n) = (A000217(n) + A005132(n))/2. | [
"0",
"1",
"3",
"6",
"6",
"11",
"17",
"24",
"24",
"33",
"33",
"44",
"44",
"57",
"57",
"72",
"72",
"89",
"107",
"126",
"126",
"147",
"147",
"147",
"171",
"171",
"197",
"197",
"225",
"225",
"255",
"255",
"287",
"320",
"354",
"354",
"390",
"390",
"390",
"429",
"429",
"470",
"470",
"513",
"513",
"558",
"558",
"605",
"605",
"654",
"654",
"705",
"705",
"758",
"758",
"813",
"813"
] | [
"nonn"
] | 14 | 0 | 3 | [
"A000217",
"A005132",
"A377748",
"A378120"
] | null | Paul Curtz, Nov 17 2024 | 2024-11-18T18:27:52 | oeisdata/seq/A378/A378120.seq | 73d0450d10b42b0d36904961962b9008 |
A378121 | Numbers missing from all Fibonacci/tribonacci sequences that start with 1, 1, 1. | [
"19",
"41",
"49",
"59",
"67",
"107",
"109",
"161",
"177",
"179",
"197",
"201",
"205",
"211",
"223",
"227",
"229",
"239",
"247",
"263",
"269",
"277",
"295",
"301",
"307",
"317",
"323",
"327",
"335",
"349",
"353",
"361",
"367",
"394",
"409",
"413",
"421",
"447",
"449",
"454",
"467",
"475",
"499",
"502",
"509",
"526",
"529",
"533",
"538",
"541",
"557",
"566",
"577",
"601",
"603",
"607"
] | [
"nonn"
] | 18 | 1 | 1 | [
"A000045",
"A000213",
"A378121"
] | null | Erich Friedman, Nov 17 2024 | 2024-11-19T01:03:57 | oeisdata/seq/A378/A378121.seq | 421ea98f38c0a2440cc33cb78ecc4fb0 |
A378122 | a(n) = number of prime divisors of the sum of the first n primes. | [
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"1",
"3",
"1",
"2",
"2",
"3",
"2",
"2",
"2",
"2",
"2",
"3",
"2",
"3",
"2",
"2",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"2",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"3",
"3",
"2",
"4",
"2",
"2",
"3",
"4",
"2",
"2",
"1",
"3",
"2",
"3",
"1",
"2",
"2",
"3",
"3",
"3",
"3",
"3",
"2",
"3",
"2",
"2",
"3",
"4",
"2",
"3",
"3",
"2",
"2",
"2",
"4",
"3",
"3"
] | [
"nonn"
] | 5 | 1 | 3 | [
"A000040",
"A008334",
"A008335",
"A071215",
"A378122",
"A378123"
] | null | Clark Kimberling, Nov 17 2024 | 2024-11-20T09:50:56 | oeisdata/seq/A378/A378122.seq | afe7db9eb8dabf79f40f8c85517656a7 |
A378123 | a(n) = number of prime divisors of the sum of the first n odd primes. | [
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"3",
"2",
"2",
"2",
"1",
"3",
"1",
"2",
"2",
"3",
"2",
"2",
"1",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"1",
"3",
"2",
"3",
"2",
"2",
"3",
"3",
"2",
"3",
"3",
"3",
"2",
"4",
"2",
"2",
"2",
"3",
"4",
"3",
"2",
"3",
"1",
"3",
"1",
"3",
"2",
"3",
"2",
"5",
"1",
"5",
"2",
"4",
"1",
"3",
"2",
"3",
"3",
"3",
"1",
"3",
"2",
"3",
"1",
"3",
"2",
"3",
"2",
"4",
"3",
"3",
"2",
"2",
"2",
"4"
] | [
"nonn"
] | 8 | 1 | 3 | [
"A000040",
"A001221",
"A008334",
"A008335",
"A071148",
"A071215",
"A378122",
"A378123"
] | null | Clark Kimberling, Nov 17 2024 | 2024-11-20T09:51:03 | oeisdata/seq/A378/A378123.seq | 8c00064d1cc3265f67e1418ceb6506a9 |
A378124 | Decimal expansion of Pi^2/(12*log(phi)). | [
"1",
"7",
"0",
"9",
"1",
"5",
"7",
"9",
"8",
"5",
"3",
"0",
"5",
"6",
"2",
"1",
"9",
"2",
"6",
"4",
"6",
"3",
"8",
"1",
"5",
"6",
"9",
"3",
"6",
"2",
"0",
"3",
"2",
"9",
"5",
"4",
"2",
"9",
"7",
"9",
"0",
"3",
"4",
"7",
"1",
"6",
"1",
"6",
"8",
"8",
"5",
"0",
"0",
"8",
"4",
"2",
"4",
"6",
"2",
"7",
"6",
"7",
"7",
"7",
"4",
"0",
"4",
"6",
"2",
"4",
"2",
"7",
"9",
"3",
"9",
"1",
"5",
"6",
"3",
"6",
"2",
"4",
"4",
"6",
"0",
"3",
"6",
"4",
"0",
"2",
"2",
"8",
"9",
"5",
"1",
"6",
"5",
"4",
"5",
"9"
] | [
"nonn",
"cons"
] | 8 | 1 | 2 | [
"A001622",
"A002388",
"A002390",
"A013661",
"A072691",
"A174607",
"A247039",
"A378124"
] | null | Stefano Spezia, Nov 17 2024 | 2024-11-18T07:35:05 | oeisdata/seq/A378/A378124.seq | 743137defa80c19d0d04d217f2bc5031 |
A378125 | Triangle T(n, k) read by rows. Let m be a nonzero rational number then T(n, m mod (n+1)) is the n-th coefficient in the Hasse-Weil L-series (q^(n+1) in the q-expansion) associated to the elliptic equation -4*x^3 + ((m+1)^2 + 8)*x^2 - 2*(m+3)*x + 1 - y^2 = 0. | [
"1",
"-1",
"-2",
"0",
"-3",
"-1",
"1",
"2",
"1",
"2",
"-1",
"-2",
"-1",
"-3",
"1",
"0",
"6",
"1",
"0",
"3",
"2",
"1",
"-1",
"-3",
"1",
"-2",
"-2",
"-2",
"-1",
"0",
"-1",
"0",
"-1",
"0",
"-1",
"0",
"0",
"6",
"-2",
"0",
"6",
"-2",
"0",
"6",
"-2",
"1",
"4",
"1",
"6",
"-1",
"2",
"2",
"2",
"3",
"-2",
"-1",
"-5",
"4",
"3",
"1",
"-2",
"-4",
"-5",
"-3",
"-1",
"1",
"0",
"-6",
"-1",
"0",
"-3",
"-2",
"0",
"-6",
"-1",
"0",
"-3",
"-2",
"1",
"-2",
"-7",
"0",
"2",
"-2",
"-1",
"0",
"-5",
"-2",
"-5",
"3",
"4",
"-1",
"2",
"3",
"-2",
"2",
"4",
"2",
"-2",
"1",
"6",
"-1",
"4",
"2",
"4"
] | [
"sign",
"tabl"
] | 34 | 0 | 3 | [
"A001615",
"A006571",
"A007653",
"A251913",
"A377441",
"A378125"
] | null | Thomas Scheuerle, Nov 17 2024 | 2024-12-08T04:00:44 | oeisdata/seq/A378/A378125.seq | 6676f0e2cffbb8e07a7c67ea25b58166 |
A378126 | Array read by antidiagonals: T(n, m) is the maximal size of partitions of (n, m) into sums of distinct pairs of nonnegative integers, excluding (0, 0). | [
"0",
"1",
"1",
"1",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"3",
"3",
"3",
"2",
"2",
"3",
"3",
"3",
"3",
"2",
"3",
"3",
"4",
"4",
"4",
"3",
"3",
"3",
"4",
"4",
"4",
"4",
"4",
"4",
"3",
"3",
"4",
"4",
"4",
"5",
"4",
"4",
"4",
"3",
"3",
"4",
"5",
"5",
"5",
"5",
"5",
"5",
"4",
"3",
"4",
"4",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"4",
"4",
"4",
"5",
"5",
"5",
"6",
"6",
"6",
"6",
"5",
"5",
"5",
"4",
"4",
"5",
"5",
"6",
"6",
"6",
"6"
] | [
"nonn",
"tabl"
] | 20 | 0 | 5 | [
"A003056",
"A054242",
"A086435",
"A201377",
"A378126",
"A378379"
] | null | Jimin Park, Nov 17 2024 | 2024-12-12T23:08:17 | oeisdata/seq/A378/A378126.seq | 60677d4b420d45f7372a319ca4f38ec8 |
A378127 | Inverse permutation to A377137. | [
"1",
"3",
"4",
"2",
"6",
"5",
"10",
"9",
"11",
"8",
"12",
"7",
"14",
"15",
"13",
"20",
"21",
"19",
"22",
"18",
"23",
"17",
"24",
"16",
"27",
"26",
"28",
"25",
"35",
"34",
"36",
"33",
"37",
"32",
"38",
"31",
"39",
"30",
"40",
"29",
"43",
"44",
"42",
"45",
"41",
"53",
"54",
"52",
"55",
"51",
"56",
"50",
"57",
"49",
"58",
"48",
"59",
"47",
"60",
"46",
"64",
"63",
"65",
"62",
"66",
"61",
"76",
"75",
"77",
"74",
"78",
"73",
"79",
"72",
"80",
"71",
"81",
"70",
"82",
"69",
"83",
"68",
"84",
"67",
"88",
"89",
"87",
"90",
"86",
"91"
] | [
"nonn",
"tabf"
] | 9 | 1 | 2 | [
"A064455",
"A209278",
"A265225",
"A377137",
"A378127"
] | null | Boris Putievskiy, Nov 17 2024 | 2024-12-01T14:39:32 | oeisdata/seq/A378/A378127.seq | efad55da735d6fa0d7cc0accc8f12741 |
A378128 | Decimal expansion of 2/L, where L is the lemniscate constant (A062539). | [
"7",
"6",
"2",
"7",
"5",
"9",
"7",
"6",
"3",
"5",
"0",
"1",
"8",
"1",
"3",
"1",
"8",
"8",
"0",
"6",
"2",
"3",
"2",
"5",
"9",
"8",
"0",
"9",
"6",
"3",
"6",
"1",
"5",
"7",
"9",
"3",
"2",
"9",
"2",
"6",
"2",
"9",
"2",
"3",
"7",
"3",
"4",
"8",
"0",
"7",
"2",
"9",
"1",
"5",
"2",
"1",
"7",
"0",
"7",
"1",
"5",
"9",
"8",
"2",
"6",
"4",
"4",
"2",
"2",
"6",
"9",
"2",
"9",
"5",
"6",
"2",
"5",
"6",
"1",
"9",
"2",
"1",
"9",
"5",
"4",
"6",
"6",
"1",
"4",
"6"
] | [
"nonn",
"cons",
"easy"
] | 12 | 0 | 1 | [
"A010466",
"A062539",
"A085565",
"A175575",
"A377999",
"A378128",
"A378129",
"A378130",
"A378131",
"A378132"
] | null | Paolo Xausa, Nov 17 2024 | 2024-11-20T17:41:19 | oeisdata/seq/A378/A378128.seq | 560518abf76cd81a79b27bb4957b9424 |
A378129 | Decimal expansion of log(L^2/Pi), where L is the lemniscate constant (A062539). | [
"7",
"8",
"3",
"1",
"8",
"8",
"7",
"8",
"5",
"4",
"1",
"3",
"6",
"7",
"3",
"5",
"5",
"2",
"9",
"4",
"3",
"8",
"9",
"0",
"6",
"9",
"3",
"7",
"9",
"8",
"2",
"2",
"2",
"0",
"5",
"6",
"1",
"8",
"0",
"4",
"2",
"0",
"2",
"3",
"1",
"5",
"4",
"0",
"0",
"5",
"3",
"2",
"9",
"6",
"6",
"1",
"0",
"6",
"6",
"1",
"9",
"1",
"8",
"7",
"1",
"1",
"3",
"8",
"8",
"6",
"4",
"5",
"0",
"2",
"4",
"0",
"5",
"9",
"0",
"3",
"8",
"4",
"7",
"9",
"4",
"5",
"8",
"7",
"4",
"4"
] | [
"nonn",
"cons",
"easy"
] | 7 | 0 | 1 | [
"A002388",
"A062539",
"A068465",
"A371855",
"A377999",
"A378128",
"A378129",
"A378130",
"A378131",
"A378132"
] | null | Paolo Xausa, Nov 17 2024 | 2024-11-19T00:53:35 | oeisdata/seq/A378/A378129.seq | 7633fdcb2e211daec3030f0541b6473e |
A378130 | Decimal expansion of 24*L^2/(5^(7/4)*Pi^2), where L is the lemniscate constant (A062539). | [
"9",
"9",
"9",
"9",
"9",
"6",
"3",
"8",
"3",
"1",
"5",
"9",
"0",
"8",
"4",
"1",
"2",
"7",
"7",
"7",
"2",
"7",
"6",
"3",
"4",
"9",
"9",
"1",
"8",
"4",
"7",
"0",
"6",
"1",
"1",
"2",
"8",
"0",
"8",
"9",
"4",
"3",
"4",
"8",
"8",
"7",
"7",
"0",
"3",
"5",
"9",
"6",
"6",
"1",
"3",
"2",
"9",
"0",
"9",
"5",
"9",
"5",
"0",
"4",
"9",
"2",
"6",
"8",
"1",
"5",
"2",
"7",
"3",
"9",
"9",
"2",
"1",
"6",
"4",
"9",
"2",
"2",
"9",
"9",
"3",
"7",
"4",
"7",
"9",
"1"
] | [
"nonn",
"cons",
"easy"
] | 11 | 0 | 1 | [
"A008977",
"A062539",
"A091670",
"A377999",
"A378128",
"A378129",
"A378130",
"A378131",
"A378132"
] | null | Paolo Xausa, Nov 18 2024 | 2025-03-31T01:46:43 | oeisdata/seq/A378/A378130.seq | 9c783aea9509237c9899e8903d2efb30 |
A378131 | Decimal expansion of sqrt(1 + sqrt(3))*L/(Pi*12^(1/8)), where L is the lemniscate constant (A062539). | [
"1",
"0",
"1",
"1",
"2",
"0",
"4",
"6",
"9",
"5",
"5",
"3",
"7",
"6",
"9",
"0",
"0",
"9",
"0",
"5",
"7",
"2",
"8",
"5",
"5",
"9",
"8",
"8",
"5",
"6",
"9",
"6",
"2",
"5",
"8",
"0",
"3",
"2",
"8",
"3",
"5",
"3",
"6",
"6",
"5",
"8",
"4",
"7",
"9",
"5",
"8",
"1",
"9",
"2",
"0",
"4",
"2",
"2",
"3",
"1",
"0",
"8",
"1",
"0",
"3",
"5",
"4",
"7",
"3",
"8",
"0",
"6",
"8",
"3",
"0",
"1",
"1",
"5",
"6",
"1",
"0",
"6",
"0",
"4",
"5",
"1",
"2",
"1",
"7",
"7"
] | [
"nonn",
"cons",
"easy"
] | 8 | 1 | 5 | [
"A000796",
"A062539",
"A068465",
"A090388",
"A377999",
"A378128",
"A378129",
"A378130",
"A378131",
"A378132"
] | null | Paolo Xausa, Nov 18 2024 | 2024-11-19T00:53:55 | oeisdata/seq/A378/A378131.seq | 7d0f65d43df479c3e0fe4f636f1b0c1e |
A378132 | Decimal expansion of L^4/15, where L is the lemniscate constant (A062539). | [
"3",
"1",
"5",
"1",
"2",
"1",
"2",
"0",
"0",
"2",
"1",
"5",
"3",
"8",
"9",
"7",
"5",
"3",
"8",
"2",
"1",
"7",
"6",
"8",
"9",
"9",
"4",
"2",
"2",
"4",
"8",
"6",
"8",
"8",
"5",
"5",
"6",
"6",
"4",
"5",
"5",
"1",
"9",
"3",
"5",
"4",
"5",
"1",
"4",
"8",
"5",
"2",
"4",
"3",
"8",
"4",
"7",
"0",
"5",
"4",
"0",
"3",
"5",
"7",
"3",
"8",
"4",
"2",
"5",
"9",
"8",
"3",
"7",
"6",
"8",
"2",
"7",
"4",
"6",
"1",
"2",
"1",
"6",
"1",
"0",
"8",
"6",
"9",
"4",
"3"
] | [
"nonn",
"cons",
"easy",
"changed"
] | 9 | 1 | 1 | [
"A062539",
"A068465",
"A092732",
"A377999",
"A378128",
"A378129",
"A378130",
"A378131",
"A378132"
] | null | Paolo Xausa, Nov 18 2024 | 2025-04-25T21:08:48 | oeisdata/seq/A378/A378132.seq | dd0d1f742bb7cbab00c9cbf124ce400b |
A378133 | Irregular triangle T(n,k) = P(n)*2^k, n >= 0, k = 0..floor(log_2 prime(k+1)), where P = A002110. | [
"1",
"2",
"4",
"6",
"12",
"24",
"30",
"60",
"120",
"210",
"420",
"840",
"1680",
"2310",
"4620",
"9240",
"18480",
"30030",
"60060",
"120120",
"240240",
"480480",
"510510",
"1021020",
"2042040",
"4084080",
"8168160",
"9699690",
"19399380",
"38798760",
"77597520",
"155195040",
"223092870",
"446185740",
"892371480",
"1784742960",
"3569485920"
] | [
"nonn",
"tabf",
"easy"
] | 10 | 0 | 2 | [
"A000079",
"A002110",
"A060735",
"A088860",
"A098388",
"A102476",
"A378133",
"A378144"
] | null | Michael De Vlieger, Nov 17 2024 | 2025-03-23T13:55:05 | oeisdata/seq/A378/A378133.seq | 5509e6297d7b7fb403896f0bf0440b81 |
A378134 | a(n) is the smallest prime p such that (2*p)^(2^n) + 1 is also prime. | [
"2",
"2",
"2",
"2",
"37",
"281",
"137",
"2129",
"139",
"23",
"1231",
"1279",
"17477"
] | [
"nonn",
"more"
] | 15 | 0 | 1 | [
"A005384",
"A019434",
"A052291",
"A378134",
"A378143",
"A378146"
] | null | Juri-Stepan Gerasimov, Nov 17 2024 | 2024-12-03T12:42:20 | oeisdata/seq/A378/A378134.seq | ea2dacc2e3bd4d654a0b26a55b20d31a |
A378135 | a(n) = p(n*p(n)), where p(x) = least prime > x. | [
"2",
"3",
"7",
"17",
"23",
"37",
"43",
"79",
"89",
"101",
"113",
"149",
"157",
"223",
"239",
"257",
"277",
"331",
"347",
"439",
"461",
"487",
"509",
"673",
"701",
"727",
"757",
"787",
"821",
"907",
"937",
"1151",
"1187",
"1223",
"1259",
"1297",
"1361",
"1523",
"1559",
"1601",
"1657",
"1777",
"1811",
"2027",
"2069",
"2129",
"2179",
"2503",
"2549",
"2609",
"2657"
] | [
"nonn"
] | 22 | 0 | 1 | [
"A000040",
"A013636",
"A151800",
"A378135",
"A378136",
"A378137"
] | null | Clark Kimberling, Nov 20 2024 | 2025-01-08T05:43:20 | oeisdata/seq/A378/A378135.seq | b0d9f7e9836df48d6783156f5468c264 |
A378136 | a(n) = p(2*n*p(n)), where p(x) = least prime > x. | [
"2",
"5",
"13",
"31",
"41",
"71",
"89",
"157",
"179",
"199",
"223",
"293",
"313",
"443",
"479",
"521",
"547",
"647",
"691",
"877",
"929",
"967",
"1013",
"1361",
"1399",
"1451",
"1511",
"1567",
"1627",
"1801",
"1861",
"2297",
"2371",
"2447",
"2521",
"2591",
"2671",
"3037",
"3119",
"3203",
"3299",
"3527",
"3613",
"4049",
"4139",
"4231",
"4327",
"4987",
"5099"
] | [
"nonn"
] | 18 | 0 | 1 | [
"A000040",
"A013636",
"A151800",
"A378135",
"A378136"
] | null | Clark Kimberling, Nov 20 2024 | 2025-01-08T05:43:37 | oeisdata/seq/A378/A378136.seq | 59ca2fa134f95900c8f817f1c00c554e |
A378137 | a(n) = p(n^2*p(n)), where p(x) is the least prime > x. | [
"2",
"3",
"13",
"47",
"83",
"179",
"257",
"541",
"709",
"907",
"1103",
"1579",
"1873",
"2879",
"3343",
"3833",
"4357",
"5501",
"6163",
"8311",
"9203",
"10151",
"11149",
"15349",
"16729",
"18127",
"19609",
"21143",
"22739",
"26083",
"27901",
"35569",
"37889",
"40343",
"42773",
"45329",
"47963",
"56131",
"59207",
"62383",
"65609",
"72287"
] | [
"nonn"
] | 17 | 0 | 1 | [
"A000040",
"A151800",
"A378135",
"A378136",
"A378137"
] | null | Clark Kimberling, Dec 21 2024 | 2025-01-11T05:27:10 | oeisdata/seq/A378/A378137.seq | a3b11b72b276399d122e6ba7d287be8d |
A378138 | The distinct values, in order of appearance, of A381087. | [
"2",
"1",
"6",
"31",
"64",
"331",
"814",
"1607",
"4107",
"5129",
"10283",
"12819",
"16163",
"40108",
"80313",
"100153",
"256379",
"1281895",
"2571143",
"3130008"
] | [
"nonn",
"base"
] | 16 | 0 | 1 | [
"A011532",
"A378138",
"A381087",
"A381183"
] | null | Scott R. Shannon, Feb 16 2025 | 2025-02-20T08:38:12 | oeisdata/seq/A378/A378138.seq | 1c00e421a69b303330ee5ff9ddec67dc |
A378139 | Smallest prime number such that the number of distinct prime factors with multiplicity of its 9's complement is equal to n. If no such number exists, return -1. | [
"2",
"3",
"23",
"11",
"19",
"263",
"167",
"103",
"487",
"1039",
"7951",
"5903",
"28319",
"107071",
"67231",
"590399",
"180799",
"344639",
"1480319",
"12181759",
"4757119",
"10871039",
"1611391",
"140167679",
"203082239",
"228248063",
"530237951",
"1812718591",
"5302379519",
"13295347711",
"12758476799",
"132953477119",
"1410065407"
] | [
"nonn",
"base"
] | 42 | 1 | 1 | [
"A000040",
"A001221",
"A001222",
"A061601",
"A377471",
"A378139"
] | null | Jean-Marc Rebert, Jan 08 2025 | 2025-01-29T13:13:54 | oeisdata/seq/A378/A378139.seq | 5104dd8362858169760da8a4c8556fc6 |
A378140 | a(n) is the least palindrome that has exactly n palindromic divisors other than itself and 1. | [
"1",
"4",
"6",
"232",
"44",
"636",
"66",
"484",
"888",
"616",
"2442",
"2112",
"4224",
"6006",
"2772",
"26862",
"23232",
"232232",
"46464",
"297792",
"66066",
"88088",
"222222",
"252252",
"213312",
"21122112",
"234432",
"606606",
"828828",
"444444",
"279972",
"21211212",
"666666",
"2444442",
"2114112",
"2578752",
"888888",
"4228224",
"42422424",
"23555532",
"54999945",
"82711728"
] | [
"nonn",
"base"
] | 11 | 0 | 2 | [
"A071276",
"A071277",
"A087997",
"A378140"
] | null | Robert Israel, Jan 08 2025 | 2025-01-10T12:06:22 | oeisdata/seq/A378/A378140.seq | df9c4909d26302b44f56fe6a2f9e97d8 |
A378141 | For any n > 0, a(n) is the least positive integer such that the XOR difference triangle with bottom row (a(1), ..., a(n)) has distinct values. | [
"1",
"2",
"4",
"8",
"16",
"32",
"9",
"18",
"64",
"128",
"39",
"75",
"156",
"256",
"76",
"137",
"259"
] | [
"nonn",
"base",
"fini",
"full"
] | 11 | 1 | 2 | [
"A099884",
"A378141",
"A380112"
] | null | Rémy Sigrist, Jan 09 2025 | 2025-01-17T09:12:21 | oeisdata/seq/A378/A378141.seq | 3d240c89a1d6fcc00a36669c82e27665 |
A378142 | a(n) = n + floor(n*s/r) + floor(n*t/r), where r=2^(1/4), s=2^(1/2), t=2^(3/4). | [
"3",
"6",
"10",
"13",
"17",
"21",
"24",
"28",
"31",
"35",
"39",
"42",
"46",
"49",
"53",
"57",
"61",
"64",
"67",
"71",
"74",
"79",
"82",
"85",
"89",
"92",
"97",
"100",
"104",
"107",
"110",
"115",
"118",
"122",
"125",
"128",
"133",
"136",
"140",
"143",
"146",
"150",
"154",
"158",
"161",
"165",
"168",
"172",
"176",
"179",
"183",
"186",
"190",
"194",
"197",
"201",
"204"
] | [
"nonn"
] | 14 | 1 | 1 | [
"A000027",
"A010767",
"A184812",
"A378142",
"A378185",
"A379510"
] | null | Clark Kimberling, Jan 13 2025 | 2025-01-20T22:45:51 | oeisdata/seq/A378/A378142.seq | 20670a5c95a920c7ccfc88661800f092 |
A378143 | a(n) is the smallest prime of the form (2*p)^(2^n) + 1 for some prime p. | [
"5",
"17",
"257",
"65537",
"808551180810136214718004658177",
"9807585394417153072393128067370344132933540474708183331242417216238928121991128579833857"
] | [
"nonn"
] | 13 | 0 | 1 | [
"A005384",
"A019434",
"A052291",
"A222008",
"A286678",
"A378134",
"A378143",
"A378146"
] | null | Juri-Stepan Gerasimov, Nov 17 2024 | 2024-12-03T12:43:37 | oeisdata/seq/A378/A378143.seq | 9561033b206f965a9d67eb8fe9dc1c6e |
A378144 | a(n) = P(n) * 2^floor(log_2(prime(n+1))) = A002110(n) * A000079(A098388(n+1)). | [
"1",
"4",
"24",
"120",
"1680",
"18480",
"480480",
"8168160",
"155195040",
"3569485920",
"103515091680",
"6417935684160",
"237463620313920",
"9736008432870720",
"418648362613440960",
"19676473042831725120",
"1042853071270081431360",
"61528331204934804450240",
"7506456407002046142929280",
"502932579269137091576261760"
] | [
"nonn",
"easy"
] | 11 | 0 | 2 | [
"A000079",
"A002110",
"A060735",
"A098388",
"A378133",
"A378144"
] | null | Michael De Vlieger, Nov 17 2024 | 2024-11-20T06:46:39 | oeisdata/seq/A378/A378144.seq | 984385d9cbcd2d49a73367c97e43f2b0 |
A378145 | Riordan triangle (1 + x * C(x), x * C(x)), where C(x) is g.f. of A000108. | [
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"4",
"3",
"1",
"5",
"10",
"8",
"4",
"1",
"14",
"28",
"23",
"13",
"5",
"1",
"42",
"84",
"70",
"42",
"19",
"6",
"1",
"132",
"264",
"222",
"138",
"68",
"26",
"7",
"1",
"429",
"858",
"726",
"462",
"240",
"102",
"34",
"8",
"1",
"1430",
"2860",
"2431",
"1573",
"847",
"385",
"145",
"43",
"9",
"1",
"4862",
"9724",
"8294",
"5434",
"3003",
"1430",
"583",
"198",
"53",
"10",
"1"
] | [
"nonn",
"easy",
"tabl"
] | 11 | 0 | 5 | [
"A000007",
"A000108",
"A004070",
"A068875",
"A120588",
"A378145"
] | null | Werner Schulte, Nov 17 2024 | 2024-12-08T17:12:07 | oeisdata/seq/A378/A378145.seq | a653fb601aeec145f087e5106f67dbeb |
A378146 | Primes p such that 16*p^4 + 1 is prime. | [
"2",
"3",
"17",
"23",
"37",
"41",
"53",
"59",
"71",
"97",
"127",
"139",
"167",
"233",
"263",
"277",
"283",
"379",
"389",
"457",
"521",
"563",
"571",
"601",
"619",
"661",
"691",
"743",
"797",
"809",
"811",
"823",
"853",
"859",
"877",
"967",
"971",
"997",
"1051",
"1063",
"1103",
"1187",
"1277",
"1289",
"1321",
"1367",
"1399",
"1433",
"1451",
"1499"
] | [
"nonn"
] | 10 | 1 | 1 | [
"A005384",
"A052291",
"A378134",
"A378143",
"A378146"
] | null | Juri-Stepan Gerasimov, Nov 17 2024 | 2024-12-03T12:43:49 | oeisdata/seq/A378/A378146.seq | 336ebde1caec38af1be651f90f2b5637 |
A378147 | The lexicographically earliest infinite simple continued fraction such that the concatenation of its terms has the same succession of digits as its decimal expansion. | [
"0",
"3",
"29",
"5",
"710",
"9",
"8",
"9",
"2",
"10",
"6",
"7",
"2",
"3",
"8",
"6",
"8",
"5",
"3",
"3",
"2",
"3",
"5",
"1",
"5",
"9",
"4",
"8",
"8",
"2",
"50",
"4",
"8",
"2",
"5",
"2",
"7",
"20",
"3",
"1",
"5",
"4",
"8",
"5",
"5",
"7",
"9",
"9",
"1",
"90",
"2",
"8",
"8",
"3",
"6",
"5",
"5",
"2",
"50",
"3",
"9",
"5",
"4",
"1",
"80",
"3",
"1",
"9",
"3",
"5",
"8",
"7",
"1",
"1",
"7",
"7",
"8",
"5",
"9",
"2",
"4",
"2",
"5",
"4"
] | [
"base",
"cofr",
"nonn"
] | 11 | 0 | 2 | null | null | Dominic McCarty, Jan 07 2025 | 2025-01-09T19:13:12 | oeisdata/seq/A378/A378147.seq | 82bd070287cde497c4cbb81bb130d295 |
A378148 | a(n) is the number of distinct trapezoids having integer sides and height with exactly one pair of parallel sides and area n. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"2",
"1",
"0",
"3",
"0",
"1",
"2",
"1",
"0",
"3",
"0",
"1",
"2",
"1",
"0",
"4",
"0",
"2",
"2",
"1",
"1",
"5",
"0",
"1",
"2",
"3",
"0",
"5",
"0",
"2",
"3",
"1",
"0",
"6",
"0",
"2",
"2",
"2",
"0",
"7",
"1",
"3",
"2",
"1",
"0",
"9",
"0",
"1",
"3",
"3",
"2",
"8",
"0",
"3",
"2",
"3",
"0",
"10",
"0",
"1",
"5",
"3",
"0",
"9",
"0",
"6",
"3",
"1",
"0",
"10",
"2",
"1",
"2"
] | [
"nonn"
] | 22 | 1 | 15 | [
"A024406",
"A027750",
"A103606",
"A214602",
"A340858",
"A340859",
"A340860",
"A365049",
"A374594",
"A378148",
"A378149",
"A378150"
] | null | Felix Huber, Dec 02 2024 | 2024-12-03T12:50:30 | oeisdata/seq/A378/A378148.seq | 534988c1437dae9f54377bc78146cfd3 |
A378149 | a(n) is the number of distinct integer-sided right trapezoids with exactly one pair of parallel sides and area n. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"2",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"3",
"0",
"1",
"1",
"1",
"1",
"2",
"0",
"1",
"1",
"2",
"0",
"4",
"0",
"0",
"2",
"1",
"0",
"3",
"0",
"2",
"1",
"0",
"0",
"4",
"1",
"1",
"1",
"1",
"0",
"3",
"0",
"1",
"2",
"1",
"1",
"5",
"0",
"1",
"1",
"2",
"0",
"4",
"0",
"1",
"3",
"1",
"0",
"5",
"0",
"2",
"2",
"1",
"0",
"3",
"1",
"1",
"1"
] | [
"nonn"
] | 10 | 1 | 18 | [
"A027750",
"A214602",
"A340858",
"A340859",
"A340860",
"A374594",
"A378148",
"A378149",
"A378150"
] | null | Felix Huber, Dec 04 2024 | 2024-12-23T22:18:49 | oeisdata/seq/A378/A378149.seq | 5a708aa867b6c0bc05c3e61c5682255a |
A378150 | a(n) is the number of distinct integer-sided isosceles trapezoids with exactly one pair of parallel sides and area n. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"2",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"2",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"2",
"0",
"0",
"1",
"1",
"0",
"2",
"0",
"2",
"1",
"0",
"0",
"3",
"0",
"0",
"1",
"2",
"1",
"2",
"0",
"1",
"1",
"1",
"0",
"5",
"0",
"0",
"2",
"1",
"0",
"2",
"0",
"3",
"1",
"0",
"0",
"4",
"1",
"0",
"1",
"2"
] | [
"nonn"
] | 8 | 1 | 24 | [
"A027750",
"A214602",
"A340858",
"A340859",
"A340860",
"A374594",
"A378148",
"A378149",
"A378150"
] | null | Felix Huber, Dec 02 2024 | 2024-12-03T12:50:40 | oeisdata/seq/A378/A378150.seq | eb7c8680603ca732cd6a9deba0f88054 |
A378151 | G.f. A(x) satisfies A(x) = 1 + (x * (1+x) * A(x))^3. | [
"1",
"0",
"0",
"1",
"3",
"3",
"4",
"18",
"45",
"72",
"153",
"450",
"1066",
"2172",
"5142",
"13381",
"31752",
"72333",
"176475",
"441909",
"1065528",
"2551465",
"6292857",
"15620439",
"38229235",
"93698523",
"232545105",
"578019090",
"1430290512",
"3548336724",
"8851036863",
"22092054588",
"55093739760",
"137681640450"
] | [
"nonn"
] | 10 | 0 | 5 | [
"A000045",
"A115055",
"A256169",
"A378151",
"A378152",
"A378153"
] | null | Seiichi Manyama, Nov 18 2024 | 2024-11-18T07:33:10 | oeisdata/seq/A378/A378151.seq | f4050fbea66f4bb5698e5e46b991524e |
A378152 | G.f. A(x) satisfies A(x) = 1 + (x * (1+x) * A(x))^4. | [
"1",
"0",
"0",
"0",
"1",
"4",
"6",
"4",
"5",
"32",
"112",
"224",
"302",
"488",
"1564",
"4872",
"11034",
"19664",
"37128",
"95824",
"266659",
"635740",
"1306682",
"2706524",
"6503711",
"16794992",
"40634744",
"90066416",
"197648134",
"465436936",
"1152867388",
"2790870536",
"6434526866",
"14640368240",
"34415925816",
"83509570992"
] | [
"nonn"
] | 7 | 0 | 6 | [
"A000045",
"A256169",
"A378151",
"A378152"
] | null | Seiichi Manyama, Nov 18 2024 | 2024-11-18T07:33:18 | oeisdata/seq/A378/A378152.seq | f21b296ab5ead705eaf47f7f4ac599b0 |
A378153 | G.f. A(x) satisfies A(x) = 1 + (x * (1+x))^3 * A(x)^2. | [
"1",
"0",
"0",
"1",
"3",
"3",
"3",
"12",
"30",
"45",
"75",
"192",
"436",
"798",
"1554",
"3542",
"7740",
"15543",
"32183",
"70794",
"153252",
"321431",
"684123",
"1491504",
"3232672",
"6928779",
"14957787",
"32615388",
"70991040",
"153985890",
"335256886",
"733206840",
"1603258134",
"3503385568",
"7671749664",
"16837946850"
] | [
"nonn"
] | 10 | 0 | 5 | [
"A000108",
"A115055",
"A378151",
"A378153"
] | null | Seiichi Manyama, Nov 18 2024 | 2024-11-18T09:44:43 | oeisdata/seq/A378/A378153.seq | ea00cf30d139587f41e5b10aa4e06168 |
A378154 | Array read by rows: T(n,k) for k <= min(n,10) is the number of digital types of length n with exactly k distinct decimal digits without common prime factors of a different digital type. | [
"1",
"1",
"1",
"0",
"3",
"1",
"0",
"4",
"6",
"1",
"0",
"15",
"25",
"10",
"1",
"0",
"12",
"84",
"65",
"15",
"1",
"0",
"63",
"301",
"350",
"140",
"21",
"1",
"0",
"80",
"868",
"1672",
"1050",
"266",
"28",
"1",
"0",
"171",
"2745",
"7770",
"6951",
"2646",
"462",
"36",
"1",
"0",
"370",
"8680",
"33505",
"42405",
"22827",
"5880",
"750",
"45",
"0",
"0",
"1023",
"28501",
"145750",
"246730",
"179487",
"63987",
"11880",
"1155",
"55"
] | [
"nonn",
"base",
"tabf"
] | 92 | 1 | 5 | [
"A008277",
"A164864",
"A267013",
"A376918",
"A377727",
"A378154",
"A378199",
"A378511",
"A378761"
] | null | Dmytro Inosov, Nov 18 2024 | 2025-01-03T23:28:26 | oeisdata/seq/A378/A378154.seq | e5bd5cc6d730b0c66bf83a776ef51f3b |
A378155 | G.f. A(x) satisfies A(x) = ( 1 + x * A(x)^(2/3) * (1 + A(x)^(2/3)) )^3. | [
"1",
"6",
"48",
"452",
"4680",
"51504",
"591312",
"7002864",
"84926304",
"1049402944",
"13165069824",
"167239042176",
"2146912312064",
"27808372643328",
"362981425115904",
"4769884412086016",
"63050983340533248",
"837805424714425344",
"11184489029495865344",
"149935005483457542144",
"2017560365768892739584"
] | [
"nonn"
] | 5 | 0 | 2 | [
"A219534",
"A371693",
"A378155",
"A378156"
] | null | Seiichi Manyama, Nov 18 2024 | 2024-11-18T09:45:03 | oeisdata/seq/A378/A378155.seq | 6b09119341ae3bae46db2ab6e3b44302 |
A378156 | G.f. A(x) satisfies A(x) = ( 1 + x * A(x)^(1/2) * (1 + A(x)^(1/2)) )^4. | [
"1",
"8",
"72",
"720",
"7728",
"87104",
"1017184",
"12200640",
"149429504",
"1861059328",
"23498407680",
"300110580224",
"3870135336192",
"50323754919936",
"659085377250816",
"8686436702866432",
"115120162870534144",
"1533214282017157120",
"20510220228874399744",
"275462154992599851008",
"3712900128220039372800"
] | [
"nonn"
] | 8 | 0 | 2 | [
"A219534",
"A371693",
"A378155",
"A378156"
] | null | Seiichi Manyama, Nov 18 2024 | 2024-11-18T09:44:57 | oeisdata/seq/A378/A378156.seq | 53f91991e6574aa06668088457f65593 |
A378157 | The least prime dividing !n = A000166(n). | [
"2",
"3",
"2",
"5",
"2",
"7",
"2",
"3",
"2",
"11",
"2",
"13",
"2",
"3",
"2",
"17",
"2",
"11",
"2",
"3",
"2",
"23",
"2",
"5",
"2",
"3",
"2",
"29",
"2",
"31",
"2",
"3",
"2",
"5",
"2",
"11",
"2",
"3",
"2",
"11",
"2",
"43",
"2",
"3",
"2",
"47",
"2",
"7",
"2",
"3",
"2",
"53",
"2",
"5",
"2",
"3",
"2",
"11",
"2",
"61",
"2",
"3",
"2",
"5",
"2",
"67",
"2",
"3",
"2",
"71",
"2",
"73",
"2",
"3",
"2",
"7",
"2",
"79",
"2",
"3",
"2"
] | [
"nonn"
] | 9 | 3 | 1 | [
"A000166",
"A020639",
"A152024",
"A195207",
"A195208",
"A195209",
"A195210",
"A378157",
"A378158",
"A378159"
] | null | Amiram Eldar, Nov 18 2024 | 2024-11-19T00:58:56 | oeisdata/seq/A378/A378157.seq | b0ef3420dafeb8bc6d60cd40624a3899 |
A378158 | Numbers k such that lpf(!k) < lpf(k-1), where lpf(k) = A020639(k) and !k = A000166(k). | [
"20",
"38",
"42",
"60",
"90",
"104",
"108",
"110",
"114",
"132",
"138",
"152",
"164",
"170",
"174",
"192",
"194",
"198",
"240",
"242",
"258",
"284",
"294",
"324",
"338",
"350",
"360",
"368",
"390",
"398",
"434",
"438",
"450",
"462",
"482",
"488",
"500",
"504",
"510",
"522",
"524",
"528",
"542",
"548",
"564",
"570",
"588",
"600",
"602",
"614",
"618",
"632",
"642",
"644",
"648"
] | [
"nonn"
] | 7 | 1 | 1 | [
"A000166",
"A020639",
"A337986",
"A378157",
"A378158"
] | null | Amiram Eldar, Nov 18 2024 | 2024-11-19T00:59:04 | oeisdata/seq/A378/A378158.seq | 2d0c3185c4ba0fbd83258db37c66cc83 |
A378159 | The least prime dividing A000255(n); a(1) = 1. | [
"1",
"3",
"11",
"53",
"3",
"13",
"11",
"3",
"1468457",
"11",
"3",
"1373",
"34361893981",
"3",
"17713",
"2130617",
"3",
"11",
"13",
"3",
"11",
"617",
"3",
"37",
"11",
"3",
"179",
"14633",
"3",
"76463",
"97",
"3",
"337",
"1049",
"3",
"11",
"7237598635049",
"3",
"67",
"11",
"3",
"22742406079421034331584846001936724930824184898296683",
"11",
"3",
"13"
] | [
"nonn"
] | 8 | 1 | 2 | [
"A000255",
"A020639",
"A301423",
"A378157",
"A378159"
] | null | Amiram Eldar, Nov 18 2024 | 2024-11-19T00:59:13 | oeisdata/seq/A378/A378159.seq | 5bd947ca70f81b083854bed0c2c7d49c |
A378160 | The number of distinct prime factors of !n = A000166(n). | [
"0",
"1",
"1",
"2",
"2",
"3",
"3",
"4",
"2",
"3",
"2",
"4",
"3",
"3",
"4",
"3",
"3",
"4",
"5",
"5",
"4",
"7",
"5",
"6",
"4",
"5",
"7",
"6",
"6",
"7",
"4",
"4",
"4",
"8",
"4",
"6",
"4",
"5",
"6",
"6",
"4",
"7",
"2",
"4",
"7",
"8",
"6",
"5",
"7",
"6",
"7",
"7",
"4",
"6",
"9",
"6",
"6",
"6",
"6",
"6",
"4",
"4",
"5",
"4",
"3",
"6",
"6",
"6",
"6",
"6",
"7",
"7",
"4",
"8",
"6",
"5",
"8",
"6",
"4",
"4",
"5",
"8",
"4",
"7",
"7",
"8",
"6"
] | [
"nonn"
] | 13 | 2 | 4 | [
"A000166",
"A001221",
"A152024",
"A195207",
"A195208",
"A195209",
"A195210",
"A301423",
"A378157",
"A378160",
"A378161",
"A378162"
] | null | Amiram Eldar, Nov 18 2024 | 2024-12-08T20:41:07 | oeisdata/seq/A378/A378160.seq | de71ae45201be14ed22aeb5fb8113a97 |
A378161 | The number of prime factors of !n = A000166(n), counted with multiplicity. | [
"0",
"1",
"2",
"3",
"2",
"4",
"3",
"6",
"5",
"3",
"3",
"6",
"3",
"3",
"5",
"6",
"3",
"8",
"5",
"6",
"5",
"8",
"5",
"9",
"5",
"5",
"11",
"7",
"6",
"9",
"4",
"8",
"6",
"8",
"4",
"10",
"5",
"5",
"7",
"8",
"4",
"8",
"2",
"7",
"12",
"8",
"6",
"9",
"8",
"7",
"8",
"8",
"4",
"10",
"10",
"8",
"7",
"6",
"6",
"8",
"4",
"4",
"8",
"9",
"3",
"8",
"6",
"7",
"7",
"6",
"7",
"13",
"4",
"8",
"8",
"6",
"9",
"7",
"4",
"7",
"10",
"8",
"4",
"9",
"7"
] | [
"nonn"
] | 12 | 2 | 3 | [
"A000166",
"A001222",
"A152024",
"A195207",
"A195208",
"A195209",
"A195210",
"A301423",
"A378157",
"A378160",
"A378161",
"A378162"
] | null | Amiram Eldar, Nov 18 2024 | 2024-12-08T20:41:02 | oeisdata/seq/A378/A378161.seq | f378866177aa70099a894f0171207822 |
A378162 | Number k such that !k = A000166(k) is squarefree. | [
"0",
"2",
"3",
"6",
"8",
"11",
"14",
"15",
"18",
"20",
"24",
"27",
"30",
"32",
"35",
"36",
"39",
"42",
"44",
"47",
"48",
"54",
"59",
"60",
"62",
"63",
"66",
"68",
"71",
"72",
"74",
"75",
"80",
"83",
"84",
"86",
"87",
"90",
"92",
"95",
"96",
"98",
"102",
"104",
"107",
"108",
"110",
"114",
"116"
] | [
"nonn",
"more"
] | 9 | 1 | 2 | [
"A000166",
"A005117",
"A378160",
"A378161",
"A378162"
] | null | Amiram Eldar, Nov 18 2024 | 2024-11-26T02:20:56 | oeisdata/seq/A378/A378162.seq | 9371766d7e7605e8df742f5b5c6aff9a |
A378163 | Triangle read by rows: T(n,k) is the number of subgroups of S_n isomorphic to S_k, where S_n is the n-th symmetric group. | [
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"9",
"4",
"1",
"1",
"25",
"20",
"5",
"1",
"1",
"75",
"160",
"60",
"12",
"1",
"1",
"231",
"910",
"560",
"84",
"7",
"1",
"1",
"763",
"5936",
"5740",
"560",
"56",
"8",
"1",
"1",
"2619",
"53424",
"58716",
"3276",
"336",
"72",
"9",
"1",
"1",
"9495",
"397440",
"734160",
"79632",
"4620",
"480",
"90",
"10",
"1",
"1",
"35695",
"3304620",
"8337120",
"1105104",
"39732",
"3300",
"660",
"110",
"11",
"1",
"1",
"140151",
"35023120",
"133212420",
"16571808",
"1400784",
"20592",
"4950",
"880",
"132",
"12",
"1",
"1",
"568503",
"322852816",
"1769490580",
"176344740",
"16253952",
"130416",
"33462",
"7150",
"1144",
"156",
"13",
"1"
] | [
"nonn",
"tabl",
"hard"
] | 29 | 1 | 5 | [
"A000085",
"A001189",
"A281097",
"A378163",
"A378279",
"A378280",
"A378281"
] | null | Jianing Song, Nov 18 2024 | 2024-11-29T23:50:57 | oeisdata/seq/A378/A378163.seq | 83938ec4b2bc2aeb3cf7650318084a0d |
A378164 | Smaller of consecutive terms b < c of A076467 such that the quality q=log(rad(c))/log(rad((c-b)*b*c)) of the abc-triple c-b,b,c with gcd(c-b,b,c)=1 sets a new record. | [
"1",
"81",
"1296",
"2187",
"1419857"
] | [
"nonn",
"hard",
"more"
] | 9 | 1 | 2 | [
"A007947",
"A076467",
"A377933",
"A377934",
"A378164",
"A378165",
"A378166",
"A378167"
] | null | Hugo Pfoertner, Nov 18 2024 | 2024-11-27T17:56:59 | oeisdata/seq/A378/A378164.seq | e04aee8926bae92d739f42687d97a374 |
A378165 | Differences between adjacent terms of A076467 that correspond to the locations of abc-quality records of A378164. | [
"7",
"44",
"35",
"10",
"23440"
] | [
"nonn",
"hard",
"more"
] | 5 | 1 | 1 | [
"A076467",
"A378164",
"A378165"
] | null | Hugo Pfoertner, Nov 19 2024 | 2024-11-27T15:58:13 | oeisdata/seq/A378/A378165.seq | 173cdd271ef5854493d1e25a686f16eb |
A378166 | Terms c = A076467(k) such that the distinct prime factors of b = A076467(k-1) and of c-b are subsets of the prime factors of c, i.e., rad(c)/rad((c-b)*b*c) = 1. | [
"16",
"64",
"2744",
"474552",
"157529610000",
"407165596771032",
"1491025241529616",
"173903694695292024",
"661905356066769705912",
"14918256451377811247508792",
"19801061641727872277815512",
"2718924063971620383558231552"
] | [
"nonn",
"hard",
"more"
] | 16 | 1 | 1 | [
"A007947",
"A076467",
"A378164",
"A378165",
"A378166",
"A378167"
] | null | Hugo Pfoertner, Nov 20 2024 | 2024-11-29T05:11:38 | oeisdata/seq/A378/A378166.seq | 28ceb153dc9856615f4e6e1bf3b347b9 |
A378167 | Differences between adjacent terms of A076467 that correspond to the locations described by A378166. | [
"8",
"32",
"343",
"17576",
"65610000",
"11329982936",
"26102469128",
"315404039943",
"152838610998696",
"7327416190396311",
"146668341275463896",
"1097750613982270976"
] | [
"nonn",
"hard",
"more"
] | 13 | 1 | 1 | [
"A076467",
"A378164",
"A378165",
"A378166",
"A378167"
] | null | Hugo Pfoertner, Nov 20 2024 | 2024-11-29T05:11:28 | oeisdata/seq/A378/A378167.seq | 6548d06414d6b76172ee306bae69f5a3 |
A378168 | a(n) is the number of squares <= 10^n that are not higher powers, i.e., terms of A076467. | [
"2",
"6",
"24",
"87",
"292",
"959",
"3089",
"9875",
"31410",
"99633",
"315589",
"998889",
"3160340",
"9996605",
"31616816",
"99989509",
"316209268",
"999967330",
"3162219896",
"9999897769",
"31622595517",
"99999679010",
"316227196708",
"999998989804",
"3162275866962",
"9999996815862",
"31622770946248",
"99999989953079"
] | [
"nonn"
] | 23 | 1 | 1 | [
"A000290",
"A001597",
"A070428",
"A076467",
"A089579",
"A378168"
] | null | Hugo Pfoertner, Nov 20 2024 | 2024-11-21T19:11:46 | oeisdata/seq/A378/A378168.seq | f6cb397caa32fa1149fc7a0fda30ddc5 |
A378169 | Number of free polyominoes with n cells with at most 3 collinear cell centers on any line in the plane. | [
"1",
"1",
"2",
"4",
"9",
"18",
"37",
"62",
"86",
"78",
"61",
"34",
"14",
"4",
"1"
] | [
"nonn",
"fini",
"full"
] | 8 | 1 | 3 | [
"A000105",
"A377756",
"A377942",
"A378169"
] | null | Dave Budd, Nov 18 2024 | 2024-12-03T12:41:31 | oeisdata/seq/A378/A378169.seq | c4ae08098911471541a865c92a1cddbe |
A378170 | Number of subsets of the first n nonzero tetrahedral numbers whose sum is a nonzero tetrahedral number. | [
"1",
"2",
"3",
"5",
"7",
"8",
"11",
"13",
"19",
"34",
"45",
"72",
"113",
"171",
"262",
"388",
"638",
"1128",
"1928",
"3370",
"5584",
"9691",
"17129",
"30493",
"54785",
"94510",
"169817",
"308491",
"559176",
"1019487",
"1816043",
"3333698",
"6153695",
"11384025",
"21100254",
"38262081",
"71096456",
"132675454",
"247900732",
"463959984"
] | [
"nonn"
] | 9 | 1 | 2 | [
"A000292",
"A377123",
"A378170",
"A378171"
] | null | Ilya Gutkovskiy, Nov 18 2024 | 2024-11-19T00:53:04 | oeisdata/seq/A378/A378170.seq | 2cc7fbe7dff1c54c136af77cc2e1690b |
A378171 | Number of subsets of the first n positive cubes whose sum is a positive cube. | [
"1",
"2",
"3",
"4",
"6",
"7",
"8",
"11",
"12",
"18",
"23",
"32",
"42",
"67",
"99",
"150",
"247",
"391",
"635",
"1098",
"1865",
"2927",
"4932",
"9109",
"14825",
"26926",
"48452",
"83758",
"148387",
"263258",
"468595",
"840912",
"1559322",
"2785642",
"5146754",
"9454946",
"16756330",
"31372080",
"57754175",
"105385375",
"196773661",
"368705288",
"671572482"
] | [
"nonn"
] | 8 | 1 | 2 | [
"A000578",
"A126111",
"A336815",
"A339615",
"A378170",
"A378171"
] | null | Ilya Gutkovskiy, Nov 18 2024 | 2024-11-19T00:53:12 | oeisdata/seq/A378/A378171.seq | 3fa8a3833fc7fc8815be5357e326d241 |
A378172 | Numbers m such that k = 4*m is powerful while both 4*m-1 and 4*m+1 are squarefree. | [
"1",
"4",
"8",
"9",
"18",
"27",
"32",
"36",
"49",
"50",
"54",
"64",
"98",
"100",
"108",
"121",
"125",
"162",
"216",
"225",
"242",
"243",
"288",
"289",
"324",
"338",
"343",
"392",
"400",
"432",
"441",
"450",
"486",
"500",
"512",
"648",
"675",
"676",
"729",
"784",
"800",
"841",
"864",
"882",
"900",
"1000",
"1058",
"1089",
"1125",
"1152",
"1250",
"1296",
"1323",
"1350"
] | [
"nonn",
"easy"
] | 5 | 1 | 2 | [
"A001694",
"A005117",
"A335851",
"A378172"
] | null | Michael De Vlieger, Nov 24 2024 | 2024-11-27T18:34:35 | oeisdata/seq/A378/A378172.seq | 080ae511a364c1a91bc17ab51f7070e4 |
A378173 | Array read by antidiagonals: T(n,k) is the number of proper antichain partitions of the rectangular poset of size n X k. | [
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"5",
"5",
"1",
"1",
"14",
"38",
"14",
"1",
"1",
"42",
"372",
"372",
"42",
"1",
"1",
"132",
"4282",
"14606",
"4282",
"132",
"1",
"1",
"429",
"55149"
] | [
"nonn",
"tabl",
"more"
] | 9 | 1 | 5 | [
"A060854",
"A299968",
"A374985",
"A378173"
] | null | Ludovic Schwob, Nov 18 2024 | 2024-11-20T09:47:47 | oeisdata/seq/A378/A378173.seq | 9e4b4390927455c8a09807e4f94b51fa |
A378174 | Maximum number of clues in a n X n crossword puzzle where each word is at least 4 letters long and the puzzle has 180-degree rotational symmetry and no interlock. | [
"0",
"0",
"0",
"8",
"10",
"12",
"14",
"16",
"20",
"36",
"40",
"44",
"52",
"64",
"80",
"88",
"96",
"108",
"122",
"144",
"156",
"166",
"184",
"198",
"228",
"244",
"258",
"280",
"294",
"332"
] | [
"nonn",
"more"
] | 21 | 1 | 4 | [
"A243826",
"A378174"
] | null | Abigail Schnitzer, Nov 18 2024 | 2024-11-19T08:59:21 | oeisdata/seq/A378/A378174.seq | 0208cc24514acaea05de60a6331b258e |
A378175 | Triangle T(n,k) read by rows in which n-th row lists in increasing order all multiplicative partitions mu of n (with factors > 1) encoded as Product_{j in mu} prime(j); n>=1, 1<=k<=A001055(n). | [
"1",
"3",
"5",
"7",
"9",
"11",
"13",
"15",
"17",
"19",
"21",
"27",
"23",
"25",
"29",
"33",
"31",
"35",
"37",
"39",
"45",
"41",
"43",
"51",
"47",
"55",
"49",
"53",
"57",
"63",
"81",
"59",
"61",
"65",
"69",
"75",
"67",
"71",
"77",
"87",
"99",
"73",
"85",
"79",
"93",
"83",
"89",
"91",
"95",
"105",
"111",
"117",
"135",
"97",
"121",
"101",
"123",
"103",
"115",
"125",
"107",
"119",
"129",
"153"
] | [
"nonn",
"tabf"
] | 28 | 1 | 2 | [
"A000040",
"A001055",
"A005408",
"A006450",
"A064988",
"A215366",
"A318871",
"A377852",
"A378175",
"A378176"
] | null | Alois P. Heinz, Nov 18 2024 | 2024-11-20T05:23:22 | oeisdata/seq/A378/A378175.seq | 15f44c9c587d10b3c624761a51b70995 |
A378176 | Sum over all multiplicative partitions mu of n (with factors > 1) of the encoding as Product_{j in mu} prime(j). | [
"1",
"3",
"5",
"16",
"11",
"28",
"17",
"67",
"48",
"62",
"31",
"156",
"41",
"94",
"102",
"303",
"59",
"270",
"67",
"334",
"158",
"172",
"83",
"743",
"218",
"224",
"343",
"508",
"109",
"707",
"127",
"1173",
"292",
"316",
"336",
"1651",
"157",
"364",
"372",
"1587",
"179",
"1091",
"191",
"926",
"960",
"448",
"211",
"3468",
"516",
"1202",
"528",
"1198",
"241",
"2209"
] | [
"nonn"
] | 17 | 1 | 2 | [
"A000040",
"A001055",
"A006450",
"A145519",
"A377853",
"A378175",
"A378176"
] | null | Alois P. Heinz, Nov 18 2024 | 2024-11-20T05:20:09 | oeisdata/seq/A378/A378176.seq | d8de005bf0340b2f35d2d1657763f248 |
A378177 | Triangle read by rows: T(n,k) is the number of subgroups of S_n isomorphic to S_k up to conjugacy, where S_n is the n-th symmetric group. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"3",
"4",
"4",
"2",
"1",
"1",
"3",
"5",
"5",
"3",
"1",
"1",
"1",
"4",
"7",
"10",
"4",
"2",
"1",
"1",
"1",
"4",
"10",
"13",
"5",
"2",
"2",
"1",
"1",
"1",
"5",
"12",
"22",
"9",
"4",
"2",
"2",
"1",
"1",
"1",
"5",
"15",
"27",
"11",
"4",
"3",
"2",
"2",
"1",
"1",
"1",
"6",
"20",
"47",
"17",
"9",
"3",
"3",
"2",
"2",
"1",
"1",
"1",
"6",
"23",
"56",
"19",
"9",
"4",
"3",
"3",
"2",
"2",
"1",
"1"
] | [
"nonn",
"tabl",
"hard",
"more"
] | 11 | 1 | 8 | [
"A004526",
"A378177",
"A378266",
"A378273",
"A378274"
] | null | Jianing Song, Nov 18 2024 | 2024-11-27T18:56:57 | oeisdata/seq/A378/A378177.seq | 5e045eb2002b908995c755fbf8004f92 |
A378178 | Number of powerful k between consecutive perfect (or proper) prime powers. | [
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"2",
"0",
"0",
"1",
"4",
"0",
"1",
"1",
"0",
"6",
"0",
"1",
"3",
"2",
"2",
"3",
"7",
"1",
"5",
"3",
"4",
"1",
"0",
"0",
"2",
"6",
"4",
"7",
"2",
"5",
"3",
"6",
"1",
"3",
"11",
"2",
"2",
"0",
"10",
"2",
"13",
"6",
"3",
"7",
"2",
"3",
"5",
"14",
"7",
"2",
"1",
"1",
"3",
"11",
"2",
"2",
"17",
"3",
"8",
"1",
"11",
"9",
"2",
"6",
"0",
"11",
"1",
"0",
"20",
"5",
"4",
"4",
"24",
"23"
] | [
"nonn",
"easy"
] | 11 | 1 | 10 | [
"A001694",
"A246547",
"A286708",
"A378178"
] | null | Michael De Vlieger, Nov 24 2024 | 2024-11-27T18:34:56 | oeisdata/seq/A378/A378178.seq | fc9671a2507fe8e090dac8e43192430a |
A378179 | Squarefree numbers k whose neighbors are neither squarefree nor prime powers. | [
"19",
"51",
"53",
"55",
"89",
"91",
"97",
"149",
"151",
"161",
"163",
"197",
"199",
"233",
"235",
"241",
"249",
"251",
"269",
"271",
"293",
"295",
"305",
"307",
"337",
"339",
"341",
"349",
"377",
"379",
"413",
"415",
"449",
"451",
"485",
"487",
"489",
"491",
"521",
"523",
"551",
"557",
"559",
"577",
"579",
"593",
"595",
"629",
"631",
"638",
"649",
"651",
"665",
"667"
] | [
"nonn",
"easy"
] | 12 | 1 | 1 | [
"A005117",
"A013929",
"A024619",
"A073247",
"A126706",
"A378179"
] | null | Michael De Vlieger, Nov 24 2024 | 2024-11-27T18:35:16 | oeisdata/seq/A378/A378179.seq | e263d8ba6f22e30476e66f7671e01d1e |
A378180 | Irregular triangle where row n lists m such that rad(m) | n and bigomega(m) < bigomega(n), where rad = A007947 and bigomega = A001222. | [
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"3",
"1",
"1",
"2",
"4",
"1",
"3",
"1",
"2",
"5",
"1",
"1",
"2",
"3",
"4",
"6",
"9",
"1",
"1",
"2",
"7",
"1",
"3",
"5",
"1",
"2",
"4",
"8",
"1",
"1",
"2",
"3",
"4",
"6",
"9",
"1",
"1",
"2",
"4",
"5",
"10",
"25",
"1",
"3",
"7",
"1",
"2",
"11",
"1",
"1",
"2",
"3",
"4",
"6",
"8",
"9",
"12",
"18",
"27",
"1",
"5",
"1",
"2",
"13",
"1",
"3",
"9",
"1",
"2",
"4",
"7",
"14",
"49",
"1",
"1",
"2",
"3",
"4",
"5",
"6",
"9",
"10",
"15",
"25"
] | [
"nonn",
"tabf",
"easy"
] | 5 | 2 | 4 | [
"A000961",
"A001221",
"A001222",
"A007947",
"A010846",
"A024619",
"A027750",
"A162306",
"A376248",
"A376567",
"A377070",
"A378180",
"A378181",
"A378183"
] | null | Michael De Vlieger, Nov 19 2024 | 2024-11-24T09:38:43 | oeisdata/seq/A378/A378180.seq | 6d0ffd5943c009272375b3aa52e25bdf |
A378181 | a(1) = 0, a(n) = binomial(bigomega(n) + omega(n) - 1, omega(n)), where bigomega = A001222 and omega = A001221. | [
"0",
"1",
"1",
"2",
"1",
"3",
"1",
"3",
"2",
"3",
"1",
"6",
"1",
"3",
"3",
"4",
"1",
"6",
"1",
"6",
"3",
"3",
"1",
"10",
"2",
"3",
"3",
"6",
"1",
"10",
"1",
"5",
"3",
"3",
"3",
"10",
"1",
"3",
"3",
"10",
"1",
"10",
"1",
"6",
"6",
"3",
"1",
"15",
"2",
"6",
"3",
"6",
"1",
"10",
"3",
"10",
"3",
"3",
"1",
"20",
"1",
"3",
"6",
"6",
"3",
"10",
"1",
"6",
"3",
"10",
"1",
"15",
"1",
"3",
"6",
"6",
"3",
"10",
"1",
"15",
"4",
"3",
"1"
] | [
"nonn",
"easy"
] | 5 | 1 | 4 | [
"A000005",
"A001221",
"A001222",
"A007947",
"A010846",
"A024619",
"A378180",
"A378181"
] | null | Michael De Vlieger, Nov 19 2024 | 2024-11-24T09:38:54 | oeisdata/seq/A378/A378181.seq | b04db543c14632da2d51fb9032b408bd |
A378182 | Sum of row n of A378180. | [
"0",
"1",
"1",
"3",
"1",
"6",
"1",
"7",
"4",
"8",
"1",
"25",
"1",
"10",
"9",
"15",
"1",
"25",
"1",
"47",
"11",
"14",
"1",
"90",
"6",
"16",
"13",
"77",
"1",
"80",
"1",
"31",
"15",
"20",
"13",
"90",
"1",
"22",
"17",
"250",
"1",
"116",
"1",
"161",
"58",
"26",
"1",
"301",
"8",
"47",
"21",
"215",
"1",
"90",
"17",
"554",
"23",
"32",
"1",
"490",
"1",
"34",
"90",
"63",
"19",
"212",
"1",
"347",
"27",
"152"
] | [
"nonn",
"easy"
] | 5 | 1 | 4 | [
"A000203",
"A007947",
"A024619",
"A244974",
"A376567",
"A377071",
"A378180",
"A378182"
] | null | Michael De Vlieger, Nov 20 2024 | 2024-11-24T09:39:06 | oeisdata/seq/A378/A378182.seq | 7b1314bf88000b36763b9e38174a8f40 |
A378183 | a(n) = rad(n)^binomial(omega(n) + bigomega(n) - 1, bigomega(n) - 2), where rad = A007947, bigomega = A001222, and omega = A001221. | [
"1",
"1",
"1",
"2",
"1",
"6",
"1",
"8",
"3",
"10",
"1",
"1296",
"1",
"14",
"15",
"64",
"1",
"1296",
"1",
"10000",
"21",
"22",
"1",
"60466176",
"5",
"26",
"27",
"38416",
"1",
"24300000",
"1",
"1024",
"33",
"34",
"35",
"60466176",
"1",
"38",
"39",
"10000000000",
"1",
"130691232",
"1",
"234256",
"50625",
"46",
"1",
"3656158440062976",
"7",
"10000",
"51",
"456976",
"1"
] | [
"nonn",
"easy"
] | 5 | 1 | 4 | [
"A001221",
"A001222",
"A006881",
"A007947",
"A007955",
"A024619",
"A243103",
"A377073",
"A377379",
"A378180",
"A378183"
] | null | Michael De Vlieger, Nov 19 2024 | 2024-11-24T09:39:16 | oeisdata/seq/A378/A378183.seq | 360fc0960797c130a9117e6ed54c04f7 |
A378184 | With p(n) = A002144(n) = n-th Pythagorean prime, a(n) is the least k such p(n) + k is a Pythagorean prime and 2 p(n) + k + 1 is a non-Pythagorean prime; or a(n) = 0 if there is no such k. | [
"8",
"4",
"12",
"8",
"4",
"20",
"20",
"28",
"16",
"12",
"4",
"8",
"4",
"24",
"36",
"8",
"16",
"20",
"16",
"76",
"36",
"4",
"24",
"16",
"56",
"8",
"16",
"36",
"20",
"4",
"56",
"16",
"40",
"20",
"76",
"8",
"64",
"8",
"40",
"40",
"16",
"8",
"4",
"48",
"12",
"20",
"36",
"24",
"16",
"116",
"76",
"4",
"24",
"20",
"20",
"100",
"100",
"84",
"56",
"52",
"64",
"16",
"8",
"4",
"24",
"12",
"44",
"56"
] | [
"nonn"
] | 9 | 1 | 1 | [
"A000041",
"A002144",
"A002145",
"A378184"
] | null | Clark Kimberling, Jan 11 2025 | 2025-01-14T09:49:28 | oeisdata/seq/A378/A378184.seq | 0bb890c46dfad9606bbec0c25917711f |
A378185 | a(n) = n + floor(n*r/s) + floor(n*r/t), where r=2^(1/4), s=2^(1/2), t=2^(3/4). | [
"2",
"5",
"8",
"11",
"14",
"18",
"20",
"23",
"26",
"29",
"33",
"36",
"38",
"41",
"44",
"48",
"51",
"54",
"56",
"59",
"62",
"66",
"69",
"72",
"75",
"77",
"81",
"84",
"87",
"90",
"93",
"96",
"99",
"102",
"105",
"108",
"112",
"114",
"117",
"120",
"123",
"126",
"130",
"132",
"135",
"138",
"141",
"145",
"148",
"151",
"153",
"156",
"160",
"163",
"166",
"169",
"171",
"174",
"178"
] | [
"nonn"
] | 10 | 1 | 1 | [
"A000027",
"A184812",
"A378142",
"A378185",
"A379510"
] | null | Clark Kimberling, Jan 13 2025 | 2025-01-13T20:29:47 | oeisdata/seq/A378/A378185.seq | 1c240dd9d6b7d145e44139d41dd20b95 |
A378186 | With p(n) = A002145(n) = n-th non-Pythagorean prime, a(n) is the least k such p(n) + k is a non-Pythagorean prime and 2 p(n) + k - 5 is a Pythagorean prime; and a(n) = 0 if there is no such k . | [
"4",
"4",
"12",
"4",
"20",
"16",
"16",
"12",
"24",
"64",
"12",
"4",
"20",
"28",
"20",
"64",
"20",
"40",
"16",
"16",
"24",
"20",
"20",
"28",
"16",
"16",
"12",
"68",
"12",
"20",
"40",
"100",
"4",
"36",
"16",
"12",
"20",
"100",
"4",
"36",
"20",
"72",
"4",
"48",
"16",
"12",
"24",
"100",
"32",
"4",
"20",
"76",
"40",
"8",
"16",
"12",
"8",
"40",
"64",
"196",
"16",
"12",
"60",
"68",
"52",
"20"
] | [
"nonn"
] | 5 | 1 | 1 | [
"A000041",
"A002144",
"A002145",
"A378186",
"A378187"
] | null | Clark Kimberling, Jan 13 2025 | 2025-01-14T09:49:57 | oeisdata/seq/A378/A378186.seq | 4163cf37e9e74acbafdcfce918cd5e0e |
A378187 | With p(n) = A002145(n) = n-th non-Pythagorean prime, a(n) is the least k such p(n) + k is a non-Pythagorean prime and 2 p(n) + k - 3 is a Pythagorean prime; and a(n) = 0 if there is no such k. | [
"4",
"12",
"12",
"12",
"24",
"12",
"24",
"12",
"12",
"36",
"12",
"24",
"48",
"24",
"60",
"12",
"48",
"72",
"12",
"36",
"192",
"12",
"60",
"24",
"12",
"48",
"12",
"12",
"108",
"48",
"60",
"24",
"72",
"72",
"168",
"36",
"24",
"12",
"84",
"48",
"24",
"48",
"108",
"24",
"24",
"36",
"12",
"12",
"12",
"24",
"60",
"48",
"60",
"156",
"48",
"60",
"84",
"12",
"24",
"60",
"84",
"12",
"84",
"36"
] | [
"nonn"
] | 4 | 1 | 1 | [
"A000041",
"A002144",
"A002145",
"A378186",
"A378187"
] | null | Clark Kimberling, Jan 13 2025 | 2025-01-14T09:50:08 | oeisdata/seq/A378/A378187.seq | 33105482965849ea6b502fbc66c2f7f0 |
A378188 | Record values in A205561. | [
"2",
"3",
"4",
"5",
"8",
"10",
"20",
"22",
"24",
"29",
"34",
"36",
"49",
"59",
"72",
"76",
"90",
"108",
"110",
"144",
"162",
"173",
"175",
"189",
"281",
"410",
"413",
"473",
"478",
"511",
"512",
"513",
"539",
"555",
"632",
"639",
"783",
"790",
"794",
"820",
"944",
"1096",
"1153",
"1178",
"1226",
"1264",
"1413",
"1438",
"1622",
"1633",
"1689",
"1717",
"1801",
"1892",
"1982",
"2002",
"2057",
"2446",
"2521",
"2592"
] | [
"nonn"
] | 11 | 1 | 1 | [
"A205561",
"A378188",
"A378189"
] | null | Robert Israel, Nov 19 2024 | 2025-03-31T01:47:06 | oeisdata/seq/A378/A378188.seq | 4493b8ee1f8ab7862a4be1ec3d26bc87 |
A378189 | Positions of records in A205561. | [
"1",
"3",
"5",
"7",
"13",
"17",
"37",
"83",
"137",
"173",
"193",
"269",
"311",
"479",
"607",
"673",
"1019",
"1427",
"1523",
"1613",
"3391",
"3527",
"4817",
"5021",
"5623",
"9887",
"14891",
"15823",
"21701",
"22727",
"24439",
"26399",
"27581",
"28771",
"29339",
"35491",
"37967",
"49207",
"51157",
"52639",
"54799",
"64303",
"93077",
"104323",
"115279",
"116981",
"117881",
"135209",
"157177"
] | [
"nonn"
] | 7 | 1 | 2 | [
"A205561",
"A378188",
"A378189"
] | null | Robert Israel, Nov 19 2024 | 2024-11-21T09:05:18 | oeisdata/seq/A378/A378189.seq | cab4395e1efce653238f153a53d7de60 |
A378190 | Number of planar maps with an external face and n internal triangular faces. | [
"1",
"2",
"6",
"24",
"100",
"586",
"3725",
"26532",
"198081",
"1539550",
"12274565",
"99959181",
"827795678",
"6954099320",
"59138955508",
"508331799502",
"4410651891166",
"38590663253312",
"340173195849485",
"3018768835038348",
"26952060900042852",
"241960993507098580",
"2183134755112963493",
"19788571100313277286"
] | [
"nonn"
] | 5 | 1 | 2 | [
"A002713",
"A169808",
"A377785",
"A378103",
"A378190"
] | null | Ya-Ping Lu, Nov 19 2024 | 2024-12-12T23:15:51 | oeisdata/seq/A378/A378190.seq | ddd7e0c4172ae9f60803488ea3299207 |
A378191 | a(n) is the number of integer bases >= 2 in which n is digitally balanced. | [
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0"
] | [
"nonn",
"base"
] | 14 | 0 | null | [
"A049364",
"A065963",
"A378000",
"A378073",
"A378080",
"A378104",
"A378191"
] | null | Paolo Xausa, Nov 19 2024 | 2024-11-20T09:45:07 | oeisdata/seq/A378/A378191.seq | 1c0fae1d03809ae02a5ce682c98bfa8d |
A378192 | a(1) = 1. For n > 1, a(n) is the number of terms a(i); 1 <= i <= n-1 such that phi(a(i)) = phi(a(n-1)), where phi is Euler's totient function A000010. | [
"1",
"1",
"2",
"3",
"1",
"4",
"2",
"5",
"1",
"6",
"3",
"4",
"5",
"2",
"7",
"1",
"8",
"3",
"6",
"7",
"2",
"9",
"3",
"8",
"4",
"9",
"4",
"10",
"5",
"6",
"11",
"1",
"10",
"7",
"5",
"8",
"9",
"6",
"12",
"10",
"11",
"2",
"11",
"3",
"13",
"1",
"12",
"12",
"13",
"2",
"13",
"3",
"14",
"7",
"8",
"14",
"9",
"10",
"15",
"1",
"14",
"11",
"4",
"15",
"2",
"15",
"3",
"16",
"4",
"17",
"1",
"16",
"5",
"16",
"6",
"18",
"12",
"17"
] | [
"nonn"
] | 19 | 1 | 3 | [
"A000010",
"A000027",
"A000040",
"A006093",
"A378192"
] | null | David James Sycamore, Nov 19 2024 | 2024-11-20T09:43:57 | oeisdata/seq/A378/A378192.seq | 5ab06cda50e40ee29b55b0fd2685ad76 |
A378193 | Rectangular array read by descending antidiagonals: row n shows the integers m such that the number of Pythagorean primes (including multiplicities) that divide m is n-1. | [
"1",
"2",
"5",
"3",
"10",
"25",
"4",
"13",
"50",
"125",
"6",
"15",
"65",
"250",
"625",
"7",
"17",
"75",
"325",
"1250",
"3125",
"8",
"20",
"85",
"375",
"1625",
"6250",
"15625",
"9",
"26",
"100",
"425",
"1875",
"8125",
"31250",
"78125",
"11",
"29",
"130",
"500",
"2125",
"9375",
"40625",
"156250",
"390625",
"12",
"30",
"145",
"650",
"2500",
"10625",
"46875",
"203125",
"781250",
"1953125"
] | [
"nonn",
"tabl"
] | 11 | 1 | 2 | [
"A002144",
"A002145",
"A083025",
"A378193",
"A378194"
] | null | Clark Kimberling, Jan 14 2025 | 2025-01-27T05:07:27 | oeisdata/seq/A378/A378193.seq | bd8832c4dcca710c8013679f4b1df529 |
A378194 | Rectangular array, read by descending antidiagonals: row n shows the integers m such that the number of primes of the form 4k+3 (including multiplicities) that divide m is n-1. | [
"1",
"2",
"3",
"4",
"6",
"9",
"5",
"7",
"18",
"27",
"8",
"11",
"21",
"54",
"81",
"10",
"12",
"33",
"63",
"162",
"243",
"13",
"14",
"36",
"99",
"189",
"486",
"729",
"16",
"15",
"42",
"108",
"297",
"567",
"1458",
"2187",
"17",
"19",
"45",
"126",
"324",
"891",
"1701",
"4374",
"6561",
"20",
"22",
"49",
"135",
"378",
"972",
"2673",
"5103",
"13122",
"19683",
"25",
"23",
"57",
"147",
"405",
"1134",
"2916",
"8019",
"15309",
"39366",
"59049",
"26",
"24",
"66",
"171",
"441",
"1215",
"3402",
"8748",
"24057",
"45927",
"118098",
"177147"
] | [
"nonn",
"tabl"
] | 11 | 1 | 2 | [
"A000244",
"A002144",
"A002145",
"A025192",
"A065339",
"A072437",
"A376961",
"A378193",
"A378194"
] | null | Clark Kimberling, Jan 14 2025 | 2025-01-28T07:54:01 | oeisdata/seq/A378/A378194.seq | e5fec8a25627170709bd245e5393588e |
A378195 | Number of 2-colorings of length n without an arithmetic progression of length 3 | [
"1",
"2",
"4",
"6",
"10",
"14",
"20",
"16",
"6",
"0"
] | [
"nonn"
] | 6 | 0 | 2 | [
"A005346",
"A378195",
"A378196",
"A378197"
] | null | Ethan Ji, Nov 19 2024 | 2024-12-03T12:45:42 | oeisdata/seq/A378/A378195.seq | c593a13d5ed36373cd72fb7a090ab701 |
A378196 | Number of 2-colorings of length n without an arithmetic progression of length 4 | [
"1",
"2",
"4",
"8",
"14",
"26",
"48",
"78",
"132",
"230",
"356",
"548",
"842",
"1078",
"1344",
"1764",
"1744",
"1850",
"1948",
"1708",
"1442",
"1342",
"1032",
"702",
"524",
"316",
"168",
"136",
"136",
"144",
"152",
"160",
"168",
"176",
"28",
"0"
] | [
"nonn"
] | 5 | 0 | 2 | [
"A005346",
"A378195",
"A378196",
"A378197"
] | null | Ethan Ji, Nov 19 2024 | 2024-12-03T12:45:51 | oeisdata/seq/A378/A378196.seq | ca2c80a236ab20e230473a5ca0547188 |
A378197 | Number of 2-colorings of length n without an arithmetic progression of length 5. | [
"1",
"2",
"4",
"8",
"16",
"30",
"58",
"112",
"216",
"400",
"740",
"1398",
"2638",
"4710",
"8444",
"15118",
"27690",
"48406",
"84382",
"146928",
"255844",
"402998",
"625824",
"956370",
"1447476",
"2066828",
"3225856",
"5020232",
"7823236",
"10975318",
"15264202",
"21500308",
"30004914",
"39030820",
"50728472",
"65402746",
"88886116"
] | [
"nonn"
] | 14 | 0 | 2 | [
"A005346",
"A378195",
"A378196",
"A378197"
] | null | Ethan Ji, Nov 19 2024 | 2024-11-23T03:37:17 | oeisdata/seq/A378/A378197.seq | d4200d18c77865c34397f3f4fd5959f0 |
A378198 | Table T(n, k) read by upward antidiagonals. T(n,1) = A375602(n), T(n,2) = A375602(A375602(n)), T(n,3) = A375602(A375602(A375602(n))) and so on. | [
"1",
"2",
"1",
"4",
"2",
"1",
"3",
"3",
"2",
"1",
"5",
"4",
"4",
"2",
"1",
"6",
"5",
"3",
"3",
"2",
"1",
"7",
"6",
"5",
"4",
"4",
"2",
"1",
"10",
"7",
"6",
"5",
"3",
"3",
"2",
"1",
"13",
"16",
"7",
"6",
"5",
"4",
"4",
"2",
"1",
"16",
"14",
"9",
"7",
"6",
"5",
"3",
"3",
"2",
"1",
"8",
"9",
"17",
"13",
"7",
"6",
"5",
"4",
"4",
"2",
"1",
"11",
"10",
"13",
"12",
"14",
"7",
"6",
"5",
"3",
"3",
"2",
"1",
"14",
"8",
"16",
"14",
"11",
"17",
"7",
"6",
"5",
"4",
"4",
"2",
"1",
"17",
"17",
"10",
"9",
"17",
"8",
"12",
"7",
"6",
"5",
"3",
"3",
"2",
"1",
"19",
"12",
"12",
"16",
"13",
"12",
"10",
"11",
"7"
] | [
"nonn",
"tabl"
] | 9 | 1 | 2 | [
"A000027",
"A002817",
"A006003",
"A370655",
"A373498",
"A374447",
"A374494",
"A374531",
"A375602",
"A375725",
"A378198"
] | null | Boris Putievskiy, Nov 19 2024 | 2024-12-03T12:46:07 | oeisdata/seq/A378/A378198.seq | cb8967636c15b0a7ab7452b03a4b8715 |
A378199 | Number of digit patterns of length n such that all integers of that digital type share a common prime factor of a different digital type. | [
"0",
"0",
"1",
"4",
"1",
"26",
"1",
"175",
"365",
"1513",
"1",
"52611",
"989",
"426897",
"3072870",
"11132038",
"1",
"879525398",
"316025138"
] | [
"nonn",
"base",
"more"
] | 31 | 1 | 4 | [
"A164864",
"A267013",
"A376918",
"A377727",
"A378154",
"A378199",
"A378761"
] | null | Dmytro Inosov, Nov 19 2024 | 2025-01-06T15:12:41 | oeisdata/seq/A378/A378199.seq | 185c2b69480f461562058e04b04309b4 |
A378200 | Square array read by upward antidiagonals: T(n,k) = ((k + n - 1)^2 + (k - n + 1)*(-1)^n + (1 - k - n)*(-1)^k + (1 - k - n)*(-1)^(k + n) + 2)/2. | [
"1",
"5",
"2",
"6",
"3",
"4",
"12",
"9",
"14",
"7",
"15",
"8",
"13",
"10",
"11",
"23",
"20",
"25",
"18",
"27",
"16",
"28",
"17",
"26",
"19",
"24",
"21",
"22",
"38",
"35",
"40",
"33",
"42",
"31",
"44",
"29",
"45",
"30",
"43",
"32",
"41",
"34",
"39",
"36",
"37",
"57",
"54",
"59",
"52",
"61",
"50",
"63",
"48",
"65",
"46",
"66",
"47",
"64",
"49",
"62",
"51",
"60",
"53",
"58",
"55",
"56"
] | [
"nonn",
"tabl"
] | 36 | 1 | 2 | [
"A000027",
"A000384",
"A016813",
"A370655",
"A373498",
"A374447",
"A374494",
"A374531",
"A375602",
"A375725",
"A376214",
"A378200",
"A378684",
"A378705",
"A378762",
"A379342",
"A379343",
"A380245",
"A380815",
"A380817",
"A381662",
"A381663",
"A381664"
] | null | Boris Putievskiy, Nov 19 2024 | 2025-03-29T18:09:30 | oeisdata/seq/A378/A378200.seq | d5af225e0199853529dbb41ddb60224c |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.